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Abstract

Nowadays, multimedia services are becoming a part of the individual’s life; and thus, many ongoing

efforts have been given to develop and optimize the technology for multimedia content creation,

distribution, and consumption. As a result of advancement in the technology, there is a rivalry among

the standards, services, and thus, the service providers. In this context, assurance of the consumer

satisfaction by providing a required level of quality for the provided service is of crucial importance

for the service providers. From another viewpoint, providing a better Quality of Experience (QoE)

to the provided service could be a differentiation strategy to achieve the competitive advantage. To

provide the best QoE, all the involving entities in the multimedia communication chain should pose

a defined quality level. Moreover, the QoE centric operations and optimization techniques should be

incorporated in the multimedia communication system. For QoE centric operation and optimization,

the assessment of the QoE of the service is an important step, and thus, the QoE assessment is a

scope of this dissertation.

Among multimedia services, the video communication is becoming a dominant service. Moreover,

the latest advancement in imaging technology–light field imaging, is expected to be a next generation

imaging technology. Due to the possibilities of a wide range of applications provided by the light

field imaging, lots of attention is pulled from industry and academia by this technology. Therefore,

this dissertation is mainly focused on two types of multimedia content: video and light field image.

Every step involved in multimedia communication such as acquisition, representation, encoding,

network, and rendering/presentation, produces the artifacts, and ultimately degrades the quality.

The main aim of this dissertation is to propose the novel theories and frameworks for assessing the

QoE of video and light field image.

First part of the dissertation is focused on video QoE assessment. Before designing a quality

assessment metric, and for optimizing the multimedia communication networks, the knowledge of

the impact of transmission impairments on video QoE is crucial. In communication environment,

the spatial-temporal sensitive video content need to be transmitted over a noisy and bandwidth

limited wired or wireless channel. The network produced impairments introduce the artifacts, and

the artifacts ultimately degrade the video QoE. The achieved results show that there is a significant

impact of the impairments: packet loss, jitter, and bandwidth on video QoE. However, the initial
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delay introduced by the network does not adversely affect the QoE. From the analysis results it is

noticed that, the video QoE and the level of quality distortion introduced by the network impair-

ments is also depending on the video scene i.e. video content itself. Therefore, a study is performed

to understand the impact of visual content on the QoE. The dataset designed to study the impact of

transmission impairments in video QoE, is also used to benchmark the state-of-the-art quality mea-

sures. The achieved results strengthen the need of a No-Reference metric for video communication

services. Therefore, a blind QoE assessment metric for video communication services is proposed.

The performance evaluation of the proposed metric evidences its superiority over existing metrics.

Next, a big revolution in image acquisition systems is given by the introduction of the light field

imaging. The basic idea behind the light field imaging systems is the use of a micro-lenses array

positioned at the focal point of the camera lens, in front of the image sensor. In this way, it is possible

to record multiple views of a scene by using a single camera in a single shot, thus avoiding problems

related to calibration and camera synchronization. The micro lens array records information on the

incident light direction at different positions, i.e. it records the light field. The availability of low

cost acquisition devices turned the light field theory into practice, thus allowing novel applications

of the imaging systems. Currently, many ongoing efforts have been given towards the optimization

and standardization of the system. In this context, the knowledge of the quality of the processed

images is important.

The work has been started by defining the quality related issues, and quality distortion model of

the light field technology; which is significantly different compared to the traditional 2D/3D visual

technology. Next, the increasing interest towards this media calls for methods to protect these data

from manipulations and unauthorized reproduction or diffusion. For this purpose, a watermarking

scheme is designed by exploiting a tradeoff between quality, robustness, and capacity for copyright

protection. Evaluating the quality issue, that is the imperceptibility of the watermark or its impact

on the cover data, is a challenging task. This becomes more challenging for light field data, because

there is no validated or standard quality assessment protocol available for light field data. Therefore,

our next aim is to devise a quality assessment framework for light field image. Towards, this aim

a Reduced Reference light field image quality assessment framework is proposed. The achieved

analysis results show that the predicted quality scores are very close to the corresponding subjective

opinion scores.

The lack of a validated subjected quality assessment framework for light field image pushes us to

work in this topic–to propose a quality assessment framework for light field images, particularly for

the images captured by using the commercially available light field cameras such as Lytro Illum and

Raytrix. Therefore, an extensive study was performed by considering the Lytro Illum images. During

the study, four encoding methods, including standard image compression methods and recently the

proposed light field image compression methods are considered. As a result of the study, a new

light field image quality dataset is available for the research community. Moreover, the dataset is
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used to study the impact of compression artifacts on light field image QoE and to benchmark the

existing quality metric, when applied for light field image. Following, this study, a subjective quality

assessment framework is proposed for light field field imaging.
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Chapter 1

Introduction

1.1 Multimedia Communication: quality assessment

The advancement of multimedia ecosystem, from content production, content delivery, to content

rendering, allows users to consume multimedia services on any device, in any place, and at any time.

In the Internet era, the multimedia services are becoming a part of our daily life. The quality of

provided multimedia service is making the difference in service providers. It is useful to notice that,

every involving steps, capturing, processing, communication, presentation and/or storage, introduce

artifacts and ultimately degrade the quality of content.

The term ”quality” is easy to understand, but difficult to define. Quality is influenced by many

factors such as technology and human. Quality is determined by the context: system, human, and

business. It is more about individual perception, thus the term perceptual quality, later on Quality

of Experience (QoE), is used. To guarantee the defined level of QoE, a quality centric management

approach is needed for service providers. In particular, continuous QoE assessment of the provided

service is crucial to optimize the multimedia communication system. The scope of this dissertation

is to develop QoE assessment theories and methods for multimedia services.

1.2 Motivation

1.2.1 Multimedia content

The use of broadband networks allows multimedia content to be ubiquitously created, stored, trans-

mitted and shared among users with a multitude of devices. Among multimedia services, demand

of video services is very high [44]. The size of capturing video content is increasing: to watch the

amount of video that will cross global IP networks, each month in 2020, it would take for an indi-

vidual more than 5 million years, and in every second, nearly a million minutes of video content will

5
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cross the network. IP video traffic will be 82% of all consumer internet traffic by 2020 and it was

more than 70% in 2015. Internet video surveillance traffic nearly doubled in 2015 compared to 2014

and it is expected that the traffic will further increase tenfold between 2015 and 2020. Internet video

to TV grew 50% in 2015, and will continue to grow at a rapid pace and increasing 3.6 fold by 2020.

Consumer Video on Demand (VoD) traffic will nearly double by 2020; and Ultra High Definition

(UHD) video will be 20.7% of IP VoD traffic in 2020. Virtual Reality (VR) traffic quadrupled in

2015 compared to 2014, and VR traffic will increase 61 fold by 2020. Among multimedia contents,

increasing demand of video traffic is expected to cover 75% of all the contents in Content Delivery

Network (CDN) by 2020. Meanwhile, by 2020 mobile traffic is expected to increase by more than

80% with respect to 2010 and by 175% by 2025 with respect to 2020 [190]. These results show

the increasing demand of video communication, and thus video has been selected as a multimedia

service in this study.

The visual scene is inherently three dimensional (3D) including color, texture, and depth; depth

has a significant impact on human visual perception. For the last decades, 3D video technology has

developed rapidly for a wide range of applications such as 3D video communication (3DTV) and

Free Viewpoint Video (FVV). The 3DTV offers a 3D depth impression of the observed scenery and

FVV allows for interactive selection of viewpoint and direction within a certain operating range.

The use of multi-camera, and the needs of camera calibration information for synchronization added

complexity in these techniques. Meanwhile, the 3D TV technology and FVV technology are contin-

ually maturing to provide immerse experience to the end user. However, the consumer acceptance

of such a technology is very far from what researchers are expecting. Despite of recent advances

in 3D digital technology, including auto-stereoscopic display, for solving the some of the critical

human discomfort associated with 3D technology, some intrinsic eye fatigue will always exist with

stereoscopic 3D technology. This could be due to the fact that, in general, these technologies rely

on the brain processing: to fuse the two disparate images for creating the 3D effect. As a result

of such a processing after prolonged viewing hazards such as eye strain, fatigue, and headache are

experienced by the general users. Due to the fact that, users are required to focus on the screen

plane but to converge their eyes to a point in space in a different plane, and producing an unnatural

viewing [12].

To solve these issues, technology is further advanced, and Light Field (LF) camera came into

the market: the LF imaging technology is considered a next generation imaging technology. Many

applications can benefit from this new technology such as photography, astronomy, robotics, medical

imaging, and microscopy. The most appealing applications of light imaging are interactive rendering,

where focus, exposure, and depth of field can be adjusted after the picture is acquired. Moreover,

the LF camera recorded (angular and spatial information of a scene) can be exploited for a wide

range of applications such as 3D rendering, parallax, and VR.

Now, industry and academic researchers believe that, this LF imaging is becoming a driver
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technology in the imaging field. This claim is justified by the statement: ”Light-field technology

is an industry game changer, enabling new, creative possibilities to meet consumers’ expectations

for immersive digital cinema and media”, given by Dr. Siegfried Foessel, Fraunhofer Digital Media

Alliance.

Moreover, the interest in this technology is witnessed by the efforts of Joint Photographic Experts

Group (JPEG) committee that launched a new activity, JPEG PLENO [56]. The aim is to develop

a standard framework for the representation and exchange of new imaging modalities such as LF

imaging. The MPEG [222] also started the third phase of free viewpoint television, in August 2013,

aiming to devise super multi-view (360 degree display), free navigation, and integral photography

(LF imaging) for full parallax applications. And thus, in this dissertation, the LF image is also

considered as a multimedia content for the study.

1.2.2 Multimedia quality assessment

Every step involving in multimedia ecosystem: capturing, encoding, distribution, decoding, to pre-

sentation, produces artifacts and ultimately degrades the quality of the content. Since the following

issues repeatedly appear, no matter with the multimedia content type, the knowledge of degraded

quality or quality level is crucial.

• How to evaluate the videos generated from our algorithms/systems?

• How do we know our algorithm/system is creating an improvement between the input and

output videos, and by how much?

• How can we know one algorithm/system performs better than another, and by how much?

• What should be the quality criterion for which the design of our algorithms/systems should

be optimized?

The knowledge of quality level is not only limited to train, test, and benchmark the processing

algorithms, also highly important for the adaptation of a new technology from both users and

industry point of view. The new trend is shifting the focus of quality assessment of compliance

with system design goals to fulfillment of user needs or expectations [225]. Thus, service providers

need to devise a strategy for continuous assessment of the perceived quality of the service and for

performing system optimization object to automatically provide the required QoE level.

Since, human is the ultimate receivers in most image or video processing systems, the goal

of the quality assessment is to evaluate the quality of image or video as perceived by an average

human observer. Most reliable Image Quality Assessment (IQA) or Video Quality Assessment

(VQA) methods are based on collecting human judgements, measured through Mean Opinion Score

(MOS). However, with the exponential increase of the volume of image or video data being generated

daily, it becomes impossible to address these quality issues in a timely manner by subjective visual
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testing, which is slow, cumbersome and expensive [247]. Moreover, it is non applicable in practical

applications, such as dynamically monitoring and adjusting the quality, optimizing algorithms and

parameter settings of video communication systems. Therefore, the availability of an objective

Image Quality Metric (IQM) or video Quality Metric (VQM) able to give a close approximation of

the subjective scores is important.

1.3 Statement of Problem

As mentioned before, this dissertation is dealing with two types of multimedia contents: 2D video

and LF image.

1.3.1 Video

The VQA topic is well investigated in the literature. Meanwhile, my ongoing efforts have been

given to devise the objective VQM, however, there are many challenges and issues regarding the

applicability of the metrics. The state-of-the-art works have the following shortcomings:

• perceptual impact of key transmission impairments on the video communication is not studied;

• impact of video content on the QoE is not studied;

• there are no video quality datasets: test videos and annotated subjective scores, designed

in a real video communication environment. The dataset has a particular value to study the

perceptual quality of transmission impairments and video content, and to test the performance

of the VQM; and

• performance of the state-of-the-art VQM is not good enough, and thus there is a need of a

VQM.

1.3.2 Light field image

On the other hand, the rapidly developing LF technology and consumer interest towards this tech-

nology is pushing the need for quality evaluation of such contents. To the best of our knowledge,

very few works [238] are performed in this direction. In particular,

• LF camera provides a grid of elemental images, in which the content of each elementary image

is similar to its neighbors. Therefore, compression of LF content is needed for storage and

transmission. The lossy compression may introduce visible artifacts, however, the analysis of

the overall perceived quality is not studied;

• perceptual quality of LF images based on their content is not studied;
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• performance of existing 2D IQMs, when applied to LF image is not evaluated, and no metric

is designed for LF images;

• LF image quality dataset is not available with test images and corresponding subjective quality

ratings;

• given the novelty of the imaging system, there is no validated subjective quality assessment

procedure for LF image, and thus, there is a need of an IQA framework for LF image;

• securing multimedia data from undesired manipulation is a widely investigated topic in the

state-of-the-art. A large number of techniques have been developed for protecting images,

videos, and also audio from malicious attacks. The increasing interest towards LF media calls

for methods for protecting these data from manipulations and unauthorized reproduction or

diffusion.

1.4 Objectives

The research work presented in this dissertation aims to improve the QoE when dealing multimedia

content such as video and LF image. The approach is to understand the impact of transmission

impairments on QoE and to develop the video and LF IQM. The main objectives are:

concerning video,

1. to investigate the impact of key transmission impairments and video content on QoE;

2. to study the correlation between QoS parameters to QoE by exploiting the state-of-the-art

mapping models;

3. to investigate the performance of the state-of-the-art objective VQMs;

4. to develop a No-Reference VQMs to the video communication environment; and

5. to create video quality datasets and make available for research community, it is also needed

for the above mentioned objectives.

concerning LF image,

1. to study the theoretical background and LF image communication chain–leading towards the

definition of the quality issues in LF imaging;

2. to study the impact of compression artifacts on LF image QoE;

3. to develop a LF IQA framework, since there is no quality assessment framework available for

LF image;
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4. to create LF image quality datasets and make it available for research community, it is also

needed for the above mentioned objectives; and

5. to devise an objective quality assessment metric for LF image;

6. to designed a novel embedding scheme tuned to LF image for copyright protection.

1.5 Scope

The work in this dissertation falls within telecommunication filed, particularly in signal and image

processing; and address one of the key problem in multimedia communication: quality assessment.

The broad scope of the dissertation is to devise the theories and tools needed for end-to-end quality

assessment.

The proposed quality metrics could be used to benchmark the processing algorithms and com-

munication system. The designed video and LF image quality datasets could be used to train, test,

and benchmark the new algorithms. Furthermore, adopted LF IQA framework will be a valuable

breakthrough for the LF image processing community.

1.6 Contributions

This dissertation is focused to deal with the quality issues of video and LF image. Therefore, the

contributions are grouped in two parts: video QoE and LF image QoE.

1.6.1 Video quality of experience

In the first part of this dissertation, video QoE and related issues are presented. In brief,

• a video quality dataset is created by considering key transmission impairments: delay, jitter,

packet loss, and bandwidth limitation, and making it freely available for research community;

• the impact of transmission impairments on video QoE is presented;

• effect of video content in the presence of transmission impairments is presented, and the

video content and its influence on QoE is studied by using low level video content attributes,

such as spatial-temporal perceptual information, video motion, colorfulness information, frame

resolution, and HVS characteristics;

• the performance of the state-of-the-art VQMs is evaluated on the proposed video quality

dataset, the achieved results evidence the need of a new VQM;

• by exploiting the proposed dataset, QoE estimation models (by using QoS information) is

evaluated;
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• finally, a No-Reference VQM is proposed to the video communication services.

1.6.2 LF image quality of experience

The second part of this dissertation is focused to deal the issues and challenges arisen with the

development of new imaging technology: LF imaging. Briefly, the major contributions are:

• an introduction of LF imaging, together with possible image quality distortion model, and

quality related issues and their implications on the QoE evaluation are presented;

• a novel watermark embedding scheme tuned to LF image is presented;

• to study the performance of state-of-the art IQMs, when applied to LF image, and to bench-

mark the proposed LF IQM, a LF image quality dataset is designed and making it freely

available for the research community;

• a Reduced-Reference IQA framework is proposed for LF image;

• a LF image quality dataset is designed by considering the hand held LF camera (Lytro Illum)

recorded images;

• finally, a subjective quality assessment framework for LF image is presented.

1.7 Thesis Outline

The organization of this dissertation is shown in Figure 1.1. The thesis is organized in three parts.

First part includes the background information to the dissertation. The second part of the disserta-

tion is focused for video QoE, and the quality assessment of LF imaging is included in part three.

In brief;

Chapter 2 reviews the theoretical background, including multimedia communication and factors

affecting the multimedia quality, definition of quality towards QoE, and QoE management framework

for multimedia communication. In particular, this chapter highlight the QoE influencing factors and

the need of quality assessment for QoE centric multimedia operation.

Chapter 3: This chapter is focused to develop the theoretical background for assessing the multi-

media QoE. In particular, the adopted subjective assessment framework is presented by considering

validated subjective and objective quality assessment methods.

Chapter 4: In this chapter, a video quality dataset–with a brief description of the adopted

procedure to create the dataset is reported. Moreover, the preliminary results exploited from the

dataset are also included.

Chapter 5: This chapter presents the impact of transmission impairments on video QoE. More-

over, the effect of video content on video QoE in the presence of the transmission impairments is
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Part-I: Background Study

Part –II: Video quality of experience

Part –III: Light field image quality of experience

Chapter 2: Multimedia quality of experience

Chapter 3: Quality of experience assessment

Chapter 4: A dataset: to study the video quality of experience

Chapter 5: Impact of impairments on quality of experience

Chapter 6: Video quality of experience metric

Chapter 7: Light Field imaging

Chapter 8: Light Field image watermarking

Chapter 9: Quality evaluation of light field images

Chapter 10: Subjective quality assessment of light field images

Chapter 11: Perceptual quality of compressed light field images

Chapter 12: Conclusion 

Figure 1.1: An overview of the thesis outline.

presented. Finally, the analysis of the effects of content related low level attributes on video QoE is

presented.

Chapter 6: This chapter proposes a No-Reference VQM to video communication services. Anal-

ysis of the achieved performance gain over the state-of-the-art metrics is also reported.

Chapter 7: This chapter presents the theoretical background of LF imaging–highlighting the

distortions introduced by the steps involving in the LF image communication chain. In particular,

this chapter highlight the quality of experience issues arisen with the development of this imaging

technology.

Chapter 8: This chapter proposes a watermarking scheme by exploiting the features of LF image.

The robustness of the proposed method are evaluated by using subjective and objective measure–the

achieved results are also reported.

Chapter 9: A Reduced Reference IQA framework for LF image is presented in this chapter.

Moreover, the performance of the proposed metric is evaluated on a newly designed LF image quality

dataset. The brief description of the dataset and performance analysis of the proposed method and

the state-of-the-art metrics, when applied for LF image, are included.

Chapter 10: In this chapter, a generic subjective quality assessment framework comprises of

source sequence selection, distortion model, and selection of the subjective quality assessment proto-

col, is presented. Following the framework, a LF image quality dataset (SMART) is created. Next,
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a LF image processing experimental setup is proposed for the subjective experiment of LF image.

Chapter 11: This chapter includes the preliminary results achieved from the SMART dataset, in

particular, the impact of compression artifact in LF image QoE, impact of image scene on LF QoE,

and the performance of 2D IQMs, when applied to LF image.

Chapter 12: This chapter presents the concluding remarks of this dissertation.



Chapter 2

Multimedia Quality of Experience

In this chapter, a brief overview of multimedia communication and the factors affecting multimedia

quality are given. Then, a review of the terminologies related to multimedia QoE is presented.

As a contribution to the dissertation, this chapter provides a conceptual framework for assessing

the QoE of multimedia services. In particular, the needs and uses of multimedia QoE assessment

are highlighted. QoE influencing factors followed by a QoE model are presented. The QoE model

provides the conceptual framework to devise efficient and effective metrics.

2.1 Key definitions

In this dissertation, some terms related to multimedia quality are detailed:

• application: set of activities performed to respond to the needs of the users in a given situation

for purposes such as business, education, personal communication or entertainment (ITU-T

Rec. F.700 [113]);

• multimedia: an adjective and must be attached to a noun which provides the context. For

example, multimedia service or application, multimedia terminal, multimedia network and

multimedia presentation (ITU-T Recommendation F.700 [113]);

• multimedia application: an application that requests the handling of two or more representa-

tion media (information types) simultaneously which constitute a common information space.

Examples are cooperative document editing, long distance meetings, remote surveillance, med-

ical document remote analysis and teletraining (ITU-T Rec. F.700 [113]);

• multimedia service: telecommunication services that handle two or more types of media in a

synchronized way from the user’s point of view. A multimedia service may involve multiple

14
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parties, multiple connections, and the addition or removal of resources and users within a

single communication session (ITU-T Rec. F.700 [113]);

• effectiveness: accuracy and completeness with which users achieve specified goals (ISO 9241-

11 [27]);

• efficiency: resources expended in relation to the accuracy and completeness (ISO 9241-11 [27]);

• experience: encounter of a human being with a system, having a defined beginning and end

(ETSI TS 103 294 [60]);

• satisfaction: freedom from discomfort, and positive attitudes towards the use of the product

(ISO 9241-11 [27]);

• service: group of functions provided by an organization or by an application to a user through

an interface (ITU-T Rec. E.860 [110]);

• context of use: users, tasks, equipment (hardware, software and materials), and the physical

and social environments in which a product is used (ISO 9241-11 [27]);

• quality: outcome of a subjective evaluation process (ETSI TS 103 294 [60]);

• Quality of Experience (QoE): degree of delight or annoyance of the user of an application or

service (ETSI TS 103 294 [60]);

• QoE feature: perceivable, recognized and nameable characteristic of the individual’s experience

of a service which contributes to its quality (ETSI TS 103 294 [60]).

2.2 Multimedia Communication

In general, multimedia has been used over the decades to indicate any kind of ”new media” being

manipulated or displayed. Multimedia refers to data or information being transferred over the

network(s); may be composed of one or more of the text, audio, image, animation, video, and

interactive content.

Specifically, multimedia is any combination of text, graphic art, sound, image, animation, and

video delivered to the users by computer or other electronic means, and it is the richly presented

sensation [235]. It is the integrated manipulation of continuous or discrete media such as text and

graphics; the manipulation refers to the act of capturing, processing, communication, presentation

or storage [257].

The multimedia communication indicates all the steps involving from capturing to presentation,

as shown in Figure 2.1. In networked multimedia applications, various entities need to cooperate

to allow multimedia content to be presented at the sink or user interface with required guarantees
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Figure 2.1: Block diagram of multimedia communication–it includes all the steps: capturing, repre-
sentation, encoding, networking, decoding, and storage/presentation.

or QoE. In the context of communication services, QoE is influenced by content, network, device,

application, user expectations and goals, and context of use [131].

2.3 Factors affecting multimedia quality
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Figure 2.2: Quality degradation factors in video communication.
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In multimedia communication many factors may influence the quality: from the quality of mul-

timedia content to the quality of user terminal [88]. As an example, in the context of video com-

munication, major causes of the quality deterioration are presented in Figure 2.2. The quality of

multimedia content is depending on acquisition device, process, and environment. Quality of cap-

tured video is depending on shooting conditions such as focus, brightness, contrast, etc. and camera

performance. Next, captured content undergoes processing steps before transmission. Raw video is

encoded; the encoding methods (MPEG2, MPEG4, H.264/AVC, HEVC, etc.) and selected coding

parameters (encoding bit rate, spatial resolution, frame rate, etc.) affect the quality. During the

transmission of encoded video over a wired or wireless media, network produced impairments such as

jitter and packet loss will cause lowering the visual quality. Finally, at the user terminal, decoding,

image quality realized by the terminal or display capabilities affect the quality and its perception.

2.4 Perceived Quality: from quality to quality of experience

This section elaborates the concept of QoE for establishing a conceptual basis to this dissertation.

As shown in Figure 2.3, QoE mostly deals with the human and contextual factors, whereas the

Quality of Service (QoS) is referring more for technical and network aspects. Brief description of

the terminologies is presented in following subsections.
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Figure 2.3: Quality to multimedia QoE: conceptual framework for defining the quality towards QoE.
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2.4.1 Quality

The Quality is one of Aristotle’s Categories–places every object of human apprehension under one

of ten categories: substance, quantity, qualification or quality, relative or relation, where or

place, when or time , being-in-a-position, having or state, doing or action, and being affected or

affection [10]. Quality is a buzzword used in different sectors, such as business and industry, to suit

their specific perceived needs. Some of the definitions for quality are:

• to the field of quality management, ISO 9000 defines quality as the ”degree to which a set of

inherent characteristics fulfills requirements” [93];

• ISO 8402 defines quality as ”the totality of characteristics of an entity that bear on its ability

to satisfy stated and implied needs” [67];

• in Qualinet white paper [131] quality is expressed as the outcome of an individual’s compar-

ison and judgement process, and it includes perception, reflection about the perception, and

description of the outcome.

These definitions indicate that the quality of something can be assessed by comparing a set

of inherent characteristics with the set of requirements. For example, if characteristics meet the

requirements can be considered as high quality otherwise low quality, and thus, the quality can be

considered as a relative term.

2.4.2 Quality of service

In telecommunication, term quality is expressed in terms of QoS. Similar to ISO 8402 definition

of quality, in ITU-T Rec. E.800 [191] QoS is expressed as ”the totality of characteristics of a

telecommunications service that bear on its ability to satisfy stated and implied needs of the user of

the service.” This definition of QoS is focused for telecommunication services, and does not cover the

user characteristics and context of use. Mostly, it deals with physical and measurable performance

parameters of the network or delivery system, and thus QoS is considered as a service providers

approach.

Another definition of QoS mentioned in ITU-T Rec. E.800– ”the collective effect of service

performances, which determines the degree of satisfaction of a user of the service”, provides a wide

range of applicability of the term QoS. The use of QoS is not limited to, telecommunications also in

broadband, wireless, and multimedia system; particularly in IP related systems.

ITU-T Rec. G.1000 [194] emphasizes the consumer perception of QoS: QoS is viewed from cus-

tomers and service provider’s viewpoint, as shown in Figure 2.4. QoS is defined from four different

prospectives: customers QoS requirements, service provider offerings of QoS (or planned/targeted

QoS), QoS achieved or delivered, and customer survey ratings of QoS. The level of quality required
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Figure 2.4: ITU-T Rec. G.1000: The four viewpoints of QoS.

for a particular service (which may be expressed in non-technical language) is customers QoS re-

quirements, and it has a particular value to the service provider for planning the network service

level. The level of quality expected to be offered to customers by the service provider is QoS of-

fered by the service provider, and level of quality is expressed in terms of values assigned to QoS

parameters.

QoS can be assessed in two ways: 1) objective measurements of physical attributes of a circuit,

system, network, etc. and 2) subjective measurement by customer surveys. From the system design

point of view, objective measure of QoS is crucial, thus many QoS parameters have been exploited.

The QoS parameters are different to the services: fixed telephony service (service delivery time,

call success rate, billing accuracy, etc.) mobile telephony service (call success rate, blocked calls,

dropped calls, etc.), and data network and internet service (bandwidth, latency, BER, jitter and jitter

variations, throughput, etc.) In today’s converged (all-IP) network, the internet service related QoS

parameters are more relevant, thus the parameters are considered as key QoS parameters.

2.4.3 Quality of service experienced

The concept of QoS experienced (QoSE) is introduced in ITU-T Rec. E.800; defined as the level of

quality that customers/users believe they have experienced. The QoSE comprises two components:

quantitative and qualitative. Quantitative component is influenced by the complete end-to-end

system effects (network infrastructure) and qualitative component can be influenced by user expec-

tations, ambient conditions, psychological factors, application context, etc. The level of QoSE can

be expressed as opinion ratings. The definition of QoSE is leading to the concept of QoE.
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2.4.4 Quality of experience

QoE is the overall performance of an end-to-end networked system from the user’s perspective. In

particular, QoE extends the concept of QoS by encompassing additional factors: source quality, en-

coding quality, network performance (QoS), decoding and error correction, and presentation quality,

affect the users’ perception of multimedia presentation quality [179].

ITU-T Rec. P.10/G.100 [195] defines QoE as ”the overall acceptability of an application or

service, as perceived subjectively by the end-user”. The acceptability is the outcome of a decision

which is partially based on the QoE [64]. QoE includes complete end-to-end system effects (client,

terminal, network, services infrastructure, etc.) and overall acceptability is influenced by user ex-

pectations and context. The QoE implicitly promises the individual engagement. The experience

is an individual stream of perception and interpretation of one or multiple events. The event is an

observable occurrence and it is determined in space (i.e. where it occurs), time (i.e. when it occurs),

and character (i.e. what can be observed) [131].

Qualinet [131] defines QoE as the ”degree of delight or annoyance to the user of an application or

service. It results from the fulfillment of his or her expectations with respect to the utility and / or

enjoyment of the application or service in the light of the user’s personality and current state”. The

application is a software and/or hardware that enables usage and interaction by a user for a given

purpose. Such purpose may include entertainment or information retrieval, or other, and service

is an episode in which an entity takes the responsibility that something desirable happens on the

behalf of another entity.

The concept of QoE, introduce the user centric quality management approach. The term expe-

rience promises individual agreement, and term QoE involves aspects related to not only subjective

perception, but also user behavior and needs, appropriateness, context, usability and human factors

of the delivered content [55]. QoE Influence Factor (IF) is any characteristic of a user, system,

service, application, or context whose actual state or setting may have influence on the QoE for the

user [60]:

• human IFs are any variant or invariant property or characteristic of a human user. The

characteristic can describe the demographic and socioeconomic background, the physical and

mental constitution, or the users emotional state;

• system IFs refer to properties and characteristics that determine the technically produced

quality of an application or service. They are related to system performance, and in the

context of multimedia services, media capture, coding, transmission, storage, rendering, and

reproduction/display, as well as to the communication of information between the service and

the user;

• context IFs are the factors that embrace any situational property to describe the user’s envi-

ronment in terms of physical, temporal, social, economic, task, and technical characteristics of
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devices.

Most common QoE IFs are presented in Figure 2.5 and briefly reported in the following:

User
QoE

Content
User 

Expectations
Environment 

Device Network
Content 
Format

Application Context

System Factors 

Human Factors  

Figure 2.5: Factors influencing QoE [43].

Content

As mentioned before, multimedia communication covers a wide range of content types, and in this

contribution mainly images and videos are considered. First, source content quality is an important

factor for better QoE. Next, visual content characteristics also influence the QoE, since, it is a major

source of information [52]. At the semantic level, the content may be represented by high level

features, such as indoor, outdoor, sports, movie, and even different types of movies such as action or

documentaries etc. In the video, the content features such as bit rate, frame rate, resolution, 2D/3D,

spatial information, and temporal information i.e. motion have a direct influence on QoE. Meanwhile,

different multimedia devices and applications should support different content characteristics for a

smooth playback.

Device

Quality of captured visual content is crucial for better QoE, and it can be achieved with the proper

selection of acquisition device and by following defined acquisition procedure. On the other hand,

visual content is consumed through different devices such as televisions, personal computers, laptops,
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tablets, and smart phones; the consumption devices comprise different features (screen resolution,

viewing angle and distance, and sound quality), and thus the consuming device also influence the

QoE.

Application

QoE could be differ based on usability and interactivity of an application. The usability rating is

higher when the service is easier to use [26]. In particular, multimedia applications should be self-

intuitive and easy to use. In the context of video communication, most applications have different

buffering scheme, encoding, and decoding, which affect playback of video and the overall video QoE.

Moreover, the applications are varied based on the used device and environment.

Environment

Environment properties such physical (where), temporal (when), character (what), social (with

whom), technical (iterativeness), and economic (cost), also influence the overall user perception to-

wards the content. For an example, watching a football match at home, or in a bar, and at morning,

afternoon, and evening, results different perception about the content. As presented in [208], re-

sults obtained from controlled experiments (in lab) and crowdsourcing experiment are different. To

produce the reliable and reproducible results (QoE) controlled environment is needed.

Network

Network mostly reflect to a distribution channel of multimedia communication system. The network

can be a wired (copper cable and fiber) or wireless. Usually, network condition is expressed in terms

of QoS parameters, such as Packet Loss Rate (PLR), delay, jitter, and bandwidth. The results

presented in [175] show that the video QoE is influenced by QoS parameters.

Content Format

Usually, we encode the visual content for making it compatible to the delivering over the networks.

There are different encoding formats and each of them have different features and capability. For

an example, the video signal can be encoded by Moving Picture Experts Group ((MPEG), H.264

or MPEG-4 Advanced Video Coding (MPEG-4 AVC), and H.265/High Efficiency Video Coding

(HEVC) to distribute over the network. The HEVC encoding provides high QoE compare to other

methods for the same level compression ratio [199].

User Expectations

Individual user has his or her own requirement or expectations on the quality. The user profiles,

such as age, sex, interest, skills, frame of mind, experience, etc., to determine the requirement of
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the quality. User attitude and expectation play a vital role in determining the QoE [131]. For an

example, perception towards the horror movies could be different from the persons of different ages:

child, young, and old. Thus, different opinion scores are given for the same test image or video

during subjective experiment. To express the average behavior of opinion scores and to represent

differences in the opinion scores given to the test material, the MOS is plotted with corresponding

confidence interval.

Context

Context is any information that can be used to characterize the situation of an entity. An entity

is a person, place, or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves [9]. The contextual factors are strongly

related to human and system factors, and have a significant influence on QoE, and are very difficult

to consider during the quality evaluation process. From the user’s point of view, context influence

factors could be the environmental properties, service properties, economic properties, and social

properties. In particular, location, temperature, heart rate, eye movement, the amount of sweat,

social context, people nearby, light, background noise, age, gender, etc. are considered as the user

and environment related contextual parameters. On the other hand, screen size, design, layout,

resolution, button placement, input/output methods, appeal, usability, etc. are the system related

contextual parameters [157].

Mostly, image and/or video (analog and digital) with textual information is expressed as multi-

media. For the content, two of our human senses: sight and hearing, are primarily engaged. 60%

of human communication is nonverbal and most of us perceive the world through the combination

of five senses: sight, hearing, touch, taste, and smell. In this situation, multimedia experiences fail

to convey the sensation, and this concept of Mulsemedia – multiple sensorial media, engage three

(or more) of our senses, is presented in [74]. Typically, the QoE assessment is based on vision and

hearing, and thus Quality of sensory experience for mulsemedia is defined, and concept is further

elaborated as Quality of Life (QoL)– as the general well-being of individuals and societies in [225].

2.5 Theoretical quality of experience model

Section 2.4 presents the theoretical background of QoE, which is helpful to understand the factors

that influence the QoE. Whereas, this section presents an intuitive and systematic way to identify

the factors; the factors are categorized into four multi-dimensional spaces (shown in Figure 2.6):

• Application space (A): Application space represents the application or/and service configu-

ration factors (media encoding, resolution, sample rate, frame rate, buffer sizes, etc.) and

content related factors (temporal or spatial information, 2D/3D content, color depth, etc.).

Therefore, the space is a multi-dimensional; A = (a1, a2, a3, ..., ay).
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Figure 2.6: QoE modeling: ARCU model.

• Resource space (R): This space composed of dimensions representing the characteristics and

performance of the technical system(s) and network resources used to deliver the service such as

network QoS parameters (delay, jitter, loss, error rate, and throughput) and system resources

(server processing capabilities and end user device capabilities– computational power, memory,

screen resolution, user interface, battery lifetime, etc.). R = (r1, r2, r3, ..., rm).

• Context space (C): The C composed of dimensions indicating the situation in which a ser-

vice or application is being used such as ambient conditions (lighting conditions, noise, etc.),

user location, time, task/purpose, economic context, and service level agreements. C =

(c1, c2, c3, ..., ck).

• User space (U): The U composed of dimensions related to the specific user of a given service

or application such as user’s demographic data, user preferences, requirements, expectations,

prior knowledge, mood, and motivation. U = (u1, u2, u3, ..., ul).

This model is first presented in [214], and is adopted by ETSI in [60]. The dimensions in each

space may have different scales, thus for convenience, the model is expressed as the direct sum of

these spaces (Equation 2.1).

ARCU = A⊕R⊕ C ⊕ U. (2.1)
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In an initial point, the mapping function can be envisioned as having the form Q : ARCU → Q,

where Q = Rn and n is the number of dimensions in QoE space. Mathematically, if the QoE space

is composed of n dimensions, Q = (q1, q2, q3, ..., qn) with corresponding assigned weight factors W =

(w1, w2, w3, ..., wn), then QoEintegral = f(w1q, w2q2, .....wnqn). This model provides a theoretical

approach for modeling the multimedia QoE.

2.6 Quality of experience management for multimedia ser-

vices

In the context of emerging multimedia services, a user-centric approach need to be monitored to

design the whole process of multimedia system: content production, content delivery, service activa-

tion, content consumption, service management, and updating [18]. Indeed, the quality of the user

experience, is the determining factor for success or failure of the novel multimedia services.

Service Provider

Network Operators
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Q Q Q
Q

Q

Q QQ
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(II) QoE Measurement 
and Collection

(III) QoE Analysis and 
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Q
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Figure 2.7: Overview of QoE centric operation for multimedia applications.

To guarantee a defined level of QoE for the user, a QoE centric operation need to be devised.

The QoE centric operation for multimedia application can be accomplished in four steps: QoE quan-

tification, QoE measurement and collection, QoE analysis and visualization, and QoE control [88],

as shown in Figure 2.7.
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• QoE quantification: This step clarifies service quality criteria and service management guide-

lines by elucidating human and cognitive characteristics with respect to the quality of mul-

timedia services. Particularly, it establishes a methodology to estimate QoE by using the

quality-related information from the network, servers, and terminals. It clarifies the relation-

ship between QoE and network quality measures (packet loss/delay, delay fluctuation, etc.)

and application quality measures (sound quality, picture quality, response time, etc.).

• QoE measurement and collection: Since, QoE is affected by inside and outside network quality

factors, information of the service, use environment, and terminal conditions are crucial in

order to identify and deal with QoE degradation on a user-by-user basis. This stage efficiently

measure and collect the quantified QoE information.

• QoE analysis and visualization: For analysis and visualization of collecting data from inside

and outside the network, big data analysis techniques such as machine learning and deep neural

network can be exploited. The resulting information includes the degree of network congestion,

state of service provision, quality degradation, etc.

• QoE control: Finally, necessary actions are taken when detecting QoE degradation with the

aim of improving QoE or avoiding such degradation. It uses the analyzed and visualized QoE

information to optimize QoE according to, network conditions by allocating network resources

appropriately.

In the presented QoE centric operation, QoE measurement is most important and basic operation.



Chapter 3

Quality of experience assessment

This chapter presents the quality assessment methods: subjective and objective. As the contribu-

tions to the dissertation, this chapter provides: i) a generic subjective quality assessment framework

constituting the required steps to be followed such as source content selection criteria, content char-

acterization attributes, and subjective quality assessment methods; and ii) the need of an objective

quality metric is highlighted, and the basic approaches of designing the objective metrics are re-

ported.

3.1 Introduction

QoE is a multi-modal and multi-dimensional problem; it is difficult to quantify and measure. How-

ever, for the design of QoE centric multimedia communication system, and for service providers, it

is important to quantify and measure the QoE in the statistical and interpretable values.

As shown in Figure 3.1, there are subjective and objective methods for assessing the QoE. In

general, ultimate user of the multimedia content is human, thus the goal of the quality assessment

is to evaluate the quality of the visual content as perceived by an average human observer. QoE is

significantly influenced by human factors, thus more accurate and reliable methods for evaluating

the multimedia QoE are based on collecting human judgements: subjective method. The subjective

method is based on surveys and interviews. In general, qualitative and quantitative techniques are

used to evaluate the QoE in subjective method. The qualitative technique uses behavior, verbal

words, and observations to record the users opinion about the QoE; again the issue is quantification

of QoE. Whereas, quantitative technique use surveys and user studies to record the human percep-

tions, feeling, and cognition in the forms of quantifiable data such as numbers and levels. In this

dissertation, the quantitative technique is used for the subjective QoE assessment.

In subjective QoE assessment, visual content to be evaluated is shown to the group of people,

i.e. the human observers ask for their opinion to the test material. The opinion scores collected

27
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Figure 3.1: Quality of experience assessment methods.

from subjects for the test material are used for a wide range of applications. For example, opinion

scores are used to understand the response of HVS to visual signal; the response/features can be

used for optimizing the signal processing algorithms. However, the subjective quality assessment

technique is time consuming and not suitable in practical applications. Therefore, a common goal is

to devise an objective quality metric. From another viewpoint, to design, train, test, and benchmark

the objective quality metric, test material and annotated subjective quality scores are important.

An objective method, the QoE is estimated by analyzing features of content to be evaluated.

As presented before, in Chapter 2, basic definitions of the quality give the idea for assessing the

quality–the quality of something can be assessed by comparing a set of inherent characteristics

with the set of requirements. In literature, the objective QoE is devised based on two techniques:

QoE techniques– by exploiting the system and human factors such as signal features, human visual

system, and perceptual models, and QoS based techniques–by using mapping models, to estimate

QoE from QoS parameters (e.g. by exploiting a logarithmic relationship between the change in

perception and change in physical stimulus). Based on the availability of reference signal for QoE

estimation, the objective metrics are broadly classified in Full Reference, Reduced Reference, and

No Reference; these are briefly described in Section 3.3.

3.2 Subjective quality assessment

In this dissertation, many subjective experiments were scheduled for collecting the user opinion scores

to the test materials. In literature, many subjective quality assessment methods are available, among

them the mostly used and relevant to this dissertation are reported. The selection of a particular
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protocol always depends on the purpose of the study and test materials. Therefore, a generic

overview of the adopted subjective quality assessment protocols are briefly reported in the following.

3.2.1 Source scene selection

The proper selection Source Sequences (SRCs) is a key operation for obtaining reliable results; and

it should be based on video characteristics and on the purpose of the experiment [180]. In partic-

ular, image features such as spatial information, color information, and brightness are important

parameters. By using these parameters, it is possible to quantify the distortions suffered by data

compression or transmission over a bandwidth limited channel. Therefore, selected SRCs should

span a wide range of content features.

In the literature, several efforts [178, 120, 255, 61] have been made for image content classification.

In brief, many low level image features such as contrast, brightness, and edges can be used for image

classification. The use of many low level features is resulting the large number of image content

clusters [178]. At the same time, the classification of image content based on high level (indoor,

outdoor, etc.) features are complex, due to the fact that high level features can be considered

as a combination of low level ones, and thus, there is no standard procedure for image content

definition [120].

From another viewpoint, it is not easy to map the extractable video features such as color,

texture, shape, structure, layout, and motion, into semantic concepts, high level features such as

indoor and outdoor, people, documentary, news reader, or car-racing scenes, though the effective

way for scene content analysis is to use the attributes extractable from the sources [52].

In this context, in [255] the authors use spatial, temporal, and colorfulness information for image

and video content analysis, and a survey of available image quality datasets is presented based on

these features. Similarly, image content is explained with the help of color, texture, shape, position,

and dominant edges of image objects and regions in [61]. In this dissertation, key quality attributes

spatial-temporal perceptual information, colorfulness, contrast, correlation, homogeneity, brightness,

hue, and saturation are used to characterize and select the reference images or image scenes. The

features were considered based on the image quality attributes and HVS characteristics [61].

Spatial perceptual information

As a perceptual indicator of the spatial information of the scene, Spatial perceptual Information (SI)

is used. The SI measures the amount of spatial details of each frame and it is higher for spatially

complex scenes. SI measurement is based on the Sobel filter. According to this, each video frame

at time n(Fn) is first filtered with the Sobel filter Sobel(Fn) and standard deviation over the pixels

stdspace in each Sobel-filtered frame is then computed and applied for each frame. The maximum

value in the time series maxtime is chosen to represent the spatial information of the scene. The SI

is computed by Equation 3.1,
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Figure 3.2: Relationship between the ITU and ITS recommended SI.

SI = max
time
{stdspace[Sobel(Fn)]}. (3.1)

The SI metric, Equation 3.1, (proposed for video) can be adopted for image: considering image

as a frame of the video. The luminance, Y, of the image is first filtered by using a Sobel filter. The

standard deviation over the pixels in each filtered image is then computed as an SI.

SIITU = σspace[YSobel], (3.2)

where, SIITU is spatial information metric, σspace is the standard deviation over the pixels, and

YSobel is the Sobel filtered luminance plane of the image.

Moreover, a spatial information filter (SIITS) is also proposed by the Institute for Telecommuni-

cation Science (ITS) to estimate the image spatial information. The filter is similar to the classical

Sobel filter, where separate horizontal and vertical filters are applied, then the total edge energy is

computed as the Euclidean distance [97] .

Both SIITU and SIITS were tested for the SMART LF dataset [176]. The achieved results

show that, for all-focused 2D images the correlation between two metrics is around 98% (shown in

Figure 3.2). Therefore, in this dissertation, to estimate the spatial perceptual information of image

the SIITU is used.

Temporal perceptual information

Temporal perceptual Information (TI) indicates the amount of temporal changes of a video sequence

and it is higher for high motion sequences. Its measurement is based on motion difference feature,

Mn(i, j), which is the difference between the pixel values (of the luminance plane) at the same

location in space but at successive times or frames. Mn(i, j) as a function of time is defined as
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(Equation 3.3):

Mn(i, j) = Fn(i, j)Fn1(i, j), (3.3)

where, Fn(i, j) is the pixel at the ith row and jth column of nth frame in time. The measure of

TI is computed as the maximum over time (maxtime) of the standard deviation over space (stdspace)

of Mn(i, j) over all i and j. Accordingly TI is computed by Equation 3.4:

TI = maxtimestdspace[Mn(i, j)]. (3.4)

Colorfulness

Colorfulness (CF) is the main perceptual attribute underlying the video perceptual quality and the

naturalness of the signal. As a perceptual indicator of the variety and intensity of colors in the

image the colorfulness metric is used [87]. The CF is computed by Equation (3.5),

MCF = σrgyb + 0.3µrgyb, (3.5)

where, MCF is colorful metric, σrgyb =
√
σ2
rg + σ2

yb , µrgyb =
√
µ2
rg + µ2

yb , rg = R − G , and

yb = 0.5(R+G)−B, σ is the standard deviation and µ is the mean value. The R, G, and B are the

red, green and blue colour channels of the image pixels. For video, an average value of the frame

colorfulness is used.

Contrast

Contrast is one of the most important parameters that has been used to evaluate the perceptual

quality [250]. This is because the meaningful visual information is conveyed by the contrast. For

example, a largely uniform picture carries little or no information [142]. The contrast for each

frame is computed by using Gray Level Co-occurrence Matrix (GLCM). The average value of frame

contrast is used as an indicator for video.

In brief, the GLCM is used to express how often the different combinations of pixel brightness

values occur in an image. It is created from a grayscale image, and calculates how often a pixel with

gray level (tone) value i occurs either horizontally (00), vertically (900), or diagonally (bottom left

to top right, −450; top left to bottom right, −1350) adjacent pixels with the value j. GLCM is a

matrix where the number of rows and columns is equal to the number of gray levels (G) in the image.

The matrix element P (i, j|∆x,∆y), occurs within a given neighborhood, one with intensity i and

other with intensity j. In another viewpoint, the matrix element P (i, j|d, θ) contains second order

statistical probability values for the change between gray levels i and j at a particular displacement

distance d and at a particular angle θ [13]. In [86] set of 28 textural features are extracted from

GLCM. Some of them are:
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Energy =
∑
i

∑
j

g2ij , (3.6)

Contrast =
∑
i

∑
j

(i− j)2 gij , (3.7)

Homogenity =
∑
i

∑
j

1

1 + (i− j)2
gij , (3.8)

Entropy = −
∑
i

∑
j

gij log2gij , (3.9)

where, gij = (i, j)th element of GLCM.

Hue, saturation, and color value

Hue (H), saturation (S), and brightness are major attributes that have been used to express the

colorfulness of video [213]. Hue is the most obvious characteristic of a color and it indicates a

specific wavelength. The saturation can be expressed as the purity of a color, i.e. high saturation

colors look rich and full, and low saturation colors look dull and grayish. The color value (V) is

the lightness or darkness of a color. The average scores of each component are used for frames, and

finally mean value of the frames is used to express the hue, saturation, and color value for video.

Given R, G, and B (each on domain [0 1]), the equivalent H, S, and V (each on domain [0 1]) is

computed as [215, 68]:

V = max(R,G,B); (3.10)

S =
V −X
V

, (3.11)

where, X = min(R,G,B). Let, r = V−R
V−X ; g = V−G

V−X ; b = V−B
V−X ;

• If R = V then H =(if G = X then 5 + b else 1− g);

• If G = V then H = (if B = X then 1 + r else 3− b );

• else H = (if R = X then 3 + g else 5− r );

H =
H

6
. (3.12)

Brightness

The HVS is more sensitive to luminance (brightness) than color. Brightness is used to describe the

intensity of the color, and thus indicating the amount of light. The average score of the luminance
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component (Y ) of the frame is computed, and mean value of the frames is used to express the

brightness of the video.

Generally, in RGB color space all the three color channels are equally important. However, it

is also possible to represent a color image efficiently by separating the luminance from the color

information. Therefore, YCbCr color space is popular to represent the color image efficiently. The

luminance component (Y) cab be calculated as a weighted average of R, G, and B.

Y = krR+ kgG+ kbB, (3.13)

where k = {ki|i = r, g, b} are the weight factors. As mentioned in ITU-R BT.709 [196], kr =

0.2126, kg = 0.7152 and kb = 0.0722. Moreover, the color information is representation as:

Cb = B − Y ;Cr = R− Y ;Cg = G− Y. (3.14)

Content selection procedure

The applied scene selection procedure is as follows:

• the low level image quality attributes are computed;

• scene with high value of the attributes are selected–as a result the primary list of possible

SRCs is produced; and

• from the primary list, the SRCs are selected keeping in the mind that the final list of SRCs

must cover the variety of the content category (high level features).

3.2.2 Number of source sequences

Having a large number of SRCs is preferable in order to obtain a complete understanding of the

phenomena under investigation. However, in some applications, in particular subjective quality

assessment and pilot test of processing algorithms, the number of SRCs is limited by processing

time, duration of the experiment, and available number of the subjects for the experiment.

As specified in ISO 20462 standard [121], to get relative quality values in Just Noticeable Differ-

ences (JNDs), the selected attributes should appear in at least three images. As consequence, the

number of SRCs considered in this work is always grater than three.

3.2.3 Subjective quality assessment method

In literature, many ongoing efforts have been given to develop the subjective quality assessment pro-

tocols for different media: voice, image, and video. Similarly, ITU produced many recommendations

depending on services and system under study (some of them are reported in Table 3.1). In partic-

ular, the available assessment methods have different strengths and weakness, and the performance
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Recommendation Title Scope

ITU-R BT.500 [109]
Methodology for the subjective assessment of

the quality of television pictures
Broadcast TV signals

image and video

ITU-T P.800 [192]
Methods for subjective determination of

transmission quality
transmission quality

ITU-T P.910 [112]
Subjective VQA methods

for multimedia applications

video-telephony,
video-conferencing,

and video-on-demand

ITU-T P.911 [203]
Subjective audiovisual quality assessment methods

for multimedia applications
audio and video

ITU-R BT.1438 [33] Subjective assessment of stereoscopic television pictures 3D image and video

ITU-R BT.2021 [231]
Subjective methods for the assessment

of stereoscopic 3DTV systems

3DTV and QoE factors:
depth perception,

visual comfort, etc.

ITU-R BT.1129/
BT.710

[230]
Subjective assessment of standard

definition digital television (SDTV/HDTV)systems
SDTV and HDTV Video

ITU-R BT.1210 [229]/
BT.802-1 [101]

Test materials to be used in subjective assessment Test material

Table 3.1: ITU Recommendations used in this dissertation for image and VQA.

of a particular method is depending on the content type and the artifacts under investigation. Sub-

jective quality assessment techniques are broadly categorized in single stimulus and double stimulus.

In single stimulus technique, test signals are shown to the subjects one at a time for evaluating the

quality. Whereas, pairs of test sequences are shown to the subjects at a time in double stimulus

technique. To reduce the impact of the pre-introduced artifacts, the double stimulus paradigm is

an appropriate choice. Based on the purpose of study, image resolution, number of test sequence,

and available number of subjects for the experiment, the particular subjective quality assessment

technique is selected.

Absolute category rating

Absolute Category Rating (ACR) method is defined in ITU-T Rec. P.800 and ITU-T Rec. P.910, it

is a single stimulus rating method, where the subject is presented once with the stimuli, then asked

to rate the stimuli on a discrete five point scale, as shown in Table 3.2. If needed, more discriminative

power, the ITU-T P.910 also allows the possibility to use a nine-level scale, eleven-level scale, and

continuous scale. In this method, the test sequences are presented one at a time and are rated

independently on a categorical scale. For quality rating, after each presentation the subjects are

asked to evaluate the quality of the sequence shown. The time pattern for stimulus presentation

and voting is shown in Figure 3.3.

Another most important feature provided by ITU-T Rec. P.910 is ACR with hidden reference

(ACR-HR). The ACR-HR is developed to eliminate the effect of differences in the content of an
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5 Level Quality
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

Table 3.2: ACR quality rating scale.

~ 10 sec ~ 10 sec ~ 10 sec

Ai Grey Bj Grey
Ck Grey

≤10 sec ≤10 sec

Voting Voting
Voting

Ai Sequence A under test condition i
Bj Sequence B under test condition j
Ck Sequence C under test condition k

Figure 3.3: Stimuli presentation in ACR method.

image/video used for the evaluation. In this technique, the reference is also presented one at a time

and are rated independently on a categorical scale: it is a hidden reference condition. During the

data analysis, a differential quality score (DMOS) is computed between each test sequence and its

corresponding (hidden) reference. This technique has a particular value, to remove the impact of

pre-introduced artifacts and content in the perceived quality.

ACR is mostly used subjective quality assessment method for image and videos. VQEG is using

the ACR method to validate the objective metrics [78, 79]. Results presented in [119] show that

among the subjective quality assessment methods, DSCQS, ACR, DCR, and ACR-HR, in terms

of stability and assessment time the ACR method is most effective for video. The ARC method

is an appropriate choice, if test image/video posses a wide range of quality, low to high. In this

dissertation, ACR method is adopted for evaluating the QoE of video.

Degradation category rating

Degradation Category Rating (DCR) method is defined in ITU-T Rec. P.910 and ITU-T Rec. P.800,

also appears in ITU-R Rec. BT.500-3 under the name Double Stimulus Impairment Scale (DSIS).

DCR presents stimuli to subjects in pairs, the first stimulus presented in each pair is always the

source reference, without any impairments and second one is the same source but impaired by the
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5 Level Quality
5 Imperceptible
4 Perceptible but not annoying
3 Slightly annoying
2 Annoying
1 Very annoying

Table 3.3: DCR quality scale.

test conditions. The subjects are asked to rate the impairment of the second stimulus with respect

to the reference. The time pattern for stimulus presentation and voting is shown in Figure 3.4. The

ITU-T Rec. P.910 and ITU-R Rec. BT.500 use the scales as presented in Table 3.3. Moreover, it

is also possible to use any of the scales provided by ACR such as five scales, nine scales, and/or

continuous scale.

~ 10 sec ~ 10 sec

Ar Grey Ai Grey

2 sec ≤10 sec

Voting

Ar Sequence A (in reference source format)
Ai Sequence A under test condition i
Br Sequence B (in reference source format)
Bj Sequence B under test condition j

~ 10 sec ~ 10 sec

Br Grey Bi Grey

2 sec ≤10 sec

Voting

Figure 3.4: Stimuli presentation in DCR method.

For reduced picture formats such as CIF, QCIF, and SIF, the reference and the test sequence

can be simultaneously displayed on the same monitor. In this arrangement, the reference should be

placed always on the same side (e.g., left), and the subjects must be aware of the relative positions

of the reference and test conditions. The advantages of using this technique are: i) it reduces the

duration of the test, ii) it is easier for the subjects to evaluate the differences between the stimuli,

and iii) under the same test conditions the number of presentations is halved; the attention of

the subjects is higher. However, it requires particular precautions, e.g. two sequences must be

perfectly synchronized (both must start and stop at the same frame and that the displaying must
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be synchronized), in order to allow the subjects to avoid bias due to the way of presentation.

DCR method with simultaneous presentation has a particular value to assess quality of LF images

because the size of the LF image (aperture image/view) is considerably small (434 × 625 for Lytro

Illum image).

Pair comparison

The Pair Comparison (PC) method is presented in ITU-T Rec. P.910. In this method the test

sequences are presented in pairs (as shown in Figure 3.5), consisting of the same sequence being

presented first through one system under test and then through another system. The systems under

tests (A, B, C, etc.) are generally combined in all the possible n(n − 1) combinations( AB, BA,

CA, etc.) for a n number of sequences. Moreover, all the pairs of sequences should be displayed in

both the possible orders (e.g., AB, BA). After each pair, a judgment is made on which element in

a pair is preferred in the context of the test scenario, i.e. observer selects the one that has better

image quality. The result of the PC experiment is a PC Matrix (PCM), that contains the number of

times that each option was preferred over the other option. This method has a particular advantage

for reduced resolution image; the pair of the test sequences can be displayed simultaneously on the

same monitor.

~ 10 sec ~ 10 sec

Ai Grey Aj Grey

2 sec ≤10 sec

Voting

Ai , Aj Sequence A under ith and jth test condition respectively
Bk , Bl Sequence B under kth and lth test condition respectively

~ 10 sec ~ 10 sec

Bk Grey Bl Grey

2 sec ≤10 sec

Voting

Figure 3.5: Stimuli presentation in PC method.

The main advantage of the PC is its high discriminatory power, which is of particular value when

several test items are nearly equal in quality. Moreover, the forced-choice PC method was found to

be the most accurate among other widely used methods: single stimulus, double stimuli, and pairwise

similarity judgment method [152]. In this dissertation, to evaluate the quality of compressed LF

images the PC method is used. However, repeated presentation of the same test image limits the

use of this technique, if number of test conditions are large.
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Figure 3.6: Stimuli presentation and quality scale in DSCQS.

Double stimulus continuous quality scale

Double Stimulus Continuous Quality Scale (DSCQS) is defined in ITU-R Rec. BT.500. In this

method test sequences are presented in pairs: the reference and the impaired, as shown in Figure 3.6.

Subjects are asked to assess the overall picture quality of each presentation by inserting a mark on

the vertical quality scale. The unimpaired one is included to serve as a reference, however the

observers are not told which is the reference sequence. In the series of tests, position of reference is

changed randomly. This method has a particular value, if it is not possible to provide test conditions

that exhibit the full range of quality. It can be used for the evaluation of a new system or of the

effects of network impairments on quality.
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Subjective assessment of multimedia video quality

Subjective Assessment of Multimedia VIdeo Quality (SAMVIQ) method is a modified DSCQS [108].

Briefly, in this method, the subject is given several versions of a sequence resulted by combining

different image processing features such as codec type, image format, bit-rate, temporal updating,

zooming, etc. When all versions of the sequence are rated by the subject, the following sequence

content can be then accessed. Different versions are selectable randomly by the subject and provides

the possibility to stop, review and modify the score. Including explicit reference (i.e. unprocessed)

several versions of the same sequence that include both processed and unprocessed (i.e. a hidden

reference) sequences are included, and an observer can view the explicit reference whenever he/she

wants, as shown in Figure 3.7. The continuous quality scale (0 to 100 annotated by 5 quality items

linearly arranged: excellent, good, fair, poor, and bad) is used to provide a measurement of the

intrinsic quality of test video sequences.

Explicit 
reference 

Hidden 
reference 

Algo. 2Algo. 1 Algo. 4 Algo. 3 Algo. n 

C AG FRef. H D

Access Buttons

Sequence 1

Explicit 
reference 

Hidden 
reference 

Algo. 2Algo. 1 Algo. 4 Algo. 3 Algo. n 

F BA ERef. K H

Access Buttons

Sequence 2

Explicit 
reference 

Hidden 
reference 

Algo. 2Algo. 1 Algo. 4 Algo. 3 Algo. n 

D JE ARef. H F

Access Buttons

Sequence k

Figure 3.7: SAMVIQ: Test organization example.

3.2.4 Opinion scores processing

Outliers Detection

To detect and remove scores given by the subjects whose score is very far from the mean behavior,

an outlier detection technique [112] is adopted. In brief, for each test sequence (k), mean (x̄k),

standard deviation (sk), and Kurtosis coefficient (β2k) are computed. β2k is given by:

β2k =
m4

m2
2
, (3.15)
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and

mx =

N∑
i=1

(xik − x̄k)x

N
, (3.16)

where, N is the number of subjects, xik is the judgment given by the ith user for kth test visual

signal and x̄k is the average score given by all the subject to kth visual signal. For each observer i,

find pi and qi.

That is:

if 2 ≤ β2k ≤ 4, and

if (xik ≥ x̄k + 2sk), then: pi = pi + 1,

if (xik ≤ x̄k − 2sk), then: qi = qi + 1,

else

if (xik ≥ x̄k +
√

20sk), then: pi = pi + 1,

if (xik ≤ x̄k −
√

20sk), then: qi = qi + 1,

where, sk is the standard deviation on the subjective scores given for kth visual signal. Finally

for each subject, if pi+qi
N > 0.05 and pi−qi

pi+qi
< 0.3 then the observer i is rejected.

Mean opinion score estimation

After the outlier detection, the MOS score for kth video is calculated by Equation 3.17:

MOSk =
1

N

N∑
i=1

xik, (3.17)

where, N is the number of subjects and xik is the judgment given by ith user for kth video. Moreover,

in order to remove the hidden reference, Difference MOS (DMOS) [109] for kth test video sequence

has been computed by Equation 3.18.

DMOSk =
1

N

N∑
i=1

rik − xik, (3.18)

where, rik is the judgment given by ith user for reference of kth video.

The MOS values are in the range 1 to 5 while normalized DMOS scores are in the range 0 to 5. In

these scales, higher MOS value and lower DMOS scores represent better perceived quality and vice

versa.

Confidence Interval (CI)

When we present the results of a test, all mean scores should have an associated confidence interval

which is derived from the standard deviation and size of each sample [109]. Therefore, the 95%
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Confidence Interval (CI) is defined as:

[MOSK − δk,MOSK + δk], (3.19)

where, δk = 1.96 Sk√
N

. Moreover, the standard deviation, Sk is computed as

Sk =

√√√√ 1

N − 1

N∑
i=1

(xik −MOSk)2. (3.20)

3.2.5 Pair comparison data analysis

Pair comparison data

The result of the pair comparison experiment is a count matrix, C (also referred as a PC Matrix

(PCM)), that contains the number of times that each option was preferred over the other option [227].

Ci,j =

{
# times option i preferred over option j, if i 6= j

0 if i = j.
(3.21)

Moreover, it is assumed that each paired comparison is independent, and thus, we don’t need

to know the order of the comparisons occurred. In other words, different pairs may have different

number of comparisons.

Models for comparative judgment

As mentioned before, the result of the subjective experiment is the PCM matrix. In the field of

perceptual quality evaluation, it is important to put the results in a continuous rating scale. For this

purpose, a model based approach needs to be used. The model should be able to map the stimuli to

metrics, which represent the magnitude of sensation [129]. In literature, there are two most common

models (Thurstones model [223, 148] and Bradley-Terry model [31]) for analyzing paired comparison

data (Equation 3.21). In the context of image processing, the Bradley-Terry model is widely used,

and thus, the Bradley-Terry (BT) model is the scope of this dissertation. The BT model is also

known as Bradley-Terry-Luce model (BTL) for Ducan Luce’s extension to multiple variables [147].

A detailed description of the BT score and Confidence Interval (CI) estimation procedure is available

in [253]. The original BT developed a model as giving each option a rating, πi which satisfies

P (choice A over B) =
πA

πA + πB
. (3.22)

In [147], choice axiom is formulated, to make a comparison of more than 2 objects; again each
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Figure 3.8: Gaussian vs Logistic CDF [227].

rating πi must satisfy,

P (choice A out of A, B, and C) =
πA

πA + πB + πC
. (3.23)

Now, the variable πi = exp(µi/s) and s is a scale parameter. Then the Equation 3.24 becomes:

P (choice A over B) = P(A > B) = P(A− B > 0) =
exp(µA/s)

exp(µA/s) + exp(µB/s)
(3.24)

=
1

2
+

1

2

µA − µB
2s

. (3.25)

Equation 3.25 can be expressed as: 1 − FA−B(0), where F is the Cumulative Density Function

(CDF) of the random variable A−B. It is consistent with Equation 3.25 to assume that A−B is a

logistic random variable with mean µA−µB and scale factor s. In comparison to Thurstones model,

the BT model assumes the random quality difference A − B has a logistic distribution where the

Thurston assumes that the random quality difference is Gaussian distribution. The logistic CDF is

very similar to the Gaussian CDF (as shown in Figure 3.8), and thus the result produced by both

models is very similar. Therefore, in this dissertation the BTL model is selected for computational

simplicity. In other words, we don’t have to compute the erf function for the inverse Gaussian CDF.

Moreover, the BT has more stronger analytical capabilities and provides more statistical procedures

than the TM (Case V) [83].

Then, the results presented in [29, 149, 227] show that if A and B have Gumbel distributions of

qualities then A−B is logistic function. Next, by inverting the Equation 3.25 the quality difference

is estimated as: µAB = µA − µB and P (A > B) is estimated as the empirical count proportion
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CA,B/(CA,B + CB,A). The logit ( inverse logistic CDF) follows a closed-form expression (since,

tanh−1(x) = 1/2[ln(1 + x)− ln(1− x)]), so BTL quality difference estimate is

µ̂AB = s(ln(CA,B/(CA,B + CB,A))− ln(1− CA,B/(CA,B + CB,A))), (3.26)

where, s =
√

3/π, for comparative results with Thurstone model.

Exact Test

An exact test is a statistical significance test. One of the most popular is a Fishers exact test,

and it is used in the analysis of contingency table. In particular, the test is useful to examine the

significance of the association (contingency) between the two kinds of classification. Another test

that is used in the analysis of contingency tables is Barnards test. The Barnards test is a statistical

significance test of the null hypothesis of independence of rows and columns in a contingency table,

and it is more powerful than Fishers exact test for 2 × 2 contingency tables [22]. In our work the

Barnards test has been used to check whether the probability, Pij , (scores given for a test sequence)

is significantly different from a probability of 0.5 (i.e., whether the observers are undecided) or

not [137].

In detail, for a pair {Ii,Ij}, let us assume aij out of nij observers choose Ii and a′ij observers

choose Ij out of n′ij observers. To test the significant difference between the probabilities that

observers chose Ii over Ij , the Barnards test has been used. In this scenario, input matrix for the

test could be

{
aij a′ij

nij − aij n′ij − a′ij

}
, and the output of the test is a p-value. For example, at a

95% confidence, p-value < 0.05 means there is significant difference between the probabilities that

observers chose Ii over Ij .

3.2.6 Data analysis tools

Box plot

The box plot (box and whisker diagram) is used to display the distribution of data based on the five

number summary: minimum, first quartile, median, third quartile, and maximum. On each box,

the central mark is the median score, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points the algorithm considers to be not outliers, and the

outliers are plotted individually [153].

Correlation coefficients

To analyze the correlation between the variables such as estimated subjective score and ground

truth subjective scores (MOS), the correlation coefficients: Pearson’s Linear Correlation Coefficient

(PLCC), Spearman Rank Correlation Coefficient (SRCC), and Kendalls Tau Correlation Coefficient
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(KTCC) are used. PLCC evaluates the linear relationship between two continuous variables. SRCC

evaluates the monotonic relationship between two continuous or ordinal variables. Finally, KTCC

rank correlation is a non-parametric test that measures the strength of dependence between two

variables [40]. We included KTCC, since it is less sensitive to error and discrepancies in the data

compared to the SRCC. High values of coefficients indicate best correlation between the variables.

Moreover, the Pvalue is result of the hypothesis test of no correlation against the alternative that

there is a nonzero correlation. The small Pvalue, say less than 0.05, indicates that the correlation is

significantly different from zero.

Principal component analysis

In Principal Component Analysis (PCA) [117], positive or negative relationship between the vari-

ables and the principal component is expressed as a vector direction. The correlation between

variables is measured in terms of the angle between them, and a small angle corresponds to a higher

correlation [85]. In this work, the PCA is performed by using the MATLAB function princomp and

FactoMineR Software [130].

Analysis of variance

Analysis of Variance (ANOVA) [217] test is used for comparing the means of two or more groups of

data and determines whether any of those means are significantly different from each other or not.

Particularly, it tests if the null hypothesis is accepted, that is the group means are equal. During

the testing, test statistic is measured with the help of F-distribution (Fisher-Snedecor distribution),

indicated as a Fvalue, and if the probability (pvalue) for the F-statistic is smaller than the significance

level, then the test rejects the null hypothesis i.e. accept alternative hypothesis (at least one of the

group means is significantly different from the others). In this article, significance level, α of 0.05

has been considered.

3.3 Objective quality assessment

As mentioned before, the subjective quality evaluation demands significant time and effort for its

implementation, and the dedicated evaluation equipment is required, and it gives the best measure

of QoE. However, it is difficult to apply for quality monitoring and management, because it is

time consuming, and not useful for many practical and real-time applications. Therefore, there

is a strong demand of an objective quality assessment technique for estimating subjective quality

from physical feature related to signal, service, and network (e.g. encoding rate, IP packet transfer

time/fluctuations and IP packet loss ratio, etc.). The necessity for obtaining the automatic estimates

of perceived quality of multimedia services is leading to the development of objective QoE metric.
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The signal fidelity measure has been used for more than 50 years as MSE. It compares two signals

and provides a quantitative score that describes the degree of similarity or level of error/distortion

between them. Generally, one signal is distorted or contaminated signal, for which we want to

measure the level of distortion, and another signal is a reference or pristine original. Mathematically,

MSE between signals x and y is

MSE(x, y) =
1

N

N∑
i=1

(xi − yi)2 , (3.27)

where, x = {xi|i = 1, 2, 3, ..., N} and y = {yi|i = 1, 2, 3, ..., N} are two finite length discrete

signals.

MSE has been used in almost every field of signal processing from image processing, filter design,

signal compression, restoration, reconstruction, classification, etc. to solve the optimization prob-

lems. Because of its simplicity and clear physical meaning, it is a convention. However, in many

applications, the MSE exhibit weak performance and has been widely criticized for serious shortcom-

ings, especially when dealing with perceptually important signals such as speech and images [249].

For better performance, in image processing, the MSE is converted into PSNR as:

PSNR = 10log10

L2

MSE
, (3.28)

where L is the dynamic range of image pixel intensities such as for images that have allocations

of 8 bits/pixel of grayscale, L = 28 − 1 = 255. PSNR metric has been devised and used over

decades to measure the quality of the visual signal. Equation 3.28 indicates the PSNR is a simple

modification in MSE by taking into account the logarithmic relationship between physical stimulus

and human perception. Furthermore, the performance of visual quality metrics has been improved

by considering HVS characteristics [57].

In the above mentioned quality metrics, MSE and PSNR, to estimate the quality of distorted

signal, complete knowledge of the reference signal is needed. In some applications, for an example, to

estimate the quality of receiving image at user side the availability of complete knowledge of reference

image is not possible, and thus, due to the requirement of reference signal limit the applications of

such a metric.

Based on the availability of the reference signal, the level of processing complexity, and the

accuracy they provide, the objective metrics are categorized into three groups: Full Reference (FR),

Reduced Reference (RR), and No Reference (NR) [193].

Full Reference objective quality evaluation

In this technique, quality metric requires the access of both test visual signal and corresponding

original signal in the same physical location. Furthermore, this technique assumes that the original

sequence has a maximum quality. In particular, to estimate the objective quality scores a comparison
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Figure 3.9: Full Reference objective quality assessment framework.

between input or reference video at the input of the system and the processed signal at the output

of the system is performed (as shown in Figure 3.9).

By comparing the test visual signal to the original signal, the FR metrics are able to compute

the distortion in the test sequence accurately. However, the challenge is, to find the particular type

of the distortion that reduce the visual quality, because it is not necessarily that the visual quality

is reduced equally in all aspects of the distortions . By exploiting this challenge, using HVS, the

performance of FR metric can be improved significantly, as in PSNR-HVS [57] and SSIM [250].

The FR metrics are easy to compute and provides more accurate results and they are most

appropriate for in-the-lab testing. Therefore, the FR metrics widely used to compare and analyze

the performance of compression methods.

Need of original and test signal at the same physical location, the FR method may not be feasible

in a networked application. Thus, in the context of multimedia communication environment (with

the inclusion of communication network), these metrics are not applicable.

Reduced Reference objective quality evaluation
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Visual Signal

Quality 
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Score
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Quality 
Measurement 
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Figure 3.10: Reduced Reference objective quality assessment framework.
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To solve of limitation of FR metric: requirement of the reference signal, the RR approach is

introduced. In this technique, specific parameters are extracted from both the reference and the

processed signals to compute the quality of the processed signal. As shown in Figure 3.10, quality

measurement system (A) extracts some quality parameters of the original signal and it is used as a

reference at the destination, quality measurement system (B), to estimate the quality score of test

signal.

For an example, to evaluate the quality of processed video, the parameters blockiness, spatial and

temporal signal information, and noise level, extracted from original signal can be used. Moreover,

impairments such as freeze frames and loss of picture can also be detected at the output video.

This RR methodology offers potential for use where the decoder and encoder are physically

separated for instance by a transmission chain, i.e. in the multimedia communication environment.

No Reference objective quality evaluation
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Figure 3.11: No Reference objective quality assessment framework.

In communication environment, it is not always possible to have a reference or even reduced

reference information about the original signal. In this approach, the quality is estimated based on

the extracted parameters of the processed signal, as shown in Figure 3.11. The lack of a reference

means that the measurement may be subject to errors caused by picture content resembling by the

specific impairments that are being detected. However, the common goal is to estimate the quality

of processed visual signal without reference signal.

In the context of video communication, the most common way of estimating the quality is to

use the detected impairments such as block distortion, freeze frames, and loss of pictures. The NR

metrics can be categorized into pixel-based and bit stream-only metrics.

In NR pixel-based technique the quality is estimated by decoding the visual signal. Obviously,

NR metric does not have the original and are therefore unable to exactly compute the distortion.

Instead, they must infer the desired reference, distinguishing between desired signal and undesired

distortion caused by compression and transmission artifacts [17]. In general, the performance of
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the metric can be improved by limiting its scope, based on the target application, and by using the

accurate models for reference and distortion. To the extent possible, it is always advantageous to

incorporate the principles of HVS.

In NR bit stream-only technique the quality is estimated by counting the missing packets, called

network-layer packet loss rate. In this technique, together with the complexity, usually the perfor-

mance of the metric is also poor. The packet loss and its impact on the visual quality is depending

on the adopted compression and transport techniques. For an example, in video communication

environment the compression of video is compulsory due to the bandwidth limitation of the channel.

To achieve a higher level of compression the video coders apply prediction between frames. The first

frame is I-frame (intra-coded frame) and the subsequent frames are P-frames (predictively coded

frames), if there is a single lost packet, it leads to an error in the decoded frame two and the error

propagate significantly both in time and space to subsequent frames, ultimately reduce the quality

of the video significantly. Moreover, the more accurate quality metric can be designed by combining

all the information such as a bit stream, decoded pixels, and even from reference signal, if available.



Chapter 4

A dataset: to study the video

quality of experience

This chapter presents the following contributions:

• a ReTRiEVED Video Quality Dataset: adopted protocols to create the dataset are briefly

reported;

• as the use cases of the dataset, i) impact of the produced artifacts on the video QoE is presented,

and ii) performance of the well known no-reference image/video quality metrics is evaluated

on the dataset.

4.1 Introduction

As mentioned before, the recent advances in communication technology compression methods, stor-

age devices, and high-speed networks, made it feasible to provide multimedia services over the

internet. Among the multimedia services, video services (video streaming, video-on-demand, video

broadcasting, etc.) are becoming the dominant services. Delivering the spatial and temporal sensi-

tive video services over the noisy and bandwidth limited communication channel with a predefined

level of QoE is challenging. This is because, the communication channel introduced impairments

(delay, jitter, packet loss, and bandwidth limitation) degrade the quality of video.

Before moving into the focus of the study, video QoE, it is worthwhile to see the major source

of artifacts in video communication system. The end-to-end- video communication chain can be

divided into five components: capture, encode, network, decode, and display [17]; the overall QoE

is influenced by the artifacts produced by each component.

For high QoE, original video should poses the high quality. For an example, if the original video

is already afflicted by de-focus, blur, motion blur, noises due to low light, overexposure, camera

49
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sensor noises or other undesirable effects, the overall QoE will be low, no matter the performance of

the other components in the system. To communicate the video on a network, compression of the

video is necessary. The compression method reduces the size of the video at the cost of introducing

the compression artifacts, such as blocking, ringing, or blurring. Moreover, the compressed video is

more vulnerable to network impairments such as packet loss. The severity of the artifacts depends

induced network impairment and adopted compression and transport methods. Delivery network,

often exhibit congestion and interference. The interference is even more in a wireless environment.

The network produced impairments may include delay, jitter, and packet loss or bit errors either in

isolation or in bursts and are varied over time based on the network conditions. The characteristic

of display device used at the terminal, viewing conditions, and rendering methods also influence the

video QoE.

The impact of the rendering process introduced artifact is more important for HD, 3D, multi-

view/higher than 3D (LF) videos. The last but not least is the video content itself; different types

of video content influence the quality at all points in the processing chain. For an example, coding

parameters are significantly different from the video with high motion (running video) compared to

the video with low motion (news reader). The effect of the content is not limited in the processing

chain, also effect the QoE of the user, such as in general natural scenes provides better QoE to the

viewer.

Video QoE is multidimensional and multidisciplinary field and is composed of the primary dis-

ciplines of image processing, computer vision, color, and computational and behavioral sciences.

Among the top priority of the research in this field is the development of a computational model,

referred as a quality metric, that is able to predicting the quality of video as perceived by the user.

For evaluating the performance of the metric, an established practice is to use the dataset. In

particular, the availability of video quality dataset, test video sequences with annotated subjective

quality ratings, is important for assessing the video QoE, as well as testing new processing tools, or

even assessing the effectiveness of objective quality metrics. Moreover, the collected quality ratings

for the test videos are used to understand the response of HVS to visual signal, and the observed

response is used for optimizing the video processing algorithms such as encoding and decoding.

The selection, as well as design, of the dataset is depending on the purpose of the study. Par-

ticularly, adopted protocols (selection of the SRC, HRC, quality assessment method, display device,

subjects, environment, etc.) to create the dataset is depending on the purpose of the study. A scope

of this chapter is to study the impact of transmission impairments and video content on QoE.

4.2 Literature survey

In the state-of-the-art, many ongoing works have devoted to devise the video quality datasets. The

list of most popular and publicly available datasets known to us is reported in Table 4.1.
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Table 4.1: Selected video datasets with corresponding distortion types.
Datasets Date Distortion Type

LIVE[205] 2009-10 MPEG-2, H.264/AVC, packet loss
LIVE Mobile[164] 2012 Compression, wireless packet-loss
EPFL-PoliMI [51] 2009 H.264/AVC, packet loss

MMSPG (SVD) [133] 2011 compression, spatial and temporal resolution

IRCCyNIVC[8] 2016 content, coding artifacts, transmission error ( loss),
and error concealment [183, 182]

ECVQ and EVVQ [240] 2012 coding artifacts: H.264/AVC and MPEG4
VQEG [81] 2000 and 2010 encoding (MPEG2, H.264), packet loss

Poly@NYU[145] 2009 H.264/AVC, SVC, packet loss
IT-IST[177] 2010 encoding: MPEG2 and H.264/AVC, packet loss

TUM Data Set [123, 122] 2012 encoding: H.264
MCL-V Database [140] 2015 Compression, scaling

IVP [263] 2011 encoding (MPEG2, H.264), packet loss

CSIQ [241] 2014 Encoding (H.264, HEVC, MJPEG, SNOW), packet loss,
and Gaussian noise

AVC HD [218] 2013 H.264 encoding and slice losses
CVD Video Database [172] 2015 acquisition noises

As presented in Table 4.1, in most of the datasets, together with encoding artifacts packet loss

is considered as a consequence of the noisy channel impairment. The impact of artifacts produced

during the capturing process is deeply investigated in literature [172]. The most challenging compo-

nent of the multimedia communication chain is a network. As mentioned before, as a consequence

of the impairments produced by the network, Packet Loss Rate (PLR) is considered. However,

the inclusion key network impairments, called QoS parameters (in the context of IP based network

services): delay, jitter, packet loss rate, and bandwidth limitation, as HRCs in the dataset is crucial

to study the impact of network impairments on video QoE. However, in literature, the key QoS pa-

rameters are not considered. Therefore, this chapter presents the description of the dataset designed

by considering the QoS parameters as HRCs.

4.3 Adopted subjective quality assessment framework

In the following, the procedures adopted for creating the dataset are tailored.

4.3.1 Stimuli

In this experiment, eight heterogeneous uncompressed digital videos with different content, motion,

texture, color temperature, and camera movement have been selected as SRCs. The heterogeneity

of the selected sequences is demonstrated by their wide span in the spatial-temporal information

plane (as shown in Figure 4.1).
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Figure 4.1: Source sequences features characterized with the help of Temporal perceptual Informa-
tion (TI) and Spatial perceptual Information (SI) plane.

Next, Table 4.2 summarizes the features of the SRCs, while sample frames are shown in Fig-

ures 4.2. The sequences Crowdrun, Duckstakeoff, Harbour, Ice, Parkjoy, and Soccer are obtained

from EPFL-PoliMI video dataset [51], while Running and Restaurant are extracted from the Con-

sumer Digital Video Library (CVDL) [4].

Table 4.2: Details of source sequences including Size, Frame Rate (FR), and Length.
Videos Size FR Length

(pixel) (fps) (s)

Crowdrun 704×576 25 9
Duckstakeoff 704×576 25 9
Harbour 704×576 30 9
Ice 704×576 30 7
Parkjoy 704×576 25 8
Soccer 704×576 30 7
Running 720×576 25 9
Restaurant 720×576 25 8

4.3.2 Test dataset

As shown in Figure 4.3 PVSs are generated by streaming the original SRCs from a VideoLAN

streaming server through a noisy channel simulated by NETwork EMulator (NETEM) [89]. The

components of the adopted HRC (Hypothetical Reference Circuit) are described in the following

subsections.
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Crowdrun Duckstakeoff Harbour Ice

Parkjoy Soccer Running Restaurant

Figure 4.2: Sample frame of source videos.

Figure 4.3: Block diagram of the experimental setup.

Streaming server

SRCs have been transmitted by using a VideoLAN (VLC Player: Version 2.1.3 with a caching size of

300 ms) streaming server. The server has been configured with the following parameters: MPEG2

(Moving Picture Experts Group) encoder, original frame rate as shown in Table 4.2, MPEG-TS

(MPEG Transport Stream) encapsulation, coding rate of 9000Kbps (maximum value of the coding

rate has been considered to minimize the visual impact of compression), and User Datagram Protocol

(UDP) transfer protocol. Our focus is on the effect of transmission impairments on the perceived

video quality. In this paper, MPEG2 compression scheme has been used. This choice relies on

the fact that MPEG2 is still popular and it is used in a variety of applications including DVDs
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(Digital Versatile Disc) and digital broadcast services. As a general rule, it should be always better

the to use the newest coding standards. However, as a safe practice, providers must take into

account the capabilities and the features of existing consumer electronics (i.e., receivers, decoders,

etc.). Typically, the transition period from existing standard or technology to full adoption of some

new standard or technology could vary over a large range. At the moment, most of terrestrial

broadcasting systems are based on MPEG2. Moreover, the main focus of this work is not directed

towards the study of the impact of the encoding artifacts. Therefore, we assume that the during

analysis, the influence of the coding artifact can be compensated for by using hidden reference

removal technique [109]. For this reason we are focusing this work on this standard.

Channel impairments

The noisy communication channel has been simulated by using NETEM. To obtain the PVS set,

different values of impairments are considered. To have acceptable results, the standard values

of transmission artifacts have been considered based on ITU and ETSI recommendations. Based

on ITU recommendation on subjective VQAmethods for multimedia applications [108], framework

and methodologies for the determination and application of quality of service parameters [111], and

opinion model for video telephony applications [204], 1000 ms of delay, 10% of packet loss rate,

and 5 Mbps of bandwidth have been considered as a maximum limit. Moreover, based on ETSI

recommendation on speech and multimedia transmission quality [59], 5 ms of peak to peak one-way

jitter (5 ms of jitter means maximum of 10 ms two-way jitter) has been considered as a maximum

threshold. Five values of impairments have been considered. Furthermore, two more values (0.1%

and 0.4%) of PLR have been simulated to be able to compare with other existing datasets [51].

The intermediate test points for each artifact have been selected by equally partitioning the space

into 5 parts, and also keeping in mind that the PVSs should span the wide range of visual quality

scores, as detailed in [205]. The effect of the delay has been simulated by introducing a set of five

different delay amounts (100, 300, 500, 800, and 1000 ms) on each packet passing through the node.

The effect of jitter has been added by introducing the delay of 100 ms plus or minus 5 variations (1,

2, 3, 4, and 5 ms). The effect of PLR has been introduced by randomly dropping the packets at a

node with seven different PLR values (0.1, 0.4, 1, 3, 5, 7, and 10%). Finally, the channel bandwidth

is controlled for five different values (512 Kbps, 1 Mbps, 2 Mbps, 3 Mbps, and 5 Mbps) by using the

TokenBucket filter [89].

Client

The end point of our transmission framework is a device running a VideoLAN client.

A total of 184 videos were considered: 56 (8×7) videos with PLR, 40 (8×5) videos with jitter,

40 (8×5) videos with delay, 40 (8×5) videos with bandwidth and 8 MPEG2 compressed reference

videos have been considered for the subjective evaluation. In order to remove the possible presence
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Figure 4.4: Screenshot of the GUI used for the subjective experiment.

of bias in the MOS, due to the effects of MPEG2 compression, the subjective tests included MPEG2

encoded videos, with and without simulated impairments. As a result of this choice, the subjective

score of the reference video sequences can be used to remove the influence of the MPEG2 encoding

and of the selected setup by using hidden reference removal techniques, thus obtaining the DMOS.

4.3.3 Test methodology

As mentioned before, the ACR method is a categorical judgment where the PVSs are presented

one at a time and are rated independently on a categorical scale. This method is also called single

stimulus method [108]. Single stimulus paradigm suit well to large numbers of emerging multimedia

applications, such as quality monitoring for video on demand, internet streaming, mobile video

services [226], etc. It reduces significantly the amount of time needed to conduct subjective studies

compared to the double stimulus method in which SRCs and PVSs are shown at the same time [205].

Moreover, five scale ACR method is the most appropriate method in terms of stability and assessment

time [119]. Therefore, the single stimulus discrete five scale ACR method (ACR-5) is taken as

assessment method to obtain subjective quality scores of test video sequences.

4.3.4 Experiment setup and display

The experiment has been conducted in a controlled environment in order to produce reliable and

reproducible results by avoiding involuntary influence of external factors [109]. The characteristics

of the computer used in the experiment are briefly described in Table 10.4(a). Videos with their

original size were displayed on a Panasonic TX-P42VT30E plasma screen TV (parameters are shown

in Table 4.4) with an interactive Graphical User Interface (GUI) as shown in Figure 4.4.

To compensate the effect of a potential bias based on order or position of simultaneous stimuli

in the averaged result [126], stimuli have been shown in pseudo-random order for each subject
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Table 4.3: System parameters.
Parameters Values

Processor Intel(R)Core(TM)i7-4770
Processor Speed @3.40GHZ

RAM 8GB
System type 64-bit OS

Operating System Windows 8.1
Video Player VLC Media Player (version 2.1.3)

Table 4.4: Display parameters.
Parameters Values

Display Device Panasonic TX-P42VT30E TV
Screen Refresh Rate 60Hz
Screen Resolution 1920x1080 pixels

Image Mode Normal
Contrast 30

Luminance 0
Color Temperature Normal

Color Intensifier On

according to their distortion type and intensity. Even though the videos were displayed in pseudo-

random order, there were gaps of at least three videos between the video from the same reference

in order to remove the memory and the contextual effect on the quality judgment. To minimize

the effect of viewer fatigue on quality assessment, two experimental sessions were scheduled. Each

session lasted 20 minutes including evaluation time and training session. Moreover, at least half-hour

gap between each session was maintained to retain the attention of the subject.

4.3.5 Subject and their training

To collect reliable results, we exploited a sufficient number of subjects for quality evaluation as

detailed in [121] [109]. There were 41 subjects, 25 males and 16 females of age between 21 and

51 who evaluated the effect of delay, jitter and packet loss rate and 30 subjects, 20 males and 10

females of the age between 21 and 51 years who evaluated the impact of bandwidth. The difference

in the number of subjects is due to the fact that for the bandwidth impairment, a separate subjective

experiment has been scheduled. Subjects were drawn from a pool of undergraduate to post-doctorate

students from Università degli Studi Roma TRE. The students were relatively naive concerning video

impairments and the associated terminology. They were asked to wear any vision correcting devices

(glasses or contacts) that they normally wear to watch television.

In the first stage, the subject was verbally given instructions. In the training stage, lasting for

two minutes, the subject was shown the original videos followed by video examples with the strongest

impairments found in the experiment. In this phase, each subject got familiar with the assessment



CHAPTER 4. A DATASET: TO STUDY THE VIDEO QUALITY OF EXPERIENCE 57

Subjective Rating
-2 -1 0 1 2 3 4 5 6 7 8

F
re

qu
en

cy

0

500

1000

1500

2000

Figure 4.5: Distribution of subjective scores in the dataset.

procedure and established the annoyance value range. The videos used for the training session were

different from the test videos in order to remove the memory and hidden reference effect.

4.4 Data Processing

From the experiment, subjective scores are recorded for test video sequences. The distribution,

Figure 4.5, shows that the scores are distributed over the range 1 to 5.

As presented in Section 3.2.4, first outlier detection technique is applied; as a result of the outlier

detection, scores given by 5 subjects are rejected for PLR, delay, and jitter and 7 subjects are rejected

for bandwidth. After the outlier detection procedure, the MOS and DMOS scores are computed

with associated confidence interval.

4.5 Use case of the dataset

As mentioned before, the dataset can be used for a wide range of applications. In the context of this

dissertation, this is used particularly for two purposes: i) to understand the impact of producing

artifacts on QoE, and ii) to benchmark the QoE assessment metrics.

4.5.1 Impact of the introduced artifacts on video quality of experience

To understand the impact of the introduced artifacts (transmission impairments) on video QoE, the

computed MOS scores together with its confidence interval are plotted in Figure 4.6. It shows that

the impact of the impairments on QoE is depending on the introduced artifacts: impairment types

and levels of the artifact. It can be noticed that, the impact of delay on the QoE is not significant,

whereas, the QoE is influenced by the different values of other artifacts: jitter, PLR, and bandwidth

limitation.

The detailed analysis of the impact of transmission impairments is discussed in next chapter,

Chapter 5.
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Figure 4.6: MOS with corresponding 95% confidence interval for the test videos distorted by different
transmission artifacts.

4.5.2 Objective video quality metrics evaluation and comparison

As a use case of the proposed video quality dataset, the performance of most common NR quality

metrics: Naturalness Image Quality Evaluator (NIQE) [160], Blind Image Quality Index (BIQI) [162],

Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [159] and BLind Image Integrity

Notator using DCT Statistics-II (BLIINDS-II) Index [201], is evaluated. For this purpose, correla-

tion between the MOS and the estimated quality score has been studied by means of PLCC, SRCC,

and PCA. The video quality has been expressed in terms of average frame quality, each frame is

considered independently (each frame is an image).

From Figure 4.7 it can be noticed that the correlation between subjective scores and quality score

estimated by the metrics for the test videos is very low and BLIND-II has higher values of the SRCC

and PLCC if compared to other metrics. This result could be due to the fact that it was designed

by using a natural scene statistics (NSS) model of discrete cosine transform (DCT) coefficients.

However, the correlation is not significant. The same trend in the correlation is confirmed by the
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Figure 4.7: Performance comparison of objective metrics for videos which are distorted by PLR,
jitter and bandwidth.

(a) PLR (b) Jitter (c) Bandwidth

Figure 4.8: PCA results of the performance comparison of objective metrics for videos which are
distorted by PLR, jitter and bandwidth.

result of PCA, Figure 4.8, the angles between the subjective score and metrics are noticeable.

Moreover, Figure 4.9 shows the PLCC is different for different videos, though the videos were dis-

torted by the same level of the impairments, showing that the metrics perform differently depending

on video content and impairments.

From these results it is clear that the video quality estimated from these metrics on the Re-

TRiEVED video dataset is very far from the subjective assessment. So, it is important to devise a

new video quality metric, and thus, a new video QoE metric is proposed in Chapter 6.3.2.

4.6 Conclusion

In this chapter, a video quality dataset is presented. Firstly, a detailed discussion about stimuli,

test dataset, test methodology, experiment setup, subjects, and adopted data processing tools and

techniques have been presented. The subjective procedures were designed based on the available

standards, guidelines, and recommendations to realize a reliable video quality dataset. Test videos
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Figure 4.9: Performance evaluation of the metrics: PLCC for different video sequences and metrics.

were created from eight heterogeneous original videos by considering key impairments. Test mate-

rials, tools and associated results are freely available for the research community, and could be used

for design, assessment and comparison of the video quality metrics.

Next, as a use case of the dataset, the impact of the HRCs on QoE is briefly presented. The

detailed discussion on the impact of transmission impairments and video content is presented in

the following chapter. Lastly, the performance of no-reference image/video quality metrics has been

compared and the results show that the considered metrics poorly perform on the dataset, and the

performance of these metrics varies for different impairments and SRCs, thus further evidencing the

need of new no-reference video quality metrics.



Chapter 5

Impact of impairments on quality

of experience

The contributions included in this chapter are:

• the analysis of the effect of the transmission impairments: delay, jitter, packet loss, and band-

width limitation, on the video QoE;

• influence of video content on the QoE;

• effect of video content in the presence of the impairments;

• finally, the impact of video content related attributes on video QoE.

5.1 Effect of transmission impairments on video quality of

experience

Related works

In the literature, many works have been carried out to understand the effect of impairments and

artifacts on video QoE. A study of the joint impact of frame rate, frame size, coding bit rate, packet

loss, video complexity, and MPEG2 compression have been presented in [212]. In [39] the influence of

packet loss on perceived video quality is presented by exploiting packet loss distributions; this study

is limited to two videos and two different values of PLR. In [98] the influence of packet loss, packet

reordering and coding bit rates on the perceived quality of video streaming services is presented.

The effect of packet loss and bandwidth reduction on perceived video quality has been analyzed

and their relationship with perceived quality has been presented and discussed in [242]. In [96] the

61
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authors conclude that the packet reorder, jitter, and packet loss are equally important parameters

and the delay is the least important parameter in affecting perceived video quality, while the quality

is more influenced by network impairments than video content. The effect of stalling events and

video motion on QoE for the mobile streaming services is studied in [72] and the results show that

there is no evident relation of video motion on QoE.

In [156] the impact of packet loss and jitter on perceived quality based on the subjective results is

discussed. The results show that the mobile videos encoded with the H.264 baseline profile are very

sensitive to the network impairments, and the perceived video quality drops quickly with nominal

increase in packet loss and jitter. However, the validity of the study is limited, since for the subjective

study only three reference videos and a limited number of subjects have been used. The effect of

packet loss and jitter on perceptual quality is briefly discussed in [45] and the results show that the

jitter degrades the perceptual quality as much as packet loss. The influence of network impairments

on QoE in H.265/HEVC video streaming has been discussed in [170]. The authors conclude that

the packet loss rate of 3% is the threshold value where most of the users found the quality annoying

or worse.

Motivation

In the above mentioned works, the impact of the compression, encoding artifacts, and PLR on

the perceived video quality has largely been discussed. However, these previous works have the

shortcoming that only a limited number of subjects and/or test video have been used. Moreover,

there are other important transmission impairments such as one-way delay (the delay), instantaneous

packet delay variation (jitter), PLR, and bandwidth [213], that have to be considered conjointly.

Therefore, in the following subsections, the impact of the transmission impairments on video QoE

is presented.

5.1.1 Effect of delay

Box plot, Figure 5.1 (a), shows that median opinion scores at different levels of delay artifact are

the same and that the box distribution is also uniform. As it can be noticed in Figure 5.1 (b), the

delay does not have a significant impact on the perceived video quality. This is also confirmed by

the trend of DMOS scores as shown in Figures 5.1 (c). These results indicate that there is no evident

relationship between normalized DMOS scores and considered delay values. An additional evidence

of this behaviour is provided by the ANOVA test. It has been performed against the null hypothesis

to understand the effect of delay on the perceived quality. The result, pvalue = 0.977, indicates that

the MOS scores are not significantly affected by the variations on delay values.

The motivation behind this behavior of the delay could be that, in case of presence of transmission

delay only (no packet loss or jitter), the video can be displayed smoothly with the help of a buffer [42].

The similar result, to the impact of delay artifact on the QoE, is presented in article [72], and argued
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Figure 5.1: Perceived quality of the test videos in the presence of delay impairment.

that the subjects were not too frustrated with the initial delay. Moreover, the emphasis was given to

a more focussed study with more videos having initial delays of several different lengths for better

understanding.

Moreover, by analyzing CI of the opinion scores in Figure 5.1 (d), it can be noticed that the CI is

significantly large for all the adopted delay values, indicating that the quality perceived by different

subjects is different even for the same test video. This behaviour could be explained by the fact

that different users have different perception even for the same video content, thus implying that

the perceived quality is influenced by the video content rather than the adopted delay values.

5.1.2 Effect of jitter

As well known in literature [45], jitter significantly degrades the perceived video quality. In the

performed test, when the jitter increases over 2 ms, the perceived quality goes towards its minimum

value.

Figure 5.2 (a) shows the median opinion scores and distribution of opinion scores at different

values of jitter and indicate that the median scores are significantly low for high values of jitter (>

1 ms). The result is further confirmed by Figure 5.3. It shows a sample frame of a video affected

by different values of jitter. Moreover, the Figures 5.2 (b) and 5.2 (c) show that perceptual quality

score decreases significantly for high values of jitter, until a value of 2 ms is reached. When the jitter

becomes larger than 2 ms, the decreasing rate is slower and becomes almost constant when jitter
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Figure 5.2: Perceived quality of the test videos in the presence of jitter impairment. For DMOS, in
(c), the mapping function is −5.059 ∗ Jitter−2.374 + 5.062; with RMSE= 0.404.

becomes larger than 3 ms.

Moreover, the results of the ANOVA test, shown in Table 5.1, pvalue = 0, show that the MOS

scores vary significantly for different values of jitter. However, if jitter values are larger than 2 ms,

the pvalue increases significantly. Therefore, the 2 ms of jitter can be considered as a JND value.

Figure 5.2 (b) shows that for videos Duckstakeoff and Parkjoy the MOS scores at 1 ms of jitter

is 4.083 and 3.416, at 2 ms of jitter is 1.805 and 1.888, and at 3 ms of jitter is 1 and 1.083. These

results indicate that for low values of jitter (1 ms) the perceived quality is significantly different for

different videos. Moreover, as shown in Figure 5.2 (d), CI of opinion scores is high at low values of

jitter and decrease for high values of jitter. These results indicate that for low values of jitter, the

Figure 5.3: Visual impact of different jitter. From left to right: original frame, 1 ms (PSNR 30.67
dB), 2 ms (PSNR 14.75 dB), and 5 ms (PSNR 13.07 dB).
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Table 5.1: Summary of ANOVA test results.
Jitter (ms) F Fcritical p-value

1, 2, 3, 4 and 5 30.997 2.64 0.00
3, 4 and 5 0.435 3.47 0.653

Figure 5.4: Visual impact of PLR. From left to right: original frame, 0.1 % (PSNR 25.03 dB), 1%
(PSNR 22.30 dB), and 10% (PSNR 13.90 dB).

perceived quality is significantly different for different video content. In other words, the perceived

quality is significantly influenced by the video content for low levels of the jitter artifact.

5.1.3 Effect of packet loss

The impact of PLR values on the perceived quality is shown in Figure 5.4. The distribution of

opinion scores for test videos at different levels of PLR is shown in Figure 5.5 (a). Figure 5.5 (a)

shows that the median opinion scores decreases for high values of PLR. Figures 5.5 (b) and 5.5 (c)

show the MOS and DMOS behaviors. In both cases, the trend is similar: MOS score decreases for

every increase in PLR for all the videos and becomes almost constant when PLR becomes larger

than 3%, while DMOS score increases almost linearly for higher values of PLR and when the PLR

becomes larger than 3% the rate of increment becomes smaller. The results of the ANOVA test

(shown in Table 5.2) suggest that the MOS scores are significantly different for different values of

PLR artifact. However, when PLR becomes larger than 3%, the pvalue increases. Based on the

obtained results, 3% can be considered as JND threshold, as mentioned in [170].

Figure 5.5 (d) shows that at a low PLR value, the CI on the opinion scores is high i.e. perceived

quality is differentiated for the users even at a same level of PLR. Moreover, Figures 5.5 (b) shows

that different videos (Crowdrun and Parkjoy) have different MOS scores even for the same values

of PLR and the trend is confirmed by all the adopted videos.

These results indicate that, at a low value of PLR the perceptual quality is also influenced by

the image content. However, at high values of PLR the perceptual quality of different videos is not

significantly different. This result could be due to the fact that the at low level of PLR, the perceived

quality is influenced by video content and user goal and expectations, as in the case in which the

channel is affected by bandwidth and jitter.
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Figure 5.5: Perceived quality of the test videos in the presence of packet loss impairment. For
DMOS, in (c), the mapping function is 3.261 ∗ exp(0.04 ∗ PLR) − 3.509 ∗ exp(−0.86 ∗ PLR); with
RMSE= 0.746.

Table 5.2: Summary of ANOVA test results.
PLR (%) F Fcritical p-value

0.1, 0.4, 1, 3, 5, 8 and 10 29.803 2.29 0.00
5, 8 and 10 1.163 3.47 0.332

5.1.4 Effect of bandwidth

The distribution of opinion scores for different levels of bandwidth is shown in Box Plot, Figure 5.6

(a). Figure 5.6 (a) shows that the median score increases for high values of bandwidth. However,

for high values (> 2 Mbps) of bandwidth the median scores are same.

Figures 5.6 (b) and (c) show the MOS and DMOS score variation in the presence of bandwidth.

The analysis of the collected scores shows a common behavior for all analyzed videos: the perceived

video quality increases for high values of bandwidth; however, when the bandwidth value exceeds

2 Mbps, the quality curve slowly increases and it becomes almost constant. Therefore, the 2 Mbps

value of bandwidth can be considered as a JND threshold.

For better understanding the perceivable effects caused by bandwidth reduction, let us refer to

Figure 5.7, where frames extracted from the videos transmitted over channels affected by bandwidth

are shown. PSNR for each frame has been computed with respect to the original frame. As expected,

it can be noticed that when the available bandwidth reduces, the quality decreases while when the
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Figure 5.6: Perceived quality of the test videos in the presence of bandwidth impairment. For DMOS,
in (c), the mapping function is 5.35/(1 + exp(3.671. ∗ (Bandwidth− 1.237))); with RMSE=0.412.

bandwidth values outreaches 2 Mbps, reference and transmitted frames look almost identical and

the PSNR value for the frame is high (Figure 5.7), thus confirming the trend highlighted by the

analysis of the MOS and DMOS scores.

This result is further confirmed by ANOVA test. The test has been performed against the null

hypothesis that the MOS scores are not significantly different for different values of bandwidth. The

test result shown in Table 5.3, pvalue = 0, shows that the bandwidth has significant influence on

MOS. Moreover, beyond the 2 Mbps of bandwidth, the MOS scores are less influenced by high values

of bandwidth.

Figure 5.6 (d) shows that at low values of bandwidth (0.5 Mbps) CI of opinion scores is minimized.

Figure 5.7: Visual impact of different bandwidth limitation. From left to right: original frame, 0.5
Mbps (PSNR 10.54 dB), 2 Mbps (PSNR 33.18dB), and 5 Mbps (PSNR 33.18 dB).



CHAPTER 5. IMPACT OF IMPAIRMENTS ON QUALITY OF EXPERIENCE 68

Table 5.3: ANOVA test results: bandwidth.
Bandwidth (Mbps) F Fcritical p-value

0.512, 1, 2, 3 and 5 73.437 2.64 0
2, 3 and 5 0.166 3.47 0.848

This result indicates that all the users perceive a similar quality for the videos. When the bandwidth

becomes higher than 1 Mbps, the CI increases together with MOS scores. The high CI values

indicate that, even at the same value of bandwidth and same video content, the quality perceived

by different subjects is significantly different. Moreover, as can be also noticed from Figures 5.6

(b) at 0.5 Mbps the videos Crowdrun and Soccer show a similar MOS score while, at 2 Mbps of

bandwidth, their scores are significantly different. It is likely that this behavior is due to the impact

of the video content on perceived quality. Since, for the same encoder and impairments, the video

quality appears different for different video content [15].

These results indicate that for low values of bandwidth the perceived quality is mainly influenced

by the bandwidth. For high values of bandwidth (> 2 Mbps), the perceptual quality is also influenced

by video content[131].

Finally, from the performed analysis, we can conclude that for low levels of transmission impair-

ments (all the considered delay values, high values of bandwidth and low values of jitter and PLR)

the perceived quality is significantly different from the test videos. Therefore, in Section 5.3 the

influence of video content on the perceived quality is presented.

5.2 Study of the effect of video content on quality of experi-

ence

5.2.1 Effect of video content

To analyze the effect of video content on perceived quality, opinion scores collected from the subjects

for the reference videos are considered. The distribution of opinion scores for the reference videos

is shown in Figure 5.8 (a). The histogram, Figure 5.8 (a), indicates that most of the opinion scores

given for the reference images are distributed over the range 3 to 5. Moreover, the summary of

the opinion scores for eight different reference videos is plotted in Figure 5.8 (b) and it shows that

the median score for each image is different and the box distribution is not uniform. This result

indicates that the perceptual quality of reference videos is varying.

The result is further confirmed by the analysis of the perceived quality of the reference videos

(without considering impairments) as shown in Figure 5.8 (c): the MOS scores are significantly

different even in the reference videos. The level of significance is also tested by an ANOVA test:

pvalue = 0, indicates that the null hypothesis has to be rejected, thus confirming that the perceived
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Figure 5.8: Perceived quality of reference videos.

quality is significantly influenced by the video content.

5.2.2 Effect of video content in the presence of impairments

The influence of the adapted values of impairments to the effect of content on QoE is presented in

the following.

Delay

Figure 5.1(b) shows the MOS scores are not significantly changed for high values of delay. The

confidence interval, shown in Figure 5.1 (d): computed based on the opinion scores given to the

SRCs for the different values of belay artifact, is almost uniform. This result indicates that the

introduced delay artifact does not influence the impact of content on QoE.

Jitter

As mentioned before, in Section 5.1.2, from Figure 5.2 (a) and (b) we can notice that the MOS

scores are significantly different for the SRCs at 1ms of jitter, and the difference in the scores (also

shown in Figure 5.2 (d)) is reducing for high values of jitter, and as jitter is 5ms, all the SRCs have

the same MOS score. This result indicates that, at low values of jitter artifacts the QoE is different

based on the presented video content (SRCs). However, at high values of jitter, the QoE is not

much varied based on the content. From another viewpoint, at low levels of channel distortion the

QoE is significantly influenced by the presented content, and the influencing level of content to the

QoE reduces for highly distorted channel, i.e. if the channel is highly distorted, no matter with the

content/SRCs, the QoE is low.

Packet loss

By following the results presented in Section 5.1.3, Figure 5.5 (b) show the difference in MOS for

the SRCs is decreasing for high values of PLR. The same result is also shown in Figure 5.5 (d):

difference in the scores measured in terms of the confidence interval is reduced for high values of
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PLR. This result indicates the impact of video content on QoE is decreasing for high values of packet

loss artifact.

Bandwidth limitation

As the impact of jitter and PLR artifact, the similar trend on the result: for high values of bandwidth

(>2) the MOS scores are more separated for the SRCs, is shown in Figure 5.6 (b). The Figure 5.6

(d) also indicates the difference in opinion scores is reduced for the channel with low bandwidth

values. This result indicates, if the channel has already been suffered by limited bandwidth artifact,

the QoE is poor no matter with the video content. On the other hand, if the channel has a fair

enough bandwidth (>1 Mbps) the QoE is also influenced by the content type (SRCs).

5.3 Analysis of the effect of video content related attributes

on quality of experience

For this analysis, first content related low level attributes are selected, and the correlation analysis

between the attributes and corresponding MOS scores of the SRC is performed.

Selected content related attributes

As mentioned before, in Section 3.2.1, it is not easy to map the extractable video features into

semantic concepts, though the effective way for video content analysis is to use the attributes ex-

tractable from the sources [52]. Therefore, to describe the video content the SI, TI, CF, contrast,

hue, saturation, color value, and brightness are used.

5.3.1 Study on ReTRiEVED video quality dataset

For the study, content related attributes are computed for eight reference videos. The opinion scores

collected for the reference video sequences are used during the analysis. The correlation coefficient

between the attribute and corresponding MOS score for the sequences is computed and plotted in

Figure 5.9.

The Figure 5.9 shows that SI of the video is significantly correlated with the perceived quality.

Moreover, the contrast, brightness and saturation are also strongly correlate with the perceived

quality. However, PLCC and SRCC scores are not very high (' 1) for all the features. These results

indicate that none of the considered descriptors are sufficient to explain the video QoE.

Moreover, this result is further confirmed with the help of PCA, Figure 5.10. It shows that

the content descriptors are well distributed over the space. The brightness has a small angle with

MOS, and in the opposite plane SI, contrast and saturation also have a small angle with MOS.
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Figure 5.9: Correlation between the perceived video quality and content attributes.

Figure 5.10: Results of PCA: analysis of video content attributes and their impact on perceived
quality.

Furthermore, Figure 5.10 shows that first two principal components roughly explain about 73% of

the total perceptual quality in the standardized rating.
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Though, the number of SRCs considered for the subjective study is enough as specified in ISO

20462 standard [121]. However, the inclusion of a large number of SRCs has been always beneficial to

overcome the over-and/or under-fitting problem. Therefore, to study the impact of video content on

QoE, another subjective experiment is conducted. The subjective experiment and achieved results

are briefly presented in the following.

5.3.2 Extended dataset: to study of the impact of video content related

attributes on quality of experiance

In the following, video quality dataset and the correlation between video content descriptors and

corresponding video QoE are presented.

Source sequences

In this experiment, 26 uncompressed SRCs have been selected based on the content varies (types,

content, frame size, motion, rate, textures, color temperature, camera movements, etc.). The list of

the selected videos is reported in Table 5.3.2, and sample frame of the videos is shown in Figure 5.11.

The heterogeneity of the video content has been characterized by means of a wide span of spatial-

temporal perceptual information, as shown in Figure 5.12. All the SRCs are taken from Consumer

Digital Video Library (CVDL)[4].

Experiment

ACR method is selected as a subjective assessment protocol; and stimuli are rated from one to

five (poor to excellent). The stimuli are shown to the subjects on a DELL U2413 digital monitor

(resolution: 1920x1200 pixels) by using the VLC media player (version 2.1.3).

The experiment has been conducted in a controlled environment in order to produce reliable and

reproducible results by avoiding involuntary influence of external factors. To compensate the effect

of a potential bias based on the order of the test sequences in the averaged results, stimuli have been

shown to the subjects in pseudo-random order according to their content and resolution. Effect of

viewer fatigue is minimized by scheduling a short experiment session of 10 minutes.

For the experiment, 21 subjects were used for evaluating the QoE. Subjects were drawn from a

pool of undergraduate to post-doctorate students from Università degli Studi Roma TRE. Most of

the students were relatively naive concerning video processing related terminology and they were

asked to wear any vision correcting devices (glasses or contacts) that they normally wear.

Verbal instruction was given to the subjects and it is followed by a training session to make them

familiar with the assessment procedure and to establish an annoyance value range. The videos used

for the training session were different from the test videos in order to remove the bias due to memory

effect.
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SRCs Name CIF VGA HDTV

SRC1 Bennet Watt BeeClose CIF60fps VGA60fps 1080i30fps
SRC2 Bennet Watt BeeZoom CIF60fps VGA60fps 1080i30fps
SRC3 Bennet Watt CattleDogs CIF60fps VGA60fps 1080i30fps
SRC4 Bennet Watt DecantWine CIF60fps VGA60fps 1080i30fps
SRC5 Bennet Watt ElephantZoom CIF60fps VGA60fps 1080i30fps
SRC6 Bennet Watt FlockSunset CIF60fps VGA60fps 1080i30fps
SRC7 NTIA FlamencoShoes CIF60fps VGA60fps 1080i30fps
SRC8 NTIA TheFootPan CIF60fps VGA60fps 1080i30fps
SRC9 Bennet Watt CPSPIR003 original 1080p30fps
SRC10 broadcast BGRrevisedopen original 1080i60fps
SRC11 intel bostonwide original 1080i60fps
SRC12 mpr BusA3 original 1080i60fps
SRC13 mpr CellBlockB3 original 1080i60fps
SRC14 ntia cropduster original 1080i60fps
SRC15 ntia purple3e original 1080p25fps
SRC16 ntia TeaCupPolice original 1080i60fps
SRC17 ntia tulip1e original 1080p25fps
SRC18 ntia tulip2e original 1080p25fps
SRC19 ntia tulip3e original 1080p25fps
SRC20 pscr burnB-0-25-58-BC-TargetPerson original 1080i60fps
SRC21 pscr stands36h-ver1 original 1080i60fps
SRC22 vqeghd1 src02 hrc06 1080p30fps
SRC23 vqeghd1 src03 hrc09 1080p30fps
SRC24 vqeghd1 src06 hrc01 1080p30fps
SRC25 vqeghd1 src09 original 1080p30fps
SRC26 vqeghd2 csrc12 original 1080i60fps

Table 5.4: SRCs includes 8 CIF videos (352 × 288, progressive and 60fps), 8 VGA (640 × 480,
progressive, and 60 fps) and 24 HDTV (1920× 1080, interlaced or progressive, and 25 or 30 or 60
fps, and expressed as a 1080i60fps: 1080 is the size, i indicates interlaced, and 60 represent frame
rate).

Data processing and results

Once opinion scores were collected, an outlier detection procedure (as presented in Section 3.2.4)

was applied to detect and remove the scores given by subjects whose scores deviate strongly from

other observers or mean score. In this experiment, scores given by all the subjects were accepted for

the analysis.

The computed MOS scores with confidence intervals is plotted in Figure 5.13. It shows that the

MOS is different for test video sequences; even for the sequences with the same resolution and frame

rate. Level of significance on the difference in the scores, is tested with the help of ANOVA at a

significance level of 5%, and null hypothesis (H0): group of means (MOS scores) is equal. The result

of the test (pvalue = 0) indicates that the null hypothesis cannot be accepted. This result indicates

the MOS scores are significantly different for the SRCs. From this result, we can conclude that the
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Figure 5.11: Sample frame of the SRCs.

QoE is significantly influenced by the video content, itself, indifferently with the frame size.

Content attributes

To analyze the impact of video content on QoE, in addition to the content attributes: SI, TI, CF,

hue, saturation, value, and brightness, the global motion coefficient– to describe the video motion,

are computed. Where, the global motion coefficient is computed by using the three-step-search

algorithm [202].The global motion characterization measure is defined as (5.1):

G =
|E −M |ave
1 +Mave

, (5.1)

where |E −M |ave and Mave can be obtained by averaging |E −M | and M over the frames of

video sequence. Furthermore, M and E are the mode and mean of the motion vector magnitudes
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corresponding to two consecutive frames and can be computed by equation (5.2) and (5.3):

M = mode(i=1,2...m){(Mx(i))
2 + (My(i))

2} 1
2 , (5.2)
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Figure 5.14: Correlation of the content attributes with video QoE.

E =
1

m

m∑
i=1

{(Mx(i))
2 + (My(i))

2} 1
2 , (5.3)

where, Mx(i) and My(i) are the horizontal and vertical motion vector component of motion vector

i and m is the number of motion vector per frame.

Results

The results of the correlation analysis (performed between the video content attributes and video

QoE) are as follows:

• Frame size: Figure 5.13 shows that the QoE of VGA video is significantly higher than for CIF.

Similar trends in the result is also shown for HDTV and VGA. However, in some cases the

subjects are not able to find the difference, as a result for some videos the MOS score is higher

for VGA than for HDTV. This result could be the effect of buffering time (the delay) taken

by VLC player for displaying the HDTV video.

• Spatial information: The result of the correlation analysis, the correlation coefficient computed

between SI of the videos and MOS values, shown in Figure 5.14, indicates there is no strong

evidence to conclude that the SI is highly correlated with the video QoE. Similar trends in the

result is also confirmed by the results presented in Figure 5.15: the angle of SI in respect of

MOS is significant for all the videos (CIF, VGA and HDTV).
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Figure 5.15: Result of PCA.

• Temporal information: Similar to the SI, the Figures 5.14 and 5.15 show that there is no

evident relationship between the video QoE and temporal perceptual information of the video.

Similar results was concluded for the TI in Section 5.3.1.

• Motion: As expected, the result of TI is followed by the content attribute motion, which is

computed as global motion coefficient to express motion of the video. Our conclusion, about

the impact of motion on QoE: motion does not have a direct correlation with QoE, is not far

from the results presented in [72].

• Homogeneity and Contrast: The correlation between scene homogeneity and contrast with

the perceived quality of video is presented in Figure 5.14; it shows that there is a noticeable

correlation wit QoE, and in comparison with contrast the homogeneity has a higher correlation.
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The similar trend in the result is also shown in Figure 5.15, the angles with respect to MOS

are not much bigger for the videos with different frame size.

• Hue, saturation, and value: The impact of hvs indicators to QoE is analyzed. The achieved

results, presented in Figures 5.14, show that there is no high correlation with the QoE for

all the indicators. However, the saturation and value (color information) have a relatively

noticeable correlation with the video QoE compared to hue. The result is confirmed by the

result of PCA, shown in Figure 5.15.

• Brightness: Similar to the hvs indicators, the brightness is also not directly correlated with

the video QoE. This result of brightness is also presented in Figures 5.14 and 5.15.

• Colorfulness (CF): The correlation between the QoE and colorfulness of the video is shown

in Figure 5.14: it indicates the correlation coefficient is not significant. The similar result

(noticeable angle between CF and MOS) is also shown in Figure 5.15. However, the CF has a

smaller angle to the MOS compared to most of the other attributes, and this result is uniform

for the videos with different frame size. This result indicates that there is some correlation

between CF and QoE, but the amount of correlation is not significantly high.

From another viewpoint, the provided medium level of correlation has a meaning, because

the chroma component of the image has a Gaussian distribution like relationship with the

naturalness of the image, and the image naturalness has a strong correlation with image QoE.

Moreover, the relationship between image quality and colorfulness is also like a Gaussian

distribution curve, i.e. the visual signal with medium colorfulness poses high QoE compared

to very low and very high colorful signal [62].

5.4 Conclusion

In this chapter, the influence of the impairments and video content on the perceived video quality

is analyzed.

In brief, the results show that:

• the adopted initial delay does not have a significant impact on the perceived video quality,

while jitter, PLR, and bandwidth do. On the performed experiments, the values 2 Mbps of

bandwidth, 2 ms of jitter, and 3% of PLR can be considered as JND limits since above and

below these thresholds the perceived video quality changes significantly;

• if the communication channel is influenced significantly by impairments (high values of PLR

and jitter, and low values of available bandwidth) the perceived quality is mainly dependent

on channel conditions. Therefore, the perceived quality is more dependent on the impairments

rather than the video content and human factors;
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• if the channel is less influenced by impairments (low values of PLR and jitter, and high value

of available bandwidth), the perceived video quality is also dependent on video content and

human factors.

The key video quality influencing factors or content attributes - spatial perceptual information,

temporal perceptual information, motion, colorfulness, contrast, hue, saturation, color value (value),

and brightness - are used to analyze the impact of the video content on the perceived video quality.

The results show that, the considered attributes do not have a direct and linear correlation with the

video QoE. From another viewpoint, the single attribute cannot characterize the overall video QoE.



Chapter 6

Video quality of experience metric

Major contributions of this chapter are two folds:

• the performance evaluation of QoS to QoE models: QoE estimation by exploiting the QoS

parameters, is performed; and

• a blind VQM is proposed, and performance of the metric is analyzed and compared with the

state-of-the-art metrics.

6.1 Introduction

As mentioned before, the QoE can be assessed by two approaches: subjective and objective. The

only most appropriate method for assessing perceived video quality is the subjective one. However,

the subjective method have many shortcomings such as expensive, time consuming, not suitable for

automatic, in-loop/service, and on-line real-time processing, and problem of reproducibility of the

results, because of it is depending on the viewers physical conditions, emotional states, personal

experience, context, etc. Therefore, a common goal is to devise an objective measure to emulate the

subjective score i.e. MOS.

As a result of the failure of the traditional quality measures, in this visual quality assessment field,

many ongoing efforts have been given to devise the metric. The basic reasons for the failure are: not

every change in an image is noticeable; not every pixel/region in an image receives the same attention

level; not every change leads to distortion (otherwise, many edge sharpening and post-processing

algorithms would have not been developed); not every change yield a same extent of perceptual

effect with a same magnitude of change (due to spatial/temporal/chrominance /masking) [141].

In general, according to the ITU, objective quality assessment models can be categorized into five

types: media-layer models, parametric packet-layer models, parametric planning models, bitstream

layer models, and hybrid models (as shown in Table 6.1) [84].

80
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Models I/P Information Applications Standards Limitations

Media-layer
model

media signals (video)
by exploiting HVS

quality
benchmark

ITU-T J.144 [104]
ITU-T J.148 [105]

obtaining media signals at
the network mid-point
is difficult but payload

of packets can be decoded

Parametric
packet-layer model

packet header
information

non-intrusive
monitoring

(network probe)
ITU-T P.1201 [106]

difficult for
evaluating the content

dependence of QoE

Parametric
planning model

quality design
parameters

network planning,
terminal/application

designing
ITU-T G.1070 [102]

requires a priori
information about
the system under

testing

Bitstream
layer model

Packet header
and payload
information

in-service
non-intrusive

monitoring (terminal-
embedded operation)

ITU-T P.1202 [107]

high complexity,
since also used content

characteristics from
the coded bit-stream

Hybrid model combination of any
in-service

non-intrusive
monitoring

ITU-T J.343 [103] complexcity

Table 6.1: Objective QoE assessment models.

In literature, in general, mostly two techniques have been used to estimate the QoE: by using the

concept of fidelity measure and HVS system, and by exploiting the quantitative relationships between

the user QoE and network QoS. In comparison to first approach, the latter approach is simple and

effective from the network service view point: it uses the system recorded QoS parameters.

6.2 Quality of experience estimation by using the quality of

service parameters

6.2.1 Introduction

Qualitative relationship between QoE and QoS

The qualitative semantic relationship between the QoS parameters and user QoE is shown in Fig-

ure 6.1. User QoE as a function of QoS disturbance is divided in several areas [63]:

• Constant sub-optimal QoE (no effect): For a vanishing QoS disturbance the user considers

the QoE equivalent to that of the reference. This result indicates, a slight growth in the

QoS disturbance does not affect the user QoE. For an example, the QoE does not reduce

significantly, if we reduce the channel bandwidth from 5 Mbps to 3 Mbps [175].

• Sinking QoE (user distorted): When the QoS disturbance exceeds a certain threshold, lets

say JND1, the former quasi-optimal QoE level cannot be maintained anymore, and thus, user
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satisfaction sinks for increasing values of QoS distortion.

• Unacceptable QoE (user gives up): As soon as the QoS disturbance reaches threshold, JND2,

the outcome of the communication networks becomes unacceptably bad and the QoE is poor.

QoE

QoS disturbance JND1 JND2

No distortion Significant  distortion: user disturbed User gives up

Figure 6.1: General shape of the mapping: qualitative relationship between QoS and QoE.

A basic idea of this relationship is introduced in 1834 by German physiologist Ernst Heinrich

Weber; the idea was the operation of the human sensory system traced back to Just Noticeable

Differences (JND). This fundamental principle relating human perception to the relative change

of stimulus has later been extended by Gustav Fechner, what is known today as Weber-Fechner

law [197]. Mathematically, the differential perception (dP ) is directly proportional to the relative

change (dS/S) of the physical stimulus:

dp = k.
dS

S
, (6.1)

by taking integration both sides, Equation 6.1 becomes

p = k.ln
S

S0
, (6.2)

where, p identifies the magnitude of perception, and the constant of integration S0 can be inter-

preted as stimulus threshold. This principle is a breakthrough for developing the mapping model
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between QoS (as physical stimulus) and QoE (as perceived intensity). In literature, many mapping

models are devised to estimate the perceptual quality (QoE) from the physical stimulus such as QoS

parameters and signal distortion measures.

QoS to QoE mapping models

QoE can be estimated by using the measure of network QoS related parameters: delay, jitter, PLR,

throughput, etc. [38, 35]. Measuring QoS parameters are quite easy for the operators; however, it

could not represent the actual perceived quality by the user [184]. So it is a fundamental importance

to develop a mapping model to predict QoE from QoS parameters.

In literature many mapping models have been presented. The most common mapping model is

the linear model; Equation 6.3, where x is the physical stimulus (QoS parameter). However, the

performance of this model is very far from the reality, and thus non-linear models are used.

QoE = a+ bx, (6.3)

The commonly used non-linear mapping functions are: cubic function (Equation 6.4), logistic

functions (a: Equation 6.5, b: Equation 6.6, c: Equation 6.7, and five parameter function: Equa-

tion 6.8), exponential function (Equation 6.9), power function (Equation 6.10), and logarithmic

function (Equation 6.11) [77, 80].

QoE = a+ bx+ cx2 + dx
3

, (6.4)

QoE = a+
b

1 + c(x+ d)e
, (6.5)

QoE = a+
(b− a))

1 + exp[−c(x + d)]
, (6.6)

QoE =
a

1 + exp[−b(x− c)]
, (6.7)

QoE = a+
d

(1 + (xc )b)e
, (6.8)

QoE = a.exp(b.x) + c.exp(d.x), (6.9)

QoE = a.xb + c, (6.10)
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QoE = −a.log(x) + b, (6.11)

Moreover, other many correlation approaches are presented in literature [14]. Among them a

most popular single parameter model is an IQX Hypothesis (Equation 6.12), presented in [63].

QoE = a.exp(−b.x) + c, (6.12)

where, a, b, and c are the positive parameters.

Another popular multi-parameter model, called VQM(VQM) (Equation 6.13), is presented in

articles [181, 100, 244].

QoE = f(x1, x2, x3, .....xn), (6.13)

where, x1,2,......n are the QoS parameters.

For better performance, more complex models are presented by using statistical analysis and

machine learning [58, 155]. However, in this dissertation, the performance of the single parametric

models is evaluated on the dataset.

6.2.2 Performance evaluation of the quality of service to quality of expe-

rience models

The QoS parameters (packet loss, delay, jitter, throughput, etc.) result quality problems like glitches,

artifacts, excessive waiting times, etc. For this reason, the parameters are considered as the Key

Performance Indicators (KPIs). It is necessary to investigate generic relationships between QoE and

KPIs, and the relationship is expressed in terms of mapping models.

In [126, 14] the authors discuss and compare the performance of widely used mapping functions.

A logarithmic function to predict QoE from network related parameters, bit rate, packet loss rate,

jitter, etc., is presented in [197]. In [189], a perceived VQA technique exploiting video coding rate

and packet loss rate is presented. QoE mapping and adjustment model form QoS parameters for

cloud based multimedia services by considering delaying, packet loss rate, jitter and throughput has

been discussed in [94]. Moreover article [124] proposes a QoE assessment model for video streaming

service based on the different weight assigned to PLR, jitter, delay and bandwidth. The performance

of IQX hypothesis is analyzed in [92].

The above mentioned works have the following shortcomings: i) interactions between key QoS

parameters and their effects on QoE is poorly defined; ii) study is performed to the less number of

videos and subjective scores–results over or unbefitting problems; and iii) more efforts are need to

benchmark the models. Thus, the scope of this dissertation is to benchmark the widely used models

on a dataset by using key QoS parameters.
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Performance analysis tool

Performance analysis and selection of the models is based on their fitting capability with subjective

scores expressed as MOS. Fitting capability is measured in terms of the following statistical measures:

Sum of Squares due to Error (SSE), R-Square (r2 ), Adjusted R-Square (adjusted r2 ) and Root

Mean Squared Error (RMSE). Based on these statistical measures single decision variable (µ ) is

defined in Equation 6.14. The high value of µ indicates better fitting for the given data.

µ =
r2 × adjusted r2

SSE ×RMSE
(6.14)

Table 6.2: Performance evaluation of the mapping models.
Mapping Functions PLR (µ) jitter (µ) bandwidth (µ)
1. Linear Mapping (Equation 6.3) 0.0164 0.0141 0.0080
2. Cubic Polynomial (Equation 6.4) 0.0353 0.0774 0.0271
3. Logistic (a) (Equation 6.5) 0.039 0.0859 0.0332
4. Logistic (b) (Equation 6.6) 0.0095 0.0024 -4E-06
5. Logistic (c) (Equation 6.7) 0.0031 0.0263 0.0301
6. Exponential (Equation 6.9) 0.0227 0.0305 0.0069
7. Power (Equation 6.10) 0.0388 0.031 0.0184
8. Logarithmic (Equation 6.11) 0.0384 0.0320 0.0185
9. IQX Hypothesis (Equation 6.12) 0.0361 0.0828 0.0077
10. Five Parameter Logistic (Equation 6.8) 0.0323 0.0825 0.0273

Results

The result of the performed analysis is summarized in Table 6.2. From the analysis, we can conclude

the following results:

• for PLR artifact, power function, logarithmic function, IQX hypothesis and logistic function

gives quite similar results. For this dataset, among them, logistic function (a) has a higher

value of the µ.

• for jitter artifact, logistic function (a), IQX hypothesis, and five parameter logistics function

(a) give a close and accurate approximation. However, according to value of decision variable

µ logistic function (a) gives optimal solution.

• for bandwidth limitation artifact, logistic function (a) , logistic function(c) and cubical function

give the best approximation compared to other functions. Among them the logistic function

(a) gives best approximation, since it has highest value of µ.

Finally, based on a decision variable logistic function (a) is a optimal solution for all the three

parameters and, by considering the computational complexity, the IQX hypothesis is also the best
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Figure 6.2: Mapping models for estimating the QoE by using QoS parameters.

alternative for PLR and jitter. This result is also confirmed by the mapping models plotted for the

artifacts, shown in Figure 6.2. It shows that the performance of the mapping models are very close

to each other, and thus, we can select any of them based on the complexity and considered artifacts.

6.3 Distortion based quality of experience estimation

6.3.1 Introduction

As specified before, the other way of estimating the QoE is by using the media signal (media-layer

model). Accordingly, in this section, a QoE metric is proposed for video streaming services by using

the received video: introduced distortions in the video.

Related works

In the state-of-the-art, many efforts have been devoted to estimating the video QoE. Most of them

are investigating the effects of common network parameters on the received video. Authors in [258]

studied the impacts of temporal jerkiness on video quality, which is caused by packet loss or late

arrival of packets and, based on their findings, they proposed a neural network based VQM. Authors

in [207] present an analytical model for no-reference VQM by taking into account both video play-

out rate and network throughput. A VQM based on the spatio-temporal natural scene statistics and

motion coherency in the video scenes has been proposed in [202]. A VQM based on the statistical

estimation of PSNR of the coded transform coefficients for H.264/AVC encoded sequences is pre-

sented in [32] . By considering the features of H.264/AVC encoding, such as blocking, blurring, and

spatial activity, a VQM is presented in [173] . In [20] a machine learning approach is recommended

to estimate the QoE. The QoE is represented as an engagement, and expressed as a function of the

quality metrics. The engagement could be the video play time, number of visits and the quality

metric represent observed indicates such as buffering ratio, average bit rate, etc. In [206] a video

quality estimation method is proposed by considering the policies applied for packet processing by
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routers and the level of total network utilization. In [219] the authors propose a novel rate adaptation

algorithm called QoE enhanced adaptation algorithm over Dynamic Adaptive Streaming over HTTP

(DASH). The adaptation algorithm preserves the minimum buffer length to avoid interruption and

minimizes the video quality changes during the playback. In [144] a multi-factor QoE evaluation

model based on the content classification by spatial and temporal information for H.264/AVC en-

coded video has been proposed. Authors in [216] propose an acceptability-based QoE estimation

model by considering encoding parameters, bit rate, video content characteristics, and mobile device

display resolution. A QoE metric for HDTV by using PSNR metric and PLR artifact is presented

in [99]. The authors in [63] present user perceived QoE prediction model from network related QoS

parameters. Finally, [24] presents the performance comparison of QoS to QoE mapping models for

wired and wireless communications.

The above mentioned state-of-the-art metrics have the following limitations: i) they are not

specifically designed for QoE estimation for video streaming services, ii) they are complex and time

consuming, iii) their performances are far from the subjective scores in a real scenario, and iv)

they generally assume the presence of one main network artifact: in practical streaming services,

this approach can lead to a wrong QoE estimation, since only part of data can be affected by one

particular impairment.

6.3.2 Proposed No-Reference video quality of experience metric

The goal of this section is to propose a generic blind video QoE metric, called VQoE , for streaming

services. Since, the metric is designed for real time services, the frame by frame QoE estimation

approach has been used. The frame quality is expressed by considering the portion of frames that,

due to transmission errors, cannot be correctly decoded. These will be in the following addressed

to as broken blocks. The overall video QoE is expressed as the average of the QoE estimated for all

frames. The results show that the proposed method is computationally less complex and faster than

the other considered blind video quality metrics and its performance is superior. The details of the

proposed metric and achieved results are presented in the following.

The video QoE is computed in three steps: i) the total number of broken blocks for each frame is

computed, ii) the QoE for each frame is estimated from the total number of broken blocks by using

a mapping function between broken blocks and QoE, iii) the overall video quality is estimated as

the average of frame quality.

Broken blocks estimation

The basic steps for the estimation of the number of broken blocks are detection and verification [23].

In brief, let Fk is the kth generic frame of the video sequence. It can be partitioned in Nr × Nc
blocks B

(i,j)
k of r× c pixels with top-left corner located in (i, j). Moreover, ∆B

(i,j)
k = B

(i,j)
k − B̄(i,j)

k
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denotes the deviation of the luminance in kth frame of the block B
(i,j)
k from the corresponding mean

values.

The inter-block correlation ρ
B(i,j)
k can be computed as:

ρ
B(i,j)
k =

〈
∆B

(i,j)
k ,∆B

(i,j)
k−1

〉
∥∥∥∆B

(i,j)
k

∥∥∥
L2

∥∥∥∆B
(i,j)
k−1

∥∥∥
L2

. (6.15)

where < •, • > denotes the inner product and ‖•‖L2
the L2-norm.

To identify the distorted block, the blocks have been classified into three groups; low, medium

and high content variation. The content variations are evaluated based on their temporal inter-block

correlation ρB
(i,j)

k . Moreover, based on the content variation groups, the corresponding variability

map ΓVk = {ΓV B(i,j)

k } has been defined by comparing the inter-frame correlation of each block as:

ΓV B
(i,j)

k =


1, if ρB

(i,j)

k < θl

0, if θl ≤ ρB
(i,j)

k ≤ θh
2, if ρB

(i,j)

k > θh

(6.16)

where the two thresholds, θl and θh have been selected in order to grant |Pfa−Pmd| < ε1. Here Pfa

is the probability of false alarm, Pmd is the probability of missed detection, and ε1 is a significantly

small value. Value of the ε1 is experimentally determined from the training session. In this study

the values of θl and θh are set to 0.2 and 0.9.

The blocks with medium content variation, (ΓV B
(i,j)

k = 0) are less likely to be broken. The blocks

with low and high content variation should be further analysed, to find out whether they should be

considered as broken blocks or not. For each block, if ΓV B
(i,j)

k = 2, it has to be further checked.

If at least v blocks among the surrounding blocks present a strong temporal correlation, where the

parameter v has been identified by experimental tests, then the block is classified as belonging to a

static region. Then its potential distortion index ΓCB
(i,j)

k is set to zero, in other words the block is

not considered as a broken block. That is:

ΓCB
(i,j)

k =

{
0 if |ς| > ν

ΓV B
(i,j)

k otherwise
(6.17)

where ς equals to how many surrounding blocks of B
(i,j)
k with ΓV B

(p,q)

k = 2.

Finally, if ΓCB
(i,j)

k 6= 0, then further test is necessary. Let El and Er be the L1 norms of the

vertical edges respectively on the left and on the right boundary of the block, and with Ac, Al and

Ar the average values of the L1 norms of the vertical edges inside the current block and of the left
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and right adjacent blocks. A block with ΓCB
(i,j)

k 6= 0 is classified as affected by visible distortion if:∣∣∣∣El − (Ac +Al)

2

∣∣∣∣ > θ or

∣∣∣∣Er − (Ac +Ar)

2

∣∣∣∣ > θ (6.18)

where the threshold θ has been defined on the basis of experimental trials (in this article θ = 100).

In particular it corresponds to JND (Just Noticeable Difference) collected and evaluated for 90% of

subjects.

The same procedure is applied to the horizontal direction. If the block edges are consistent (i.e.

no visible distortion has been detected along horizontal and vertical directions) ΓCB
(i,j)

k is reset to 0.

As a result, total number of broken block (TOTk) is computed as the total amount of blocks where

ΓCB
(i,j)

k 6= 0 .

QoE estimation

After the total number of broken blocks in a frame is computed, the QoE has to be determined from

the total number of broken blocks by using a mapping function. Based on its mapping capability

and simplicity, IQX Hypothesis is selected to estimate the QoE from the total number of broken

blocks. Hence, the QoE for kth frame is estimated as:

QoEk = a.exp(−b.(TOTk)) + c (6.19)

where a, b, and c are the regression parameters which can be achieved from the training session

and TOTk is the total number of broken blocks for kth frame. The overall video QoE is considered

as the average of the frame quality.

6.3.3 Results and discussion

To evaluate the performances of the proposed algorithm, the availability of a video quality database

is important. In the state-of-the-art, many video quality databases have been recommended [65],

among them for this study the EPFL-PoliMI VQAdatabase [51] and LIVE Video Quality Database [205]

are selected. In literature, it is also noticed that the performance of the metrics is also varied on the

datasets. Because, some of the metrics are tuned for a particular dataset, i.e. for the specific arti-

facts. Therefore, our metric is validated to the datasets: which are largely been used to benchmark

the state-of-the-art VQA metrics.

For analysis, from the EPFL-PoliMI database 156 video streams (78 video sequences at CIF and

78 sequences at 4CIF spatial resolution), encoded with H.264/AVC and corrupted by simulating

the packet loss due to transmission over an error-prone network and their corresponding subjective

scores MOS are considered. In this database, in order to simulate burst errors, six different PLR

(0.1%, 0.4%, 1%, 3%, 5%, 10%) patterns was used and every reference sequence has a two impaired
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Figure 6.3: Total number of broken blocks of the Cb component for the 4CIF (Crowdrun and Ice)
and CIF (Foreman, and Mobile) videos.

sequence for the same level of PLR. From the LIVE Video Quality Database, 80 videos (with a

resolution of 768X432 pixels and H.264/AVC encoded) and their corresponding subjective scores

(DMOS) are considered. Among all videos, 10 are the reference sequences, 40 were affected by

the wireless distortions (four test videos per reference) and the remaining 30 were affected by IP

distortions (three test videos per reference). The details about the databases are presented in [51]

and [205] .

From the analysis of the achieved results, it can be noticed that mainly the luminance component

of the video has a direct and significant impact on the video quality. For the sake of compactness in

the following only the results of a subset of all considered videos will be included: the 4CIF video

sequences Crowdrun and Ice and the CIF sequences Foreman and Mobile extracted from the EPFL-

PoliMI database. The analysis has been performed on 52 impaired video sequences: the original

Crowdrun, Ice, Foreman and Mobile sequences and 12 impaired ones obtained by considering six

PLR values. For each video sequence, the relation between the PLR and total number of broken
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Figure 6.4: Total number of broken blocks of the Cr component for the 4CIF (Crowdrun and Ice)
and CIF (Foreman and Mobile) videos.

blocks of each video chrominance component (Cb and Cr) is shown in Figures 6.3 and 6.4.

It can be noticed that the total number of broken blocks does not increase for higher values of

PLR. However, for the luminance component Y, from Figure 6.5 it can be noticed that for high

values of PLR correspond to the higher number of broken blocks, and this trend is confirmed for

all the considered video sequences. From these results we can conclude that mainly the luminance

component shows a closer and synclastic relationship between PLR and broken blocks. As demon-

strated in [24] [63] this behavior has an impact on QoE. Based on these considerations, it is possible

to reduce the computational complexity by considering only the luminance component for quality

assessment.

In the following, the QoE computed through the proposed metric, VQoE is compared with other

widely discussed NR quality metrics: NIQE [160] , BIQI [162] , BRISQUE [159] , BLIINDS-II [201]

and blind prediction of natural video quality [202] . Among them, the first four metrics have

been initially designed for image quality estimation and lately used for video quality estimation by
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Figure 6.5: Total number of broken blocks of the Y component for the 4CIF (Crowdrun and Ice)
and CIF (Foreman and Mobile) videos.

averaging the single frame pair quality score for all the video. More recently, these tools have also

been used for the performance comparison of newly proposed video quality metrics [202].

To compare the performance of the metrics, SRCC and PLCC between the collected subjective

scores and predicted scores have been computed. During the experiment 80% of the videos were

selected randomly for the training and rest of the videos were used for testing.

The performance of the metrics for CIF and 4CIF videos from EPFL-PoliMI database are pre-

sented in Figure 6.6. The results show that the proposed method (VQoE) has higher values of PLCC

and SROCC compared to the considered metrics for both CIF and 4CIF videos. Besides that, the

proposed method also shows higher PLCC and SRCC values than Video BLIND (PLCC = 0.75

and SRCC = 0.807 as mentioned in [202]) for the same database.

Moreover, the performances of the proposed method are also evaluated for the LIVE Video

Quality Database. The results show that the metric VQoE has PLCC = 0.7909 and SRCC = 0.8571.

As presented in [202] for the same database but for all the video categories (MPEG-2, H.264, wireless,
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Figure 6.6: Performance comparison of the proposed metric(VQoE) with considered state-of-art
metrics.

and IP) the performance of Video BLIND is PLCC = 0.881 and SRCC = 0.759.

For real time video streaming services, computational complexity and processing time of QoE

metric is as important as its QoE prediction capability. The considered state-of-the-art metrics,

including Video BLIND is more complex, and need more processing power and computational time.

This is mainly due to the fact that the metrics have been designed by considering computationally

heavy and complex techniques [41] , as generalized Gaussian density parameter estimation techniques

and motion coherency computation. In the proposed metric VQoE , only luminance component is

considered and thus, the overall processing time is depending mainly on the block-wise correlation

operation only.

6.4 Conclusion

In this chapter, first, performance of QoE estimation (from QoS parameters) models is evaluated to

the ReTRiEVED video quality dataset. The achieved results indicate among the considered models

only few models performs better, and the performance of the models is depending on introducing ar-

tifacts. Followed by the discussion, sub-optimal models are recommended based on the artifacts. By

considering the performance for all the considered impairments and complexity, the IQX hypothesis

is selected as an optimal model, in general.

Next, a NR and real-time video QoE metric VQoE is proposed. The video quality is computed

based on the video distortion, which is measured as the number of broken blocks. The frame QoE has

been derived from a number of broken blocks by means of IQX hypothesis. The overall video quality

is expressed as an average of frame QoE. The performance of the proposed method is compared with

widely discussed blind image/video metrics. The result shows that the proposed metric outperforms
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the considered state of art metrics, and it is also faster.



Chapter 7

Light field imaging

In this chapter, a brief introduction of LF imaging is presented. Next, major steps involving in the

LF image communication system followed by the quality distortion model are reported. Finally,

issues related to QoE assessment of LF image are presented.

7.1 Introduction

Space is filled with a dense array of light rays of various intensities. The set of rays passing through

any point in space is termed pencil and Leonardo da Vinci refers to this set of rays as a radiant

pyramid [11]. To represent all the information available to an observer at any point in space and

time, a plenoptic function is defined. The plenoptic function, P (θ, γ, λ, t, Vx, Vy, Vz), measures the

intensity of light seen from any viewpoint, the 3D spatial position with respect to camera center

(Vx, Vy, Vz), any angular viewing direction (θ, γ), over time (t), and for each wavelength (λ). In

another viewpoint, as an illustration, a stationary person can see:

• a grayscale snapshot, as shown in Figure 7.1 (a), is the intensity of light P (θ, γ) seen from a

single viewpoint, at a single time, and averaged over the wavelengths of the visible spectrum.

This can be also represented as P (x, y) , however for simplicity the spherical coordinates are

used;

• a color snapshot, as shown in Figure 7.1 (b), is the intensity of light P (θ, γ, λ) seen from a

single viewpoint, at a single time, and as a function of wavelength;

• a movie, as shown in Figure 7.1 (b) (a movie frame), is the intensity of light P (θ, γ, λ, t) seen

from a single viewpoint, over the time, and as a function of wavelength;

• a holographic movie, as shown in Figure 7.1 (c) (a movie frame), is the intensity of light

P (θ, γ, λ, t, Vx, Vy, Vz) seen from any viewpoint, over the time, and as a function of wavelength;

95
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(a) Grayscale snapshot. (b) Color snapshot and a movie. (c) Holographic movie.

Figure 7.1: An example: modeling of the light as a plenoptic function (Figure by Leonard McMil-
lan [198]).

• plenoptic function, as shown in Figure 7.1 (c), is the intensity of light P (θ, γ, λ, t, Vx, Vy, Vz) .

We can reconstruct every possible view, at every moment, from every position, and at every

wavelength. Actually, it contains every photograph, every movie, and everything that anyone

has ever seen.

Due to the complexity associated with the higher dimensionality of the plenoptic function, for

the practical realization of the imaging system, some restrictions apply to the plenoptic function:

radiance of a light ray remains constant along its path through empty space (one spatial dimension

reduction), the time is fixed (static scene), and a specific wavelength is selected. As a result, the 7D

plenoptic function is reduced to 4D LF. The LF is a plenoptic representation describing the amount

of light faring through every point in space (Vx, Vy) in every direction (θ, γ). In brief,

• Surface plenoptic function (SPF): the radiance of a light ray remains constant along its path

through empty space. Given that radiance along a light ray does not change unless blocked,

SPF reduces the dimensions of the original plenoptic function to 6D including time (1D),

wavelength (1D), a point on the surface S (2D) and azimuth and elevation angles (2D) [261, 53];

• 5D plenoptic function: McMillan and Bishop [154] present 5D representation of plenoptic as a

set of panoramic images of different 3D locations. The reduction of the dimension is achieved

for signal with a specific wavelength. The wavelength can be restricted to three channels

(RGB) and each of the channels represent the range of wavelength captured by the camera

sensor and by considering the static scene (fixed time), the time dimension can be eliminated.

This assumption is still valid for video, by considering each image as a video frame [135, 75]. As

a result of the assumption, the 7D plenoptic function becomes 5D function: P (θ, γ, Vx, Vy, Vz);

• LF or Lumigraph: in free space, the 5D plenoptic function becomes a 4D function, ”the (scalar)

LF” by considering SPF on 5D plenoptic function.

Levoy and Hanrahan, [135] defined the 4D LF as: the radiance as a function of position and

direction, in regions of space free of occluders (free space). The proposed parameterizations technique

is ”light slab concept”: by using the prospective geometry. From another viewpoint, it represents

the ray by using the intersections of two planes in arbitrary position defined by L(u, v, s, t), as shown



CHAPTER 7. LIGHT FIELD IMAGING 97

t

s

u

v

L (u, v, s, t)

Figure 7.2: LF parametrization using ”light slab concept”.

in Figure 7.2. By convention, the coordinate system on the first plane is (u, v) and on the second

plane is (s, t), (camera and image) and the oriented line is defined by connecting a point on the uv

plane to a point on the st plane.

The latest advancement on the LF imaging is leaded by [169] and [150]: the LF camera with an

additional microlens array inserted between the camera sensor and the main lens. The camera can

be considered as a relay system, where the main lens creates a main image in the air, then this main

image is re-mapped to the sensor by microlens array, and thus it is able to provide multiple views

of the image in a single shot [70].

7.2 Light field image processing chain

The basic steps involving in the LF image communication process are shown in Figure 7.3. First

radiated light is captured by using the appropriate acquisition device. The recorded data with

associate metadata should be represented for further processing such as encoding and/or rendering.

For the communication purpose, the compression is needed to reduce the big size size of LF data.

Finally, at the receiver, the received compressed data should be decoded and rendering for display.

These steps are briefly presented in the following subsections.

7.2.1 Acquisition

LF capturing is the sampling of 4D plenoptic function and it can be performed by exploiting different

techniques such as camera arrays [254], moving camera [221], coded aperture [236], and using a

microlens array in a camera. In the following, most popular techniques are briefly reported.
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Figure 7.3: Basic block diagram of LF image communication.

(a) (b) (c) (d)

Figure 7.4: Stanford multi camera array with different configurations.

Camera array

Due to the low setup cost and computationally efficient mapping between the captured array of

images and LF rays, the LF acquisition by using the multi camera array (camera grid) is the widely

used and most popular technique. Moreover, the two-parallel-plane LF representation can be easily

employed in the camera array acquisition system. A most popular LF acquisition system is The

Stanford Multi-Camera Array [254], where 128 video camera’s array is arranged and used in a variety

of ways, shown in Figure 7.4. The camera array captures the visual content, @ 640 × 480 pixels

× 30 fps × 128 cameras, with the synchronized timing, continuous streaming, and with flexible

arrangements. Figure 7.4 (d) shows a widely spaced camera array with the aim of capturing LF.

The tightly packed camera array is shown in Figure 7.4 (b) designed for high performance imaging.

The intermediate spacing arrangement is shown in Figure 7.4 (a) designed for synthetic aperture

photography.

Besides, the Stanford multi camera array, other many works has been performed for LF acqui-

sition. A grid of 16 (4 × 4) cameras is used in [166] to capture 16 video sequences simultaneously.

In [262] 48 cameras, grid size 8 × 6, are used to capture the images up to 640 × 480 pixel images

at maximally 30 fps. An array of 64 cameras, 8 × 8 grid, is used for capturing the images at an

average of 18 fps, with 320 by 240 videos coming from the cameras in [259]. Moreover, other tech-

niques are also used to capture the LF. In [221] the LF is capturing by using the moving camera.

The LF images with different grid size and resolution is recorded by Lego Granty in [233]. The LF
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Figure 7.5: Conceptual schematic of LF camera with respect to conventional camera.

microscope is used in [136], where the microscope eyepiece has been removed and replaced with a

microlens array; the array contains 288 ×192 microlenses.

Hand held light field camera

By using the microlens array, the LF capturing can be performed with a plenoptic camera (plenoptic

1.0 cameras) and focused plenoptic camera (plenoptic 2.0 cameras). The first commercial handheld

plenoptic camera (Lytro) is made available by Ng [169]. Whereas, the focused plenoptic camera has

also already made available in the market by Raytrix [2].

The difference between the conventional camera with LF camera is shown in Fihure 7.5. It

shows that the conceptual schematic of the LF camera consist a main lens, microlens array and a

photosensor. The main lens focuses the subject onto the micro lens array. The micro lens array

separates the converging rays into an image on the photo sensor behind it [169]. Accordingly, the

plenoptic camera captures the distribution of light rays as described by the 4D LF function by

putting a microlens array in front of the image sensor. In particular, the focal plane of the microlens

is on the camera image sensor plane, and the camera only captures angular information in each

microlens image for a single point in the 3D space, and it results in a low spatial resolution of the

final rendered images. To overcome this drawback (a trade off the spatial resolution with angular

resolution), the focused plenoptic camera is proposed in [71]. As shown in Figure 7.6, focused

plenoptic camera captures both angular and spatial information in each microlens image by putting

the focal plane of microlenses far from the image sensor plane.

7.2.2 Preprocessing and representation

Selection of the representation model is based on the acquisition device, encoding formats and/or

possible rendering method. To arrange the captured LF images in a standard 4D format (two plane

representation) some preprocessing operations may be needed. For multi-camera acquisition system,

the rectification operation may be needed for coordinating matching and timing synchronization.
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Figure 7.6: Standard and focused plenoptic camera. In focused plenoptic camera, position of mi-
crolens array satisfy the lens equation 1/a + 1/b = 1/f . Where, a, b, and f are the distance from
micro lens to main lens, distance from microlens to sensor, and focal length of microlens respectively.

The Granty recorded LF image, taken from the dataset [252], is shown in Figure 7.7.

Figure 7.7: LF image (grid 8 × 8) captured by using the Granty.

Figure 7.8: Examples of a white image showing estimated lenslet centers as red dots.

In this dissertation, the LF images taken by a hand held LF camera, called Lytro Illum, are also

used for the study. For Lytro Illum recorded LF image, the decoding of the microlens recorded raw

sensor data is needed. The decoding process creates 4D LFs by using the appropriate camera lenslet

arrangement (Figure 7.8).



CHAPTER 7. LIGHT FIELD IMAGING 101

(a) Lytro Illum image (b) Focused plenoptic image

Figure 7.9: Lenslet LF images: (a) Lytro Illum camera recorded image and (b) focused plenoptic
camera recorded image.
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Figure 7.10: Data structure of LF Toolbox decoded Lytro Illum image.

To decode the Lytro Illum recorded raw sensor data LF Toolbox v0.4 [54] is used. During the

decoding, followed by demosaicing and devignetting applied to the lenslet image (Figure 7.9 (a)),

and color (gamma) correction, the lenslet image is converted into a 4D LF data structure (as shown

in Figure 7.10 (a)). The LF data structure is a stack of 2D low-resolution RGB channel images

in addition to a weighting image. The weighting image carries the confidence associated with each

pixel, which can be useful in filtering applications that accept a weighting term [54]. The resulting

dimension of the LF data structure is 15 × 15 × 434 × 625 × 4, where 15 × 15 represents the

number of views, 434 × 625 represents the resolution of each view and 4 corresponds to the RGB

and weighting image components. For the processing, the weighting component is discarded, i.e.

only RGB color channels are considered. In Figure 7.10 (b), views around the corers are black, this

is due to the hexagonal geometry of the microlens.
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7.2.3 Encoding

The LF image can be considered as a grid of elemental images, in which the content of each elemen-

tary image is similar to its neighbors. Due to the big size of LF camera recorded information (data

and metadata), the compression of LF content is needed for storage and transmission.

In literature, some ongoing efforts have been given to encode the LF image. The encoding

methods can be divided in two categories: lenslet image encoding and sub-aperture image encoding,

based on the input (LF image representation) given to the encoder.

• Lenslet image encoding : In this technique, the lenslet image (shown in Figure 7.9) is directly

given to the encoder as an input for encoding. In the state-of-the-art, most of the proposed

LF image encoding methods are based on this technique: using HEVC the intra profile to

encode the lenslet image. In [48] performance of the HEVC-intra is improved by using the

self-similarity compensated prediction and estimation technique. Self-similarity compensated

prediction is integrated in the HEVC intra profile to improve the performance of the encoding

technique in [161]. In [139] intra prediction is improved by allowing the predictor to use only

blocks from its reconstructed neighbors and using the advanced motion vector prediction.

• Sub-aperture image encoding : In this method, sub-aperture images (multiple views) are given

to the encoder as an input for encoding. In [143], the sub-aperture images are used as the

frames of the pseudo-video: coding order of the views accounts the similarities between adjacent

views, and the coding is performed by using HM and JEM encoder [5, 6].

7.2.4 Rendering and display

As indicated before, many applications can benefit from LF imaging technology such as photography,

astronomy, robotics, medical imaging, and microscopy. The most appealing applications of light

imaging are: interactive rendering (where the focus, exposure, and depth of field can be adjusted

after the picture is acquired), parallax, 3D visualization, multi-view applications, etc. Moreover,

many ongoing efforts have been given to devise the applications of LF content. In particular, this

technology is developed as a solution for Virtual Reality (VR) [95].

The selection of a LF rendering method is based on the targeted application of the LF image

and, ultimately, on the display device. LF image can be rendered for 3D display by using 3D ren-

dering methods: many ongoing efforts have been given for developing 3D rendering methods [116].

For example, a set of rendering techniques for 360 degree LF display is presented in [118] with the

following features: autostereoscopic display (requires no special viewing glasses), omnidirectional

(generates simultaneous views accommodating large numbers of viewers), and interactive (can up-

date content at 200Hz). Currently, Holografika also announces full angle 3D LF display with perfect

3D experience with the feeling of reality [91].
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The scope of the dissertation is not for advanced display devices. Whereas, our focus is for

normal 2D display devices. Therefore, in this section, very basic rendering techniques are presented.

Digital Refocusing

LF imaging allows changing the focus of output photographs after the picture is taken for extracting

a striking amount of detail that would have been irretrievably lost in a conventional photograph.

In literature many refocusing algorithms are proposed for LF imaging. The basic digital refocusing

algorithm is implemented by shifting and adding the sub-aperture images of the LF [168]. In brief,

for every sub-aperture image I(x, y) :

• computes the (u, v) corresponding to that image;

• shifts the sub-aperture image by δ(x, y) = C ∗ (u, v);

• average the shifted image into an output image;

where, larger C means refocusing further from the physical focus and the sign of C affects whether

focusing closer or further. Moreover, for non-integral δ(x, y), the bilinear interpolation is used to

blend into 4 nearest pixels of the output image. Moreover, the (x, y) coordinates are the microlens

location in the image field of view (lenslet image) and (u, v) coordinate is the pixel location in the

microlens image.

Digitally extended depth of field

The depth of field refers to the range of distance that appears acceptably sharp i.e. over a range

every object in the scene is in-focus. An extended depth of field indicates that the extension of

the depth of field without sacrificing resolution or brightness. The similar effect can be achieved by

using the conventional camera, if we reduce the size of the lens aperture. A crucial advantage of the

digitally extended depth of field photograph is: it uses the light coming from the larger lens aperture.

From another viewpoint, it captures light more efficiently and allows the less grainy images with

higher SNR [168].

Digitally stopping-down

A simplest way to compute the image with large depth of field is, by extracting a sub-aperture image

from the LF. However, the problem with digital stopping down (as in its physical counterpart) is

the waste of majority lights that passes through the full aperture: the result is grainier image with

low SNR. An example of the digitally stopping down is all-in-focused view, which is resulted by

summing only the central portion of each microlens.
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Pseudo-video

The sub-aperture images are used as video frames, and it can be displayed as a pseudo video, with

different viewing trajectory: horizontal, vertical, circular, etc. For an example, all possible views of

the LF image content can be displayed by using circular animation at a frame rate of 60 fps with

the help of LFDispVidCirc function of the LF Toolbox [50]. In this way, the user can visualize the

spatial distribution as well as the angular information of the scene.

Rendering for focused plenoptic image

For generating a 2D view from focusing LF camera recorded content, basic rendering algorithm and

weighted blending algorithm are presented by Georgiev and Aumsdaine [71].

• Basic rendering algorithm: For focused LF image (shown in Figure 7.9 (b)), each micro image

can be considered as a low resolution view of the scene. The basic rendering technique selects

the suitable portions of the micro image to stitch and then compose a 2D view image, shown

in Figure 7.11. As shown, the input for the algorithm is LF image, an array (Nx × Ny)

of micro images with the resolution of MIx × MIy, and portion of a micro image (in the

following referred as a patch) of the size Ps× Ps pixels are extracted from each micro image,

and stitching them (patches) together: the result is a 2D view image with the resolution of

Nx × Ps and Ny × Ps pixels. By varying the size and position of the patch in micro image

different 2D images can be generated. The plane of the focus in the generated 2-D view image

can be controlled by choosing a suitable patch size. As a result of varying the relative position

of the patch in the micro image, the 2D views with different horizontal and vertical viewing

angles are produced.

• Rendering with weighted blending algorithm: The basic rendering method may introduce some

blocky artifacts due to a non perfect match between the patches with fixed size. To overcome

this problem, rendering with weighted blending algorithm is proposed. The main idea of this

algorithm is to smooth these artifacts with a weighted blending method: averaging together

all these overlapping regions across different micro images by weighting the pixels differently

in the summation process. As a result of this algorithm, objects in the scene which are outside

the plane of focus has a more natural blurred look [46].

7.3 Light Field image quality issues

LF imaging demands high computational power and presents image resolution and quality issues.

The LF image is also subject to several distortions during acquisition, processing, decoding, compres-

sion, storage, transmission and reproduction phases, and each of these stage results in a degradation
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Figure 7.11: Basic rendering method.

of the visual quality. In addition to conventional 2D/3D processing steps, the LF imaging follows

the computationally complex additional steps; these steps also introduce the artifacts/distortions,

and ultimately, degrade the quality of LF image. In particular, in preprocessing (raw data decoding

and representation) step lots of information (such as color) get lost and/or distorted. Due to the

big size of LF camera recorded information, aggressive compression of LF content is needed. Next,

in most of the applications, the end user of the LF data is human, and LF content is shown to

the final user after post-processing, such as rendering. The rendering methods also introduce arti-

facts [70]. Meanwhile, the knowledge of degraded quality or quality level is important in the design

and optimization of the LF imaging system.

7.3.1 Generic light field image quality distortion model

A generic quality distortion model could be:

AAx +Rx + CAx + TA+RAx +DDx, (7.1)

where,

• AAx is the acquisition artifacts, produced during the acquisition process. Moreover, this is

also depending on the demosaicing, devigneting, and color/gama correction techniques applied

to the raw sensor data;

• Rx is the artifact introduced during the representation phase. In LF imaging, the artifact is

introduced during the conversion of camera sensor data to the 4D LF. Moreover, the selection

of the representation is also depending on the probable encoding techniques;
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• CAx is resulted from the encoding and decoding procedure. The coding artifacts are depending

on the content to be encoded and adopted encoding methods;

• TA is the artifact introduced by the transmission channels: wired or wireless. The transmission

impairments result a significant degradation in the LF image quality;

• RAx is the distortion resulted by the rendering methods. The selection of rendering method

is depending on the probable visualization technique and device, and the produced artifacts

are also depend on the rendering methods;

• DDx is the artifact introduced by the display devices. Different display device has different

parameters such as contrast and color, and the QoE is also influenced by the target display

device and its parameters.

7.3.2 Quality assessment issues

Usually, the performance of an IQM is evaluated by comparing the estimated score with the cor-

responding subjective score (MOS) of test images. The basic steps of LF image processing are

presented in Figure 7.12, and it shows that the quality of LF image can be evaluated at two points:

P1’-after post-processing or/and P2’-before post-processing. Due to the complex nature of LF con-

tent and visualization possibilities, there are many issues related to perceptual quality evaluation of

LF image.

• Subjective quality evaluation: In general, before the LF content shown to the user, post-

processing operation ( such as rendering) is performed based on target display device and/or

visualization technique. The quality of the LF content could be evaluated after post-processing,

and thus the HVS characteristics are more relevant at the point P1’ than P2’.

• Objective quality evaluation: On the other hand, the result of post-processing operation (such

as refocused view) may not cover all the information available in the LF content. In particular,

a refocused view can be considered as a single view among the many views available in LF

image, and the refocused view may not cover all information about LF content. For the

quality evaluation, it is important to consider the complete information, if possible. Thus, for

objective quality assessment, quality evaluation at the point P2’ is more relevant than P1’.

Accordingly, in literature [48, 237, 139] to compare the performance of compression methods,

PSNR is computed at points P2’.

Furthermore, the issues related to subjective and objective quality assessment of LF image:

1. Can we compare the objective quality score computed at P2’ with the subjective score esti-

mated at the point P1’?
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Figure 7.12: LF image processing chain: quality evaluation prospective.

2. What is the better way for visualizing?

3. What would be the subjective quality assessment method?

In this dissertation, our assumption is the accumulated distortion in LF content will be evaluated

by objective metrics at point P2’, and the distortion of the LF content will be replicated in rendered

view, and it is ultimately evaluated by subjects at point P1’.

For subjective quality evaluation, the selection of a visualization technique is necessary. As

mentioned before, there are different ways for the visualization and each of them have own pros and

cons. For example:

• refocused view/s– many refocused views are possible by focusing on a different plane/depths,

and for time consuming and expensive subjective quality evaluation considering all the possible

views is not practical; quality of refocused view is also depending on the refocusing/rendering

methods, and artifacts depends on the selected rendering methods; and in general, in the

refocused views in-focus region is clear and out-of-focus region is blurry, and considering a

single refocused view may not be sufficient to evaluate the quality of entire LF image;

• all-in-focused view– validated 2D image quality protocols can be adopted. However, all-in-

focused view can be considered as only one view of the LF image; quality measured on a single

view may not replicate the quality of complete LF image; and this technique may not be a

good option to evaluate the distortion on depth information;
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• pseudo-video– there will not be a clear temporal/motion information in views as in natural

video, and there is no validated subjective quality assessment protocol for this type of visual-

ization.

To the based on these issues, different visualization techniques and subjective assessment methods

are used to study the LF image QoE in the next chapters.



Chapter 8

Light field image watermarking

Securing multimedia data from undesired manipulation is a widely investigated topic in literature.

A large numbers of techniques have been developed for protecting images, videos, and also audio

from malicious attacks. Nowadays, new imaging systems, LF imaging, pose new challenges from the

data protection point of view. Thus, in this chapter, a novel embedding scheme tuned to LF image

is presented. The major contributions of this chapter are:

• a watermarking system that does not affect the depth map estimation procedure and therefore

the refocusing procedure and the 3D scene reconstruction are presented;

• the impact of LF data modification with respect to the perceived quality has been investigated;

• experimental tests, both objective and subjective, have been carried out on the LF images

(captured by using the Granty device) for assessing the performances of the proposed algo-

rithm;

• finally, robustness of proposed watermarking scheme are also evaluated to the focused LF

images for different compression methods.

8.1 Introduction

The increasing interest towards LF media calls for methods for protecting these data from manipu-

lations and unauthorized reproduction or diffusion. To this aim watermarking techniques have been

designed for copyright protection: before data (cover data) distribution an invisible signature (the

watermark) is hidden in the host source by using a secret key. This key is used later for verifying

the presence of the signature during the detection phase.

The design of an effective watermarking scheme consists in finding a trade-off between three

factors:

109
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1. quality : the watermarked data should be as close as possible to the original one;

2. robustness: it should be possible to detect or extract the watermark even if wanted or un-

wanted modifications, noise, compression, errors, or attacks, affect the watermarked data;

3. capacity : the amount of bit embedded in the data that is depending on the particular appli-

cation.

As widely demonstrated from the many efforts performed in designing image or video water-

marking schemes, such constraints are competing. The use of LF image as cover data poses multiple

choices starting from the selection of the valuable data to be protected. In fact, the cover data to

be watermarked can be

• the rendered image (focusing, rendering model,...)

• the depth information;

• the raw data (the acquired LF).

When dealing with the LF watermarking, the number of views results in a variety of possibilities for

embedding: exploiting all existing views or only a subset of them, exploiting the intrinsic redundancy

give by the acquisition setup, using a distributed system, etc.

Evaluating the quality issue, that is the imperceptibility of the watermark or its impact on the

cover data, is a challenging task. According to the particular scenario, the perceived quality of the

rendered 3D scene of the 2D single views, the BER between original and watermarked data, or the

impact in the reconstructed depth has to be considered. Even the Robustness evaluation depends

on applications: the watermarked could be desirable to be detected in the rendered scene, in the

generic view or in the extracted depth. Each one of these possibilities pose different challenges in

designing a robust scheme and in designing reliable robustness evaluation schemes.

As can be noticed from these comments, coupling watermarking techniques to LF data it is not

an easy task. Also for this reason, in literature very few works are dealing with the watermarking

of LFs: most of them are considering free view point data or investigating a watermarking system

trying to adapt a scheme designed for 2D images to this scenario.

In [127] and more recently in [128] a free-view TV scenario is considered. In these systems, the

viewers select freely the viewing position and angle. The watermark is embedded into every frame

of multiple views by exploiting the spatial masking properties of the HVS. An interesting analysis

is performed on the distortions caused by different interpolation algorithms. In [16] a watermarking

scheme in the spatial domain is proposed. The invisibility of the watermark is achieved by modu-

lating the strength of the embedding according to the presence of high frequencies. The robustness

of the system is considered, and a watermarking selection is made by verifying the possibility of

detecting them in the rendered scene. In [224], a spread spectrum multibit watermarking scheme
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for free-view video is presented. The watermark is embedded into every frame of multiple views,

while the watermark detection is carried out exploiting the DCT of virtual frame generated for an

arbitrary view.

There is, however the need for understanding the impact of LF modification due to embedding

both with respect to the perceived quality of rendered scene as well as to the quality of the recon-

structed depth, the need of designing reliable robustness evaluation tools, the realization of the data

set of original data with related ground truth, and, finally, a better classification of the requirements

of each scenario vs. a watermarking system. This works wants to contribute towards the definition

of the general requirements of the watermarking scheme and to investigate the impact of embedding

data in the LF in the perceived quality of the rendered scene. In more details, in this work the

designed watermarking scheme is tailored to embedding the watermarking in the raw data and to

verify its visibility from the views generated by using the LF rendering.

8.2 Proposed watermarking scheme

In the proposed watermarking scheme, all views have been used for embedding the watermark, thus

increasing the embedding capacity as well as the potential impact on the watermark visibility.

Let us consider all views placed on a rectangular lattice of size N ×M , and let us denote each

view as V (i, j) where i = 1, ..., N and j = 1, ...,M . Each view is a matrix of size h× k pixels. The

size of the watermark is w bit. The embedding algorithm, shown in Figure 8.1, can be summarized

in the following steps:

• All the views are merged in order to obtain a matrix I. This is performed by rearranging in

lexicographical order the generic view V (i, j) to obtain a matrix of size h× (N×M×k) pixels;

• The first level of the Haar wavelet transform of I is computed;

• The subbands containing the horizontal (HL) and vertical (LH) details are selected for hosting

the watermark W ;

• The watermark W is embedded, in each color component, by inserting its odd rows in the HL

subband and its even rows in the LH subband by using the additive scheme:

HLW = HL+ alpha ∗Wodd; (8.1)

LHW = LH + alpha ∗Weven; (8.2)

where alpha is the watermark strength.

• The watermarked LF array is reconstructed by performing the inverse first level Haar Trans-

form and rearranging the single views in the original rectangular shape.
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Figure 8.1: Block diagram of the proposed watermarking scheme.

Since this is a non-blind watermarking scheme, the watermark can be extracted by performing

the reverse process with respect to the one used for the embedding.

8.3 Experimental validation on gantry light field images

In order to verify the effectiveness of the proposed method, since at the best of our knowledge it

does not exist a method for assessing the quality of LFs, we performed both a subjective and an

objective evaluation as detailed in the following subsections. All tests have been carried out on the

LF database that is made available by [252]. Each LF is composed of 81 images placed on a grid of

size 9× 9.
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Figure 8.2: Central views of the ”Blender” images in the database [252]: (a) Buddha, (b) Buddha2,
(c) Horses, (d) Medieval, (e) Mona, (f) Papillon, (g) Stilllife.

This database contains thirteen high quality densely sampled LFs. Among these, 7 are computer

graphic generated with the program Blender and for for all the considered views, the corresponding

ground truth maps are available, the remaining 6 datasets are real scenes that have been recorded

by using a camera placed on a gantry. For the last category of images the ground truth is available

only for the central view. In the performed experiments we considered only the computer generated

datasets and the details about the database are reported in Table 8.1 while their central views are

shown in Figure 8.2. The selected watermark is a gray level image of size 118× 195.

Dataset name Resolution (pxl)

Buddha 768 * 768

Buddha2 768 * 768

Horses 576 * 1024

Medieval 720 * 1024

Mona 768 * 768

Papillon 768 * 768

Stilllife 768 * 768

Table 8.1: Dataset parameters.
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(a) (b) PSNR= 40.42
dB

(c) PSNR= 31.71
dB

(d) PSNR= 27.93
dB

(e) PSNR= 25.59
dB

(f) PSNR= 23.75
dB

Figure 8.3: Central view of the dataset Papillon (a) and it watermarked versions with (b) alpha =
0.1, (c) alpha = 0.3, (d) alpha = 0.5, (e) alpha = 0.7, (f) alpha = 1.

8.3.1 Subjective tests

In order to verify the visual impact of the insertion of the watermark we performed a session of

subjective tests. A total number of 20 subjects (5 females and 15 males) participated to the test.

The age of the participants is between 22 and 52. The LF images were rendered through a 4D LF

circular animation at a frame rate of 60 fps [50]. Each dataset was watermarked with 5 different

values of alpha: 0.1, 0.3, 0.5, 0.7, and 1. The values of alpha have been empirically selected based

on their impact on the watermark visibility. The central view of the image Papillon watermarked

with the five values of alpha is shown in Figure 8.3.

The subjective tests have been carried out according to [109]; using a ACR method. After

a training phase in which the subjects were made confident with the content and the evaluation

scheme, the content was randomly displayed and each subject has been asked to rate the quality of

the rendered LFs on a scale from 1 to 5 with 1 corresponding to worst quality and 5 to best quality.

After the collection of the opinion scores, an outlier detection procedure is applied to detect

the subjects whose score strongly deviates from the mean behavior, and that show a significant bias

compared to the average behavior. In this study, the scores given by only one subject were discarded

and the scores given by 19 subjects were retained. After the performance of the outlier detection

procedure, the perceived video quality was measured in terms of MOS [108].

The results are shown in Figure 8.4 from which, as expected, it is possible to notice, for all

considered LFs, a decrease in the MOS score with the increase of the value of alpha. Moreover,

for values of alpha larger than 0.3 the watermark becomes more visible and consequently the MOS

score drops.
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Figure 8.4: MOS for the 7 LFs under test for the different values of chosen alpha.

Moreover, the collected results have been analyzed with the ANOVA test. First, an inter LF

image analysis has been performed to understand the impact of the different content on perceptual

visual quality when watermarked with the same level of alpha. The obtained result (Pvalue=0.9924)

suggests that the perceived quality does not significantly change with the image scene. Then, we

performed an intra LF image analysis to understand the impact of the variation of alpha on the

perceived quality. The result (Pvalue=0) shows, as already seen by the MOS analysis, that the

perceived quality is significantly affected by the increase of the strength of the watermark.
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Figure 8.5: Analysis of depth map degradation when the watermark is inserted.

8.3.2 Objective evaluation

As mentioned in the introduction, one crucial aspect in the LF imaging is the refocusing step. In

order to perform a correct refocus, it is important that the depth map is not affected by errors that

lead to a wrong refocus since this will result in non natural images. To this aim, after performing

the watermark insertion, we estimated the depth map corresponding to the central view and we

computed the MSE among this map and the corresponding ground truth. Similarly, we estimated

the depth map corresponding to the central view when no watermark is added and also in this case

we computed the MSE with the ground truth. The depth map estimation was performed by using

the algorithm proposed in [167] in which a Maximum Likelihood estimation is used. The achieved

results are reported in Figure 8.5. In this figure we report, for each value of alpha considered, the

mean of the absolute difference among the MSE computed between the estimated depth map when

no watermark is added and when it in embedded. It can be noticed that the variation in MSE is

very small, in fact the value of the difference is lower than 0.018. This means that the watermark

insertion does not affect the quality of the depth map and thus it does not create alterations in the

refocusing procedure.

The performed tests show that for alpha values larger than 0.3 the watermark starts being

visible, thus reducing the subjective perceived quality. Anyways, the watermark insertion, even

for high levels of alpha , does not create artifacts that affect the depth map, thus preserving the

refocusing capability.
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(a) DemichelisCutFrame1 (b) planeToyFrame23 (c) planeToyFrame123 (d) Laura

Figure 8.6: Focused LF images.

8.4 Robustness check for focused light field images

8.4.1 Focused light field images

For the study, a set of four LF images (shown in Figure 8.6) were considered; the basic features of

the images are summarized in Table 8.2.

S. No. Image Name Image Size (Pixel) EI size Total EI
1 DemichelisCutFrame1 2850 × 1558 38 × 38 3075
2 planeToyFrame23 1904 × 1064 28 × 28 2584
3 planeToyFrame123 1904 × 106 28 × 28 2584
4 Laura 7104 × 5328 74 × 74 6912

Table 8.2: Focused light field images basic features: name, image size, Elementary Images (EI) size,
and total number of elementary images, of the LF images.

8.4.2 Considered compression methods

The robustness of the proposed watermarking scheme was evaluated for the compression methods:

JPEG, JPEG2000, HEVC intra, and LF image compression method HEVC SS [47].

8.4.3 Adopted performance evaluation technique

To evaluate the performance of the proposed watermarking scheme, the watermark strength (α) is

set to 0.3. Because, consideration of all the possible values of the strength is not possible: time

needed for the experiment (particularly for HEVC SS encoding) was very long. The selection of α

value depends on the results presented in Section 8.3.1: the result shows that, the α is equal to 0.3

can be considered as a JND threshold value from the point of human visual perceptual quality.

The grid of Elementary Images (EI) array is treated as a single image and the red color channel

of the image is used as a cover data. The watermark image of the size of 32×32×3 bits is embedded

in the cover data ( as described in the Figure 8.7). All EIs are used for embedding the watermark,

thus increasing the embedding capacity as well as the potential impact on the watermark visibility.

To evaluate the robustness of the proposed watermarking scheme, the following steps are con-

sidered: i) firstly, the watermark is embedded in the plenoptic images, ii) the embedded image is
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Figure 8.7: An example: watermarking on LF image.

compressed for different values of compression ratio by using the compression methods, and iii) the

watermark is extracted from the compressed images and the correlation between the extracted and

the original watermark is computed.

8.4.4 Results and discussions

In the following subsections, impact of watermarking on the quality of the LF image, the performance

of the considered compression techniques, and the result of the robustness evaluation are presented.

Impact of the watermark on LF image quality

One important factor to consider in the design of a watermarking scheme, is the quality of the

watermarked data while considering the amount of embedded data (capacity) and the robustness. It

means the watermarked image should be as close as possible to the original one. However, measuring

the quality of the LF images is still an open issue. As usual for classical image watermarking, it

is expected that high watermark strength (α) results in poor image quality. Also in the performed

experiment this trend has been confirmed. Figure 8.8 shows that the quality of the LF images,

measured in terms of PSNR , decreases for high values of watermark strength. The PSNR is

computed between the original and the watermarked rendered image. In more details, the LF

image is rendered by using a basic rendering and weighted blending rending method (as discussed

in Section 7.2.4) with the patch size of four and the patch was at the center of the EI. Moreover, the



CHAPTER 8. LIGHT FIELD IMAGE WATERMARKING 119

α

0.1 0.3 0.5 0.7 1

P
S

N
R

40

45

50

55

60

65
Basic Rendering
Weighted Blending Rendering 

Figure 8.8: PSNR of the rendered view of the image planeToyFrame23 for different level of wa-
termark strengths (α). Moreover, the perceptual quality (measured in terms PNSR) of weighted
blending rendering method is always higher than for basic rendering to all the values of α.

Figure 8.8 shows that the quality of the rendered image by weighted blending rendering is always

higher than the basic rendering method for all the set of α values.

Performance comparison of the encoding methods

During the robustness check, the watermarked LF images were compressed by using different com-

pression methods. The achieved results, plotted in Figure 8.9, show that the recently proposed

compression techniques HEVC SS results in higher values of PSNR for all the considered compres-

sion ratios. This result indicates that the HEVC SS has a better compression capability for the

given quality over JPEG, JPEG2000, and HEVC intra.

Robustness check for encoding

As mentioned before, to evaluate the robustness of the proposed watermarking scheme against

the compression methods, the watermark strength (α) is set to 0.3. Figure 8.10 shows that the

relationship between, the correlation coefficient between the extracted watermark and the original

watermark at different compression levels for all the considered compression techniques. Figure 8.10

(b), (c) and (d) demonstrate that, for the images planeToyFrame23, planeToyFrame123, and laura

the correlation decreases sharply for the small increment on the compression factor for all the

considered compression techniques. Figure 8.10 (a) shows that the correlation coefficient decreases

rapidly for high compression rates. JPEG2000 shows the slightly higher correlation for high values of
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Figure 8.9: Performance of the considered compression techniques for different images. The quality
of the decoded image is measured in terms of PSNR and the compression level is expressed in terms
of Compression Ratio (CR).

compression factor than other compression techniques. Moreover, for all the images the correlation

is slightly higher for JPEG2000 compared to others compression methods.

From these results, we can summarize that the proposed watermarking scheme is not robust

against the high values of compression rate for all the considered compression methods when applied

to LF images. The results indicate that the proposed watermarking scheme is more robust against

JPEG2000 compared to other considered compression techniques. However, as presented in the

above (Figure 8.9) the HEVC SS has the higher PSNR compared to other compression methods

for a given compression ratio. This is because the proposed watermarking schemes depend on the

DWT, as JPEG2000 compression method.

Figure 8.11 shows that the relationship between, the correlation coefficient (computed between

the extracted and original watermark) and quality (expressed in terms of PSNR) of the corresponding

compressed image from which the watermark is extracted. From the Figure 8.11, it can be noticed
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Figure 8.10: Watermark robustness against compression ratio.

that the PSNR is always high for HEVC intra and HEVC SS compared to JPEG and JPEG2000,

and the result is expected. Moreover, it shows that the correlation always increases for high values

of PSNR for all the considered images and compression methods. It has also been noticed that the

correlation is high for JPEG and JPEG 200 compared to HEVC intra and HEVC SS for a given value

of the PSNR. This result indicates that the proposed watermarking scheme is not robust against the

newer compression techniques.

8.5 Conclusions

In this chapter a watermarking system for LF image is presented. The designed method exploits

the redundancy of the data to be watermarked for increasing the strength of the watermark. In

particular, the goal of this work, was to study the perceived impact of modification in the LF array,

and its impact on the 3D scene reconstruction. The subjective results define a visibility threshold (α

= 0.3) for the embedded data, while the objective test demonstrates that the reconstructed depth
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Figure 8.11: The relationship between the LF image quality (PSNR) and watermark robustness
(measured as Corr.–correlation coefficient).

map is almost not affected by the watermarking system thus allowing a perfect rendering of the

scene.

Next, the robustness of proposed watermarking method is evaluated on the focused LF images for

different compression techniques. The achieved results show that the watermarking scheme is robust

only for very low level of compression ratios for JPEG, JPEG2000, HEVC intra and HEVC SS. The

correlation between the original and extracted watermark increases for the compressed embedded

images with high values of PNSR. Moreover, the performance of the watermarking scheme is more

robust against JPEG2000 compared to other three methods. However, the HEVC SS has higher

PSNR compared to other compression methods for a given compression ratio. This result is due to

the fact that watermarking scheme is also exploiting DWT features as for JPEG2000.



Chapter 9

Quality evaluation of light field

images

The major contributions of this chapter are as follows:

• a Reduced Reference (RR) LF IQA framework is presented. In brief, original and distorted

depth maps are estimated from original and distorted LF images. To evaluate the proposed

framework, three depth map estimation methods were used. Distortion of the depth map is

used for estimating the QoE of LF image;

• a LF image dataset is provided. It is composed of test images and annotated subjective quality

ratings. To the best of our knowledge, in literature, no data set provides the information about

test LF images and subjective quality ratings. A subjective experiment has been performed

to collect the opinion scores for test LF images;

• an analysis of the performances of standard image compression methods when applied to LF

images has been presented;

• an analysis of the performances of widely used 2D IQMs, when applied to LF images, has been

performed by using the dataset.

9.1 Introduction

As mentioned before, in Section 7.3.1, the LF image also suffers form many distortions and thus,

the QoE assessment of LF image is crucial. Based on availability of reference information, quality

metrics can be classified in three different categories: FR, RR, and NR. The availability of FR

information allows better prediction of quality; several well established metrics such as PSNR and

123
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SSIM, are commonly used. On the other hand, FR metrics are rarely applicable in real-world image

communication environments, and its applicability is further limited in LF image, due to the size of

the reference LF image (data and metadata). Therefore, in this dissertation a RR quality assessment

framework is proposed for LF image.

9.2 Related works

To the best of our knowledge, no work is published in this particular direction, i.e. there is no

objective IQM designed for LF image. However, similar works are already performed in 2D and 3D

image, and few of them are briefly reported in the following. The basic ideas used in these works

can be used as a background information for designing a new quality metric for LF image.

9.2.1 Image quality metrics

In evaluating image processing algorithms, many FR metrics such as SSIM [250], PSNR, and PSNR-

HVS [57], are widely used. Performances of the quality metrics [19, 247, 142] have been evaluated

for a wide range of images from different image quality datasets [185, 211]. The results presented

in [247, 36] show many challenges and issues regarding the applicability and performances of the

metrics even for 2D images. In LF image processing, in particular, for evaluating the performance

of LF image encoding methods, the PSNR metric has been used [48, 237, 139]. The usability of

widely used metrics for LF images is still to be assessed.

9.2.2 Depth map quality and overall visual quality of experience

In literature, no work is performed to understand the relationship between depth map quality and

overall QoE for LF image.

In the last two decades, huge efforts have been given towards the development of 3D technology.

Meanwhile, some works have been carried out to devise quality metrics for 3D images [209, 264].

Since, in 3D visualization, depth information is an important information, few works [21, 90, 125, 260]

have been devoted to understanding the influence of depth map quality in quality perception of 3D

video, and results show that 3D visual quality highly depends on the depth map quality.

In [21] effect of depth map quality on the perceptual quality of synthesized view is studied,

and presented results show that the 3D video quality is depending on the depth map quality. The

significant correlation between the perceived overall image quality and perceived depth is shown

in [90]. The results presented in [125] show that the distortion in depth map results degradation in

the perceptual quality of synthesized view. In [260] impact of disparity in stereoscopic image quality

is presented. The achieved results show that the strong correlation between quality of disparate

images and overall perceived quality of the image. The disparity information is used to improve the
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performance of existing 2D metrics. Similarly, the depth map information has been used to improve

the performance of 3D VQM in [25, 151, 82, 146].

9.2.3 Light field image quality dataset

To train, test, and benchmark the objective IQM an availability of test LF images and corresponding

subjective quality rating, MOS, is crucial. In literature, few efforts have been given to create LF

image datasets. The list and features of recently proposed LF image dataset are presented in [176].

However, publicly available datasets do not include information about test LF images and annotated

subjective quality scores. Therefore, in Section 9.4, a recently created LF image quality dataset is

presented, and it has been used to benchmark the IQMs for LF image.

9.3 Proposed light field image quality assessment framework

The quality of depth map is important in LF imaging, since it is used for a wide range of applications

such as encoding and 2D/3D rendering [71] [116]. In particular, errors in depth values at a given

pixel position, affect the quality of the rendered view where this pixel will be used for rendering.

Even small errors in depth can lead to significant errors in the rendered view, and thus the proposed

approach relies on the exploitation of the depth map quality to estimate overall quality of LF image.

A reduced information about LF image, i.e. depth map, has been used to predict the quality of

distorted LF image. Quality evaluation framework of the proposed metric is shown in Figure 9.1.

The followed steps are:

1. reference depth map is estimated from the reference LF image. In the following, the reference

depth map is referred as DMref . The DMref has been used to estimate the level of distortion

on the depth map;

2. distorted depth map, referred as DMdis, is computed from the distorted LF image;

3. level of distortion in depth map is computed based on DMref and DMdis as:

Dis = f(DMref , DMdis), (9.1)

where Dis is the measure of distortion on the depth map and f(.) is the function to represent

the FR IQMs such as SSIM;

4. finally, a mapping model is used to estimate the perceptual quality of test LF image from the

Dis.
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Figure 9.1: Proposed Reduced Reference (RR) light filed IQM framework.

9.3.1 Depth map estimation

To evaluate the proposed framework, DMref and DMdis have been computed by using three LF

image depth map estimation algorithms: Multi Resolution Depth Map (MRDM) [167], Stereo-Like

Taxonomy Depth Map (SLTDM) [34], and Accurate Depth Map (ADM) [115]. The brief description

of the algorithms is presented in the following:

• MRDM: In this technique, multiple views of a scene are used for estimating the depth map.

First, local estimates of depth is computed based on the optimization of a log-likelihood func-

tion, defined as a difference of sub-aperture images: center view versus the other views. To

enhance the performance of depth estimate in flat regions, additional constraints for smooth-

ness and occlusions are incorporated in the optimization function. Next, a multi-resolution

approach is adopted. Basically, at each resolution level, the depth map is locally estimated

for reducing the complexity compared to global optimization. This approach helps to face the

potential accuracy losses in depth map resulted due to the presence of flat zones and to pre-

serve the edges. To improve the quality of noisy depth maps resulting from local optimization,

de-noising is performed by using 2D weighted median filters.

• SLTDM: In this method, the taxonomy of stereo algorithms is used. It is the method of
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(a) Light filed image

(b) MRDM (c) ADM (d) SLTDM

Figure 9.2: LF image, Buddha2, and estimated depth maps using three different methods: MRDM,
ADM, and SLTDM.

determining the distance to a point seen by a pair of stereos cameras, i.e. finding the disparity

between the images of two reflected cameras. In brief, a cost volume is computed by comparing

each pixel in a sub-aperture image with the pixel of all other sub-aperture images. Next, cost

aggregation is performed, and the disparity is selected for minimum cost per pixel.

• ADM: In this method, stereo matching between the sub-aperture images is presented. In

brief, the phase shift theorem in Fourier domain is exploited to estimate the pixel shifts of

sub-aperture images. A cost volume is computed to evaluate the matching cost of disparity

levels with the help of sub-aperture images and central view sub-aperture images shifted at

different sub-pixel locations. The gradient matching costs are adaptively aggregated. Next, a

weighted median filter is adopted to remove the noise in cost volume, and multi-label optimiza-

tion is performed for reliable disparity at weak texture region. Finally, iterative polynomial

interpolation is performed to enhance the estimated depth map.

The considered LF image format and the estimated depth maps are shown in Figure 9.2. It

shows that the quality of estimated depth maps varies from high to low for the considered depth

map estimation methods. In the context of performance evaluation of the proposed quality assess-

ment framework, consideration of the best to worst performing depth map estimation methods is

important.

The influence of compression and noise artifacts in the estimated depth map is shown in Fig-

ure 9.3. It shows that the artifacts in LF image degrade the quality of the estimated depth map.
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(a) JP, bpp= 0.99 (b) JP2, bpp= 1.43 (c) S and P, ND=0.5

(d) S and P, ND=0.5 (e) GN, var=0.001 (f) GN, var=0.0001

Figure 9.3: Depth map (estimated by MRDM) of distorted LF images. Distortion on the image is
a result of JPGG (JP) and JPEG 2000 (JP2) compression and Gaussian Nosise (GN) and Salt &
Pepper Noise (S and P). Where, var is variance and ND is noise density.

The result indicates that the distortion in the light filed image is replicated in the estimated depth

maps.

9.3.2 Measure of distortion in depth map

Measure of distortion (Dis) on the distorted depth map DMdis is estimated by using the reference

depth map DMref . Our goal is to compare the two depth maps, DMref and DMdis, and estimate the

degree of similarity between them. In the following, DMref is assumed pristine original and DMdis

is the distorted/contaminated by noises. To analyze the impact of LF image distortion on depth

map, the depth maps of distorted LF images have been computed. As a measure of distortion, SSIM

is estimated for the distorted depth maps with the help of a reference depth map. Assuming, the

structural information is more important than color information in depth map, SSIM has been used,

as suggested in [249, 250]. In brief, SSIM assumes that the natural images are highly structured,

and that the HVS is more sensitive to structural distortion. In particular, it defines the function

for the luminance (l) comparison of the signals, the contrast (c) comparison of the signals, and the

structure (s) comparison of the signals, respectively, as follows:
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l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
, (9.2)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
, (9.3)

s(x, y) =
σxy + c3

σxσy + c3
, (9.4)

where, µx and µy are the local sample mean, σ2
x and σ2

y are local variance, σxy is a local sample

correlation coefficient (covariance) of x and y, and these local sample statistics are computed within

overlapping windows. Moreover, c1 = (k1L)2 and c2 = (k2L)2 are two variables to stabilize the

division with weak denominator (when denominator(s) becomes small), and L is the dynamic range

of the pixel values (2# number of bits per pixel − 1), and k1=0.01, and k2=0.03. Moreover, the c3

is equal to c2/2.

Then, SSIM index is a weighted combination of those comparative measures l(x, y), c(x, y), and

s(x, y)), and expressed as:

SSIM(x, y) = [l(x, y)α.c(x, y)β .s(x, y)γ ], (9.5)

where, weights α, β, and γ are used to indicate the relative importance of the three components.

If we consider all the three components are equally important (α = β = γ = 1), the Equation 9.5

becomes:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (9.6)

Results, presented in Figure 9.4, show that the distortion of LF image is clearly replicated in the

estimated depth maps, and that the measure of distortion on depth map (computed as a SSIM) is

related to perceptual quality of the depth maps.

(a) Reference (b) GN (0.873) (c) JP2 (0.805) (d) JPEG (0.964) (e) S&P (0.951)

Figure 9.4: Depth map (estimated by MRDM) of the test light filed images and measure of distortion
on depth map as SSIM. Test LF images have been created by considering JPEG and JPEG 2000
(JP2) compression and Gaussian and Salt & Pepper noise)
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9.3.3 LF image quality estimation

In literature, many studies have been performed to understand the human perception and the stim-

ulus. As mentioned before, the fundamental principle relating the human perception to the relative

change of stimuli is well defined by Gustav Fechner, as Weber-Fechner Law [197]: ”the differential

perception is directly proportional to the relative change of the physical stimulus”. Therefore, a map-

ping model is needed to estimate the perceptual quality score, Q′, from a measure of distortion on

depth map, Dis. In this study, as a mapping model, four parameter logistic function (Equation 9.7)

has been used [228].

Q′ = β2 +
β1 − β2

1 + e
−
(
Dis−β3
|β4|

) , (9.7)

where, Q′ is the estimated perceptual quality score from the measure of depth map distortion, Dis.

9.4 Subjective light field image quality assessment

In this section, the steps that have been followed for the subjective experiment are reported.

9.4.1 Test light field images

Source sequences (SRCs)

The SRCs have been taken from the dataset presented in [252]. A brief introduction of the SRCs

is already presented in Section 8.3. The variety of scene content provided by the selected SRCs is

confirmed by analysis results presented in Figure 10.3: SRCs are distributed over a wide range of

spatial perceptual information and colorfulness plane.

Distorted LF images

In this work, encoding and noise artifacts are considered as the HRCs. To the best of our knowledge,

there are no standard LF image compression method, and thus the standard image compression

methods, JPEG and JPEG 2000, have been considered. Moreover, as a consequence of image

acquisition and processing such as encoding and decoding, Gaussian and Salt & Pepper noise artifacts

have been considered.

To create a test image sequences, four to five levels of distortion are sufficient [30] [186]. In this

work, the distortion strengths are selected manually. In particular, a large set of distorted LF images

is generated, and a subset of test images spanning a desired image quality range, is chosen by the

author. In other words, the distortion levels are selected based on the noticeable perceptual quality

deference, JND.
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Figure 9.5: Contents variations in reference LF images measured in terms of spatial perceptual
information (SI) and colorfulness (CF).

9.4.2 Experiment setup

Test methodology: According to ACR method [112], based on the perceived quality, the stimuli are

rated from one to five (bad to excellent quality).

Display device: The LF images were displayed on a 2D DELL monitor (model no: DELL U2413f).

Stimuli arrangement: To compensate the effect of a potential bias based on order or position of

stimuli in the averaged results, the stimuli have been shown in pseudo-random order according to

the distortion level. Moreover, test LF images from the same SRC are not displayed at least for

next four conjugative test LF image pairs, in order to remove the memory and contextual effect in

quality judgement. Four experimental sessions have been scheduled to minimize the effect of viewers

fatigue on quality assessment. Moreover, at least 30-minute gap between the first two and the last

two sessions was maintained to retain the attention of the subject [112] towards the stimuli.

Subjects: The reliability of achieving results also depends on the number of subjects that have

been used for the subjective experiment. To this aim, we exploited 19 subjects, for quality evaluation

as suggested in [121] [109]. The subjects were drawn from a pool of undergraduate and graduate

students from Università degli Studi Roma TRE. The students were relatively naive concerning the

impairments and associated terminology.

Training: Before starting the experiment, verbal instructions were given to the subjects. Then a

training phase was scheduled. Each subject was shown the original LF images followed by examples

of the images with the strongest artifacts found in the experiment. For this purpose, a subset of

four LF images has been taken from the pool of the test images. The purpose of the training session

was to get each subject familiar with the assessment procedure and to establish the annoyance value

range according to the distortion levels.
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9.4.3 Subjective experiment results analysis

For the collected opinion scores processing, the procedures presented in Section 4.4 is adopted.

In brief, followed by the outlier detection procedure: detecting and removing scores given by the

subjects whose score is very far from the mean behavior, the MOS and 95% CI are computed. In

this experiment, no outliers were found, and thus, the scores given by all the subjects have been

considered.

Perceived quality of test LF images

The quality scores distribution expressed in terms of MOS for the test LF images is shown in

Figure 9.6. It can be noticed that the perceived quality of test images (MOS) is uniformly distributed

over the range between 1 to 5 (bad to excellent quality). This result indicates that the selected levels

of the distortions are sufficient to cover a wide range of quality levels.

LF images
0 20 40 60 80 100 120 140 160
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Figure 9.6: Scatter Plot of the MOS scores obtained for test LF images.

The average perceived quality of the distorted LF images is shown in Figure 9.7. We can notice

that the perceived quality of the images for HRCs have a noticeable quality difference, JND. The

result is confirmed by ANOVA, the result (F (18, 114) = 62.91 and Pvalue ' 0,) indicates the QoE

for the HRCs is significantly different

9.5 Results and discussion

In this section, by exploiting the results of the subjective experiment, the performance of the pro-

posed LF IQA framework is evaluated; the performance of 2D IQMs, when applied to LF image, is

tested; and finally, perceptual quality of standard image compression methods has been evaluated

for LF image.
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Figure 9.7: MOS scores and 95% CI for the test LF images. In the figure, Q = quality levels for
JPEG compression, CR = compression ratio for JPEG 2000 (JP2) compression, Var.= variance for
Gaussian Noise (GN), and ND = Noise Density for Salt & Pepper (SP) Noise.

9.5.1 Validation of the proposed Reduced Reference light field image

quality assessment framework

At first, the relationship between a measure of distortion on the depth map (Dis) and MOS is

studied. For the study, Dis is estimated for test LF images by using the depth map estimation

methods, SLTDM, ADM, and MRDM, and the result is plotted vs MOS. Dis is the similarity

measure between the distorted depth map and reference depth map estimated through SSIM. The

plots, in Figures 9.8, 9.9, and 9.10 show that there is a strong relationship between Dis and MOS

for all the considered depth map estimation methods.

To analyze the performance of the proposed RR LF IQM, the procedure described in the final

report from the VQEG on the validation of objective models of VQA [228] has been followed. The

estimated perceptual quality is computed by using a four parameter logistic function (Equation 9.7).

To set the optimal parameter of the logistic function, a nonlinear regression has been performed.

Initial parameters for the logistic function have been selected as specified in [228]. The proposed

approach needs a training process to find the parameters, thus the dataset has been divided in

two randomly chosen non-overlapping parts. As general practice [163, 132, 159, 160], training set

includes 80% of data and 20% has been used for testing purpose.

Finally, correlation analysis between estimated subjective score and ground truth subjective

scores (MOS) have been performed by means of PLCC, SRCC, and KTCC. The result, in Table 9.1,

shows that there is a very high correlation between estimated quality scores with MOS for the consid-

ered depth estimation methods. As mentioned before, in Figure 9.2, the quality of estimated depth

maps (computed by using different depth estimation methods) is significantly different. Though,

the result shown in Table 9.1, correlation between the estimated quality and MOS, is very high for

all the methods. This result is due to the exploitation of hidden reference removal technique [112]:
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(b) SLTDM: JPEG 2000
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(c) SLTDM: S&P Noise
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Figure 9.8: Relationship between MOS and depth map distortion measure, Dis. The curves are
result of second order polynomial: MOS = p1 ∗Dis2 + p2 ∗Dis+ p3 and the goodness of the fitting
is expressed in terms of R-Square and Root Mean Square Error (RMSE). The depth maps have been
extracted by using SLTDM and level of distortion in the depth map is estimated as SSIM.

considering the reference information (reference depth map), to compute distortion on depth map

(Dis), and ultimately for estimating the perceived quality of LF image. We can also notice that the

performance of metric is varied for depth estimation methods. Among considered depth estimation

methods a recently proposed algorithm ADM has a high value of correlation coefficients.

To confirm these results, PCA has been performed. The result of PCA (bipolar plot), Figure 9.11,

shows ADM has a small angle with respect to subjective score. Thus, we can conclude that among

the considered depth map estimation algorithms, ADM has a better correlation compared to other

considered algorithms. This could be due to the fact that ADM method is effective in terms of

utilizing the sub-pixel shift in the frequency domain. The employed aggregation of the gradient

costs and confident matching technique helps to enhance the depth map accuracy. Also, in the point

of accurate depth estimation capability, the ADM outperforms other advanced methods [115].
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(b) ADM: JPEG 2000
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Figure 9.9: Relationship between MOS and depth map distortion measure, Dis. The curves are
result of second order polynomial: MOS = p1 ∗Dis2 + p2 ∗Dis+ p3 and the goodness of the fitting
is expressed in terms of R-Square and Root Mean Square Error (RMSE). The depth maps have been
extracted by using ADM and level of distortion in the depth map is estimated as SSIM.

To compare the performance of the proposed LF IQM, the 2D quality metrics have been evaluated

for LF image in the following subsection.

9.5.2 Performance analysis of 2D image quality metrics, when applied to

light field image

To analyze performance of 2D IQMs, when applied to LF image, widely used NR and FR metrics

were selected.

• NR Metrics: Blind Image Quality Index (BIQI) [162], Naturalness Image Quality Evaluator

(NIQE) [160], and Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) [159].

• FR Metrics: Mean of Squared Errors (MSE), PSNR, SSIM, Multi-scale Structural Similarity
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(b) MRDM: JPEG 2000
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Figure 9.10: Relationship between MOS and depth map distortion measure, Dis. The curves are
result of second order polynomial: MOS = p1 ∗Dis2 + p2 ∗Dis+ p3 and the goodness of the fitting
is expressed in terms of R-Square and Root Mean Square Error (RMSE). The depth maps have been
extracted by using MRDM and level of distortion in the depth map is estimated as SSIM.

Index (MSSIM) [251], Visual Signal-to-Noise Ratio (VSNR) [37], Image information and Visual

quality (VIFP) [210], UQI [248], Signal-to-Noise Ratio (SNR), Weighted SNR (WSNR) [158],

PSNR-HVS [57], and PSNR-HVS-M [187].

To evaluate the performance of the objective metrics, the procedure recommended in [228] (as

discussed in Section 9.5.1)was followed. The achieved results from the correlation coefficient analysis

are summarized in Table 9.2. The result shows that the metrics VIFP and UQI have higher values

of PLCC, PSNR and MSSIM have higher values of the SRCC, and MSSIM has higher KTCC. These

results indicate most of the considered metrics perform almost similarly. However, the correlation

coefficients are not significantly high. To confirm the result, PCA has been performed. The result of

PCA, Figure 9.12, shows that two principal components explain around 83% of the total perceptual
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Table 9.1: Correlation between the estimated quality score and MOS. Performance of proposed
quality assessment framework is evaluated for depth map estimation algorithms, MRDM, SLTDM,
and ADM

PLCC SRCC KTCC

MRDM 0.89 0.89 0.71
SLTDM 0.90 0.90 0.74
ADM 0.94 0.94 0.80

quality, and the metrics PSNR, VIFP, UQI, PSNR-HVS, PSNR-HVS-M, WSNR, SSIM, and MSSIM

are concentrated in the same region of the plot, and the angle with MOS is also comparable.

Table 9.2: Performance analysis of the IQMs when applied for LF image. The correlation coefficient
between subjective quality score (MOS) and estimated quality score by the IQM is computed.

IQMs PLCC SRCC KTCC
BIQI 0.413 0.506 0.320
NIQE 0.843 0.837 0.646

BRISQUE 0.476 0.103 0.080
MSE 0.836 0.813 0.662

PSNR 0.818 0.864 0.700
SSIM 0.825 0.849 0.673

MSSIM 0.710 0.876 0.720
VSNR 0.816 0.865 0.680
VIFP 0.847 0.826 0.646
UQI 0.847 0.858 0.680

WSNR 0.808 0.856 0.700
PSNR-HVS 0.732 0.840 0.660

PSNR-HVS-M 0.727 0.849 0.680

The results, presented in Table 9.2 and Figure 9.12, indicate that the performance of most of

the metrics is comparable. Moreover, there is no metric that has a significantly higher value of the

correlation coefficient. This result strengthens the needs of a new IQM for LF image.

Moreover, to analyze the impact of the image scene on the estimated quality a two-way-ANOVA

is performed. The result (Pvalue for interaction is equal to one indicates that there is no evidence

of the interaction of the image scene on the estimated quality scores. In other words, the estimated

quality scores are not influenced by the image content or SRCs.

Finally, the presented results in Table 9.1 ( PLCC = 0.890, 0.899, and 0.940 for MRDM, SLTDM,

and ADM respectively) show that the proposed RR light filed IQM have the higher values of correla-

tion coefficients compared to well known 2D metrics (as presented in Table 9.2) for all the considered

depth map estimation methods.
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Figure 9.11: The performance analysis of the proposed RR LF IQA framework for depth map
estimation algorithms MRDM, SLTDM, and ADM.

9.5.3 Perceptual quality analysis of encoding methods for light filed im-

age

During the experiment design, two compression methods JPEG and JPEG2000 have been used to

generate PISs. The results achieved from the subjective experiment allow to evaluate perceptual

quality of compression methods for LF images. The result of the analysis is plotted in Figures 9.13

and 9.14. As for 2D images, JPEG2000 better performs than JPEG for LF images.

However, from Figures 9.13 and 9.14 we can also notice that for some images (in particular,

Buddha, Buddha2, Horses, and Mona), at high level of compression, i.e. at low level of bpp, the

JPEG compression results in a high MOS compared to JPEG2000. This is due to the fact that,

at high compression rate JPEG2000 produces prominent blurring and ringing artifacts, having high

impact on the light filed image QoE compared to the blocking artifact produced by JPEG. This

result indicates that, at a high level of compression the JPEG2000 is not an appropriate choice for

the images that include noisy textures, as in the images Horses and Buddha2 [114].
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Figure 9.12: Performance analysis of 2D image/VQMs, when applied for LF images. The small
angle between the variables (MOS and metrics) corresponds a high correlation.

9.6 Conclusion

In this contribution, a RR LF IQA framework is proposed. The measure of distortion in depth

information is used to compute the estimated quality score. Achieved results show high correlation

between estimated quality score and corresponding subjective quality ratings.

To collect the subjective quality ratings for test light filed images, a subjective experiment has

been performed. Given the novelty of the imaging system, there is no validated subjective quality

assessment procedure for the image, the steps that have been followed during the experiment design

are tailored in such a way that it can be used as a reference material for the subjective study on

this topic.
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Figure 9.13: Quality of experience of JPEG and JPEG2000 compressed four LF images: Buddha,
Buddha2, Horses, and Medieval.

The dataset is also used to evaluate the performance of state-of-the-art IQMs, when applied to

LF images. The results of the analysis strengthen the need of a new IQM tuned to LF image.
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Figure 9.14: Quality of experience of JPEG and JPEG2000 compressed three LF images: Mona,
Papillon, and StillLife.



Chapter 10

Subjective quality assessment of

light field images

The major contribution of this chapter is threefold: a generic LF IQA framework is proposed. Since,

there is no standard or guideline for LF image quality assessment, the adopted subjective experiment

procedure has been tailored in such a way that it could be used as a reference material for developing

the standard quality assessment protocol for LF image; by following the framework, a LF image

quality dataset, called SMART LF image quality dataset, is created and making freely available to

the research community; the dataset is extended by considering more SRCs and rendering methods;

and finally a LF image processing experiment setup is proposed for subjective quality assessment.

10.1 Introduction

The wide range of possible applications and the rapidly developing LF technology pulled the attention

of the consumer, industry, and academics. LF images are subject to a wide variety of distortions

during acquisition, processing, compression, storage, transmission, and rendering; any of these steps

may result in a visual quality degradation. The rapidly developing LF technology and consumer

interest towards this technology is pushing the need for QoE evaluation of such contents.

As mentioned before, due to the novelty in technology, there is a lack of standard LF image quality

methods (subjective as well as objective). In literature, only a few works are performed towards the

quality assessment direction. However, the knowledge of degraded quality (quality level) is crucial

to benchmark the developing LF image processing algorithms. In this scenario, in previous chapters,

particularly in Chapters 7, 8, and 9 significant efforts are given to understand the quality issues

in LF imaging. Now, it is the time to propose a subjective quality assessment framework for light

filed image, and it is the scope of this chapter. This chapter presents a general subjective quality

142
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assessment framework for LF image. The proposed framework is equally applicable for the LF

images captured using different techniques: mircrolens array (Lytro Illum and Raytrix), synthetic,

grid of a multi-camera system, etc.

10.1.1 Related works

In [174], also mentioned in Chapter 8, the perceptual quality of watermarked and distorted LF

image is presented. Moreover, a LF image quality dataset and a Reduced Reference quality metric

tuned to the LF image are presented in Chapter 9. In both of the works Granty type LF images

are used. Since, hand held LF camera (Lytro Illum) is already available in the market for general

photographers, and for research purposes. It would be nice to consider the Lytro Illum recorded LF

image.

Moreover, a method for subjectively assessing the quality of plenoptic content is presented

in [239] [238]. In the method after demosaicing and divignetting of raw sensor data, encoding

is performed. Following the encoding process, color and gamma correction is applied to the encoded

lenslet image. The proposed method could be a good use case for encoding of plenoptic content for

reducing the size of camera recorded information. However, this quality evaluation framework has

two major shortcomings: i) color and gamma correction is performed after the decoding process, thus

the impact of encoding in color component will not be evaluated during the subjective/objective

quality assessment; ii) after the decoding the camera calibration data are being used during the

color and gamma correction: it limits the usability of the method in image/video communication

environment. In particular, the need of (big size of) camera calibration data at the receiver side

for color and gamma correction may not be practical. In this scenario, an availability of generic

subjective quality assessment framework for LF image is crucial.

10.1.2 Light field image datasets

The list and basic features of state-of-the-art LF image quality datasets are reported in Table 10.1.

In literature, no dataset is available with test LF images and annotated subjective quality ratings.

Advances in LF imaging technology and the availability of commercial LF cameras (Lytro Illum

and Raytrix) allow the consumer to exploit such a technology. The above mentioned datasets are

not sufficient to deal with new challenges (perceptual quality evaluation, performance testing for

processing algorithms, etc.) arising with the advancement of the LF technology.

Among the datasets, the LF Image Dataset [200] includes the light field images captured by

using Lytro Illum camera. However, as clarified in [176], the motivations behind the image content

selection are not being reported and images present a huge amount of redundant information.

The novelty of the media has an impact on the subjective evaluation too. To collect the subjective

opinion scores for the test LF images a subjective quality assessment experiment need to be designed.

In literature, many standard guidelines [121] [112] [108], have been recommended to design the
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Datasets
Acquisition

Devices
Purpose Features

SMART (2016) [176] Lytro Illum general

It includes well characterized
16 LF images, and useful for design,

testing, and bench-marking LF image
processing algorithms

.

LF Image Dataset (2016) [200] Lytro Illum general

It includes 118 LF
images of the category Buildings,
Grids, Mirrors and Transparency,

Landscapes, Nature, ISO
and Color charts, People, Studio,

Urban, and Light)

Lytro Illum
LF Dataset (2016) [7]

Lytro Illum general use

It includes 43 LF images
including indoor and outdoor,

varying lightening conditions, translucent,
texture, and calibration grid images

4D LF Dataset (2016) [246] Lytro Illum
material

recognition

It contains LF images of
12 material categories: fabric,

foliage, fur, glass, leather, metal,
plastic, paper, sky, stone, water, and wood,

and each categories with 100 LF images

LCAV-31 (2013) [73] Lytro
Object

Recognition

It provides LF images of 31 object categories
captured from ordinary household objects and

designed for object recognition purpose.

Lytro dataset (2015) [165] Lytro
LF Recons-

truction

It provides 30 images, with indoor
and outdoor, motion blur, long exposure

time, and flat image.

LF Saliency
Dataset (2014) [138]

Lytro
saliency map
estimation

It provides 100 LF images with 60 indoor
scenes and 40 outdoor scenes.

GUC LF Face
and Iris Database (2016) [188]

Lytro and DSLR
face and iris
Recognition

It provides two biometric image databases
collected by using a Lytro camera on

multiple faces and visible iris
( 2986 faces from 112 subjects and 55

pairs of eyes).

The (New) Stanford
LF Archive (2008) [233]

Lego Gantry General
It includes 13 LF images, resolution:
17x17 and various image resolutions

LF microscope 3 LF images, low resolution

LF Gantry
4 LF images, resolution

21x5x650x515 and 16x16x650x515

Camera Array
2 LF image, 88 views of

640x480 and 45 views of 640x480

The (Old) Stanford
LF Archive [1]

Synthetic general It provides low resolution LF images.

Synthetic LF
Archive (2013) [3]

Synthetic Compression

It provides 13 LF
images (5x5 or 7x7 views) including

images with transparencies, occlusions,
and reflections.

Datasets and Benchmarks
for Densely Sampled
4D LF (2013) [252]

Blender Software
and Gantry device

Depth Map
It provides 7 Blender and 6 Gantry images;

however, images do not cover the wide range of
natural scenes.

Table 10.1: LF image datasets with corresponding basic features.
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subjective experiment for images and videos. However, currently there is no guideline defined for

LF images.

10.2 A generic subjective quality assessment framework

In the context of the lack of standard/validated subjective quality assessment procedure for LF

image, before designing the subjective experiment to create a LF image quality dataset, a brief

discussion on the generic LF IQA framework is presented.

10.2.1 Source sequence

As mentioned before, the scene selection is one of the most important steps in the experimental

design. Some of the scene selection criteria are already defined in Section 3.2.1. Moreover, in lit-

erature, some efforts have been given to define the scene selection criteria for 2D and 3D visual

contents. In brief, techniques for choosing video sequences for subjective experiment is presented

in [180]. In this article, a semi-automatic scene selection technique is proposed by using the at-

tributes: brightness, colorfulness, amount of background motion, amount of foreground motion,

amount of scene cuts, amount of cartoon content, interesting content/easy to watch, particularity

level, spatial detail complexity, amount of camera motion, and content type. Article [256] presents

metrics: view mismatch, disparity range, divergence, and disparity change, to estimate parameters

relevant for stereoscopic 3D video content in order to measure viewing comfort or 3D QoE. In [232],

image condition indoor/outdoor, descriptions of semantic level features such as news, person, and

playing, shooting conditions (distance and angle), source compression methods, spatial and tempo-

ral information about the scene and depth map, disparity histogram, disparity range, and coding

parameters are used to describe the 3D video sequences.

In this dissertation, reference images are chosen in such a way that the selected SRCs should

span a wide range of content features. For this purpose, together with basic visual signal features

(SI, CF, contrast, correlation, homogeneity, brightness, hue, and saturation), LF camera specific

capabilities are also considered.

General image features

The features need to be considered during the scene selection is already presented in Section 3.2.1.

The inclusion of those features is also important in LF imaging.

LF image related features

In the context of LF imaging, inclusion of other key capabilities of the imaging system is also

important, and some of them are:
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• transparency and reflections: A LF camera provides information about depth dependence

and Lambertian lighting. The depth dependence implies multiple depth of semitransparent

objects and the Lambertian surface reflects light with equal intensity in all directions [28]. The

depth dependence information can be exploited during coding, and the variation in depth of

field information could give different compression levels at a same quality level. Reflections

and transparency are prevalent in natural images, that is, reflected and transmitted lights

are super-imposed on each other. The image can be modeled as a linear combination of

transmitting layer, which contains the scene of interest, and a secondary layer, which contains

the reflection or transparency [220] [243]. The decomposition of the images into two layers is

an ill-posed problem in the absence of additional information about the scene [134]. The LF

camera recorded information, particularly multiple views of a single scene, can be exploited to

solve the problem. Therefore, in a test dataset images with transparency and reflections are

needed.

• Depth distribution: Depth distribution is one of the most important information for many LF

image applications such as refocused views and 3D views. Thus, inclusion of the scene with a

wide depth of field variation is crucial.

• Parallax: The parallax is the one of the most exciting feature provided by the LF imaging.

Therefore, the inclusion of LF image with rich parallax is advantageous.

• Occlusion: Handling occlusion related problems is always a most difficult and complex issue in

the image processing field. Due to the advancement in imaging technology, in particular with

LF imaging, this problem is becoming easier. The applicability of the dataset can be increased

by including the scenes with occluded objects.

Together with the low level attributes, the high level features or content category, such as build-

ings, grids, mirrors and transparency, landscapes, nature, ISO and color charts, people, urban, and

light, are considered during the content selection.

Generic procedure for source sequence selection

As already presented in Section 3.2.1, the steps included in scene selection procedure are:

• the image quality attributes are computed on LF image;

• images with high value of the attributes are selected: the result is a primary list of possible

SRCs;

• from the primary list, SRCs are selected keeping in the mind that the final list of SRCs must

cover all the considered content category or high level features. Moreover, the high preference

is given to SRCs with the high occluded area and wide depth of field (appropriate for parallax

and refocused views).
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Followed by the procedures, the selected SRCs are verified subjectively based on the selected metrics

and high level features.

10.2.2 Hypothetical reference circuit

To create Processed LF Image Sequences (PISs) from SRCs, HRCs are defined. For HRCs, it is

worthwhile to recall the distortion model presented in Section 7.3.1; where a basic distortion model

for LF image is presented (Equation 7.1).

Acquisition
Camera sensor 
data decoding 

Encoding/
decoding

Network
Rendering and 

display

AAx Rx
CAx TA RAx DDx

Figure 10.1: Generic HRC model in LF image communication.

Briefly, the distortion introduced by each step of the LF image communication chain is depending

on the selected techniques or algorithms. An overview of the distortion stages is shown in Figure 10.1.

By selecting different methods or algorithms all the stages can be varied for different HRCs. In

Figure 10.1, AAx is the acquisition artifacts. The Rx is the artifact introduced in representation

phase. CAx is used to represent the encoding and decoding artifacts. The artifacts introduced by

the noisy and the bandwidth limited transmission network are represented by TA. Whereas, RAx is

the distortion produced by the rendering methods. The display devices also poses its own artifacts

DDx, to the based on its properties.

For traditional 2D display devices: normal monitor and normal TV, the LF image can visualize in

different ways, such as refocused views, all-in-focused views or extended depth of field, and pseudo-

video by exploiting viewing trajectory. Each of the displaying methods could have different user

QoE even for the same content. For examples, in refocused view(s), out of focus area of the scene

will be blurred, and level and quality blurriness is depending on the used refocusing algorithms. In

all-in-focused view, only a few portions of the recorded LF information can be seen by the observer,

as a result complete information of the light will be lost. The pseudo-video can be created by using

sup-aperture views using the viewing trajectory, however, due to the lack of temporal information

there could be the viewing trajectory distortion. Next, the many refocused views can also be used

to create the pseudo-video, in that case handling inter-perspective aliasing (”jumps” between the

views), as a result of large depth variation, is challenging together with the artifacts introduced by

the selected refocusing algorithms.
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10.2.3 Subjective quality evaluation protocol

In literature, many methods are recommended for multimedia services such as 2D/3D image and

videos, and some of them are summarized in Section 3.2.3. In the context of LF imaging, during

the selection of subjective quality assessment methods, the following issues need to be taken into

account.

• Subjects are not familiar with this type of content (LF images) and the selected visualization

techniques.

• LF camera recorded information decoding process results the artifacts (such as color distor-

tions, blurring, Gaussian noise, and Salt and Pepper noise), and the quality of LF image is

reduced, and ultimately, the low resolution of the image makes it worse.

Based on the issues, to reduce the impact of the pre-introduced artifacts, the double stimulus

paradigm is an appropriate choice for the subjective quality assessment. Based on the small size of

the pictures (views), experiment time, and poor quality of reference and test LF image, some of the

possible candidate methods are: DSIS, PC, and DSCQS.

10.3 SMART light field image quality dataset

In this section, the steps followed to create the LF image quality dataset are detailed.

10.3.1 Source sequences

In this work, during the SRCs selection, together with the generic visual signal features, LF camera

specific capabilities: transparency, reflections, and wide Depth of Field (DoF) are also considered.

Next, as specified in ISO 20462 standard [121], to get relative quality values in JNDs, the selected

attributes should appear in at least three images. A single image can cover more than one attribute;

in this work two to three significant attributes per image have been considered. As a consequence,

we have captured 16 images. Thumbnails of the selected SRCs are shown in Figure 10.2 and the

corresponding key features are summarized in Table 10.2. As can be noticed, the considered images

cover a large number of quality attributes and content variations. The analysis of the SRCs in

Figure 10.3, shows that they cover a wide range of key quality attributes [176].

10.3.2 Hypothetical reference circuits

Figure 10.4 shows that before the test image showing to the subject, the LF image goes through

encoding and rendering steps. As presented in Figure 10.1 there are many factors influencing the

QoE of LF image. The test LF images can be created by varying the artifacts produced in any

sections such as acquisition, raw sensor data decoding, encoding, network, and rendering. Among
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(a) Book (b) Building (c) Car (d) Chair

(e) Flower (f) Grid (g) Ladder (h) Person

(i) Pillars (j) River (k) Sky (l) Stone

(m) Table (n) Tile (o) Whitesky (p) Window

Figure 10.2: Thumbnail of source sequences in SMART dataset.

them, artifacts produced by the encoding methods is the scope of this section, and thus, the rest of

the parameters including rendering method are keeping fixed, as shown in Figure 10.5. To the best of

our knowledge, there is no standard encoding and rendering method for LF image. As presented in

Section 7.2.3, many ongoing efforts have been given to devise the LF image compression techniques.

However, in this work, the encoding techniques: JPEG, JPEG2000, HEVC intra [30] [5] and an ad

hoc designed plenoptic image compression system (Sparse Set and Disparity Coding-SSDC) [139]

are considered.

As mentioned before, four to five levels of distortion are sufficient to create the PISs. The distor-

tion strengths have been selected after initial tests: a large set of test images has been generated and

a subset of these images that spanned a wide range of visual quality scores (minimum to maximum

quality) have been selected for the dataset, as detailed in [205]. The Quantization Parameters (QPs)

used in literature for comparing performance of H.265/HEVC, VP9, and H. 264/AVC encoders are

22, 27, 32, and 37 [76]. From a preliminary test, the difference in perceptual quality of rendered

images with original image was very small for HEVC intra and SSDC for QPs 22 and 27. There-

fore, higher values of QPs (42 and 47) have been used. The selected compression levels for each

compression method are shown in Table 10.3.
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Index Name Description Key Features Remarks

(a) Book Book inside a transparent box Homogeneity, Transparency Indoor

(b) Building
Building and its reflection

on the river
SI, contrast, reflection Outdoor

(c) Car Car roof and building with sky Homogeneity, DoF Outdoor
(d) Chair Chair on the floor Colorfulness, DoF Indoor
(e) Flower Flower with tile on the floor SI, hue Outdoor
(f) Grid Grid with natural scenes DoF, hue Outdoor
(g) Ladder Ladder top view DoF, SI Outdoor

(h) Person
Close-up picture of a person

with reflection
Reflection, contrast Indoor

(i) Pillars Pillars Colorfulness, DoF Outdoor

(j) River
Flower and river with

reflection of the building
Contrast, DoF Outdoor

(k) Sky Sky with natural scenes Homogeneous, correlation Outdoor
(l) Stone Stone on the concrete ground SI, contrast Outdoor

(m) Table Table with sofa Colorfulness, Correlation Indoor
(n) Tile Tile with background building brightness , hue Outdoor
(o) Whitesky Natural scene with white sky brightness, correlation Outdoor

(p) Window
Natural outdoor scene

with indoor objects
Transparency, DoF Outdoor/Indoor

Table 10.2: The brief description of SRCs. The SRCs cover a wide range of key image quality
attributes and image content variations.

JPEG (Quality Level) 30 50 70 90

JPEG2000 (Compression Ratio) 25 50 100 200

HEVC intra (QPs) 32 37 42 47

SSDC (QPs) 32 37 42 47

Table 10.3: Compression methods and corresponding compression levels.
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Figure 10.3: Spatial and colorfulness information distribution of SRCs.

10.3.3 Experimental setup for light field image processing

To create the test LF image sequences, the steps presented in Figure 10.6 were followed. In brief, LF

Toolbox v0.4 [54] [50] has been used to convert the recorded raw sensor data to a LF data structure.

After the decoding, demosaicing, devineting, and color and gamma correction are applied to the

lenslet image. The color corrected lenslet image is changed to a 4D LF data structure. Then, the 4D

LF image is arranged as a 2D image, by attaching the microlens image (like a lenslet image). Then

the image is clipped to 8 bits by discarding the least significant bits, and converted into YCbCr 4:2:0

format for encoding. To create JPEG and JPEG2000 compressed images MATLAB imwrite function

and for HEVC compression HM software (Encoder Version [11.0][Windows][VS 1700][64 bit]) [5] are

used. For HEVC compression test parameter configurations have been selected as detailed in [30]

and [66].

Among many possibilities (as mentioned in Section 7.3.2), in this work, the central view all-in-

focused image was evaluated by the subjects. It was also possible to take other views all-in-focused,

since, by just taking the central view, a lot of data may not be assessed. However, in principle, this

means that the coding method may be good for just this view, but not for others. On the other

hand, since the encoding is not aware of which view is being assessed, the selection of assessment is

independent of the compression even if is does not give a complete assessment of the LF data. To
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Figure 10.4: Signal processing steps and experimental design.

create the view, a basic or full resolution rendering method has been exploited, since considered LF

data structure was the same as used for focused plenoptic camera in [71].

10.3.4 Subjective experiment design

In the following, the protocol adopted during the subjective experiment is described.

Subjective experiment methodology

To collect the opinion scores for the rendered 2D views, the PC, is selected. The main advantage

of the PC is its high discriminatory power, which is of particular value when several test items are

nearly equal in quality [112]. Briefly, a pair of images is presented to the observer who selects the one

that has better image quality. The Graphical User Interface (GUI) used in this experiment is shown

in Figure 10.7. At the end of each paired presentation, the subject expressed his/her preference by

ticking the boxes. The number of pairs is n× (n− 1) for a n number of images. In our case, there
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Figure 10.5: SMART LF image quality dataset: HRC model.

were 17 test images (272 pairs) for each SRC, and we had 16 SRCs.

Subjects

To collect reliable results, 19 subjects have been selected [121] [109]. The subjects were drawn from

a pool of undergraduate to post-doctorate students from Università degli Studi Roma TRE, Rome,

Italy. The subjects were naive concerning the image impairments and the associated terminology.

They were asked to wear any vision correcting devices (glasses or contact lens) that they normally

wear.

Experiment length

To minimize the effect of viewers’ fatigue on quality assessment, four experimental sessions have

been scheduled. The experiment length is maintained shorter than 30 minutes by dividing each

session into two sub-sessions to retain the attention of subjects [109]. Each sub-sessions lasted 12 to

15 minutes including evaluation and training time of 2 minutes, and at least 5 minutes gap between

each sub-sessions.

Stimuli arrangement

In the experiment, PISs from 2 SRCs have been evaluated in each sub-session. The PISs from the

same SRC are displayed at a time. To compensate the effect of a potential bias based on order or

position of stimuli in the averaged results [126], stimuli are shown in random order for each subject

according to their compression and intensity.

Training

Before the experiment, the subject is verbally given the instructions, followed by written instruc-

tion [112]. In the training stage, the subject is shown pairs of images having different levels of

impairment, from the lowest to the highest found in the experiment. In this phase, each subject
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Figure 10.6: Experimental setup for LF image processing.

gets familiar with the assessment procedure and establish the annoyance values range. The images

used in the training session are different from the test images.

Apparatus and environment

The experiment is conducted in a controlled environment in order to produce reliable and repro-

ducible results by avoiding involuntary influence of external factors [109]. The characteristics of the

display device and system are used in the experiment are briefly described in Table 10.4.

10.3.5 Collected quality scores for test light field images

As mentioned before, the result of the subjective experiment is the PCM matrix. To analyze the

perceived quality, it is important to convert the results in a continuous rating scale [129]. To this

aim, a Bradley-Terry (BT) [31] model has been considered [83]. The result of the PC experiment is

expressed in terms of BT score, as a MOS.
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Figure 10.7: Subjective experiment setup.

Table 10.4: System and display parameters.

(a) System parameters.

Parameters Values

Processor Intel(R)Core(TM)i7-4770
Processor Speed @3.40GHZ

RAM 8GB
System type 64-bit OS

Operating System Windows 8.1
GUI MATLAB R2015a

(b) Display parameters.

Parameters Values

Display Device DELL U2413f
Screen Refresh Rate 60Hz
Screen Resolution 1920x1200 pixels

Brightness and Contrast 50
Sharpness 50

Aspect Ratio Wide 16:10

The distribution of the BT scores for the test images is shown in the histogram in Figure 10.8.

The histogram shows that the HRCs are well selected to create a set of data to cover a wide range

of perceptual quality. The detailed analysis of the achieved results is presented in the next chapter.

10.4 IRCCyN/IVC&RM3/COMLAB light field image qual-

ity dataset

In SMART dataset, an all-in-focused view is used to evaluate the QoE of distorted LF image: an

all-in-focused view is a very small portion of LF data, therefore the distortion created in complete

LF data may not be evaluated by this visualization technique. Thus, this section is an attempt

to evaluate the LF image QoE by considering more information during the subjective evaluation

process. In particular, the different rendering methods (pseudo-video of the refocused views and

sub-aperture images) are used to display the distorted LF image. Meanwhile, sources sequences are

selected by considering the generic visual features and LF imaging capabilities, focusing to scenes

with high parallax, occlusion, and wide depth of field. The adopted experimental setup is presented
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Figure 10.8: Distribution of BT scores. The test LF images have a wide range of perceived quality
scores.

in the following.

10.4.1 Source Sequence

As mentioned before, SRCs are selected based on the key image quality attributes and LF camera

specific capabilities. In brief,

• generic scene features: basic features such as CF, SI, and contrast are computed from thumbnail

image of LF data; assuming most of the content or scene related information is available from

thumbnail image. The thumbnails are extracted by using Lytro Desktop software;

• depth distribution: as a measure of depth distribution, 95% confidence interval of pixel values

is computed from the depth map histogram. For depth map analysis, depth maps are estimated

by using the Lytro Desktop software. In literature, many depth map estimation methods are

available. However, due to the lack of the standard depth map estimation method, for a safe

practice, depth map estimated by Lytro Desktop is used;

• parallax: to measure the parallax, the average absolute difference between (diagonal) extreme

views (95% confidence interval in pixel values) is computed. Where, extreme views (view (4,

4), view (13, 13), view (13, 4), and view (4, 13)) is extracted by using the MATLAB LF

Toolbox.

• occlusion: as a measure of occlusion in the scene, numbers of pixels on the occluded area

boundary is counted. The adopted occluded area boundary estimation method is presented in
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article [245]. In particular, to compute the pixels in occluded area, the .LFR file is decoded

using the MATLAB LF Toolbox, and decoded 5D LF image is given as an input to the

algorithm. As a result of the algorithm, the boundary of occluded area is computed, and

pixels in the occluded area boundary are counted.

Together with the low level attributes, the high level features or content categories have been

considered during the content selection. Followed by the procedures presented in Section 10.2.1,

SRCs are selected; and verified subjectively based on the metrics and high level features; where

higher preference is given to the images with higher occluded area, depth distribution, and parallax.

Thumbnail of selected SRCs is shown in Figure 10.12. As shown in Figure 10.9 selected SRCs

covers a wide range of content features. Each SRC covers more than a feature, however the principal

feature for each SRCs is indicated in Table 10.5. As well known, the selection of SRCs is also

depends on the purpose of the study. In our study refocused and parallax views will be shown to the

subjects, thus suitability of the selected SRCs for different applications (parallax and refocusing) is

also indicated in Table 10.5.

10.4.2 LF image distortion model

As mentioned before in Figure 10.1, many possibilities have been available to create the test or

distorted light filed images for subjective experiment. In fact, the artifacts (types and strengths)

can be introduced at every step of the image communication chain. However, in this work, only two

stages encoding and rendering is varied and other steps are kept constant, shown in Figure 10.10.

For encoding artifacts, the four image based encoding techniques are selected. As a baseline,

standard image encoding technique JPEG is considered. The rest of three encoding methods are the

HEVC based encoding, and these are: HEVC intra, Sparse SSDC, and bi-predicted self-similarity

compensation (BPSS) [48]. Four levels of distortion are selected for each encoding method. The

distortion strengths have been selected after the initial subjective experiment: a large set of test

images is generated and a subset of these images that spanned a wide range of visual quality scores

(bad to excellent quality) are selected for the dataset.

Then, the distorted LF images are rendered for the visualization. The selection of rendering

methods is depending on the target displaying technique and device. In this experiment, two visu-

alization techniques are selected.

• Refocused views: As a basic refocusing technique, a shift-sum approach is used to create the

refocused views. The MATLAB toolbox is used to perform the refocusing by using LFFilt-

ShiftSum function. This function shifts all the sub-aperture images according to a slope, which

determines the focal plane. For Lytro Illum camera recorded content, the slope of -2 to 2 is

selected. The resulted refocused (at the slope of -2 to 2) views are used as frames to create the

pseudo video. The refocused views (slope -2 to 2 to -2 to 0) are displayed as a pseudo video.
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SRCs Name Key features Category Applications

SRC1 Black fence Contrast Building Parallax

SRC2 Perforated Metal 2 DD Grid Parallax

SRC3 Spear Fence 1 DD Grid Parallax

SRC4 Friends 1 DD People Refocusing

SRC5 Zwahlen & Mayr CF Urban Refocusing

SRC6 Parc du Luxembourg CF Nature
Parallax and
Refocusing

SRC7 Palais du Luxembourg Occlusion Building
Parallax and
Refocusing

SRC8 Fountain & Bench DD
Mirrors and

Transparency
Parallax and
Refocusing

SRC9 Mirabelle Prune Tree Parallax Nature Parallax

SRC10 Bikes Parallax Urban
Parallax and
Refocusing

SRC11 Danger de Mort DD Grid
Parallax and
Refocusing

SRC12 Bush SI Nature Refocusing

SRC13 Slab & Lake DD Sky Refocusing

SRC14 Sophie & Vincent on a Bench SI People Refocusing

SRC15 Game Board DD Light
Parallax and
Refocusing

SRC16 Sphynx DD Nature
Parallax and
Refocusing

SRC17 Car dashboard DD
Reflection and
Transparency

Parallax and
Refocusing

SRC18 Rose CF Nature Refocusing

SRC19 Duck SI Nature Refocusing

SRC20 Pillers CF Pillars
Parallax and
Refocusing

SRC21 ISO Chart 22 SI ISO Chart

SRC22 ColorChart 2 CF Color Chart

Table 10.5: Selected source sequence description with covered key features. SRC18 and SRC19 are
taken from Lytro Illum LF Dataset, SRC20 is taken from SMART dataset, and rest of SRCs are
taken from LF Image Dataset.
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Figure 10.9: Basic features of selected source sequences. The selected SRCs are well distributed over
a range for all the considered content characterization metrics.
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Figure 10.10: Selected distortion model. To create the HRCs, the encoding and rendering steps are
varied, and rest of the stages are kept fixed.

• Parallax: To parallax display, trajectory of view swap is exploited. In particular, 2D slices

of the LF are displayed with a rudimentary parallax effect; the display motion is preset in a

circular path of radius 60 degrees. For pseudo video, the views are selected as specified in
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MATLAB toolbox function LFDispVidCirc.

10.4.3 Selected subjective quality assessment method

By considering the facts, presented in Section 10.2.3, DSIS method is selected as a subjective ex-

periment protocol. In particular, the selection was based on the small size of the (view) pictures,

experiment time, and poor quality of reference and test LF image.

10.4.4 Proposed LF image processing experimental setup

Lytro Illum sensor data  

LF Data 
Image 

Arrangement 
Encoding 

Decoding 
LF Data 

Structure 
Arrangement 

LF Data 

Rendering 

Refocused views 

Pseudo-video 
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C B Quality evaluation point to evaluate the impact of encoding 
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Quality evaluation point to evaluate the impact of rendering or 

encoding and rendering  i.e. subjective quality assessment point  

A Reference point to evaluate the impact of encoding 

Figure 10.11: LF image processing experimental setup. (proposed subjective quality assessment
framework for LF image)

The adopted LF image processing setup is shown in Figure 10.11. This is the proposed LF image

processing experiment setup for subjective quality assessment of LF image. Therefore, every step of

the framework is briefly explained below.

• LF data: The input to the quality assessment framework is 4D LF data. For maintaining

the generality of LF, the LF data are expected to be in two plane representation (L(u, v, s, t)).

If the data are taken from a multi camera array, some operation such as rectification and

synchronization may be needed. On the other hand, for microlens array cameras such as Lytro

Illum and Raytrix recorded data, some preprocessing steps may be needed. For an example,



CHAPTER 10. SUBJECTIVE QUALITY ASSESSMENT OF LIGHT FIELD IMAGES 161

for Lytro Illum camera captured LF, we may have to pass through the following steps: raw

sensor data decoding, demosaicing, devigneting, color and gamma correction [49, 50].

• Image arrangement: The arrangement is depending on the selection of the encoder, particu-

larly, the data input format of the encoder. For examples: i) for image based encoders: 4D

LF data may be converted in to a 2D image structure. Because, most of the standard and

recently proposed image encoding techniques (JPEG, JPEG, HEVC intra related methods)

are designed for 2D image (structure). This step is more important for multi-camera captured

LF data. Whereas, for microlens array (Lytro Illum) recorded data the lenslet image also can

be given directly as an input for encoding; and ii) for video based encoders: the aperture views

of the LF image can consider as frames, and pseudo video can be created by considering the

relative position of the sub-aperture images. The final image, what we got in this stage, can

be considered as a reference point to evaluate the impact of encoding (in Figure 10.11 it is

indicated as point A). At the receiver side, 4D LF image may be need from the encoded LF

data for the rendering. However, it depends on the selection of rendering methods.

• Image format conversion: This step is also based on the selected encoding method. For an

example, in this chapter HEVC intra related encoders are used for encoding, and thus, 16

bit precision data is clipped to 8 bits by dropping the least significant bits, and RGB 8 bit

uncompressed image is converted to YCbCr4:2:0 color space. The resulted LF image is encoded

and decoded. After decoding, the decoded image is converted to YCbCr4:4:4 and back to RGB.

• Encoding: The above mentioned steps: image arrangement and image format conversion are

particularly for encoding purposes, and these are based on the selected encoding technique.

From another viewpoint, if our focus is not for encoding artifacts, these steps (image arrange-

ment, image format conversion, and encoding) are not needed. From the reference LF data,

we can directly go to the rendering step.

• Rendering: The test LF image needs to be converted into a suitable format for the visualization

by using the appropriate rendering method. In particular, different visualization techniques

such as refocused views, parallax, and 3D image demands different rendering methods.

10.4.5 Ongoing works

Due to the time taken by selecting, encoding methods to encode the LF image, the HRCs creation

process is running. Once, HRCs is created the subjective experiments will be scheduled. As per

our plan, after the subjective experiment, achieved initial results will be analyzed, and the collected

opinion scores and distorted LF images will be used to benchmark the objective IQMs.
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10.5 Conclusion

In this chapter, first a generic subjective quality assessment framework is discussed with highlighting

source sequence selection methods, distortion model for creating test sequences, and subjective

quality evaluation protocol.

Following this framework, a new LF image quality dataset has been created. For dataset popu-

lation, based on the key image quality attributes and LF camera specific capabilities the SRCs are

selected and captured by Lytro Illum Camera. The captured SRCs are processed and compressed.

An experiment was scheduled to collect the subjective quality rating for the processed image se-

quences. Source sequences, test sequences, subjective quality scores, and adopted experimental

setup procedures are made freely available for the research community.

Further studies are performed in the framework, as a result, a LF image processing experiment

setup is proposed. The proposed setup is used to design the subjective experiment for LF images.

By using the proposed setup, a new LF image quality dataset is going to be created by considering

a wide range of source sequences and rendering methods.
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Figure 10.12: Thumbnail of the selected source sequences..



Chapter 11

Perceptual quality of compressed

light field images

This chapter presents the study of the perceptual quality of the encoded LF image by using the

dataset presented in Section 10.3. In particular, the major contributions are:

• study on the impact of encoding artifacts on LF image QoE;

• performance evaluation of the encoding methods based on the human perceptual quality of

compressed LF image;

• study on the influence of scene or image content on visual QoE;

• benchmarking of the 2D IQMs, when applied to LF image.

11.1 Introduction

Evaluation of LF image QoE, as well as testing of new processing tools, or even assessing the

effectiveness of objective quality metrics, relies on the availability of test dataset and corresponding

quality ratings. For this purpose, the SMART LF image quality dataset presented in Section 10.3

is used. The dataset provides test LF images and corresponding subjective opinion scores.

As mentioned in Section 7.2.3, many ongoing efforts have been given to develop LF image com-

pression methods. The performance analysis of these methods is important. To this aim, a study

on the impact of compression artifacts on perceived quality is necessary. Moreover, performance

evaluation of the encoding methods based on the QoE of encoded image is of crucial importance.

As well known, QoE of images and the performance of compression methods is significantly

influenced by the image content characteristics and HVS [175]. Thus, the study of the influence of

the image content with respect to HVS on the perceived quality of LF image is important.

164
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Index Artifacts Index Artifacts

1 Reference

2 JPEG (q=30) 10 HEVC intra (QP=32)
3 JPEG (q=50) 11 HEVC intra(QP=37)
4 JPEG (q=70) 12 HEVC intra (QP=42)
5 JPEG (q=90) 13 HEVC intra (QP=47)

6 JPEG2000 (CR=25) 14 SSDC (QP=32)
7 JPEG2000 (CR=50) 15 SSDC (QP=37)
8 JPEG2000 (CR=100) 16 SSDC (QP=42)
9 JPEG2000 (CR=200) 17 SSDC (QP=47)

Table 11.1: Indexes and there corresponding artifacts (q=quality level, CR=compression ratio,
QP=quantization parameter level).

As for conventional image and video processing, the selection of an objective quality metric

is necessary to benchmark the processing algorithms such as encoding methods. In literature, to

benchmark LF image encoding methods a well known full reference metric, PSNR, is used. Because,

there are no quality metrics specifically designed for LF image. In literature, many IQMs have

been proposed, and some of them are very common in the image processing field. In this situation,

performance evaluation of existing 2D IQMs, when applied to LF image is necessary.

11.2 Compressed light field image quality of experience

To study the impact of compression methods on LF image, the analysis of the perceived quality of

the compressed LF image is presented. For the analysis, the numbers 1 to 17 have been used as

indexes to represent 17 HRCs. The index numbers and corresponding HRC description are shown

in Table 11.1. The impact of compression on the perceived quality is analyzed in two steps. First,

the overall impact of the HRCs on perceived quality is presented and similar analysis is performed

for the individual SRCs.

11.2.1 Overall impact of encoding

To analyze the perceived quality of LF images of different HRCs, the opinion scores given by all the

subjects and for all the SRCs are used. The results reported in Figure 11.1, show that the perceived

quality of processed LF images varies with the selected HRCs. This result is further confirmed by

NAOVA: the result F (16, 255) = 18.1 and p-value ' 0 < 0.05, indicates that the quality scores for

the HRCs are significantly different.

11.2.2 Impact of encoding on individual source sequences

To study the influence of HRCs for individual SRCs, the result is further analyzed with the help of

box plot. From Figure 11.2 it can be noticed that some of the points are outliers and that the range
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Figure 11.1: Overall impact of encoding on LF QoE: BT score with 95% of Confidence Interval (CI).

of the first and third quartile is noticeable. This result indicates that the BT scores are different

for the SRCs even for the same level of compression. Therefore, it is worthwhile to analyze the

perceptual quality of individual scene at different compression levels.

The perceived quality of the SRCs for different HRCs is shown in Figures 11.10, 11.11, 11.12,

and 11.13. As can be noticed, the patterns of quality scores are noticeably different for the SRCs

even at the same level of compression. As an example, variation in the BT scores is smaller for

Building compared to Car for the same HRCs or at a same level of compression.

To confirm the results, Barnards test [22] has been considered and the test is used to check

whether the probability, Pij (scores given for a test sequence) is significantly different from a prob-

ability of 0.5 (i.e., whether the observers are undecided) or not [137]. In plots for exact test,

Figures 11.10, 11.11, 11.12, and 11.13, the difference of the perceived quality of test images is ex-

pressed for each possible pair. It is assumed that each pair of images follows the commutative law.

Therefore, our region of interest is the left side of the matrix plot. In the plot, if the opinion scores

for the pairs of images are not significantly different, the corresponding square is filled with white

box otherwise it is black, whereas gray box is used to express the test is not necessary. The Fig-

ures 11.10, 11.11, 11.12, and 11.13 show that a different set of SRCs has different numbers of white

squares. This result indicates the perceptual quality of LF images is also influenced by the SRC or

image content.

Moreover, a one-way-ANOVA has been performed for a group of SRCs at different HRCs to

confirm the result. The result, F (15, 256) = 3.71 and p-value ' 0 < 0.05, indicates that the
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Figure 11.2: Box plot of the BT scores at different level of HRCs for 16 SRCs. On each box, the
central mark is the median score, the edges of the box are the 25th and 75th percentiles, and the
outliers are plotted individually.

perceived quality of the test images are significantly different for the SRCs. This is because the

image content has a significant impact on the QoE [175].

11.3 Effect of image content on perceived light field image

quality

To study the effect of scene content on QoE of LF image, the performed analysis results are reported

in Figure 11.3. It shows that the perceptual quality is different for SRCs. This result strengthens

the need to investigate the impact of image content on the perceived quality.

At the moment, no standard content descriptors have been defined. In this work, key image

quality attributes defined in Section 3.2.1, have been used. Based on the descriptors scores and

corresponding image perceived quality scores, the correlation analysis is performed.

For the analysis, PLCC and SRCC have been used. The correlation between the content de-

scriptors scores and corresponding perceived quality scores is shown in Table 11.2, and it shows that
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Figure 11.3: BT score with 95% CI for reference LF images. The perceived quality is different for
reference images.

there is no significant correlation between the considered descriptor with the perceived quality of

the LF image.

The result is further confirmed with the help of PCA and the result, Figure 11.4, shows that the

descriptor saturation has a small angle with BT score compared to other descriptors. However, the

angle between the BT score and saturation is noticeable.

The results show that there is no strong correlation between the SRC descriptors and perceived

quality. Though, the perceived quality of the SRCs is significantly different. This result could be due

to the fact that together with system factors (such as transmission impairments and compression

Descriptors SI CF Contrast Homogeneity

PLCC -0.184 0.317 -0.344 0.347
SRCC -0.267 0.352 -0.423 0.452

Descriptors Hue Saturation ColorValue Brightness

PLCC -0.047 0.520 0.018 -0.150
SRCC -0.229 0.394 0.191 -0.050

Table 11.2: Correlation coefficient: correlation between scene/content descriptors and LF image
QoE.
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Figure 11.4: Result of PCA. The high angles between the content descriptors and BT score indicate
there is no strong correlation between the perceived quality and the attributes.

artifacts) the perceived quality is also influenced by human and context factors [131]. However, the

considered descriptors mostly explain the system factors and the perceived quality is more about

the subjects, and hence physiological, psychological, social, and role-related aspect of the subject

also influence the quality score [234].
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Figure 11.5: Performance of the considered compression methods: perceived quality of LF images
at different level of compression by the different compression methods. The recently proposed LF
image compression method, SSDC, has a significantly high level of perceived quality compared to
other methods.

11.4 Perceived quality analysis of the compression methods

for light field image

From Figure 11.1, it can be noticed that the perceptual quality of SSDC compressed LF im-

age is high compared to other compression methods, and the same result is replicated in Fig-

ures 11.10, 11.11, 11.12, and 11.13 for different SRCs. In those plots the test points for the com-

pression methods are different: quality level for JPEG, compression ratio for JPEG2000, and QPs

for HEVC intra and SSDC. To compare the performance the bit per pixel (bpp) for each test image

is computed and compared with the corresponding subjective quality scores.

From Figure 11.5, we can observe that the perceptual quality of JPEG2000 is significantly higher

compared to JPEG at the same level of bpp and a similar trend is shown for SSDC and HEVC intra.

These results indicate that the SSDC outperforms the other methods for the LF images. A detailed
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(a) JPEG2000 (-0.941) (b) HEVC intra (-1.052) (c) JPEG2000 (-1.834)

(d) HEVC intra (-1.640)

Figure 11.6: Perceptual quality of LF images at low and high level of compression for JPEG2000
and HEVC intra, and level of compression is expressed in terms of log(bpp).

description of SSDC is available in [139], which also reports on the objective performance of this

compression method on LF images from focused plenoptic cameras such as Raytrix. The results of

our work are different in two ways: 1) comparison of the compression methods is done on LF images

from a LF camera, Lytro Illum, and 2) the perceptual quality of the compressed image has been

evaluated by using a subjective assessment, and results show that the SSDC performs better than

other considered methods.

Moreover, it is noticed that there is a crossover between the curves for JPEG2000 and HEVC

intra. This crossover indicates that at a high level of compression, JPEG2000 produced blurring and

ringing artifacts, that have a small impact on the perceptual LF image quality compared to the block

artifact produced by the HEVC compression [171]. This result is further confirmed by Figure 11.6.

Figure 11.6 (a) and (b) show that at low level of compression the HEVC intra compressed LF image

has a high perceptual quality even the level of compression is higher than for JPEG2000 but at

a high level of compression (Figure 11.6 (c) and (d)) the JPEG2000 compressed image has a high

perceptual quality. The most important point that we need to notice that, as mentioned before, the

employed values of QP (42 and 47) are significantly higher than the commonly used QPs (22, 27,

32, and 37) [76].

Influence of image content: The result shown in Figure 11.7 indicates that the even at a same

level of QPs, the SRCs have a different level of compression. Moreover, the influence of the image

content in the perceptual quality of LF image is analyzed with the help of content descriptors for top

performing LF image compression methods, HEVC intra and SSDC. The result, Table 11.3, shows

that the level of compression significantly depend on the image color value and the brightness of the

LF image. Therefore, inclusion of a wide range of content variations is important in the dataset.
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Figure 11.7: The compression level of SRCs at QP = 32 for top performing compression methods,
SSDC and HEVC intra.

Compressions SI CF Contrast Homogeneity

SSDC 0.013 -0.302 0.036 -0.046
HEVC intra -0.008 0.399 0.089 -0.153

Hue Saturation Value Brightness

SSDC -0.404 -0.536 0.451 0.617
HEVC intra -0.290 -0.243 0.844 0.780

Table 11.3: PLCC: correlation coefficient between image attributes and image compression levels
measured in terms of bpp (computed at QP = 32).

11.5 Performance analysis of image quality metrics

In this section, the performance of the 2D IQMs, when applied to LF image is analyzed. The

considered 2D visual quality metrics are:

• Mean of Squared Errors (MSE) [69]

• Peak Signal to- Noise Ratio (PSNR) [69]

• Signal-to-Noise Ratio (SNR) [69]

• Weighted SNR (WSNR) [158]

• PSNR based on Human Visual System (PSNR-HVS) [57]

• PSNR-HVS-M [187]

• Visual Signal-to-Noise Ratio (VSNR) [37]

• Structural Similarity Index (SSIM) [250]
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Figure 11.8: Performance of 2D IQM, when applied for Litro Illum LF image: correlation coefficient
between the estimated quality scores and subjective opinion scores.

• Multi-scale Structural Similarity Index (MSSIM) [251]

• Image information and Visual quality (VIFP) [210]

• Universal image Quality Index (UQI) [248]

Correlation between the subjective opinion scores and objective quality scores has been computed

by using PLCC, SRCC, and KTCC. Figure 11.8 illustrates that the objective IQMs perform differ-

ently, and the PSNR-HVS-M has higher values of PLCC and SRCC compared to other metrics. This

result could be due to the fact that the PSNR-HVS-M takes into account the HVS and the contrast

sensitivity of the image [187]. A similar result is yielded from PCA, as shown in Figure 11.9, the

PSNR, PSNR-HVS, and PSNR-HVS-M have a small angle with perceptual quality score (BTScore)

with respect to other metrics.
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Figure 11.9: PCA results: performance analysis of 2D IQM, when applied for Litro Illum LF image.

11.6 Conclusion

In this chapter, a study on the perceived quality of the compressed LF image is presented. Major

contributions of the article are described in the following.

• The impact of the compression artifacts on the perceived LF image quality is studied. The

results show that the compression methods significantly degrade the perceived quality of LF

image, and the level of the quality degradation varies for the images with different content.

• The impact of the image content on the perceived quality is studied with the help of key

image quality attributes and subjective quality scores of the LF images. The results show that

there was no strong correlation of the descriptors with the corresponding perceptual quality.

However, the results presented in Section 11.4 show that the level of compression of LF images



CHAPTER 11. PERCEPTUAL QUALITY OF COMPRESSED LIGHT FIELD IMAGES 175

varies for different content even at a same level of QPs. Therefore, the inclusion of SRCs with

a wide range of content variation is important.

• The performances of compression methods are evaluated for LF images. The results show

that the recently proposed plenoptic image compression method, SSDC [139], has a better

perceived quality at a same level of compression compared to other considered compression

methods. The results demonstrate the importance of specific compression algorithms for LF

data in order to reach a best possible quality.

• The performances of widely used 2D IQMs are evaluated for the LF images. The results show

that, among the considered metrics, the quality scores predicted by PSNR-HVS-M has a better

correlation with corresponding subjective quality scores.
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(h) Chair: Exact Test

Figure 11.10: BT Score with 95% confidence interval and result of exact test for four images: Book,
Building, Car, and Chair.



CHAPTER 11. PERCEPTUAL QUALITY OF COMPRESSED LIGHT FIELD IMAGES 177

HRCs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B
T

 S
co

re

-12

-10

-8

-6

-4

-2

0

(a) Flower: Quality Score
Test Images

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
es

t I
m

ag
es

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
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(f) Ladder: Exact Test
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(h) Person: Exact Test

Figure 11.11: BT Score with 95% confidence interval and result of exact test for four images: Flower,
Grid, Ladder, and Person.
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(b) Pillars: Exact Test
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(h) Stone: Exact Test

Figure 11.12: BT Score with 95% confidence interval and result of exact test for four images: Pillars,
River, Sky, and Stone.
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(h) Window: Exact Test

Figure 11.13: BT Score with 95% confidence interval and result of exact test for four images: Table,
Tile, Whitesky, and Window.
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Conclusions

The aim of this dissertation is to explore the interesting but complex multidimensional problem,

QoE in the multimedia communication services. The broad scope of the topic is making focused by

considering two types of multimedia services: video communication and LF image communication.

The first two chapters (Chapiters 2 and 3) of this dissertation are focused to develop the the-

oretical and conceptual framework for assessing the QoE. In particular, the background study of

multimedia communication, factors influencing multimedia quality, and QoE influencing factors are

presented in Chapter 2. Followed by the background study, a QoE model and QoE centric multimedia

management and optimization framework are presented. The model provides a holistic approach for

devising an effective and efficient QoE assessment method, and the framework highlights the neces-

sity for the quality assessment. In the first part of the Chapter 3, subjective experiment procedures

followed by the data processing tools and result analysis techniques are presented. Whereas, the

approaches used to design the objective quality assessment methods are presented in the second part

of the Chapter 3.

To study the impact of transmission impairments on Video QoE, a video quality dataset: Re-

TRiEVED Video Quality Database, is presented in Chapter 4. The dataset was designed by con-

sidering QoS parameters: delay, jitter, packet loss, and bandwidth, and a real world streaming

environment. The collected quality scores and corresponding test videos are already made available

for the research community. The dataset is used to study the impact of transmission impairments

on video QoE. The achieved results indicate that the adopted initial delay values do not have a

significant impact on the perceived video quality, while jitter, PLR, and bandwidth do. In the

performed experiments, the values 2 Mbps of bandwidth, 2 ms of jitter, and 3% of PLR can be

considered as JND limits, because above and below these thresholds the perceived video quality

changes significantly.

It is also noticed that if the communication channel is influenced significantly by impairments

(high values of PLR and jitter, and low values of available bandwidth) the perceived quality is
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mainly dependent on channel conditions. Therefore, the perceived quality is more dependent on

the impairments rather than the video content and human factors. In another viewpoint, if the

channel is less influenced by impairments, the perceived video quality is also depending on video

content and human factors. Moreover, the influence of video content, and content related attributes

on video QoE is studied by exploiting the ReTRiEVED dataset. To study the influence of video

content related attributes such as spatial-temporal perceptual information, colorfulness, contrast,

brightness, and HVS characteristics on QoE, another experiment was scheduled by considering the

large number of SRCs with a wide rage of content variations. The achieved analysis results indicate

that the except video frame size, the rest of the considered content related attributes do not have a

significant relationship with the video QoE. The dataset and analysis of the results are presented in

Chapter 5.

Followed by the above mentioned studies, the dataset is also used to benchmark the available

VQMs. The achieved result strengthens the need of a new VQM. Therefore, a QoE metric suitable

for communication environment is presented in Chapter 6. The proposed metric is evaluated and

compared with other metrics. The achieved results indicate the supremacy of the proposed metric.

The next part of the dissertation is focused in LF imaging. An introduction on LF imaging,

steps involving in the LF image communication system, generic LF image quality distortion model,

and quality evaluation issues and their implications on LF IQA process are briefly presented in

Chapter 7.

A watermarking technique for protecting the LF images from manipulations and unauthorized

reproduction or diffusion is presented in Chapter 8. The impact of watermark on the quality of LF

image is studied by using the objective and subjective measure. The achieved results indicate that

the watermark technique does not significantly influence the quality of LF image. In particular, the

subjective results define a visibility threshold (α = 0.3) for the embedded data, while the objective

test demonstrates that the reconstructed depth map is almost not affected by the watermarking

system thus allowing a perfect rendering of the scene. Moreover, robustness of the proposed water-

marking method are evaluated on the focused LF images for different compression techniques. The

achieved results show that the watermarking scheme is robust only for very low level of compression

for JPEG, JPEG2000, HEVC intra, and HEVC SS.

Due to the novelties on technology, there is a lack of subjective an objective quality assessment

framework for LF image. Therefore, the last parts of this dissertation are focused in developing the

quality assessment frameworks. First, an objective LF IQA technique is presented in Chapter 9. The

depth map information about LF image is used as a reduced information. The measure of difference

between the reference depth map and distorted depth map is used to estimate the QoE of the LF

image. To train, test, and benchmark the objective metric a LF image quality dataset is designed.

First, the dataset is used to evaluate the performance of the existing quality metrics, when applied

to LF image. The achieved results strengthen the need of a new quality metric tuned to LF image.
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The proposed quality assessment method is also evaluated on the dataset; the achieved results prove

the importance of the proposed metric to the LF image. The dataset and the achieved results are

also included in Chapter 9.

A generic subjective quality assessment framework comprises of source sequence selection, dis-

tortion model, and selection of the subjective quality assessment protocol to LF image is resented

in Chapter 10. It is worthwhile to recall that the LF camera records, multiple views of a scene in a

single shoot, and thus LF image composes lots of redundant information. Therefore, an aggressive

compression of LF image is necessary for communication because of the redundancy and big size.

The compression method reduces the size in the cost of artifacts; the produce artifacts ultimately

degrades the QoE level. Therefore, a LF image quality dataset, referred as SMART LF image qual-

ity dataset, is created by considering Lytro Illum images and compression methods by following the

framework. In this dataset, only an all-in-focused view (small part of the LF image) of the LF image

is evaluated by the subjects. Therefore, by considering the limitation of the dataset, an another

experiment is scheduled with a wide range of SRCs and rendering methods. Meanwhile, a LF image

processing experimental setup is proposed for the subjective experiment of LF image. The setup

presents all the steps from scene selection to the display. By exploiting the setup a massive LF image

quality data set is going to be created aiming to benchmark the existing metrics and to develop the

metric tuned to LF image.

Finally, by using the proposed dataset, SMART LF image quality dataset, perceptual quality of

encoded image is studied. The achieved results show that the compression methods significantly de-

grade the perceived quality of LF image, and the level of the quality degradation varies for the images

with different content. The performances of compression methods are also evaluated for LF images.

The results show that the recently proposed plenoptic image compression method, SSDC [139], has

a better perceived quality at a same level of compression compared to other considered compression

methods: JPEG, JPEG2000, and HEVC intra. The results demonstrate the importance of specific

compression algorithms for LF data in order to reach a best possible quality. Next, the dataset is

also used to benchmark the widely used 2D IQMs, when applied to LF images. The results show

that, among the considered metrics, the quality scores predicted by PSNR-HVS-M has a better

correlation with corresponding subjective quality scores. However, there is still enough space to

improve the performance of the metrics.
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Patrick Le Callet, Jesús Gutiérrez, and Narciso Garcia. NAMA3DS1-COSPAD1: Subjec-

tive video quality assessment database on coding conditions introducing freely available high



BIBLIOGRAPHY 203

quality 3d stereoscopic sequences. In Quality of Multimedia Experience (QoMEX), 2012 Fourth

International Workshop on, pages 109–114. IEEE, 2012.

[233] Vaibhav Vaish and Andrew Adams. The (New) Stanford Light Field Archive, 2008.

[online]http:/lightfield.stanford.edu.

[234] Martın Varela, Lea Skorin-Kapov, Katrien De Moor, Peter Reichl, Chang Wen Chen, Periklis

Chatzimisios, Tasos Dagiuklas, and Luigi Atzori. QoE- defining a user-centric concept for

service quality. Multimedia Quality of Experience (QoE): Current Status and Future Require-

ments, page 5, 2015.

[235] Tay Vaughan. Multimedia: Making it work. Tata McGraw-Hill Education, 2006.

[236] Ashok Veeraraghavan, Ramesh Raskar, Amit Agrawal, Ankit Mohan, and Jack Tumblin. Dap-

pled photography: Mask enhanced cameras for heterodyned light fields and coded aperture

refocusing. ACM Trans. Graph., 26(3):69, 2007.

[237] Alexandre Vieira, Helder Duarte, Cristian Perra, Luis Tavora, and Pedro Assuncao. Data

formats for high efficiency coding of lytro-illum light fields. In Image Processing Theory, Tools

and Applications (IPTA), 2015 International Conference on, pages 494–497. IEEE, 2015.

[238] Irene Viola, Martin Rerabek, Tim Bruylants, Peter Schelkens, Fernando Pereira, and Touradj

Ebrahimi. Objective and subjective evaluation of light field image compression algorithms. In

32nd Picture Coding Symposium, number EPFL-CONF-221601, 2016.
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