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Chapter 1
Introduction

In the last 20 years the financial markets have been characterized by several
crisis, that have produced crashes, corrections and bear markets1. In the
past few decades, one may recall Black Monday (October 19, 1987), when
the Dow Jones fell more than 20% and many quantitative portfolio insurances
(option-based portfolio insurance (OBPI) and constant proportion portfolio
insurance (CPPI)) collapsed, and Black Wednesday (September 16, 1992),
when the British government was forced to withdraw the pound sterling from
the European Exchange Rate Mechanism. Later, in 1997, the UK Treasury
estimated the cost of Black Wednesday for £3.4 billion. At the end of the
1990s, the Russian government and the Russian Central Bank devalued the
ruble and defaulted (1998 Russian financial crisis).

An other example of a flash crash occurred on May 6, 2010, when the
Dow plummeted almost 1000 points in just a few minutes. This was caused
by a technical malfunction of quantitative trading programs. We may recall
an example of irrational exuberance that drove stock prices to unsustainable
levels at the end of the dot com bubble in 1999, which caused the NASDAQ
to drop in 2000 and became a bear market. From May 10, 1995 to March 10,
2000 the NASDAQ index earned 506.93%, whereas one year later, on March
9, 2001, this index lost 59% (as shown figure 1.1), back to price levels seen in
the summer of 1998.

In 2004, B. Mandelbrot published a book with the emblematic title ’The

(Mis)Behavior of Markets: A Fractal View of Risk, Ruin, and Reward ’ in
which he claimed that bubbles are unavoidable and endemic to the markets
[73]. He also questioned other authors about their main assumption: normally

1A stock market crash is when a stock index drops severely in a day or two of trading.
A correction is when the market falls 10% from its 52-week high over days, weeks, or even
months. A bear market is defined when the market falls another 10%, for a total decline of
20% or more.
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Figure 1.1: Time series of Nasdaq index cumulative returns from March 10,
2000 to March 9, 2001.

distributed asset returns. In his book he introduced new theories based on a
fractal view of the financial world, highliting the fat tail behaviour of asset
returns.

In 2007, the first signs of something going wrong with the American resi-
dential mortgage market could be observed. Bond markets had been flooded
with securitizations of all kinds. From December 31, 1999 to March 31, 2007
the American real estate market, measured by the index FHFA US House
Price, had grown almost like NASDAQ had done in the late 1990s (+68.46%).
Suddenly house prices collapsed, from March 31, 2007 to September 30, 2009
that index lost 12.5% (see figure 1.2) and it come back to the March 2005 price
(as shown figure 1.4). In that period borrowers did not repay loans that banks
had entrusted them (in figure 1.3 we present the % of the loan delinquencies
in the USA) and the delinquencies reached 10% of the total loans. This unex-
pected event led banks into a liquidity crisis. It was the beginning of a domino
effect that led to:

• the introduction of liquidity by the FED;

• the expansive monetary policy with interest rates close to zero;

• the acquisition of Fannie Mae and Freddie Mac by the government2;

• the rescue of Bear Stearns and AIG by the government;

• the acquisition of Merrill Lynch by Bank of America;

2On September 7, 2008 were being placed into conservator-ship of the Federal Housing
Finance Agency (FHFA). This action was seen as one of the most relevant government
intervention in the capital and bond markets.
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Figure 1.2: Time series of FHFA US House price cumulative returns from
March 30, 2007 to September 30, 2009.

Figure 1.3: Time series of US Delinquencies As % Of Total Loans SA from
June 30, 2003 to December 31, 2017.

• the bankruptcy of Lehman Brothers.

In 2008, as a result of this big bubble, the market crumbled. The Standard
and Poor’s 500 index during the crisis fell roughly by 52%. In figure 1.5 we
present the time series of Standard and Poor’s 500 index where we can easily
identify the deep drawdown periods.

Before the subprime crises, traditional strategic asset allocation theory was
deeply rooted in the mean-variance portfolio optimization framework devel-
oped by Markowitz [74, 77] and, therefore, the risk-gain analysis has become
a key issue for portfolio selection. However, the mean-variance optimization
methodology can be very sensitive to the input parameters required by the
model. Therefore, the problem of estimation errors becomes very relevant,
particularly for the expected returns of the assets. In addition, subjective es-
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Figure 1.4: Time series of FHFA US House price from December 31, 1999 to
December 31, 2017.

Figure 1.5: Time series of S&P500 index from December 31, 1999 to May 7,
2018.
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Introduction

timates of expected future returns can frequently be influenced and modified
by individual biases or by a priori investor view, such as the overestimation
of expected returns due to the really strong momentum of a particular asset
class or the economic cycle. Investors can also underestimate risk when they
consider one particular type of distribution of returns which may result in ig-
noring fat tails when markets collapse. As such, parameter estimation based
on past realized observations can contain a certain level of noise, especially if
the risk premia and correlations are time-varying.

The reaction to any crises, once the imminent danger has subsided, should
be to keep calm and to look back, evaluating what did not go as planned and de-
veloping methods and strategies to avoid or mitigate the impact of future crises
with similar characteristics. The recent financial crisis is no exception. As the
markets began to recover, rumors started circulating about ’next-generation
solutions’. Indeed, there has been strong criticism of the process of portfolio
selection based on mean-variance optimization and on the traditional 60/40
split between stocks and bonds. Both methods of constructing a portfolio were
the core asset allocation process employed by many institutions and private
investors.

The first and well-known rule in asset allocation is ’diversification’. This
principle evidently has its roots in common sense, rather than in portfolio
theory, and therefore dates back to the dawn of time. The Talmud, a collection
of Jewish laws created over 2000 years ago, suggests investing the money as
follows: one third in real estate, one third in shares and one third in liquid

reserves. In the first act of ’The Merchant of Venice’, written at the end of
the sixteenth century by Shakespeare, the protagonist Antonio says that his
wealth is spread over different vessels, in different places and is destined to

mature at different times. And in 1738 the great Swiss mathematician Daniel
Bernoulli stated precisely that ’...it is advisable to divide the assets exposed to

risk, rather than putting them at risk together at the same time’. In a nutshell,
the idea of diversification comes from afar and is well rooted in all cultures.
Some investors do not seem concerned by risk contribution and are thinking
that a traditional 60/40 portfolio offers a real diversified portfolio.

This thesis will deal with the problem facing investors in seeking to deter-
mine a ’well’ diversified asset allocation strategy. The thesis reviews the widely
used models to build up a portfolio avoiding the explicit use of expected re-
turns, so as minimum Risk, Risk Diversifications, and Capital Diversification
strategies. Our contribution to the literature is to provide the Equal Risk Con-
tribution (ERC) strategy based on Conditional Value at Risk (CVaR) and on
Conditional Value at Risk-deviation (CVaR-deviation) as a risk measure. More
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precisely, we first tackle these problems by means of a least-squares approach
and, then, under appropriate conditions, we provide an alternative approach to
finding a CVaRERC portfolio as a solution to a convex optimization problem.

From a theoretical and practical viewpoint, the solution of the convex prob-
lem can be easy to find (at least for a discrete probability space), but another
issue still remains: how do we can generate the discrete probability space?
Is it sufficient to use past realized asset returns or can we use a more clever
approach? In this thesis we consider both historical and simulated scenar-
ios as the input to portfolio selection problem specification. This means that
we use two different Risk Management approaches: Historical Simulation and
Historical Filtered Bootstrap.

Summing up, the questions that we would like to answer are:

1. Could we formulate and solve an ERC problem based on a coherent risk
measure as CVaR?

2. How intense is the effect of estimation errors on the ERCCVaR model?

3. Could we mitigate this effect?

4. Is there any difference between a historical scenario and a simulated
scenario?

In order to address such questions, at the end of this chapter we discuss the
motivations of our research. In chapter 2 we review the risk-based portfolio
models and introduce the backtesting setup, also presenting the main results
obtained using real data. In particular we explore seven datasets composed
of equity, bonds and commodities as base for the backtests. In chapter 3
we extend the ERC to CVaR-deviation and we investigate the stability of
the ERC CVaR-deviation solutions with respect to the input parameters. In
chapter 4 we review the Historical Filtered Bootstrap procedure that allows us
to generate future scenarios. We show how to use those scenarios for portfolio
selection and we also validate the Historical Filtered Bootstrap model using
both statistical accuracy and efficiency evaluation tests. In Chapter 5 we
provide a new risk management model that is a nice tool to estimate risk as
good as the sophisticated Historical Filtered Bootstrap strategy. In Chapter 6
we apply our Risk management approach to a balanced portfolio. That is a case
study particular relevant for financial industry because any asset managers all
over the world provide balanced investment solutions to their client. Indeed,
according to the data provided by BlackRock Investment Management and
State Street Global Advisor3, the US institutional investors and pensions fund

3These two companies kindly provided their Asset Under Management on June, 30 2018.
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are investing their wealth for about 5.5 Trillion US dollar on balanced portfolio
in the bond and equity market. Finally, Chapter 7 concludes.

1.1 Motivations

The Equal Risk Contribution (or Risk Parity) approach selects a portfolio
that is characterized by the requirement of having equal total risk contribu-
tion from each asset. The literature is typically focused on volatility as a risk
measure, however, according to the axioms of a coherent risk measure provided
by Artzner at al. (1999) (see [6]) volatility is not coherent risk measure. Our
contribution to literature is to extend the formulation of the Equal Risk Con-
tribution (ERC) strategy to CVaR that is a particular coherent risk measure.
In addition, we study the ERC portfolios using the CVaR-deviation. that is a
deviation risk measure (CVaR-deviation) similarly to volatility.

In this dissertation we investigate and compare the properties of these fol-
lowing three different types of portfolio selection approaches, that we named:
Minimum-Risk, Capital-Diversification and Risk-Diversification. For the Minimum-

Risk approach we consider two risk measures, variance and Conditional Value-
at-Risk (CVaR). Then we extend the analysis to the Conditional Value-at-
Risk deviation (CVaR-deviation). The Capital-Diversification strategy is rep-
resented by the Equally Weighted portfolio, which is also considered a bench-
mark in our experiments. For the Risk-Diversification models, we examine the
Risk Parity (RP) portfolio as in Maillard et al (2010) (see [72]), and the Naive
Risk Parity (NRP) portfolio, where the weight of an asset is proportional to
the inverse of its volatility. Note that this is the solution to the RP model
when the linear correlation among the assets is constant.

From a theoretical point of view, we suggest new developments of the ERC
approach based on CVaR as risk measure, where the objective is to select a
portfolio such that the total CVaR contributions of all assets are equal among
them. Similar to the NRP portfolio we find a closed-form solution for the
CVaR Equal Risk Contribution (CVaRERC) model in the case of the worst
CVaR scenario. We call it Naive CVaR Equal Risk Contribution (NCVaR-
ERC) portfolio. In this case, the weight of an asset is proportional to the
inverse of its intrinsic CVaR. To achieve a uniform distribution of risk alloca-
tion in the general case, we investigate a least-squares model, where CVaR-
ERC portfolios are included in the set of optimal solutions. However, since
the existence of a CVaRERC solution is not always guaranteed (see [34]), our
formulation can lead to a feasible portfolio which is as close as possible to a
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CVaRERC portfolio. Furthermore, under appropriate conditions, we provide
an alternative approach to finding a CVaRERC portfolio as a solution of a
convex optimization problem, also showing that the CVaR of the CVaRERC
portfolio is between those of the Minimum CVaR and of the EW portfolios.
We also extend the formulation of the convex optimization to ERC using the
CVaR-deviation as a risk measure, defined by Rockafellar et al. (2006) (see
[97]).

We also investigate the effect of possible estimation errors to the input
parameters of the portfolio selection models on the optimal portfolio weights,
following a similar to that proposed by Kondor et al. (2007) ([61]).

For the real-world backtest of models we use both historical and simu-
lated scenarios. The covariance matrix, which is needed in the Minimum-Risk

and in the Risk-Diversification strategies, is estimated in different ways using
daily returns on rolling windows of 500 days. More precisely, for historical
scenarios we adopt: the Maximum Likelihood (ML) covariance; the Exponen-
tial Weighted Moving Average (EWMA) covariance; the Shrinkage estimator
between ML and EWMA covariances; and the covariance matrix with Kendall
correlation, obtained by combining the intrinsic variances of the assets returns
and their Kendall correlations. We also use the covariance matrix obtained by
a Monte Carlo Simulation technique known as Historical Filtered Bootstrap
(see [8], [9] and [113]). Also for Minimum-Risk and Risk-Diversification strate-
gies based on CVaR as a risk measure, we adopt both historical and simulated
(Historical Filtered Bootstrap) scenarios. This means that, from a Risk Man-
agement viewpoint, we are analyzing two different methods to evaluate the
future portfolio return distribution.

We propose a way to reduce the estimation error increasing the number of
observations (T ). We noted that in the real world there is the lack of data
in financial time series. To let the estimate be accurate it could need more
than ten years of history. Thus, we will show that using Historical Filtered
Bootstrap we can generate millions of scenarios using only the last 500 daily
returns (two years history).

The Historical Filtered Bootstrap as a risk management tool was intro-
duced by Barone-Adesi et al. (1999) (see [8]). In order to validate this model
that was already intensively backtested by some authors (see [24] and [1] and
reference therein) we put in place a comparative backtest of the Historical Fil-
tered Bootstrap versus the common risk models used in the financial industry.
We contribute to the literature presenting a new risk model (called Shrunk
Volatility VaR) that reaches the same performance of the HFB models that
could be used by portfolio managers to have a first (good) estimate of the
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portfolio risk.

1.2 Literature Background

The popular Capital Asset Pricing Model (CAPM) shows that the market

portfolio is an optimal choice for an investor and that the CAPM equation can
be obtained by assuming that portfolio selection is done under the Markowitz’s
framework. In a nutshell, under the CAPM assumptions (see [104]), in con-
dition of equilibrium, the optimal portfolio choice coincides with the market

portfolio for all investors. Furthermore, it has been shown that asset expected
excess returns must be proportional to the product between the market port-
folio expected excess return and the beta coefficients of the assets, measuring
not-diversifiable systematic risk (see [104]). During the 1990s, there was a
rapid development of this passive management and, at the same time, a rapid
growth of the number of institutional investors. Many of these players used
passive management to invest in equity and bond markets. Regarding strate-
gic asset allocation, they basically used the mean-variance analysis developed
by Markowitz [74, 77] even though such an approach presents high sensitiv-
ity to input parameters, particularly for expected returns (see [20], [21] and
[37]). One trivial reason is that there was no other alternative quantitative
models for portfolio selection. Other motivations that favored the spread of
the mean-variance approach are its simplicity, the easy concept of balancing
gain (expected returns) and the corresponding risk (variance), and the subad-
ditivity property due to diversification. One of the lack of this process is that
investors believed that long-term historical expected returns, estimated from
the past history would have been useful in explaining the future. An example
of this way of working can be found during the dot-com crisis. Some insti-
tutional investors, in particular defined benefit pension plans lost a relevant
part of the invested capital because of their high exposure to equities [101].
However, the performance of the equity market between 2003 and 2007 gave
back the confidence that standard asset allocation models would continue to
work as well as before the bear market and that the dot-com crisis was a non-
recurring event. Nevertheless, the 2008 financial crisis highlighted the hidden
risk in many strategic asset allocations. For institutional investors, this crisis
was unprecedentedly severe. Indeed, in 2000, the dot-com crisis was limited
to large capitalization stocks, technology and telecommunications sectors. In
2008, the financial crisis led to a violent plunge in credit strategies and other
fixed-income related instruments as well. In addition, all equity sectors posted
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negative returns of approximately 50%, and the performance of hedge funds
was not satisfying. Although the use of several asset classes and the expo-
sure to different regions, the diversification methods á la Markowitz were not
enough to protect investments. Accordingly, Markowitz’s modern portfolio
theory (MPT) was strongly criticized by professionals4.

However, the issues were not totally due to the portfolio selection methods
used by the financial institutions. Indeed, much of the failure was caused by
the wrong estimation of the input parameters. Estimating expected returns
by historical scenarios led the portfolio selection models to overweight the per-
formance of equities. Investors also selected assets that were supposed to have
a low correlation with equities. Conversely, during the crisis the correlations
between different asset classes significantly increased and the diversification
benefit did not work.

To reduce the influence of estimation errors on portfolio selection, several
methods are suggested in the literature. These embrace approaches developed
in the area of statistics, such as shrinkage methods (see [56], [57], [58], [65]
and [66]) and bayesian approaches (see [10], [15], [71], [89] and [90]), robust
statistics [18], robust optimization procedures (see [45], [49], [50], [100] and
[107]), bayesian robust optimization (see [109]), robust estimation methods
[46], and a portfolio resampling method [81].

Some other scholars suggest to only minimize risk to avoid the use of ex-
pected return. We call this class of models Minimum-Risk strategies. However,
these approaches can lead to a portfolio poorly diversified in terms of risk (see
[72], [93], [94] and [98]). Accordingly, the recent global financial crisis started
in 2008 has given rise to a new research stream that aims at diversifying risk.

A straightforward method to diversify risk could be the choice of the
Equally Weighted (EW) portfolio. The EW portfolio is the one where the
capital is equally distributed among the assets. Clearly, its selection does not
use any in-sample information nor involves any optimization approach. How-
ever, the EW portfolio is often used in practice (see [14] and [110]), and some
authors claim that its practical out-of-sample performance is hard to beat on
real-world datasets [46]. We call this method Capital-Diversification strat-
egy. Nonetheless, if the market contains assets with very different intrinsic
risks, then the EW approach can lead to a portfolio with limited total risk
diversification among the assets.

Some very recent research effort are focused on risk allocation. Specifically,
they aim at selecting a portfolio such that each asset equally contributes to the

4AsianInvestors, Is Markowitz Dead?, December 2012.
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total portfolio risk. The formalization of the risk contribution of an individ-
ual asset is essentially based on Euler’s decomposition of a homogeneous risk
function. The risk measure commonly used in the Equal Risk Contribution
(ERC), also called Risk Parity (RP), models is volatility (see [7], [72], [98]).
It is known that the volatility of RP portfolios lies between that of Minimum
Variance (MinV) and of EW portfolios (see [72]). We call this class of models
Risk-Diversification strategies.

As regards the issue of the stability of portfolio selection models w.r.t.
a pertubation of the inputs, we consider a reference the study of Kondor et
al. (2007) (see [61]) that propose a methodology to analyze the impact of the
estimation errors on the optimal portfolio weights obtained by the models. The
authors examine the sensitivity to estimation errors of several minimum risk
(variance, MAD, CVaR, Maximum Loss) portfolios by considering an artificial
investment universe represented by multivariate standard normal returns with
different numbers n of assets and lengths T of the time series. In particular,
they show that Minimum CVaR portfolios already present high estimation
errors for values of n/T around 0.4.
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Chapter 2
Minimum Risk vs. Capital and Risk

Diversification strategies for portfolio

construction

In this chapter we test all models by using both historical and simulated sce-
narios. The covariance matrix, which is needed for the Minimum-Risk and in
the Risk-Diversification strategies, is estimated in different ways using daily
returns on rolling windows of 500 days. More precisely, for historical sce-
narios we adopt: the Maximum Likelihood (ML) covariance; the Exponential
Weighted Moving Average (EWMA) covariance; the Shrinkage estimator be-
tween ML and EWMA covariances; and the covariance matrix with Kendall
correlation, obtained by combining the intrinsic variances of the assets returns
and their Kendall correlations. We also use the covariance matrix obtained by
a Monte Carlo Simulation technique known as Historical Filtered Bootstrap.
Also for Minimum-Risk and Risk-Diversification strategies based on CVaR
as risk measure, we adopt both historical and simulated (Historical Filtered
Bootstrap) scenarios.

For each portfolio strategy we evaluate daily out-of-sample portfolio returns
with a rolling time windows approach. Then, for each out-of-sample portfolio
return obtained, we compute the following performance measures: annualized
expected return and volatility; Sharpe ratio; Maximum Drawdown (MDD);
Ulcer index; turnover; and Herfindahl index as risk diversification index. Fur-
thermore, to examine the statistical significance of the difference between the
Sharpe ratios of the out-of-sample returns for two given portfolios, we use the
bootstrapping methodology proposed by Ledoit and Wolf (2008) ([67]).
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2.1 Models and Methodologies

In this section we present three different categories of portfolio construction
models, each focused on different objectives: the minimization of risk, called
Minimum-Risk strategy; the requirement that the capital is equally distributed
among the assets, called Capital-Diversification strategy; and the requirement
that each asset contributes equally to the total portfolio risk, called Risk-

Diversification strategy. We describe here the models analyzed and we provide
a formulation for all of them. The complete list of portfolio strategies that we
examine is reported in Table 2.1.

Let us introduce some notations. In our analysis we use linear returns, so if

pit is the price of asset i at time t, then rit =
pit − pi(t−1)

pi(t−1)

represents its return

at time t. We denote by x the vector of decision variables whose components
xi represent the assets weights in a portfolio. Thus assuming that n assets
are available in an investment universe, the portfolio return RP (x) at time t

is Rt(x) =
n

∑

i=1

xirit. Let µ denote the vector whose components µi are the

expected returns of n assets, and let Σ denote their covariance matrix, where
the generic element σij is the covariance of the returns of asset i and asset j

with i, j = 1, . . . , n.

For all models the feasible portfolios are determined by the budget con-

straint (
n
∑

i=1

xi = 1) and by the no short-selling condition (xi ≥ 0 for all

i = 1, . . . , n).

2.1.1 Minimum-Risk strategy

2.1.1.1 Minimum Variance portfolio

In the classical Markowitz approach the Minimum Variance (MinV) portfolio
is the one obtained by minimizing the variance of the return of the whole
portfolio. Then, the MinV portfolio is achieved by solving the following convex
quadratic programming problem:

min
n
∑

i=1

n
∑

j=1

σijxixj

s.t.
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(2.1)
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Model Abbreviation

Minimum-Risk strategy
MinV portfolio with ML covariance MinV-ML
MinV portfolio with EWMA covariance MinV-EWMA
MinV portfolio with shrinkage estimator MinV-Shr
MinV portfolio with covariance matrix obtained by Kendall correlation MinV-Kend
MinV portfolio with covariance matrix obtained by Historical Filtered Bootstrap MinV-HFB
MinCVaR portfolio with historical scenarios (ε = 0.05) MinCVaR-Hist
MinCVaR portfolio with Historical Filtered Bootstrap scenarios (ε = 0.05) MinCVaR-HFB

Capital-Diversification strategy
Equally Weighted portfolio EW

Risk-Diversification strategy
Naive RP portfolio with ML covariance NRP-ML
Naive RP portfolio with EWMA covariance NRP-EWMA
Naive RP portfolio with shrinkage estimator NRP-Shr
Naive RP portfolio with covariance matrix obtained by Historical Filtered Bootstrap NRP-HFB
RP portfolio with ML covariance RP-ML
RP portfolio with EWMA covariance RP-EWMA
RP portfolio with shrinkage estimator RP-Shr
RP portfolio with covariance matrix obtained by Kendall correlation RP-Kend
RP portfolio with covariance matrix obtained by Historical Filtered Bootstrap RP-HFB
Naive CVaR ERC portfolio with historical scenarios (ε = 0.01, 0.05, 0.10) NCVaRERC-Hist-ε
Naive CVaR ERC portfolio with Historical Filtered Bootstrap scenarios (ε = 0.01, 0.05, 0.10) NCVaRERC-HFB-ε
CVaR ERC portfolio with historical scenarios (ε = 0.01, 0.05, 0.10) CVaRERC-Hist-ε
CVaR ERC portfolio with Historical Filtered Bootstrap scenarios (ε = 0.01, 0.05, 0.10) CVaRERC-HFB-ε

Table 2.1: List of portfolio strategies.

To implement this model only the estimate of the covariance matrix of asset
returns is needed, thus completely avoiding the problems due to the estimates
of the expected returns. In our experiments we compute the covariance matrix
using daily returns on a rolling window of 500 days. More specifically, we use:

1. the Maximum Likelihood (ML) covariance

σML
ij =

1

T

T
∑

t=1

(rit − µi)(rjt − µj)

where µi =
1
T

∑T

t=1 rit;

2. the Exponential Weighted Moving Average (EWMA) covariance

σEWMA
ij =

1− λ

1− λT

T
∑

t=1

λT−t
(

rit − µEWMA
i

)(

rjt − µEWMA
j

)

where µEWMA
i = 1−λ

1−λT

T
∑

t=1

λT−trit and the decay factor λ is fixed to 0.94

as in JP Morgan Risk Metrics technical document ([82]);

3. the Shrinkage estimator between ML and EWMA covariance

σShr
ij = γσML

ij + (1− γ)σEWMA
ij
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with the shrinkage factor γ = 0.5;

4. the covariance matrix with Kendall correlation, where the generic ele-
ment σKend

ij is obtained by combining the shrunk volatilities of assets
returns and their Kendall correlations ρKend

ij :

σKend
ij = ρKend

ij σShr
i σShr

j

We recall that the Kendall correlation is defined as follows. For given
assets i and j we say that a pair of their realizations (rit′ , rjt′), (rit′′ , rjt′′)
is concordant (discordant), if (rit′ −rjt′)(rit′′ −rjt′′) > 0 ((rit′ −rjt′)(rit′′ −

rjt′′) < 0). The Kendall rank correlation (often called Kendall’s tau)
ρKend
ij measures the intensity of dependence between the returns of assets

i and j (see [60]) in the following way

ρKend
ij =

nc
ij − nd

ij

1
2
T (T − 1)

where 1
2
T (T − 1) is the total number of pair combinations, nc

ij is the
number of concordant pairs, and nd

ij is the number of discordant pairs.
We support the intuition in [47], where the authors state that rank corre-
lation is much more robust than linear Pearson’s correlation coefficient.
They also provide an efficient algorithm to quickly calculate the Kendall
τ .

5. the covariance matrix is obtained with a Monte Carlo simulation tech-
nique known as Historical Filtered Bootstrap (see [8], [9], [24] and [113]).

2.1.1.2 Minimum CVaR portfolio

The Minimum CVaR (MinCVaR) model is a minimum risk model like the
previous one, but instead of variance it minimizes the Conditional Value-at-
Risk at a specified confidence level ε (CV aRε), namely the average of losses
in the worst 100ε% of the cases (see [5]), where losses are defined as negative
outcomes. The use of CVaR1 as a risk measure for asset allocation and risk
management is increasingly popular (see [3], [102] and [95]). This is due to
theoretical and computational reasons. From the theoretical viewpoint, CVaR
satisfies the axioms of a coherent risk measure (see [6]) and, furthermore,
the mean-CVaR model is consistent with second-order stochastic dominance

1CVaR is often also called average value-at-risk or expected shortfall
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(see [88]). From the computational viewpoint, the mean-CVaR model can be
efficiently solved by means of linear programming (see [96]).

The formal definition of CVaR is:

CV aRε(x) = −
1

ε

ε
∫

0

QRP (x)(α)dα ,

where QRP (x)(α) is the quantile function of the portfolio return RP (x). In our
analysis we set ε equal to 0.01, 0.05 and 0.10. However, since for these values
the portfolio performances are very similar, in Section 2.2 we report only the
results for ε = 0.05. Complete results are available in the web page ([30]).

The MinCVaR model can be written as follows:

min CV aRε(x)

s.t.
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(2.2)

As described in Rockafellar and Uryasev (2000) (see [96]), in the discrete case
we have

min
x

CV aRε(x) = min
(x,ζ)

ζ +
1

ε

T
∑

t=1

pt[
n

∑

i=1

−ritxi − ζ]+, (2.3)

where ζ ∈ R, [b]+ = max{0, b}, and pt is the probability of the scenario
of the portfolio losses lt =

∑n

i=1 −ritxi. We assume that the T scenarios
considered are equally likely, i.e., pt = 1/T . Furthermore, in order to linearize
the objective function, we introduce T auxiliary variables dt that are defined
as the deviations of the portfolio losses lt from ζ when lt > ζ, and 0 otherwise.
Note that, under some assumptions, the optimal value of ζ in (2.3) coincides
with V aRε of the optimal portfolio x that minimizes CV aRε (see [96]). Thus,
Problem (2.2) can be reformulated as the following Linear Programming (LP)
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problem

min ζ +
1

ε

1

T

T
∑

t=1

dt

s.t.

dt ≥
n

∑

i=1

−ritxi − ζ, t = 1, . . . , T

dt ≥ 0, t = 1, . . . , T
n

∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

ζ ∈ R

(2.4)

Similar to (2.1), also this model is based only on the minimization of risk, thus
avoiding problems in estimating expected returns. However, when varying the
confidence level ε, CV aRε can depend on wider ranges of the portfolio return
distribution. For the extreme case where ε = 1, −CV aRε(x) is equal to the
portfolio expected return. However, as shown by Kondor et al. (2007) (see
[61]), for appropriate values of the confidence level ε and of the ratio n/T , the
effect of the estimation error on CV aRε tends to be minimal. More precisely,
the simulation results reported in Figs. 16, 17 and 18 of Kondor et al. (2007)
(see [61]) show that the estimation errors of CV aRε(x) tend to be small for
small values of ε and n/T , and comparable to those of variance. Since in our
analysis we set ε = 0.01, 0.05, 0.10, and n/T is between 0.0028 and 0.0560, we
expect to have small estimation errors for the minimum risk portfolio.

For Problem (2.4) we use as inputs:

1. historical scenarios on a rolling window of 500 days;

2. Historical Filtered Bootstrap (HFB) scenarios.

Note that with the HFB approach we generate 10000 scenarios 20 days forward
that we use as inputs to Problem (2.4). The HFB approach is described in the
Chapter 4.

2.1.2 Capital-Diversification strategy

2.1.2.1 Equally Weighted portfolio

The Equally Weighted (EW) portfolio is the one where the capital is equally
distributed among the assets. In terms of relative weights we have xi = 1/n.
Clearly the choice of the EW portfolio does not use any in-sample information
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nor involve any optimization approach. We use this portfolio as a benchmark
to compare the performance of the portfolios constructed by the other models.

2.1.3 Risk Diversification strategy

2.1.3.1 Risk Parity portfolio

The Risk Parity (RP) portfolio, introduced by Maillard at al. (2010) [72], is
characterized by the requirement of having equal total risk contribution from
each asset:

TRCσ
i (x) = TRCσ

j (x) ⇔ xi (Σx)i = xj (Σx)j ∀i, j,

where TRCσ
i (x) = xi

∂σ(x)
∂xi

=
xi(Σx)i
σ(x)

= 1
σ(x)

n
∑

k=1

σikxixk is the total risk con-

tribution of asset i. It is easy to show that σ(x) =
n
∑

i=1

TRCσ
i (x). Thus, the

RP portfolio can be found by solving the following system of equations and
inequalities:



















xi (Σx)i = λ i = 1, ..., n
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(2.5)

This system of linear and quadratic equations and inequalities has a unique
solution (xRP , λRP ), at least when the covariance matrix Σ is positive definite
(for a complete proof see [105]). As inputs to Problem (2.5) we consider the
same covariance matrices used for the MinV portfolio (see Section 2.1.1.1).

2.1.3.2 Naive RP portfolio

When using volatility as risk measure, a naive approach to reach approximately
equal risk contributions of all assets is to consider the Naive Risk Parity (NRP)
portfolio with weights proportional to the inverse of the intrinsic volatility of
the assets, i.e.,

xNRP
i =

σ−1
i

n
∑

k=1

σ−1
k

∀i = 1, ..., n.

It is proved by Maillard et al. (2010) [72] that this coincides with the portfolio
obtained by solving Problem (2.5) when the correlations among the assets are
constant.
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2.1.3.3 CVaRERC portfolio

The CVaR Equal Risk Contribution (CVaRERC) portfolio is characterized by
the same requirement of the RP portfolio (see Section 2.1.3.1), i.e., to obtain
a portfolio composition that achieves equal total risk contribution among all
assets, where the risk is measured by CVaR. However, unlike volatility, CVaR
may be positive or negative, and in the latter case CVaR indicates a gain.
Since the Equal Risk Contribution approach makes sense only in the case of
positive risk, we decided to apply it only when the minimum CVaR is positive.
In the very few cases2 where the optimal value of Problem (2.2) is negative,
instead of the ERC approach we consider the minimum risk one.

Similar to volatility, CV aRε(x) is a homogeneous function of degree 1, there-
fore we can write

CV aRε(x) =
n

∑

i=1

xi

∂CV aRε(x)

∂xi

=
n

∑

i=1

TRCCV aR
i (x),

where TRCCV aR
i (x) = xi

∂CV aRε(x)
∂xi

is the total risk contribution of asset i.
Then, the CVaRERC portfolio is obtained by imposing the following condi-
tions:



















TRCCV aR
i (x) = λ ∀i = 1, ..., n
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(2.6)

In the case of continuous portfolio returns we have

TRCCV aR
i (x) = xi

∂CV aRε(x)

∂xi

= −xiE
[

ri|RP ≤ −V aRε(x)
]

(2.7)

(see [19] and [103]), while in the discrete case

CV aRε(x) = −
1

⌊εT ⌋

⌊εT ⌋
∑

k=1

R
(k)
P (x),

where R
(1)
P (x) ≤ R

(2)
P (x) ≤ . . . ≤ R

(T )
P (x) indicate the sorted outcomes of

2The analysis involves a total of 2830 optimization problems that arise by combining
7 datasets, around 200 different sampling periods, and 2 methods to represent the future
portfolio return distribution (historical and simulated). The minimum CVaR is negative
only 18 times out of 2830, i.e., approximately 0.6%.
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portfolio returns. Thus, Expression (2.7) becomes

TRCCV aR
i (x) = −xi

1

⌊εT ⌋

⌊εT ⌋
∑

k=1

ri
(k) .

However, since the existence of a CVaRERC solution is not always guaranteed
(see [34]), we formulate Problem (2.6) so as to lead to a feasible portfolio which
is as close as possible to a CVaRERC portfolio. More precisely, we minimize
the deviations of relative risk contributions TRCCV aR

i (x)

CV aRε(x)
from 1

n
, where 1

n
is the

relative risk contribution when TRCCV aR
i (x) = λ ∀i. Thus, we obtain the

following least-squares formulation:






























minx F (x) =
∑n

i=1

(

TRCCV aR
i (x)

CV aRε(x)
− 1

n

)2

s.t.
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(2.8)

We briefly explain, with an example, (see [79] for more details) that there may
be some cases in which the ERCCVaR does not exist while conversely the
sigma parity exists. Let us consider a correlation matrix

C =









1 −0.95 0.1

−0.95 1 0

0.1 0 1









and the single asset standard deviation as

s =









0.3

0.3

0.01









. With this specification of C and s the problem 2.5 has a

solution x∗ =









1.46%

3.99%

94.55%









. The TRCi = 0.558%. This asset universe could

not admit an ERCCVaR solutions provided the non negativity of portfolio
weights. The first two asset are highly negatively correlated and the third
is quite not correlated with the others. Once the CVaR is the conditional
expectation in the bad tail, may not exists scenarios that contributes equally
to CVaR. While asset 1 is plunging the asset 2 is gaining and asset 3 is going for
its own way. The mean also plays a relevant role, assuming that the expected

returns are defined as: µ =









−10%

10%

1%









, than the portfolio expected return

21



Models and Methodologies

will be 1.2% and (under normality assumption) the CV aR5% = 2.25%. Try
to figure out in the previous situation it could be impossible to find that each
asset contribute to the portfolio CVaR while one asset collapse and the other
will gain.

Note that, assuming positive minimum CVaR, F (x) is well-defined and
that if F (x∗) = 0, then x∗ is guaranteed to be an optimal solution to (2.8).
Thus we can use a local optimization method to solve the Problem (2.8) with a
certificate of global optimality when it is attained. Here we solve the Problem
(2.8) with Matlab 8.1 by using the built-in function fmincon. All experiments
are executed on a workstation with Intel Core Duo CPU (E7400, 2.8 GHz,
4 Gb RAM) under MS Windows XP. We set the starting point equal to the
Naive CVaR ERC portfolio described in the following section, namely

x0 =

{

CV aR−1
ε (ri)

∑n

j=1 CV aR−1
ε (rj)

}

i=1,...,n

.

As for Problem (2.4), we use as inputs to (2.8) both historical and Historical
Filtered Bootstrap (simulated) scenarios, and the running time to solve the
CVaRERC model is always within 10 secs. When a global solution is not found
by the local optimizer we can reformulate and solve the CVaRERC model by
using the following convex optimization problem

min CV aRε(y)

s.t.
n
∑

i=1

ln yi ≥ c

(2.9)

where c is an arbitrary constant. Indeed, the Lagrangian of Problem (2.9) is

L(y, λ) = CV aRε(y) + λ(c−
n

∑

i=1

ln yi)
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and every solution y∗ of (2.9) must satisfy the KKT conditions

∂L

∂y∗k
=

∂CV aRε(y
∗)

∂y∗k
− λ

1

y∗k
= 0 k = 1, . . . , n (2.10)

c−
n

∑

i=1

ln y∗i ≤ 0

λ ≥ 0

λ



c−
n

∑

i=1

ln y∗i



 = 0

Obviously yi > 0 for all i and from (2.10) we have

y∗k
∂CV aRε(y

∗)

∂y∗k
= λ ∀k = 1, . . . , n

meaning that all asset risk contributions are all equal as required in the sys-
tem (2.6). As mentioned above, since we seek ERC portfolios only when the
portfolios are risky, we assume CV aRε(y) > 0 (as is almost always the case
in our empirical analysis). Since CV aRε(y

∗) = nλ, this clearly implies λ > 0

and, in turn,
n
∑

i=1

ln y∗i = c. Note that Problem (2.9) consists in minimizing the

convex function CV aRε(y) on a convex set and thus any KKT point is also a
solution to (2.9). Furthermore, using the results in Rockafellar and Uryasev
(2000) ([96]), Problem (2.9) can be reformulated as follows:































































min
(y,ζ,d)

ζ +
1

ǫ

1

T

T
∑

t=1

dt

s.t.

dt ≥ −
n
∑

i=1

rityi − ζ t = 1, . . . , T

dt ≥ 0 t = 1, . . . , T
n
∑

i=1

ln yi ≥ c

ζ ∈ R

From a solution y∗ of (2.9) we easily obtain a CVaRERC portfolio that satisfies

the budget constraint by setting xCV aRERC
i = y∗i /

n
∑

j=1

y∗j . Note that xCV aRERC

is a solution to (2.9) with the constant c̃ =
n
∑

i=1

ln xCV aRERC
i = c − n ln

n
∑

j=1

y∗j .

With this constant, if we add to (2.9) the additional constraints y ∈ ∆ =

{y ∈ R
n :

n
∑

i=1

yi = 1, yi ≥ 0, i = 1, . . . , n}, the optimal solution remains
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unchanged.

Remark 2.1 Let y∗(c) denote the optimal solution to Problem (2.9) with the

additional constraint y ∈ ∆. Obviously, if c1 ≤ c2, then CV aRε(y
∗(c1)) ≤

CV aRε(y
∗(c2)). Recall that xCV aRERC = y∗(c̃). Furthermore, xMinCV aR co-

incides with y∗(−∞), i.e., with the solution to Problem (2.9) with the addi-

tional constraint y ∈ ∆, but without the logarithmic constraint. Thus clearly

CV aRε(x
MinCV aR) ≤ CV aRε(x

CV aRERC). Note that by Jensen’s inequality we

have
n
∑

i=1

ln(xi) ≤ −n ln(n). Hence Problem (2.9) has feasible solutions only

when c ≤ −n ln(n). Furthermore, for c = −n ln(n) the constraint of (2.9)

implies
n
∑

i=1

ln(xi) = −n ln(n), which has the only solution xEW
i = 1

n
for all i,

namely the Equally-Weighted (EW) portfolio which also belongs to ∆. Thus

we have xEW = y∗(−n ln(n)), so that

CV aRε(x
CV aRERC) ≤ CV aRε(x

EW ).

Therefore, the CVaR of the ERC portfolio is bounded between the CVaR of the

Minimum Risk portfolio and that of the EW portfolio.

2.1.3.4 Naive CVaRERC portfolio

We present here a new naive approach to reach approximately equal risk con-
tributions of all assets when the portfolio risk measure is CVaR. Specifically,
we are interested in the CVaRERC portfolio based on the worst case scenario
in terms of CVaR. The CVaR properties of sub-additivity and of positive ho-
mogeneity imply that CVaR is a convex function so that:

CV aRε(x) = CV aRε(RP (x)) = CV aRε(
n

∑

i=1

xiri) ≤
n

∑

i=1

xiCV aRε(ri) .

(2.11)
For a fixed portfolio x the RHS of (2.11) represents the scenario with the
maximum risk (in terms of CVaR). We call it Worst-Conditional Value-at-
Risk, CV aRW

ε (x) =
∑n

i=1 xiCV aRε(ri). This scenario represents the case
where there is no diversification benefit in the portfolio construction, namely
the portfolio risk is equal to the weighted sum of intrinsic assets risk. This
property is well known as comonotonicity (see [92] and reference therein). It
mainly refers to the perfect positive dependence between the components of a
random vector, essentially saying that they can be represented as increasing
functions of a single random variable. In two dimensions it is also possible
to consider perfect negative dependence, which is called countermonotonicity.
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In particular, the sum of the components X1 + X2 + . . . + Xn is the riskiest
if the joint probability distribution of the random vector X1 +X2 + . . . +Xn

is comonotonic. Furthermore, the α-quantile of the sum equals of the sum of
the α-quantiles of its components, hence comonotonic random variables are
quantile-additive.

Let TRCW
i (x) denote the total risk contribution of asset i to CV aRW

ε (x),
then it is straightforward to see that TRCW

i (x) = xiCV aRε(ri). Obviously,
CV aRW

ε (x) =
∑n

i=1 TRCW
i (x), where in general TRCW

i (x) 6= TRCW
j (x)

∀i 6= j. Let us consider now a portfolio x̄ for which TRCW
i (x̄) = TRCW

j (x̄)

∀i, j. This means that TRCW
i (x̄) = CV aRW

ε (x̄)/n ∀i = 1, . . . , n. We de-
note this common value of total risk contribution of each assets by TRCE =

CV aRW
ε (x̄)/n. As a consequence, the Equal Risk Contribution portfolio x̄ is

such that TRCE = x̄iCV aRε(ri) for i = 1, . . . , n, where in general
∑n

i=1 x̄i 6= 1.
Thus, we can write that

x̄i =
TRCE

CV aRε(ri)

=
CV aRW

ε (x̄)

nCV aRε(ri)
.

Requiring the normalization of such a portfolio we obtain

x∗
k =

x̄k
∑n

j=1 x̄j

=

CV aRW
ε (x̄)

nCV aRε(rk)
∑n

j=1
CV aRW

ε (x̄)
nCV aRε(rj)

=
CV aR−1

ε (rk)
∑n

j=1 CV aR−1
ε (rj)

. (2.12)

We call x∗ the Naive Conditional Value-at-Risk Equal Risk Contribution (NC-
VaRERC) portfolio, where the weights of the assets are proportional to the
inverse of their intrinsic risk. The higher (lower) the CVaR of an asset return,
the lower (higher) its weight in the ERC portfolio. The resulting total risk
contribution of asset k is

TRCk(x
∗) = x∗

kCV aRε(rk) ∀k

=
1

∑n

j=1 CV aR−1
ε (rj)

.

We point out that if CV aRε(rk) > 0 ∀k, then x∗ represents the unique CVaR-
ERC portfolio with x∗

i > 0,
∑n

i=1 x
∗
i = 1, corresponding to the Worst CVaR
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scenario CV aRW
ε , where

CV aRW
ε (x∗) =

n
∑n

j=1 CV aR−1
ε (rj)

.

It is the harmonic mean of the assets CVaRs. Note that the NCVaRERC
portfolio is similar to the Naive Risk Parity (NRP) portfolio, where the weights
of the assets are the inverse of their volatilities divided by the sum of the assets
volatility reciprocals.

We observe that in our empirical analysis we almost always found that
CV aRε(rk) > 0 for all k = 1, . . . , n. However, as stated above, CVaR could be
non-positive, thus constituting a gain. Clearly, in this case the NCVaRERC
portfolio (2.12) does not exist. However, the very unlikely case of CV aRε(rk) ≤

0 (for some k) corresponds to an asset k which can be seen as risk free asset. In
this case, we obviously force the NCVaRERC portfolio to have positive (equal)
weights for all assets with CV aRε(rk) ≤ 0 and zero otherwise.

2.1.4 Description of Performance Measures

Our goal is to study the performance of all models summarized in Table 2.1
across a variety of data sets. Our analysis relies on a rolling time windows
approach. More specifically, given a daily frequency data set of asset returns
with T outcomes, we consider an in-sample time window of M = 500 days.
Then, we evaluate the portfolio performance in the following 20 days (out-
of-sample), during which no rebalances are allowed. After this, we shift the
mentioned in-sample window by 20 days in order to cover the out-of-sample
period, we recompute the optimal portfolio w.r.t. the new in-sample window
and repeat. Then, for each portfolio strategy the rolling time windows ap-
proach generates T − M daily out-of-sample portfolio returns on which we
compute some performance measures, described in the following sections.

2.1.4.1 Sharpe ratio

For each portfolio strategy the Sharpe ratio is defined as the annualized av-
erage of out-of-sample portfolio returns µ̂out (called Annualized Expected Re-
turn, AER) divided by their annualized sample standard deviation σ̂out (called
Annualized Volatility, AV):

SR =
µ̂out

σ̂out
.

Furthermore, we examine the statistical significance of the difference between
the Sharpe ratios of the out-of-sample returns for two given portfolios, using
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the robust test proposed by Ledoit and Wolf (2008) [67]. Specifically, we test
the statistical significant differences of each portfolio strategy w.r.t. the EW
portfolio. For this purpose, we use the Matlab code provided by the authors
([111]). We conduct this analysis using out-of-sample portfolio returns with
two different frequencies: daily and monthly. Furthermore, for each frequency
we consider two block sizes in the bootstrap procedure of the Ledoit and Wolf
test to investigate its sensitivity: 1 and 10 days for daily returns; 1 and 3
months for monthly returns. In addition, we consider 5000 bootstrap resamples
for monthly data and 3000 bootstrap resamples for daily data, and a confidence
level of 95%. However, looking at the resulting p-values we find that for daily
data the robust test rejects the null hypothesis (the Sharpe ratio of a portfolio
is equal to that of another portfolio) more frequently than for monthly data.

In Section 2.2.2.1 we report only a summary of the empirical results, but full
results are available in the web page (see [30]).

2.1.4.2 Maximum Drawdown and Ulcer Index

Let us denote by Rout
τ the out-of-sample portfolio returns for each portfolio

strategy and let us consider the cumulative out-of-sample portfolio returns,
which correspond to the values of wealth after τ periods

Wτ = Wτ−1(1 +Rout
τ ) τ = M + 1, . . . , T (2.13)

with initial wealth WM = 1. We define the drawdowns as

ddτ =
Wτ −maxM+1≤s≤τ (Ws)

maxM+1≤s≤τ (Ws)
.

Note that the drawdowns ddτ are obviously negative. The Maximum Draw-
down Mdd corresponds to the worst drawdown or, equivalently, to the maxi-
mum potential loss achieved over the entire out-of-sample period:

Mdd = min
M+1≤τ≤T

(ddτ ). (2.14)

For a detailed discussion of this performance measure, see Chekhlov et al.
(2005) ([36] and references therein). In addition to the Maximum Drawdown,
we also examine the Ulcer Index (UI), that evaluates the depth and the du-
ration of drawdowns in prices over the out-of-sample period (see MacCann
(1989) [70]). Technically, UI is the square root of the mean of the squared
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percentage drawdowns ddτ with τ = M + 1, . . . , T :

UI =

√

∑T

τ=M+1 dd
2
τ

T −M
. (2.15)

The greater a drawdown in absolute value and the longer it takes to go back
to earlier highs, the higher the UI. Furthermore, the effect of the squaring op-
eration amplifies the contribution of high drawdowns with respect to the small
ones. In other words, UI highlights the impact of long and deep drawdowns.

2.1.4.3 Turnover

To evaluate the amount of trading required to perform in practice each portfolio
strategy, we use a measure of portfolio turnover. This is defined as the mean
on all rebalances of the sum of the absolute values of the trades across the n

available assets in the market:

Turn =
1

Q

Q
∑

j=1

n
∑

i=1

∣

∣wj,i − wj−1,i

∣

∣ , (2.16)

where Q is the number of rebalances realized (see [46]). We point out that with
this definition of portfolio turnover we examine only the amount of trading
generated by the models at each rebalance, without considering the trades
due to changes in asset prices between one rebalance and the next. Thus, by
definition, the turnover of the EW portfolio is zero.

2.1.4.4 Risk Diversification Index

The distribution of risk diversification provides a description of the portfolio
risk concentration structure. A syntectic index widely used to measure risk
concentration is the Herfindahl index (see [7] and [55])

HI =
n

∑

i=1

(RCRi)
2

where RCRi represents the relative contribution of asset i to total risk. We
consider here

RCRi =
TRCCV aR

i (x)

CV aRε(x)
,
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Data set ♯ of assets time interval abbreviation
1 Global diversified portfolio 6 03/01/1995-16/10/2014 GDP-Mix1
2 Italian Bond and Global Equity Portfolio 7 03/01/1995-16/10/2014 IBGEP-Mix2
3 Worldwide Asset 28 01/01/1999-16/10/2014 WWA-Mix3
4 Stock Picking on Eurostoxx50 9 04/01/2000-16/10/2014 Euro-Eq1
5 World Equity Sectors Portfolio 9 03/01/1995-16/10/2014 WES-Eq2
6 Equity Emerging Countries 11 03/01/1999-16/10/2014 EEC-Eq3
7 Euro Government Bond Portfolio 10 03/01/2000-16/10/2014 Euro-Bond

Table 2.2: List of data sets analyzed.

and we define a normalized version of the Herfindahl index (NHI) as follows

NHI =
1−HI

1− 1
n

,

so that NHI = 0 when all the risk is completely concentrated in one single
asset, while NHI = 1 when the risk is uniformly distributed among all the n

assets. Furthermore, since we have a value of NHI for each portfolio rebalance,
in this analysis we consider its average on all the rebalances as follows:

ANHI =
1

Q

Q
∑

j=1

NHIj, (2.17)

where Q is the number of rebalances realized.

2.2 Computational Results

In this section we present computational results for three different categories of
portfolio models, Minimum-Risk, Capital-Diversification and Risk-Diversification

on seven investment universes. In order to better appreciate the behavior of
different portfolio strategies, we consider data sets characterized by different
sources of risk. Thus, we select investment universes which consist of equities,
bonds and mixed assets as described below.

2.2.1 Data sets

We provide here some details about the seven real-world data sets, that are
summarized in Table 2.2. The data sets consist of daily prices obtained from
Bloomberg. We report below only a qualitative description of the seven data
sets. However, for a complete list of indices (including the Bloomberg tickers)
refer to the web site (see [29]).

1. GDP-Mix1: it consists of global stocks, government bonds, high-yield
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corporate bonds and commodities. These data generally are Total Re-
turn indices that include dividends; when they are not available we use
Price Return indices, where dividends are not included. This data set
is characterized by low correlations among the assets. Furthermore, in
terms of risk factors GDP-Mix1 can be featured by duration risk, credit
risk, equity risk, inflation risk.

2. IBGEP-Mix2: it consists of a mixture of equities, bonds and com-
modities. The equities come from the global market, while the bonds are
Italian short and long term government bonds. Furthermore, we include
a gold commodity that represents a safe asset for investors when there
are stress conditions in the market. The main risk factors that charac-
terize this investment universe are duration risk, credit risk, equity risk,
country risk.

3. WWA-Mix3: it consists of a mixture of equities (big and small capital-
ization equities both of developed and of emerging countries), of bonds
(corporate and government bonds with different maturity, rating, and
currency), of commodities (agriculture, precious and industrial metals,
energy) and real estate. We recognize many risk factors that character-
ize this investment universe as duration risk, credit risk, inflation risk,
equity risk, country risk, currency risk, real estate risk.

4. Euro-Eq1: it is based on a stock picking in Eurostoxx50 market, where
for each sector we choose (at the beginning of 2002) the companies with
greater weight on the Eurostoxx50 index. These data consist of Total
Return indices, where dividends are included, namely they are reinvested
in the company. In term of risk factors this data set is characterized only
by equity risk.

5. WES-Eq2: it comes from the world equity sectors provided by MSCI.
All indices are in USD and in term of risk factors this investment universe
is characterized only by equity risk.

6. EEC-Eq3: it consists of equities of emerging countries provided by
MSCI. All indices are in USD. The risk factors that characterize this
investment universe are equity risk and country risk.

7. Euro-Bond: it consists of Euro government bonds with constant matu-
rity. The maturity bucket is 7-10y for all government bonds and currency
is Euro. In term of risk factors we could recognize duration risk and credit
risk.
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We stress that the choice of data sets with a small number of assets (from 6 to
28) is done by focusing on the viewpoint of small investors, for whom it would
be hard to manage a large number of assets in a portfolio. Indeed, any asset
class in the investment universes listed in Table 2.2 is replicable by means of
mutual funds and/or ETFs, that are easily available to small investors.

2.2.2 Empirical analysis

In this section we discuss the main results of the empirical analysis on the
behavior of the models listed in Table 2.1. Specifically, for each portfolio we
compute the following performance measures:

• annualized expected return, volatility, and Sharpe ratio. Furthermore,
we report a synthesis of some results obtained by tests that try to evaluate
the statistical significance of the difference between the Sharpe ratios of
the out-of-sample returns for two given portfolios (Section 2.2.2.1).

• Maximum Drawdown and Ulcer index (Section 2.2.2.2).

• Turnover (Section 2.2.2.3).

• Risk Diversification index (Section 2.2.2.4).

In the tables of the following sections, for each asset universe we show with
different colors the rank of the performance results of the proposed models.
More in details, for each row (asset universe) the colors span from deep-green to
deep-red, where deep-green represents the best performance while deep-red the
worst one. Furthermore, this style of visualization allows for easier detection
of possible persistent behavioral pattern of a portfolio strategy (corresponding
to a column) on all data sets.

As mentioned above, we report here only a synthesis of the empirical results.
For a more detailed analysis, that includes all models and significance tests
discussed in the previous sections, we refer to the web page (see [30]).

2.2.2.1 Sharpe ratio

Table 2.3 reports the out-of-sample annualized expected return (Panel A),
variance (Panel B), and the Sharpe Ratio (Panel C) defined in Section 2.1.4.1.
From the results on annualized expected return (AER) we can observe that
Minimum-Risk strategies show generally poor performance for each data set,
while the EW portfolio often presents the best AER (4 out of 7 data sets). This
is because Capital-Diversification strategy is more exposed to assets with high
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returns (high volatilities) than Minimum-Risk strategies. Regarding the Euro-
Bond data set, MinCVaR-HFB has the highest AER, followed by MinV-Shr and
MinCVaR-HS. In this case it seems that minimizing tail risk measures allows
to avoid the Eurozone governments bond crisis, thus reducing the investment
in the so called PIGS countries. Risk-Diversification strategies seem to be a
compromise between Minimum-Risk and EW strategies. In particular, Risk-

Diversification portfolios show a slightly superior AER than Minimum-Risk

ones. Actually, Risk-Diversification models impose to invest in all asset, while
Minimum-Risk strategies allow to have some portfolio weights equal to 0.
Therefore, Risk-Diversification models, like the EW strategy, are more exposed
to assets with high returns (high volatilities) than Minimum-Risk models.

From the results on annualized volatility (AV) we can notice that Minimum-

Risk portfolios, as expected, are less volatile than the other strategies, ex-
cept for the MinV-EWMA portfolio. Nevertheless, among Risk Diversifica-

tion strategies the RP-ML portfolio presents good performance in terms of
volatility. Actually, Maximum Likelihood (ML) estimators determine low risk
portfolios both when minimizing variance and when diversifying it among the
assets by means of the Risk Parity strategy. It seems that the in-sample ML
estimation tends to better represent the out-of-sample projection of AV than
the in-sample EWMA estimation. On the other hand, the EW portfolio shows
the worst AV for each data set, again because this strategy by construction
selects all assets including those with high volatilities (high returns).

Regarding the Sharpe ratio (SR), Minimum-Risk portfolios seem to exhibit
high values in mixed investment universes (GDP-Mix1, IBGEP-Mix2, WWA-
Mix3) and in the Euro-Bond data set. The EW portfolio, due to high volatility,
shows the worst Sharpe ratios in these latter investment universes. On the
other hand, on mixed asset universes and on Euro-Bond, Risk-Diversification

portfolios present intermediate performance, except for the RP-ML portfolio
with the best SR on WWA-Mix3, and for the NRP-EWMA portfolio with the
best SR on GDP-Mix1. Regarding the equities universes (Euro-Eq1, WES-
Eq2, EEC-Eq3) there is no a clear dominance pattern. However, in 2 data
sets out of 3 (Euro-Eq1, EEC-Eq3) Risk-Diversification portfolios present the
best Sharpe ratios, while only in WES-Eq2 Minimum-Risk portfolios have the
highest values of SR. Panel D of Table 2.3 shows, in a synthetic way, the
results of several tests to evaluate the statistical significance of the difference
between Sharpe ratios of the out-of-sample returns for a given portfolio and
the EW portfolio. More precisely, we report the percentages of rejections of
the null hypothesis, i.e, the percentages where the Sharpe ratios for two given
portfolios are statistically different. Then, the highest value (100% in green)
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Table 2.3: Panel A: out-of-sample Annualized Expected Return. Panel B: out-of-

sample Annualized Volatility. Panel C: out-of-sample daily Sharpe Ratio. Panel

D: percentages of rejections of the null hypothesis, i.e, the percentages of the cases

where the Sharpe ratios for two given portfolios are statistically different.
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means that in the four tests performed (i.e., two block sizes for daily returns
and two block sizes for monthly returns, see Section 2.1.4.1) we can always
reject the hypothesis that the Sharpe Ratios of two portfolios are equal. On
the other hand, the lowest percentage (0% in red) shows that in any test the
Sharpe ratios are not statistically different. Note that on equity asset universes
(Euro-Eq1, WES-Eq2 and EEC-Eq3) Minimum-Risk and Risk Diversification

portfolios are almost always not different from the EW portfolio in terms of
Sharpe ratio. Indeed, we record only one rejection (when the block size is
equal to 1 month) for CVaRERC-HFB05 portfolio on the WES-Eq2 data set,
and two rejections (when the block sizes are equal to 1 and 3 months) for
the NCVaRERC-HFB05 portfolio on EEC-Eq3. On the other hand, in mixed
assets and bond assets universes the results are the opposite. Minimum-Risk

and Risk-Diversification portfolios yield Sharpe ratios statistically different
from those of the EW portfolio.

It seems that when investigating a data set with a single risk source and
when no active risk management procedure is allowed (see [42]), such as to
sell part of risky assets of a portfolio and to hold cash3), then no statistically
significant differences of SR occur. These results are quite similar to the find-
ings in Demiguel et al. (2009) [46] and more recently in Chow et al. (2011)
(see [38]), where the authors investigate on an investment universe of equities
and on the Fama-French portfolios. On the other hand, considering an assets
universe with multiple risk factors (such as GDP-Mix1, IBGEP-Mix2, WWA-
Mix3 and Euro-Bond) Minimum-Risk and Risk-Diversification portfolios seem
to achieve statistically significant superior Sharpe ratios with respect to the
EW portfolio.

2.2.2.2 Maximum Drawdown and Ulcer index

Table 2.4 reports the Maximum Drawdown (MDD) in Panel A, and the Ulcer
index (UI) in Panel B, computed by Expressions (2.14) and (2.15), respec-
tively. From the results on MDD and UI we observe that both performance
measures present similar patterns of dominance. Actually, for almost all data
sets, Minimum-Risk models lie in the “green zone” (i.e., low MDD and low
UI), except for the MinV-EWMA portfolio that presents medium-high val-
ues (“yellow-orange zone”). The EW portfolio, as for the case of volatility,
exhibits in almost all analyzed cases high MDD and high UI (“red zone”).
Risk-Diversification strategies present medium performance (“yellow zone”).

3A risk management procedure consists of a set of rules that change the risky assets
composition in a portfolio so that one could have

∑

n

i=1
xi < 1, where xi with i = 1, . . . , n

are the weights of risky assets.

34



Computational Results

However, NRP-ML and RP-ML portfolios show low MDD and low UI (“green
zone”). From preliminary results it seems that the EW portfolio tends to have
good performance when the market grows. However, during crisis periods (like
in 2008) the EW portfolio tends to show a severe Maximum Drawdown for all
the data sets but the Euro-Bond. In the latter data set, the EW portfolio
presents heavy Maximum Drawdowns after the Eurozone crisis in 2011 (see
Figure 2.1).

2.2.2.3 Turnover

In Panel C of Table 2.4 we report the turnover, defined as in (2.16). Again,
we stress that we are interested in the turnover generated by the models,
and not in the price adjustment turnover. Therefore, by construction, in this
analysis the EW portfolio has no turnover. It is interesting to observe that,
among Risk-Diversification strategies, RP-ML, NRP-ML, NCVaRERC-Hist05
and CVaRERC-Hist05 portfolios have very low turnovers for each data set
(with the maximum monthly mean value of 2%). Among Minimum-Risk mod-
els the MinV-ML portfolio presents good performance in terms of turnover for
each data set but the Euro-bond. The highest turnovers can be observed for
MinV-EWMA, MinV-HFB and MinCVaR-HFB portfolios. This can be due
to the fact that in these strategies the covariance estimations are less stable
during the portfolio rebalances. Actually, it seems that models characterized
from more stable inputs, such as ML covariance matrix or Historical CVaR,
allow to achieve low turnovers.

We stress that high turnovers can reduce the performance of models, due
to transaction costs.

2.2.2.4 Risk Diversification Index

In Panel D of Table 2.4 is reported the Risk Diversification Index (average
of the normalized Herfindahl index) defined as in (2.17), where ε = 0.05 and
CVaR is computed by HFB approach.

As expected, it is straightforward to verify that CVaRERC-HFB05 port-
folio has the best risk diversification. However, RP, NCVaRERC and CVaR-
ERC portfolios also present a good diversification in terms of risk. On the
other hand, Minimum-Risk strategies tend to concentrate risk in few assets,
thus showing the lowest risk diversification. The EW portfolio shows medium
performance ("yellow zone") similar to Naive Risk Parity portfolios.
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Table 2.4: Panel A: out-of-sample Maximum Drawdown. Panel B: out-of-sample

Ulcer index. Panel C: average Turnover. Panel D: average normalized Herfindhal

index.
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2.2.2.5 Strengths and weaknesses of the models considered

In this section we summarize some strengths and weaknesses of the several
analyzed strategies, showing their properties both in terms of performance
and of computational burden for portfolio construction.
Equally Weighted portfolio

Strengths:

• The EW portfolio is easy to implement and does not require any optimization

approach;

• it does not use any in-sample information, avoiding possible estimation errors;

• the EW portfolio has no turnover (we do not consider price adjustment turnover);

• it produces good out-of-sample expected returns;

• the EW portfolio presents medium performance in terms of risk diversification

w.r.t. CVaR5%.

Weaknesses:

• The EW strategy generates portfolios with very high out-of-sample risk both

in terms of volatility and of Maximum Drawdown.

Minimum Variance portfolios

Strengths:

• MinV portfolios show low out-of-sample risk;

• MinV approaches tend to not invest in all assets;

• when using ML estimators, the MinV portfolio has low turnover;

• MinV approaches generate portfolios with good out-of-sample Sharpe ratio.

Weaknesses:

• The MinV strategy could invest in few assets, so it could be poorly diversified

in terms of capital;

• MinV-EWMA and MinV-HFB portfolios present high turnover on 6 data sets

out of 7.

Minimum CVaR portfolios

Strengths:
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• MinCVaR strategies generate portfolios with low out-of-sample risk;

• MinCVaR-Hist portfolios show low turnover;

• MinCVaR approaches tend to not invest in all assets;

Weaknesses:

• The MinCVaR strategy, like almost all Minimum-Risk portfolios, shows poor

risk diversification.

NCVaRERC portfolios

Strengths:

• The NCVaRERC portfolio is easy to implement and does not require any

optimization approach;

• to determine the NCVaRERC portfolio, one only needs the marginal distribu-

tion of the assets and not the joint one;

• NCVaRERC portfolios present good risk diversification w.r.t. CVaR5%.

Weaknesses:

• the turnover of NCVaRERC portfolios strictly depends on the risk approach

(historical or simulated) used to estimate the intrinsic CVaRs of the assets;

• the NCVaRERC portfolio, by construction, always contains all assets.

Risk Parity portfolios

Strengths:

• RP-ML portfolios show a good out-of-sample performance in terms of Sharpe

ratio;

• the RP-ML approach produces portfolios with low risk both in terms of volatil-

ity and of Maximum Drawdown;

• RP portfolios present good risk diversification w.r.t. CVaR5%;

• RP portfolios show low turnover.

Weaknesses:

• The RP approach, by construction, always contains all assets, also very risky

ones.
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CVaRERC portfolio

Strengths:

• By construction, CVaRERC portfolios have the best risk diversification w.r.t.

CVaR5%, equally splitting risk among all assets;

• CVaRERC portfolios have a good out-of-sample expected return.

Weaknesses:

• the turnover of CVaRERC portfolios strictly depends on the risk approach

(historical or simulated) used to estimate the total CVaR and the contribution

of each asset to CVaR;

• the existence of a CVaRERC solution is not always guaranteed.

Finally, to better visualize the behavior and the trend of the portfolio strate-
gies considered, we show in Figure 2.1 the cumulative out-of-sample portfolio
returns defined as in (2.13) for a subset of the real-world data sets listed in
Table 2.2 (GDP-Mix1, WWA-Mix3, WES-Eq2, Euro-Bond). For reasons of
space and clarity, we only plot some Minimum-Risk and Risk-Diversification

portfolios together with the benchmark, i.e., the Equally Weighted portfolio.
The results obtained on the mixed assets universes (GDP-Mix1, WWA-

Mix3) clearly highlight the different behavior in terms of risk of the EW port-
folio w.r.t. the other portfolio strategies. Indeed, it is interesting to note that
on GDP-Mix1 the drawdown, which characterizes the period 2008-2009, is sig-
nificantly reduced for the Minimum-Risk and Risk-Diversification portfolios,
showing lines of cumulative out-of-sample returns more regular than that of
the EW portfolio. A similar behavior can be observed on the WWA-Mix3
data set, where the deepest drawdowns (2003 and 2009) of the EW portfolio
are completely avoided by the other models. Furthermore, the smooth trend
of the Minimum-Risk and Risk-Diversification curves visually show the high
values of Sharpe Ratios, obtained by these strategies.

Regarding the WES-Eq2 data set, we notice that the Risk-Diversification

portfolios tend to track the EW portfolio, while the Minimum-Risk portfolios
show large differences w.r.t. the benchmark between 1999 and 2002. However,
it seems that the latter strategies are preferable when the market is bearish.

Referring to the Euro-Bond data set, all the performance curves of the
analyzed portfolios show a similar behavior up to 2010, i.e., as long as this
investment universe is characterized by a single risk source (the interest rate).
However, when a new risk factor (the credit risk) appears, the portfolios ob-
tained by the models tend to have a better performance w.r.t. the EW port-
folio.
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2.3 Conclusions

In this chapter we have investigated on several portfolio selection models that
avoid the use of expected returns as inputs. The Equal Risk Contribution
strategy, due to the fact that it has the final goal to spread the risk among
all asset, does not deal with the expected return estimation. For this reason,
then, we proposed to solve the ERC problem as a convex optimization problem.
From a practical viewpoint we have compared the out-of-sample performance of
three different categories of portfolio selection models, namely Minimum-Risk,
Risk-Diversification and Capital-Diversification. The latter class of models,
represented by the Equally Weighted portfolio, is considered the benchmark.
For the first two classes of models, short selling and leverage are not allowed
thus making the feasible portfolios of the Minimum-Risk and of the Risk-

Diversification models as similar as possible to the benchmark.

The analysis is performed on seven different real-world data sets, which
consist of equities, bonds and mixed assets, each with different sources of risk.

We observe that the out-of-sample Sharpe ratio of many strategies is of-
ten higher than that of the Equally Weighted portfolio, mainly due to its
poor performance in terms of volatility. Indeed, the Minimum-Risk models
generally have very good Sharpe ratio in almost all assets universes, while the
Risk-Diversification models tend to have an intermediate position with Sharpe
ratios between those of the Minimum-Risk and of the Capital-Diversification

strategies. In addition, we examine the statistical significance of the out-of-
sample Sharpe ratio using the robust test proposed by Ledoit and Wolf (2008)
(see [67]). We find that on equity markets the Sharpe ratios obtained with
the models are not statistically different from the benchmark the EW port-
folio, while statistically significant differences are realized in the other invest-
ment universes. These empirical findings highlight that when one invests in a
market with a single source of risk, there is no clear dominance between the
Minimum-Risk, the Risk-Diversification portfolios, and the EW one. On the
other hand, when considering investment universes with multiple sources of
risk, the Minimum-Risk and the Risk-Diversification strategies tend to have
better performance than the Equally Weighted one. A relevant instance con-
cerns the Euro-Bond data set. Indeed, as long as this investment universe
is characterized by a single source of risk, namely the interest rate risk (up
to 2010), the portfolios analyzed are quite similar in performance. But when
a new risk factor (the credit risk) pops up, the performance of the portfolios
obtained by the models tend to become different from that of the EW portfolio.

However, with regard to out-of-sample expected returns, the EW portfolio
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performs well on several markets, but it is characterized by high risk both in
terms of volatility and of Maximum Drawdown and Ulcer Index. Therefore,
the EW portfolio could be an advisable strategy but only with an adequate
risk policy. On the other hand, the Minimum-Risk and the Risk-Diversification

models, by construction, tend to have a risk policy that yields damped draw-
downs w.r.t. those generated by the EW portfolio, but at the same time show
moderate gains. Indeed, although there is no constraint on portfolio expected
returns, the Minimum-Risk and the Risk-Diversification models show positive
annual expected returns for all data sets.

The turnover generated by the models has low values for all those models
that use historical scenarios to estimate inputs, and in particular those that
employ ML estimators.

Generally, one cannot find a clear dominance of a model over all others.
Each tested model responds to different requirements that could be related
to diverse investors attitudes. On one hand, as expected, the Minimum-Risk

models are advisable for risk averse investors, avoiding as much as possible
any shock represented by deep drawdowns. On the other hand, the Risk-

Diversification strategies seem to be appropriate for investors mildly averse to
total portfolio risk. Specifically, these investors tend to be willing to waive a
bit of safety and of return to achieve a more balanced portfolio in terms of
risk. Finally, although the Equally-Weighted approach embodies the concept
of high diversification, it generates portfolios with very high out-of-sample
risk both in terms of volatility and of Maximum Drawdown, but with good
out-of-sample expected returns. Therefore, according to our findings, such
Capital-Diversification model seems to be advisable for sufficiently risk-loving
investors, who try to maximize return without worrying about periods of deep
drawdowns.
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Chapter 3
Using CVaR-deviation for minimum

risk and Equal Risk Contribution

approaches

In this Chapter we introduce the CVaR-deviation as in Rockafellar et al. (see
[97]) as a deviation measure. This particular statistic has the characteristic
of being always positive and is able to come across the CVaR drawback. We
extend the Equal Risk Contribution problem to CVaR-deviation and we arrived
to the conclusion that we can solve it in the same way we proposed for CVaR.

Once we have used many risk measures we put in place a supervised ex-
periment in order to evaluate the effect of the estimation error on the optimal
portfolio weights. Kondor et al. (2007) (see [61]) note that covariance matrix
also is afflicted by estimation error that leads to optimized portfolio weights
very far from the theoretical ones. We replicate their methodology adding
CVaR-deviation for unconstrained portfolios weights (long-short portfolios).
We extend the test to long only portfolios considering the euclidean distance
between theoretical and optimized portfolios as a measure of the effect that
estimation error produces on portfolio weights. Within this we agree with
Kondor et al since we obtain their results. With respect to CVaR-deviation
we find that the effect of the estimation error is less than CVaR that leads to
more stable portfolios.

We extend the analysis to long only portfolios in order to consider also
Equal Risk Contribution portfolios. In this case, due to the fact that we set
a limited interval for portfolio weights (0 ≤ wi ≤ 1), we see that the effect
of estimation error on portfolio weights is extremely low with respect to the
previous case. We also note that the effect of estimation error is lower on ERC
portfolios.
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In the financial industry it is common to use historical data in order to
optimize portfolios. Each practitioner is aware that there is huge estimation
error when the number of securities is close to the time series length. In this
chapter we also propose a way of increasing the number of observations without
increasing the time series’ length. We use the Filtered Bootstrap procedure to
simulate hundred thousand of possible scenarios, doing so we squeeze the ratio
N/T that is crucial point to maintain under control the effect of estimation
error.

3.1 CVaR-deviation

A functional D : L → [0,∞] is called a deviation measure in the extended
sense if it satisfies:

D1: D(C) = 0 for constant C, but D(X) > 0 for nonconstant X;

D2: D((1− λ)X + λ(X ′) ≤ (1− λ)D(X) + λD(X ′) for λ ∈]0, 1[ (convexity);

D3: D(X) ≤ d when
∥

∥Xk −X
∥

∥ → 0 with D(Xk) ≤ d (closedness).

A functional D : L → [0,∞] is called a deviation measure in the basic sense if
it satisfies axioms D1, D2, D3 and D4:

D4: D(λX) = λD(X) (positive homogeneity).

A deviation measure in extended or basic sens is also coherent if it additionally
satisfies D5:

D5: D(X) ≤ sup(X − E[X]) (upper range boundedness).

Examples of deviation measures in the basic sense:

• Standard Deviation

• Standard Semideviations

• Mean Absolute Deviation

The Value-at-Risk deviation measure

V aR∆
ε (x) = V aRε(RP (x)− E[RP (x)])

ε− V aR does not satisfy convexity axioms D2, it is not a deviation measure,
while CVaR-deviation defined as

CV aR∆
ε (x) = CV aRε(RP (x)− E[RP (x)]) (3.1)
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is a coherent deviation measure in basic sense.

Rockafellar et al. (see [97]) showed the existence of a one-to-one corre-
spondence between deviation measures in the extended sense and averse risk
measures in the extended sense:

D(X) = R(X − E[X])

R(X) = D(X) + E[X])

R is coherent if end only if D is coherent and R is positive homogeneous if
and only if D is positive homogeneous.

3.2 Finding CVaR-deviation ERC portfolios

As described in section 2.1.3.3 the CVaR Equal Risk Contribution (CVaRERC)
portfolio is characterized by the same requirement of obtaining a portfolio
composition that achieves equal total risk contribution among all assets, where
the risk is measured by CVaR.

However, unlike volatility, CVaR may be positive or negative, and in the
latter case CVaR indicates a gain. Since the Equal Risk Contribution approach
makes sense only in the case of positive risk, we decided to apply it only when
the minimum CVaR is positive. In the very few cases where the optimal value
of Problem (2.2) is negative, instead of the ERC approach we considered the
minimum risk one.

An alternative risk measure, but related to CVaR, is CVaR-deviation that,
by definition is greater or equal to 0 (see [97] and [102]). The ERC portfolio
based on CVaR-deviation can be obtained as in the case of CVaR. Indeed,
CVaR-deviation is a homogeneous function of degree 1. Therefore we have

CV aR∆
ε (x) =

n
∑

i=1

xi

∂CV aR∆
ε (x)

∂xi

=
n

∑

i=1

TRCCV aR∆

i (x),

where TRCCV aR∆

i (x) = xi
∂CV aR∆

ε (x)
∂xi

is the total risk contribution of asset
i. Furthermore, we have

TRCCV aR∆

i (x) = xi(E
[

−ri|RP ≤ −V aRε(x)
]

− µi) (3.2)

(see [19] and [103]). Thus, the CVaR-deviation ERC portfolio can be obtained
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by solving the following system of equations and inequalities:


















TRCCV aR∆

i (x) = λ ∀i = 1, ..., n
n
∑

i=1

xi = 1

xi ≥ 0 i = 1, . . . , n

(3.3)

Similar to (2.9), we can find the CVaR-deviation ERC portfolio by solving the
convex optimization problem

min CV aR∆
ε (y)

s.t.
n
∑

i=1

ln yi ≥ c

(3.4)

where c is an arbitrary constant.
It is straightforward to highlight that the differences in portfolio weights

using CVaR or CVaR-deviation as risk measure. The former is sensible to
expected returns while the latter is not. The reason is: if for a single asset
i we increase the expected return his CVaR is less than before (it is going
to be less riskier than before) and than its portfolio weight calculated using
ERCCVaR will increases. The same situation will not change the portfolio
weights in the case of ERCCVaR-deviation.

3.3 Sensitivity to estimation errors of the opti-

mal portfolios

In this section, we follow the procedure presented by Kondor et al. (2007)
[61]. Therefore we consider standard normal market where the covariance
matrix is the identity matrix. Let N the number of asset in portfolio and
let T the available number of observation. In this test we focus on some
values of the ratio N/T . In particular we set the value of T = 500 as is
common in financial industry. We investigate some particular values of N =

{25, 50, 75, 100, 125, 150, 200, 250, 375, 425}. Doing so the inf N/T = 0.05 and
supN/T = 0.85. In order to obtain negligible the estimation error one should
set T → ∞. Due to the fact that process is not feasible, in order to obtain
a measure the effect of the estimation errors, we replicate any optimization
procedure 100 times.

Kondor et al. (2007) ([61]) propose as a stability measure the relative
sub-optimality which in the case of minimum variance portfolio is
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q20 =
w′∗Σ(0)w∗

w′(0)∗Σ(0)w(0)∗
(3.5)

where w(0)∗ are the weights of the portfolio selected using Σ(0) (the true covari-
ance matrix, i.e, the identity matrix), and w∗ is the optimal portfolio obtained
using the empirical covariance matrix Σ, that is perturbed w.r.t. Σ(0). The
square root of the denominator in Equation 3.5 is the true risk (standard de-
viation) of the portfolio, while the square root of the numerator is the risk
we run when using the weights derived from the empirical covariance matrix.
Since the weights w∗ are optimal under the empirical covariance matrix which
is different from Σ(0), the numerator of Equation (3.5) will always be larger
than the denominator, q0 is always larger than 1 and goes to 1 only when
T → +∞.

Considering Minimum Variance optimization q̄0 has a closed form solution
that is

q̄0 =
1

√

1− N
T

(3.6)

In the same framework, we also examine the stability of the minimum
risk portfolio using Conditional VaR and Conditional VaR Deviation as risk
measure. To evaluate the noise sensitivity of CVaR and CVaR Deviation, we
use as stability measure the relative sub-optimality that in this case is:

q20,CV aR =

∑

i(w
∗
i )

2

∑

i(w
(0)∗
i )2

(3.7)

Now, since in a standard normal market the true optimal weights coincides
to those of the EW portfolio (i.e., w(0)∗

i = 1/N), we have that

q20,CV aR = N
∑

i

(w∗
i )

2. (3.8)

In section 3.3.1 we examine the case in which wi ∈ R and in section 3.3.2
the case in which wi ∈ [0, 1].

3.3.1 Long-short optimal portfolios

In this section we present the stability analysis for long-short minimum risk
portfolios, as in [61]. We calculate the average of q0 on 100 experiment
replications, by varying N and T (see section 3.3). We perform the sta-
bility analysis for CVaR and CVaR-deviation, setting the confidence level
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ε = 0.3, 0.2, 0.1, 0.05, 0.01, thus focusing on the ’bad’ tail of returns distri-
bution. In Figures 3.1, 3.2, 3.3, 3.4 and 3.5 we show the q̄0 values as function
of the ratio N/T with respect to the selected ε.

We note that the empirical values of q̄0 considering the minimum variance
portfolio are quite similar to the theoretical one. Minimum CVaR portfolio
is pretty stable for N/T < 0.4 with exception of ε = 0.3 in which is stable
for N/T < 0.3. It also shows a higher effect of estimation error with respect
to Minimum Variance. Minimum CVaR Deviation has intermediate effect
of estimation error between Minimum Variance and Minimum CVaR. It is
unstable with high values of ε and when the ratio N/T > 0.5

In Figures 3.6 and 3.7 we report the q̄0, calculated for Minimum CVaR
and Minimun CVaR Deviation, as a function of β = (1 − ε) for the ratio
N/T = 0.25 and N/T = 0.05 respectively. We find a sort of stability from
values of 0.7 ≤ β ≤ 0.9 while for β > 0.9 the q̄0 is slightly increasing.

In order to validate the previous statement, we put in place more extensive
tests considering the ratio N/T = 0.25 and N/T = 0.05. We set ε ∈ [0.01, 0.5]

and we show the calculated q̄0 in the Figures 3.8 and 3.9. For both experiments
we set N = 50. Considering the ratio N/T = 0.25 we can recognize a similar
shape that Kondor et al. (2007) (see [61]) shows in Figure 16. On the Minimum
CVaR, the effect of the estimation error has a minimum near to 0.78 while
Minimun CVaR deviation shows that the effect estimation error increases as
β increases (ε decreases). Considering the ratio N/T = 0.05, as expected, the
effect of the estimation error is extremely small with respect to the previous
case. Both models have the same shape as before with the exception that
Minimum CVaR is not afflicted by huge estimation error when β = 0.5.

3.3.2 Long only optimal portfolios

In the previous section, we notice that CVaR and CVaR Deviation minimiza-
tion suffer the effet of the estimation error due to the increasing N/T ratio. In
order to evaluate how portfolio constraints mitigate the effect of the estima-
tion error, we decided to introduce the lower and the upper bound for portfolio
weight. In particular 0 ≤ wi ≤ 1. We utilize the same values of ε, N and T as
in section 3.3.1.

In Figures 3.10, 3.11, 3.12, 3.13 and 3.14 we show the q̄0 values as function
of the ratio N/T with respect to ε.

Introducing boundaries for portfolio weights we eliminate the bad effect
of the estimation error. The variability of portfolio weights remains under
control for all optimization procedures. Minimum CVaR and Minimum CVaR
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Figure 3.1: Minimum Risk Optimization without boundaries: q0 mean value
of 100 replications ε = 1%.
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Figure 3.2: Minimum Risk Optimization without boundaries: q0 mean value
of 100 replications ε = 5%.
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Figure 3.3: Minimum Risk Optimization without boundaries: q0 mean value
of 100 replications ε = 10%.
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Figure 3.4: Minimum Risk Optimization without boundaries: q0 mean value
of 100 replications ε = 20%.

50



Sensitivity to estimation errors of the optimal portfolios

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9N/T
1

1.5

2

2.5

3

3.5

4

4.5

5

E
[q

0]

Min Risk Optimization without boundaries mean values of 100 replication ǫ=30%

Min Variance
Min CVaR
Min CVaR Dev
Min Variance true solution

Figure 3.5: Minimum Risk Optimization without boundaries: q0 mean value
of 100 replications ε = 30%.
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Figure 3.6: q̄0 as a function of β for fixed N/T = 0.25: unbounded weights
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Figure 3.7: q̄0 as a function of β for fixed N/T = 0.05: unbounded weights
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Figure 3.8: q̄0 as a function of β for fixed N/T = 0.25: unbounded weights
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Figure 3.9: q̄0 as a function of β for fixed N/T = 0.05: unbounded weights
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Deviation show that the effect of the estimation error is still present and it is
higher with respect to minimum variance when N/T ≤ 0.5. When the ratio
grows up the effect of the estimation error on minimum variance increases
faster than the other models.

In Figures 3.15 we report the q̄0, calculated for Minimum Variance. Mini-
mum CVaR and Minimun CVaR Deviation as a function of β = (1− ε) for the
ratio N/T = 0.25 and N/T = 0.05 respectively. We find a sort of stability for
all portfolio optimization procedures. The Minimum Variance portfolio is the
more stable while the other two procedures have an oscillating shape around
the value 1.25 (Min CVaR Deviation) and 1.33 (Min CVaR). In Figure 3.16
we recognize the same path discovered for unconstrained portfolio weights.

As observed by Kondor et al. (2007) [61] A remark on the role of the sim-

plifying assumptions above is in order. As the instability of portfolio selection

is an information-deficit catastrophe, we do not believe that the use of real

market data, or non-stationary time series, or fat-tailed distributions, or the

introduction of a risk free asset and a constraint on expected return would qual-

itatively modify our conclusions. This is not at all true of the last assumption,

the lack of a constraint on short selling. It is evident that a ban on short sell-

ing (or any other set of constraints that would render the domain over which

we seek an optimum finite) would automatically eliminate the possibility of a

divergence. It would then seem that our results refer to a completely unrealistic

case. We insist, however, that it is useful to consider this unrealistic case first,

because it helps understand the root of the instability and identify the strong

residual fluctuations that reflect this instability even after the constraints are

reintroduced. We find exactly what the authors state.

3.4 Evalutate Estimation Error on ERC portfo-

lios

In this section, in order to evaluate the effect of the estimation error on portfolio
weights, we define a new measure instead of the q0 seen in the previous section.
Our goal is to identify how far the optimized portfolio is from the theoretical
one. A common measure of distance can be useful in order to achieve our
objective. The Euclidean distance between vectors is defined as the norm
of the difference of the portfolio weights. Let w∗ be the optimized portfolio
under the perturbed scenario and w(0)∗ the theoretical portfolio under the unit
covariance matrix, and the two are points in the space Rn, then

∥

∥

∥
w∗ − w(0)∗

∥

∥

∥

represent the distance between the optimized portfolio and the true portfolio
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Figure 3.10: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 1%.
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Figure 3.11: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 5%.
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Figure 3.12: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 10%.
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Figure 3.13: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 20%.
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Figure 3.14: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 30%.
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Figure 3.15: q̄0 as a function of β for fixed N/T = 0.25: bounded weights
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Figure 3.16: q̄0 as a function of β for fixed N/T = 0.05: bounded weights

composition. In this section, we only consider bounded portfolios in which
0 ≤ w∗ ≤ 1, due to the fact that for ERC portfolios we require positive
portfolio weights and no leverage.

In figures 3.17, 3.18, 3.19 and 3.20 we analyze the extreme scenario where
ε = 1%. The reference portfolio, the minimum variance, shows a quite stable
dispersion over all the considered ratios N/T assuming mean value around
0.045. ERC portfolio has a maximum of variability among portfolio weights
when 0.15 ≤ N/T ≤ 0.30. Minimum CVaR and Minimum CVaR-deviation
portfolios have high variability for small values of the ratio N/T that quickly
decreases when N/T increases. The high variability when N/T is close to 0 is
due to the fact that we are analyzing few scenarios (5 out of 500) and it brings
the optimization procedure to consider extreme cases. In fact, any portfolio can
generate a mean distance above the one generated by the minimum variance
portfolio.

In figures 3.21, 3.22, 3.23 and 3.24 we analyze the scenario where ε = 5%. In
this case we have the same pattern seen before for Min CVaR and Min CVaR-
deviation while ERC portfolios have a stable pattern close to the minimum
variance. We are analyzing 25 out of 500 scenarios and the extreme scenarios
are quite mitigated.

In figures 3.25, 3.26, 3.27 and 3.28 we analyze the scenario where ε =

10%. In this case we have the same pattern seen before for Min CVaR and
Min CVaR-deviation but both distances diminish considerably in value. ERC
portfolios have a stable pattern below to minimum variance. We are analyzing
50 out of 500 scenarios and the extreme scenarios are very well mitigated.

In figures 3.29, 3.30, 3.31, 3.32 3.33, 3.34, 3.35 and 3.36 we analyze the
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scenario where ε = 20% and ε = 30%. We notice a stability of the recorded
distance in which the minimum CVaR and minimum CVaR deviation are above
the minimum variance and the ERC portfolios are below the minimum vari-
ance. The effect of extreme scenarios in the tail are completely mitigated.

In conclusion, when we use 500 realized scenarios as in the typical

way to optimize portfolios using historical returns we notice that few

extreme scenarios are able to produce different values of portfolio

weight due to the effect of estimation error. This happens mainly

when the value of ε is small.

We put in place a new test to consider this effect by setting a fixed ratio of
N/T = 0.15 and replicating the analysis above, sampling from an independent
standard Normal distribution, using T = 100, 1000, 10000. As a consequence
we need a number of asset in portfolio N equal to 15, 150, 1500, respectively.
We replicate 100 times the experiment considering ε = 5%. We expect to
record high variability in the distance when T = 100 and we also expect high
values of it. In figure 3.37 we show the result for T = 100, there is a huge
variability and the mean distance is not below 0.06 for all portfolios. In figure
3.38 we see that the variability decreases and the distance mean value is always
below 0.065. In figure 3.39 we replicate only 10 times the procedure using the
last values1. Although we replicate the experiment only 10 times we notice
that distance mean value is below 0.02 for each model. Min CVaR and Min
CVaR-deviation have the same shape observed in figure 3.21. This conducts to
the conclusion that the effect of the estimation error on the portfolio weights
still remain high.

Figure 3.40 shows the distance mean values on an x log scale. The ERC
portfolios are very close to the minimum variance while the Min CVaR and
Min CVaR-deviation are always above it. A second consideration is that if we
want to reduce the estimation error we must increase the number of data taken
into account: for each increment of an order of magnitude, the mean distance
value is reduced by a factor of 1/3.

Summarizing, fixing the level of confidence level ε = 5% and the ratio
N/T = 15% and increasing the number of observations T , we notice that the
effect of the estimation error tends to quickly diminish. In real world when we
have more than 1000 assets in the portfolio (it happens in a bank trade book)
we need more than 10000 points to avoid a huge effect of the estimation error.
In the next chapter, we analyze a procedure that allows to overcome this issue.

1The computational time is roughly 33 hours using a workstation CPU Intel Xeon v5
3.30GHz, RAM 16GB, Windows XP 7 Professional 64 bit.
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Figure 3.17: Euclidean distance distribution of 100 replications ε = 1%, N =
25, 50, 75, 100

Figure 3.18: Euclidean distance distribution of 100 replications ε = 1%,N =
125, 150, 200, 250
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Figure 3.19: Euclidean distance distribution of 100 replications ε = 1%,N =
375, 425
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Figure 3.20: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 1%.
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Figure 3.21: Euclidean distance distribution of 100 replications ε = 5%, N =
25, 50, 75, 100

Figure 3.22: Euclidean distance distribution of 100 replications ε = 5%,N =
125, 150, 200, 250
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Figure 3.23: Euclidean distance distribution of 100 replications ε = 5%,N =
375, 425
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Figure 3.24: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 5%.
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Figure 3.25: Euclidean distance distribution of 100 replications ε = 10%,
N = 25, 50, 75, 100

Figure 3.26: Euclidean distance distribution of 100 replications ε = 10%,N =
125, 150, 200, 250
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Figure 3.27: Euclidean distance distribution of 100 replications ε = 10%,N =
375, 425
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Figure 3.28: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 10%.
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Figure 3.29: Euclidean distance distribution of 100 replications ε = 20%,
N = 25, 50, 75, 100

Figure 3.30: Euclidean distance distribution of 100 replications ε = 20%,N =
125, 150, 200, 250
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Figure 3.31: Euclidean distance distribution of 100 replications ε = 20%,N =
375, 425
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Figure 3.32: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 20%.
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Figure 3.33: Euclidean distance distribution of 100 replications ε = 30%,
N = 25, 50, 75, 100

Figure 3.34: Euclidean distance distribution of 100 replications ε = 30%,N =
125, 150, 200, 250
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Figure 3.35: Euclidean distance distribution of 100 replications ε = 30%,N =
375, 425

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N/T

D
is

ta
nc

e

Risk Optimization with boundaries mean values of 100 replication ε=30%

 

 

Min Variance
Min CVaR
Min CVaR Dev
ERC CVaR
ERC CVaR Deviation

Figure 3.36: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications ε = 30%.

68



Evalutate Estimation Error on ERC portfolios

Figure 3.37: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications N = 15, T = 100, ε = 5%.

Figure 3.38: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 100 replications N = 150, T = 1000, ε = 5%.
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Evalutate Estimation Error on ERC portfolios

Figure 3.39: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: q0 mean value of 10 replications N = 1500, T = 10000, ε = 5%.
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Figure 3.40: Minimum Risk and Equally Risk Contribution Optimization with
boundaries: mean value of Euclidean distance N/T = 15%, ε = 5%.
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Chapter 4
How to model the future assets’ returns

In the previous chapter, we showed how the ratio N/T generates noise into
the estimation procedure. It is common in practice to use historical prices as
input for portfolio optimization. As we see, a large number of asset requires
a very long prices time series. In order to overcome this problem, we use a
simulation procedure we describe in the following sections. It requires only
the last 500 daily returns to estimate parameter and to simulate future assets
paths. We are used to simulating 20 days ahead sampling from the returns
distribution standardized residuals. Since we use a bootstrap procedure on a
sample of size 500 and we generate 20 days ahead we may potentially have
T = 50020 different monthly returns. Hereafter we use a different length of
T = 103, 104, 105, 106 with the goal to reduce as much as possible the ratio
N/T .

In order to estimate CVaR for each asset, we apply a really powerful pro-
cedure called Historical Filtered Bootstrap. The Historical Filtered Bootstrap
VaR (HFBVaR) approach (see [8], [24], [113] and [78]) is a mixed procedure
in which one represents the market returns using, for instance, an autoregres-
sive moving average generalized autoregressive conditional heteroschedasticity
(ARMA-GARCH or ARMA-EGARCH or ARMA-GJRGARCH) model to fil-
ter the time series. This approach leads to compute the empirical standardized
residuals from data without assuming on them any specific probability distri-
bution. Below we give a step-by-step description of the HFBVaR procedure.

1. We filter the time series of each asset by a univariate ARMA-GARCH
model. More precisely, for the observed returns of the asset k we find the
Maximum Likelihood estimators of the following AR(1)-StudT-GARCH(1,1)
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How to model the future assets’ returns

model:

AR(1) : rt,k = ak + bkrt−1,k + ηt,k

StudT-GARCH(1,1) : σ2
t,k = αk + βkσ

2
t−1,k + γkη

2
t−1,k

ηt,k = σt,kzt,k

where zt,k =
√

νk−2
νk

Tνk , Tνk follows a Student-T distribution with νk de-

grees of freedom, and θ̂ = {ak, bk, αk, βk, γk, νk} are Maximum Likelihood
estimators (see [108] and reference therein) obtained on 500 daily data.

2. Using the set of estimators θ̂ = {ak, bk, αk, βk, γk, νk} for all n assets
available in the market, we compute from data the standardize residuals
ẑt,k with t = 1, . . . , T and k = 1, . . . , n, i.e., we divide the empirical
residuals η̂t,k by their estimated volatilities σ̂t,k.

3. We bootstrap in a parallel fashion the matrix of the empirical standard-
ized residuals Ẑ =

{

ẑt,k
}

with t = 1, . . . , T and k = 1, . . . , n. More
precisely, we randomly sample with replacement the rows of the matrix
Ẑ, thus allowing to capture the multivariate shocks of the entire system.

4. The bootstrapped standardized residuals Ẑboot =
{

ẑboots,k

}

, with s =

1, . . . , S and k = 1, . . . , n, are then used as multivariate innovations in
the (univariate) AR(1)-StudT-GARCH(1,1) models to simulate the one-
day-ahead returns. In our empirical analysis we employ S1 bootstrapped
scenarios.

5. Finally, the S scenarios are used to estimate the portfolio CVaR at con-
fidence level 1− ε.

Note that although AR(1)-StudT-GARCH(1,1) estimations are performed on
univariate cases, the dependence structure among the assets is captured by
the parallel bootstrap procedure on the standardized residuals Ẑ. In other
words, through this approach of sampling we are able to generate scenarios
with historical common shocks. However, for more details see [1], [31] and
[43].

1The aim of the paper is also to show how the choice of S influence the risk estimation.
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4.1 How many scenarios do we use in Historical

Filtered Bootstrap?

4.1.1 Static Analysis

Using the procedure above we evaluate 100 times the assets CVaR one month
horizon (20 days) using S = 1K, S = 10K, S = 100K and S = 1M scenar-
ios. We investigate two different asset universes, the first one is a multiasset
universe as in Cesarone and Colucci (2017) (see [32]). and the second one is
composed only of equity indices.

We expect that increasing the number of scenarios the CVaR estimation will
be more stable. We report the summary statistic in Table 4.1 for the multiasset
universe and in 4.2 for equity universe. We note that the standard deviation
of the CVaR fastens decreases giving stability to the estimated value. The
estimated CVaR mean is quite similar among different lengths of the scenarios
so the mean is unbiased with respect to S. For each run, we also calculate
Minimum CVaR portfolio, Minimum CVaR deviation portfolio, ERCCVaR
portfolio and ERCCVaR deviation portfolio. We collect asset weights in order
to figure out how variable is the portfolio composition when the number of
scenarios increase.

All experiments are executed on a workstation with Intel Xeon CPU (E3-
1225 v5, 3.3 GHz, 16 Gb RAM) under MS Windows 7 Professional. In order
to generate S = 1M scenarios for a single asset the running time is roughly 5
seconds while using S = 10K the running time is only 0.20 seconds. The time
necessary to evaluate the complete multivariate distribution is 5 · n, (when
S = 1M) where n is the number of assets. In order to find the solution to
the Problem 2.4 the running time is roughly 1 minute using S = 1M and
with respect to the Problem 2.8 the running time is roughly 2 minutes using
S = 1M . The time fasten decreases to 1 second considering only S = 10K.

4.1.1.1 Multiasset Universe Results

The multi-asset universe is the one that authors in Cesarone and Colucci (2017)
(see [32]) call Worldwide Asset. It is composed of 28 assets among bond, equity,
and commodities2.

In Figure 4.1 we show the box plot of the single asset CVaR estimation,
the distribution of the CVaR estimate is too large when we use 1K scenarios

2The complete description is available here
http://host.uniroma3.it/docenti/cesarone/Store/DescriptionOfDatSets.pdf
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Figure 4.1: CVaR Estimation, Multiasset Universe

while using 10K scenarios we observe a better estimate. When we would have
a complete precision on the CVaR estimate we have to consider to evaluate
1M scenarios. A good compromise between computational time and precision
is 100K scenarios.

In Figure 4.2 and in Figure 4.3 we show the mean-CVaR plane where the
mean is calculated as the CV aR100% or simply as the scenarios average value.
We note that using 1M scenarios the points on the plane are near one to each
other (for each portfolio construction procedure) while using 1K scenarios
points are quite dispersed. This is due to the high variability in the CVaR
estimation.

In Figure 4.4 and in Figure 4.5 we report the box plot of asset weights
obtained using Min CVaR and Min CVaR deviation. The two procedure build
up very concentrated portfolios (two assets dominate the portfolio) and as the
number of scenarios increases the asset weight is much more stable.

In Figure 4.6 and in Figure 4.7 we report the box plot of asset weights
obtained using ERCCVaR and ERCCVaR deviation. First of all, we note that
we have more variability in less risky asset weights when we use 1M scenarios.
This could be the consequence of few extreme scenarios that create variability
on asset weights. In this case, the choice of 100K scenario could be a good
compromise between the stability of the solution and computational time.

4.1.1.2 Equity Asset Universe Results

The Equity Asset universe is composed of 29 equity indices that cover countries
and worldwide sectors. The asset considered are listed in the following bullet

74



How many scenarios do we use in Historical Filtered Bootstrap?

Asset CVaR Mean CVaR Standard Deviation
1K 10K 100K 1M 1K 10K 100K 1M

1 0.335 0.335 0.336 0.336 0.028 0.011 0.003 0.001
2 0.710 0.709 0.711 0.711 0.061 0.022 0.007 0.002
3 2.937 2.955 2.958 2.957 0.210 0.069 0.020 0.005
4 2.423 2.421 2.424 2.423 0.121 0.043 0.011 0.004
5 0.398 0.399 0.401 0.401 0.023 0.008 0.002 0.001
6 1.278 1.278 1.281 1.282 0.084 0.028 0.008 0.002
7 2.162 2.165 2.169 2.169 0.123 0.044 0.013 0.003
8 2.369 2.348 2.355 2.352 0.315 0.086 0.030 0.009
9 3.903 3.898 3.894 3.897 0.435 0.160 0.048 0.014

10 4.316 4.324 4.325 4.325 0.461 0.135 0.042 0.014
11 7.256 7.278 7.272 7.265 0.496 0.161 0.048 0.014
12 6.657 6.717 6.707 6.710 0.592 0.195 0.057 0.020
13 9.350 9.435 9.441 9.443 0.461 0.150 0.043 0.014
14 6.999 7.043 7.037 7.035 0.460 0.139 0.046 0.014
15 9.414 9.398 9.408 9.409 0.801 0.198 0.080 0.022
16 6.294 6.311 6.326 6.324 0.413 0.116 0.045 0.014
17 14.420 14.337 14.327 14.315 1.097 0.307 0.097 0.032
18 11.811 11.737 11.715 11.706 1.001 0.288 0.089 0.031
19 6.259 6.263 6.267 6.264 0.352 0.117 0.035 0.011
20 18.998 19.023 19.042 19.029 0.936 0.288 0.097 0.031
21 13.765 13.750 13.768 13.757 0.676 0.212 0.064 0.019
22 7.774 7.841 7.842 7.843 0.441 0.146 0.050 0.014
23 7.065 7.085 7.091 7.093 0.285 0.091 0.027 0.010
24 20.870 20.926 20.903 20.901 0.774 0.252 0.082 0.026
25 8.992 9.011 9.012 9.010 0.334 0.103 0.030 0.011
26 7.663 7.668 7.666 7.661 0.281 0.107 0.034 0.010
27 7.040 7.122 7.145 7.146 0.434 0.140 0.042 0.011
28 10.187 10.206 10.235 10.240 0.589 0.217 0.067 0.020

Table 4.1: CVaR Mean and Standard Deviation (in percentage) estimated for
each number of scenarios estimated 100 times, Multiasset Universe.
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Figure 4.2: Mean CVaR frontier 1 million scenarios, Multiasset Universe
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Asset CVaR Mean CVaR Standard Deviation
1K 10K 100K 1M 1K 10K 100K 1M

1 15.116 15.133 15.102 15.115 0.956 0.300 0.086 0.027
2 12.413 12.329 12.347 12.351 0.900 0.255 0.092 0.027
3 9.417 9.441 9.416 9.421 0.508 0.190 0.055 0.017
4 8.410 8.427 8.408 8.416 0.453 0.165 0.050 0.017
5 8.852 8.917 8.924 8.937 0.467 0.179 0.061 0.021
6 8.932 8.960 8.954 8.962 0.551 0.215 0.067 0.022
7 6.479 6.515 6.505 6.506 0.284 0.113 0.031 0.010
8 8.239 8.126 8.141 8.146 0.659 0.196 0.063 0.019
9 8.592 8.628 8.594 8.600 0.442 0.143 0.052 0.016

10 10.454 10.467 10.445 10.451 0.614 0.211 0.065 0.020
11 7.663 7.689 7.708 7.701 0.487 0.128 0.049 0.015
12 7.455 7.507 7.508 7.500 0.614 0.201 0.070 0.022
13 12.574 12.636 12.673 12.661 0.752 0.220 0.077 0.026
14 8.829 8.857 8.881 8.878 0.451 0.125 0.041 0.013
15 7.392 7.409 7.422 7.415 0.479 0.126 0.047 0.015
16 11.504 11.608 11.620 11.618 0.834 0.242 0.080 0.023
17 11.193 11.303 11.315 11.317 0.788 0.225 0.072 0.021
18 10.846 10.876 10.889 10.892 0.423 0.149 0.045 0.017
19 9.903 9.884 9.890 9.893 0.670 0.226 0.081 0.022
20 9.551 9.665 9.699 9.704 0.652 0.214 0.067 0.020
21 9.213 9.263 9.273 9.277 0.532 0.150 0.059 0.017
22 10.571 10.531 10.532 10.533 0.439 0.119 0.044 0.014
23 8.353 8.363 8.363 8.368 0.492 0.170 0.045 0.017
24 7.802 7.845 7.855 7.854 0.439 0.113 0.040 0.013
25 8.138 8.171 8.189 8.193 0.412 0.131 0.041 0.014
26 13.468 13.539 13.543 13.546 0.738 0.242 0.070 0.021
27 9.370 9.345 9.352 9.362 0.496 0.151 0.054 0.017
28 9.265 9.276 9.295 9.294 0.560 0.176 0.059 0.020
29 7.479 7.465 7.477 7.480 0.319 0.095 0.034 0.012

Table 4.2: CVaR Mean and Standard Deviation (in percentage) estimated for
each number of scenarios estimated 100 times, Equity Asset Universe.
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Figure 4.3: Mean CVaR frontier 1000 scenarios, Multiasset Universe
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Figure 4.4: Min CVaR portfolio: boxplot of asset weights, Multiasset Universe
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Figure 4.5: Min CVaR deviation portfolio: boxplot of asset weights, Multiasset
Universe
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Figure 4.6: ERC CVaR portfolio: boxplot of asset weights, Multiasset Universe
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Figure 4.7: ERC CVaR deviation portfolio: boxplot of asset weights, Multias-
set Universe
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points, when the complete time series is not available a proxy is utilized in
order to fill the whole history.

1. MSCI Italy Net TR LOC Bloomberg Ticker: NDDLIT Index

2. FTSE Italy Mid Cap Bloomberg Ticker: ITMCN index

3. Eurostoxx 50 EUR Net TR Bloomberg Ticker: SX5T index

4. Stoxx 50 EUR Net TR Bloomberg Ticker: SX5R index

5. MSCI Eur Min Vol NR Euro Bloomberg Ticker: MAEUVOE index

6. SciBeta Extended Dev Europe Multi-Beta Multi-Strat ERC-4F EUR Net
Return Bloomberg Ticker: SBRERHMN index

7. DAX30 Bloomberg Ticker: DAX index

8. MSCI UK EUR Hdg Net Bloomberg Ticker: M0UKHEUR index

9. MSCI Sw 25/35 Hed EUR Bloomberg Ticker: M0CH35HE index

10. CAC 40 NR Bloomberg Ticker: NCAC index

11. S&P 500 Net TR Bloomberg Ticker: SPTR500N index

12. S&P 500 EUR Hdg NTR Bloomberg Ticker: SPXUXEN index

13. NASDAQ 100 STOCK INDX Bloomberg Ticker: NDX index

14. Russ2000Net Return Bloomberg Ticker: RU20N30U index

15. DJ Indus Avg Net TR Bloomberg Ticker: DJINR index

16. MSCI Jpn 100% Hdg TR EUR Bloomberg Ticker: MXJPHEUR index

17. MSCI Daily TR Net Japan Bloomberg Ticker: NDDUJN index

18. S&P/ASX 200 Net Tot Ret Bloomberg Ticker: ASN51 index

19. MSCI Daily TR Net Europe Small Cap Bloomberg Ticker: NCUDE15
index

20. MSCI Daily TR Net Japann Small Cap Bloomberg Ticker: NCUAJN
index

21. MSCI Daily TR World Net Bloomberg Ticker: NDWUCSTA index
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22. MSCI World Energy Sector Bloomberg Ticker: NDWUENR index

23. FTSE Global Core Infrastructure NT Bloomberg Ticker: FGCIITU in-
dex

24. MSCI Daily TR World Net Bloomberg Ticker: NDWUHC index

25. S&P Gb Water USD NTR Bloomberg Ticker: SPGTAQNT index

26. ISE Cyber Security Bloomberg Ticker: HURNTR index

27. FTSE EPRA/NAREIT Developed Dividend+ Net Total Return USD
Bloomberg Ticker: TENGDNU index

28. LPX MM Listed Private Equity EUR TR Bloomberg Ticker: LPXM-
MITR index

29. FTSE EPRA/NAREIT Dev Asia Dvd+ NR USD Bloomberg Ticker:
TENADNU index

In Figure 4.8 we show the box plot of the single asset CVaR estimation,
also in this case we notice that the distribution of the CVaR estimate is too
large when we use 1K scenarios and the precision increases as S increases.

In Figure 4.9 and in Figure 4.10 we show the mean-CVaR plane where the
mean is calculated as the CV aR100% or simply as the scenarios average value.
We note that using 1M scenarios the points on the plane are close to each other
(for each portfolio construction procedure) while using 1K scenarios points are
quite dispersed.

In Figure 4.11 and in Figure 4.12 we report the box plot of asset weights
obtained using Min CVaR and Min CVaR deviation. The two procedure build
up very concentrated portfolios (four assets dominate the portfolio) and as the
number of scenarios increases the asset weight is much more stable.

In Figure 4.13 and in Figure 4.14 we report the box plot of asset weights
obtained using ERCCVaR and ERCCVaR deviation. We notice very little
difference between portfolio weights using S = 100K and S = 1M scenarios.

4.1.2 Dynamic Analysis

Our goal is to study the performance of all models across two data sets. Our
analysis relies on a rolling time windows approach. More specifically, given
a daily frequency data set of asset returns with T outcomes, we consider an
in-sample time window of M = 500 days. Then, we evaluate the portfolio per-
formance in the following 20 days (out-of-sample), during which no rebalances
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Figure 4.8: CVaR Estimation, Equity Universe

0.05 0.052 0.054 0.056 0.058 0.06 0.062 0.064 0.066 0.068
2

2.5

3

3.5

4

4.5

5

5.5
x 10

−3

E
xp

ec
te

d 
R

et
ur

n 
1M

CVaR 5% 1M

Mean CVaR Frontier 100 Runs 1M Scenarios

 

 

MinCVaR
MinCVaRdev
ERCCVaR
ERCCVaRdev

Figure 4.9: Mean CVaR frontier 1 million scenarios, Equity Universe
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Figure 4.10: Mean CVaR frontier 1000 scenarios, Equity Universe
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Figure 4.11: Min CVaR portfolio: boxplot of asset weights, Equity Universe
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Figure 4.12: Min CVaR deviation portfolio: boxplot of asset weights, Equity
Universe
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Figure 4.13: ERC CVaR portfolio: boxplot of asset weights, Equity Universe

0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Asset

P
tf 

w
gt

ERCCVaR5% dev 1 mese 100 Run con 1K scenari

0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Asset

P
tf 

w
gt

ERCCVaR5% dev 1 mese 100 Run con 10K scenari

0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Asset

P
tf 

w
gt

ERCCVaR5% dev 1 mese 100 Run con 100K scenari

0

0.025

0.05

0.075

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Asset

P
tf 

w
gt

ERCCVaR5% dev 1 mese 100 Run con 1M scenari

Figure 4.14: ERC CVaR deviation portfolio: boxplot of asset weights, Equity
Universe
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are allowed. After this, we shift the mentioned in-sample window by 20 days
in order to cover the out-of-sample period, we recompute the optimal portfolio
w.r.t. the new in-sample window and repeat. Then, for each portfolio strategy
the rolling time windows approach generates T −M daily out-of-sample port-
folio returns on which we show some figures about performances, risk, portfolio
weights and distance between portfolio weight.

Due to our finding, in this case, we use a number of scenarios equal to
S = 10K, S = 1M . The choice to discard 1K is due to the fact that we
notice a huge variability in CVaR estimation that produce high dispersion
in the Mean-CVaR plane and we notice that the computational time of 10K
scenarios is fast enough to be considered as the benchmark.

In particular, we calculate on each rebalance time and using both num-
bers of scenarios the four portfolios (MinCVaR, MinCvaRDev, ERCCVaR,
and ERCCVaRDev), we collect portfolio weights and we evaluate the portfo-
lios CV aR5% 1 month horizon (20 days).

In the end, we have the complete sequences of portfolio weights, CVaR and
portfolio performances. In order to determine the differences between models
when we use few or many scenarios, we calculate the Euclidean distance of
portfolio weights. The Euclidean distance between vectors is defined as the
norm of the difference of the portfolio weights. Let x1M and x10K points in
the space Rn then ‖(x1M

t − x10K
t )‖ represent the distance at time t. When the

solution of the problems is the same using different number of scenarios we
expect that the distance is equal to 0, so when the distance is greater than
0 we record some differences that are higher as distance increases. We also
report the CV aR5% (calculated using 1M scenarios) of all portfolios to show
how the two scenarios size afflict the portfolio risk. If the portfolio risk is
quite similar we can say that reducing the number of scenarios does not afflict
the portfolio risk. The same happens in evaluating portfolio performances if
they are indistinguishable so the little difference in portfolio weights does not
change the final portfolio performance.

4.1.2.1 Multi-asset Universe Results

The ratio N/T assumes the values N/T = 0.0028 and N/T = 2.8e−5. The an-
alyzed time period is from January 1st 1999 to August 4th 2017. The first 500
observation are utilized to estimate the first portfolio. In figure 4.15 we report
the portfolios Euclidean distance over time. The portfolio distance calculated
on the two Minimum-Risk strategies is shown on top of the figure while on
the bottom we report the portfolio distance of the Risk Diversification strate-
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Figure 4.15: Euclidean distance in portfolio weights using S = 1M and S =
10K

gies. We observe that CVaR Deviation does not suffer too much the number
of scenarios, we note that the distance between the portfolios built by using
10K or 1M scenarios is often under 0.1. The farthest portfolio, over time,
is ERCCVaR, it suffers the number of scenarios that in many cases increase
the distance. Portfolio weights over time are reported in Figure 4.16 and 4.17.
Graphically is very hard to recognize differences between portfolios. In Fig-
ure 4.18 we show the calculated CVaR using 1M scenarios. At any time and
for each optimized portfolio (both using 10K or 1M scenarios) we record the
CVaR. In this case, we note that there are not sensible differences in Mini-
mum Risk CVaR, while in the Risk Diversification strategies we highlight few
differences over time. From a risk manager point of view, the differences are
quite small. If the differences in weights and risk are huge we should expect
that portfolio performances diverge. In Figure 4.19 we cannot distinguish the
portfolio performances among Minimum Risk strategies. Among Risk Diversi-
fication strategies the ERCCVaR tends to have slightly different performances
while ERCCVaRDev models have similar performances. In Figure 4.20 we
show how different models perform over time. In this case, the best performer
is ERCCVaR Deviation and the worst is Minimum CVaR Deviation.

In conclusion, when we use S = 1M increasing computational effort, we
can not recognize any improvement in portfolio optimization nor in portfolio
performances.
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Figure 4.16: Minimum Risk Strategies: portfolio weights over time
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Figure 4.17: Equal Risk Contribution Strategies: portfolio weights over time
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Figure 4.18: Portfolio CVaR over time
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Figure 4.19: Portfolio performance over time
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Figure 4.20: Portfolio performance over time: models comparison
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Figure 4.21: Euclidean distance in portfolio weights using S = 1M and S =
10K

4.1.2.2 Equity Asset Universe Results

The Equity Asset universe is composed of 29 equity indices that cover countries
and worldwide sectors. The analyzed time period is from January 1st 1999
to June 30th 2017. The first 500 observation are utilized to estimate the first
portfolio. The ratio N/T assumes the values N/T = 0.0029 and N/T = 2.9e−5.
In figure 4.21 we report the portfolios Euclidean distance over time. The
portfolio distance calculated on the two Minimum-Risk strategies is shown on
top of the figure while on the bottom we report the portfolio distance of the
Risk Diversification strategies. We observe that Risk Diversification strategies
do not suffer the difference in the number of scenarios, we note that the distance
between the portfolios built by using 10K or 1M scenarios is close to 0, while
the minimum risk strategies show the distance often less than 0.1.

Portfolio weights over time are reported in Figure 4.22 and 4.23. Graph-
ically is very hard to recognize differences between portfolios. In Figure 4.24
we show the calculated CVaR using 1M scenarios. Also, in this case, is very
hard to catch any sensible difference.

In Figure 4.25 we cannot distinguish the portfolio performances among Risk
Diversification strategies. Among Minimum Risk strategies, we saw slightly
different performances. In Figure 4.26 we show how different models perform
over time. In this case, the best performers are the Minimum Risk strate-
gies. In conclusion, when we use S = 1M increasing computational effort, we
can not recognize any improvement in portfolio optimization nor in portfolio
performances.
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Figure 4.22: Minimum Risk Strategies: portfolio weights over time
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Figure 4.23: Equal Risk Contribution Strategies: portfolio weights over time
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Figure 4.24: Portfolio CVaR over time
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Figure 4.25: Portfolio performance over time
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Figure 4.26: Portfolio performance over time: models comparison
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4.2 Final considerations

We notice that in the real world the size of assets in the portfolio may be huge
let’s say over 1000 financial instruments. Considering the results we obtained
in order to perform any optimization procedure that limits the estimation
error we should maintain the ratio N/T ≤ 0.4 but it means that we need at
least 2500 observation for each asset. If we are dealing with historical daily
returns we need 10 years data. To overcome this limitation we propose to
use a simulation procedure that generates future possible scenarios for each
asset and it needs only the last 500 daily returns. We have analyzed scenarios
in which T is minimal and equal to 1000 or 10000, or 100000 up to 1 million.
Considering the example above we can always optimize the portfolio increasing
the number of the simulated paths.

We have compared the out-of-sample performance of two different cate-
gories of portfolio selection models, namely Minimum-Risk and Risk-Diversification.
The two classes of models, short selling, and leverage are not allowed thus mak-
ing the feasible portfolios of the Minimum-Risk and of the Risk-Diversification

models as similar as possible to the common investor.

The analysis is performed on a static and on dynamic base on two different
real-world data sets, which consist of equities and mixed assets, each with
different sources of risk.

Our goal is to verify how the number of scenarios used as input for CVaR
estimation and for portfolio construction afflicts the CVaR estimation and the
optimal solution of the minimum risk and risk diversification problems.

In the static analysis we estimate 100 times the assets CVaR and obviously,
we generated the full future returns distribution for each asset. We collected
the 100 CVaR and the 100 optimum portfolio weights for all models. We notice,
for both cases analyzed, that 1000 scenarios are too low and it are not able
to produce a good estimate of the asset CVaR. The variability is very high.
Considering 10000 scenarios the computational time is reasonably fast (0.20
seconds to evaluate the single scenario and 1 second to solve each problem)
and the accuracy quickly increases (the CVaR standard deviation is reducing
to roughly 1

3
at each order of magnitude). Portfolio weights are more stable and

we think that 10K scenarios should be considered as a minimum value to use in
order to estimate CVaR and to be used as input in an optimization procedure.
Using 100K and 1M estimates became much more accurate but computational
time increase. A good compromise between accuracy and computational time
may be 100K.

In the dynamic analysis, we compare the CVaR estimation and optimal
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solutions using the minimum acceptable number of scenarios (10K) and the
maximum number of scenarios (1M). The aim of this test is to identify the
difference between portfolios built by using few scenarios and many scenarios.
We discovered that portfolio weights are very close one to each other and the
whole portfolio risk, for the four optimization procedures, is similar. Regarding
portfolio performances, we can state that there are no important differences
when we use 10K with respect to 1M scenarios.

We believe that 10K scenarios are enough when we are dealing with the
review portfolio construction procedures. Using 1M scenarios is a safe choice
but you must take to account the computation effort to calculate the high
number of scenarios.
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Chapter 5
Shrunk Volatility VaR: a new model to

proxy Historical Filtered Bootstrap

A way to be well prepared for managing periods of financial turbulence is to
predict market risk, estimated by some risk measures. One may use volatility,
value-at-risk (VaR), Conditional VaR, downside volatility or others. However,
all these indicators should be monitored in order to have an idea of the market
conditions. In financial firms, such as banks and asset management companies,
the VaR risk measure is commonly used (see [59]). For instance, banks must
periodically report a VaR estimate of the entire business to their own vigilance
authority, along with an accurate backtesting procedure that validates the VaR
model used for the estimate.

Many models have been developed to foresee market risk (see [1], [23] and
[69]), taking into account the following stylized facts that characterize the re-
turns time series: volatility clustering, fat tails and mild skewness (see [44]).
Further, VaR models should satisfy two conditions in order to be considered
accurate: they should exhibit statistical significance when comparing the ob-
served frequency of VaR violations with those expected and show independence
of violations (see [26]).

In this chapter, we propose a naive model to forecast ex-ante VaR, using
a shrinkage estimator (see [66]) between realized volatility estimated on daily
return time series as well as implied volatility extracted from option pricing
data. Indeed, several studies highlight that models based on implied volatility
produce competitive VaR forecasts (see [51] and [62]). Implied volatility is
often indicated as the operator’s expectation about future risk, while historical-
based volatility simply represents the realized risk up to the estimation time,
thus employing a backward-looking approach.

The purpose of this chapter is to compare our model, called shrunk volatil-
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ity VaR (ShVolVaR), with several prediction strategies, in both the univariate
and multivariate cases. In more detail, we first discuss and analyze three sim-
ple models to forecast the one-day-ahead VaR, using implied volatility, realized
volatility and a shrinkage of both. We then empirically compare their forecast-
ing power with four benchmark VaR models based on the historical simulation
(see [16], [54], and [91]), Historical Filtered Bootstrap, extreme value theory
Filtered Bootstrap (see [80]) and RiskMetrics (see [82]) over a relatively long
time period (at least fourteen years); this depends on the availability of implied
volatility values. For these seven models, we evaluate the statistical accuracy
of one-day-ahead VaR estimates by means of the following:

• The unconditional coverage (UC) test ([63]), which analyzes the statis-
tical significance of the observed frequency of violations with respect to
the expected one;

• the independence (IND) test ([40]) which gauges the independence of
violations, namely the absence of violation clustering;

• the conditional coverage (CC) test, which combines these two desirable
properties ([41]).

In addition to performing tests on accuracy, we check the practical com-
pliance of the VaR models with respect to specific regulatory rules. More
precisely, for backtesting aims, the European regulator, ie, the Committee of
European Securities Regulators (CESR; now the European Securities and Mar-
kets Authority, ESMA), will accept no more than seven violations of V aR1%

(related to a one-day time horizon) on 250-day rolling time windows (see [35]).
Further, the one-day-ahead VaR should satisfy the coverage condition, while
no tests are required by ESMA regarding the independence property of VaR
violations. From the viewpoint of the regulator, a model that overestimates
VaR (ie, the model is conservative) is accepted, even though backtesting shows
a high percentage of zero violations. However, from the investors’ viewpoint,
this means the mismanagement of capital. Conversely, an underestimation of
VaR (ie, the model is aggressive) is convenient for the investors, but it is not
accepted by the vigilance authority.Therefore, in our backtesting, we highlight
the right trade-off between these two different points of view, controlling for
both a lack and an excess of violations. In other words, over a period of 250
days, a VaR model should be able to minimize the frequency of violations
being absent (the investors’ viewpoint) as well as the frequency of more than
seven violations occurring (the regulators’ viewpoint). Further, to examine
the performance of the VaR models, we also perform backtesting based on
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loss functions that take into account both the regulators’ and the investors’
viewpoints (see [2] and [27]).

5.1 Models and Tests

Before we introduce the models analyzed in this study to forecast the one-day-
ahead Value-at-Risk (VaR), it is useful to specify its mathematical definition.
VaR is defined as the maximum loss at a specified confidence level and it is one
of the most important risk management tool in the financial industry ([82]).

Let us introduce some notations and assumptions. Since we study the VaR
performance of the proposed models both in the univariate and the multivariate
frameworks, we use linear returns, so if pt,k is the price of asset k at time t, then

rt,k =
pt,k − pt−1,k

pt−1,k

represents its return at time t. Even though for econometric

models the returns are usually defined as log-returns, namely rlnt,k = ln pt,k −

ln pt−1,k, in case of assets portfolios the linear returns are preferred to the
logarithmic ones, due to their mathematical tractability. In addition, for small
values of rt,k, as in this context, it is straightforward to demonstrate that
rt,k ≃ rlnt,k.

We denote by x = (x1, x2, . . . , xn)
T the vector of the assets weights in a

portfolio. Thus assuming that n assets are available in an investment universe,

the portfolio return at time t Rt(x) =
n

∑

k=1

xkrt,k. Furthermore, the set of feasi-

ble portfolios considered in this study satisfy the budget constraint (
n
∑

k=1

xk = 1)

and the no short-selling condition (xk ≥ 0 for all k = 1, . . . , n).

That being said, V aRε is defined as the maximum loss at a given confidence
level related to a predefined time horizon. Usually, the confidence levels are
95% and 99%, that is in general equal to (1 − ε)100%. Hence, V aRε(x) is
the value such that the possible portfolio loss L(x) = −R(x) exceeds V aRε(x)

with a probability of ε100% (see [5]). In other words, V aRε(x) of a portfolio
return distribution is the lower ε-quantile of its distribution with negative sign:

V aRε(x) = −F−1
R (ε, x) (5.1)

where F−1
R (ε, x) = inf {r : FR(r) > ε}, and F−1

R is the inverse of the portfo-
lio return cumulative distribution function. If R has a multivariate normal
distribution with zero means and covariance matrix Σ, then

V aRε(x) = φ−1(ε)σ(x)
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where φ−1(ε) is the ε−quantile of the standard normal distribution, and σ(x) =

xTΣx.
Below, we briefly describe the Historical Simulation, the RiskMetrics, the

Historical Filtered Bootstrap, and the Extreme Value Theory Filtered Boot-
strap strategies (see Sections 5.1.1, 5.1.2, 5.1.3, and 5.1.4 respectively), which
are considered as benchmarks to estimate the one-day-ahead VaR. In Section
5.1.5 we present our model, called Shrunk Volatility VaR (ShVolVaR), that,
as we shall see, includes implicitly other two VaR models. Further, in Sec-
tion 5.1.6 we briefly report the UC ([63]), the IND ([40]) and CC ([41]) tests,
used to verify advisable features that should be satisfied by a risk model (sta-
tistical significance when comparing the observed frequency of violations to
the expected one, the independence of violations, and both). In Section 5.1.7
we describe the regulator rules to be validated for the acceptance of a VaR
model. Finally, to investigate the distance between the ex-post portfolio re-
turns and the corresponding ex-ante VaR forecasts obtained from the different
VaR models, we also introduce a backtesting based on loss functions that take
into account both the regulators’ and the investors’ viewpoint (see [27]).

5.1.1 Historical Simulation VaR model

In the Historical Simulation VaR (HSVaR) model the portfolio return is rep-
resented by its empirical distribution, and −V aRε(x), related to a predefined
time windows, is the ε-quantile of this empirical distribution. Thus considering
the observed portfolio returns within a time window of length T , the ε-quantile
is the [εT ]-th smallest observation, where [b] rounds the variable b up to the
closest integer. On the one hand, the HSVaR model is advantageous because
it is easy to implement and it does not depend on parametric assumptions of
the portfolio return distribution. On the other hand, this approach presents
several drawbacks (see [1], [16], [54], [75] and [91]) mainly due to its strong
dependence on observed data and on the length of the learning window. Fur-
ther, the HSVaR approach, by its nature, tends to react slowly to the market
turbulence.

5.1.2 RiskMetrics VaR model

The assumption of the RiskMetrics VaR (RiMeVaR) model is that the returns
of a generic asset k follow a random walk with independent and identically
distributed (iid) normally distributed changes. More precisely,

rt,k = µk + σt,kηt,k
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where µk = 0 and ηt,k ∼ N(0, 1) is an iid random perturbation. The re-
turns variance σt,k varies with time and can be estimated by the past informa-
tion. The RiMeVaR model uses the Exponentially Weighted Moving Average
(EWMA) approach to predict volatilities and correlations of the portfolio re-
turn. More specifically, the volatility forecast of asset k at time t + 1, given
the information available at time t, is

σt+1|t,k =
√

λσ2
t|t−1,k + (1− λ)r2t,k (5.2)

where λ = 0.94 for daily data and λ = 0.97 for monthly data as in RiskMetrics
technical documentation ([82]). From (5.2), it is straightforward to recognize
the same formulation of the IGARCH(1,1) model. Further, we have that the
one-day-ahead correlation between the assets k and j is:

ρt+1|t;k,j =
σt+1|t;k,j

σt+1|t,kσt+1|t,j

where σt+1|t;k,j is the one-day-ahead covariance forecast between the assets k

and j such that σt+1|t;k,j = λσt|t−1;k,j + (1− λ)rt,krt,j. Thus, we can define the
EWMA covariance matrix as

ΣEWMA
t+1|t = diag(σt+1|t)C

EWMA
t+1|t diag(σt+1|t)

where diag(σt+1|t) is the diagonal matrix with EWMA volatilities of the assets
on the diagonal, and CEWMA

t+1|t =
{

ρt+1|t;k,j

}

k,j=1,...,n
is the EWMA correlation

matrix. Therefore, portfolio volatility can be written as

σt+1|t(x) =
√

xTΣEWMA
t+1|t x

and the one-day-ahead VaR at confidence level 1− ε as

V aRt+1|t(ε, x) = φ−1(ε)σt+1|t(x)

where φ−1(ε) is the ε−quantile of the standard normal distribution.

5.1.3 Historical Filtered Bootstrap VaR model

The Historical Filtered Bootstrap VaR (HFBVaR) approach ([8], [24], [113],
[78]) is a mixed procedure, in which one represents the market returns using,
for instance, an autoregressive moving average generalized autoregressive con-
ditional heteroscedasticity (ARMA-GARCH) model to filter the time series,
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and then computes the empirical standardized residuals from data without as-
suming on them any specific probability distribution on them. Below we give
a step-by-step description of HFBVaR procedure.

1. We filter the time series of each asset by an univariate ARMA-GARCH
model. More precisely, for the observed returns of the asset k, we
find the Maximum Likelihood estimators of the following AR(1)-StudT-
GARCH(1,1) model:

AR(1) : rt,k = ak + bkrt−1,k + ηt,k

StudT-GARCH(1,1) : σ2
t,k = αk + βkσ

2
t−1,k + γkη

2
t−1,k

ηt,k = σt,kzt,k

where zt,k =
√

νk−2
νk

Tνk , Tνk follows a Student-t distribution with νk de-

grees of freedom, and θ̂ = {ak, bk, αk, βk, γk, νk} are Maximum Likelihood
estimators (see, for example, [108]) obtained on 500 daily data.

2. Using the set of estimators θ̂ = {ak, bk, αk, βk, γk, νk} for all n assets
available in the market, we compute from data the standardize residuals
ẑt,k with t = 1, . . . , T and k = 1, . . . , n, i.e., we divide the empirical
residuals η̂t,k by their estimated volatilities σ̂t,k.

3. We bootstrap in a parallel fashion the matrix of the empirical standard-
ized residuals Ẑ =

{

ẑt,k
}

with t = 1, . . . , T and k = 1, . . . , n. More
precisely, we randomly sample with replacement the rows of the ma-
trix Ẑ, thus allowing us to capture the multivariate shocks of the entire
system.

4. The bootstrapped standardized residuals Ẑboot =
{

ẑboots,k

}

, with s =

1, . . . , S and k = 1, . . . , n, are then used as multivariate innovations
in the (univariate) AR(1)-StudT-GARCH(1,1) models to simulate the
one-day-ahead returns. In our empirical analysis we employ S = 10000

bootstrapped scenarios.

5. Finally, the S scenarios are used to estimate the one-day-ahead VaR at
confidence level 1− ε, V aRt+1|t(ε, x), as in (5.1).

Note that although AR(1)-StudT-GARCH(1,1) estimations are performed on
univariate cases, the dependence structure among the assets is captured by
the parallel bootstrap procedure on the standardized residuals Ẑ. In other
words, through this approach of sampling, we are able to generate scenarios
with historical common shocks.
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5.1.4 Extreme Value Filtered Bootstrap VaR model

The extreme value theory filtered bootstrap VaR (EVTFBVaR) approach con-
sists of a mixed procedure similar to that of HFBVaR; however, the multivari-
ate standardized residuals are modeled using the extreme value theory for the
marginal distributions of the assets and a Student-t copula for their interde-
pendence structure. More precisely, as in McNeil and Frey (2000) ([80]) we fit
the central part of the marginal distributions by Gaussian Kernels and their
tails by generalized Pareto distributions (GPDs). Then, we model the purely
joint distribution of innovations by a t−copula. To sum up, the EVTFBVaR
approach is based on the following steps:

1′., 2′. are identical to 1. and 2. of the HFBVaR model (see Section 5.1.3).

3′. For each standardize residual ẑt,k with t = 1, . . . , T and k = 1, . . . , n, we
consider lower and upper thresholds equal to γ− and (1− γ)−quantiles,
respectively, with γ = 0.1. We therefore model the standardized resid-
uals that exceed these thresholds by GPDs, and those between these
thresholds by Gaussian Kernels. We denote by F̃Zk

this composite semi-
parametric marginal Cumulative Distribution Function (CDF) corre-
sponding to the standardize residual k.

4′. We compute the grade scenarios of the standardize residual k, ût,k =

F̃Zk
(ẑt,k). We fit the joint grades scenarios Û =

{

ût,k

}

through a t−copula,
estimating its parameters by the Maximum Likelihood (ML) approach.

5′. We simulate S = 10000 scenarios from a t−copula with these ML pa-
rameters, U simul =

{

usimul
s,k

}

, with s = 1, . . . , S and k = 1, . . . , n, that

are combined with the marginal CDFs F̃Zk
with k = 1, . . . , n. Thus ap-

plying the inverse of the marginal CDF to the respective grade from the
copula, i.e., zsimul

s,k = F̃−1
Zk

(usimul
s,k ), we obtain the simulated standardized

residuals Zsimul =
{

zsimul
s,k

}

, with s = 1, . . . , S and k = 1, . . . , n, that are
then used as multivariate innovations in the (univariate) AR(1)-StudT-
GARCH(1,1) models to simulate the one-day-ahead returns.

6′. Finally, as for HFBVaR the S scenarios are used to estimate the one-
day-ahead VaR at confidence level 1− ε, V aRt+1|t(ε, x).

5.1.5 Shrunk Volatility VaR model

We propose here a simple model to forecast ex-ante VaR, assuming, as for
RiMeVaR model, that the asset returns are normally distributed with zero
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mean, but that volatility forecast at time t+ 1, given information available at
time t, is the shrinkage between realized and implied volatility. The realized
volatility σ̂t,k is computed as the standard deviation of the index k returns
on twenty stock market days (around thirty calendar days), while the implied
volatility σimpl

t,k is obtained from a basket of call and put options with maturity
of thirty calendar days in the market index k. In more detail, we compute
the daily implied volatility as σimp

t,k = (256)−
1

2V imp
t,k /100, where V imp

t,k represents
the quoted implied volatility (expressed as a percentage) of the market index
k. Thus, in a univariate context, we have rt+1|t,k ∼ N(0, σ̃2

t+1|t,k(α)) with the
shrunk volatility

σ̃t+1|t,k(α) = (1− α)σ̂t,k + ασimpl
t,k (5.3)

where α ∈ (0, 1) and is called shrinkage parameter. On the other hand, in
a multivariate context we assume (rt+1|t,1, rt+1|t,2, . . . rt+1|t,n) ∼ N(0, Σ̃t+1|t(α))

with the covariance matrix

Σ̃t+1|t(α) = diag(σ̃t+1|t(α))Ĉt+1|tdiag(σ̃t+1|t(α))

where diag(σ̃t+1|t(α)) is the diagonal matrix with Shrunk volatilities of the
assets on the diagonal, and Ĉt+1|t is the sample correlation matrix estimated
on 20 days preceding t. Clearly, the portfolio volatility can be written as

σ̃t+1|t(α, x) =
√

xT Σ̃t+1|t(α)x. We then compute the one-day-ahead V aRε at
1−ε confidence level for our model, named Shrunk Volatility VaR (ShVolVaR),
as follows

V aRt+1|t(ε, α, x) = φ−1(ε)σ̃t+1|t(α, x) (5.4)

We empirically calibrate the shrinkage parameter α examining the behavior
of the ShVolVaR model for different equally-spaced values belonging to the
interval [0, 1], and choosing the value of α that shows the best results in terms
of the accuracy tests, described in the following section.

Note that if α = 0, then Model (6.4) coincides with the Realized Volatility
VaR (ReVolVaR) model; while if α = 1 we have the Implied Volatility VaR
(ImVolVaR) model.

In Section 5.2 we will test and compare the ReVolVaR, the ImVolVaR, and
the ShVolVaR models with the Historical Simulation VaR (HSVaR), the His-
torical Filtered Bootstrap VaR (HFBVaR), the Extreme Value Theory Filtered
Bootstrap VaR (EVTFBVaR), and the RiskMetrics VaR (RiMeVaR) models
that are considered as benchmarks.
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5.1.6 Accuracy Tests

In this section we briefly describe the common tests proposed in the literature
to evaluate the statistical accuracy of VaR estimates: the UC test (Kupiec,
1995) which analyzes the statistical significance of the observed frequency of
violations w.r.t. the expected one; the IND test (Christoffersen, 1998) which
gauges the independence of violations, namely the absence of violation clus-
tering; and the CC test which combines these two desirable properties.

Let us denote by Rt(x) the daily ex-post portfolio returns with t = 1, . . . , T ,
and by V aRt|t−1(ε) the corresponding ex ante Value-at-Risk forecasts, where
ε is the expected coverage, namely Prt−1(−Rt(x) > V aRt|t−1(ε)) = ε. Let It =
1(V aRt|t−1(ε),+∞)(−Rt(x)) define the random variable hit sequence of V aRt|t−1(ε)

violations, where 1 is the indicator function. Note that the hit variable rep-
resents only the VaR violations, excluding any information on their size. As-
suming that It ∼ Bernoulli(ε) is iid., the Unconditional Coverage (UC) test
examines the null hypothesis H0,UC that ε = ε̂, namely that the observed fre-
quency of violations ε̂ is statistical significant with respect to the expected
coverage ε. The likelihood function of an iid hit sequence It ∼ Bernoulli(ε)

with t = 1, . . . , T and with a known probability ε that 1 occurs, can be written
as:

L(I, ε) = εNI (1− ε)T−NI

where NI =
∑T

t=1 It is the number of VaR violations. In the case of an iid
Bernoulli variable with unknown probability ε that 1 occurs, it can be esti-
mated by means of the maximum likelihood method as ε̂ = NI

T
. Thus, we can

obtain the likelihood ratio test of unconditional coverage as

LRUC = 2[lnL(I, ε̂)− lnL(I, ε)]

where asymptotically LRUC ∼ χ2(ν = 1).

As mentioned above, the UC test assumes that It with t = 1, . . . , T are
independent, but this property should be explicitly tested. For this purpose,
Christoffersen (1998) (see [40]) provides a test for independence, in which the
hit sequence {It}t=1,...,T follows a first-order Markov chain with switching prob-
ability matrix

Π =

[

1− π01 π01

1− π11 π11

]

where πlq = Pr(It = q|It−1 = l), i.e., the probability that the event l in
t − 1 is followed by the event q in t. The Independence (IND) test examines
the null hypothesis H0,IND : π01 = π11, therefore it investigates on possible
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violation clustering, namely on eventual repeated deep losses that could cause
a bankruptcy. The likelihood function under the hypothesis of the first-order
Markov dependence is:

L(I; π01, π11) = (1− π01)
T00πT01

01 (1− π11)
T01πT11

11

where Tlq represents the number of times that the state l follows the state q.
In the case of unknown probabilities π01 and π11, they can be estimated as
π̂01 = T01

T00+T01
and π̂11 = T11

T10+T11
. Therefore, the likelihood ratio for the IND

test, under the null hypothesis that π̂01 = π̂11 = ε̂, can be written as

LRIND = 2[lnL(I, π̂01, π̂11)− lnL(I, ε̂)]

where ε̂ = T01+T11

T
= NI

T
, and asymptotically LRIND ∼ χ2(ν = 1).

As shown in Christoffersen (1998) [40], these two tests can be combined,
determining the so-called CC test, where the null hypothesis H0,CC : π̂01 =

π̂11 = ε. Clearly, if one of the null hypotheses H0,UC and H0,IND is rejected,
even H0,CC will tend to be rejected. For the CC test under the null hypothesis
H0,CC , the likelihood ratio is

LRCC = 2[lnL(I, π̂01, π̂11)− lnL(I, ε)]

where asymptotically LRCC ∼ χ2(ν = 2).

5.1.7 Regulator Backtesting Procedure

The Undertaking for Collective Investments in Transferable Securities (UCITS)
mutual funds, under the ESMA’s guidelines ([35]), have to be related to a VaR
model with significance level ε =1%. This V aR1% model, in turn, have to
be validated according to specific rules. Indeed, the one-day-ahead V aR1%

forecasts to be accepted have to determine at most four violations over the
earlier 250 (stock market) days. If a V aR1% model presents five, six or seven
overshootings1, risk managers have to declare the violations to the vigilance
authority, and by means of a documentation they have to explain and to ana-
lyze the causes of the model misspecification. If, instead, a V aR1% prediction
strategy determines eight or more violations, it is not accepted by the regula-
tor. Table 5.1 summarizes the regulator actions corresponding to the V aR1%

model behavior. More precisely, a V aR1% model is not discarded if the vio-

1An overshooting is here a synonym of a VaR violation, a word often used in the financial
industry.
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Number of violations Action
[0, 4] The V aR1% model is accepted; no actions must be done.
[5, 7] Possible crash of the V aR1% model;

the causes of the violations must be justified and explained.
[8,+∞) The V aR1% model is not accepted, and it must be changed.

Table 5.1: The Regulator actions related to prefixed intervals of violations of
V aR1% forecasts, required by the UCITS funds.

Number of hits Frequency (%) p-value (%)
0 0.0 2.5
1 0.4 27.8
2 0.8 74.2
3 1.2 75.8
4 1.6 38.0
5 2.0 16.2
6 2.4 5.9
7 2.8 1.9
8 3.2 0.5

Table 5.2: Number of violations, corresponding frequency on 250 days, and
related p-value for the UC test.

lations frequency belongs to the interval [0.4%; 2.4%] at 95% confidence level
(c.l.), or if the violations frequency belongs to the interval [0%; 2.8%] at 99%
c.l. (see Table 5.3). The ESMA guidelines require a backtesting procedure at
99% c.l.. Summarizing, a V aR1% model is considered a good predictive tool
up to four overshootings; if during the last 250 business days the number of
overshootings for each UCITS exceeds four hits, then the senior management
team must be informed. A competent authority may take specific actions, and
may apply some limitations for the use of the V aR1% model, when the over-
shootings exceed an unacceptable number of violations. Indeed, if the observed
hit frequency is higher than 2.80% (seven overshootings), then some kind of
action has to be taken in order to reduce the risk model misspecification. On
the other hand, if there are no violations, nothing has to be done.

In the empirical analysis, reported in Section 5.2, in order to have an early
warning on model performances, we decided to be more restrictive than the
ESMA rules adopting a backtesting procedure at 95% c.l.. Therefore, in this
work the maximum number of admissible overshootings is 6. Further, from
Table 5.3 note that the case of absence of violations (zero hits) is not within
the region of acceptance for the UC test at 95% c.l..
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5.1.8 Backtesting based on loss functions

Other methodologies used to examine the performance of VaR models are
those based on the comparison of loss functions (see, for example, [2] and [27]).
Generally, a backtesting based on the loss function focuses on the magnitude
of the overshootings, investigating the distance between the ex-post portfolio
returns and the corresponding ex-ante VaR forecasts. Lopez (1999) ([68])
suggests the following general definition for a loss function:

Lt =

{

f(Rt, V aRt|t−1) if −Rt > V aRt|t−1

g(Rt, V aRt|t−1) if −Rt ≤ V aRt|t−1

Clearly, the preferred model will be the one that minimizes the total loss
Ltot =

∑T

t=1 Lt over the backtesting sample of length T .

In this thesis we consider loss functions that take into account both the
regulators’ and the investors’ viewpoint. Obviously, these depend on the
specification of f(Rt, V aRt|t−1) and g(Rt, V aRt|t−1). More precisely, the loss
functions of the regulator concentrate on the size of the loss only when an
overshooting occurs, and therefore g(Rt, V aRt|t−1) = 0. Meanwhile the in-
vestors are interested in both reducing the market risk, such as the regulator,
and avoiding to set aside of much more money than necessary, and usually
f(Rt, V aRt|t−1) = g(Rt, V aRt|t−1) ([27]).

However, recently, there has been a long discussion about the use of loss
functions in backtesting. The main reason is that the loss functions we are
considered are not consistent with VaR, in the sense that their expected value
is not minimized by VaR. A paper that had a big influence and initiated an
active stream of new research on backtesting was [53], that introduced in the
financial community the concepts of consistent scoring function and elicitable
functional. A scoring function is consistent for a given statistical functional
if the functional can be defined as the minimizer of the expected value of the
score; a functional is elicitable if it admits a consistent scoring function. Notice
that scores are actually meant as losses, the smaller the better. Consistent
scoring functions give a natural way to compare different forecasts of the same
risk measure. The simplest elicitable risk measures are VaR, the expectiles,
and the couple (VaR, ES). Indeed, VaR is the minimizer of the expected value
of a suitable piecwise linear score; expectiles are by definition the minimizers
of a suitable piecewise-quadratic score; and it has been recently established by
[4] that the couple (VaR, ES) jointly minimizes the expectations of a suitable
family of scoring functions (see also [17] and references therein).

For this reason, we decided to apply loss functions only for whom the
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Regulator Investors

Loss Fun f(Rt, V aRt|t−1) g(Rt, V aRt|t−1) f(Rt, V aRt|t−1) = g(Rt, V aRt|t−1)

if −Rt > V aRt|t−1 if −Rt ≤ V aRt|t−1 ∀Rt

Lopez 1 + (Rt − V aRt|t−1)
2 0 -
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Table 5.3: List of the regulators’ and of the investors’ loss functions considered.

accuracy test is satisfied. The accuracy tests are validating tests while loss
functions are considered selection tests among competing models.

In Table 5.2 we report the list of the different loss functions considered in
our empirical analysis.

5.2 Empirical analysis

In this section, we present computational results for seven models: the Im-
plied Volatility VaR (ImVolVaR), the Realized Volatility VaR (ReVolVaR), the
Shrunk Volatility VaR (ShVolVaR), the Historical Simulation VaR (HSVaR),
the Historical Filtered Bootstrap VaR (HFBVaR), the Extreme Value Theory
Filtered Bootstrap VaR (EVTFBVaR), and the RiskMetrics VaR (RiMeVaR)
models. The analysis is performed on the S&P 500, Eurostoxx50, Dax, FTSE100
and Topix market indexes, from which, in addition to the index values, are also
available the corresponding implied volatilities. The one-day-ahead VaR fore-
casts obtained by the seven models are validated by considering each individual
index and the portfolios of such indexes, namely in both the univariate and
multivariate contexts. As reported in Table 6.1, the lengths of the indexes’
time series, consisting of daily values obtained from Bloomberg, cover differ-
ent time windows according to the availability of the implied volatility values.
Each data set has the same end date (September 30, 2015), is expressed in
local currency and follows its own financial calendar. Further, the start dates
of each data set, shown in Table 6.1, refer to the starting points of the VaR
forecasts.

In more detail, we adopt a working-days calendar, and on these days we
take the prices of all market indexes. If a market is closed on a specific day,
eg, for holidays, then for that day we replicate the price with the last available
value. Clearly, on that particular day, the index return will be zero. This
preprocessing is required to compute a fair analysis of correlations among in-
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Market Index Implied Volatility Start End daily VaR
ticker ticker date date forecasts

SP500 SPTR VIX 30/01/1990 30/9/2015 6472
Eurostoxx50 SX5T V2X 01/02/1999 30/9/2015 4265

DAX DAX V1X 30/01/1992 30/9/2015 5994
FTSE100 TUKXG VFTSE 01/02/2000 30/9/2015 3959

Topix TPXDDVD VXJ 02/03/1998 30/9/2015 4320

Table 5.4: List of the data sets analyzed.

dexes, ie, to avoid possible lags among the returns time series. Conversely, the
realized volatilities are estimated on the original time series without this pre-
processing because, unlike the correlation estimates, those of volatilities would
be too influenced by this preprocessing.

For completeness, we also list in Table 6.1 the tickers corresponding to each
index. In the case of VaR forecast analyses for the portfolios of the five indexes,
we consider the maximum time window covered by all data sets, namely from
February 1, 2000 to September 30, 2015.

5.2.1 Computational Results

In this section we discuss the main results on the behavior of the VaR models
in the univariate (Section 5.2.1.1) and in the multivariate (Section 5.2.1.2)
frameworks.

5.2.1.1 Univariate framework

In Tables 5.5 and 5.6 we provide the p-values (expressed as a percentage) of the
Unconditional Coverage (UC), the Independence (IND) and the Conditional
Coverage (CC) tests. We report in dark-gray the cases in which we can not
accept the null hypotheses (i.e., the VaR model is not able to capture the
expected frequency of violations (UC), or suffer from dependence of violations
(IND), or both (CC)). In light-gray we highlight the cases in which the null
hypothesis is accepted at 99% confidence level (c.l.), but rejected at 95% c.l..
The rest of the accepted cases are reported in bold.

Table 5.5 shows that the RiMeVaR model does not suffer from dependence
of violations; however, it fails to capture the UC hypothesis, except for the
TOPIX index. The HFBVaR model is within the region of acceptance of the
UC test at a 99% c.l. for all indexes; when we consider a 95% c.l., however, we
observe two rejections (out of five) of the IND hypothesis, and consequently
two rejections of the CC hypothesis. HSVaR has the worst performance among
the models examined. For all indexes, it suffers from dependence of violations
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at a 95% c.l.; when a 99% c.l. is considered, the IND hypothesis is rejected
four times out of five. Further, the HSVaR model fails the UC test four times
out of five, and, accordingly, in only one case out of five can we accept the
null hypotheses on the CC test at a 99% c.l.. These results are consistent
with the findings of Brandolini and Colucci (2012) ([24]). For the EVTFBVaR
model, we observe that the UC and CC tests are always accepted, while the
IND hypothesis is rejected only in one case at a 95% c.l.. It is evident from our
experiments that the EVTFBVaR and HFBVaR strategies show better results
than RiMeVaR and HSVaR.

Table 5.6 shows that the ImVolVaR model (α = 1) fails the UC test four
times out of five. Further, this model fails the CC test three times at 99% c.l.,
and only in three cases it does not suffer from dependence of violations. The
ReVolVaR model (α = 0) presents the worst results; indeed for all indexes the
null hypothesis of the UC and CC tests is not accepted.

Index EVTFBVaR HSVaR HFBVaR RiMeVaR
UC IND CC UC IND CC UC IND CC UC IND CC

SP500 97.2 3.1 9.9 0.0 0.0 0.0 5.03 2.21 1.07 0.00 25.17 0.00
EuroStoxx50 72.0 50.1 74.8 6.9 3.9 2.3 16.42 66.74 34.65 0.00 53.75 0.00
DAX 35.8 9.2 15.9 0.0 0.0 0.0 7.83 31.88 12.91 0.00 56.65 0.00
Ftse100 56.0 33.9 53.4 0.6 0.0 0.0 14.73 63.93 31.35 0.00 18.79 0.00
Topix 73.4 6.3 16.8 0.1 0.0 0.0 6.12 4.15 2.17 62.03 5.70 14.45

Table 5.5: The p-values (%) of the UC, the IND, and the CC tests for the
EVTFBVaR, the HSVaR, the HFBVaR, and the RiMeVaR models.

For sake of brevity, in Table 5.6 we present detailed results only for the
ShVolVaR model with α = {0.3, 0.5, 0.7}. Clearly, low values of α tend to give
more importance to the realized volatility, while for high α the one-day-ahead
VaR estimation mainly depends on the implied volatility. Considering the
ShVolVaR model with α = 0.3, we observe three rejections for the UC and the
CC tests at 95% confidence level. For α = 0.7, the ShVolVaR model presents
one rejection for the UC and CC tests at 99% c.l., and only in two cases out
of five is the null hypothesis of the IND and CC tests at 95% c.l. accepted.
As mentioned above, the best results are obtained by the ShVolVaR model
with α = 0.5, where therefore the shrunk volatility σ̃k,t in (5.3) can be simply
interpreted as the average between the realized and the implied volatility of
the asset k.

In Tables 5.7 and 5.8 we report the frequency related to the observed num-
ber of VaR violations on the three overshooting intervals required by the ESMA
rules (see Section 5.1.7). We can observe that the HSVaR and the RiMeVaR
models show a high percentage of times at which the overshootings are more
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Index ReVolVaR (α = 0) ShVolVar (α = 0.3) ShVolVar (α = 0.5) ShVolVar (α = 0.7) ImVolVaR (α = 1)
UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC

SP500 0.0 2.0 0.0 0.6 49.6 1.8 55.1 12.9 26.5 0.6 3.7 0.3 0.0 56.1 0.0
EuroStoxx50 0.0 86.6 0.0 9.3 71.7 22.9 95.7 45.7 75.7 68.0 39.3 63.7 0.6 57.2 1.9
DAX 0.0 44.6 0.0 0.3 3.7 0.1 10.1 7.4 5.3 35.8 1.2 2.8 0.4 0.2 0.0
Ftse100 0.0 0.3 0.0 0.2 33.3 0.4 31.8 56.5 51.5 36.0 30.0 38.4 3.3 17.9 4.2
Topix 0.0 0.1 0.0 14.8 17.2 13.8 62.0 5.7 14.5 10.4 2.6 2.2 0.3 0.8 0.0

Table 5.6: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the ShVolVaR models with
α = {0, 0.3, 0.5, 0.7, 1}.

than six with the only exception of the Topix index for RiMeVaR. The other
benchmark models, HFBVaR and EVTFBVaR, have a frequency of violations
on the interval [7,+∞) that, among the different indexes considered, are not
greater than 5.1% and 4.1% respectively. The ImVolVaR model, overestimating
VaR, performs well according to the regulator rules; indeed, we observe that
the frequency of violations on the interval [7,+∞) is at most 2%. Conversely,
for the same overshooting interval the ReVolVaR model perform poorly, show-
ing a frequency of violations always greater than 26.1%. The new proposed
model (ShVolVaR with α = 0.5) presents a frequency of overshootings that is
not greater than 3% on the interval [7,+∞). Therefore, from the regulators’
viewpoint the ShVolVaR model does not require any modification.

The case of zero violations is allowed by the regulator, but from the in-
vestors’ viewpoint this means the mismanagement of capital. Furthermore, as
shown in Table 5.3 the case of zero hits is always rejected from the UC test
with 95% confidence level. However, theVaR models that best minimize the
frequency of absence of violations over a period of 250 days are ReVolVaR and
RiMeVaR, which are aggressive strategies for estimating the one-day-ahead
VaR. Meanwhile, the worst model is ImVolVaR, which is a too conservative
strategy. For zero hits, the performance of the ShVolVaR model is comparable
to HFBVaR and EVTFBVaR; indeed, ShVolVaR shows that the average fre-
quency of violations on the five indexes is equal to 5.6%, while for HFBVaR
and EVTFBVaR the average values are 4.2% and 5.3%, respectively. We stress
that the only three models analyzed which comply with regulator requests and
satisfy the accuracy tests are EVTFBVaR, HFBVaR and ShVolVaR.

Then, following the experimental procedure of Abad at al. (2015) (see [2]) and
of Marimoutou et al. (see [76]), we perform a backtesting based on loss func-
tions only for those models that never reject the CC test at 99% c.l.. In Table
5.9 we report the values of the total loss computed using the regulators’ loss
functions (see Section 5.1.8). Considering the average of total loss for all the
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VaR SP500 Topix
Model [0, 4] [5, 6] [7,+∞) 0 hits [0, 4] [5, 6] [7,+∞) 0 hits
ImVolVaR 96.1 1.8 2.0 34.4 99.2 0.8 0.0 29.5
ReVolVaR 38.9 23.5 37.5 0.4 36.2 35.7 28.1 0.0
ShVolVaR 89.8 7.2 3.0 14.4 94.9 5.1 0.0 5.4
HFBVaR 83.9 12.8 3.3 6.1 77.6 19.9 2.5 4.4
RiMeVaR 39.8 28.9 31.3 0.4 94.9 5.1 0.0 5.4
HSVaR 66.8 18.8 14.4 20.6 70.9 9.1 20.0 11.8
EVTFBVaR 92.3 7.7 0.0 5.3 91.2 5.8 3.0 2.0

Table 5.7: Observed frequencies of VaR violations on the three representative
overshooting intervals required by the ESMA rules for the SP500 and Topix
indexes.

VaR EuroStoxx50 DAX Ftse100
Model [0, 4] [5, 6] [7,+∞) 0 hits [0, 4] [5, 6] [7,+∞) 0 hits [0, 4] [5, 6] [7,+∞) 0 hits
ImVolVaR 96.9 3.1 0.0 19.0 98.9 1.1 0.0 25.1 95.4 4.6 0.0 30.7
ReVolVaR 36.7 37.2 26.1 0.0 32.9 39.3 27.8 1.3 21.8 33.6 44.6 0.0
ShVolVaR 91.5 8.4 0.0 3.2 87.2 12.3 0.5 3.7 88.5 10.8 0.8 1.3
HFBVaR 84.6 15.4 0.0 1.0 83.1 16.8 0.0 3.1 85.0 9.9 5.1 6.6
RiMeVaR 40.5 33.4 26.2 0.0 43.8 42.2 14.0 1.3 34.0 34.3 31.7 0.0
HSVaR 63.1 15.3 21.6 39.7 57.3 17.2 25.5 27.3 57.0 17.5 25.5 34.1
EVTFBVaR 93.9 6.1 0.0 1.6 99.5 0.5 0.0 6.9 91.4 4.6 4.1 10.6

Table 5.8: Observed frequencies of VaR violations on the three representative
overshooting intervals required by the ESMA rules for the EuroStoxx50, DAX
and Ftse100 indexes.

Portfolio Lopez Caporin1 Caporin2 Caporin3
name ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR
SP500 60.0070 81.0068 65.0055 16.7095 21.1220 16.3722 0.2565 0.2870 0.2306 0.4040 0.4461 0.3541

Topix 40.0103 56.0101 41.0082 14.3900 15.6653 12.0426 0.3108 0.3366 0.2624 0.4463 0.4556 0.3742

Eurostoxx 50 43.0042 52.0050 45.0041 10.1899 13.0137 10.1477 0.1448 0.1796 0.1401 0.2800 0.3419 0.2761

Dax 73.0082 74.0070 53.0056 18.5371 18.0669 12.8350 0.2840 0.2446 0.1837 0.4715 0.4660 0.3431

Ftse100 46.0026 49.0028 36.0020 10.1055 11.8675 8.8829 0.0985 0.1160 0.0812 0.2441 0.2619 0.2076

Mean 52.4065 62.4063 48.0051 13.9864 15.9471 12.0561 0.2189 0.2328 0.1796 0.3692 0.3943 0.3110

Table 5.9: Values of the total loss over the backtesting sample for each index,
using Regulator’s loss functions.

Portfolio Caporin1 Caporin2 Caporin3
name ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR
SP500 4622.9418 4571.3496 4666.3160 92.9660 92.7960 103.2646 170.8513 170.1141 182.1709

Topix 3047.1406 2986.8866 3052.8878 79.3427 75.1967 81.6495 146.0535 140.9367 148.4493

Eurostoxx 50 2974.2073 2970.8724 3010.3411 77.7086 79.1699 84.3858 146.0354 147.1937 153.2888

Dax 4126.3450 4175.1117 4254.6667 99.8571 106.6990 115.9781 193.0378 200.1147 211.1495

Ftse100 2761.9257 2746.4252 2806.4317 57.9089 59.7209 64.7489 109.1349 110.9604 116.7976

Mean 3506.5121 3490.1291 3558.1287 81.5566 82.7165 90.0054 153.0226 153.8639 162.3712

Table 5.10: Values of the total loss over the backtesting sample for each index,
using Investors’s loss functions.
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indexes analyzed, HFBVaR shows the worst results, ShVolVaR has intermedi-
ate performance, and EVTFBVaR presents the best results. However, when
using investors’ loss functions, as reported in Table 5.10, on average EVTF-
BVaR tends to perform the worst, while ShVolVaR has the best results two
times out of three.

We point out, therefore, that our naive model acheives performance results
that are as good as the EVTFBVaR and the HFBVaR models, which seem to
be among the best methods to estimate VaR (see [1]).

5.2.1.2 Multivariate framework

In this section we report the empirical results for multivariate VaR estimations
on twenty portfolios, listed. These are listed in Table 5.11, and are commonly
considered as benchmark portfolios in the asset management industry (see, for
example, [83] and [106]). The portfolios are composed of a number of indexes,
ranging from two to five. Further, we present here only the empirical analysis

Portfolio Weights (%)
name SP500 EuroStoxx50 DAX Ftse100 Topix
BMK1 50.0 0.0 0.0 25.0 25.0
BMK2 50.0 50.0 0.0 0.0 0.0
BMK3 66.0 34.0 0.0 0.0 0.0
BMK4 0.0 50.0 0.0 0.0 50.0
BMK5 10.0 10.0 10.0 10.0 60.0
BMK6 34.0 33.0 0.0 0.0 33.0
BMK7 0.0 33.0 0.0 33.0 34.0
BMK8 50.0 25.0 0.0 25.0 0.0
BMK9 0.0 35.0 25.0 40.0 0.0
BMK10 0.0 50.0 0.0 50.0 0.0
BMK11 10.0 60.0 10.0 10.0 10.0
BMK12 50.0 0.0 50.0 0.0 0.0
BMK13 25.0 25.0 0.0 25.0 25.0
BMK14 50.0 25.0 0.0 0.0 25.0
BMK15 0.0 0.0 50.0 50.0 0.0
BMK16 12.5 30.0 5.0 30.0 12.5
BMK17 50.0 20.0 5.0 15.0 10.0
BMK18 10.0 25.0 20.0 35.0 10.0
BMK19 20.0 20.0 20.0 20.0 20.0
BMK20 50.0 0.0 0.0 0.0 50.0

Table 5.11: List of the 20 benchmark portfolios weights used for the multivari-
ate VaR estimations analysis.

for those models that in the univariate framework have shown the best results
(namely EVTFBVaR, HFBVaR and ShVolVaR with α = 0.5).

In Table 5.12 we report the p-values obtained by the EVTFBVaR, the
HFBVaR and the ShVolVaR models for the UC test, that is, the accuracy

110



Empirical analysis

test on which the regulator is mainly interested. Following the convention
described in Section 5.2.1.1, we note that for the EVTFBVaR model all the
portfolios pass the UC test at 95% c.l.; for ShVolVaR nineteen portfolios out of
twenty pass the UC test at 95% c.l., while for HFBVaR only thirteen portfolios
out of 20 pass. If we consider the UC test at 99% c.l. (in light-gray), then for
all the benchmark portfolios the VaR estimations obtained by EVTFBVaR,
ShVolVaR and HFBVaR show statistical significance when we compare the
observed frequency of VaR violations with that expected.

Portfolio UC test → p-value (%)
name ShVolVaR HFBVaR EVTFBVaR
BMK1 98.2 2.4 76.8

BMK2 89.2 42.8 85.8

BMK3 85.8 21.5 43.5

BMK4 73.9 34.6 42.8

BMK5 73.9 27.5 89.2

BMK6 73.9 3.5 76.8

BMK7 62.6 12.5 16.5

BMK8 62.6 42.8 89.2

BMK9 42.8 34.6 62.6

BMK10 34.6 9.3 52.2

BMK11 34.6 3.5 27.5

BMK12 27.5 27.5 89.2

BMK13 27.5 16.5 89.2

BMK14 21.5 3.5 52.2

BMK15 16.5 34.6 85.8

BMK16 16.5 4.9 52.2

BMK17 16.5 34.6 43.5

BMK18 12.5 2.4 21.5

BMK19 12.5 3.5 73.9

BMK20 3.5 16.5 98.2

Table 5.12: The p-values (%) of the UC test obtained by the EVTFBVaR, the
HFBVaR, and the ShVolVaR models for the 20 benchmark portfolios.

In Table 5.13, for each benchmark portfolio, we report the frequency (%)
related to the number of VaR violations achieved by the EVTFBVaR, HFBVaR
and ShVolVaR models on the three representative overshooting intervals. For
each interval and each portfolio, the best result is marked in bold. Comparing
ShVolVaR and HFBVaR, we can observe that, in the case of VaR violations
greater than six, the ShVolVaR model performs better than HFBVaR in eight
cases out of twenty, for two benchmark portfolios the frequencies are equal and
in ten cases out of twenty HFBVaR presents better results than ShVolVaR.
Therefore, there is no apparent relation of dominance between these two ap-
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Portfolio [0, 4] [5, 6] [7,+∞)

name ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR
BMK1 89.5 72.4 91.4 10.1 22.3 8.0 0.3 5.4 0.5
BMK2 88.8 89.9 92.0 9.1 9.7 8.0 2.1 0.3 0.0

BMK3 94.1 85.8 96.0 5.5 13.1 4.0 0.3 1.1 0.0

BMK4 92.6 91.2 88.8 7.0 8.4 10.8 0.4 0.4 0.4
BMK5 94.0 90.0 88.7 6.0 10.0 10.6 0.0 0.0 0.7
BMK6 86.1 78.9 91.0 13.9 18.1 8.7 0.0 3.0 0.3
BMK7 88.6 83.6 83.3 9.8 14.7 13.5 1.6 1.7 3.2
BMK8 86.0 90.4 92.9 8.6 9.3 7.1 5.4 0.3 0.0

BMK9 93.8 93.5 92.9 5.5 6.5 7.1 0.7 0.0 0.0

BMK10 87.5 82.3 90.4 10.2 17.5 8.7 2.3 0.2 0.9
BMK11 82.1 78.5 85.1 17.2 16.9 14.9 0.7 4.7 0.0

BMK12 87.9 86.5 97.2 9.9 13.2 2.8 2.3 0.3 0.0

BMK13 80.3 84.3 98.0 18.2 15.0 2.0 1.4 0.8 0.0

BMK14 79.4 82.6 88.8 20.0 9.0 10.7 0.7 8.4 0.5

BMK15 83.7 88.7 95.1 14.0 11.1 4.9 2.3 0.2 0.0

BMK16 80.7 83.8 94.5 16.8 15.2 4.6 2.5 1.0 0.9

BMK17 84.5 88.0 97.0 13.0 8.9 3.0 2.5 3.1 0.0

BMK18 82.1 81.3 92.3 14.9 17.4 7.2 3.0 1.4 0.4

BMK19 81.3 79.2 97.0 17.3 18.5 3.0 1.4 2.3 0.0

BMK20 80.6 86.3 97.8 17.9 12.8 1.5 1.5 0.9 0.7

Mean 86.2 84.8 92.5 12.2 13.4 7.1 1.6 1.8 0.4

Min 79.4 72.4 83.3 5.5 6.5 1.5 0.0 0.0 0.0
Max 94.1 93.5 98.0 20.0 22.3 14.9 5.4 8.4 3.2

Table 5.13: Observed frequencies of VaR violations on the three representative
overshooting intervals required by the ESMA rules for the 20 portfolios listed
in Table 5.11.

proaches. The average of the frequencies on the twenty portfolios is below
2% for both models; in very few cases, the ShVolVaR and HFBVaR models
require adjustments. In the overshooting interval [0, 4], the average frequency
is 86.2% for ShVolVaR and 84.8% for HFBVaR. For the intermediate interval
[5, 6], the ShVolVaR and HFBVaR models show average frequencies of 12.2%
and 13.4%, respectively. Thus, even in these cases the two approaches seem to
perform similarly. The EVTFBVaR approach has the best results for all the
intervals considered, and in our experiments it seems to dominate the other
two approaches.

We stress here that the ideal model, both from the regulator’ and from the
investors’ viewpoint, should have 100% of the VaR violations on the interval
[1, 4]. Table 5.14 shows that on the interval [1, 4] the average frequencies of
ShVolVaR and of HFBVaR are both equal to 82.4%, and that also the minimum
and maximum frequencies are similar, around 70.0% and 92.7%. Again, for
the same interval, EVTFBVaR shows its best results with average frequencies
of 87.7%, and minimum and maximum frequencies equal to 77% and 94%
respectively.

We can conclude that the forecasting power of our naive model is definitely
comparable to that of the two best methods of estimating VaR (HFBVaR and
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Portfolio 0 hits [1, 4]

name ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR
BMK1 8.8 2.4 6.1 80.8 70.0 85.3

BMK2 8.4 3.6 3.8 80.4 86.3 88.2

BMK3 5.7 3.6 8.4 88.5 82.2 87.6
BMK4 4.9 6.9 1.0 87.6 84.3 87.8

BMK5 1.5 1.5 11.9 92.4 88.5 76.8
BMK6 7.9 1.7 9.6 78.2 77.1 81.4

BMK7 4.2 2.7 3.2 84.4 80.9 80.2
BMK8 1.9 3.6 3.8 84.0 86.7 89.1

BMK9 1.2 0.8 3.4 92.6 92.7 89.5
BMK10 1.2 1.2 3.4 86.3 81.1 87.0

BMK11 7.4 0.8 5.7 74.7 77.7 79.5

BMK12 5.7 3.6 5.1 82.2 82.9 92.1

BMK13 2.0 2.1 4.1 78.4 82.1 94.0

BMK14 7.9 2.2 2.8 71.5 80.4 86.0

BMK15 0.6 2.0 3.4 83.1 86.6 91.7

BMK16 0.8 0.8 7.0 80.0 83.0 87.5

BMK17 0.2 4.4 4.6 84.4 83.6 92.4

BMK18 2.6 0.0 0.8 79.5 81.3 91.5

BMK19 0.8 0.0 3.3 80.5 79.2 93.7

BMK20 1.0 5.5 5.1 79.5 80.8 92.7

Mean 3.7 2.5 4.8 82.4 82.4 87.7

Min 0.2 0.0 0.8 71.5 70.0 76.8

Max 8.8 6.9 11.9 92.6 92.7 94.0

Table 5.14: Observed frequencies of the number of VaR violations on the inter-
val [1, 4], and in the case of absence of violations (0 hits) for the 20 benchmark
portfolios.
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EVTFBVaR), even though EVTFBVaR seems to show the best performance.
However, while the VaR forecasts of HFBVaR and EVTFBVaR are based on
fairly sophisticated procedures, those of the ShVolVaR model are extremely
simple to obtain. Indeed, we stress that in the step 4′. of the EVTFBVaR ap-
proach (see Section 5.1.4), the estimation process of the t-copula parameters
is very time-consuming, especially when the number of assets in a portfolio
increases. In Table 5.15 we report the values of the total loss, computed using
regulators’ loss functions, for the twenty benchmark portfolios. As for the uni-
variate case, EVTFBVaR performs better than the other models, regardless
of which regulators’ loss function is used, while ShVolVaR has the second best
results in two cases out of four. However, observing Table 5.16, from the in-
vestors’ viewpoint ShVolVaR seems to have the best results, while EVTFBVaR
tends to perform poorly.

Portfolio Lopez Caporin1 Caporin2 Caporin3
name ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR
BMK 1 41.0024 56.0014 39.0014 11.8004 11.8753 9.5624 0.1150 0.0889 0.0776 0.2276 0.1966 0.1741

BMK 2 40.0022 46.0020 42.0015 11.0043 11.6690 9.5196 0.1040 0.1063 0.0845 0.2380 0.2335 0.1861

BMK 3 42.0027 49.0022 36.0017 10.7298 11.6358 9.2958 0.1158 0.1091 0.0925 0.2366 0.2359 0.1778

BMK 4 43.0043 47.0040 46.0045 12.4769 13.2080 13.2423 0.1727 0.1670 0.1883 0.3013 0.3089 0.3029
BMK 5 43.0047 48.0042 40.0047 12.9197 13.2803 12.7542 0.1909 0.1844 0.2075 0.3023 0.3030 0.2799

BMK 6 43.0021 55.0016 39.0019 11.8215 11.0342 10.5083 0.1012 0.0898 0.0963 0.2387 0.2080 0.2037

BMK 7 44.0033 51.0026 50.0031 11.3448 11.7837 12.5689 0.1382 0.1135 0.1381 0.2569 0.2632 0.2668

BMK 8 44.0023 46.0017 40.0014 11.0168 10.9811 9.0389 0.1050 0.0928 0.0793 0.2273 0.2041 0.1677

BMK 9 46.0036 47.0040 44.0033 10.0879 11.8892 9.9623 0.1269 0.1466 0.1198 0.2464 0.2863 0.2404

BMK 10 47.0032 52.0036 45.0030 10.0346 12.0697 10.2231 0.1155 0.1370 0.1103 0.2439 0.2834 0.2425

BMK 11 47.0027 55.0029 48.0026 9.9611 12.2593 10.7392 0.1082 0.1268 0.1041 0.2287 0.2649 0.2406
BMK 12 48.0025 48.0022 40.0016 11.1457 10.9929 9.2701 0.1110 0.1042 0.0862 0.2397 0.2345 0.1888

BMK 13 48.0020 50.0015 40.0016 11.2789 11.1992 10.4994 0.0956 0.0872 0.0851 0.2217 0.1969 0.1969

BMK 14 49.0021 55.0013 45.0015 11.4191 10.9727 9.7201 0.1001 0.0823 0.0806 0.2310 0.1939 0.1842

BMK 15 50.0037 47.0040 42.0033 10.4366 11.5619 9.6015 0.1277 0.1416 0.1167 0.2524 0.2839 0.2319

BMK 16 50.0018 54.0015 45.0015 10.7664 11.4956 10.4364 0.0862 0.0832 0.0760 0.2032 0.2049 0.1894

BMK 17 50.0022 47.0015 36.0013 10.8053 10.5164 9.0651 0.1028 0.0837 0.0785 0.2174 0.1930 0.1670

BMK 18 51.0025 56.0022 49.0022 10.7565 11.4130 10.0838 0.1047 0.1020 0.0914 0.2331 0.2358 0.2137

BMK 19 51.0021 55.0018 43.0018 11.2734 11.9365 10.7623 0.0980 0.0945 0.0863 0.2310 0.2299 0.2138

BMK 20 55.0031 50.0023 41.0028 13.6751 13.1640 12.1072 0.1362 0.1139 0.1290 0.2846 0.2484 0.2455

Mean 46.6028 50.7024 42.5023 11.2377 11.7469 10.4480 0.1178 0.1127 0.1064 0.2431 0.2405 0.2157

Table 5.15: Values of the total loss over the backtesting sample for the 20
benchmark portfolios, using Regulator’s loss functions.

To better highlight the forecasting power in the multivariate framework,
we also test the ShVolVaR model on 2000 portfolios, uniformly distributed on
the unit simplex, ie, portfolios with weights that must sum to 1 without short-
sellings. To generate these 2000 portfolios, we employ an algorithm provided
by Rubinstein (1982) (see [99]). In Table 5.17 we report some statistics (mean,
median, minimum and maximum) of the observed frequencies (also called the
empirical coverages) of the VaR violations and of the p-values obtained by
the UC test for the ShVolVaR model. The empirical coverages range from
0.91% to 1.35% with the median equal to 1.17%, while the p-values are be-
tween 3.37% and 98.28% with the median equal to 27.47%. This means that
the UC test at 99% c.l. never rejects the null hypothesis, while at 95% c.l.
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Portfolio Caporin1 Caporin2 Caporin3
name ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR ShVolVaR HFBVaR EVTFBVaR
BMK 1 2861.8086 2843.3050 2895.2287 47.1939 48.2835 51.1557 88.4635 89.6406 93.0658

BMK 2 2880.5416 2888.7287 2909.7733 61.3640 63.9055 65.9134 112.6127 115.2428 117.6684

BMK 3 2892.5173 2889.8671 2918.7054 60.0871 62.0754 65.0732 109.6493 111.6916 115.1995

BMK 4 2862.0488 2873.1896 2894.1636 58.7096 60.0447 61.5921 109.0054 110.4305 112.2853

BMK 5 2887.1598 2857.5478 2905.3007 56.0739 54.7633 58.0770 102.7530 101.0832 104.9893

BMK 6 2848.4629 2847.2812 2885.8065 50.9912 51.6217 54.4267 95.4108 96.0279 99.4022

BMK 7 2862.5540 2867.4588 2888.6687 55.0583 56.6075 57.9690 102.5779 104.2721 105.8404

BMK 8 2882.9738 2887.9026 2911.5020 56.8424 59.5752 61.2658 104.3797 107.3155 109.3737

BMK 9 2861.0194 2863.4197 2887.2108 66.1469 67.4476 70.3007 123.0245 124.0556 127.5516

BMK 10 2869.3064 2868.4500 2890.4673 65.6539 66.9954 69.3758 121.6295 122.7508 125.6588

BMK 11 2859.8384 2872.1217 2884.7462 63.4489 65.5773 67.1863 117.8323 119.9517 121.8877

BMK 12 2868.4947 2882.1922 2908.5404 61.3271 64.0797 66.4918 113.0821 115.9264 118.8529

BMK 13 2855.3365 2855.8923 2888.2478 50.5587 51.9650 53.8853 94.4609 95.9934 98.2783

BMK 14 2856.5063 2865.9246 2893.1276 50.6278 53.1376 54.6959 94.5035 97.2606 99.1871

BMK 15 2855.1820 2862.6287 2888.5853 64.1659 66.1049 68.9156 119.7082 121.5295 124.9579

BMK 16 2860.5910 2865.3378 2889.2869 50.5081 51.9308 53.6850 93.9425 95.3916 97.4845

BMK 17 2873.3879 2886.8909 2905.6094 53.4088 56.1323 57.7742 98.5612 101.5860 103.5170

BMK 18 2857.8482 2869.3629 2887.6852 58.3338 60.2353 62.1683 108.6752 110.6139 112.9188

BMK 19 2849.1685 2851.0512 2884.3096 53.5703 54.8537 57.2044 100.2416 101.5959 104.3555

BMK 20 2868.4960 2842.9578 2901.1273 50.7030 50.5122 53.8039 94.2041 93.9590 97.8738

Mean 2865.6621 2867.0755 2895.9046 56.7387 58.2924 60.5480 105.2359 106.8159 109.5174

Table 5.16: Values of the total loss over the backtesting sample for the 20
benchmark portfolios, using Investor’s loss functions.

the UC hypothesis is rejected in seventeen cases out of 2000. Table 5.17 also
provides some statistics (mean, median, minimum and maximum) of the ob-
served frequencies related to the number of VaR violations on the usual three
overshooting intervals required by the UCITS rules. The results obtained by
the ShVolVaR model for 2000 randomly generated portfolios show a behavior
similar to that achieved from the restricted set of twenty benchmark portfo-
lios. So, even this last analysis confirms that our simple prediction strategy
to model VaR shows a very promising performance. Hence, due to its ease
of implementation, the ShVolVaR model could be used as a tool for portfo-
lio managers to quickly monitor investment decisions before employing more
sophisticated risk management systems.

Empirical UC test Overshooting intervals
coverage p-value [0, 4] [5, 6] [7,+∞) 0 hits

Mean 1.17 33.32 86.2 12.3 1.5 2.7
Min 0.91 3.47 72.8 1.1 0.0 0.0
Max 1.35 98.24 98.9 25.5 7.3 13.2
Median 1.17 27.47 86.1 12.3 1.3 2.0

Table 5.17: Mean, median, min and max of the realized frequency of the VaR
violations and of the p-value obtained by the UC test for the ShVolVaR model
on 2000 portfolios uniformly distributed on the unit simplex.
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5.3 Conclusions

In this chapter we have proposed a new method to predict VaR, using both
variables known in the market (implied volatilities) and variables estimated
on data (realized volatilities). The main idea behind our approach is to use a
combination of information on both expected future risk and past estimated
risk. The forecasting power of our ShVolVaR model is compared with that of
several models proposed in the literature, including two of the best methods
for estimating VaR, such as the HFBVaR and EVTFBVaR models. All models
are tested on both statistical accuracy (by means of the UC, IND and CC tests)
and efficiency (by means of the backtesting procedure of the vigilance authority
and backtesting based on loss functions). Further, they are validated on both
individual assets and the portfolios of such assets, in both the univariate and
multivariate frameworks.

Although the ShVolVaR model is based on strong assumptions like those
of Risk- Metrics (namely that one-day-ahead returns are normally distributed
with zero mean), its forecasting power is comparable to that of the more so-
phisticated HFBVaR and EVTFBVaR models. Thus, we provide a fast and
simple tool that can also be imple- mented on a common spreadsheet, which
could be directly integrated with, for instance, data providers.

Talking in practical terms, in this work we have examined the case of a
portfolio manager who administers a flexible UCITS fund, aiming to obtain
the maximum return with a constraint on risk, measured by VaR. Since the
portfolio managers must face transaction costs when they buy or sell assets,
they could use our quick forecasting tool as a what-if scenario analysis before
they start trading. If the portfolio VaR is within specific risk bounds, the
portfolio managers can purchase and sell; otherwise, they should revise their
investment. Therefore, the pre-analysis obtained by our model may allow for
the control of risk both upstream and downstream of the investment process.

Indeed, it is typical for the asset manager to construct their portfolio,
and only afterwards for the risk manager to ensure compliance with the risk
limit. So, if the portfolio VaR goes beyond the regulators’ limitations, then
the portfolio manager has to change their investment strategy, thus leading to
carry the trading costs twice.
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Chapter 6
Shrunk Volatility VaR: an application

on US Balanced Portfolios

The purpose of this chapter is to compare the Shrunk Volatility VaR (Sh-
VolVaR), with several prediction strategies over many balanced portfolios com-
posed by equity and bonds.

More in detail, we generalize the Shrunk Volatility VaR model and we
empirically compare its forecasting power with six benchmark VaR models:
the Historical Filtered Bootstrap with symmetric and asymmetric conditional
variance (see [52] ,[86] and [87]), Extreme Value Theory Historical Filtered
Bootstrap with symmetric and asymmetric conditional variance and on Risk-
Metrics approaches over a relatively long time period (at least thirteen years)
that depends on the availability of implied volatility values. For these seven
models, we use the same validation procedure seen in chapter 5. We test four
VaR confidence level namely 95%, 99%, 99.5% and 99.9%.

6.1 Models and Tests

6.1.1 Historical Filtered Bootstrap VaR model

The model is the one presented in 5.1.3. To highlight the power of asym-
metric GARCH models in forecasting VaR we perform the same procedure
changing the filter using an AR(1)-StudT-EGARCH(1,1) and AR(1)-StudT-
GJRGARCH(1,1) (HFBEVaR and HFBGJRVaR ). In this way, the first step
the formulation changes and the AR(1)-StudT-EGARCH(1,1) is defined as
follows
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AR(1) : rk,t = ak + birk,t−1 + ηk,t

StudT-EGARCH(1,1) : log σ2
k,t = αk + γk log σ

2
k,t−1 + δk

(

|zk,t−1| − E(|zk,t−1|)
)

+ βizk,t−1

ηk,t = σk,tzk,t

and AR(1)-StudT-GJRGARCH(1,1) is defined as follow

AR(1) : rt,k = ak + bkrt−1,k + ηt,k

StudT-GJRGARCH(1,1) : σ2
t,k = αk + βkσ

2
t−1,k + γkη

2
t−1,k + LkIη

2
t−1,k

ηt,k = σt,kzt,k

where I = 1 if ηt−1,k < 0 or I = 0 if ηt−1,k > 0 and zt,k =
√

νk−2
νk

Tνk ,

Tνk follows a Student-T distribution with νk degrees of freedom, and θ̂ =

{ak, bk, αk, βk, γk, νk, δk, Lk} are Maximum Likelihood estimators.

6.1.2 Shrunk Volatility VaR model: Generalization

We have seen in the 5.1.5 how to forecast ex-ante VaR using a quick tool that
avoid to estimate ARMA GARCH models. The main assumption we did is,
as for RiMeVaR model, the asset returns are normally distributed with zero
means, but that volatility forecast at time t + 1, given information available
at time t is the shrinkage between realized and implied volatility.

Here we generalize ShVolVaR model using a Student-t distribution. We
assume that the return of the generic asset k, rt+1|t,k = zt+1|t,kσ̃t+1|t,k, where

zt+1|t,k = Tνk

√

νk−2
νk

and Tνk follows a T-Student distribution with ν degrees of
freedom. We consider

σ̃t+1|t,k(α) = (1− α)σ̂t,k + ασimpl
t,k , (6.1)

where α ∈ [0, 1] is called shrinkage parameter. σ̂t,k is computed as the standard
deviation of the index k returns on 20 stock market days, and the implied
volatility

σimp
t,k = (256)−

1

2V imp
t,k /100,

where V imp
t,k represents the quoted implied volatility of the market index k.

In the multivariate context we assume

(rt+1|t,1, rt+1|t,2, . . . rt+1|t,n) ∼ Tν(0, Σ̃t+1|t(α)),
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with the covariance matrix

Σ̃t+1|t(α) = diag(σ̃t+1|t(α))Ĉt+1|tdiag(σ̃t+1|t(α)) (6.2)

where diag(σ̃t+1|t(α)) is the diagonal matrix with shrunk volatilities of the
assets on the diagonal, and Ĉt+1|t is the sample correlation matrix estimated
on 20 days preceding t. Clearly, the portfolio volatility can be written as

σ̃t+1|t(α, x) =
√

xT Σ̃t+1|t(α)x. (6.3)

The portfolio VaR is as follows,

V aRε(α, ν, x) = σ̃t+1|t(α, x)F
−1(ν, ε), (6.4)

where F−1 is the inverse CDF of the standard Student-t. Note that, hidden
in the ShVolVaR model there are two other models Realized Volatility VaR
(ReVolVaR) choosing α = 0 and Implied Volatility VaR (ImVolVaR) choosing
α = 1.

In Section 6.2 we will test and compare the ShVolVaR model with the His-
torical Filtered Bootstrap VaR (HFBVaR), the Historical Filtered Bootstrap
VaR with asymmetric conditional variance (HFBEVaR and HFBGJRVaR),
the Extreme Value Filtered Bootstrap VaR models (EVTHFBVaR, EVTHF-
BGJRVaR) and the RiskMetrics VaR (RiMeVaR), models that are considered
as the benchmarks.

6.2 Empirical analysis

In this section, we present computational results for seven models: the Shrunk
Volatility VaR (ShVolVaR), the Historical Filtered Bootstrap VaR (HFBVAR)
and its others specification with asymmetric conditional volatility (HFBE-
VaR and HFBGJRVaR), Extreme Value Theory Historical Filtered Bootstrap
(EVTHFBVaR and EVTHFBGJRVaR) and the RiskMetrics VaR (RiMeVaR)
models. The analysis is performed on the S&P 500 and Bloomberg/Effas
US Govt 7-10y Yr TR indices, in which, in addition to the index values, are
also available the corresponding implied volatilities. The one-day-ahead VaR
forecasts obtained by the seven models are validated by considering 39 bal-
anced portfolios, where equity weight ranges from 2.5% to 97.5% with a step
of 2.5%. Our aim is to test the Shrunk Volatility VaR model on an equally
spaced combination of the aforementioned indexes. The portfolios composi-
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Market Index Implied Volatility Start End daily VaR
ticker ticker date date forecasts

SP500 SPTR VIX 28/01/2003 29/1/2016 3393
US Govt 7-10y US4TR TYVIX 28/01/2003 29/1/2016 3393

Table 6.1: List of the data sets analyzed.

tions are reported in table 6.2. We estimate daily VaR from January 28, 2003,
to January 29, 2016. Both indexes are expressed in local currency.

More in detail, we adopt a working days calendar, and on these days we
take the prices of all market indexes. If a market is closed on a specific day, e.g.,
for holidays, then for that day, we replicate the price with the last available
value. Clearly, on that particular day, the index return will be zero. This
pre-processing is required to compute a fair analysis of correlations among
indexes, i.e., to avoid possible lags among the returns time series. Conversely,
the realized volatilities are estimated on the original time series without this
pre-processing, because unlike the correlations estimates, those of volatilities
would be too influenced by this pre-processing. For completeness, we also list
in Table 6.1 the tickers corresponding to each index.

We perform the VaR estimation at four confidence level in particular 95%,
99%, 99.5% and 99.9%. The former two are often utilized in asset management
industry (see [35]) while the latter two are utilized in insurance (see [48]) and
bank industries (see [11], [12]).

Under the main assumption (conditionally normal returns), we expect the
ShVolVaR to produce good results at low confidence levels (i.e. 95% and 99%)
and not-so-good results when high confidence levels are considered. This is
the main pitfall of the model; the normality assumption fails to capture rare
events. It is for this reason we generalize it.

6.2.1 Computational Results

In this section, we report the empirical results for multivariate VaR estimations
on thirty-nine balanced portfolios, listed in Table 6.2. It is convenient to recall
that low values of α tend to place more importance to the realized volatility,
while for high α the one-day-ahead VaR estimation mainly depends on the im-
plied volatility. As before we place much more importance to implied volatility
when VaR confidence level increase. We decided to adopt the α proposed in
the previous chapter regarding the V aR1% estimation. Knowing that implied
volatility outperforms past volatility in forecasting future volatility (see [39],
[84] and [85] ) and implied volatilities tend to overestimate future market risk,
we increase the value of α as we want to estimate tail risk.
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Portfolio Weights (%)
name SP500 US Govt 7-10 Yr
Ptf 1 97.5 2.5
Ptf 2 95.0 5.0
Ptf 3 92.5 7.5
Ptf 4 90.0 10.0
Ptf 5 87.5 12.5
Ptf 6 85.0 15.0
Ptf 7 82.5 17.5
Ptf 8 80.0 20.0
Ptf 9 77.5 22.5
Ptf 10 75.0 25.0
Ptf 11 72.5 27.5
Ptf 12 70.0 30.0
Ptf 13 67.5 32.5
Ptf 14 65.0 35.0
Ptf 15 62.5 37.5
Ptf 16 60.0 40.0
Ptf 17 57.5 42.5
Ptf 18 55.0 45.0
Ptf 19 52.5 47.5
Ptf 20 50.0 50.0
Ptf 21 47.5 52.5
Ptf 22 45.0 55.0
Ptf 23 42.5 57.5
Ptf 24 40.0 60.0
Ptf 25 37.5 62.5
Ptf 26 35.0 65.0
Ptf 27 32.5 67.5
Ptf 28 30.0 70.0
Ptf 29 27.5 72.5
Ptf 30 25.0 75.0
Ptf 31 22.5 77.5
Ptf 32 20.0 80.0
Ptf 33 17.5 82.5
Ptf 34 15.0 85.0
Ptf 35 12.5 87.5
Ptf 36 10.0 90.0
Ptf 37 7.5 92.5
Ptf 38 5.0 95.0
Ptf 39 2.5 97.5

Table 6.2: List of the thirty-nine portfolios weights used for the multivariate
VaR estimations analysis.
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Summarizing, we adopt α = 0.275 and α = 0.325 dealing with V aR5%,
α = 0.5 and α = 0.6 dealing with V aR1%, α = 0.75 dealing with V aR0.5% and
α = 1 dealing with V aR0.1%.

Initially we use ν = ∞ and in Tables 6.3, 6.4, 6.5, and 6.6 we provide the
p-values (expressed as a percentage) of the Unconditional Coverage (UC), the
Independence (IND) and the Conditional Coverage (CC) tests at confidence
levels of 95%, 99%, 99.5% and 99.9%. We report in dark-gray the cases in
which we cannot accept the null hypotheses (i.e., the VaR model is not able to
capture the expected frequency of violations (UC) or suffer from dependence of
violations (IND), or both (CC)). In light-gray we highlight the cases in which
the null hypothesis is accepted at 99% confidence level (c.l.) but rejected at
95% c.l.. The rest of the accepted cases have no one highlight.

Table 6.3 shows that the RiMeVaR model does not suffer from dependence
of violations; nevertheless it fails to capture the UC hypothesis, in 12 portfolios
out 39 at a 99% c.l., and we record 15 rejections of the CC null hypothesis at a
95% c.l.. The HFBVaR model is within the region of acceptance of the UC test
at a 99% c.l. for all combinations. Considering the IND hypothesis, we observe
2 rejections (out of 39) at 99% c.l. and 5 rejection at 95%. Consequently, we
record 4 rejections of the CC hypothesis at 95% c.l.. The HFBEVaR and
HFBGJRVaR do not suffer from dependence but they fail to capture UC and
CC hypothesis in more than 20 portfolios. Considering the ShVolVaR model
with α = 0.275, and with α = 0.325 we observe no rejections.

Table 6.4 shows that the RiMeVaR model does not suffer from dependence
of violations, but it fails to capture the UC and CC hypothesis in all portfolios.
The HFBVaR model is within the region of acceptance of the UC and CC test
at 99% c.l. for all combinations. Considering a 95% c.l., we observe 2 rejections
(out of 39) of the IND hypothesis. The HFBEVaR exhibits only 2 rejections of
the UC test at 95% c.l.. HFBGJRVaR garners 2 rejections (out of 39) of the UC
test at 99% c.l. and 10 rejections of the UC test at 95% c.l. and, consequently,
the CC is rejected 11 times at 95% c.l.. Considering the ShVolVaR model with
α = 0.5, the UC and CC tests are rejected at 99% c.l. when equity weight is
between 5% and 37.5%. When using an α = 0.6 we observe more rejections
cases.

Table 6.5 shows that, as before, the RiMeVaR model does not suffer from
dependence of violations; however it fails to capture the UC and CC hypothesis.
The HFBVaR model is within the region of acceptance of the UC and CC test
at 99% c.l. for all combinations. Considering a 95% c.l. we observe 1 rejections
(out of 39) of the CC hypothesis due to one rejection during the IND test.
HFBGJRVaR has no rejections while HFBEVaR shows 2 rejections of the UC
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test at 99% c.l. and 5 rejections of the UC test at 95% c.l.. Consequently,
for the CC test we record 4 rejections at a 95% c.l. when the equity weight is
greater than 90%. Considering the ShVolVaR model with α = 0.75, the UC
and CC test are rejected at 99% c.l. when the equity weight is between 2.5%

and 40%. The IND test is rejected at a 95% c.l. when the equity weight is
between 42.5% and 65%,

Table 6.6 shows that the RiMeVaR model suffers from dependence of viola-
tions when equity weight is greater than 45% and fails to capture the UC and
CC hypothesis. The HFBVaR demonstrates 5 rejections out of 39 for the CC
test when the equity weight is between 37.5% and 50%. Considering a 95%

c.l., we observe many rejections of the UC hypothesis and, consequently, the
CC hypothesis. HFBGJRVaR has only 4 rejections of the UC and CC tests
when equity is less than 10%, while HFBEVaR has 10 rejections of the UC
test at 99% c.l. and 2 rejections of the UC test at 95% c.l.. Consequently, the
CC exhibits 9 rejection at a confidence level of 95% when the equity weight
is greater than 67.5%. Considering the ShVolVaR model with α = 1, the UC
and CC tests are rejected at 99% c.l. when the equity weight is between 2.5%

and 37.5%.
As expected, ShVolVaR, performance get worse as confidence level in-

creases. The normality assumption cannot guarantee a perfect VaR forecast.
RiMeVaR, which operates under the same assumption, give the worst per-
formances of all the considered models. ShVolVaR increases the quality of
VaR estimation whit respect to RiMeVaR. HFB models that assume Student-
t innovations better predict rare events. Looking at a more complete set of
predictions, we can state that Risk Metrics procedure is able to foresee VaR
only at 95% c.l.; after this, then its performances quikly decline. Symmetric
HFB offers good VaR estimations for all confidence levels; however, at 99.9%

it loses some prediction power. Asymmetric HFB gives its best performances
when evaluating extreme VaRs (99.9% and 99.5%), in which case the GJR
specification seems to be better than EGARCH specification; the opposite is
true when considering the 99% c.l.. ShVolVaR is able to capture markets move-
ments and correctly estimate any confidence level, but only when the equity
weight is greater than 55%. When the equity weight decreases, the model
becomes less efficient at forecasting VaR over a 95% c.l..

We now focus on 9 balanced portfolios commonly used in the industry
namely Ptf 8 (Table 6.7), 12 (Table 6.8), 16 (Table 6.9), 20 (Table 6.10), 24
(Table 6.11), 28 (Table 6.11) and 32 (Table 6.13). First, no model exists that
is able to capture any of aforementioned balanced portfolios at all the VaR
levels. This could mean that the joint estimation of equity and bond risk is
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difficult. Second, RiMeVaR is only a good choice when estimating V aR5%.

Let us consider a portfolio manager that has a perfectly capital diversified
portfolio (50/50) (see Table 6.10) and has to choose which risk models to use
to forecast VaR. No one of the considered models can ensure a perfect forecast
of each percentile at 95% c.l.. ShVolVaR may be the best choice at 99% c.l..
HFBVaR may also be useful if the portfolio manager is interested in common
VaR activity in the finance industry, while the asymmetric version of HFB
would help her to understand rare events. For a more conservative portfolio
(table 6.13) in which equity represents the 20% of its makeup, HFBVaR should
be utilized, as this allows us to perfectly foresee all of the VaR levels consid-
ered. ShVolVaR fails to catch market movements in the tail and should only
be utilized for V aR5%. For a more aggressive portfolio (table 6.8) in which
equity represents the 70% of its makeup, HFBVaR or HGBGJRVaR should be
utilized, as these allow us to perfectly foresee the all the VaR levels considered.
ShVolVaR is able to reach the same results of VaR forecasting in such case, so
it cab be used as a practical tool to preliminary VaR estimation.

In general, balanced mutual fund managers should use a HFBVaR as risk
management system, but they could easily adopt the ShVolVaR (with ν = ∞)
to approximate the VaR. When a portfolio is held by an insurance company
the risk management tool should be an asymmetric version of HFB and the
ShVolVaR (under normality assumption) could be a good proxy if the equity
weight is not too low.

6.2.1.1 ShVolVaR ν = 20, 16, 10, 8

In this section we compare some finite values of ν; in particular ν = 20, 16, 10, 8.

In Table 6.14 we report the CDF used in the equation 6.4. We observe that
with ε = 5% the value of F−1(ε) are quite similar. However, with ε = 0.1% the
values of F−1(ε) increase quickly as degrees of freedom decrease. This feature
allows the ShVolVaR model to better capture rare events, while at 95% c.l. we
expect no relevant changes in the VaR estimation.

Table 6.15 shows the test results for V aR5%. Using finite values of ν, there
are no differences between VaR estimations, and no specifications produce
a rejections. Considering V aR1% (see Table 6.16), we observe that there is
no clear advantage to having finite values of ν over infinite. In particular,
when the equity weight is high, and we use ν = 20, 16, 10, 8 we observe many
independence violations. It seems advisable to use a normal specification when
the equity weight is higher than 45%. Conversely, if the equity weight is lower
than 45% one should adopt ν = 8. In Table 6.17 we report our results for
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Ptfs
ShVolVaR ShVolVaR RiMeVaR HFBEVaR HFBGJRVaR HFBVaR

α = 0.275, ν = ∞ α = 0.325, ν = ∞

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 79.0 29.0 55.2 96.2 35.7 65.4 0.4 61.8 1.5 73.0 47.9 73.3 56.3 79.3 81.7 51.1 40.0 56.5
Ptf 2 73.0 27.5 51.9 83.7 39.4 68.1 0.9 47.8 2.5 67.2 50.2 73.0 85.0 65.5 88.9 56.3 41.9 61.0
Ptf 3 56.3 41.9 61.0 90.0 37.5 67.0 0.7 45.6 2.0 61.6 52.6 72.2 85.0 65.5 88.9 73.0 48.2 73.6
Ptf 4 91.2 54.9 83.1 83.7 64.6 88.1 0.7 45.6 2.0 61.6 52.6 72.2 83.7 52.7 80.2 56.3 93.4 84.3
Ptf 5 91.2 54.9 83.1 83.7 64.6 88.1 0.7 28.4 1.5 85.0 43.3 72.2 77.6 50.3 76.7 73.0 97.9 94.2
Ptf 6 73.0 48.2 73.6 65.7 72.4 85.2 0.7 45.6 2.0 96.2 36.9 66.8 71.6 47.9 72.9 79.0 95.0 96.3
Ptf 7 91.2 54.9 83.1 60.1 47.5 67.5 0.6 43.5 1.6 83.7 33.0 61.0 65.7 69.5 83.9 61.6 76.5 84.3
Ptf 8 83.7 39.4 68.1 39.9 56.4 59.3 0.7 45.6 2.0 71.6 29.4 53.9 35.6 80.7 63.3 41.7 87.9 71.1
Ptf 9 65.7 45.4 68.4 39.9 56.4 59.3 0.7 45.6 2.0 54.7 24.4 42.3 27.8 75.1 52.8 46.3 87.7 75.5
Ptf 10 54.7 49.6 66.2 27.8 63.7 49.6 0.4 41.5 1.2 35.6 33.1 40.7 18.4 96.9 41.3 56.3 93.4 84.3
Ptf 11 49.5 51.8 64.3 27.8 63.7 49.6 0.6 26.9 1.1 27.8 49.1 43.7 13.6 76.7 31.5 56.3 93.4 84.3
Ptf 12 49.5 51.8 64.3 31.5 35.2 39.2 0.9 30.0 1.8 15.8 40.1 26.0 3.2 99.0 9.9 56.3 93.4 84.3
Ptf 13 49.5 51.8 64.3 24.3 38.9 34.9 1.1 31.6 2.3 15.8 40.1 26.0 2.6 98.1 8.2 67.2 73.7 86.4
Ptf 14 60.1 47.5 67.5 24.3 38.9 34.9 1.3 19.1 2.0 11.6 59.0 25.1 0.8 83.8 2.9 85.0 92.1 97.8
Ptf 15 60.1 47.5 67.5 18.4 42.7 30.2 2.4 22.9 3.8 6.9 51.5 15.4 1.0 86.7 3.6 91.2 82.2 96.9
Ptf 16 49.5 51.8 64.3 21.2 40.8 32.6 5.0 28.6 8.4 4.7 46.8 10.7 0.2 69.9 0.8 37.4 56.2 57.0
Ptf 17 44.5 54.1 62.0 15.8 44.7 27.7 4.2 44.9 9.5 0.6 28.6 1.3 0.1 61.9 0.3 37.4 82.1 65.7
Ptf 18 21.2 68.8 42.4 11.6 48.9 22.8 3.5 42.8 7.9 0.4 25.2 0.8 0.0 42.6 0.0 41.7 84.9 70.7
Ptf 19 60.1 47.5 67.5 21.2 40.8 32.6 2.4 38.8 5.4 0.1 35.4 0.3 0.0 63.1 0.0 20.3 94.7 44.4
Ptf 20 44.5 54.1 62.0 13.6 46.8 25.3 8.4 77.8 21.5 0.1 37.4 0.3 0.0 72.4 0.0 8.4 96.6 22.4
Ptf 21 60.1 47.5 67.5 18.4 42.7 30.2 13.3 86.1 31.9 0.0 73.9 0.0 0.0 83.0 0.0 11.5 90.8 28.6
Ptf 22 54.7 49.6 66.2 15.8 44.7 27.7 37.4 82.1 65.7 0.0 98.5 0.0 0.0 65.1 0.0 26.3 73.7 50.5
Ptf 23 35.6 88.9 64.6 15.8 94.0 36.9 41.7 87.9 71.1 0.0 76.0 0.0 0.0 54.8 0.0 23.2 21.6 22.7
Ptf 24 31.5 77.9 58.0 18.4 66.9 37.7 91.2 25.0 51.3 0.0 67.8 0.0 0.0 47.6 0.0 46.3 1.8 4.7
Ptf 25 21.2 69.6 42.5 8.2 53.9 18.3 79.0 28.3 54.2 0.0 15.6 0.0 0.0 47.6 0.0 79.0 0.9 3.2
Ptf 26 49.5 61.5 69.8 27.8 49.1 43.7 29.7 48.7 45.6 0.0 39.2 0.0 0.0 21.4 0.0 97.5 1.5 5.2
Ptf 27 60.1 95.0 87.0 49.5 51.8 64.3 23.2 76.5 46.7 0.0 31.3 0.0 0.0 8.2 0.0 83.7 2.4 7.7
Ptf 28 65.7 8.1 19.7 49.5 12.4 24.2 61.6 33.7 55.7 0.0 13.4 0.0 0.0 8.9 0.0 65.7 0.7 2.5
Ptf 29 65.7 27.6 50.1 44.5 21.4 34.5 56.3 21.5 39.3 0.0 27.7 0.0 0.0 4.5 0.0 54.7 1.4 4.1
Ptf 30 71.6 8.8 21.8 44.5 5.7 12.1 73.0 30.0 55.1 0.0 29.5 0.0 0.0 10.6 0.0 71.6 2.0 6.1
Ptf 31 65.7 15.5 33.0 60.1 14.4 30.0 67.2 10.4 24.3 0.0 12.4 0.0 0.0 12.4 0.0 44.5 11.4 21.5
Ptf 32 79.0 16.3 36.5 79.0 16.3 36.5 56.3 3.2 8.4 0.0 14.5 0.0 0.0 67.8 0.0 44.5 11.4 21.5
Ptf 33 67.2 18.8 38.5 79.0 28.3 54.2 51.1 13.1 25.8 0.0 37.1 0.0 0.0 65.1 0.0 35.6 9.7 16.5
Ptf 34 90.0 80.7 96.3 83.7 52.7 80.2 33.4 46.4 48.0 0.0 78.8 0.0 0.0 81.6 0.0 31.5 17.4 24.0
Ptf 35 79.0 68.2 88.7 90.0 90.6 98.5 15.4 41.3 25.9 0.0 25.4 0.0 0.0 67.3 0.0 54.7 41.2 59.5
Ptf 36 97.5 86.4 98.5 96.2 83.5 97.8 17.7 82.2 39.2 0.0 90.1 0.0 0.0 18.8 0.0 21.2 69.6 42.5
Ptf 37 79.0 45.6 73.0 90.0 55.2 83.1 17.7 58.6 34.7 0.3 92.2 1.1 0.1 11.7 0.2 35.6 53.9 54.0
Ptf 38 90.0 55.2 83.1 71.6 72.3 87.9 41.7 87.9 71.1 5.7 28.5 9.2 1.0 45.6 2.8 27.8 49.1 43.7
Ptf 39 61.6 68.7 81.3 91.2 82.2 96.9 13.3 60.9 28.4 31.5 31.2 36.2 9.8 85.4 25.0 31.5 91.7 60.0

Table 6.3: The p-values (%) of the Unconditional Coverage, the Independence,
and the Conditional Coverage tests for the models with c.l. 95%
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ShVolVaR ShVolVaR RiMeVaR HFBEVaR HFBGJRVaR HFBVaR

α = 0.5, ν = ∞ α = 0.6, ν = ∞

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 49.0 7.5 16.1 73.8 3.7 10.7 0.0 46.6 0.0 23.7 31.7 30.1 85.3 39.3 68.2 13.3 12.2 9.8
Ptf 2 30.8 9.2 14.4 49.0 2.8 7.1 0.0 49.0 0.0 23.7 31.7 30.1 72.2 38.0 63.8 9.6 13.3 8.1
Ptf 3 30.8 9.2 14.4 60.9 3.2 8.9 0.0 49.0 0.0 49.0 35.3 51.2 72.2 38.0 63.8 17.9 54.9 33.9
Ptf 4 23.7 10.1 13.0 60.9 3.2 8.9 0.0 49.0 0.0 30.8 49.7 47.2 87.3 42.1 71.4 17.9 54.9 33.9
Ptf 5 23.7 10.1 13.0 49.0 2.8 7.1 0.0 53.9 0.0 49.0 44.7 59.0 73.8 43.5 69.7 23.7 52.3 40.5
Ptf 6 30.8 9.2 14.4 38.4 2.4 5.4 0.0 53.9 0.0 49.0 44.7 59.0 38.4 47.9 53.3 23.7 52.3 40.5
Ptf 7 23.7 10.1 13.0 49.0 2.8 7.1 0.0 49.0 0.0 49.0 44.7 59.0 29.2 49.5 45.5 23.7 52.3 40.5
Ptf 8 30.8 9.2 14.4 60.9 3.2 8.9 0.0 46.6 0.0 60.0 42.3 63.3 29.2 49.5 45.5 17.9 54.9 33.9
Ptf 9 39.2 8.3 15.4 73.8 3.7 10.7 0.0 44.3 0.0 49.0 44.7 59.0 29.2 49.5 45.5 17.9 54.9 33.9
Ptf 10 39.2 8.3 15.4 87.3 4.2 12.5 0.0 46.6 0.0 60.0 42.3 63.3 21.6 51.0 37.4 23.7 52.3 40.5
Ptf 11 49.0 7.5 16.1 98.9 4.8 14.0 0.0 19.4 0.0 85.3 37.6 66.5 29.2 49.5 45.5 30.8 49.7 47.2
Ptf 12 72.2 6.0 16.0 98.9 4.8 14.0 0.0 20.9 0.0 72.2 39.9 65.8 15.4 52.6 29.6 30.8 49.7 47.2
Ptf 13 98.9 4.8 14.0 87.3 4.2 12.5 0.0 20.9 0.0 60.0 42.3 63.3 7.1 55.9 16.5 17.9 11.1 11.4
Ptf 14 85.3 5.4 15.3 87.3 4.2 12.5 0.0 18.1 0.0 72.2 39.9 65.8 4.5 57.5 11.5 13.3 57.6 27.6
Ptf 15 98.9 4.8 14.0 38.4 2.4 5.4 0.0 16.8 0.0 87.3 33.2 61.6 7.1 55.9 16.5 17.9 11.1 11.4
Ptf 16 85.3 0.5 2.0 49.0 0.2 0.7 0.0 39.9 0.0 87.3 33.2 61.6 10.6 54.2 22.6 23.7 10.1 13.0
Ptf 17 85.3 0.5 2.0 29.2 0.1 0.3 0.0 29.8 0.0 98.9 35.4 65.0 10.6 17.9 11.0 30.8 9.2 14.4
Ptf 18 73.8 0.3 1.1 49.0 0.2 0.7 0.0 33.7 0.0 73.8 31.0 56.5 1.7 12.0 1.7 23.7 10.1 13.0
Ptf 19 73.8 0.3 1.1 60.9 0.2 0.9 0.0 31.7 0.0 87.3 33.2 61.6 4.5 14.8 4.8 39.2 8.3 15.4
Ptf 20 98.9 0.4 1.7 49.0 0.2 0.7 0.0 26.3 0.0 73.8 31.0 56.5 1.7 12.0 1.7 30.8 9.2 14.4
Ptf 21 39.2 1.0 2.5 72.2 0.6 2.2 0.0 18.6 0.0 60.9 45.0 65.9 1.7 12.0 1.7 85.3 5.4 15.3
Ptf 22 17.9 1.6 2.2 39.2 1.0 2.5 0.0 18.6 0.0 29.2 49.5 45.5 7.1 16.3 7.4 85.3 37.6 66.5
Ptf 23 4.8 2.7 1.2 72.2 0.6 2.2 0.0 4.9 0.0 38.4 47.9 53.3 7.1 16.3 7.4 98.9 35.4 65.0
Ptf 24 9.6 2.0 1.7 30.8 9.2 14.4 0.0 5.4 0.0 29.2 49.5 45.5 4.5 14.8 4.8 87.3 33.2 61.6
Ptf 25 2.2 3.4 0.8 23.7 10.1 13.0 0.0 6.0 0.0 29.2 49.5 45.5 4.5 14.8 4.8 60.0 6.7 16.3
Ptf 26 6.9 2.3 1.5 17.9 1.6 2.2 0.0 15.9 0.0 15.4 52.6 29.6 2.8 13.4 2.9 49.0 7.5 16.1
Ptf 27 1.0 4.3 0.5 3.3 3.0 1.0 0.0 2.2 0.0 2.8 59.2 7.7 1.7 12.0 1.7 39.2 8.3 15.4
Ptf 28 0.2 5.9 0.2 1.0 4.3 0.5 0.0 13.6 0.0 4.5 57.5 11.5 0.5 64.4 1.8 72.2 6.0 16.0
Ptf 29 0.1 8.0 0.1 0.2 5.9 0.2 0.0 43.0 0.0 15.4 52.6 29.6 0.3 66.1 1.0 98.9 4.8 14.0
Ptf 30 0.0 43.0 0.0 0.0 38.5 0.0 0.0 62.8 0.0 29.2 23.1 28.0 2.8 13.4 2.9 73.8 3.7 10.7
Ptf 31 0.0 17.2 0.0 0.0 12.5 0.0 0.0 28.0 0.0 29.2 23.1 28.0 15.4 19.6 15.7 60.9 28.9 50.1
Ptf 32 0.0 43.0 0.0 0.0 40.7 0.0 0.0 62.8 0.0 21.6 21.3 21.4 15.4 19.6 15.7 85.3 37.6 66.5
Ptf 33 0.0 50.1 0.0 0.0 38.5 0.0 0.0 68.2 0.0 21.6 21.3 21.4 15.4 19.6 15.7 49.0 44.7 59.0
Ptf 34 0.0 47.6 0.0 0.0 45.3 0.0 0.0 55.1 0.0 15.4 19.6 15.7 15.4 19.6 15.7 60.0 42.3 63.3
Ptf 35 0.0 14.8 0.0 0.0 99.3 0.1 0.0 79.0 0.0 38.4 25.0 35.3 15.4 19.6 15.7 49.0 44.7 59.0
Ptf 36 0.0 16.3 0.1 0.0 16.3 0.1 0.0 71.4 0.0 60.0 42.3 63.3 60.9 28.9 50.1 87.3 33.2 61.6
Ptf 37 0.0 96.5 0.1 0.0 96.5 0.1 0.0 79.0 0.0 60.0 42.3 63.3 49.0 26.9 42.8 85.3 37.6 66.5
Ptf 38 0.1 93.7 0.2 0.1 88.1 0.6 0.0 79.0 0.0 72.2 39.9 65.8 73.8 31.0 56.5 98.9 35.4 65.0
Ptf 39 2.2 71.2 6.8 3.3 68.4 9.5 0.0 89.7 0.0 60.0 42.3 63.3 85.3 37.6 66.5 98.9 35.4 65.0

Table 6.4: The p-values (%) of the Unconditional Coverage, the Independence,
and the Conditional Coverage tests for the models with c.l. 99%
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α = 0.75, ν = ∞

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 12.1 78.9 29.0 0.0 26.6 0.0 1.4 49.5 3.9 62.6 71.5 83.1 10.7 16.3 10.3
Ptf 2 12.1 78.9 29.0 0.0 24.9 0.0 0.8 47.9 2.3 99.2 67.9 91.8 16.3 57.5 32.3
Ptf 3 12.1 78.9 29.0 0.0 24.9 0.0 0.8 47.9 2.3 99.2 67.9 91.8 24.1 59.2 43.5
Ptf 4 20.3 77.0 42.5 0.0 26.6 0.0 1.4 49.5 3.9 80.2 66.1 88.0 16.3 57.5 32.3
Ptf 5 20.3 77.0 42.5 0.0 26.6 0.0 2.5 51.0 6.4 99.2 67.9 91.8 16.3 57.5 32.3
Ptf 6 20.3 77.0 42.5 0.0 24.9 0.0 4.1 52.6 10.2 80.2 66.1 88.0 24.1 59.2 43.5
Ptf 7 20.3 77.0 42.5 0.0 28.4 0.0 4.1 52.6 10.2 99.2 67.9 91.8 10.7 55.9 23.0
Ptf 8 12.1 78.9 29.0 0.0 28.4 0.0 6.8 54.2 15.6 81.4 69.7 90.2 10.7 55.9 23.0
Ptf 9 12.1 78.9 29.0 0.0 24.9 0.0 10.7 55.9 23.0 81.4 69.7 90.2 6.8 54.2 15.6
Ptf 10 12.1 78.9 29.0 0.0 26.6 0.0 10.7 16.3 10.3 31.5 75.2 57.4 16.3 57.5 32.3
Ptf 11 31.5 75.2 57.4 0.0 23.2 0.0 24.1 13.4 16.3 62.6 71.5 83.1 24.1 59.2 43.5
Ptf 12 20.3 77.0 42.5 0.0 23.2 0.0 34.3 12.0 19.1 45.7 73.3 71.6 16.3 57.5 32.3
Ptf 13 20.3 77.0 42.5 0.0 21.6 0.0 34.3 12.0 19.1 31.5 75.2 57.4 24.1 59.2 43.5
Ptf 14 20.3 3.3 4.5 0.0 3.4 0.0 62.6 64.4 79.8 20.3 77.0 42.5 16.3 57.5 32.3
Ptf 15 12.1 2.7 2.6 0.0 3.0 0.0 62.6 64.4 79.8 20.3 77.0 42.5 10.7 55.9 23.0
Ptf 16 31.5 3.9 7.2 0.0 3.4 0.0 47.2 62.6 68.6 6.6 80.8 18.0 16.3 57.5 32.3
Ptf 17 31.5 3.9 7.2 0.0 2.3 0.0 81.4 69.7 90.2 6.6 80.8 18.0 16.3 57.5 32.3
Ptf 18 45.7 4.7 10.5 0.0 2.3 0.0 81.4 69.7 90.2 20.3 77.0 42.5 62.6 64.4 79.8
Ptf 19 62.6 0.1 0.5 0.0 2.0 0.0 31.5 75.2 57.4 31.5 75.2 57.4 34.3 12.0 19.1
Ptf 20 99.2 0.2 1.0 0.0 2.7 0.0 62.6 71.5 83.1 45.7 73.3 71.6 47.2 10.8 21.1
Ptf 21 99.2 0.2 1.0 0.0 1.3 0.0 81.4 69.7 90.2 20.3 77.0 42.5 34.3 12.0 19.1
Ptf 22 99.2 0.2 1.0 0.0 1.0 0.0 99.2 67.9 91.8 6.6 80.8 18.0 47.2 10.8 21.1
Ptf 23 10.7 1.1 1.1 0.0 1.6 0.0 81.4 69.7 90.2 12.1 78.9 29.0 34.3 12.0 19.1
Ptf 24 2.5 1.8 0.5 0.0 0.2 0.0 81.4 69.7 90.2 20.3 77.0 42.5 34.3 12.0 19.1
Ptf 25 6.8 17.9 7.6 0.0 12.2 0.0 99.2 67.9 91.8 31.5 75.2 57.4 47.2 10.8 21.1
Ptf 26 0.4 26.9 0.9 0.0 11.1 0.0 99.2 67.9 91.8 45.7 73.3 71.6 80.2 8.4 21.8
Ptf 27 0.1 31.0 0.3 0.0 13.3 0.0 99.2 67.9 91.8 12.1 78.9 29.0 62.6 5.5 14.1
Ptf 28 0.1 31.0 0.3 0.0 13.3 0.0 31.5 75.2 57.4 12.1 78.9 29.0 62.6 5.5 14.1
Ptf 29 0.0 35.4 0.1 0.0 14.5 0.0 45.7 73.3 71.6 20.3 77.0 42.5 80.2 0.3 1.2
Ptf 30 0.0 47.2 0.0 0.0 65.7 0.0 45.7 73.3 71.6 6.6 80.8 18.0 47.2 10.8 21.1
Ptf 31 0.0 54.9 0.0 0.0 25.0 0.0 62.6 71.5 83.1 20.3 77.0 42.5 62.6 9.6 22.1
Ptf 32 0.0 14.5 0.0 0.0 24.0 0.0 81.4 69.7 90.2 31.5 75.2 57.4 80.2 8.4 21.8
Ptf 33 0.0 13.3 0.0 0.0 19.5 0.0 47.2 62.6 68.6 45.7 73.3 71.6 34.3 12.0 19.1
Ptf 34 0.0 13.3 0.0 0.0 20.3 0.0 62.6 64.4 79.8 62.6 71.5 83.1 47.2 10.8 21.1
Ptf 35 0.0 32.9 0.0 0.0 21.2 0.0 80.2 66.1 88.0 62.6 71.5 83.1 34.3 12.0 19.1
Ptf 36 0.0 36.6 0.0 0.0 19.5 0.0 62.6 64.4 79.8 81.4 69.7 90.2 34.3 12.0 19.1
Ptf 37 0.0 39.3 0.0 0.0 27.1 0.0 47.2 62.6 68.6 81.4 69.7 90.2 47.2 10.8 21.1
Ptf 38 0.0 39.3 0.0 0.0 36.6 0.0 80.2 66.1 88.0 62.6 71.5 83.1 47.2 10.8 21.1
Ptf 39 0.4 46.4 1.3 0.0 40.7 0.1 80.2 66.1 88.0 81.4 69.7 90.2 24.1 59.2 43.5

Table 6.5: The p-values (%) of the Unconditional Coverage, the Independence,
and the Conditional Coverage tests for the models with c.l. 99.5%
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α = 1, ν = ∞

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 74.8 92.3 94.5 0.0 1.1 0.0 0.0 75.2 0.0 41.5 90.3 71.2 3.4 84.6 10.3
Ptf 2 74.8 92.3 94.5 0.0 1.1 0.0 0.0 75.2 0.0 41.5 90.3 71.2 3.4 84.6 10.3
Ptf 3 74.8 92.3 94.5 0.0 0.9 0.0 0.0 75.2 0.0 41.5 90.3 71.2 3.4 84.6 10.3
Ptf 4 74.8 92.3 94.5 0.0 0.7 0.0 0.0 75.2 0.0 41.5 90.3 71.2 1.2 82.7 4.1
Ptf 5 41.5 90.3 71.2 0.0 0.7 0.0 0.0 75.2 0.0 74.8 92.3 94.5 1.2 82.7 4.1
Ptf 6 41.5 90.3 71.2 0.0 0.5 0.0 0.0 75.2 0.0 82.8 94.2 97.4 1.2 82.7 4.1
Ptf 7 41.5 90.3 71.2 0.0 0.5 0.0 0.0 77.0 0.1 82.8 94.2 97.4 1.2 82.7 4.1
Ptf 8 41.5 90.3 71.2 0.0 0.5 0.0 0.0 77.0 0.1 82.8 94.2 97.4 1.2 82.7 4.1
Ptf 9 74.8 92.3 94.5 0.0 0.6 0.0 0.1 78.9 0.5 82.8 94.2 97.4 3.4 84.6 10.3
Ptf 10 74.8 92.3 94.5 0.0 0.5 0.0 0.4 80.8 1.4 82.8 94.2 97.4 1.2 82.7 4.1
Ptf 11 74.8 92.3 94.5 0.0 0.5 0.0 1.2 82.7 4.1 82.8 94.2 97.4 3.4 84.6 10.3
Ptf 12 74.8 92.3 94.5 0.0 0.3 0.0 1.2 82.7 4.1 74.8 92.3 94.5 3.4 84.6 10.3
Ptf 13 74.8 92.3 94.5 0.0 0.4 0.0 1.2 82.7 4.1 74.8 92.3 94.5 3.4 84.6 10.3
Ptf 14 74.8 92.3 94.5 0.0 0.2 0.0 8.7 86.5 22.8 74.8 92.3 94.5 41.5 90.3 71.2
Ptf 15 82.8 94.2 97.4 0.0 0.1 0.0 8.7 86.5 22.8 82.8 94.2 97.4 41.5 90.3 71.2
Ptf 16 82.8 94.2 97.4 0.0 0.2 0.0 20.2 88.4 43.8 82.8 94.2 97.4 8.7 86.5 22.8
Ptf 17 82.8 94.2 97.4 0.0 0.2 0.0 20.2 88.4 43.8 82.8 94.2 97.4 0.4 80.8 1.4
Ptf 18 82.8 94.2 97.4 0.0 0.2 0.0 20.2 88.4 43.8 12.6 98.1 31.0 1.2 82.7 4.1
Ptf 19 74.8 92.3 94.5 0.0 0.4 0.0 41.5 90.3 71.2 12.6 98.1 31.0 3.4 84.6 10.3
Ptf 20 41.5 90.3 71.2 0.0 0.5 0.0 41.5 90.3 71.2 12.6 98.1 31.0 3.4 1.3 0.5
Ptf 21 74.8 92.3 94.5 0.0 0.4 0.0 41.5 90.3 71.2 12.6 98.1 31.0 20.2 0.6 1.1
Ptf 22 74.8 92.3 94.5 0.0 0.5 0.0 41.5 90.3 71.2 12.6 98.1 31.0 8.7 0.9 0.8
Ptf 23 41.5 90.3 71.2 0.0 10.8 0.0 74.8 92.3 94.5 12.6 98.1 31.0 8.7 0.9 0.8
Ptf 24 20.2 88.4 43.8 0.0 13.4 0.0 82.8 94.2 97.4 12.6 98.1 31.0 3.4 1.3 0.5
Ptf 25 3.4 84.6 10.3 0.0 17.9 0.0 82.8 94.2 97.4 41.3 96.1 71.4 0.4 2.1 0.1
Ptf 26 0.4 80.8 1.4 0.0 1.5 0.0 74.8 92.3 94.5 12.6 98.1 31.0 8.7 86.5 22.8
Ptf 27 0.0 77.0 0.1 0.0 1.1 0.0 74.8 92.3 94.5 41.3 96.1 71.4 8.7 86.5 22.8
Ptf 28 0.0 77.0 0.1 0.0 1.3 0.0 41.5 90.3 71.2 82.8 94.2 97.4 8.7 86.5 22.8
Ptf 29 0.0 71.5 0.0 0.0 55.9 0.0 41.5 90.3 71.2 82.8 94.2 97.4 8.7 86.5 22.8
Ptf 30 0.0 66.1 0.0 0.0 57.5 0.0 20.2 88.4 43.8 74.8 92.3 94.5 20.2 88.4 43.8
Ptf 31 0.0 64.4 0.0 0.0 57.5 0.0 20.2 88.4 43.8 41.5 90.3 71.2 8.7 86.5 22.8
Ptf 32 0.0 62.6 0.0 0.0 54.2 0.0 20.2 88.4 43.8 41.5 90.3 71.2 8.7 86.5 22.8
Ptf 33 0.0 59.2 0.0 0.0 54.2 0.0 8.7 86.5 22.8 41.5 90.3 71.2 8.7 86.5 22.8
Ptf 34 0.0 59.2 0.0 0.0 59.2 0.0 8.7 86.5 22.8 20.2 88.4 43.8 1.2 82.7 4.1
Ptf 35 0.0 59.2 0.0 0.0 60.9 0.0 3.4 84.6 10.3 20.2 88.4 43.8 3.4 84.6 10.3
Ptf 36 0.0 64.4 0.0 0.0 60.9 0.0 1.2 82.7 4.1 1.2 82.7 4.1 3.4 84.6 10.3
Ptf 37 0.0 69.7 0.0 0.0 62.6 0.0 1.2 82.7 4.1 1.2 82.7 4.1 1.2 82.7 4.1
Ptf 38 0.0 71.5 0.0 0.0 66.1 0.0 0.4 80.8 1.4 1.2 82.7 4.1 0.4 80.8 1.4
Ptf 39 0.1 78.9 0.5 0.0 69.7 0.0 0.4 80.8 1.4 1.2 82.7 4.1 0.4 80.8 1.4

Table 6.6: The p-values (%) of the Unconditional Coverage, the Independence,
and the Conditional Coverage tests for the models with c.l. 99.9%

Models V aR5% V aR1% V aR0.5% V aR0.1%

ShVolVaR ν = ∞ 68.1 14.4 29.0 71.2
RiMeVaR 2.0 0.0 0.0 0.0
HFBEVaR 53.9 63.3 15.6 0.1
HFBGJRVaR 63.3 45.5 90.2 97.4
HFBVaR 71.1 33.9 23.0 4.1

Table 6.7: The p-values (%) of the Conditional Coverage tests for the Ptf 8
(equity weight 80%). ShVolVal with α = 0.275 (V aR5%), α = 0.5 (V aR1%),
α = 0.75 (V aR0.5%) and α = 1 (V aR0.1%.)
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Models V aR5% V aR1% V aR0.5% V aR0.1%

ShVolVaR ν = ∞ 64.3 16.0 42.5 94.5
RiMeVaR 1.8 0.0 0.0 0.0
HFBEVaR 26.0 65.8 19.1 4.1
HFBGJRVaR 9.9 29.6 71.6 94.5
HFBVaR 84.3 47.2 32.3 10.3

Table 6.8: The p-values (%) of the Conditional Coverage tests for the Ptf 12
(equity weight 70%). ShVolVal with α = 0.275 (V aR5%), α = 0.5 (V aR1%),
α = 0.75 (V aR0.5%) and α = 1 (V aR0.1%.)

Models V aR5% V aR1% V aR0.5% V aR0.1%

ShVolVaR ν = ∞ 64.3 2.0 7.2 97.4
RiMeVaR 8.4 0.0 0.0 0.0
HFBEVaR 10.7 61.6 68.6 43.8
HFBGJRVaR 0.8 22.6 18.0 97.4
HFBVaR 57.0 13.0 32.3 22.8

Table 6.9: The p-values (%) of the Conditional Coverage tests for the Ptf 16
(equity weight 60%). ShVolVal with α = 0.275 (V aR5%), α = 0.5 (V aR1%),
α = 0.75 (V aR0.5%) and α = 1 (V aR0.1%.)

Models V aR5% V aR1% V aR0.5% V aR0.1%

ShVolVaR ν = ∞ 62.0 1.7 1.0 71.2
RiMeVaR 21.5 0.0 0.0 0.0
HFBEVaR 0.3 56.5 83.1 71.2
HFBGJRVaR 0.0 1.7 71.6 31.0
HFBVaR 22.4 14.4 21.1 0.5

Table 6.10: The p-values (%) of the Conditional Coverage tests for the Ptf 20
(equity weight 50%). ShVolVal with α = 0.275 (V aR5%), α = 0.5 (V aR1%),
α = 0.75 (V aR0.5%) and α = 1 (V aR0.1%.)

Models V aR5% V aR1% V aR0.5% V aR0.1%

ShVolVaR ν = ∞ 58.0 1.7 0.5 43.8
RiMeVaR 51.3 0.0 0.0 0.0
HFBEVaR 0.0 45.5 90.2 97.4
HFBGJRVaR 0.0 4.8 42.5 31.0
HFBVaR 4.7 61.6 19.1 0.5

Table 6.11: The p-values (%) of the Conditional Coverage tests for the Ptf 24
(equity weight 40%). ShVolVal with α = 0.275 (V aR5%), α = 0.5 (V aR1%),
α = 0.75 (V aR0.5%) and α = 1 (V aR0.1%.)
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Models V aR5% V aR1% V aR0.5% V aR0.1%

ShVolVaR ν = ∞ 19.7 0.2 0.3 0.1
RiMeVaR 55.7 0.0 0.0 0.0
HFBEVaR 0.0 11.5 57.4 71.2
HFBGJRVaR 0.0 1.8 29.0 97.4
HFBVaR 2.5 16.0 14.1 22.8

Table 6.12: The p-values (%) of the Conditional Coverage tests for the Ptf 28
(equity weight 30%). ShVolVal with α = 0.275 (V aR5%), α = 0.5 (V aR1%),
α = 0.75 (V aR0.5%) and α = 1 (V aR0.1%.)

Models V aR5% V aR1% V aR0.5% V aR0.1%

ShVolVaR ν = ∞ 36.5 0.0 0.0 0.0
RiMeVaR 8.4 0.0 0.0 0.0
HFBEVaR 0.0 21.4 90.2 43.8
HFBGJRVaR 0.0 15.7 57.4 71.2
HFBVaR 21.5 66.5 21.8 22.8

Table 6.13: The p-values (%) of the Conditional Coverage tests for the Ptf 32
(equity weight 20%). ShVolVal with α = 0.275 (V aR5%), α = 0.5 (V aR1%),
α = 0.75 (V aR0.5%) and α = 1 (V aR0.1%.)

V aR0.5%. At this confidence level, we also note no clear advantage to reducing
the value of ν. In this case, when the equity weight is high, we note rejections
at 95% c.l in the UC test. Also in this case, it seems advisable to use a normal
specification when the equity weight is higher than 55%, conversely, if the
equity weight is lower than 55%, one should impose ν = 8. It the end, when
considering the extremely rare events (see Table 6.18), there is an improvement
when normality is discarded in favor of ν = 10. When adopting ν = 10, 8 the
results of V aR5% are not modified and the estimation of V aR0.1% improves.

6.2.1.2 Backtest based on loss function: results

Following the experimental procedure of Abad at al. (2015) (see [2]) and of
Marimoutou et al. (2009) (see [76]), we perform a backtest based on loss
functions only for those models that never reject the CC test at 99% c.l. as
well as the proposed models with normal and Student-t assumptions. In Tables

ǫ ν = ∞ ν = 20 ν = 16 ν = 10 ν = 8

0.1% -3.0902 -3.3734 -3.4544 -3.7253 -3.8889
0.5% -2.5758 -2.6983 -2.7324 -2.8402 -2.9023
1.0% -2.3263 -2.3978 -2.4178 -2.4758 -2.5059
5.0% -1.6448 -1.6354 -1.6318 -1.6222 -1.6098

Table 6.14: Cumulative distribution function of standardized Normal and stan-
dardized T.
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Ptfs
ShVolVaR ShVolVaR ShVolVaR ShVolVaR ShVolVaR

α = 0.275, ν = ∞ α = 0.275, ν = 20 α = 0.275, ν = 16 α = 0.275, ν = 10 α = 0.275, ν = 8

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 79.0 29.0 55.2 67.2 26.0 48.5 61.6 24.6 45.0 56.3 23.3 41.5 46.3 38.1 52.0
Ptf 2 73.0 27.5 51.9 73.0 27.5 51.9 67.2 26.0 48.5 46.3 20.8 34.5 41.7 36.2 47.5
Ptf 3 56.3 41.9 61.0 56.3 41.9 61.0 56.3 41.9 61.0 41.7 58.6 62.0 41.7 58.6 62.0
Ptf 4 91.2 54.9 83.1 67.2 46.0 69.6 61.6 44.0 65.4 41.7 58.6 62.0 37.4 56.2 57.0
Ptf 5 91.2 54.9 83.1 91.2 54.9 83.1 85.0 52.6 80.4 56.3 66.1 76.8 41.7 58.6 62.0
Ptf 6 73.0 48.2 73.6 73.0 48.2 73.6 67.2 46.0 69.6 41.7 58.6 62.0 33.4 53.9 51.9
Ptf 7 91.2 54.9 83.1 73.0 48.2 73.6 73.0 48.2 73.6 51.1 63.6 72.1 41.7 58.6 62.0
Ptf 8 83.7 39.4 68.1 97.5 34.0 63.3 85.0 30.6 58.2 61.6 44.0 65.4 56.3 41.9 61.0
Ptf 9 65.7 45.4 68.4 83.7 39.4 68.1 90.0 37.5 67.0 85.0 52.6 80.4 67.2 46.0 69.6
Ptf 10 54.7 49.6 66.2 54.7 49.6 66.2 77.6 41.3 68.7 85.0 52.6 80.4 73.0 74.0 89.2
Ptf 11 49.5 51.8 64.3 54.7 49.6 66.2 54.7 49.6 66.2 96.2 59.7 86.8 73.0 74.0 89.2
Ptf 12 49.5 51.8 64.3 60.1 47.5 67.5 71.6 43.3 68.8 90.0 62.1 87.8 96.2 59.7 86.8
Ptf 13 49.5 51.8 64.3 71.6 69.8 86.8 83.7 64.6 88.1 91.2 54.9 83.1 73.0 48.2 73.6
Ptf 14 60.1 47.5 67.5 83.7 39.4 68.1 83.7 39.4 68.1 85.0 52.6 80.4 56.3 41.9 61.0
Ptf 15 60.1 47.5 67.5 77.6 41.3 68.7 90.0 37.5 67.0 85.0 30.6 58.2 61.6 24.6 45.0
Ptf 16 49.5 51.8 64.3 65.7 45.4 68.4 71.6 43.3 68.8 90.0 37.5 67.0 91.2 32.3 60.9
Ptf 17 44.5 54.1 62.0 54.7 49.6 66.2 60.1 47.5 67.5 77.6 41.3 68.7 83.7 39.4 68.1
Ptf 18 21.2 68.8 42.4 39.9 56.4 59.3 49.5 51.8 64.3 71.6 43.3 68.8 77.6 41.3 68.7
Ptf 19 60.1 47.5 67.5 77.6 41.3 68.7 90.0 37.5 67.0 90.0 37.5 67.0 97.5 34.0 63.3
Ptf 20 44.5 54.1 62.0 65.7 45.4 68.4 71.6 43.3 68.8 90.0 37.5 67.0 85.0 52.6 80.4
Ptf 21 60.1 47.5 67.5 71.6 43.3 68.8 77.6 67.2 87.8 97.5 85.0 98.2 85.0 92.1 97.8
Ptf 22 54.7 49.6 66.2 65.7 72.4 85.2 77.6 96.4 95.9 91.2 89.2 98.5 85.0 92.1 97.8
Ptf 23 35.6 88.9 64.6 35.6 88.9 64.6 35.6 88.9 64.6 49.5 89.3 78.5 97.5 85.0 98.2
Ptf 24 31.5 77.9 58.0 35.6 80.7 63.3 39.9 83.5 68.6 44.5 86.4 73.6 65.7 97.9 90.6
Ptf 25 21.2 69.6 42.5 31.5 77.9 58.0 35.6 80.7 63.3 44.5 86.4 73.6 49.5 89.3 78.5
Ptf 26 49.5 61.5 69.8 54.7 64.1 74.8 54.7 64.1 74.8 77.6 31.2 57.6 77.6 31.2 57.6
Ptf 27 60.1 95.0 87.0 65.7 97.9 90.6 71.6 99.2 93.6 96.2 83.5 97.8 85.0 65.5 88.9
Ptf 28 65.7 8.1 19.7 77.6 9.5 23.9 90.0 11.2 28.1 96.2 12.1 30.0 91.2 14.1 33.6
Ptf 29 65.7 27.6 50.1 65.7 27.6 50.1 65.7 27.6 50.1 83.7 10.3 26.0 90.0 11.2 28.1
Ptf 30 71.6 8.8 21.8 83.7 5.2 14.8 83.7 5.2 14.8 96.2 6.2 17.5 97.5 6.8 18.9
Ptf 31 65.7 15.5 33.0 71.6 16.7 36.0 83.7 10.3 26.0 73.0 17.5 37.6 67.2 18.8 38.5
Ptf 32 79.0 16.3 36.5 73.0 17.5 37.6 67.2 10.4 24.3 33.4 9.8 16.0 26.3 11.5 15.4
Ptf 33 67.2 18.8 38.5 61.6 20.1 39.0 51.1 23.0 39.2 26.3 20.2 23.7 20.3 23.1 21.7
Ptf 34 90.0 80.7 96.3 90.0 80.7 96.3 91.2 62.9 88.4 79.0 68.2 88.7 51.1 57.6 69.0
Ptf 35 79.0 68.2 88.7 46.3 60.2 66.7 41.7 62.8 64.0 29.7 31.3 34.9 20.3 37.1 29.8
Ptf 36 97.5 86.4 98.5 79.0 95.0 96.3 73.0 97.9 94.2 37.4 90.8 66.9 26.3 99.5 53.4
Ptf 37 79.0 45.6 73.0 79.0 45.6 73.0 73.0 47.9 73.3 41.7 62.8 64.0 23.2 76.5 46.7
Ptf 38 90.0 55.2 83.1 85.0 65.5 88.9 67.2 50.2 73.0 33.4 46.4 48.0 23.2 53.6 40.4
Ptf 39 61.6 68.7 81.3 56.3 66.1 76.8 46.3 85.0 75.0 41.7 87.9 71.1 23.2 76.5 46.7

Table 6.15: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 95% for
ShVolVaR.
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α = 0.5, ν = ∞ α = 0.5, ν = 20 α = 0.5, ν = 16 α = 0.5, ν = 10 α = 0.5, ν = 8

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 49.0 7.5 16.1 73.8 3.7 10.7 38.4 2.4 5.4 10.6 1.3 1.2 7.1 1.1 0.8
Ptf 2 30.8 9.2 14.4 60.9 3.2 8.9 21.6 1.8 2.8 10.6 1.3 1.2 4.5 0.9 0.5
Ptf 3 30.8 9.2 14.4 60.9 3.2 8.9 29.2 2.1 4.0 7.1 1.1 0.8 4.5 0.9 0.5
Ptf 4 23.7 10.1 13.0 49.0 2.8 7.1 38.4 2.4 5.4 7.1 1.1 0.8 4.5 0.9 0.5
Ptf 5 23.7 10.1 13.0 87.3 4.2 12.5 38.4 2.4 5.4 7.1 1.1 0.8 4.5 0.9 0.5
Ptf 6 30.8 9.2 14.4 73.8 3.7 10.7 38.4 2.4 5.4 7.1 1.1 0.8 4.5 0.9 0.5
Ptf 7 23.7 10.1 13.0 49.0 2.8 7.1 29.2 2.1 4.0 10.6 1.3 1.2 4.5 0.9 0.5
Ptf 8 30.8 9.2 14.4 49.0 2.8 7.1 38.4 2.4 5.4 10.6 1.3 1.2 4.5 0.9 0.5
Ptf 9 39.2 8.3 15.4 60.9 3.2 8.9 60.9 3.2 8.9 10.6 1.3 1.2 4.5 0.9 0.5
Ptf 10 39.2 8.3 15.4 73.8 3.7 10.7 73.8 3.7 10.7 10.6 1.3 1.2 2.8 0.7 0.3
Ptf 11 49.0 7.5 16.1 73.8 3.7 10.7 73.8 3.7 10.7 7.1 1.1 0.8 2.8 0.7 0.3
Ptf 12 72.2 6.0 16.0 87.3 4.2 12.5 49.0 2.8 7.1 15.4 1.5 1.9 2.8 0.7 0.3
Ptf 13 98.9 4.8 14.0 73.8 3.7 10.7 73.8 3.7 10.7 10.6 1.3 1.2 2.8 0.7 0.3
Ptf 14 85.3 5.4 15.3 73.8 3.7 10.7 60.9 3.2 8.9 15.4 1.5 1.9 2.8 0.7 0.3
Ptf 15 98.9 4.8 14.0 49.0 2.8 7.1 49.0 2.8 7.1 7.1 1.1 0.8 2.8 0.7 0.3
Ptf 16 85.3 0.5 2.0 49.0 0.2 0.7 15.4 1.5 1.9 15.4 1.5 1.9 2.8 0.7 0.3
Ptf 17 85.3 0.5 2.0 29.2 0.1 0.3 29.2 0.1 0.3 29.2 0.1 0.3 2.8 0.7 0.3
Ptf 18 73.8 0.3 1.1 38.4 0.2 0.5 29.2 0.1 0.3 29.2 0.1 0.3 7.1 0.1 0.0
Ptf 19 73.8 0.3 1.1 60.9 0.2 0.9 49.0 0.2 0.7 15.4 0.1 0.1 7.1 0.1 0.0
Ptf 20 98.9 0.4 1.7 49.0 0.2 0.7 38.4 0.2 0.5 29.2 0.1 0.3 7.1 0.1 0.0
Ptf 21 39.2 1.0 2.5 73.8 0.3 1.1 73.8 0.3 1.1 38.4 0.2 0.5 29.2 0.1 0.3
Ptf 22 17.9 1.6 2.2 72.2 0.6 2.2 73.8 0.3 1.1 49.0 0.2 0.7 29.2 0.1 0.3
Ptf 23 4.8 2.7 1.2 98.9 0.4 1.7 98.9 0.4 1.7 49.0 0.2 0.7 38.4 2.4 5.4
Ptf 24 9.6 2.0 1.7 85.3 5.4 15.3 98.9 4.8 14.0 73.8 3.7 10.7 60.9 3.2 8.9
Ptf 25 2.2 3.4 0.8 39.2 8.3 15.4 39.2 8.3 15.4 72.2 6.0 16.0 87.3 4.2 12.5
Ptf 26 6.9 2.3 1.5 17.9 1.6 2.2 17.9 1.6 2.2 30.8 1.2 2.5 49.0 0.9 2.5
Ptf 27 1.0 4.3 0.5 6.9 2.3 1.5 13.3 1.8 2.0 49.0 0.9 2.5 72.2 6.0 16.0
Ptf 28 0.2 5.9 0.2 2.2 3.4 0.8 4.8 15.8 5.2 23.7 10.1 13.0 49.0 7.5 16.1
Ptf 29 0.1 8.0 0.1 1.0 21.6 1.6 1.0 21.6 1.6 1.5 20.0 2.2 3.3 17.1 4.0
Ptf 30 0.0 43.0 0.0 0.0 34.3 0.1 0.1 30.3 0.2 0.6 23.2 1.1 1.0 21.6 1.6
Ptf 31 0.0 17.2 0.0 0.1 8.0 0.1 0.2 85.3 1.0 0.4 82.4 1.5 0.4 82.4 1.5
Ptf 32 0.0 43.0 0.0 0.1 32.3 0.1 0.2 26.6 0.5 0.6 23.2 1.1 2.2 18.6 3.1
Ptf 33 0.0 50.1 0.0 0.1 32.3 0.1 0.1 30.3 0.2 0.6 23.2 1.1 2.2 18.6 3.1
Ptf 34 0.0 47.6 0.0 0.1 32.3 0.1 0.1 28.4 0.4 2.2 24.0 3.7 3.3 25.0 5.3
Ptf 35 0.0 14.8 0.0 0.2 19.5 0.4 0.4 20.3 0.7 1.0 22.1 1.6 3.3 25.0 5.3
Ptf 36 0.0 16.3 0.1 0.2 19.5 0.4 1.0 22.1 1.6 1.0 22.1 1.6 4.8 26.1 7.5
Ptf 37 0.0 96.5 0.1 0.4 82.4 1.5 1.5 23.1 2.5 9.6 28.2 14.1 17.9 30.5 23.9
Ptf 38 0.1 93.7 0.2 1.5 74.0 4.8 3.3 68.4 9.5 13.3 57.6 27.6 49.0 35.3 51.2
Ptf 39 2.2 71.2 6.8 17.9 54.9 33.9 30.8 49.7 47.2 72.2 39.9 65.8 85.3 39.3 68.2

Table 6.16: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 99% for
ShVolVaR.
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α = 0.75, ν = ∞ α = 0.75, ν = 20 α = 0.75, ν = 16 α = 0.75, ν = 10 α = 0.75, ν = 8

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 12.1 78.9 29.0 1.5 84.6 5.1 1.5 84.6 5.1 0.6 86.5 2.3 0.2 88.4 0.9
Ptf 2 12.1 78.9 29.0 1.5 84.6 5.1 1.5 84.6 5.1 0.6 86.5 2.3 0.2 88.4 0.9
Ptf 3 12.1 78.9 29.0 1.5 84.6 5.1 1.5 84.6 5.1 0.6 86.5 2.3 0.6 86.5 2.3
Ptf 4 20.3 77.0 42.5 3.3 82.7 10.1 1.5 84.6 5.1 0.6 86.5 2.3 0.2 88.4 0.9
Ptf 5 20.3 77.0 42.5 3.3 82.7 10.1 3.3 82.7 10.1 0.6 86.5 2.3 0.2 88.4 0.9
Ptf 6 20.3 77.0 42.5 3.3 82.7 10.1 3.3 82.7 10.1 0.2 88.4 0.9 0.2 88.4 0.9
Ptf 7 20.3 77.0 42.5 3.3 82.7 10.1 3.3 82.7 10.1 0.2 88.4 0.9 0.2 88.4 0.9
Ptf 8 12.1 78.9 29.0 3.3 82.7 10.1 3.3 82.7 10.1 0.2 88.4 0.9 0.2 88.4 0.9
Ptf 9 12.1 78.9 29.0 3.3 82.7 10.1 0.6 86.5 2.3 0.2 88.4 0.9 0.2 88.4 0.9
Ptf 10 12.1 78.9 29.0 1.5 84.6 5.1 0.6 86.5 2.3 0.6 86.5 2.3 0.2 88.4 0.9
Ptf 11 31.5 75.2 57.4 1.5 84.6 5.1 1.5 84.6 5.1 0.6 86.5 2.3 0.2 88.4 0.9
Ptf 12 20.3 77.0 42.5 1.5 84.6 5.1 1.5 84.6 5.1 0.6 86.5 2.3 0.6 86.5 2.3
Ptf 13 20.3 77.0 42.5 3.3 82.7 10.1 3.3 82.7 10.1 0.6 86.5 2.3 0.6 86.5 2.3
Ptf 14 20.3 3.3 4.5 3.3 82.7 10.1 3.3 82.7 10.1 1.5 84.6 5.1 0.6 86.5 2.3
Ptf 15 12.1 2.7 2.6 3.3 82.7 10.1 3.3 82.7 10.1 3.3 82.7 10.1 3.3 82.7 10.1
Ptf 16 31.5 3.9 7.2 3.3 82.7 10.1 3.3 82.7 10.1 3.3 82.7 10.1 3.3 82.7 10.1
Ptf 17 31.5 3.9 7.2 3.3 82.7 10.1 3.3 82.7 10.1 3.3 82.7 10.1 1.5 84.6 5.1
Ptf 18 45.7 4.7 10.5 6.6 80.8 18.0 3.3 82.7 10.1 1.5 84.6 5.1 1.5 84.6 5.1
Ptf 19 62.6 0.1 0.5 6.6 80.8 18.0 3.3 82.7 10.1 1.5 84.6 5.1 1.5 84.6 5.1
Ptf 20 99.2 0.2 1.0 6.6 80.8 18.0 3.3 82.7 10.1 3.3 82.7 10.1 1.5 84.6 5.1
Ptf 21 99.2 0.2 1.0 31.5 75.2 57.4 31.5 75.2 57.4 3.3 82.7 10.1 3.3 82.7 10.1
Ptf 22 99.2 0.2 1.0 31.5 75.2 57.4 31.5 75.2 57.4 12.1 78.9 29.0 12.1 78.9 29.0
Ptf 23 10.7 1.1 1.1 45.7 73.3 71.6 45.7 73.3 71.6 6.6 80.8 18.0 3.3 82.7 10.1
Ptf 24 2.5 1.8 0.5 80.2 66.1 88.0 62.6 71.5 83.1 20.3 77.0 42.5 12.1 78.9 29.0
Ptf 25 6.8 17.9 7.6 24.1 59.2 43.5 34.3 60.9 56.0 62.6 71.5 83.1 20.3 77.0 42.5
Ptf 26 0.4 26.9 0.9 10.7 55.9 23.0 16.3 57.5 32.3 47.2 62.6 68.6 81.4 69.7 90.2
Ptf 27 0.1 31.0 0.3 4.1 52.6 10.2 6.8 54.2 15.6 24.1 59.2 43.5 47.2 62.6 68.6
Ptf 28 0.1 31.0 0.3 0.4 26.9 0.9 0.8 25.0 1.5 6.8 17.9 7.6 24.1 13.4 16.3
Ptf 29 0.0 35.4 0.1 0.2 28.9 0.5 0.4 26.9 0.9 2.5 21.3 3.7 10.7 16.3 10.3
Ptf 30 0.0 47.2 0.0 0.4 26.9 0.9 0.8 25.0 1.5 4.1 19.6 5.4 10.7 55.9 23.0
Ptf 31 0.0 54.9 0.0 0.1 42.1 0.2 0.4 46.4 1.3 4.1 52.6 10.2 24.1 59.2 43.5
Ptf 32 0.0 14.5 0.0 0.0 36.6 0.0 0.1 42.1 0.2 0.8 47.9 2.3 6.8 54.2 15.6
Ptf 33 0.0 13.3 0.0 0.0 8.3 0.0 0.0 7.5 0.0 0.1 43.5 0.4 2.5 51.0 6.4
Ptf 34 0.0 13.3 0.0 0.0 39.3 0.0 0.0 40.7 0.1 0.2 45.0 0.7 0.8 47.9 2.3
Ptf 35 0.0 32.9 0.0 0.0 39.3 0.0 0.0 39.3 0.0 0.2 45.0 0.7 2.5 51.0 6.4
Ptf 36 0.0 36.6 0.0 0.0 40.7 0.1 0.2 45.0 0.7 1.4 49.5 3.9 10.7 55.9 23.0
Ptf 37 0.0 39.3 0.0 0.8 47.9 2.3 1.4 49.5 3.9 10.7 55.9 23.0 62.6 64.4 79.8
Ptf 38 0.0 39.3 0.0 4.1 52.6 10.2 10.7 55.9 23.0 34.3 60.9 56.0 81.4 69.7 90.2
Ptf 39 0.4 46.4 1.3 16.3 57.5 32.3 34.3 60.9 56.0 80.2 66.1 88.0 62.6 71.5 83.1

Table 6.17: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 99.5% for
ShVolVaR.
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Ptfs
ShVolVaR ShVolVaR ShVolVaR ShVolVaR ShVolVaR

α = 1, ν = ∞ α = 1, ν = 20 α = 1, ν = 16 α = 1, ν = 10 α = 1, ν = 8

UC IND CC UC IND CC UC IND CC UC IND CC UC IND CC
Ptf 1 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 2 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 3 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 4 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 5 41.5 90.3 71.2 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 6 41.5 90.3 71.2 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 7 41.5 90.3 71.2 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 8 41.5 90.3 71.2 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 9 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 10 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 11 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 12 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 13 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 14 74.8 92.3 94.5 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 15 82.8 94.2 97.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 12.6 98.1 31.0
Ptf 16 82.8 94.2 97.4 41.3 96.1 71.4 41.3 96.1 71.4 41.3 96.1 71.4 12.6 98.1 31.0
Ptf 17 82.8 94.2 97.4 41.3 96.1 71.4 41.3 96.1 71.4 12.6 98.1 31.0 12.6 98.1 31.0
Ptf 18 82.8 94.2 97.4 41.3 96.1 71.4 41.3 96.1 71.4 12.6 98.1 31.0 12.6 98.1 31.0
Ptf 19 74.8 92.3 94.5 12.6 98.1 31.0 12.6 98.1 31.0 12.6 98.1 31.0 12.6 98.1 31.0
Ptf 20 41.5 90.3 71.2 41.3 96.1 71.4 12.6 98.1 31.0 12.6 98.1 31.0 12.6 98.1 31.0
Ptf 21 74.8 92.3 94.5 41.3 96.1 71.4 12.6 98.1 31.0 12.6 98.1 31.0 12.6 98.1 31.0
Ptf 22 74.8 92.3 94.5 82.8 94.2 97.4 41.3 96.1 71.4 12.6 98.1 31.0 0.9 100.0 3.4
Ptf 23 41.5 90.3 71.2 74.8 92.3 94.5 82.8 94.2 97.4 12.6 98.1 31.0 0.9 100.0 3.4
Ptf 24 20.2 88.4 43.8 74.8 92.3 94.5 74.8 92.3 94.5 12.6 98.1 31.0 0.9 100.0 3.4
Ptf 25 3.4 84.6 10.3 20.2 88.4 43.8 74.8 92.3 94.5 12.6 98.1 31.0 12.6 98.1 31.0
Ptf 26 0.4 80.8 1.4 8.7 86.5 22.8 41.5 90.3 71.2 12.6 98.1 31.0 12.6 98.1 31.0
Ptf 27 0.0 77.0 0.1 1.2 82.7 4.1 8.7 86.5 22.8 74.8 92.3 94.5 41.3 96.1 71.4
Ptf 28 0.0 77.0 0.1 1.2 82.7 4.1 1.2 82.7 4.1 41.5 90.3 71.2 74.8 92.3 94.5
Ptf 29 0.0 71.5 0.0 1.2 82.7 4.1 1.2 82.7 4.1 8.7 86.5 22.8 41.5 90.3 71.2
Ptf 30 0.0 66.1 0.0 0.1 78.9 0.5 0.4 80.8 1.4 1.2 82.7 4.1 3.4 84.6 10.3
Ptf 31 0.0 64.4 0.0 0.0 75.2 0.0 0.0 77.0 0.1 1.2 82.7 4.1 3.4 84.6 10.3
Ptf 32 0.0 62.6 0.0 0.0 69.7 0.0 0.0 75.2 0.0 1.2 82.7 4.1 1.2 82.7 4.1
Ptf 33 0.0 59.2 0.0 0.0 71.5 0.0 0.0 73.3 0.0 1.2 82.7 4.1 3.4 84.6 10.3
Ptf 34 0.0 59.2 0.0 0.0 71.5 0.0 0.0 75.2 0.0 1.2 82.7 4.1 3.4 84.6 10.3
Ptf 35 0.0 59.2 0.0 0.0 75.2 0.0 0.0 75.2 0.0 3.4 84.6 10.3 41.5 90.3 71.2
Ptf 36 0.0 64.4 0.0 0.0 75.2 0.0 0.4 80.8 1.4 74.8 92.3 94.5 41.3 96.1 71.4
Ptf 37 0.0 69.7 0.0 0.4 80.8 1.4 8.7 86.5 22.8 41.3 96.1 71.4 41.3 96.1 71.4
Ptf 38 0.0 71.5 0.0 8.7 86.5 22.8 20.2 88.4 43.8 41.3 96.1 71.4 12.6 98.1 31.0
Ptf 39 0.1 78.9 0.5 8.7 86.5 22.8 74.8 92.3 94.5 41.3 96.1 71.4 12.6 98.1 31.0

Table 6.18: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 99.9% for
ShVolVaR.
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6.19, 6.20, 6.21 and 6.22 we report the values of the total loss computed using
Regulators’ loss functions (see Section 5.1.8) with respect to the four V aR

levels analyzed. We report the best average value recorded in each test in
boldface and the worst and in italic. Considering the average of the total loss
for all portfolios, ShVolVaR (ν = ∞) offers the best results three out four
tests when estimating V aR5%, while having ν = 8 gives the worst results.
The opposite is true when we look at the other percentiles. ShVolVaR with
finite values of ν offers almost the best results, while normally distributed
ShVolVaR presents the worst performances. However, when using investors’
loss functions, as reported in Tables 6.23, 6.24, 6.25 and 6.26, on average,
ShVolVaR with ν = 8, 10 tends to give the worst performance, while ShVolVaR
(ν = ∞) has the best results three times out of four. These results are in
line with the evidence in 5. Summarizing, we note a negative trade-off with
regards models’ results for investors’ and regulators’ loss functions. If a model
performs well for one test, then it performs poorly according to other test.
This particular feature is very useful, as it means one can use a particular
specification of the ShVolVaR model to reach the goal of satisfying a particular
viewpoint (regulator or investor).

Portfolio Lopez Caporin1 Caporin2 Caporin3
name ShVolVaR HFBVaR ShVolVaR ShVolVaR HFBVaR ShVolVaR ShVolVaR HFBVaR ShVolVaR ShVolVaR HFBVaR ShVolVaR

α = 0.275, ν = ∞ α = 0.275, ν = 8 α = 0.275, ν = ∞ α = 0.275, ν = 8 α = 0.275, ν = ∞ α = 0.275, ν = 8 α = 0.275, ν = ∞ α = 0.275, ν = 8

Ptf 1 173.0124 179.0093 179.0132 61.8920 63.6606 66.9368 0.6583 0.5811 0.7145 0.9691 0.8978 1.0306
Ptf 2 174.0116 178.0087 180.0124 61.6252 63.8820 66.6759 0.6350 0.5646 0.6893 0.9373 0.8701 0.9974
Ptf 3 177.0109 176.0081 180.0116 61.3369 63.9721 66.4087 0.6118 0.5463 0.6643 0.9056 0.8437 0.9643
Ptf 4 171.0102 178.0076 181.0109 61.0812 64.2334 66.1204 0.5888 0.5286 0.6394 0.8746 0.8192 0.9312
Ptf 5 171.0095 178.0071 180.0101 60.8415 64.7579 65.8314 0.5659 0.5108 0.6148 0.8441 0.7966 0.8983
Ptf 6 174.0088 177.0067 182.0094 60.5679 65.4398 65.6024 0.5433 0.4938 0.5903 0.8134 0.7751 0.8664
Ptf 7 171.0082 179.0062 181.0088 60.3710 65.8791 65.3703 0.5209 0.4744 0.5662 0.7837 0.7517 0.8346
Ptf 8 167.0076 184.0058 177.0081 60.2150 66.9089 65.1591 0.4988 0.4624 0.5424 0.7549 0.7309 0.8033
Ptf 9 164.0070 182.0054 176.0075 60.0842 67.7329 64.9567 0.4770 0.4485 0.5189 0.7269 0.7087 0.7723
Ptf 10 162.0065 179.0050 174.0070 59.9399 67.9914 64.7540 0.4556 0.4306 0.4957 0.6990 0.6826 0.7420
Ptf 11 161.0060 176.0046 174.0064 59.7842 68.5221 64.5554 0.4344 0.4151 0.4729 0.6712 0.6582 0.7121
Ptf 12 161.0055 175.0042 169.0059 59.5939 69.3370 64.3649 0.4137 0.4040 0.4505 0.6432 0.6335 0.6827
Ptf 13 161.0050 174.0039 174.0054 59.3655 70.0679 64.1824 0.3935 0.3912 0.4287 0.6155 0.6100 0.6537
Ptf 14 163.0046 173.0036 177.0049 59.1148 69.9362 63.9536 0.3740 0.3757 0.4076 0.5880 0.5841 0.6245
Ptf 15 163.0042 177.0033 176.0045 58.8111 70.3162 63.6405 0.3553 0.3622 0.3872 0.5604 0.5598 0.5952
Ptf 16 161.0038 184.0030 171.0041 58.4303 71.2256 63.1932 0.3374 0.3537 0.3678 0.5327 0.5367 0.5653
Ptf 17 160.0035 183.0028 167.0037 57.9522 71.7728 62.6428 0.3207 0.3422 0.3495 0.5050 0.5140 0.5356
Ptf 18 154.0032 181.0026 166.0034 57.4270 72.0567 62.0662 0.3051 0.3318 0.3324 0.4779 0.4892 0.5066
Ptf 19 163.0029 185.0024 170.0031 57.0601 71.4886 61.8089 0.2909 0.3188 0.3168 0.4527 0.4654 0.4810
Ptf 20 160.0026 188.0022 172.0028 57.0230 71.6057 61.7434 0.2787 0.3102 0.3034 0.4311 0.4430 0.4574
Ptf 21 163.0024 189.0020 172.0026 57.4359 72.2308 62.1935 0.2687 0.3078 0.2924 0.4130 0.4272 0.4379
Ptf 22 162.0022 186.0019 173.0024 57.9368 73.4210 62.7134 0.2612 0.3084 0.2840 0.3956 0.4170 0.4193
Ptf 23 158.0021 177.0019 170.0022 58.6655 74.1605 63.3137 0.2565 0.3062 0.2784 0.3801 0.4055 0.4020
Ptf 24 157.0019 180.0018 164.0021 59.6030 75.6261 64.2367 0.2546 0.3108 0.2760 0.3663 0.3965 0.3869
Ptf 25 154.0018 173.0018 162.0019 60.8049 76.1494 65.4505 0.2559 0.3185 0.2767 0.3543 0.3873 0.3737
Ptf 26 161.0017 173.0017 166.0018 62.8832 76.2033 67.6828 0.2600 0.3212 0.2806 0.3467 0.3770 0.3658
Ptf 27 163.0017 168.0017 172.0018 65.1829 76.2328 70.0956 0.2672 0.3291 0.2877 0.3413 0.3663 0.3596
Ptf 28 164.0016 164.0017 171.0017 67.9858 74.9725 72.9742 0.2774 0.3296 0.2980 0.3396 0.3559 0.3575
Ptf 29 164.0016 161.0017 168.0017 71.0711 74.3143 76.0863 0.2895 0.3318 0.3104 0.3413 0.3532 0.3582
Ptf 30 165.0016 165.0017 170.0017 73.6982 73.4129 78.8174 0.3004 0.3314 0.3216 0.3433 0.3493 0.3600
Ptf 31 164.0016 161.0016 175.0017 75.6996 71.5937 80.8978 0.3062 0.3231 0.3277 0.3466 0.3436 0.3631
Ptf 32 173.0015 158.0016 184.0016 75.8548 69.2844 81.2330 0.3048 0.3141 0.3263 0.3465 0.3373 0.3637
Ptf 33 175.0015 154.0015 186.0016 74.5579 65.5893 79.9505 0.2976 0.2975 0.3188 0.3429 0.3271 0.3607
Ptf 34 168.0014 159.0015 178.0015 72.7532 63.0077 77.9337 0.2863 0.2850 0.3071 0.3406 0.3210 0.3581
Ptf 35 173.0014 156.0014 186.0015 70.4313 61.4188 75.7449 0.2725 0.2715 0.2930 0.3384 0.3227 0.3574
Ptf 36 170.0014 153.0014 184.0014 67.6162 60.0533 72.7890 0.2590 0.2601 0.2791 0.3366 0.3254 0.3558
Ptf 37 173.0013 157.0014 186.0014 64.7333 58.7827 69.8546 0.2466 0.2512 0.2665 0.3356 0.3316 0.3556
Ptf 38 168.0013 157.0015 185.0014 62.1977 57.9791 67.2809 0.2364 0.2470 0.2561 0.3371 0.3387 0.3581
Ptf 39 176.0014 154.0015 185.0014 60.0734 56.5370 65.1472 0.2278 0.2398 0.2476 0.3431 0.3445 0.3655
Mean 165.6966 172.5932 175.4661 62.8641 68.5066 67.8042 0.3638 0.3674 0.3944 0.5250 0.5179 0.5568

Table 6.19: Values of the total loss over the backtesting sample for each port-
folio, using Regulator’s loss functions: V aR5%.
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Portfolio Lopez Caporin1 Caporin2 Caporin3
name ShVolVaR HFBEVaR HFBVaR ShVolVaR ShVolVaR HFBEVaR HFBVaR ShVolVaR ShVolVaR HFBEVaR HFBVaR ShVolVaR ShVolVaR HFBEVaR HFBVaR ShVolVaR

α = 0.5, ν = ∞ α = 0.5, ν = 8 α = 0.5, ν = ∞ α = 0.5, ν = 8 α = 0.5, ν = ∞ α = 0.5, ν = 8 α = 0.5, ν = ∞ α = 0.5, ν = 8

Ptf 1 38.0029 46.0016 48.0015 24.0021 8.0863 13.1245 8.4693 5.2905 0.1032 0.1035 0.0779 0.0720 0.1916 0.1750 0.1608 0.1368
Ptf 2 40.0027 44.0015 47.0014 23.0020 8.0109 12.8329 8.5111 5.2357 0.0986 0.0979 0.0746 0.0686 0.1846 0.1660 0.1557 0.1317
Ptf 3 40.0025 43.0013 45.0013 23.0018 7.9502 12.5364 8.5500 5.1788 0.0939 0.0922 0.0713 0.0652 0.1780 0.1570 0.1504 0.1266
Ptf 4 41.0023 43.0012 44.0012 23.0017 7.8858 12.2147 8.5516 5.1158 0.0894 0.0871 0.0679 0.0618 0.1715 0.1480 0.1445 0.1215
Ptf 5 41.0021 41.0011 44.0011 23.0015 7.8118 11.8584 8.5021 5.0458 0.0848 0.0815 0.0649 0.0585 0.1650 0.1391 0.1384 0.1163
Ptf 6 40.0020 39.0010 43.0010 23.0014 7.7330 11.5614 8.4459 4.9800 0.0804 0.0765 0.0616 0.0552 0.1584 0.1310 0.1330 0.1112
Ptf 7 41.0018 38.0009 42.0009 23.0013 7.6629 11.2538 8.3849 4.9207 0.0760 0.0714 0.0580 0.0519 0.1520 0.1235 0.1278 0.1063
Ptf 8 40.0016 37.0008 42.0008 23.0012 7.6029 10.9001 8.3677 4.8564 0.0718 0.0663 0.0549 0.0488 0.1457 0.1158 0.1232 0.1014
Ptf 9 39.0015 36.0007 43.0008 23.0011 7.5475 10.5245 8.3942 4.7963 0.0676 0.0612 0.0522 0.0457 0.1396 0.1086 0.1184 0.0966
Ptf 10 39.0014 37.0006 40.0007 23.0010 7.4987 10.1548 8.4546 4.7353 0.0635 0.0563 0.0494 0.0427 0.1338 0.1019 0.1148 0.0919
Ptf 11 38.0012 36.0006 40.0006 22.0009 7.4549 9.7788 8.4152 4.6906 0.0596 0.0519 0.0464 0.0398 0.1285 0.0950 0.1105 0.0874
Ptf 12 36.0011 35.0005 39.0006 23.0008 7.4045 9.2875 8.2027 4.6521 0.0559 0.0475 0.0430 0.0370 0.1231 0.0876 0.1048 0.0830
Ptf 13 34.0010 35.0004 42.0005 22.0007 7.3676 8.7748 7.9717 4.6386 0.0524 0.0432 0.0401 0.0344 0.1180 0.0805 0.0991 0.0790
Ptf 14 35.0009 34.0004 43.0005 22.0006 7.3342 8.2205 7.9630 4.6500 0.0491 0.0389 0.0378 0.0319 0.1129 0.0735 0.0953 0.0758
Ptf 15 34.0008 32.0003 42.0004 22.0006 7.2948 7.6618 7.9667 4.6940 0.0460 0.0348 0.0361 0.0295 0.1077 0.0669 0.0918 0.0736
Ptf 16 35.0007 30.0003 41.0004 22.0005 7.3207 7.2870 7.8077 4.7349 0.0431 0.0317 0.0343 0.0273 0.1037 0.0616 0.0875 0.0715
Ptf 17 35.0007 31.0002 39.0004 22.0004 7.3935 6.8395 7.7342 4.7787 0.0406 0.0279 0.0331 0.0253 0.1001 0.0565 0.0838 0.0694
Ptf 18 32.0006 27.0002 40.0003 25.0004 7.5478 6.4791 7.8258 4.9105 0.0384 0.0250 0.0320 0.0236 0.0973 0.0523 0.0814 0.0680
Ptf 19 32.0005 31.0002 39.0003 24.0003 7.7526 6.2681 8.1992 5.0756 0.0366 0.0223 0.0315 0.0222 0.0951 0.0496 0.0805 0.0668
Ptf 20 34.0005 32.0002 38.0003 24.0003 7.9906 6.0643 8.6720 5.2361 0.0353 0.0202 0.0323 0.0212 0.0929 0.0472 0.0805 0.0655
Ptf 21 39.0005 30.0001 35.0003 28.0003 8.4176 5.8749 9.1308 5.4725 0.0345 0.0186 0.0336 0.0206 0.0924 0.0451 0.0801 0.0647
Ptf 22 42.0004 29.0001 36.0003 28.0003 8.9001 5.6318 9.5568 5.8090 0.0345 0.0174 0.0345 0.0206 0.0925 0.0431 0.0803 0.0645
Ptf 23 46.0004 28.0001 37.0003 29.0003 9.5611 5.5383 9.8267 6.3530 0.0354 0.0169 0.0357 0.0213 0.0934 0.0426 0.0798 0.0660
Ptf 24 44.0004 28.0001 34.0003 31.0003 10.4371 5.5114 9.7840 7.0716 0.0376 0.0171 0.0367 0.0229 0.0959 0.0425 0.0774 0.0687
Ptf 25 48.0004 25.0001 34.0003 33.0003 11.5580 5.4966 9.9553 7.8222 0.0410 0.0179 0.0380 0.0256 0.0999 0.0423 0.0780 0.0712
Ptf 26 45.0005 22.0001 34.0003 38.0003 12.8197 5.6236 9.8386 8.8436 0.0459 0.0191 0.0379 0.0295 0.1038 0.0427 0.0770 0.0756
Ptf 27 50.0005 22.0001 35.0003 36.0003 14.2067 5.8047 10.5222 10.0571 0.0520 0.0205 0.0413 0.0344 0.1083 0.0434 0.0825 0.0813
Ptf 28 53.0005 24.0002 35.0003 38.0004 15.6053 6.0170 10.8936 11.1543 0.0586 0.0221 0.0415 0.0399 0.1132 0.0443 0.0835 0.0858
Ptf 29 56.0005 25.0002 33.0003 48.0004 17.2154 6.2549 10.7463 12.2713 0.0655 0.0237 0.0411 0.0454 0.1194 0.0459 0.0816 0.0910
Ptf 30 61.0006 28.0002 31.0003 50.0004 18.6633 6.5648 10.8458 13.2905 0.0716 0.0250 0.0423 0.0503 0.1251 0.0486 0.0804 0.0956
Ptf 31 65.0006 28.0002 31.0003 52.0004 19.6682 7.0755 10.9520 14.1388 0.0758 0.0270 0.0441 0.0538 0.1286 0.0527 0.0787 0.0988
Ptf 32 61.0005 26.0002 36.0003 49.0004 20.2616 7.4737 10.7990 14.7983 0.0767 0.0286 0.0430 0.0543 0.1305 0.0562 0.0768 0.1014
Ptf 33 64.0005 27.0002 36.0003 48.0004 20.1236 7.8104 10.5887 14.6356 0.0731 0.0301 0.0400 0.0511 0.1301 0.0588 0.0766 0.1001
Ptf 34 63.0005 28.0002 35.0003 47.0003 19.0366 7.9442 10.5333 13.6769 0.0665 0.0309 0.0393 0.0457 0.1250 0.0601 0.0783 0.0945
Ptf 35 59.0004 30.0002 36.0003 47.0003 17.4799 8.1184 10.4171 12.3797 0.0593 0.0314 0.0387 0.0400 0.1178 0.0619 0.0790 0.0879
Ptf 36 57.0004 31.0002 34.0003 46.0002 15.9318 8.1671 9.9580 10.9766 0.0524 0.0311 0.0382 0.0346 0.1112 0.0628 0.0772 0.0800
Ptf 37 57.0003 32.0002 32.0003 42.0002 14.3134 8.2595 9.1447 9.6188 0.0465 0.0311 0.0338 0.0304 0.1035 0.0650 0.0731 0.0725
Ptf 38 56.0003 33.0003 34.0002 38.0002 12.8046 8.3227 8.5357 8.4407 0.0417 0.0314 0.0299 0.0269 0.0970 0.0672 0.0706 0.0662
Ptf 39 48.0003 34.0003 33.0002 35.0002 11.3886 8.3181 8.1498 7.5949 0.0378 0.0315 0.0278 0.0240 0.0902 0.0694 0.0705 0.0629
Mean 45.0779 32.2312 38.2569 31.3340 11.0524 8.2931 9.1171 7.5031 0.0588 0.0413 0.0440 0.0393 0.1225 0.0777 0.0965 0.0874

Table 6.20: Values of the total loss over the backtesting sample for each port-
folio, using Regulator’s loss functions: V aR1%.

Portfolio Lopez Caporin1 Caporin2 Caporin3
name ShVolVaR HFBGJRVaR HFBVaR ShVolVaR ShVolVaR HFBGJRVaR HFBVaR ShVolVaR ShVolVaR HFBGJRVaR HFBVaR ShVolVaR ShVolVaR HFBGJRVaR HFBVaR ShVolVaR

α = 0.75, ν = ∞ α = 0.75, ν = 8 α = 0.75, ν = ∞ α = 0.75, ν = 8 α = 0.75, ν = ∞ α = 0.75, ν = 8 α = 0.75, ν = ∞ α = 0.75, ν = 8

Ptf 1 11.0017 18.0006 25.0009 6.0009 3.0687 4.0683 4.7366 1.7784 0.0482 0.0451 0.0489 0.0255 0.0940 0.0633 0.0917 0.0596
Ptf 2 11.0015 17.0006 25.0008 6.0008 3.0364 3.9742 4.7468 1.7444 0.0458 0.0431 0.0464 0.0240 0.0903 0.0594 0.0893 0.0569
Ptf 3 11.0014 17.0005 25.0007 7.0008 3.0013 3.8634 4.7480 1.7108 0.0434 0.0410 0.0437 0.0226 0.0867 0.0557 0.0863 0.0543
Ptf 4 12.0013 16.0005 25.0007 6.0007 2.9655 3.7353 4.7503 1.6810 0.0411 0.0389 0.0410 0.0213 0.0831 0.0518 0.0832 0.0518
Ptf 5 12.0012 15.0004 24.0006 6.0006 2.9320 3.5957 4.7068 1.6543 0.0387 0.0368 0.0382 0.0199 0.0797 0.0477 0.0789 0.0496
Ptf 6 12.0011 17.0004 24.0005 6.0006 2.8951 3.4945 4.6059 1.6256 0.0364 0.0350 0.0354 0.0185 0.0763 0.0443 0.0735 0.0474
Ptf 7 12.0010 17.0004 26.0004 6.0005 2.8544 3.3560 4.5095 1.5947 0.0341 0.0330 0.0327 0.0172 0.0728 0.0406 0.0682 0.0451
Ptf 8 11.0009 16.0003 26.0004 6.0005 2.8114 3.1597 4.4230 1.5612 0.0319 0.0301 0.0303 0.0159 0.0694 0.0366 0.0631 0.0428
Ptf 9 11.0008 15.0003 27.0003 6.0004 2.7639 2.9675 4.3225 1.5250 0.0297 0.0280 0.0282 0.0146 0.0659 0.0326 0.0580 0.0405
Ptf 10 11.0007 12.0003 25.0003 6.0004 2.7110 2.8538 4.2615 1.4857 0.0276 0.0261 0.0264 0.0133 0.0623 0.0302 0.0536 0.0382
Ptf 11 13.0007 13.0002 22.0003 6.0003 2.6654 2.7439 4.2519 1.4428 0.0256 0.0237 0.0252 0.0121 0.0589 0.0283 0.0511 0.0359
Ptf 12 12.0006 14.0002 22.0003 7.0003 2.6496 2.6990 4.3330 1.4008 0.0236 0.0219 0.0243 0.0109 0.0562 0.0270 0.0496 0.0335
Ptf 13 12.0005 13.0002 22.0002 7.0003 2.6348 2.5868 4.2378 1.3607 0.0217 0.0196 0.0227 0.0097 0.0536 0.0250 0.0468 0.0313
Ptf 14 12.0005 10.0002 23.0002 7.0002 2.6193 2.5321 4.1081 1.3161 0.0199 0.0177 0.0210 0.0086 0.0509 0.0239 0.0442 0.0289
Ptf 15 11.0004 10.0001 24.0002 9.0002 2.6175 2.4383 4.0690 1.2769 0.0182 0.0158 0.0190 0.0076 0.0485 0.0227 0.0431 0.0268
Ptf 16 13.0004 10.0001 23.0002 9.0002 2.6264 2.3571 3.9536 1.2698 0.0166 0.0137 0.0171 0.0066 0.0464 0.0217 0.0417 0.0253
Ptf 17 13.0003 9.0001 23.0001 8.0001 2.6538 2.2566 3.7235 1.2608 0.0151 0.0121 0.0155 0.0058 0.0451 0.0205 0.0393 0.0237
Ptf 18 14.0003 10.0001 20.0001 8.0001 2.6873 2.1558 3.6857 1.2735 0.0139 0.0104 0.0145 0.0051 0.0436 0.0192 0.0384 0.0225
Ptf 19 15.0002 11.0001 21.0001 8.0001 2.7298 2.0148 3.8274 1.2834 0.0129 0.0085 0.0133 0.0045 0.0422 0.0178 0.0396 0.0212
Ptf 20 17.0002 11.0001 22.0001 8.0001 2.8394 1.8668 4.1115 1.2884 0.0121 0.0070 0.0137 0.0041 0.0413 0.0164 0.0413 0.0198
Ptf 21 17.0002 11.0000 23.0001 9.0001 3.0193 1.7749 4.6289 1.3071 0.0118 0.0060 0.0149 0.0038 0.0411 0.0156 0.0442 0.0191
Ptf 22 17.0002 11.0000 22.0001 11.0001 3.2248 1.7723 5.1058 1.3739 0.0118 0.0052 0.0161 0.0038 0.0409 0.0157 0.0465 0.0190
Ptf 23 24.0002 11.0000 23.0002 9.0001 3.5801 1.7408 5.4689 1.5447 0.0122 0.0046 0.0173 0.0041 0.0421 0.0156 0.0478 0.0201
Ptf 24 27.0002 13.0000 22.0002 11.0001 4.1910 1.6960 5.5883 1.7953 0.0134 0.0041 0.0180 0.0048 0.0454 0.0154 0.0481 0.0217
Ptf 25 25.0002 12.0000 21.0002 12.0001 5.0176 1.7240 5.4876 2.2380 0.0157 0.0042 0.0186 0.0058 0.0499 0.0157 0.0468 0.0244
Ptf 26 30.0002 12.0000 19.0002 16.0001 6.0608 1.7479 5.3654 2.7913 0.0189 0.0045 0.0194 0.0075 0.0561 0.0160 0.0451 0.0279
Ptf 27 32.0003 12.0000 16.0002 20.0001 7.2247 1.9241 5.3205 3.4751 0.0233 0.0052 0.0200 0.0101 0.0630 0.0174 0.0439 0.0326
Ptf 28 32.0003 12.0001 15.0002 22.0002 8.3729 2.1492 5.2820 4.2525 0.0286 0.0063 0.0199 0.0135 0.0686 0.0191 0.0425 0.0383
Ptf 29 34.0003 13.0001 19.0001 25.0002 9.5260 2.4007 5.0473 5.1011 0.0345 0.0077 0.0189 0.0173 0.0746 0.0206 0.0399 0.0440
Ptf 30 39.0004 11.0001 20.0001 24.0002 10.4889 2.6892 4.9222 5.8932 0.0400 0.0091 0.0182 0.0211 0.0793 0.0226 0.0388 0.0492
Ptf 31 42.0004 11.0001 19.0001 22.0002 11.3472 2.9407 4.9411 6.5699 0.0441 0.0101 0.0184 0.0239 0.0830 0.0244 0.0387 0.0535
Ptf 32 45.0004 14.0001 19.0001 25.0002 12.3488 3.1650 5.0920 6.9867 0.0454 0.0112 0.0191 0.0242 0.0884 0.0260 0.0401 0.0557
Ptf 33 44.0003 16.0001 21.0002 27.0002 12.3975 3.4333 5.3336 6.8521 0.0428 0.0123 0.0199 0.0219 0.0889 0.0281 0.0425 0.0545
Ptf 34 44.0003 16.0001 20.0002 29.0002 11.5828 3.7143 5.3975 6.1797 0.0374 0.0136 0.0206 0.0183 0.0846 0.0301 0.0432 0.0493
Ptf 35 40.0002 16.0001 21.0002 27.0001 10.3589 3.8585 5.4400 5.3467 0.0316 0.0142 0.0209 0.0145 0.0776 0.0316 0.0438 0.0435
Ptf 36 37.0002 16.0001 22.0002 24.0001 9.0152 4.0351 5.2997 4.3865 0.0263 0.0147 0.0197 0.0115 0.0696 0.0335 0.0437 0.0362
Ptf 37 35.0002 17.0001 21.0002 19.0001 7.6696 4.1052 5.1080 3.6522 0.0223 0.0149 0.0181 0.0096 0.0608 0.0345 0.0433 0.0316
Ptf 38 35.0002 16.0001 21.0002 16.0001 6.6828 4.0677 5.1215 3.0867 0.0193 0.0146 0.0181 0.0079 0.0557 0.0348 0.0444 0.0283
Ptf 39 30.0002 15.0001 23.0002 16.0001 5.7149 4.0486 5.0068 2.6505 0.0168 0.0143 0.0176 0.0066 0.0501 0.0356 0.0444 0.0258
Mean 22.4364 13.4874 22.0772 12.8721 5.2202 2.8643 4.7454 2.6928 0.0270 0.0175 0.0234 0.0128 0.0638 0.0291 0.0515 0.0367

Table 6.21: Values of the total loss over the backtesting sample for each port-
folio, using Regulator’s loss functions: V aR0.5%.
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Portfolio Lopez Caporin1 Caporin2 Caporin3
name ShVolVaR HFBGJRVaR ShVolVaR ShVolVaR HFBGJRVaR ShVolVaR ShVolVaR HFBGJRVaR ShVolVaR ShVolVaR HFBGJRVaR ShVolVaR

α = 1, ν = ∞ α = 1, ν = 10 α = 1, ν = ∞ α = 1, ν = 10 α = 1, ν = ∞ Sα = 1, ν = 10 α = 1, ν = ∞ α = 1, ν = 10

Ptf 1 4.0006 5.0003 2.0001 1.0281 1.7113 0.4208 0.0141 0.0206 0.0034 0.0393 0.0276 0.0155
Ptf 2 4.0005 5.0003 2.0001 1.0032 1.6571 0.4072 0.0133 0.0194 0.0031 0.0375 0.0261 0.0148
Ptf 3 4.0005 5.0003 2.0001 0.9768 1.5994 0.3929 0.0125 0.0183 0.0028 0.0356 0.0245 0.0141
Ptf 4 4.0005 5.0003 2.0001 0.9485 1.5394 0.3777 0.0117 0.0172 0.0025 0.0338 0.0229 0.0133
Ptf 5 5.0004 5.0002 2.0001 0.9208 1.4734 0.3616 0.0109 0.0161 0.0023 0.0319 0.0213 0.0126
Ptf 6 5.0004 3.0002 2.0001 0.8924 1.4230 0.3445 0.0102 0.0150 0.0020 0.0301 0.0201 0.0118
Ptf 7 5.0004 3.0002 2.0001 0.8619 1.3780 0.3263 0.0094 0.0139 0.0017 0.0283 0.0189 0.0111
Ptf 8 5.0003 3.0002 2.0001 0.8291 1.3322 0.3069 0.0087 0.0128 0.0015 0.0264 0.0178 0.0103
Ptf 9 4.0003 3.0002 2.0000 0.7992 1.2894 0.2861 0.0080 0.0118 0.0013 0.0247 0.0168 0.0095
Ptf 10 4.0003 3.0001 2.0000 0.7714 1.2428 0.2639 0.0073 0.0108 0.0011 0.0232 0.0157 0.0087
Ptf 11 4.0002 3.0001 2.0000 0.7414 1.1927 0.2401 0.0067 0.0098 0.0009 0.0216 0.0146 0.0079
Ptf 12 4.0002 3.0001 2.0000 0.7089 1.1310 0.2146 0.0061 0.0088 0.0007 0.0200 0.0135 0.0071
Ptf 13 4.0002 3.0001 2.0000 0.6737 1.0467 0.1871 0.0054 0.0077 0.0006 0.0184 0.0121 0.0063
Ptf 14 4.0002 3.0001 2.0000 0.6353 0.9626 0.1574 0.0049 0.0065 0.0005 0.0168 0.0109 0.0054
Ptf 15 3.0001 3.0001 2.0000 0.6026 0.8684 0.1254 0.0043 0.0054 0.0004 0.0154 0.0096 0.0046
Ptf 16 3.0001 3.0000 2.0000 0.5680 0.7770 0.0905 0.0038 0.0045 0.0003 0.0141 0.0083 0.0037
Ptf 17 3.0001 3.0000 1.0000 0.5301 0.6638 0.0850 0.0033 0.0036 0.0003 0.0128 0.0069 0.0033
Ptf 18 3.0001 3.0000 1.0000 0.4883 0.5533 0.0808 0.0029 0.0029 0.0002 0.0114 0.0056 0.0029
Ptf 19 4.0001 1.0000 1.0000 0.4521 0.4732 0.0752 0.0025 0.0022 0.0002 0.0102 0.0046 0.0026
Ptf 20 5.0001 1.0000 1.0000 0.4544 0.4073 0.0676 0.0022 0.0016 0.0001 0.0096 0.0038 0.0021
Ptf 21 4.0000 1.0000 1.0000 0.4990 0.3402 0.0573 0.0020 0.0011 0.0001 0.0095 0.0031 0.0017
Ptf 22 4.0000 1.0000 1.0000 0.5590 0.2595 0.0433 0.0018 0.0006 0.0001 0.0095 0.0023 0.0012
Ptf 23 5.0000 1.0000 1.0000 0.6361 0.1790 0.0241 0.0017 0.0003 0.0000 0.0102 0.0015 0.0006
Ptf 24 6.0000 1.0000 1.0000 0.7400 0.0925 0.0149 0.0018 0.0001 0.0000 0.0113 0.0008 0.0002
Ptf 25 8.0000 0.0000 1.0000 0.9865 0.0000 0.0603 0.0021 0.0000 0.0000 0.0135 0.0000 0.0008
Ptf 26 10.0000 0.0000 1.0000 1.3253 0.0000 0.1080 0.0029 0.0000 0.0001 0.0159 0.0000 0.0013
Ptf 27 12.0001 2.0000 4.0000 1.8415 0.0420 0.3194 0.0045 0.0000 0.0004 0.0198 0.0005 0.0036
Ptf 28 12.0001 2.0000 5.0000 2.4751 0.1105 0.6288 0.0070 0.0001 0.0010 0.0248 0.0013 0.0070
Ptf 29 15.0001 2.0000 7.0000 3.1130 0.1851 0.9875 0.0101 0.0002 0.0020 0.0295 0.0021 0.0105
Ptf 30 18.0001 4.0000 9.0000 4.0161 0.3123 1.4283 0.0134 0.0004 0.0032 0.0357 0.0035 0.0151
Ptf 31 19.0002 5.0000 9.0001 4.7237 0.5001 1.7203 0.0161 0.0007 0.0043 0.0406 0.0054 0.0178
Ptf 32 20.0002 5.0000 9.0001 4.9940 0.7047 1.7735 0.0169 0.0012 0.0046 0.0424 0.0074 0.0181
Ptf 33 22.0001 5.0000 9.0000 4.8562 0.8960 1.5403 0.0152 0.0019 0.0039 0.0413 0.0090 0.0156
Ptf 34 22.0001 6.0000 9.0000 4.2329 1.1188 1.2035 0.0121 0.0028 0.0027 0.0366 0.0107 0.0123
Ptf 35 22.0001 6.0000 8.0000 3.5708 1.3270 0.7651 0.0088 0.0039 0.0015 0.0315 0.0122 0.0076
Ptf 36 19.0001 8.0000 4.0000 2.7871 1.4016 0.4419 0.0060 0.0040 0.0010 0.0247 0.0130 0.0041
Ptf 37 16.0000 8.0000 2.0000 2.1881 1.4710 0.3372 0.0046 0.0041 0.0007 0.0200 0.0138 0.0032
Ptf 38 15.0000 8.0000 2.0000 1.7281 1.5032 0.2532 0.0035 0.0040 0.0004 0.0170 0.0145 0.0025
Ptf 39 11.0000 9.0000 2.0000 1.4106 1.4792 0.1576 0.0026 0.0035 0.0002 0.0149 0.0148 0.0015
Mean 8.7438 3.5898 3.1026 1.5787 0.8883 0.4276 0.0072 0.0061 0.0013 0.0233 0.0107 0.0075

Table 6.22: Values of the total loss over the backtesting sample for each port-
folio, using Regulator’s loss functions: V aR0.1%.

Portfolio Caporin1 Caporin2 Caporin3
name ShVolVaR HFBVaR ShVolVaR ShVolVaR HFBVaR ShVolVaR ShVolVaR HFBVaR ShVolVaR

α = 0.275, ν = ∞ α = 0.275, ν = 8 α = 0.275, ν = ∞ α = 0.275, ν = 8 α = 0.275, ν = ∞ α = 0.275, ν = 8

Ptf 1 2,108.37 2,108.94 2,095.10 27.04 28.35 26.25 61.19 62.71 60.12
Ptf 2 2,107.90 2,108.42 2,094.65 26.24 27.47 25.47 59.44 60.85 58.39
Ptf 3 2,107.32 2,107.31 2,094.16 25.45 26.59 24.70 57.68 58.99 56.67
Ptf 4 2,106.87 2,106.23 2,093.65 24.65 25.71 23.93 55.94 57.14 54.96
Ptf 5 2,106.48 2,104.46 2,093.09 23.86 24.82 23.16 54.20 55.28 53.25
Ptf 6 2,105.88 2,102.62 2,092.58 23.07 23.93 22.40 52.47 53.43 51.55
Ptf 7 2,105.42 2,100.09 2,092.00 22.29 23.04 21.64 50.75 51.57 49.86
Ptf 8 2,104.88 2,097.89 2,091.35 21.51 22.17 20.88 49.04 49.74 48.18
Ptf 9 2,104.31 2,094.96 2,090.64 20.73 21.30 20.12 47.35 47.92 46.51
Ptf 10 2,103.54 2,091.31 2,089.73 19.96 20.43 19.37 45.66 46.11 44.85
Ptf 11 2,102.65 2,087.29 2,088.82 19.19 19.58 18.63 43.98 44.32 43.21
Ptf 12 2,101.64 2,083.04 2,087.81 18.44 18.73 17.89 42.32 42.53 41.57
Ptf 13 2,100.17 2,078.55 2,086.43 17.68 17.88 17.16 40.67 40.75 39.96
Ptf 14 2,098.37 2,072.83 2,084.87 16.94 17.05 16.44 39.04 39.00 38.36
Ptf 15 2,095.94 2,068.47 2,082.46 16.20 16.24 15.72 37.43 37.30 36.77
Ptf 16 2,093.06 2,064.16 2,079.42 15.47 15.45 15.01 35.84 35.62 35.21
Ptf 17 2,089.65 2,059.81 2,075.85 14.75 14.68 14.31 34.28 33.98 33.67
Ptf 18 2,085.46 2,054.47 2,071.62 14.04 13.92 13.62 32.74 32.38 32.16
Ptf 19 2,081.08 2,048.85 2,067.39 13.34 13.17 12.94 31.24 30.81 30.68
Ptf 20 2,077.77 2,044.31 2,063.90 12.67 12.47 12.30 29.78 29.29 29.25
Ptf 21 2,075.79 2,042.13 2,062.08 12.03 11.80 11.68 28.36 27.83 27.86
Ptf 22 2,074.55 2,042.06 2,060.72 11.44 11.17 11.10 27.00 26.42 26.53
Ptf 23 2,073.40 2,039.61 2,059.49 10.88 10.59 10.55 25.70 25.08 25.25
Ptf 24 2,072.31 2,044.93 2,058.45 10.35 10.08 10.05 24.47 23.86 24.04
Ptf 25 2,071.62 2,050.27 2,058.02 9.87 9.61 9.58 23.32 22.74 22.91
Ptf 26 2,072.59 2,059.24 2,059.30 9.44 9.22 9.17 22.26 21.77 21.87
Ptf 27 2,072.41 2,067.76 2,059.27 9.05 8.90 8.79 21.32 20.93 20.94
Ptf 28 2,071.97 2,078.14 2,059.14 8.72 8.65 8.47 20.50 20.27 20.14
Ptf 29 2,071.77 2,088.92 2,058.78 8.45 8.48 8.22 19.83 19.78 19.49
Ptf 30 2,068.11 2,096.07 2,055.55 8.24 8.39 8.02 19.33 19.47 18.99
Ptf 31 2,063.96 2,101.13 2,051.39 8.09 8.34 7.87 19.00 19.32 18.67
Ptf 32 2,055.13 2,098.14 2,042.71 7.98 8.33 7.76 18.86 19.33 18.54
Ptf 33 2,043.15 2,090.26 2,030.64 7.92 8.36 7.70 18.92 19.53 18.59
Ptf 34 2,028.71 2,079.92 2,015.34 7.93 8.45 7.71 19.17 19.89 18.84
Ptf 35 2,014.17 2,064.23 2,000.49 8.01 8.54 7.78 19.61 20.35 19.28
Ptf 36 2,001.13 2,049.01 1,987.45 8.17 8.69 7.94 20.23 20.93 19.88
Ptf 37 1,990.86 2,034.18 1,976.57 8.41 8.89 8.16 20.99 21.63 20.63
Ptf 38 1,983.14 2,017.26 1,968.69 8.73 9.11 8.47 21.89 22.37 21.51
Ptf 39 1,979.62 2,005.41 1,965.17 9.13 9.41 8.86 22.91 23.20 22.51
Mean 2,073.62 2,072.63 2,060.12 14.52 14.82 14.10 33.71 33.96 33.12

Table 6.23: Values of the total loss over the backtesting sample for each port-
folio, using Investors’ loss functions: V aR5%.
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Portfolio Caporin1 Caporin2 Caporin3
name ShVolVaR HFBEVaR HFBVaR ShVolVaR ShVolVaR HFBEVaR HFBVaR ShVolVaR ShVolVaR HFBEVaR HFBVaR ShVolVaR

α = 0.5, ν = ∞ α = 0.5, ν = 8 α = 0.5, ν = ∞ α = 0.5, ν = 8 α = 0.5, ν = ∞ α = 0.5, ν = 8

Ptf 1 2,436.40 2,397.36 2,436.97 2,500.73 48.26 50.12 52.06 54.05 87.29 89.39 91.39 93.93
Ptf 2 2,436.34 2,399.34 2,435.61 2,500.71 46.86 48.90 50.48 52.49 84.79 87.10 88.68 91.24
Ptf 3 2,436.21 2,401.47 2,434.07 2,500.58 45.46 47.68 48.92 50.93 82.30 84.81 86.01 88.56
Ptf 4 2,436.01 2,403.63 2,432.51 2,500.40 44.07 46.47 47.37 49.37 79.82 82.53 83.35 85.89
Ptf 5 2,435.73 2,405.92 2,430.70 2,500.13 42.68 45.27 45.80 47.82 77.35 80.26 80.68 83.22
Ptf 6 2,435.32 2,408.53 2,428.79 2,499.75 41.30 44.06 44.21 46.27 74.88 78.00 77.99 80.57
Ptf 7 2,434.83 2,411.27 2,426.74 2,499.29 39.92 42.87 42.59 44.72 72.43 75.76 75.29 77.93
Ptf 8 2,434.20 2,414.29 2,424.57 2,498.65 38.54 41.69 40.99 43.18 69.99 73.54 72.59 75.30
Ptf 9 2,433.44 2,417.70 2,422.90 2,497.90 37.18 40.52 39.41 41.65 67.56 71.34 69.94 72.69
Ptf 10 2,432.47 2,421.41 2,421.32 2,496.95 35.81 39.36 37.88 40.13 65.15 69.16 67.35 70.09
Ptf 11 2,431.33 2,425.48 2,419.61 2,495.88 34.46 38.21 36.38 38.62 62.76 66.99 64.80 67.51
Ptf 12 2,430.05 2,429.83 2,417.97 2,494.61 33.12 37.09 34.93 37.11 60.38 64.85 62.31 64.95
Ptf 13 2,428.46 2,434.44 2,416.23 2,493.07 31.79 35.98 33.51 35.62 58.02 62.74 59.85 62.41
Ptf 14 2,426.54 2,439.38 2,414.89 2,491.28 30.46 34.88 32.10 34.15 55.69 60.66 57.42 59.90
Ptf 15 2,424.06 2,444.37 2,414.06 2,489.01 29.15 33.80 30.73 32.68 53.38 58.61 55.06 57.42
Ptf 16 2,421.19 2,450.68 2,413.30 2,486.22 27.85 32.74 29.39 31.22 51.10 56.60 52.74 54.96
Ptf 17 2,417.98 2,457.40 2,412.74 2,483.01 26.56 31.71 28.08 29.79 48.86 54.64 50.48 52.55
Ptf 18 2,414.10 2,464.51 2,412.92 2,479.30 25.29 30.69 26.79 28.36 46.65 52.72 48.27 50.17
Ptf 19 2,409.53 2,472.33 2,413.72 2,474.91 24.04 29.71 25.55 26.97 44.49 50.85 46.13 47.84
Ptf 20 2,404.70 2,481.27 2,415.14 2,470.14 22.83 28.77 24.39 25.61 42.37 49.04 44.08 45.57
Ptf 21 2,400.10 2,491.21 2,417.23 2,465.15 21.66 27.87 23.29 24.30 40.32 47.29 42.12 43.35
Ptf 22 2,395.52 2,502.17 2,421.43 2,460.22 20.54 27.02 22.27 23.04 38.34 45.61 40.25 41.21
Ptf 23 2,390.97 2,513.85 2,426.16 2,455.15 19.47 26.22 21.33 21.84 36.43 44.00 38.50 39.15
Ptf 24 2,386.19 2,525.94 2,432.84 2,450.08 18.45 25.46 20.49 20.70 34.62 42.47 36.90 37.20
Ptf 25 2,381.68 2,537.94 2,444.14 2,444.70 17.50 24.75 19.81 19.63 32.91 41.03 35.53 35.36
Ptf 26 2,377.06 2,549.72 2,458.64 2,439.78 16.63 24.09 19.35 18.64 31.33 39.68 34.44 33.66
Ptf 27 2,371.45 2,559.99 2,474.21 2,434.04 15.83 23.45 19.02 17.74 29.91 38.45 33.56 32.12
Ptf 28 2,364.52 2,568.14 2,490.66 2,426.97 15.12 22.86 18.83 16.94 28.65 37.33 32.91 30.77
Ptf 29 2,358.36 2,573.70 2,504.95 2,420.19 14.54 22.31 18.74 16.28 27.61 36.33 32.43 29.64
Ptf 30 2,350.89 2,574.98 2,514.49 2,412.16 14.06 21.77 18.66 15.75 26.80 35.47 32.08 28.76
Ptf 31 2,343.16 2,572.15 2,516.73 2,404.57 13.71 21.26 18.54 15.36 26.25 34.76 31.78 28.17
Ptf 32 2,334.20 2,563.28 2,509.80 2,396.91 13.48 20.75 18.33 15.10 25.98 34.21 31.55 27.88
Ptf 33 2,325.00 2,548.38 2,497.69 2,388.76 13.38 20.27 18.04 15.00 26.01 33.83 31.37 27.92
Ptf 34 2,314.86 2,527.57 2,480.49 2,380.20 13.42 19.83 17.76 15.06 26.33 33.63 31.33 28.26
Ptf 35 2,306.16 2,502.48 2,462.33 2,372.54 13.62 19.46 17.67 15.30 26.93 33.60 31.60 28.91
Ptf 36 2,299.05 2,474.99 2,442.05 2,365.99 13.96 19.19 17.72 15.70 27.78 33.77 32.11 29.83
Ptf 37 2,292.63 2,446.49 2,423.09 2,360.72 14.44 19.04 17.93 16.25 28.86 34.13 32.85 30.99
Ptf 38 2,288.78 2,419.39 2,406.60 2,357.71 15.04 19.01 18.33 16.95 30.13 34.67 33.88 32.37
Ptf 39 2,287.82 2,394.99 2,391.44 2,357.48 15.78 19.12 18.83 17.79 31.56 35.35 35.03 33.93
Mean 2,387.88 2,472.51 2,439.99 2,452.46 25.80 30.88 28.63 28.93 47.74 53.47 50.89 51.34

Table 6.24: Values of the total loss over the backtesting sample for each port-
folio, using Investors’ loss functions: V aR1%.
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Portfolio Caporin1 Caporin2 Caporin3
name ShVolVaR HFBGJRVaR HFBVaR ShVolVaR ShVolVaR HFBGJRVaR HFBVaR ShVolVaR ShVolVaR HFBGJRVaR HFBVaR ShVolVaR

α = 0.75, ν = ∞ α = 0.75, ν = 8 α = 0.75, ν = ∞ α = 0.75, ν = 8 α = 0.75, ν = ∞ α = 0.75, ν = 8

Ptf 1 2,571.55 2,503.48 2,516.73 2,662.97 60.09 59.81 61.27 71.55 100.77 100.32 101.74 113.43
Ptf 2 2,571.62 2,505.76 2,515.86 2,663.02 58.36 58.36 59.43 69.50 97.89 97.76 98.76 110.19
Ptf 3 2,571.59 2,508.17 2,515.11 2,662.99 56.64 56.93 57.63 67.45 95.03 95.22 95.82 106.96
Ptf 4 2,571.52 2,510.87 2,514.42 2,662.92 54.92 55.50 55.85 65.40 92.17 92.70 92.90 103.75
Ptf 5 2,571.38 2,513.83 2,513.83 2,662.79 53.21 54.09 54.05 63.36 89.33 90.20 89.98 100.54
Ptf 6 2,571.11 2,517.11 2,512.73 2,662.55 51.50 52.69 52.25 61.32 86.49 87.71 87.05 97.35
Ptf 7 2,570.74 2,520.57 2,511.20 2,662.22 49.79 51.30 50.44 59.29 83.66 85.25 84.12 94.16
Ptf 8 2,570.20 2,524.23 2,509.72 2,661.74 48.09 49.93 48.64 57.27 80.85 82.81 81.21 91.00
Ptf 9 2,569.52 2,528.25 2,508.09 2,661.14 46.39 48.58 46.85 55.26 78.05 80.39 78.31 87.84
Ptf 10 2,568.63 2,532.61 2,506.35 2,660.35 44.71 47.24 45.08 53.25 75.27 77.99 75.45 84.71
Ptf 11 2,567.57 2,537.47 2,505.53 2,659.39 43.03 45.91 43.37 51.26 72.50 75.62 72.67 81.59
Ptf 12 2,566.35 2,542.63 2,505.83 2,658.25 41.36 44.59 41.72 49.27 69.76 73.27 69.96 78.50
Ptf 13 2,564.82 2,548.27 2,506.66 2,656.82 39.71 43.30 40.12 47.30 67.03 70.95 67.30 75.42
Ptf 14 2,562.92 2,554.16 2,507.92 2,655.07 38.06 42.02 38.56 45.35 64.33 68.65 64.71 72.38
Ptf 15 2,560.47 2,560.09 2,509.32 2,652.82 36.43 40.75 37.01 43.41 61.66 66.39 62.15 69.37
Ptf 16 2,557.47 2,566.26 2,510.87 2,650.13 34.80 39.50 35.50 41.48 59.01 64.16 59.65 66.39
Ptf 17 2,554.01 2,572.86 2,511.69 2,646.96 33.20 38.27 34.00 39.57 56.41 61.96 57.16 63.45
Ptf 18 2,549.74 2,579.42 2,512.97 2,643.07 31.61 37.06 32.52 37.69 53.84 59.81 54.73 60.55
Ptf 19 2,544.64 2,586.23 2,513.82 2,638.42 30.04 35.87 31.05 35.83 51.32 57.70 52.34 57.71
Ptf 20 2,539.21 2,593.56 2,516.26 2,633.31 28.51 34.73 29.66 34.01 48.85 55.66 50.04 54.93
Ptf 21 2,533.38 2,601.80 2,520.93 2,627.73 27.03 33.63 28.40 32.25 46.44 53.67 47.89 52.21
Ptf 22 2,527.26 2,610.98 2,526.38 2,621.76 25.60 32.59 27.22 30.55 44.10 51.76 45.86 49.58
Ptf 23 2,520.75 2,620.19 2,534.04 2,615.30 24.23 31.59 26.21 28.91 41.85 49.92 44.02 47.04
Ptf 24 2,513.69 2,629.88 2,544.16 2,608.12 22.91 30.65 25.35 27.34 39.71 48.18 42.39 44.62
Ptf 25 2,506.09 2,639.95 2,556.79 2,600.50 21.67 29.77 24.66 25.86 37.68 46.54 40.98 42.33
Ptf 26 2,498.08 2,650.00 2,572.24 2,592.17 20.52 28.95 24.15 24.48 35.79 45.03 39.81 40.19
Ptf 27 2,488.83 2,659.05 2,587.46 2,582.68 19.45 28.19 23.72 23.20 34.07 43.64 38.80 38.25
Ptf 28 2,478.38 2,666.19 2,600.31 2,572.13 18.49 27.48 23.35 22.06 32.54 42.39 37.92 36.52
Ptf 29 2,467.91 2,671.36 2,610.50 2,561.68 17.68 26.85 23.01 21.09 31.24 41.29 37.15 35.06
Ptf 30 2,456.10 2,672.78 2,617.36 2,550.96 17.00 26.25 22.75 20.28 30.20 40.36 36.59 33.89
Ptf 31 2,444.80 2,670.08 2,621.36 2,540.77 16.49 25.66 22.59 19.68 29.47 39.57 36.26 33.06
Ptf 32 2,434.80 2,661.81 2,618.59 2,531.03 16.13 25.09 22.44 19.26 29.08 38.95 36.09 32.61
Ptf 33 2,425.27 2,648.17 2,612.43 2,522.34 15.96 24.53 22.38 19.07 29.03 38.50 36.18 32.55
Ptf 34 2,415.37 2,629.13 2,601.68 2,514.11 15.97 24.00 22.38 19.11 29.33 38.22 36.47 32.88
Ptf 35 2,407.06 2,605.97 2,586.72 2,507.77 16.18 23.55 22.41 19.39 29.95 38.13 36.89 33.59
Ptf 36 2,400.71 2,579.82 2,567.14 2,502.78 16.58 23.17 22.42 19.90 30.88 38.21 37.38 34.63
Ptf 37 2,395.62 2,551.92 2,545.57 2,499.52 17.15 22.92 22.51 20.60 32.07 38.49 38.03 35.99
Ptf 38 2,393.10 2,524.25 2,519.68 2,497.93 17.89 22.83 22.52 21.50 33.49 38.99 38.65 37.60
Ptf 39 2,392.87 2,499.31 2,495.80 2,498.51 18.78 22.94 22.69 22.58 35.11 39.72 39.43 39.43
Mean 2,512.18 2,579.45 2,540.10 2,606.79 31.95 37.10 34.52 38.10 54.78 60.41 57.51 61.60

Table 6.25: Values of the total loss over the backtesting sample for each port-
folio, using Investors’ loss functions: V aR0.5%.

6.2.2 ShVolVaR versus EVTVaR

In chapter 5 we notice that Extreme Value Theory Historical Filtered Boot-
strap is slightly better than common HFBVaR.

We test both symmetric and asymmetric version of EVTVaR ((EVTHF-
BVaR and EVTHFBGJRVaR respectively). As the GJR specification has a
better VaR prediction with respect to EGARCH we adopt this for the esti-
mation of asymmetric EVTVaR. In order to achieve better VaR estimation at
each confidence level, one should use the values of the parameters α and ν,
as reported in Table 6.27, in the ShVolVaR model. By doing so, ShVolVaR
can achieve the same results as the more commonly VaR models in the finance
industry.

We apply the method reported above and compare the best result of our
model with those of EVTVaR and HFBVaR. In Tables 6.28, 6.29, 6.30 and
6.31, we report comparisons of the UC, IND and CC tests. For simplicity, we
only report the best model among HFB and EVT models.

ShVolVaR is absolutely comparable to the industry models HFB and EVTHFB
at 95% c.l.. It performs badly at 99% c.l., where it suffers of dependence of vio-
lation when 47.5% ≤ xEqty ≤ 60% and xEqty = 35%; it produces two rejections
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Portfolio Caporin1 Caporin2 Caporin3
name ShVolVaR HFBGJRVaR ShVolVaR ShVolVaR HFBGJRVaR ShVolVaR ShVolVaR HFBGJRVaR ShVolVaR

α = 1, ν = ∞ α = 1, ν = 10 α = 1, ν = ∞ α = 1, ν = 10 α = 1, ν = ∞ α = 1, ν = 10

Ptf 1 2,740.84 2,700.29 2,848.18 83.03 101.24 106.31 125.84 144.56 150.55
Ptf 2 2,740.91 2,701.86 2,848.26 80.67 98.72 103.28 122.26 140.83 146.27
Ptf 3 2,740.92 2,703.49 2,848.27 78.30 96.20 100.25 118.69 137.12 142.00
Ptf 4 2,740.87 2,705.25 2,848.25 75.94 93.69 97.23 115.14 133.42 137.74
Ptf 5 2,740.76 2,707.18 2,848.17 73.59 91.19 94.22 111.59 129.73 133.49
Ptf 6 2,740.56 2,709.29 2,848.01 71.24 88.69 91.21 108.05 126.05 129.26
Ptf 7 2,740.26 2,711.64 2,847.78 68.89 86.21 88.21 104.53 122.40 125.04
Ptf 8 2,739.82 2,714.13 2,847.43 66.56 83.73 85.22 101.02 118.76 120.84
Ptf 9 2,739.27 2,716.85 2,846.98 64.23 81.28 82.25 97.53 115.15 116.66
Ptf 10 2,738.55 2,719.64 2,846.38 61.91 78.83 79.28 94.06 111.56 112.50
Ptf 11 2,737.68 2,722.67 2,845.66 59.60 76.40 76.33 90.60 107.99 108.36
Ptf 12 2,736.62 2,726.01 2,844.78 57.31 73.99 73.40 87.17 104.45 104.25
Ptf 13 2,735.28 2,729.68 2,843.67 55.03 71.62 70.48 83.76 100.96 100.17
Ptf 14 2,733.63 2,733.58 2,842.29 52.76 69.27 67.59 80.38 97.51 96.12
Ptf 15 2,731.50 2,737.57 2,840.50 50.51 66.95 64.71 77.03 94.10 92.11
Ptf 16 2,728.88 2,742.18 2,838.31 48.27 64.67 61.85 73.72 90.76 88.14
Ptf 17 2,725.77 2,747.26 2,835.77 46.05 62.44 59.02 70.45 87.48 84.23
Ptf 18 2,721.91 2,752.63 2,832.61 43.86 60.25 56.22 67.22 84.27 80.36
Ptf 19 2,717.32 2,758.54 2,828.83 41.69 58.10 53.46 64.04 81.14 76.56
Ptf 20 2,712.28 2,765.17 2,824.61 39.57 56.02 50.76 60.93 78.08 72.83
Ptf 21 2,706.70 2,772.42 2,819.86 37.50 53.99 48.12 57.89 75.10 69.19
Ptf 22 2,700.58 2,780.27 2,814.63 35.49 52.03 45.55 54.94 72.20 65.65
Ptf 23 2,693.67 2,788.61 2,808.65 33.56 50.14 43.08 52.08 69.42 62.23
Ptf 24 2,685.87 2,797.12 2,801.71 31.69 48.31 40.69 49.34 66.74 58.94
Ptf 25 2,677.31 2,805.85 2,793.92 29.92 46.56 38.43 46.74 64.18 55.82
Ptf 26 2,667.66 2,814.07 2,785.13 28.25 44.86 36.29 44.30 61.73 52.89
Ptf 27 2,656.51 2,821.30 2,775.14 26.70 43.24 34.31 42.06 59.44 50.21
Ptf 28 2,643.88 2,826.43 2,764.10 25.30 41.66 32.52 40.05 57.28 47.80
Ptf 29 2,630.84 2,829.40 2,752.75 24.08 40.14 30.96 38.32 55.28 45.73
Ptf 30 2,617.64 2,828.77 2,740.90 23.05 38.68 29.66 36.92 53.46 44.04
Ptf 31 2,605.01 2,824.39 2,729.63 22.25 37.31 28.65 35.89 51.86 42.80
Ptf 32 2,592.63 2,815.52 2,718.93 21.68 36.04 27.95 35.27 50.54 42.06
Ptf 33 2,581.64 2,802.11 2,709.50 21.37 34.94 27.60 35.09 49.55 41.84
Ptf 34 2,571.80 2,785.39 2,701.86 21.34 34.07 27.61 35.34 48.94 42.16
Ptf 35 2,564.81 2,766.54 2,696.38 21.59 33.52 27.99 36.03 48.78 42.98
Ptf 36 2,559.96 2,747.16 2,692.94 22.12 33.29 28.72 37.11 49.07 44.28
Ptf 37 2,557.03 2,727.96 2,691.52 22.89 33.40 29.75 38.54 49.78 46.00
Ptf 38 2,556.09 2,710.02 2,691.53 23.89 33.77 31.06 40.26 50.84 48.07
Ptf 39 2,557.29 2,693.72 2,692.93 25.09 34.32 32.63 42.24 52.10 50.44
Mean 2,679.76 2,754.92 2,795.81 44.02 59.74 56.48 68.01 84.43 81.30

Table 6.26: Values of the total loss over the backtesting sample for each port-
folio, using Investors’ loss functions: V aR0.1%.
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Best VaR among ShVolVaR
industry models α ν xEqty

V aR5% EVTHFBGJRVaR ∈ [0.275, 0.325] Any Any

V aR1%
HFBVaR 0.5 > 200 ≥ 45%
EFBEVaR 0.5 ≃ 8 < 45%

V aR0.5%
HFBGJRVaR 0.75 > 200 ≥ 55%

0.75 ≃ 8 < 55%
V aR0.1% HFBGJRVaR 1 ≃ 10 Any

Table 6.27: Shrunk Volatility VaR and Industry models VaR: suggested values
for α, ν and xEqty according to the VaR confidence interval.

of the UC test. Looking at more extreme VaR, the ShVolVaR estimations are
quite similar to those of EVTHFBGJRVaR (none of the models present rejec-
tion at 99% c.l.). HFBGJRVaR seems to be the best model in this particular
period and dataset to estimate the tail.

Our last comparison has to do with the regulators’ and investors’ loss func-
tions. In Table 6.32, we report the average value for the regulators’ loss func-
tions calculated on the 39 portfolios. As before, we report in boldface the best
results and in italic the worst. Doing so makes it easy to see that EVTHF-
BGJRVaR has the best result for V aR5% and V aR1%, while HFVGJRVaR
has the best result for V aR0.5%. ShVolVaR si the best model in evaluating
V aR0.1%. From the investors’ viewpoint (see Table 6.33) ShVolVaR has the
best result for V aR5% and V aR1% and it demonstrates the best result two out
three times for V aR0.5%. EVTHFBVaR has the best results for V aR0.1% in two
out of three times. We end up with the same result we have in the Chapter 5:
ShVolVaR is a good model under the investors’ loss function, but the opposite
is true under a regulators’.

6.3 Conclusions

In this chapter we have generalized the Shrunk Volatility VaR, to estimate bal-
anced portfolios’ VaR. The forecasting power of ShVolVaR model is compared
with that of the best methods for estimating VaR, such as the HFBVaR and its
asymmetric specifications. All models are validated both on both their statisti-
cal accuracy and via loss functions framework (by means of the Unconditional
Coverage, the Independence, and the Conditional Coverage tests).

Although the ShVolVaR model is based on strong assumptions such as those
of RiskMetrics - namely, the one-day-head returns are normally distributed
with zero mean - its forecasting power is comparable to that of the more
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Ptfs ShVolVaR HFBVaR EVTHFBGJRVaR
UC IND CC UC IND CC UC IND CC

Ptf 1 78.95 29.03 55.17 51.14 39.97 56.54 65.74 45.36 68.44
Ptf 2 72.99 27.51 51.93 56.26 41.93 61.03 77.60 41.32 68.71
Ptf 3 56.26 41.93 61.03 72.99 48.17 73.56 71.59 43.31 68.84
Ptf 4 91.23 54.91 83.07 56.26 93.44 84.28 89.95 62.13 87.81
Ptf 5 91.23 54.91 83.07 72.99 97.91 94.18 71.59 69.77 86.79
Ptf 6 72.99 48.17 73.56 78.95 95.02 96.31 77.60 96.35 95.93
Ptf 7 91.23 54.91 83.07 61.62 76.51 84.34 96.23 87.80 98.72
Ptf 8 83.73 39.39 68.08 41.70 87.91 71.11 77.60 96.35 95.93
Ptf 9 65.74 45.36 68.44 46.28 87.74 75.47 83.73 93.48 97.59
Ptf 10 54.65 49.63 66.15 56.26 93.44 84.28 60.08 75.06 82.91
Ptf 11 49.46 51.84 64.29 56.26 93.44 84.28 54.65 77.76 80.11
Ptf 12 49.46 51.84 64.29 56.26 93.44 84.28 60.08 47.47 67.54
Ptf 13 49.46 51.84 64.29 67.21 73.71 86.42 49.46 51.84 64.29
Ptf 14 60.08 47.47 67.54 85.04 92.13 97.76 54.65 49.63 66.15
Ptf 15 60.08 47.47 67.54 91.23 82.19 96.91 60.08 47.47 67.54
Ptf 16 49.46 51.84 64.29 37.41 56.24 56.96 83.73 64.63 88.13
Ptf 17 44.53 54.11 62.00 37.41 82.11 65.67 96.23 59.67 86.84
Ptf 18 21.22 68.78 42.36 41.70 84.91 70.65 91.23 54.91 83.07
Ptf 19 60.08 47.47 67.54 20.30 94.72 44.37 61.62 96.32 88.10
Ptf 20 44.53 54.11 62.00 8.37 96.62 22.38 67.21 71.33 85.46
Ptf 21 60.08 47.47 67.54 11.45 90.81 28.60 72.99 97.91 94.18
Ptf 22 54.65 49.63 66.15 26.28 73.68 50.49 72.99 70.95 87.90
Ptf 23 35.55 88.86 64.61 23.15 21.59 22.73 83.73 52.69 80.15
Ptf 24 31.51 77.87 58.03 46.28 1.82 4.71 54.65 64.13 74.80
Ptf 25 21.22 69.56 42.54 78.95 0.91 3.23 35.55 80.69 63.33
Ptf 26 49.46 61.50 69.78 97.49 1.49 5.16 15.84 40.08 25.99
Ptf 27 60.08 95.01 87.04 83.73 2.42 7.71 15.84 40.08 25.99
Ptf 28 65.74 8.05 19.68 65.74 0.73 2.48 9.78 34.00 16.11
Ptf 29 65.74 27.64 50.12 54.65 1.39 4.05 6.87 51.50 15.43
Ptf 30 71.59 8.76 21.77 71.59 1.95 6.11 8.22 32.11 13.50
Ptf 31 65.74 15.50 32.97 44.53 11.43 21.49 9.78 18.71 10.64
Ptf 32 78.95 16.34 36.53 44.53 11.43 21.49 8.22 53.94 18.30
Ptf 33 67.21 18.81 38.45 35.55 9.73 16.51 9.78 85.40 24.97
Ptf 34 89.95 80.66 96.28 31.51 17.42 23.98 5.71 49.11 12.91
Ptf 35 78.95 68.22 88.74 54.65 41.17 59.53 9.78 85.40 24.97
Ptf 36 97.49 86.37 98.49 21.22 69.56 42.54 6.87 55.65 16.05
Ptf 37 78.95 45.55 73.04 35.55 53.88 54.02 6.87 55.65 16.05
Ptf 38 89.95 55.16 83.09 27.77 49.05 43.74 6.87 55.65 16.05
Ptf 39 61.62 68.71 81.32 31.51 91.69 60.04 6.87 29.44 11.01

Table 6.28: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 95%
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Ptfs ShVolVaR HFBVaR EVTHFBVaR
UC IND CC UC IND CC UC IND CC

Ptf 1 48.97 7.48 16.11 13.25 12.20 9.75 85.29 5.35 15.25
Ptf 2 30.76 9.18 14.35 9.63 13.34 8.13 73.80 31.01 56.49
Ptf 3 30.76 9.18 14.35 17.88 54.91 33.85 87.33 33.15 61.62
Ptf 4 23.68 10.13 12.97 17.88 54.91 33.85 85.29 37.62 66.45
Ptf 5 23.68 10.13 12.97 23.68 52.30 40.51 85.29 37.62 66.45
Ptf 6 30.76 9.18 14.35 23.68 52.30 40.51 85.29 37.62 66.45
Ptf 7 23.68 10.13 12.97 23.68 52.30 40.51 72.23 39.94 65.82
Ptf 8 30.76 9.18 14.35 17.88 54.91 33.85 60.04 42.32 63.26
Ptf 9 39.19 8.30 15.43 17.88 54.91 33.85 30.76 49.74 47.20
Ptf 10 39.19 8.30 15.43 23.68 52.30 40.51 30.76 49.74 47.20
Ptf 11 48.97 7.48 16.11 30.76 49.74 47.20 17.88 54.91 33.85
Ptf 12 72.23 6.01 16.03 30.76 49.74 47.20 23.68 52.30 40.51
Ptf 13 98.90 4.75 14.03 17.88 11.13 11.40 30.76 9.18 14.35
Ptf 14 85.29 5.35 15.25 13.25 57.55 27.57 30.76 9.18 14.35
Ptf 15 98.90 4.75 14.03 17.88 11.13 11.40 17.88 1.55 2.16
Ptf 16 85.29 0.51 1.95 23.68 10.13 12.97 39.19 8.30 15.43
Ptf 17 85.29 0.51 1.95 30.76 9.18 14.35 48.97 44.74 59.03
Ptf 18 73.80 0.29 1.13 23.68 10.13 12.97 23.68 10.13 12.97
Ptf 19 73.80 0.29 1.13 39.19 8.30 15.43 39.19 8.30 15.43
Ptf 20 98.90 0.43 1.69 30.76 9.18 14.35 60.04 42.32 63.26
Ptf 21 39.19 0.99 2.50 85.29 5.35 15.25 72.23 39.94 65.82
Ptf 22 17.88 1.55 2.16 85.29 37.62 66.45 85.29 37.62 66.45
Ptf 23 38.39 2.44 5.44 98.90 35.36 65.02 87.33 33.15 61.62
Ptf 24 60.91 3.23 8.88 87.33 33.15 61.62 98.90 35.36 65.02
Ptf 25 87.33 4.20 12.49 60.04 6.72 16.32 72.23 39.94 65.82
Ptf 26 48.97 0.85 2.46 48.97 7.48 16.11 17.88 11.13 11.40
Ptf 27 72.23 6.01 16.03 39.19 8.30 15.43 23.68 10.13 12.97
Ptf 28 48.97 7.48 16.11 72.23 6.01 16.03 13.25 12.20 9.75
Ptf 29 3.29 17.14 4.04 98.90 4.75 14.03 30.76 9.18 14.35
Ptf 30 0.95 21.57 1.61 73.80 3.69 10.72 72.23 6.01 16.03
Ptf 31 0.38 82.42 1.48 60.91 28.93 50.05 39.19 8.30 15.43
Ptf 32 2.22 18.55 3.05 85.29 37.62 66.45 23.68 52.30 40.51
Ptf 33 2.22 18.55 3.05 48.97 44.74 59.03 30.76 49.74 47.20
Ptf 34 3.29 25.04 5.32 60.04 42.32 63.26 39.19 47.22 53.53
Ptf 35 3.29 25.04 5.32 48.97 44.74 59.03 39.19 47.22 53.53
Ptf 36 4.80 26.07 7.52 87.33 33.15 61.62 98.90 35.36 65.02
Ptf 37 17.88 30.48 23.93 85.29 37.62 66.45 85.29 37.62 66.45
Ptf 38 48.97 35.34 51.22 98.90 35.36 65.02 98.90 35.36 65.02
Ptf 39 85.29 39.29 68.24 98.90 35.36 65.02 73.80 31.01 56.49

Table 6.29: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 99%
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Ptfs ShVolVaR HFBGJRVaR EVTHFBGJRVaR
UC IND CC UC IND CC UC IND CC

Ptf 1 12.09 78.91 28.98 62.64 71.51 83.10 81.35 69.70 90.15
Ptf 2 12.09 78.91 28.98 99.22 67.90 91.79 81.35 69.70 90.15
Ptf 3 12.09 78.91 28.98 99.22 67.90 91.79 81.35 69.70 90.15
Ptf 4 20.25 77.04 42.54 80.21 66.12 88.03 62.64 71.51 83.10
Ptf 5 20.25 77.04 42.54 99.22 67.90 91.79 62.64 71.51 83.10
Ptf 6 20.25 77.04 42.54 80.21 66.12 88.03 62.64 71.51 83.10
Ptf 7 20.25 77.04 42.54 99.22 67.90 91.79 45.74 73.34 71.60
Ptf 8 12.09 78.91 28.98 81.35 69.70 90.15 45.74 73.34 71.60
Ptf 9 12.09 78.91 28.98 81.35 69.70 90.15 31.47 75.18 57.38
Ptf 10 12.09 78.91 28.98 31.47 75.18 57.38 31.47 75.18 57.38
Ptf 11 31.47 75.18 57.38 62.64 71.51 83.10 45.74 73.34 71.60
Ptf 12 20.25 77.04 42.54 45.74 73.34 71.60 62.64 71.51 83.10
Ptf 13 20.25 77.04 42.54 31.47 75.18 57.38 62.64 71.51 83.10
Ptf 14 20.25 3.27 4.54 20.25 77.04 42.54 62.64 71.51 83.10
Ptf 15 12.09 2.67 2.58 20.25 77.04 42.54 45.74 73.34 71.60
Ptf 16 31.47 3.94 7.24 6.64 80.79 18.01 31.47 75.18 57.38
Ptf 17 31.47 3.94 7.24 6.64 80.79 18.01 81.35 6.41 17.51
Ptf 18 45.74 4.69 10.54 20.25 77.04 42.54 81.35 6.41 17.51
Ptf 19 1.50 84.58 5.08 31.47 75.18 57.38 62.61 9.55 22.13
Ptf 20 1.50 84.58 5.08 45.74 73.34 71.60 47.18 10.75 21.13
Ptf 21 3.32 82.68 10.12 20.25 77.04 42.54 47.18 10.75 21.13
Ptf 22 12.09 78.91 28.98 6.64 80.79 18.01 34.31 12.02 19.08
Ptf 23 3.32 82.68 10.12 12.09 78.91 28.98 34.31 12.02 19.08
Ptf 24 12.09 78.91 28.98 20.25 77.04 42.54 47.18 10.75 21.13
Ptf 25 20.25 77.04 42.54 31.47 75.18 57.38 34.31 12.02 19.08
Ptf 26 81.35 69.70 90.15 45.74 73.34 71.60 24.08 13.38 16.34
Ptf 27 47.18 62.62 68.56 12.09 78.91 28.98 24.08 13.38 16.34
Ptf 28 24.08 13.38 16.34 12.09 78.91 28.98 24.08 13.38 16.34
Ptf 29 10.69 16.32 10.31 20.25 77.04 42.54 16.32 14.81 13.29
Ptf 30 10.69 55.87 22.97 6.64 80.79 18.01 6.76 17.90 7.63
Ptf 31 24.08 59.20 43.54 20.25 77.04 42.54 4.14 52.62 10.22
Ptf 32 6.76 54.23 15.63 31.47 75.18 57.38 6.76 54.23 15.63
Ptf 33 2.45 51.04 6.42 45.74 73.34 71.60 0.78 24.97 1.50
Ptf 34 0.78 47.94 2.26 62.64 71.51 83.10 1.41 23.10 2.39
Ptf 35 2.45 51.04 6.42 62.64 71.51 83.10 4.14 19.56 5.41
Ptf 36 10.69 55.87 22.97 81.35 69.70 90.15 16.32 57.52 32.33
Ptf 37 62.61 64.36 79.80 81.35 69.70 90.15 16.32 57.52 32.33
Ptf 38 81.35 69.70 90.15 62.64 71.51 83.10 34.31 60.90 55.98
Ptf 39 62.64 71.51 83.10 81.35 69.70 90.15 80.21 66.12 88.03

Table 6.30: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 99.5%
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Ptfs ShVolVaR HFBGJRVaR EVTHFBVaR
UC IND CC UC IND CC UC IND CC

Ptf 1 41.25 96.13 71.40 41.48 90.33 71.19 3.35 84.58 10.25
Ptf 2 41.25 96.13 71.40 41.48 90.33 71.19 8.69 86.49 22.77
Ptf 3 41.25 96.13 71.40 41.48 90.33 71.19 8.69 86.49 22.77
Ptf 4 41.25 96.13 71.40 41.48 90.33 71.19 8.69 86.49 22.77
Ptf 5 41.25 96.13 71.40 74.81 92.26 94.53 8.69 86.49 22.77
Ptf 6 41.25 96.13 71.40 82.80 94.19 97.41 20.17 88.41 43.79
Ptf 7 41.25 96.13 71.40 82.80 94.19 97.41 41.48 90.33 71.19
Ptf 8 41.25 96.13 71.40 82.80 94.19 97.41 41.48 90.33 71.19
Ptf 9 41.25 96.13 71.40 82.80 94.19 97.41 41.48 90.33 71.19
Ptf 10 41.25 96.13 71.40 82.80 94.19 97.41 41.48 90.33 71.19
Ptf 11 41.25 96.13 71.40 82.80 94.19 97.41 41.48 90.33 71.19
Ptf 12 41.25 96.13 71.40 74.81 92.26 94.53 41.48 90.33 71.19
Ptf 13 41.25 96.13 71.40 74.81 92.26 94.53 74.81 92.26 94.53
Ptf 14 41.25 96.13 71.40 74.81 92.26 94.53 74.81 92.26 94.53
Ptf 15 41.25 96.13 71.40 82.80 94.19 97.41 82.80 94.19 97.41
Ptf 16 41.25 96.13 71.40 82.80 94.19 97.41 74.81 92.26 94.53
Ptf 17 12.59 98.06 30.98 82.80 94.19 97.41 74.81 92.26 94.53
Ptf 18 12.59 98.06 30.98 12.59 98.06 30.98 82.80 94.19 97.41
Ptf 19 12.59 98.06 30.98 12.59 98.06 30.98 82.80 94.19 97.41
Ptf 20 12.59 98.06 30.98 12.59 98.06 30.98 82.80 94.19 97.41
Ptf 21 12.59 98.06 30.98 12.59 98.06 30.98 74.81 92.26 94.53
Ptf 22 12.59 98.06 30.98 12.59 98.06 30.98 82.80 94.19 97.41
Ptf 23 12.59 98.06 30.98 12.59 98.06 30.98 41.25 96.13 71.40
Ptf 24 12.59 98.06 30.98 12.59 98.06 30.98 82.80 94.19 97.41
Ptf 25 12.59 98.06 30.98 41.25 96.13 71.40 74.81 92.26 94.53
Ptf 26 12.59 98.06 30.98 12.59 98.06 30.98 74.81 92.26 94.53
Ptf 27 74.81 92.26 94.53 41.25 96.13 71.40 74.81 92.26 94.53
Ptf 28 41.48 90.33 71.19 82.80 94.19 97.41 74.81 92.26 94.53
Ptf 29 8.69 86.49 22.77 82.80 94.19 97.41 74.81 92.26 94.53
Ptf 30 1.17 82.68 4.06 74.81 92.26 94.53 8.69 86.49 22.77
Ptf 31 1.17 82.68 4.06 41.48 90.33 71.19 3.35 84.58 10.25
Ptf 32 1.17 82.68 4.06 41.48 90.33 71.19 1.17 82.68 4.06
Ptf 33 1.17 82.68 4.06 41.48 90.33 71.19 1.17 82.68 4.06
Ptf 34 1.17 82.68 4.06 20.17 88.41 43.79 3.35 84.58 10.25
Ptf 35 3.35 84.58 10.25 20.17 88.41 43.79 3.35 84.58 10.25
Ptf 36 74.81 92.26 94.53 1.17 82.68 4.06 3.35 84.58 10.25
Ptf 37 41.25 96.13 71.40 1.17 82.68 4.06 1.17 82.68 4.06
Ptf 38 41.25 96.13 71.40 1.17 82.68 4.06 1.17 82.68 4.06
Ptf 39 41.25 96.13 71.40 1.17 82.68 4.06 3.35 84.58 10.25

Table 6.31: The p-values (%) of the Unconditional Coverage, the Indepen-
dence, and the Conditional Coverage tests for the models with c.l. 99.9%
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Test Model V aR5% V aR1% Model V aR0.5% V aR0.1%

LOPEZ ShVolVaR 165.697 39.283 ShVolVaR 15.231 3.103

HFBVaR 172.593 38.257 HFBGJRVaR 13.487 3.590
EVTHFBGJRVaR 160.003 37.641 EVTHFBGJRVaR 18.975 6.128

EVTHFBVaR 161.798 37.590 EVTHFBVaR 22.052 5.513
CAPORIN 1 ShVolVaR 62.864 9.054 ShVolVaR 3.288 0.428

HFBVaR 68.507 9.117 HFBGJRVaR 2.864 0.888
EVTHFBGJRVaR 61.621 8.985 EVTHFBGJRVaR 4.521 1.355

EVTHFBVaR 62.594 9.546 EVTHFBVaR 4.844 1.246
CAPORIN 2 ShVolVaR 0.364 0.051 ShVolVaR 0.020 0.001

HFBVaR 0.367 0.044 HFBGJRVaR 0.018 0.006
EVTHFBGJRVaR 0.310 0.043 EVTHFBGJRVaR 0.023 0.008
EVTHFBVaR 0.483 0.046 EVTHFBVaR 0.024 0.008

CAPORIN 3 ShVolVaR 0.525 0.110 ShVolVaR 0.049 0.007

HFBVaR 0.518 0.097 HFBGJRVaR 0.029 0.011
EVTHFBGJRVaR 0.460 0.079 EVTHFBGJRVaR 0.042 0.015

EVTHFBVaR 0.483 0.090 EVTHFBVaR 0.049 0.015

Table 6.32: Values of the average total loss over the backtesting sample for
each portfolio, using Regulators’ loss functions.

Test Model V aR5% V aR1% Model V aR0.5% V aR0.1%

CAPORIN 1 ShVolVaR 2,073.62 2,415.96 ShVolVaR 2,564.38 2,795.81

HFBVaR 2,072.63 2,439.99 HFBGJRVaR 2,579.45 2,754.92
EVTHFBGJRVaR 2,089.77 2,437.01 EVTHFBGJRVaR 2,542.24 2,714.38

EVTHFBVaR 2,090.56 2,439.93 EVTHFBVaR 2,545.41 2,718.10
CAPORIN 2 ShVolVaR 14.52 26.61 ShVolVaR 34.07 56.48

HFBVaR 14.82 28.63 HFBGJRVaR 37.10 59.74

EVTHFBGJRVaR 15.26 29.46 EVTHFBGJRVaR 35.74 50.83

EVTHFBVaR 15.30 29.44 EVTHFBVaR 35.69 50.56
CAPORIN 3 ShVolVaR 33.71 48.69 ShVolVaR 57.15 81.30

HFBVaR 33.96 50.89 HFBGJRVaR 60.41 84.43

EVTHFBGJRVaR 34.72 51.87 EVTHFBGJRVaR 58.89 75.16
EVTHFBVaR 34.65 51.79 EVTHFBVaR 58.80 74.84

Table 6.33: Values of the average total loss over the backtesting sample for
each portfolio, using Investors’ loss functions.
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sophisticated HFBVaR, HFBEVaR and HFBGJRVaR models, at least at 95%
and 99% confidence levels. Adopting 8 or 10 degrees of freedom, its forecasting
power becomes close to HFBGJRVaR at 99.5% and 99.9% confidence levels.

For our backtesting based on loss functions, we find results similar to the
one we have seen in the chapter 5: ShVolVaR with ν → ∞ shows good results
from the investors’ viewpoint, while ShVolVaR with ν = 8, 10 attains the best
results according to the regulators’ viewpoint. When considering ShVolVaR
using the best way of estimating VaR according to the percentile of interest
and the equity weight og the portfolio, we note that it is the best model under
the investors’ viewpoint.

We recall that, due to the fact that very few implied volatility indices are
quoted, the use of the ShVolVaR is not always possible. When it is, however,
it can be a useful tool in the hand to a portfolio managers. They can easily
and quickly estimate the risk of their portfolio quite accurately.

In our empirical analysis, we find that a VaR model which correctly esti-
mates VaR for all ε and for all the balanced portfolios does not exist.
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Chapter 7
Conclusions

In this thesis, we have discussed in detail how to optimize a portfolio with-
out estimating expected returns since their estimation is very hard. A new
stream of research about portfolio optimization has developed and we want
to contribute to it. We presented three different models Minimum-Risk, Risk-

Diversification and Capital-Diversification which does not need any optimiza-
tion procedure. We applied these models to different risk measures such as
volatility (that is not a real risk measure due to the fact that it is not co-
herent), Conditional VaR and Conditional VaR deviation. We formulate the
Equally Risk Contribution with respect to CVaR as a nonlinear problem and
then we reformulate it as a convex problem in a convex set. Then applying the
results in Rockafellar and Uryasev (2000) (see [96]) the convex problem can
be linearized. We also extend the ERC problem to the CVaR deviation that
cannot be negative when considering CVaR.

We performed a backtest analysis on seven different real-world data sets,
which consist of equities, bonds and mixed assets, each with different sources
of risk. We cannot find a clear dominance of a model over the others. Each
tested model responds to different requirements that could be related to diverse
investor attitudes. On one hand, as expected, the Minimum-Risk models are
advisable for risk averse investors, avoiding as much as possible the shocks
represented by deep drawdowns. On the other hand, the Risk-Diversification

strategies seem to be appropriate for investors mildly adverse to total portfolio
risk. Capital-Diversification model seems to be advisable for sufficiently risk-
loving investors, who try to maximize returns without worrying about periods
of deep drawdowns.

We have examined the statistical significance of the out-of-sample Sharpe
ratio using the robust test proposed by Ledoit and Wolf (2008) (see [67]).
We find that if one invests in a universe with a single source of risk, there
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is no statistical difference in Sharpe Ratio between the Minimum-Risk, the
Risk-Diversification portfolios, and the EW ones. On the other hand, when
considering investment universes with multiple sources of risk, the Minimum-

Risk and the Risk-Diversification strategies tend to have better performance
than the Equally Weighted do, in terms of Sharpe Ratio.

We have replicated the experiment as in Kondor et al. (2007) (see [61])
in order to evaluate the effect of the estimation error for each optimization
method. We have obtained the same results as in the cited paper for the
unbounded portfolios. We have introduced constraints in portfolio weights to
verify if it is possible to achieve stability. We have found that the Minimum
CVaR-deviation and Minimum CVaR are stable and that the effect of the
estimation error is lower in the former with respect to the latter for each value
of ε taken into account.

When we wanted to evaluate the effect of the estimation error of ERC pro-
cedure we changed the comparison metric and we maintained portfolio con-
straints. We introduced the Euclidean distance between the portfolios weights.
They are considered as points in the Rn space. The higher is the distance be-
tween the optimized portfolio and the theoretical one, the stronger is the effect
of the estimation error. We replicate the same experiment 100 times for all
values of ε and we find that for any ε the estimation error effect afflicts Min
CVaR and Min CVaR-deviation portfolios more than it does with variance and
ERC portfolios.

For any small value of ε (so we are considering only a few scenarios in
the bad tail of returns distribution) joint with small values of the ratio N/T ,
Min CVaR and Min CVaR-deviation have shown high values of Euclidean
distance, while when the ε increases the effect of the estimation error tends to
be much more stable over the N/T ratio. We also notice that when ε > 0.1 the
ERC optimization procedure has lower estimation error effect than minimum
variance approach does.

We tried to set the ratio N/T = 15% and to replicate the experiment by
increasing the value of T. We have seen that each increment in a magnitude
order reduces the effect of the estimation error by a factor of 1/3. It seems that
in order to reduce this effect we should consider at least 10000 data points. If
we are dealing with daily data it means that we need a time series of 40 years.
In traditional optimization procedure it is common to use historical data but
in this case it would be impossible to have a complete time series for all the
assets.

To solve this particular and important issue we have introduced the His-
torical Filtered Bootstrap procedure. It is a Montecarlo simulation based on
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an ARMA-GARCH estimation procedure. We performed a static analysis to
identify the minimum number of simulated scenarios that allows us to reduce
as much as possible the effect of the estimation error. We have considered two
different asset universes, the first one is a multi asset while the second one is
made of equity only. First of all, for all assets, we have estimated 100 times
the Conditional VaR and we have recorded a huge variability of the estimate
when the number of scenarios S is small (S = 1000). The phenomenon quickly
diminishes when S increases. Different values of the same parameter influence
the estimation as in the case of optimized portfolio weights.

In the dynamic analysis, we have compared the CVaR estimation and op-
timal solutions using the minimum acceptable number of scenarios (S = 10K)
and the maximum number of scenarios (S = 1M). We discovered that portfo-
lio weights are very close one to each other and the whole portfolio risk, for the
four optimization procedures, is similar. Regarding portfolio performances, we
can state that there are no important differences when we use S = 10K with
respect to S = 1M scenarios.

The results we have obtained confirm that the minimum number of scenar-
ios should be equal to 10, 000 but a good compromise between computational
time and estimation accuracy is 100, 000.

At this point, we wanted to validate the Historical Filtered Bootstrap as
Risk Management procedure. There are many papers that provide results but
they are not updated and they do not consider the big subprime crisis and
the euro bond crisis. So we put in place a comparative backtest procedure
considering the common test, unconditional coverage, independence and con-
ditional coverage test. We also use the loss function according regulators’ and
investors’ point of view. Doing so we proposed a new method to predict VaR,
both using variables known on the market (implied volatilities) and variable
estimated on data (realized volatilities). We call this model Shrunk Volatility
VaR. We find that its forecasting power is comparable to that of the more
sophisticated HFBVaR and EVTFBVaR models that have pretty good results
in all test.

These particular results are stable across Equity portfolio and balanced
portfolios and the generalized Shrunk Volatility VaR is able to achieve similar
results as well as Historical Filtered Bootstrap.

We are ready to answer the questions we announced at the end of the
Chapter 1,

1. Q: Could we formulate and solve an ERC problem based on a coherent
risk measure as CVaR?
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A: yes we could. CVaR is a homogeneous function of degree 1 and it
admits Euler decomposition. In addition we formulate the ERC problem
as a convex problem in a convex set.

2. Q: How intense is the effect of estimation errors on the ERCCVaR model?

A: it is higher with respect to the one we record with the minimum
variance approach when ε < 5%. It is quite comparable when ε =

5%, and we notice a smaller effect when ε > 5%. We also recall that
ERC procedure always has a smaller effect than Minimum CVaR and
Minimum CVaR-deviation do.

3. Q: Could we mitigate this effect?

A: yes we could. We can consider introducing constraints to portfolio
weights and reducing the ratio N/T by increasing the amount of data we
use to estimate parameters. We can also consider evaluating CVaR, not
in the extreme tail, so ε > 10%.

4. Q: Is there any difference between a historical scenario and a simulated
scenario?

A: yes there is. Using a historical scenario we need too many observation
data points in order to reduce the estimation error effect, whereas using
simulated scenarios (that are simulated using a quite good estimation
of the hidden data generating process) we can force the effect of the
estimation error to be negligible.
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