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“It always seems impossible until it’s done.”

Nelson Mandela





v

Ai miei genitori . . .



vi

Abstract
This thesis deals with the prediction of fluid dynamic generated noise from rotary-

wing devices, operating both in air and water and characterized by significant vortical
and turbulent flows.

Nowadays, among the many theoretical approaches available for the aero/hydro-
acoustics predictions, the Acoustic Analogy-based methodologies seem to be the most
effective way to deal with the sound induced by complex shaped bodies in relative mo-
tion with respect to the medium.

As a matter of fact, among them, the Ffowcs Williams and Hawkings Equation
(FWHE) represents a well known and widely used effective tool able to carry out re-
liable noise predictions due to fluid-fluid, fluid-body interactions.

Since when the first integral solution was proposed by Farassat in 1975, it has been
fruitfully used to investigate the noise of rotary-wing devices such helicopter rotors and
propeller driven aircraft, yielding results in great accordance with the experimental data.

One of the strength of such model resides in the straightforward identification of the
noise generation mechanisms, that, combined to the linearity of the acoustic problem,
allows to split the acoustic effect of noise sources over the moving bodies from those
associated with the flow field around it. The former are due to the shape, motion and
pressure over the body, whereas the latter to the turbulence and vorticity flow field as
well as cavitating phenomena (for underwater applications).

Such capability undoubtedly represents a major advantage, in that, although the
physics behind the sound generation of the rotary wing devices is the same (i.e. it
does not matter what the field application is, marine or aeronautical) the relative weight
among the volume and surface contributions differs.

Evidence of this is represented by the huge know-how gained by the aeroacoustic
community in the last thirty years; it indeed proves that, for applications involving thin
bodies moving through air (such as helicopter rotors or aeronautical propellers) and
in absence of shock waves (i.e. subsonic applications) the noise is dominated by the
surface sources.

In general, however, the volume sources of noise may play a significant role; thus,
limiting the radiation domain to the blade surfaces may leads to an inadequate prediction
of the acoustic signature. This is the case of many applications of engineering interest
involving rotary wings such as underwater propellers and wind turbines.

The former, working underwater, have completely different geometrical features
(compared to the analogues devices operating in air) which reflect in a different acoustic
behavior. In addition, the operating condition behind the hull often involves the inges-
tion of a high turbulent inflow due to the separation phenomena in the boundary layer
upon it. Besides, underwater applications are often characterized by an high vorticity
and turbulent flow field generated by the propeller itself which persists both in space and
time near the rotor. Such condition produces almost ever complex wake interactions and
vortex coalescence that considerably affect the noise signature.

Similarly, the acoustic behavior of wind turbines is often dominated by the volume
noise sources induced essentially by the operating conditions. Indeed, large changes in
the wind intensity and direction produce high angles of attack reflecting in wide zones
of detached flow over the blade. Besides, turbulent inflow conditions due to the atmo-
spheric boundary layer often interact with the blades causing flow field non linear noise
contributions.
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Based on these findings, the inclusion of volume noise contributions became manda-
tory for a reliable acoustic predictions. To this aim, throughout the thesis the acoustic
effects of field noise sources are accounted for by the use of the so called permeable
approach. It represents a configuration of the FWHE in which the emitting body is re-
placed by an arbitrary shaped moving surface which embeds the body itself and all noise
sources generated by its motion through the flow. It represents, de facto, a surface in the
space radiating the sound induced by the sources embedded inside it.

Besides, the same permeable approach is used to achieve noise predictions on the
base of a new Acoustic Analogy-based formulation. It is derived starting from the
conservation laws (continuity and momentum equations) by applying the same spe-
cial mathematical tools used to achieve the FWHE, namely Hybrid Lighthill-Ffowcs
Williams and Hawkings Equation (H-FWHE).

Along the thesis it is shown how the permeable approach of this formulation recasts
into the well known K-Equation.

Comparisons between them confirm, once more and in agreement with the literature
outcomes, how the FWHE is nowadays the best Acoustic Analogy-based approach to
carry out reliable aero/hydro-acoustic analysis.

Theoretical and numerical findings (available by the literature works) highlight how
the surface location does not influence the acoustic predictions, provided that it contains
all noise sources. In view of this, a wide part of the thesis concern with the assessment
of the influence of shape and position of the porous surface through comparisons against
analytic solutions of the wave equation. Such process allows to confirm the reliability
in the noise prediction and get a deep awareness of its features.

Particularly, a first methodological approach based on the velocity potential flows
theory along with the Bernoulli Equation allows to provide the fluid dynamic data over
the permeable surface as well as the reference pressure signals for the acoustic observers.
The case studies concern with moving monopoles and rototranslating vortex ring; the
last, especially, allows to get a better insight into the principles behind the porous ap-
proach particularly with respect to the End Cap issue (i.e. the effect of eddies convected
through the permeable surface).

The first application of the acoustic models to rotating wing devices is done by
the means of a potential flows based aerodynamics for a slender lifting blade. Issues
concerning with the potential wake convected through the porous surface soon highlight
the generation of spurious noise contributions as the most important limitation to the
applicability of such technique, confirming the outcomes of the vortex ring case study.

Thus, such unwanted effect is at first deeply investigated from a theoretical point of
view, then, some possible solutions are given in view of the application to configurations
of engineering interest.

Pushing through such aspect, the extension of the classic FWHE porous approach
to account with the acoustic effects of thin vorticity layers (as potential wakes) crossing
and going outside the permeable surface is proposed. It turn out in a novel formulation
obtained by combining the H-FWHE (over the wake) and the FWHE (over a surface,
either permeable or the rotor itself), namely Combined FWHE/H-FWHE which seems
to provide good findings.

A significant part of the thesis is devoted to the assessment of noise sources detec-
tion capabilities for different types of fluid dynamic solutions (a suitability analysis).
Such process is of crucial importance, in that, from it depend the features of the pre-
dicted acoustic signatures. Particularly, the fluid dynamic solution are carried out by the
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means of a 3D full unsteady potential flows-based panel method along with the Bernoulli
Equation and a in house fully validated CFD solver. Both solvers, with different strength
points and weakness, are able to give an accurate prediction of the hydro/aero-dynamic
loads and a consistent description of flow field velocity and pressure around and past
the blades. In view of this, the capability of the CFD solver to account with the viscous
effects in the resolution of the flow field give the possibility to assess the effects of both,
turbulence and vorticity field, on the noise generation mechanisms.

However, it is worth to note that the currently available computational resources do
not allow to carry out Direct Numerical Simulation (DNS) (able to numerically resolve
the lowest time space scale of turbulence phenomena) at least for Reynolds numbers
greater than 4000, that is, orders of magnitude lower than those inhere faced. Hence,
models based on the functional (eddy–viscosity) such as Reynolds Averaged Navier
Stokes Equation (RANSE), Large Eddy Simulation (LES) and Detached Eddy Simula-
tion (DES) are used to model the fluid dynamic effects of turbulence yielding an insight
of its role in the noise generation mechanism with respect to the other noise sources.

As a matter of fact, it turns out how the detection of fluctuating velocity and pressure
flow field induced by the turbulence phenomena is one of the key point for an accurate
prediction of the rotary-wing noise signature. Such condition appears to be especially
true for underwater propeller applications, where the effects of nonlinearities (i.e. zones
of the flow field where the behaviour of the fluid is non linear) dominate the noise
generation phenomena.

From this standpoint the RANSE simulations, which inherently dissipates the fluc-
tuation component of the flow field just outside the boundary layer, turn out to be not
suited for acoustic purposes.

Differently, the use of a DES turbulence model proves to be an effective detector of
noise sources due to both vorticity and turbulence phenomena.

A statistical based approach allows to separate, for the noise sources detected by the
DES model, those related with the vortical flow field from those induced by fluctuating
phenomena due to the turbulence; thus giving their mutual contribution to the acoustic
signature.

The thesis shows how, for the kinds of rotating blade devices analyzed, the vorticity
induced noise plays a secondary role with respect to the turbulence one.

The effectiveness of this decoupling procedure is also assessed through the com-
parisons with acoustic predictions arising by aero/hydro-dynamic data provided by a
3D panel method for lifting bodies, based on the hypothesis of potential flows and the
Bernoulli Equation.

In essence, when such technique is applied to the same configuration analyzed by
the CFD solver, it yields the acoustic effects due to the rotor and the vortical flow down-
stream it without the contribution of turbulence phenomena. Hence, it is expected to be
able to detect the same tonal noise sources identified by the CFD simulation.

As a matter of fact it turn out to be true only in part, in that, noise sources arising
from complex interactions between vortices (especially for underwater applications) are
not well detected.

Comparison between potential flows-based hydrodynamics against DES solutions
give, as well, the opportunity to understand the capability of the former approach to
be able to provide a fruitful noise detection for the permeable approach at reasonable
computational efforts.
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Interesting outcomes on this prove how it is true only if the goal is to achieve acoustic
predictions "near" the body where the noise detection is excellent.

One of the more interesting part of the thesis concerns the identification and quan-
tification of the role played by the boundary conditions of the CFD/DES solver in the
noise detection process. Surprisingly, it is shown that their contribution is potentially
harmful for the acoustic prediction if not well identified. The quantification of such
phenomenon in terms of acoustic effects is made through an unusual application of the
permeable FWHE technique which avoids the integration of the whole computational
CFD domain, giving surprising and very interesting results.
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Chapter 1

Introduction

The prediction of noise generated by bodies moving throughout a fluid domain is of
great interest for several engineering applications. In this framework, rotary-wing propulsor
systems are largely investigated from a numerical standpoint because a driving factor in the
design of modern vehicles (such as airplanes and ships) is the acoustic signature to comply
with international standards related to environmental issues, comfort onboard, detectability
of war units, etc...

Historically, the main efforts for the characterization of the fluid dynamic generated noise
have been closely related to aeronautical applications, namely aeroacoustics, typically aimed
at reducing the emitted noise. From the beginning, aeroacoustics has gained constantly more
and more importance due to an increased consciousness of environmental issues and the
strong international competition between airplane/helicopter manufacturers pushing toward
the design of quieter vehicles (inside and outside the cabin).
Consequently, in the last 80 years, the scientific community has devoted considerable ef-
forts toward the understanding of the physical mechanisms governing the noise generation in
rotating propulsive systems and toward the development of computational methods able to
predict the acoustic field.
Propeller and helicopter rotor noise theory has been developed starting from 1940’s; the im-
portance of the role of unsteady loading in acoustics of moving bodies was recognized in the
1960’s, and this yielded a great deal of progress in the development of theoretical modeling
and noise prediction codes.

In this framework the Acoustic Analogy represents a milestone in the theory for the pre-
diction of fluid dynamic generated noise. Proposed by Lighthill [1] in the 1952, it was the
first theoretical model able to describe the physical mechanisms behind the turbulence gen-
erated noise, i.e. the acoustic effects due to the presence of a finite region of rotational flow
in an unbounded fluid. The novelty of such approach was a re-writing of the Navier-Stokes
Equations in the form of a inhomogeneous wave equation in which forcing terms represent
acoustic sources consisting of density, pressure and velocity fluctuation.

Since then, many efforts were done to include in this framework the acoustic effects of the
interaction fluid-solid until to the 1969 when Ffowcs Williams and Hawkings proposed their
well known and widely used theoretical model [2]. It extends the Lighthill’s original theory
for turbulence generated noise, to account for the presence of moving bodies and identifies
different noise generation mechanisms consisting of a combination of linear and non-linear
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contributions.
To the former are associated surface noise contributions which are related to the shape

and kinematic of the body as well to the time-space pressure distribution over it, known in lit-
erature as thickness and loading noise, respectively. Differently, nonlinear noise contributions
are associated to fluid dynamic phenomena occurring in a certain volume fluid surrounding

the moving body. Among them, vorticity, turbulence, cavitation phenomena, shock waves
occurring at high Mach number as well as the fluid dynamic behaviour of the boundary layer
represent the most important ones.

The notable know-how gained through 30 years of research activities in Aeroacoustics
prove that the Ffowcs Williams and Hawking Equation (FWHE) is the most powerful ap-
proach to tackle the aeroacoustic analysis of rotary-wing devices. Indeed, since the first
solving formulations of the FWHE was developed by Farassat [3, 4] (1975,1981) the appli-
cation to propeller-driven aircraft and proprotors provided excellent results compared to the
experimental findings.

Even more important, since then it was clear how in air, in absence of shock wave phe-
nomena and up to a blade tip Mach number approximately equal to 0.8, the acoustic field
is dominated by noise generation mechanisms strictly related to the body surface terms, the
linear ones. Further confirmations to these outcomes were given by the many European
projects founded during the 90s aimed to fill the knowledge gap with the USA and to sup-
port the aeronautical industry. Indeed, from the 1990 to the 2001 HELINOISE [5], RHINO
[6], HELISHAPE [7], SNAAP [8], EROS [9], HELIFLOW [10], ROSAA,[11] and finally
APIAN [12] projects all proved the same suggestions; in air, propellers and rotors acoustic
behaviour (if not operating in transonic conditions) is dominated by the thickness and loading
noise whereas the non linear contribution play a negligible role.

Beside to these aeroacoustics outcomes, the straightforward and computational efficient
calculation of the surface integral contributions in the FWHE, (i.e. thickness and loading
noise), have relegated the question of noise radiation from rotating wings to a closed ques-
tion for years to come.
Although that, the problems associated with environmental pollution due to the carbondioxide
emissions and the increasing sensitivity of the community towards the production of energy
from renewable sources have raised new issues related to the emission of noise due to in-
creasing use of large horizontal axis wind turbines1. Indeed, literature works show how the
noise spectrum of these devices is spread over a wide range of frequencies [13], from 1-4 Hz
up to 1000Hz (broadband noise).

Such behaviour is mainly related to flow field phenomena induced by operating condi-
tions often unpredictable and characterized by a wide range of variability because affected
by many environmental aspects (i.e. wind direction, non homogeneous inflow conditions,
atmospheric turbulence due to the ground boundary layer, etc.. ). In particular, the blades of
wind turbines may experience large changes in angle of attack associated with sudden large
gusts, changes in wind direction, or interaction with the unsteady wake shed from the tower

1Nowadays devices with Power rating up to 9.5MW and rotor diameter 164m are are used in the conversion
(MHI Vestas V164-9.5MW)
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support on downwind which may result in dynamic stall over wide portions of the rotating
blade.

In addition, flow field phenomena around the blades, i.e. the boundary layer transition
laminar-turbulent and its interaction with the trailing edge, are well known and effective noise
emitters.

From the aeroacoustic standpoint those phenomena are accountable to be non linear noise
contributions whose effects are comparable or even greater than the thickness and loading
noise [13] related to the tonal (narrowband) noise component; namely, the sound pressure
characterized by spectrum content only at multiple of the number of blades (BPF). As a
matter of fact, the tonal noise is not usually a problem for large wind turbines that operate at
high Reynolds numbers whereas it may become a significant source of acoustic annoyance
for small wind turbines (≤ 10kW ), in spite of the low Mach numbers operating conditions
(generally, up to 0.4) [13].
On the other hand, the hydroacoustics, i.e. the science of noise generation and propagation
mechanisms through water, is relatively younger than aeroacoustics. Looking at the literature
it is indeed easy to recognize a lack of both theoretical and computational models able to
deal with this challenging problem. As a matter of fact the criteria adopted to satisfy the
noise emission requirements have been based for many years on empirical basis and some
approximated numerical procedure able to provide, to the utmost, a qualitative raw estimation
of the acoustic field [14].

However, the basic understanding of hydrodynamically generated sound has increased
significantly by the contamination with the developments achieved in the aeronautical context
thanks to the commonalities existing among fluid-dynamics of marine propellers, helicopter
rotors and aeronautical propellers. Therefore in the last years the notable know-how gained
by aeroacousticians has been suitably and successfully used to study the underwater noise
due to the ship and/or its structural subcomponents (by also exploiting the increased com-
puting resources). Although the first applications of the Acoustic Analogy to the underwater
propeller noise prediction was considered, based on the similarities with the aeroacoustic
problems, only matter of linear noise contributions [14], lately things turned out to be going
diversely.

Indeed, the hydroacoustics of underwater propeller seems to be inherently a non linear
problem despite operating conditions characterized by the low rotational Mach number [14].
To this aim, starting from the SILENV [15] (2009÷ 2011), going through STREAMLINE
[16] and currently AQUO-SONIC research projects have been devoted to the analysis of the
underwater noise (often more extended and general contexts) yielding the basic understand-
ing of hydro-dynamically generated sound. The first, SILENV, soon highlighted important
differences in the noise generation phenomena between air and water. It represents a sort
of breakpoint for hydroacousticians respect to the analogue problems of noise generation
and propagation in air, pointing out that non-cavitating propeller underwater acoustics is
inherently a nonlinear problem, in that governed mainly by the hydrodynamic sources of
sound in the flow field around the propeller. Specifically, sound from the FWHE surface
terms (namely, thickness and loading noise) appears significant only close to the propeller,
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decreasing rapidly with respect to the volume terms contribution (namely, the quadrupole
noise) induced by the hydrodynamic sources of sound (i.e., vortex released at the blade tip,
vorticity, turbulence, etc..) which can be very intense and persisting around/downstream the
propeller disk [17].
Therefore, based on the foregoing, beside the standard thickness and loading noise terms, an
acoustically-consistent prediction of the low Mach number rotating blades devices inducing
considerable flow field phenomena needs the inclusion of the non-linear contributions. To
this aim the use of the permeable approach of the FWHE allows to avoid the cumbersome
computations of volume integral through the use of a porous surface surrounding the body
and all the noise sources around it [18].
Following this approach, the evaluation of the overall noise signature is transformed into the
application of boundary integral representation (on the permeable surface advancing with the
body) for the solution of the FWHE. Thus, the permeable surface assumes the role of acoustic
boundary, emitting the noise contributions enclosed by it. Literature works demonstrate that
the Ffowcs Williams and Hawking Equation for permeable surfaces (FWH-P) is nowadays
widely used whenever nonlinear noise sources have to be included into the acoustic anal-
ysis [19] [20]. This is even more important for hydroacoustic applications because, unlike
the aeroacoustic ones, they are characterised by a considerable spatial distribution of noise
sources whose direct inclusion (i.e. field contribution) would require considerable numerical
efforts.

However, the unquestionably numerical advantage of this technique is paid in terms of
critical issues concerning with the permeable surface. Although the shape is well proven not
to be a matter [18], its placement with respect to the embedded noise sources, the possibility
of turbulent eddies crossing the porous surface (giving rise to the well-known spurious noise)
and the related different level of accuracy associated to the techniques able to face this issue
[21] are critical aspects for which a debate is still open, thus, extensively treated throughout
the thesis.
On the other hand, since flow field phenomena are at the origin of sound generation, their
detection is mandatory for an accurate aero/hydro-acoustic prediction. To this aim, numerical
techniques able to solve the non linear velocity and pressure flow field around the body
represent a mandatory requirement for a successful noise sources detection.

Among them, Computational Fluid Dynamic (CFD) approach represents the most suit-
able technique because able to deal with massive turbulence and vorticity phenomena. Nev-
ertheless, RANS (Reynolds Averaged Navier Stokes) simulations, widely and fruitfully used
for the prediction of propeller performance, have proven to be unsuited for hydroacoustic
purposes. Essentially, this is due to the relevant numerical diffusion, which inherently makes
the model incapable to correctly model the vorticity and turbulence fields spreading down-
stream the propeller [22].

To overcome this limitation, the use of Detached Eddy Simulation (DES) technique al-
lows to combine the advantages of RANS computations (near solid boundaries) with those of
Large Eddy Simulation (LES) calculations in fluid domains where the spatial discretization
is fine enough. Although well suited for aero/hydro-acoustics, the computational cost of the
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combined FWHE/DES formulation is significant due to the demanding DES grid resolution.
However, limiting our interest to the near-field (few diameters from the propeller hub) the
narrowband noise generated by periodic passages of blades and vortical structures, namely
tonal noise, may play an important role. To this aim a potential-based hydrodynamic theory
for unsteady three-dimensional (3D) flows might be used, at reasonable computational costs,
to detect the sources of sound inherently associated to the blades and vorticity convected
downstream. Acoustic scattering problems in which hydroborne propeller sound interacts
with the hull, being spread out into reflected and diffracted noise components, fall within this
field of application [23], [24].
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1.1 Propeller Noise

Propeller induced noise is one of the most critical aspect for applications in many dif-
ferent field of engineering interest both in air and underwater. In the aeronautic field the
commercial usage of propeller driven aircraft is limited by high levels of cabin noise and by
the stringent civil regulations in terms of noise pollution especially near the airports.

For what concerns underwater noise, propellers are the major cause of both shipboard
noise and radiation to the far field representing the most important noise source for sub-
marines which need quiet propellers to be stealthy. Although the noise generation mechanism
are the same, the dominant sound components depend on the application and to the operating
condition. Hereafter the main noise sources in the propeller noise generation mechanism are
analyzed.

1.1.1 Propeller Noise in Aeronautical Application

The acoustic signature of propellers may be divided into two different types: the tonal
noise characterized by periodic pressure fluctuations and the so-called broadband noise,
which is characterized by a randomic, non-periodic behaviour. The tonal content of the
acoustic signature is characterized by multiples of the blade passing frequency (BPF). It is
essentially due to the rotation of the noise sources over the blades which is seen by an acoustic
observer as a time depend pressure disturbance repeated for the number of blades belonging
to the rotor. Differently, a typical broadband noise content of the pressure signature has not
periodicity and its envelop varies periodically in time.

1.1.1.1 Tonal Source of Noise from Aeronautical propellers

The rotor tip speed and the flow conditions in which the propeller operates define the
primary tonal sources of noise.

For low speed propeller the tonal noise is dominated by the unsteady pressure on the
blade surface which may be affected by many different effects. If the propeller operates in a
completely clean inflow, which is rarely the case, the aerodynamic forces are steady in a blade
fixed frame of reference but the component of the lift and drag perceived by the observer (at
any point fixed on the rotor disk) varies as the blade rotates [25]. Therefore, the directivity
of such noise component is very high (not omnidirectional) because the amount of variation
of forces seen by the observer is strongly dependent respect to its location. Such kind of
sound, namely rotational noise, is present for all kind of propellers, however is effects on the
acoustic pressure is quite weak compared to those induced by the unsteady loads over the
blades.

The latter are mainly associated to:
i) periodically change of the inflow conditions seen by the blades (for abs due to the

propeller pitch respect to the aircraft) thus the angle of attack varies continuously as the
propeller rotates.

ii) sudden change of attack angle arising when the blades encounter a velocity deficit in
the flow which may be induced by particular vortical inflow condition.
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In addition to the noise generated by time depending loads over the blades, for tip Mach
number higher than 0.7 an important contribution to the acoustic pressure comes from the
blade motion and is referred to thickness noise. The noise generation mechanism related
to this acoustic source is the time varying displacement of fluid generated by the blades
as it rotates. Indeed, similarly to what said about the acoustic effect of the steady loading
distribution over the blades, for a fixed observer the volume of fluid displaced by the blades
passage change in time during the rotation, thus producing pressure disturbance.

Another important noise generation mechanism is related with the eventuality of tip
blades operating in high transonic conditions. Such condition can give rise to shock dis-
continuities both over the blade surface and in the fluid surrounding the tips. Similarly to the
rotational noise, the acoustic observer perceive the shock changing its position as the blade
rotates, thus producing time depending disturbance pressure, i.e. sound. This mechanism can
be as important as thickness noise in some rotor designs.

1.1.1.2 Broadband Source of Noise from Aeronautical propellers

Broadband rotor noise is produced by random variation of the inflow conditions mainly
due to the turbulence which result in blade sudden load variations. Usually propellers operate
in condition of high level of turbulence generated upstream the rotor. When such turbulent
inflow is ingested by the propeller, unsteady non periodic loads are generated over the blade
producing random fluctuating pressure. In addition, important turbulent phenomena may also
arise from the propeller itself (self-induced) in the process of transition laminar-turbulent of
the boundary layer. As a matter of fact it is well known in literature that the turbulence
in the blade boundary layer acts like a weak emitter by itself, however when it interacts
with the blade trailing edge the local boundary conditions change rapidly and significant
sound generation occurs. This is called boundary layer-trailing edge interaction noise and
is often considered as the most important mechanism of broadband noise generation in fans
and propellers.

1.1.2 Propeller Underwater Noise

Nowadays the underwater radiated noise of ships represents one of the most critical issues
for naval engineers. For naval vessels the underwater radiated noise is part of the signature
requirements with respect to threats. Moreover, high underwater noise levels may also af-
fect fish behavior, therefore noise requirements for fishery research vessels are nowadays
constraints to comply with. In addition, increasing concerns regard the adverse influence of
underwater noise, including shipping noise, on marine wildlife.

As a matter of fact most of the acoustic field emitted by large vessels is the result of
propeller cavitation, causing ships to radiate both low-frequency tonal sounds, which can be
heard over great distance, and high-frequency noise (up to 20 kHz) close to the vessel. In the
absence of cavitating phenomena the propellers still remain the most important noise sources
for both directly radiated sound and as impinging noise source for hull scattering phenomena.
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The main features of the marine propeller noise and the relative generation phenomena are
presented in the following.

1.1.2.1 Non Cavitating Propeller Noise

Although the phenomena at the base of noise generation for the propeller are the same as
in air, underwater propellers works in completely different operating conditions, thus altering
the relative role played by each source of noise.

A marine propeller works on a fluid having density thousand times that of air and where
the speed of sound is five time greater. As result for marine propellers the rotational Mach
number can at most reach values of 10−2, thus one or even two orders of magnitude lower
than an aeronautical propellers or a helicopter rotors. In addition, the blades have a very
compact planform compared, for example, with those of a helicopter rotor. They are usually
characterized by a low aspect ratio, a remarkable twist and a notable variation of chord and
thickness along the span [14].

Therefore, besides the noise due by fluctuating hydrodynamic forces generated on the
propellers and to the time varying displacement of fluid by the blades volume as it rotates,
considerable noise contribution can be ascribed to the flow field around and downstream
the blades. As in the case of aeronautical propellers, the noise can be classified as discrete
frequency (tonal), and continuous spectrum (broadband).

Discrete frequency content are caused by the action of a propeller operating in the pres-
ence of upstream non-uniform wakes. Such noise component correspond to the blade passage
frequencies (BPF) (i.e. the number of blades multiplied by the shaft rotation rate) and gener-
ally do not exceed 20 Hz (first 3 harmonics) [26].

Continuous spectrum content are generated as a result of upstream flow disturbances or
by turbulence generated on the blade surface. Of such component, low frequency contents are
induced when the hull turbulent boundary layer generated over the vessel surface is ingested
by the propeller, whereas high frequency broadband contents are caused by the interaction
of the boundary layer formed on the blade surface the trailing edge. In addition, continuous
noise contribution are also associated with persisting, both in space and time, vortical wakes
departing from the tip and hub of the propeller which develop downstream and inevitably go
through a breaking phase.

1.1.2.2 Cavitating Propeller Noise

The simplest description of noise propeller cavitation mechanisms can be achieved by
the Rayleigh-Plesset equation [27] which explains the dynamic behaviour of a single bubble
volume acceleration.

The equation has been extended and studied in much detail (see Ref. [28]), furthermore,
the noise spectrum of the collapse of a single bubble has been described by Fitzpatrick (see
Ref. [29]). Up to the point of collapse, the bubble dynamics are well predicted by using
potential flow assumptions.
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However, the dynamic of bubble collapse is very complicated, it involves different phe-
nomena producing energy dissipation in sound radiation, heat conduction and viscosity. In
addition, rebounds of the bubble occur in the presence of non-condensable gas.

The noise spectrum from a prototypical cavitating propeller shows typically a low fre-
quency region in which tonal contribution are present at harmonics of the blade passage fre-
quency. A broadband hump, whose center frequency is proportional to the reciprocal of the
typical duration time of the large scale cavity dynamics, is also present. The high frequency
region is determined by the collapse of individual bubbles and the spectrum decreases with
the reciprocal of the frequency squared. As bubble collapse is cushioned by the presence of
gas, the magnitude of the spectrum level in this region also decreases with increasing gas
content. Additionally, the compressibility of the fluid influences the radiated noise in this re-
gion. The high frequency slope of the power spectral density generally decreases according
to f−2 , where f represents the frequency domain, which corresponds to a decreases of 6
dB/octave [26].

1.2 Wind Turbine Noise

Among the many noise sources involved in the conversion of the wind in mechani-
cal/electrical energy through wind turbines, i.e. gearbox, generator, yaw drives, cooling fans,
auxiliary equipment and application of parking brake, the literature opinion recognizes the
fluid dynamic generated noise as the most important one [30]. Therefore, it goes without say-
ing that a punctual characterization of the flow field features over and past their large blades
represents a crucial aspect for a fruitful detection of the acoustic noise sources. To this aim
the literature know-how concerning the phenomena involved in the Aeroacoustics of large

wind generators is here briefly outlined.

• Trailing Edge Noise

Due to the air viscosity the flow passing over the blades gives rise to a thick boundary
layer, which depending on the operating conditions may or not remain attached to the
blade itself. Although in nominal operating conditions the flow over the blades should
remain laminar, a transition to the turbulent state is unavoidable. For these configu-
rations the noise effects of the turbulence (by its own) seems to be a weak radiator;
however, its interaction with the trailing edge, i.e the effect of eddies passing over the
sharp edge of the blade, give rise to intense broadband noise sources [13]. This is known
as the Trailing edge-boundary layer interaction noise and represents the most impor-
tant sound source for wind turbines. Such acoustic effect shows a cardioid directivity
pattern in which the most of the sound is radiated forward of the blade in the direction
of rotation, while little is radiated behind. The frequency range is generally considered
to be bounded between 160-1500 Hz. This phenomena explains the "swish" character
of wind turbine noise due to the amplitude modulation of broadband aerodynamic noise
created by the blades at the blade passing frequency, which is usually about 1 Hz.

• Leading edge interaction noise

The atmospheric turbulence (i.e. the presence of turbulent eddies) due to the ground
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boundary layer and the perturbed inflow conditions interacts with the blades and gen-
erates unsteady lift. Such phenomena creates a dipole-like sound source located at the
blade leading edge characterized by a dipole-like directivity. The peak energy for this
type of noise is contained at a frequency under 102Hz.

• Blade tower interaction

It is defined as the acoustic disturbance induced by the interaction of the rotor blades
with the tower. In the early development of wind power, downwind turbines were com-
mon and produced high levels of noise associated with the interaction of the tower wake
with the rotor blades. However, impulsive noise may be generated also by the interac-
tion of the blades with the perturbed flow upstream of the tower for upwind turbines.
The noise generation mechanism is associated with the blade-tower interaction (BTI)
due to the rotor blades passage through the perturbed flow region induced by the pillar
upstream. As result the angle of attack changes on the blades, causing a fluctuation in
lift force. The "thumping sound" characteristic of wind turbine is often associated to the
(BTI). It represent a narrowband noise source whose the most of energy in contained
under 20Hz. It is characterized by a dipole directivity pattern.

• Blade Tip Noise

This noise source is associated with the trailed vorticity past the blade tip, generating
an interaction with the edge of the blade similar to that occurring in the trailing edge
noise. It is characterized by a cardioid directivity pattern.

• Airfoil tonal noise

Discrete vortices form either the boundary layer or the wake and create intense tonal
noise, with or without a self-reinforcing feedback loop. Tonal noise occurs at low-to-
moderate Reynolds numbers (approximately 50,000 to 250,000), hence is not usually a
problem for large wind turbines that operate at higher Reynolds numbers. Small wind
turbines (<10 kW) may operate at conditions where tonal noise constitutes a major part
of the noise source energy.

1.3 Helicopter Rotor Noise

Although the helicopter is the quietest Vertical Take-Off and Landing (VTOL) aircraft,
sometimes its noise can still be high enough to compromise its utility unless specific attention
is given in its design. The contribution to the helicopter rotor noise can be classified as
Rotational noise, Blade slap and Broadband noise; hereafter a briefly description of such
phenomena is given.

• Rotational Noise

The rotational noise is a thumping sound at the blade passage frequency; as the higher
harmonic content increases, the thumps sharpen into bangs. Such sound component is
a purely periodic sound pressure radiated as result of the periodic forces exerted by the
blade on the air at any point fixed on the rotor disk because of the rotation of lift and
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drag with the blade. Its contribution dominate the low frequencies of the noise spectrum
from below audible frequencies up to 150Hz.

• Blade Slap

Blad slap is a sharp, cracking, popping or slapping sound occurring at the blade passage
frequency which can be considered an extreme case of rotational noise. When occurs
it is the dominant noise source. The most likely source of blade slap are vortex-blade
interaction (BVI), the effect of thickness at high Mach number, local stall condition and
eventually shock waves. Such phenomena produce large, localized and transient forces
over the blades which turn into impulsive noise radiation.

• Broadband noise

Broadband noise is high frequency swishing sound produced by the rotor and modu-
lated in amplitude and frequency at the BPF. It is mainly generated by random fluctu-
ation of lift and drag on the blades due to operating conditions close to the turbulent
wake. Besides, forces due to the vortex shedding at the trailing edge, turbulence in the
free stream and boundary layer transition laminar-turbulent and separation phenomena
are effective broadband noise sources. The resulting sound energy is spread over a
portion of the spectrum in the audible range, typically extending from about 150Hz to
1000Hz with peaks around 300-400 Hz

1.4 Present Research

1.4.1 Motivation

The considerable know-how gained by aeroacousticians in 30 years of researches has
highlighted how the FWHE is the most effective tool to carry out reliable noise predictions.
Indeed, the linear (thickness and loading noise) application of the FWHE has proven to be
effective and straightforward for the acoustic prediction of aeronautical configuration as heli-
copter, proprotors and propeller driven aircraft up to Mach number 0.8. In spite of this, some
rotary wing configurations operating at low Mach number, both in air and water, seem to be
acoustically dominated by the non linear noise sources.
Nowadays, the mature level of the modern CFD fluid dynamic predictions allow to well pre-
dict the non linear behaviour of the flow field near and downstream the rotor blades. To this
aim, the use of low dissipative numerical schemes and turbulence models based on the tur-
bulent viscosity technique, such as LES and DES, allow an effective noise source detection.
The capability to take into account these acoustic effects is nowadays of major importance
for the aeronautical and marine industry, since the acoustic signature has to comply with
international standards related to environmental issues, comfort onboard, detectability etc..
In view of these considerations, this thesis deals with the study of the permeable Acoustic
Analogy-based formulations for moving bodies, as they allow to include the nonlinear con-
tributions in the calculations avoiding the computational burden related to the evaluation of
the volume integral.
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1.4.2 Objective

The goal of this thesis is to get an insight into the capabilities, reliability and limits con-
cerning the permeable approach of the Acoustic Analogy-based formulations; the attention
is limited to the prediction of noise emitted by rotary wing devices, characterized by consid-
erable flow field noise sources.
In detail, the objectives are:

• General assessment and validation of the permeable formulation of the FWHE. Partic-
ularly, the following aspects of the permeable approach of FHWE are investigated:
i) The location of the porous surface with respect to the noise sources, including the
analysis of the effects on the predicted acoustic pressure of noise sources outside it.
ii) The effects of the observers position with respect to the porous surface on the acous-
tic prediction, including the case of observers inside it.
iii) The effect of spurious noise generation due to eddies convected through the porous
surface (namely the End Cap issue [31]).

• Proposal of a new formulation that includes a different expression of surface and vol-
ume terms with respect to the FWH Equation, namely Hybrid Lighthill-Ffowcs Williams
and Hawkings Equation for Moving Surfaces (H-FWHE).

• Proposal of a new formulation that extends the porous approach to the presence of sur-
faces of discontinuity external with respect to it (i.e. shock waves and thin layers of
vorticity). In addition, the characterization of this model for a contact discontinuity al-
lows to obtain a combined FWHE/H-FWHE formulation, capable of including acoustic
effects of potential wakes released by lifting bodies only partially embedded by to the
FWHE porous surface.

• Application of the permeable approach of FWHE and the H-FWHE to configurations
of industrial interest characterized by high turbulence an vorticity phenomena (marine
propellers and wind turbines) to shed light on their relative role in the sound generation
mechanisms.

• Assessment of the capabilities of the potential flows theory to detect the noise sources
inherently associated to blades and vorticity convected downstream of marine propellers
compared to DES simulations.

• Assessment of the combined FWHE/H-FWHE capabilities to take into account the
acoustic effects of a potential wake released by a slender rotating blade.

1.4.3 Overview of discussion

The dissertation is organized as follows: Chapter 2 illustrates the details of the aero/hydro-
dynamic approaches inhere used to detect the noise sources. Chapter 3 is focused on the
theoretical aero/hydro-acoustic formulation used throughout the thesis. Chapter 4 proposes a
novel approach to account with the acoustic effects of discontinuity surfaces (as shock waves,
potential wakes etc...) in the framework of the rotating blade devices. Chapter 5 Numerical
results of the above mentioned acoustic approaches are presented for the noise prediction of
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rotary wing devices. Finally, conclusions and recommendations for future works are given in
chapter 6.
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Chapter 2

Approaches for Rotating Blade Noise
Prediction

2.1 Introduction

This chapter presents an overview on the fluid dynamic approaches, used throughout the
thesis to characterize the aero/hydro-dynamic sources of sound involved in low Mach number
rotating blades devices. To this aim some recent investigations, above all [14], on the role
of volume terms in the hydroacoustic behaviour of marine propellers (in open water condi-
tion or complete scaled ship model in steady course) play a crucial role. Specifically, those
papers show that the acoustic contribution from the linear noise sources, i.e. those related
to the motion, shape and pressure over the body, also known in literature as thickness and
loading noise, seem to be circumscribed to a very limited spatially region. Indeed, moving
far from the emitting body, pressure fluctuations rapidly reduce, appearing substantially re-
lated to nonlinear sources of sound, such as vorticity and turbulence, regardless of the blade
rotational speed. On the other hand, the notable know-how gained through 30 years of re-
search activities on Aeroacoustics prove that, in air, the noise of propellers and rotors up to tip
Mach number approximately equal to 0.8 is dominated by the thickness and loading noise,
thus restricting the effects of the nonlinear contributions only to local shock waves due to
transonic phenomena [5]. Even though these outcomes are nowadays widely accepted, par-
ticularly operating conditions encountered by low rotational Mach number devices operating
in air, as wind turbines, represent an exception. In particular, their blades can experience
large changes in angle of attack associated with sudden large gusts, changes in wind direc-
tion, or interaction with the unsteady wake shed from the tower support on downwind. These
blade/inflow/tower wake interactions can result in dynamic stall over wide portions of the
rotating blade. In addition, their aerodynamic behaviour is strongly influenced by non homo-
geneous inflow conditions associated to atmospheric turbulence and to the ground boundary
layer. All the above mentioned phenomena generate an high non linear flow field around
the blades whose acoustic contribution may be comparable or even greater than the linear
thickness and loading noise [13].

Based on spectral character, flow noise sources are grouped into one of two classes as
broadband or narrowband [17]. Narrowband sources entail flow shedding excitation of a
structural resonance resulting in strong tonal character which occurs at specific Strouhal
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numbers. Broadband sources are ones for which there is no frequency selectivity for either
the excitation (flow) or the structural response. As a matter of fact, a complete (i.e. broad-
band) noise characterization may be achieved only through some fluid dynamic analysis for
turbulent flows based on Computational Fluid Dynamics (CFD) simulations, as Unsteady
Reynolds Averaged Navier Stokes equations (URANS), Large Eddy Simulation (LES) or
hybrid approaches, which are able to provide a description of the flow field, in terms of vor-
ticity and turbulence levels. However, for noise predictions purposes, LES or hybrid RANS
LES methods can capture more detailed vortex and turbulent structures than URANSE ap-
proaches, which have inherently higher dissipative effects [21, 32]. Differently, LES and hy-
brid methods provide reasonable results, especially in terms of broadband noise predictions
[33, 34]. The tonal noise from non cavitating propellers can be predicted either by using the
potential flow assumption or by solving the full set of viscous flow equations (Navier Stokes
equations) by means of CFD. The lifting surface and Boundary Element Method (BEM) can
be used to solve the tonal noise with the potential flow assumption, for abs [35]. In the
present work the evaluation of the acoustic pressure concerns marine propellers free from
cavitation and wind turbines; for both configurations a two step strategy is used to predict the
radiated noise. First the sources of sound are detected by a devoted fluid dynamic analysis of
the devices; then, acoustic propagation modeling, accounting for the main noise generating
mechanisms, are applied to radiate the sound waves "far" from the sources.

The theoretical aspects of the aero/hydro-dynamic formulations herein used to character-
ize the sources of sound are briefly outlined in the following. Specifically:

• A three dimensional unsteady potential-based approach for compressible and inviscid
flows combined with the Bernoulli Equation;

• A general purpose Computational Fluid Dynamic approach for incompressible flows;

Beside them, some closed-form solution of the wave equation, carried out within the contest
of compressible potential flow, are derived. Their use is limited to validation purposes, only.

2.2 The Bernoulli Equation–based Approach

The prediction of the flow field features generated by moving bodies may be achieved
through a potential-flow based formulation. The suitability of such model is limited to high
Reynolds number flows (Re ≥ 106) around thin bodies for which separation phenomena are
confined over restricted areas and the influence of viscous effects is negligible. Note that,
at frequencies of most practical interest, viscous effects are negligible on acoustic predic-
tions [36]. Under the assumption of subsonic, compressible, potential flows, the aero/hydro-
dynamic problem around a lifting bodies, in terms of velocity potential, is solved by the for-
mulation introduced by Morino and Gennaretti [37], whereas the further application of the
Bernoulli Equation provides the pressure disturbance in the flow domain around it. Specifi-
cally the solution of a inhomogeneous wave equation for the velocity potential by the Green
function technique [38] yields an integral solution that is used, first, as integral equation to
evaluate the potential distribution upon the body surface and in the volume around it where
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non-linear terms are not negligible, and then as integral representation to predict the poten-
tial distribution everywhere in the flow field. The main theoretical aspects are outlined in the
following. Some details are found in Appendix D.2.

2.2.1 Differential Equation for Velocity Potential

The potential flow theory is based on the hypothesis that an inviscid, nonconducting,
shock-free, initially isentropic and non-rotational fluid at rest, remains isentropic and non-
rotational at all times (except for wake points). Under these assumptions, the flow field
velocity may be expressed in terms of a scalar potential φ, as u = ∇φ. For such kind of fluid
it may be shown (see, Ref. [37]) that in a frame of reference connected to the undisturbed
medium, the velocity potential is governed by the following differential equation

∇2φ− 1
c2

0

∂2φ

∂t2 = σ (2.1)

where σ accounts for all the non–linear terms (in aerodynamic applications they are important
in the transonic regime) and c0 indicates the speed of sound in the medium at rest. The
differential problem is closed by suitable boundary conditions. Three surfaces are considered
as boundary of the field: i) the surface at infinity, ii) the body, iii) the potential wake. In the air
frame of reference, at infinite distance from the body, the perturbation velocity is zero, hence
u = 0, i.e., φ = 0. Assuming the body surface S as impermeable, it results ∂φ/∂n = v · n
where v is the local velocity of a point on the body surface and n the local outward unit
normal vector. The hypothesis of non-rotational flow fails for those points that, in their
motion, have been in touch with the body surface, for which the theorem of Kelvin can not
be applied. These points form a discontinuity surface SW (namely potential wake) that cannot
be crossed by fluid particles and across which the pressure behaves as a continuous function.
The above condition can be expressed in terms of velocity potential as follows (see appendix
D.2.)

∆
(

∂φ

∂n

)
= 0 (2.2)

DW(∆φ)

Dt
= 0 (2.3)

where
DW

Dt
=

∂

∂t
+ uW · ∇ is the substantial derivative made following a point belonging

to the wake. Here, uW is the wake particle velocity, defined by the average of the velocities
corresponding to two particles at two sides of the wake. Equation (2.3) represents the evo-
lution equation for ∆φ stating that it is constant in time following a wake point. Thus, the
actual value of ∆φ following a point xw remains constant and equal to that it had when it left
the trailing edge. At the trailing edge the Kutta condition states that no concentrated vortices
exist [39] so that ∆φ on the wake and on the body coincides at the trailing edge.
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In terms of potential jump, one obtains

lim
xW→xTE

∆φ(xW , t) = φu (t) − φl (t) (2.4)

and
∆φ(xW , t) = ∆φ(xTE, t− τw) (2.5)

where φu and φl are the potential at the upper and lower side of the wake respectively, xTE

denotes a wake point located at the trailing edge whereas τw is the convection time between
xW and xTE.

2.2.2 Integral Solution

In order to solve the potential problem defined by Eq. (2.1) it is convenient to recast it
into the following equivalent infinite–space differential equation (see appendix D.2)

−�2φ̂ = σ H( f ) +∇φ · n δ( f ) +∇ · [φ n δ( f )] +

− 1
c2

0
{−φ̇ v · n δ( f ) + [−φ v · n δ( f )] }̇ ∀x ∈ <3 (2.6)

where φ̂(x, t) = H( f )φ(x, t), σ = [(c2 − c2
0)∇2φ + 2u · u̇ + u · ∇u2

2
]/c2, c represents

the local speed of sound in the perturbed flow, f (x, t) = 0 indicates the shape of the body
and δ( f ) and H( f ) are the Dirac and Heaviside functions, respectively. The application of
the Green function method to Eq.(2.6), (see Appendix A.2) yields the following boundary
field integral representation for the potential φ in a frame of reference fixed to the body

φ(x, t) =
∫

V
Ĝ [σ]θ dV +

∫
S

[
∂φ

∂ñ
Ĝ− φ

∂Ĝ
∂ñ

]
θ

dS +

+
∫

S

[
Ĝ

∂φ

∂t

(
∂ϑ

∂ñ
+ 2

v · n
c2

0

)]
θ

dS

+
1
c2

0

∫
S

[
φ Ĝ

∂

∂t
[v·n (1−v·∇ϑ)]

]
θ

dS (2.7)

where suffix θ indicates that all kernels have to be computed at the retarded (emission)
time τ = t− ϑ, with ϑ denoting the compressibility delay, that is, the time required by
the acoustic disturbance released from a source point y = y(τ) to reach the observer at
point x = x(t). Moreover Ĝ = {−(1/4π r) [1/(1−Mr)]}θ indicates the retarded Green
function, in which r = x(t)− y(τ), r = |r| and Mr = v/c0 · r̂ with r̂ = r/|r|. In addition
∂/∂ñ = ∂/∂n− 1/c2

0 (v · n) (v · ∇). For bodies without wake (non-lifting), Eq. (2.7) is
an integral representation of φ anywhere in the field, in terms of the values of φ, ∂φ/∂ñ
and ∂φ/∂t on S , and of σ in V . The extension of the formulation to lifting bodies requires
to account for the presence of the potential wake surface; in the following, propellers are
considered as lifting bodies. In this case, let us consider the presence of N disjoint, closed
rigid surfaces Si and SW

i surrounding, respectively, the volume occupied by the i-th propeller
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blade and the volume occupied by a thin fluid region containing the corresponding i-th wake
surface. It may be shown [40] that the integral representation for the solution of Eq. (2.1),
neglecting the nonlinear terms σ, has the form

φ(x, t) =
N

∑
i

(
IS

i + IW
i

)
(2.8)

Each integral contribution appearing in Eq. (2.8) may be evaluated in a different frame of
reference. In the case of rigid surfaces, the most suitable frame of reference is attached to
the surface (i.e., the frame where the integration domain does not depend on time). In this
frame, the most general expression for the blade surface contributions IS

i is given by Eq.
(2.7). Under the assumption of a prescribed, non–deforming wake shape and propellers in
axial flow, it is convenient to use a propeller-fixed frame of reference to evaluate both blade
and wake contributions to the velocity potential field.1 A more reliable propeller aerodynamic
modeling requires Sw to be considered as an unknown of the problem since its shape is related
to the vorticity generated onto the propeller and shed into the field. Therefore, Sw, not-known
a priori , makes the stated problem intrinsically nonlinear. To this aim, a free-wake algorithm
is used to align wake points to the local flow, that is, moving them under the effect of the
advancing speed and local fluid velocities due to propeller blades and wakes [35]. A general
description of Sw is conveniently achievable in a non-rotating frame of reference centered
at propeller hub and aligned with the advancing speed.2. The wake contribution IW may be
obtained by coupling Eq. (2.7) with the wake boundary conditions, yielding

IW(x, t) = −
∫
SW

[
∆φ

∂Ĝ
∂ñ

]
ϑ

dS (2.9)

For those problems where σ is negligible, positioning point y on the body surface provides
a boundary integral equation for φ from Eq. (2.8). This step enables the evaluation of the
velocity potential on the integration domain itself. Once φ is known on S, the same equation
appears as an integral representation of the potential and can be used to determine such a
variable at any point in the field. At this stage the pressure p can be determined through the
Bernoulli theorem (written for compressible, isentropic flows)

∂φ

∂t
+

1
2
|u|2 + κ

γ̂
pγ̂ =

1
γ̂

p0

ρ0
where: γ̂ =

γ− 1
γ

; κ =
p1/γ

0
ρ0

(2.10)

where γ denotes the specific heat ratio, ρ0 and p0 are respectively the density and pressure
of the medium at rest.

1The same arguments are valid for a helicopter rotors in hovering. In forward flight conditions, the formulation
is more complicated because in the body space the wake surface is not time independent. However, in this case,
the wake may be assumed to be time independent in the air space.

2The same arguments are valid for a helicopter rotors in forward flight
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2.2.3 Low Mach Number Applications

Under the assumption of low rotational Mach number, the d’Alembert operator (wave
operator) can be approximate by the Laplacian, recasting Eq. (2.7) into

φ(x, t) =
∫

S

(
∂φ

∂n
G− φ

∂G
∂n

)
dS −

∫
SW

∆φ
∂G
∂n

dS (2.11)

where G = −1/4πr, whilst the following expression of the Bernoulli equation holds

∂φ

∂t
+

1
2
|u|2 + p

ρ0
=

p0

ρ0
(2.12)

Such approximation is reasonable for the evaluation of the air/hydro-loads as well as
for the prediction of near flow field features. Moreover, although the incompressibility as-
sumption does not comply with any sound definition, the pressure disturbance carry out by
Eq.(2.12) yields a good approximation of the noise signature up to few diameter from the
rotor hub [23, 41].

2.3 Computation Fluid Dynamic solutions

Nowadays the computational resources available for the High Performance Computing
(HPC) applications guarantee a profitably solution of the Navier Stokes Equations through
the use of numerical schemes. The high quality of the flow field predicted by Computa-
tional Fluid Dynamics (CFD) allows to detect the noise sources generated by vorticity and
turbulence downstream the rotor as well as by the presence of large zones of detached flow.
Nevertheless, the capability to solve the time-space scale of the turbulence with a Direct
Numerical Simulation (DNS) is currently unapproachable for the high Reynolds number in-
volved in problems of practical interest. This condition forces to adopt a numerical scheme
to model turbulence phenomena under a given characteristic spatial size through the addition
of a turbulent viscosity in the governing equations. The choice of the turbulence model, may
be very complex because it considerably affects the resulting flow field features and then
the suitability of the aero/hydro-dynamic solution for aero/hydro-acoustic purposes. In the
following a brief overview on the theoretical-numerical approaches used to solve the Navier
Stokes Equations is presented. An extensive description is reported in Appendix D.1.

2.3.1 Theoretical and Numerical Model

The governing equations for the unsteady motion of an incompressible viscous fluid are
briefly recalled in this section. The equations are written in an inertial frame of reference; as
some blocks on the total grid move to follow possible moving boundaries, the general form
of the governing equations are written with respect to a moving control volume. The conti-
nuity and momentum equation in non–dimensional integral form (with respect to a reference
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velocity u∞ and a reference length L) are∮
S(V)

u · n dS = 0

∂

∂t

∫
V

u dv +
∮

S(V)
(Fc −Fd) · n dS = 0

(2.13)

V being a control volume, S(V) its boundary, and n the outward unit normal. In equa-
tion (2.13), u is the flow velocity vector whereas Fc and Fd represent convective (inviscid
and pressure components) and diffusive fluxes, respectively:

Fc = pI + (u− v) u

Fd =

(
1

Re
+ νt

) [
∇u + (∇u)T] (2.14)

where v is the local velocity of the control volume boundary, Re = U∞L/ν the Reynolds
number, ν the kinematic viscosity, whereas νt denotes the non–dimensional turbulent vis-
cosity. In the following equations, ui indicates the i–th Cartesian component of the velocity
vector (the Cartesian components of the velocity will be also denoted with u, v, and w); p is
a variable related to the pressure P and the acceleration of gravity g (parallel to the vertical
axis z, downward oriented) by p = P + z/Fr2, Fr = U∞/

√
gL being the Froude number.

The problem in Eq. (2.13) is closed by enforcing appropriate conditions at physical and
computational boundaries. On solid walls, the relative velocity is set to zero (whereas no
condition on the pressure is required); at the (fictitious) inflow boundary, velocity is set to
the undisturbed flow value, and the pressure is extrapolated from inside; on the contrary, the
pressure is set to zero at the outflow, whereas velocity is extrapolated from inner points.

At the free surface, whose location is one of the unknowns of the problem, the dynamic
boundary condition requires continuity of stresses across the surface; if the presence of the
air is neglected, the dynamic boundary conditions (see Appendix D.1 for theoretical details)
reads:

p = τijninj +
z

Fr2 +
κ

We2

τijnit1
j = 0 (2.15)

τijnit2
j = 0

where τij is the stress tensor, κ is the average curvature, We =
√

ρU2
∞L/σ is the Weber

number (σ being the surface tension coefficient), whereas n, t1 and t2 are the surface nor-
mal and two tangential unit vectors, respectively. The actual position of the free surface
F(x, y, z, t) = 0 is computed by enforcing the kinematic condition

D F(x, y, z, t)
D t

= 0 . (2.16)
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Initial conditions have to be specified respectively for the velocity field and the free sur-
face configuration; specifically we set

ui(x, y, z, 0) = ūi(x, y, z)

F(x, y, z, 0) = F̄(x, y, z).
(2.17)

A fully coupled implicit finite volume formulation is used to solve numerically the Navier-
Stokes equations. To this aim, at each (discrete) time instant tn the physical time derivatives
are discretized by a backward second order finite difference, and the spatial operator (resid-
ual) is computed at the same time level; in semi-discrete form, the equations reads∮

S(V)
un

i ni dS = 0 (i = 1, 2, 3)

∫
V

3un
i − 4un−1

i + un−2
i

2∆t
dV +O(∆t2)

+
∮

S(V)

[
un

i

(
un

j − vn
j

)
nj + pnni − τn

ij nj

]
dS = 0 .

(2.18)

The dual time stepping approach (see, e.g., [42], that generalizes the pseudo-compressibility
method [43] to unsteady problems), is used to solve the fully coupled Navier-Stokes Equa-
tions. In this technique, the numerical solution of (2.18) is computed as the asymptotic
solution of an auxiliary unsteady problems in a pseudo-time τ

∫
V

∂pn

∂τ
dV +

∮
S(V)

un
i ni dS = 0

∫
V

∂un
i

∂τ
dV +

∫
V

3un
i − 4un−1

i + un−2
i

2∆t
dV+

∮
S(V)

[
un

i

(
un

j − vn
j

)
nj + pnni − τn

ij nj

]
dS = 0 .

(2.19)

In the above equations, the solution at time tn−1 and tn−2 that appears in the physical time
derivative acts as a known source term, whereas the solution at time tn produces a stabilizing
effects, which grows when dt decreases. This system of equations (that includes an evolution
equation for the pressure) is hyperbolic in the pseudo-time τ for its Eulerian part; therefore,
all the numerical methods developed for compressible flow simulation can be adapted and
applied to the above system. In the numerical scheme here adopted, all the spatial operators
are approximated by a finite volume technique, with pressure and velocity determined at
the cell center. The computational domain is discretized by partially overlapping structured
blocks. Each block is split into Ni × Nj × Nk hexahedral cells and on each control volume
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the above equation can be specialized into

∫
Vijk

∂p
∂τ

dV +
6

∑
s=1

∮
Ss(Vijk)

un
i ni dS = 0

∫
Vijk

∂un
i

∂τ
dV +

∫
Vijk

3un
i − 4un−1

i + un−2
i

2∆t
dV+

6

∑
s=1

∮
Ss(Vijk)

[
un

i

(
un

j − vn
j

)
nj + pnni − τn

ij nj

]
dS = 0 ,

(2.20)

where Ss(Vijk), s = 1, ..., 6. are the six faces of the hexahedron Vijk. Both the volume and
the surface integrals are evaluated in Eqs. (2.20) by means of a second order Gauss formula
(i.e., as the product of the function in the center times the measure of the integration domain).
For any further detail concerning the computation of the different fluxes see [44, 45]. Finally,
the system (2.20) is discretized with an implicit Euler scheme with respect to τ and it is
solved by the approximate factorization technique introduced by Beam and Warming [46].
Convergence is accelerated by local time stepping and a full-multigrid technique [47].

Although the above equations are able, in principle, to carry out a Direct Numerical
Simulation (DNS), applications of engineering interest are computationally too demanding
for presently available resources. Therefore, the effect of turbulence phenomena are modeled

through numerical techniques based on the turbulent viscosity. Specifically, to evaluate it
different approaches are available: i) Reynolds Averaged Navier Stokes Equations (RANSE)
with one-equation Spalart and Alamaras [48] closure model ii) Large Eddy Simulation (LES)
with Smagorisky [49] closure model iii) a suitable combination of both model (RANS/LES)
namely Detached Eddy Simulation (DES) which allows, through a transition criteria, to swap
between the Spalart-Alamaras (RANSE) in the boundary layer and the Smagorisky (LES) in
the flow field [50].

2.3.2 Dynamic Overset Grid

In order to handle complex geometries and bodies in relative motion, the discretization
of the computational domain is performed by a chimera-type approach, i.e., by a set of struc-
tured blocks with partial overlap. The details of the numerical algorithm are given in [51,
52], and only the main characteristics are briefly recalled here. In this technique, the com-
putational domain is split into l = 1, Nblocks subdomains, each being handled as a structured
domain consisting of Ni×Nj×Nk cells. In some regions of the computational domain these
blocks are allowed to overlap partially. The motivation for using this type of discretization
lies in the ease of use when handling bodies with a complex boundary, because each piece of
the body can be discretized on its own right. Moreover, the temporal change of the computa-
tional domain, that takes place as a consequence of a variation of the frontier (for a rotating
propeller or a moving rudder, for instance), can be dealt with very easily by enforcing a
rigid motion of each group of structured blocks that are attached to a particular piece of the
boundary itself. Consequently, the lack of strict constraints when generating the mesh (be-
cause of the allowed overlapping) and the lack of grid deformation during the motion (rigid
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motion) enable to control grid quality very easily. Of course, the connection between blocks
at each simple connection like in standard multi-block approach where the block faces are
all abutting. Moreover, the overlapping regions must be located, so that the solution can be
transferred between blocks as explained in the following. The technique used in the code to
compute grid topology can be summarized as follows:

1. For each cell center of the ghost cells on any block boundary, on which no simple (wall,
inflow, outflow, etc.) boundary condition is specified, all possible donor cells from
other blocks are sought. Then, of all possible donors, the centroid of the smaller cell is
chosen as the basic point of a convex set, consisting of eight points and containing the
cell center under analysis, used for tri-linear interpolation.

2. For each inner cell, a global check is done to find all the possible cells, belonging to
other blocks, within which it lies. Of all the possible cells containing the point under
inspection, the smaller one is picked out as donor only if it is smaller than the current
cell. By doing so, only the smallest cell of all the possible overlapping grid remains
active. Once the donor is selected, a convex set of eight points for tri-linear interpolation
is chosen as done for boundary points.

In order to speed up topology computation, a nested search that exploits the multigrid struc-
ture of each block is used. With this method, for each cell center the search for a possible
donor starts on the coarsest possible grid that can be extracted from the global grid; on this
very coarse level (and only for it) all the points are checked, in order to prevent the algorithm
from stagnating for nonconvex block shapes; among all points, the closest one is then chosen.
Then, when passing to the next finer grid level, the previously identified point is chosen as a
first approximation for a search of the closest point along each coordinate line. The process
is repeated on each finer grid level, up to the actual grid. This algorithm is very fast and
convenient, especially when dealing with unsteady problems, where the grid topology has to
be recomputed at each time step; of course, in this case, the donors are sought only for those
cells whose donors come from a block in relative motion. Nevertheless, the overlapping test
for internal point must be executed for all grid points. A particular care must be devoted to
donor search in the boundary layer, where the aspect ratio of the cells can be extremely high.
For this cell, the search must be made in a transformed computational space, where one of
the coordinate planes coincides with the wall itself. Once the donors are known, the solution
between blocks is transferred with an interpolation at block boundaries. On the contrary, a
nonstandard procedure is used for internal points. In fact, for the cells marked as holes by the
donor search algorithm, the solution of the RANS equations is performed anyhow, through
the summation of a forcing term in the form

RSHui(2.20) +
k
δ
(ui − ūi) = 0 (i = 1, 2, 3)

RSHp(2.20) +
k
δ
(p− p̄) = 0 ,

(2.21)
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where RHS is the right-hand side of Eqs.(2.20), k is a constant parameter of O(10), δ is the
minimum among grid size along the coordinate lines and the time step, i.e., δ min(dξ , dη , dζ);
ūi and p̄ are the values of velocity and pressure interpolated from the donor cells. The effect
of the forcing term is to drive the solution toward the interpolated value with an exponential
decay in the pseudo-time. The advantage in using formulation Eqs. (2.21) is twofold. First,
it allows maintaining the structured organization of data on each block, and therefore the
multigrid algorithm for convergence acceleration can be used in its standard formulation.
Second, by enforcing a value of the solution also on the overlapped regions, the solution is
made available at each time step also for the points that became active in consequence of
the block motion: for these points, the solution at previous time steps must be known for the
computation of the physical time derivative (that, otherwise, should be evaluated with some
different procedure).

2.4 Analytical Singular Solutions

In this subsection the flow field features derived by some singular solutions of the wave
equation are outlined by the application of the velocity potential theory for compressible
flows. Specifically, the potential flow-based solutions induced by monopoles and potential
vortices is presented and used throughout the thesis to address case-studies and validation
results. Details on the mathematical aspects are found in Appendix B.1.

2.4.1 Monopole

The physical interpretation of a monopole may be that of a small sphere, pulsating at a
given frequency, having a radius smaller than the characteristic wave-length of the induced
pressure field. Under this assumption, let the sphere be a source of mass, pulsating at an
angular frequency ωp in a fluid at rest, moving, throughout it, at velocity v in arbitrary
steady motion with respect to a frame of reference fixed to the undisturbed fluid. Within the
framework of potential compressible flows the disturbance velocity potential generated by
the monopole is governed by

−�2φ = sin(ωpτ)δ(x− x∗, τ − t) (2.22)

where �2 is the D’Alambertian operator, x and x∗ identify source and receiver positions
in a frame of reference connected with the undisturbed fluid, respectively, whilst t denotes
the current time at which the disturbance generated in x at time τ is received. Following
Appendix B.1, the application of the Green function technique yields

φ(x∗, t) = Ĝ sin
[
k
(
c0t− ϑ̂

)]
(2.23)

where k = ωp/c0 is the wave number and

Ĝ = − 1
4πr | (1 + Mr) |

∣∣∣∣
θ

(2.24)
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is the (retarded) Green function with r = x(τ)− x∗(t), r = |r| and Mr = (v/c0) · r̂ where
r̂ = r/|r|. The linearized Bernoulli equation for compressible unsteady isentropic flows
yields the acoustic pressure everywhere in the field; by assuming the observer undergoing an
arbitrary steady motion with velocity vobs it reads

p
′

ρ0
= − ∂φ

∂t

∣∣∣∣
b
+ vobs · ∇∗φ−

∇∗φ · ∇∗φ
2

(2.25)

where the subscript ∗ indicates that the gradient operator is calculated with respect to the
observer position and |b states that the time derivative is computed following it. In Appendix
B.1 Eq. (2.25) is detailed for translating and rototranslating observers. The above formulation
is general, in that it holds for any steady motion of the source and observer; nevertheless, an
equivalent approach yielding the pressure disturbance from translating monopoles is also
shown in Appendix B.2.

2.4.2 Potential Vortices

The flow field velocity and pressure disturbances generated by a potential vortex trans-
lating along a given direction, while spinning about it, are predicted under the assumption of
incompressible, inviscid, non-rotational flows. Within this framework, the velocity induced
at a point x∗ by a curved vortex filament dl of strength Γ (taken about any path enclosing the
filament), is given by the Biot-Savart law

u(x∗) =
Γ

4π

∫
l

dl× r

|r|3
(2.26)

where r = x − x∗ identifies the radius vector from dl to x∗. Akin to section 2.4.1, the
pressure disturbance is evaluated by the Bernoulli Equation. Referring to Eq. (2.25), the
first term at the right-hand-side is zero for observers rigidly connected to the rototranslating
vortex. Thus, the application of Eq. (2.25) is straightforward. Differently, for observers
translating with the vortex ring at the same velocity, Eq. (2.25) is not more suited because of
the incapability of getting the potential field from Eq. (2.26). In this case, the time-varying
pressure field at x∗ may be numerically carried out by facing the problem in a frame of
reference rigidly connected to the vortex, that is, by applying Eq. (2.25) (with the first term
at RHS equal to zero) to geometric points identified by the contra-rotation of the observer
with respect to the vortex. Note that, to prevent unrealistically large pressure and velocity
distributions when x∗ approaches to x, a suitable vortex core has to be used. In this thesis, a
Rankine-type modeling is adopted [53].
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Chapter 3

Theoretical Models for Aeroacoustics

3.1 Introduction

In this chapter the time-domain hydro/aero-acoustic formulations used for the prediction
of the fluid dynamic generated noise by rotating blade devices are shown. To this aim, it is
worthy note the fundamental papers On Sound Generated Aerodynamically. I. General The-

ory [1] and On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound [54]
by M. J. Lighthill who, in 1952, published the results of his research in response to emerging
need to control the noise of jet propelled aircraft. By a re-arranging of the fundamental con-
servation laws of mass and momentum into the form of an inhomogeneous wave equation,
turbulence generated noise propagation phenomena were properly separated by sound gener-
ation mechanisms. The accounting for moving bodies as sources of sound is due to Ffowcs
Williams and Hawkings who, in 1969, in the paper Sound Generation by Turbulence and Sur-

faces in Arbitrary Motion extended the Lighthill’s theory by using the generalized functions
theory [55] and the embedding procedure technique [56]. In the following, the derivation
of the Ffowcs Williams and Hawkings Equation is firstly outlined and its solution, by the
Green function method, is addressed. Secondly, it is shown how the application of the same
mathematical manipulations and rigor as used in the derivation of the Ffowcs Williams and
Hawkings equation leads to a hybrid Lighthill-Ffowcs Williams and Hawkings formulation
well suited for comparisons in terms of theoretical acoustics. Details are found in Appendix
A.1.

3.2 The Ffowcs Williams and Hawkings Equation

The Ffowcs Williams and Hawkings equation (FWHE) is the most general form of the
Lighthill theory able to take into account the presence of moving bodies throughout the fluid.
Under the assumption of thermodynamic transformations with negligible entropy changes,
the continuity and momentum conservation laws can be rearranged into the Lighthill’s equa-
tion

�2 p′ =
1
c2

0

∂2 p′

∂t2 −∇
2 p′ = ∇ · ∇ · T (3.1)
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where�2 represents the wave operator, p′ = c2
0
(ρ− ρ0) denotes the acoustic pressure whereas

p, ρ, c and u are pressure, density, sound speed and fluid velocity, respectively. The suffix 0
indicates flow properties referred to the undisturbed medium. The right-hand-side (RHS) of
(Eq. 3.1) represents the forcing term of the wave equation, that is, the double divergence of
the Lighthill stress tensor T =

[
(p− p0)I− c2

0
(ρ− ρ0)I + ρ(u⊗ u) + V

]
where V is the

viscous stress tensor; the double divergence operator highlights the quadrupole nature of the
turbulence generated noise in the unbounded flow [1, 54].

The introduction of solid boundaries, arbitrarily moving in a fluid at rest, is obtained by

FIGURE 3.1: (a) Sketch of the sound produced by a turbulent nozzle flow jet. (b) Sketch the
sound generated by a finite region of rotational flow in an unbounded fluid (as in the Lighthill’s

original theory). Images from [57]

embedding the exterior flow problem (in unbounded space) inside the moving body; this is
accomplished by extending the definition of the fluid properties (pressure, velocity, density,
etc.) inside the body surface, so that flow parameters have the same fluid state as the undis-
turbed medium [3]. The unavoidable fictitious flows discontinuities giving rise at the bound-
aries of the body surfaces are mathematically treated by the use of generalized functions [55].
The final result is a re-writing of the Navier-Stokes Equations into a inhomogeneous wave
equation valid everywhere in the field, whose forcing terms are intimately correlated to the
main physics phenomena inducing fluid dynamically generated noise. Specifically, denoting
with f (x, t) = 0 an arbitrary permeable surface S , moving with velocity v, such that∇ f = n
is the unit outwards normal, the general form of the Ffowcs Williams and Hawkings Equation
(FWHE) reads [2, 18] (see also Appendix A.1 for details)

�2 p′ =
∂

∂t
[ρ0 v ·∇ f δ ( f )] +

∂

∂t
[ρ (u− v) ·∇ f δ ( f )]

−∇ · [P ∇ f δ ( f )]−∇ · [ρ u⊗ (u− v) ∇ f δ ( f )]

+∇ · ∇ · [T H( f )] ∀x ∈ <3

(3.2)

where overlines denote generalized differential operators, �
2

the D’Alembert operator, δ( f )
the Dirac delta function, H( f ) a domain function (namely Heaviside) such that

H[ f (x, t)] =

{
1 if x ∈ <3 \ V
0 if x ∈ V

(3.3)
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being V the volume enclosed by S , whilst P = [V + pI] indicates the compressive stress
tensor. For clarity, Fig. 3.2 depicts a moving body inside a permeable surface co-moving
with it and embedding some of the most relevant volume sources of noise associated to
turbulence, vortical and cavitating flows. If f (x, t) = 0 coincides with the body, the surface

FIGURE 3.2: Sketch of the acoustic configuration for permeable surface appli-
cations.

S is impermeable, (u− v) · n = 0 thus Eq. (3.2) reduces to

�2 p′ =
∂

∂t
[ρ0 v ·∇ f δ ( f )]−∇ · [P ∇ f δ ( f )] +∇ · ∇ · [T H( f )] ∀x ∈ <3 (3.4)

Equation (3.4) offers a great insight into noise generation mechanisms and their correlation
with the mathematical operator of the related forcing terms. In details, at RHS of Eq. (3.2),
the first term has a monopole structure, it defines the noise contribution due to body shape and
motion (namely, thickness noise). The second one exhibits a dipole-like structure; it defines
the noise contribution due to the pressure distribution upon the body surface (namely, loading

noise), whereas, the third term has a quadrupole-like structure and is associated to the noise
contribution coming from the acoustic sources placed in the flow field (namely, quadrupole

noise).
Similarly, at the RHS of Eq. (3.2), the first two terms represent the pseudo-thickness

noise contribution due to the mass-flux through S whereas the third and fourth terms provide
the pseudo-loading noise contribution due to the momentum-flux through the acoustic sur-
face S . The last term, indeed, is responsible of the quadrupole-like noise effects induced by
all the sources outside S .
The notable know-how gained by 30 years of aeroacoustic investigations within the frame-
work of several European Projects (since 90s) (i.e. HELINOISE [5], RHINO [6], HEL-
ISHAPE [7], SNAAP [8], EROS [9], HELIFLOW [10], ROSAA,[11] and finally APIAN
[12]) proves that, as long as transonic effects (i.e. shock waves) do not occur in propeller and
rotor aerodynamics equipping vehicles of aeronautical interests (proprotors and helicopter,
for instance) the first two terms exhaustively predict the radiated noise field. In spite of
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the low Mach number at the blade tip, wind turbines and marine propellers do not obey to
these general outcomes. It is well known in literature that the acoustics of wind turbines is
deeply influenced by aerodynamic phenomena due to large changes in angle of attack asso-
ciated with sudden large gusts, changes in wind direction or interaction with the unsteady
wake shed from the tower support on downwind, in addition to the effects of the turbulent
boundary layer which represent well known quadrupole noise sources.

Differently, only recently the investigations carried out in the context of the European
Project SILENV [15], STREAMLINE [16] and, currently, AQUO and SONIC [58] have demon-
strated how propeller hydroacoustics is strongly dominated by the hydrodynamic sources due
to vortices released at the blade tip, vorticity and turbulence phenomena which can be very
intense and persisting (both in space and time) around/downstream the propeller disk. As a
matter of fact, thickness and loading noise contributions are limited to a fluid region extend-
ing few blade-diameters around the propeller, depending on the operating conditions [22].
Such a behaviour is due to the destructive interference which, at very low rotational Mach
numbers, makes the noise decay much more pronounced and faster [14].

3.2.1 Integral Solution

For numerical purposes, the Green function technique [38] is applied to turn the solution
of Eq. (3.2) into an integral form. Specifically, following the approach proposed by [38]
and summarized in appendix A.2, in a reference system rigidly connected with the moving
domain V (SRC) the boundary-field integral representation for Eq. (3.2) reads

p̄′(x, t) = −ρ0

∫
S

{
v · n v · ∇Ĝ + [v · n (1− v · ∇ϑ)]˙ Ĝ

}
θ

dS

−
∫
S

{
(Pn) · ∇Ĝ− (Ṗn) · ∇ϑ Ĝ

}
θ

dS (3.5)

−
∫
S

{
ρ u− · n u+ · ∇Ĝ +

[
ρ u− · n (1− u+ · ∇ϑ)

]
˙ Ĝ
}

θ
dS

−
∫
<3

[
Ĝ∇ · ∇ · (T H)

]
θ

dV

where n is the unit outward normal vector on S and the suffix θ indicates that all kernels
have to be computed at the retarded emission time τ = t− ϑ. As said the compressibility
delay ϑ denotes the time required by the acoustic disturbance released from a source point
y = y(τ) to reach the observer at point x = x(t), whereas Ĝ indicates the retarded Green
function given by

Ĝ =

[
− 1

4π r

(
1

1−Mr

)]
θ

(3.6)

being r = x(t) − y(τ), r = |r| and Mr =
v
c0
· r̂ the surface Mach number in the di-

rection of radiation. In addition the symbol ˙( ) denotes time derivation performed in the
body-space, whilst u− = (u− v) and u+ = (u + v). As shown in [41], by neglecting the
volume integral and assuming S to be the (impermeable) body surface, Eq. (3.5) becomes
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fully-equivalent to the well-known Farassat 1A formulation [59]. Similar argumentations
prove that for permeable surfaces, Eq. (3.5) is fully-equivalent to the formulation proposed
in 1997 by di Francescantonio [18]. Equation (3.5) clearly states that the sources of sound
enclosed by S affect the noise field outside it through surface integral terms, whereas the
acoustic effects due to the sources outside S are described by the volume integral contri-
bution. Therefore, if the noise sources were all inside S , the surface terms of the FWHE
would include the noise from the sources and propagation effects inside the permeable data
surface, thus removing the need for a volume integration and significantly decreasing the
computation burden. For the sake of clarity, Fig. 3.3 shows a translating porous surface (in
red) enclosing different acoustic point sources (in blue), in the presence of external sources
of sound (in green) whose strength vanishes outside the shaded region. According to Eq.
(3.5), the noise signal received by the observer outside S is given by the p′s coming from the
surface contributions (Is) and p′v associated to the volume integration over the shaded zone
(Iv). However, by enlarging the acoustic surface up to embed the shaded region (see the
black line), the volume contribution (Iv) is inherently captured by (Is) once it is computed
on the larger surface. In Fig. 3.4 the acoustic surface (in red) does not embed any source of
noise; assuming the presence of external sources localized inside the shaded region, the noise
signal at the observer is only due to (Iv), being zero the contribution from (Is). If the term
(Iv) is neglected a priori , albeit in the presence of external sources of sound, the predicted
(approximated) acoustic pressure comes only from (Is) (see Fig. 3.5). Last, but not least,
Fig. 3.6 shows the same acoustic configuration depicted in Fig. 3.3 with the observer located
inside the permeable surface (in red). Since the pressure inside S is null by definition, (Is)

and (Iv) perfectly balance. From a general standpoint, neglecting the quadrupole term in the
permeable surface method is only valid if the quadrupole flow features are completely encap-
sulated inside the permeable surface. Ignoring them leads to approximated noise predictions
as long as the quadrupole sources do not cross the boundaries of the acoustic surface (see
Fig. 3.5). On the contrary, the convection of eddies through the porous surface may generate
relevant errors, known in literature as spurious signals . Figure 3.7 depicts a source geometry
placed in uniform flow generating a wake and acoustic sources; theoretically, the noise signa-
ture at the observer is the combination of the acoustic pressure from the permeable surface,
p′s and from the quadrupole noise p′v generated outside the surface, calculated by a volume
integration of the entire region outside S (see Fig. 3.8). Neglecting the computationally
expensive volume integral, the noise predicted from the surface terms includes contributions
p′a from acoustic sources inside the permeable surface, shown as small circles in Fig. 3.7,
and sound from flow crossing the surface that would have been canceled by the quadrupole
term if it had been included. The contributions from the surface that should have been can-
celed by the quadrupole term are identified as spurious signals, namely p′ss. Since spurious
signals should have been canceled out by the volume term, they are equal to the negative
of the quadrupole noise. This error occurs both inside and outside the permeable surface.
As a matter of fact, without predicting the quadrupole noise, sound outside the permeable
surface contains acoustic pressure from the sources inside the surface as well as spurious sig-
nals. This is depicted in Figure 3.9 for clarity. Note that it is impossible to determine if the
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acoustic pressure predicted outside the surface contains spurious signals without knowledge
of the flow field inside because the noise generation inside the surface is unknown; i.e., it is
unclear whether flow phenomena on the surface are acoustic or hydrodynamic in nature. The
numerical treatment of this issue is beyond the scope of this thesis; an exhaustive discussion
is found in sections 5.3.3, 5.4.1.

FIGURE 3.3: Sketch of the FWHE application: surface and field contributions

FIGURE 3.4: Sketch of the FWHE application: field contributions
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FIGURE 3.5: Sketch of the FWHE application: surface contributions

FIGURE 3.6: Sketch of the FWHE application: observer inside the porous surface

The application of Eq. (3.5) to rotary-wing devices is intrinsically prone to the issue of
the spurious signals in that, the freely evolving wake convected by blades interacts with the
downstream boundaries of (S). The use of suitable numerical strategies may mitigate these
undesirable effects: i) the numerical viscosity in CFD-based sources of noise detection; ii) the
tailored splitting of the potential wake close to the downstream boundaries of S for sources of
noise detection by BEM-based aero/hydro-dynamics. Beside them, a widely-used approach
to face applications characterized by high vorticity and turbulence downstream is to close the
porous surface far enough that fluctuations have been decayed or to leave the surface open
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downstream. The last approach do not comply with the theory underlying the permeable
FWHE but, as shown in Chapter 5, may provide reliable acoustic outcome depending on the
observer location.

FIGURE 3.7: Diagram of source geometry placed in uniform flow generating a
wake and acoustic sources. Observer is also shown. Image from [60]

FIGURE 3.8: Genesis of the spurious noise. Diagram of permeable surface
placed around source geometry and part of the wake and acoustic sources. Image

from [60]

FIGURE 3.9: Diagram of spurious signals caused by not including the
quadrupole term. These occur inside and outside the permeable surface. Im-

age from [60]
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3.3 Hybrid Lighthill-Ffowcs Williams and Hawkings Equation
for Moving Surfaces

As shown in Appendix A.1, the application of the embedding procedure to Eq. (3.1)
yields an inhomogeneous wave equation for the pressure disturbance where the structure of
the acoustic forcing terms differs somehow from those appearing at the RHS of Eq. (3.4) (or
Eq. (3.2)). In detail, assuming f (x, t) = 0 to be an arbitrary surface S (permeable or not),
moving in the fluid medium at velocity v, such that∇ f = n, the manipulations addressed in
Appendix A.1.2 lead to the following hybrid formula, namely (H-FWHE)

�2 p′ = −
(

∂p′

∂n
+

1
c0

∂p′

∂t
Mn

)
δ( f )−∇ · [p′nδ( f )] + (3.7)

− 1
c0

∂

∂t
[
p′Mnδ( f )

]
+ H∇ · ∇ · T ∀x ∈ <3

where Mn = (v/c0) · n represents the local Mach number in the normal direction.1 By
neglecting the last term at RHS, Eq. (3.7) recasts into the Kirchhoff formula for moving

surfaces, known in literature also as K-equation [61], that has been proposed by Hawkings
for predicting the noise of high-speed propellers and helicopter rotors. For simplicity let us
assume S to be impermeable; the comparison between Eqs. (3.7) and (3.4) first highlights a
different structure of the volume terms due to the role of the Heaviside H( f ) respect to the
double divergence operator, that, in turns, gives rise to different capabilities of the surface
terms in describing noise radiation mechanism from S . Observe that a drawback in using
Eq. (3.7) is the need to compute ∂p′/∂n on (S) with respect to the use of Eq. (3.4) that
requires the only knowledge of p′ (and viscous stresses if considered).

3.3.1 Integral Solution

Equation (3.7) is suited for the application of the Green function technique in the un-
bounded space. This is shown in Appendix (A.34) that, in a reference system rigidly con-
nected with S , yields the following integral solution

p′(x, t) =
∫
S

[
∂p′

∂ñ
Ĝ− p′

∂Ĝ
∂ñ

]
θ

dS +
∫
S

[
Ĝ

∂p′

∂t

(
∂ϑ

∂ñ
+ 2

v · n
c2

0

)]
θ

(3.8)

+
1
c2

0

∫
S

[
p′ Ĝ

∂

∂t
[v·n(1−v·∇ϑ)]

]
θ

dS−
∫
V

Ĝ [H∇ · ∇ · T]θ dV

in which ∂(·)/∂ñ = ∂(·)/(∂n)−M · nM · ∇(·) and M = v/c0.
The permeable surface approach discussed in section 3.2 may be conveniently applied to

Eq. (3.7). Hence, by assuming S such to embed all the volume source of sound, Eq. (3.7)

1For the meaning of the other symbols, the reader is referred to 3.2.
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reduces to the K-equation and, in turns, Eq. (3.8) becomes a boundary integral representa-
tion in terms of p′, ∂p′/∂n, ∂p′/∂t upon S . Numerical troubles may be encountered in the
evaluation of ∂p′/∂n because it is not a standard output of any aero/hydro-dynamic solver,
yielding velocity, pressure and density flow fields. At this stage it is worth noting that the
acoustic pressure p′, governed by the K-equation, must satisfy the linear wave equation, ev-
erywhere [61]; thus, Eq. (3.8) (without the volume integral) may provide reliable predictions
only for porous surfaces located in the linear region of propagation. From this standpoint, the
FWHE is more general in that it utilizes the conservation laws. This explains the differences
shown in literature [62], in the behaviour of the solutions of these equations in the near field.
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Chapter 4

A Permeable Boundary Approach for
Aeroacoustics of Lifting Bodies

4.1 Introduction

This chapter proposes a novel approach to rearrange the quadrupole source term of the
Ffowcs Williams and Hawkings Equation (see Eq. (3.2)) in a form that noise generated by
flow regions of high gradients, such as shock surfaces or vorticity layers, may be distin-
guished from those of other regions [63].
The reasons which lead to this further expression of the quadrupole source term are here
briefly summarized.

Ideally the application of the FWHE porous approach (see Eq. (3.5)), as widely discussed
in Chapter 3, would require that all the quadrupole noise contributions were embedded inside
the permeable surface. Such condition assures that the predicted acoustic pressure is effec-
tively that induced by all the source in the field, either the surface and volume contributions.
Although theoretically valid, the use of such technique for the analysis of realistic configu-
rations often rises issues related to the encapsulation of field noise sources. Indeed, in many
applications the axial extension of the wake and the clustering grid features of the fluid dy-
namic solver far from the rotor, to name just a few of the known factors, de facto prevent
the arbitrary extension and location of the permeable surface. This is, for abs, the case in
which some shock waves are generated around an high speed helicopter blade, whose acous-
tic characterization would lead to the extension of the porous surface where the clustering
grid is coarser, or, to the introduction of complex shape of the permeable surface to encom-
pass the zones of the shock.

On the other hand, let us consider a underwater propeller whose hydrodynamic data are
provided by a velocity potential-based fluid dynamic solver. In such cases, the wake down-
stream of the propeller rotor usually entails axial extension more than one order of magnitude
greater with respect to the propeller diameter (in order to obtain convergent results). Thus,
embeds the all wake would waste the computational advantages of the permeable technique.

In view of this, limiting our interest to cases where a discontinuity surface can be iden-
tified as source of noise, the presented technique suggests to exploit the porous surface ap-
proach (see Eq. (3.5)) to embed as much as possible non linear contributions, (i.e. as long
as it does not implies to include zone of coarse grid (CFD) or it became computationally
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inefficient because too long as in the case of potential hydrodynamics).
In addition, a further surface outside the porous one is introduced to account directly with the
acoustic effects of the quadrupoles jump across it.

In the following, it will be shown how the aforementioned contribution can be deduced
starting from both differential [63] and integral formulation governing the acoustic problem.
In addition two integral formulations are derived: i) a first, more general approach is aimed
to extent the FWHE to surfaces side of Lighthill stress tensor jump (i.e. it can be either a
shock surface or a contact discontinuity) ;

ii) a second approach proposes to account with the acoustic effects of surfaces side of tan-
gential velocity jump, as potential wakes (see Appendix C.1). In this framework the differ-
ence between the linear surface contributions of the FWHE and the Hybrid Lighthill-Ffowcs
Williams and Hawkings Equations of Eq. (3.5) and Eq. (3.8), respectively, allows to recast
the FWHE into a novel Combined FWHE/H-FWHE form.

4.2 Quadrupole Noise: A New Source Description

In this section the theoretical model able to characterize the acoustic pressure induced by
a discontinuity surface in the flow field is shown. Akin to Chapter 3 let, f (x, t) = 0 describe
the motion of a surface S , at velocity v, in a fluid at rest. Without loss of generality, the
general aspects of the problem are introduced by assuming S to be the impermeable body
surface moving rigidly in connection to an other surface, namely k(x, t), that represents a
discontinuity surface for the Lighthill stress tensor .1 Making reference to Eq. (3.4) forced
by only the quadrupole term, the radiated noise field is solution of

�
2 p′χ = ∇ · ∇ · [H( f )T] ∀x ∈ <3 (4.1)

Using the relation
∇ · (T H) = ∇ · TH + T∇H (4.2)

and observing that T has a discontinuity across k(x, t), the application of the generalized
functions differentiation rules yields

�
2 p′χ = ∇ · [∇ · (H( f )T) + ∆ (H( f )T)∇kδ(k)] (4.3)

that recasts into

�
2 p′χ = ∇ · ∇ · [H( f )T] +∇ · [H( f )∆T∇kδ(k)] + ∆ [∇ · (H( f )T)] · ∇kδ(k) (4.4)

where ∆ = [.]u − [.]l and subscripts refer to the two sides of the discontinuity surface.
Without ambiguity, the upper side of k(x, t) is associated to the direction of the normal
n′′ = ∇k. Equation (4.4) is a re-writing of Eq. (4.1) in the presence of a generic surface
of discontinuity for T, where the quadrupole sources are expressed by the double (ordinary)

1Shock waves, potential wakes and boundary layer regions fall within this categories.
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divergence of (T H) outside f (x, t) = 0 and two contributions concerning the discontinuity
surface.

Although the above differential approach allows to get awareness on the acoustic phe-
nomenon under consideration, it is convenient to reformulate the problem into a more general
form starting from Eq. (4.1) (from here on f (x, t) = 0 denotes a permeable moving surface
S) and assuming the quadrupole sources decomposed into

∇ · ∇ · (HT) = H∇ · ∇(T) +∇ ·
(
T∇H

)
+∇H ·

(
∇ · T

)
∀x ∈ <3 (4.5)

Then, by combining Eq. (4.5) with Eq. (4.1), in a frame of reference rigidly connected with
S the application of the standard Green function technique yields

p′χ(x, t) =−
∫
<3

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV −

∫
<3

∫ ∞

0
Ǧ∇ · (T∇H) dtdV

−
∫
<3

∫ ∞

0
Ǧ∇H · (∇ · T) dtdV (4.6)

where, referring to Appendix A.2, Ǧ(y− y∗, t̄− t̄∗) = Ĝ δ(t̄− t̄∗ + ϑ). Equation 4.6 may
be managed to provide two linear formulations able to describe the noise radiated by a lifting
body in the presence of a discontinuity surface for T, co-moving with it. Hereafter, such a
discontinuity surface is assumed to be the potential wake generated by the particles that have
been in contact with the body surfaces, released from the trailing edge. The main aspects of
these acoustic modeling are outlined in the following; details are shown in Appendix C.1 and
C.4.

4.2.1 Approach 1

By performing a by-part integration on the second integral term of Eq. (4.6) and using
Eq. (A.39), one obtains

p′χ(x, t) = −
∫
<3

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV +

∫
S

{
(Tn) · ∇Ĝ

}
θ

dS

−
∫
S

{
(Tn)˙· ∇ϑ Ĝ

}
θ

dS−
∫
S

{
(∇ · T) · n Ĝ

}
θ

dS (4.7)

where all integrals have to be computed at the retarded emission time. Equation (4.7) states
that the solution of the FWHE forced by quadrupole sources can be interpreted as a sum
of Lighthill-like jet noise term (first integral) outside S and a distribution of sources and
doublets over it. In order to turn Eq. (4.7) in a suitable form for capturing the sound emitted
by lifting body/wake configuration, let us introduce two surfaces, Sk and Sl , co-moving in
rigid motion with S , whose motion is described by k(x, t) = 0 and l(x, t) = 0 respectively.
Such surfaces are assumed to be enclosed within S at any time; specifically Sk denotes the
potential wake surface (n′′ = ∇k) whereas Sl the lifting body (n′ = ∇l). In the framework
of potential flows theory around lifting surfaces, Fig. 4.1 depicts an example of porous
surface S embedding a lifting airfoil and the potential wake departing from the trailing edge.
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FIGURE 4.1: Sketch of the permeable FWHE surface embedding body and wake.

FIGURE 4.2: Sketch of the permeable FWHE surface approaching body and wake.

p′χ(x, t) =
∫
Sl

{(
Tn′

)
· ∇Ĝ

}
θ

dS−
∫
Sl

{(
Tn′

)
˙· ∇ϑ Ĝ

}
θ

dS

−
∫
Sl

{
(∇ · T) · n′ Ĝ

}
θ

dS +
∫
Sk

{(
∆Tn′′

)
· ∇Ĝ

}
θ

dS

−
∫
Sk

{(
∆Tn′′

)
˙· ∇ϑ Ĝ

}
θ

dS−
∫
Sk

{
∆ [(∇ · T)] · n′′ Ĝ

}
θ

dS

−
∫
<3

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV (4.8)

Further, by letting the two side of S approaching Sl and Sk, respectively, Eq. (4.7) recasts
into Eq. (4.8) (see Fig.4.2 for clarity) where the first three integrals over Sl describe the
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noise due to the quadrupole sources written in the form of surface contributions, the integrals
over Sk account for the wake surface-induced sound, whilst the last integral provides the
noise field associated to Lighthill-like jet noise term (pure volume integral). To compute the
overall noise generated by Sl

⋃ Sk, thickness and loading noise terms have to be added to the
solution given by Eq. (4.8). For a wake structure fixed in a frame of reference connected to
the body2, Appendix C.2 shows that both thickness and loading contributions are zero. Thus,
accounting for thickness and loading noise by Sl , the overall sound may be expressed as

p′(x, t) =− ρ0

∫
Sl

{
v · n′ v · ∇Ĝ +

[
v · n′ (1− v · ∇ϑ)

]
˙ Ĝ
}

θ
dS

−
∫
Sl

{
(Pn′) · ∇Ĝ− (Pn′ )̇ · ∇ϑ Ĝ

}
θ

dS

+
∫
Sl

{(
Tn′

)
· ∇Ĝ

}
θ

dS−
∫
Sl

{(
Tn′

)
˙· ∇ϑ Ĝ

}
θ

dS

−
∫
Sl

{
(∇ · T) · n′ Ĝ

}
θ

dS +
∫
Sk

{(
∆Tn′′

)
· ∇Ĝ

}
θ

dS

−
∫
Sk

{(
∆Tn′′

)
˙· ∇ϑ Ĝ

}
θ

dS−
∫
Sk

{
∆ [(∇ · T)] · n′′ Ĝ

}
θ

dS

−
∫
<3

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV (4.9)

Theoretically, the volume domain surrounding Sl
⋃ Sk may be thought as decomposed into

Re3
l
⋃

Re3
k , where Re3

l and Re3
k represent adjacent volume regions around Sl and Sk, re-

spectively. This fictitious domain decomposition allows to recognize that the first five inte-
grals over Sl as well as the noise contribution from the last integral limited to Re3

l , that is∫
<3

l

∫ ∞

0
−
[
Ǧ∇ · ∇ · (T H)

]
dtdV, yield the integral solution of the FWHE shown in Eq.

(3.5) for the noise generated by the moving body. Moreover, observing that the sum among

the third, fourth and fifth integral of Eq. (4.9) with
∫
<3

l

∫ ∞

0
−
[
Ǧ∇ · ∇ · (T H)

]
dtdV

yields
∫
<3

l

∫ ∞

0
−
[
Ǧ∇ · ∇ · (HT)

]
dtdV, the following relation is derived

p′(x, t) = − ρ0

∫
Sl

{
v · n′ v · ∇Ĝ +

[
v · n′ (1− v · ∇ϑ)

]
˙ Ĝ
}

θ
dS

−
∫
Sl

{
(Pn′) · ∇Ĝ− (Pn′ )̇ · ∇ϑ Ĝ

}
θ

dS−
∫
<3

l

[
Ĝ∇ · ∇ · (T H)

]
θ

dV

+
∫
Sk

{(
∆Tn′′

)
· ∇Ĝ

}
θ

dS−
∫
Sk

{(
∆Tn′′

)
˙· ∇ϑ Ĝ

}
θ

dS

−
∫
Sk

{
∆ [(∇ · T)] · n′′ Ĝ

}
θ

dS−
∫
<3

k

[
H∇ · ∇ · T Ĝ

]
θ
dV (4.10)

Limiting our interest to the assessment of an acoustic linear formulation, the volume integrals
over Re3

l and Re3
k are neglected a priori . In this way, Eq. (4.10) provides the noise signal

everywhere in the fluid domain as a combination of thickness and loading noise related to the
body and surface quadrupole induced effects from the convected wake. Obviously, the use of

2The following discussion is strictly valid for translating wings in uniform translation, propellers in axial
motion and helicopter blades in hovering
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the permeable FWHE where the porous surface embeds both body and all the potential wake
would be easier and would include the neglected volume contributions. However, in several
acoustic applications concerning propellers, rotors or wings, the extension of the potential
wake assuring converged data set upon the acoustic surface (computed by BEM aero/hydro-
dynamics and the Bernoulli equation) would require the use of a permeable surface whose
sizes may represent a practical computational burden. A straightforward extension of Eq.
(4.10) is achievable by the domain decomposition depicted in Figs. 4.3, 4.4 where a tailored
porous surface Sp encapsulates the body and only portion of the wake. Following this idea,
the solution of the permeable FWHE upon Sp yields the noise field in terms of thickness,
loading and volume contributions radiated by the sources inside it, whereas the sound emitted
by the outer portion of the wake may be captured by the quadrupole surface terms above
described. In details, the general form of Eq. (4.10) reads

p′(x, t) = − ρ0

∫
Sp

{
v · n′ v · ∇Ĝ +

[
v · n′ (1− v · ∇ϑ)

]
˙ Ĝ
}

θ
dS

−
∫
Sp

{
(Pn′) · ∇Ĝ− (Pn′ )̇ · ∇ϑ Ĝ

}
θ

dS

−
∫
Sp

{
ρ u− · n′ u+ · ∇Ĝ +

[
ρ u− · n′ (1− u+ · ∇ϑ)

]
˙ Ĝ
}

θ
dS

+
∫
Sk

{(
∆Tn′′

)
· ∇Ĝ

}
θ

dS−
∫
Sk

{(
∆Tn′′

)
˙· ∇ϑ Ĝ

}
θ

dS

−
∫
Sk

{
∆ [(∇ · T)] · n′′ Ĝ

}
θ

dS (4.11)

FIGURE 4.3: Sketch of the control surface f (x, t) = 0, the FWHE permeable
surface P(x, t) and the wake k(x, t).
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FIGURE 4.4: Sketch of the control surface approaching the FWHE permeable
surface P(x, t) and the wake k(x, t).
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4.2.2 Approach 2

A boundary integral representation alternative to that proposed in the previous approach
is shown hereafter. It allows to express wake acoustic effects through the jump of the pres-
sure normal derivative across the wake surface, whose computation comes from the Euler
equation. For this purpose, the starting point is the evaluation of the difference between the
boundary integral representations referred to the K-equation p′K and the FWHE p′FWHE,
respectively; following Appendix C.4, one obtains

p′K − p′FWHE = −
∫
<3

∫ ∞

0
Ǧ∇ · (T∇H) dtdV −

∫
<3

∫ ∞

0
Ǧ∇H · (∇ · T) dtdV

(4.12)

that combined with Eq. (4.6) provides the following relation for the quadrupole noise contri-
bution

p′χ(x, t) = p′K(x, t)− p′FWHE(x, t)−
∫
<3

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV (4.13)

Akin to approach 1, the introduction of the surface S approaching Sl and Sk recasts Eq. 4.13
into

p′χ(x, t) =
∫
Sl

[
∂p′

∂ñ′
Ĝ− ∂Ĝ

∂ñ′
p′
]

θ

dS +
∫
Sl

[
Ĝ

∂p
∂t

(
∂ϑ

∂ñ′
+ 2

v · n′
c02

)]
θ

dS

+
1

c02

∫
Sl

[
p′Ĝ

∂

∂t
[v · n′(1− v · ∇ϑ)]

]
θ

dS

+ ρ0

∫
Sl

{
v · n′ v · ∇Ĝ +

[
v · n′ (1− v · ∇ϑ)

]
˙ Ĝ
}

θ
dS

+
∫
Sl

{
(Pn′) · ∇Ĝ− (Pn′ )̇ · ∇ϑ Ĝ

}
θ

dS−
∫
<3

l

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV

+
∫
Sk

∆

[
∂p′

∂ñ′′
Ĝ− ∂Ĝ

∂ñ′′
p′
]

θ

dS +
∫
Sk

∆
[

Ĝ
∂p
∂t

(
∂ϑ

∂ñ′′
+ 2

v · n′′
c02

)]
θ

dS

+
1

c02

∫
Sk

∆
[

p′Ĝ
∂

∂t
[v · n′′(1− v · ∇ϑ)]

]
θ

dS

+ ρ0

∫
Sk

∆
{

v · n′′ v · ∇Ĝ +
[
v · n′′ (1− v · ∇ϑ)

]
˙ Ĝ
}

θ
dS

+
∫
Sk

∆
{
(Pn′′ · ∇Ĝ− (Pn′′ )̇ · ∇ϑ Ĝ

}
θ

dS−
∫
<3

k

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV

(4.14)

that is equivalent to the quadrupole noise contribution given by Eq. (4.8)3. In addition, noting
that:

• thickness and loading contributions from the wake are zero (see Appendix C.2);

• the sum of surface and volume integral contributions over Sl and Re3
l , respectively,

recast as
∫
<3

l

∫ ∞

0
−
[
Ǧ∇ · ∇ · (HT)

]
dtdV;

3 Re3 = Re3
l
⋃

Re3
k
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• for a wake structure fixed in a frame of reference connected to the body (see footnote
2), Appendix C.3 shows that the quadrupole noise induced by the wake surface is due
to the jump of the pressure normal derivative across it;

the following final expression is achieved

p′(x, t) = −ρ0

∫
Sl

[
v · n v · ∇Ĝ +

(
v · n (1− v · ∇ϑ)

)�
Ĝ
]

θ

dS

−
∫
Sl

[
(Pn) · ∇Ĝ−

(
Pn
)� · ∇ϑ Ĝ

]
θ

dS

+
∫
Sk

[
∆
(

∂p′

∂ñ

)
Ĝ
]

θ

dS (4.15)

−
∫
<3

b

∫ ∞

0
∇ · ∇ · (HT) Ǧ dtdV(y)−

∫
<3

k

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV

where the source term ∆ (∂p′/∂ñ) is derived in Appendix C.1.
Although equivalent to Eq. (4.11), Eq. (4.15) namely (Combined FWHE/H-FWHE), is

more appealing for numerical purposes; hence, within linear acoustics, it is used to investigate
the acoustic effects of a wake convected by a propeller in axial motion (see Chapter 5.5). Akin
to approach 1, a more general form of Eq. (4.15), reads

p′(x, t) = −ρ0

∫
Sp

[
v · n v · ∇Ĝ +

(
v · n (1− v · ∇ϑ)

)�
Ĝ
]

θ

dS

−
∫
Sp

[
(Pn) · ∇Ĝ−

(
Pn
)� · ∇ϑ Ĝ

]
θ

dS

−
∫
Sp

[
ρu− · n u+ · ∇Ĝ +

(
ρu− · n (1− u+ · ∇ϑ)

)�
Ĝ
]

θ

dS

+
∫
Sk

[
∆
(

∂p′

∂ñ

)
Ĝ
]

θ

dS (4.16)
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Chapter 5

Numerical Results

5.1 Introduction

In this section numerical results based on the acoustic formulations presented in Chapters
3 and 4 are shown.

Particular emphasis is given to the assessment of the permeable Ffowcs Williams and
Hawkings Equation (FWH-P) capabilities to account with the flow field nonlinearities 1

in the noise prediction. Besides, comparisons with the permeable Hybrid Lighthill-Ffowcs
Williams and Hawkings Equation (K-Equation) are shown.

The chapter starts with a brief section in which the numerical scheme adopted to solve
both, the FWH-P and the K-Equation, is reported.

A first group of numerical results is aimed to assess the reliability of the acoustic models
through comparisons against analytic solutions of the wave equation.

The goal is achieved through moving monopoles; the fluid dynamic data over the porous
surface as well as the reference pressure signature, used as baseline for comparisons, are
provided by the potential flows theory along with the Bernoulli Equation. The acoustic effects
of the noise source motion act is assessed, in this context, using different kinematics of the
monopoles (from the simple translation to helicoidal motion).

Besides, interesting outcome on the effects of the incomplete inclusion (inside the porous
surface) of non linear flow features, give an insight into the sensibility of the acoustic models
with respect to the partial inclusion of quadrupole source noise.

Remaining in the framework of potential flows, the generation of spurious noise contri-
butions due to eddies convected through the boundary of the permeable surface (also known
in literature as End Cap issue [21]) is analyzed using a rototranslating potential vortex ring
partially enclosed inside it.

The physic mechanisms behind the spurious noise generation are highlighted; it is also
shown where (with respect to the permeable surface) the unwanted effects are negligible
and where, instead, are of major importance. Besides, possible numerical techniques for the
attenuation of the End Cap issue are suggested.

The following of the chapter is devoted to the assessment of the permeable technique,
for both the FWH-P and K-Equation, in case of application to rotary wing devices. In this

1With the term nonlinearities are indicated the flow field features in a data portion of volume V such that∫
V

[
Ĝ∇ · ∇ · (T H)

]
θ dV 6= 0
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context, a wide range of fluid dynamic solutions is used to detect the noise sources as well as
to provide the baseline disturbance pressure for comparisons.

A Simplified model of a slender rotating blade, whose fluid dynamic data are given by
the application of potential flows theory along with the Bernoulli Equation (see section 2.2),
allows to draw interesting considerations, confirming de facto, the outcomes given by the
application of the aforementioned singular solutions.

For what concerns the end cap issue, the acoustic effects of a sheet vorticity layer shed
downstream the lifting blade are assessed. The outcomes well match with the considerations
drawn in the case of the rototranslating vortex ring either in terms of spurious noise features
and with respect to the effectiveness of the procedures suggested to mitigate it.

An interesting part of the chapter regards the noise characterization of industrial interest
devices whose fluid dynamic flow field is predicted through the application of the Compu-
tational Fluid Dynamic (CFD) technique (see section 2.3). In this view, a wide discussion
is carried out in order to identify the best turbulence model able to describe the energy cas-
cade inside the fluid in a suitable way for acoustic purposes. At first glance, the Reynolds
Averaged Navier Stokes (RANS) turbulence model is used to address the aeroacoustics of
a Horizontal Axis Wind Turbine model scale; the outcomes suggest, in accordance with the
scientific literature, how such technique, although largely used to evaluate airloads is unsuited
for acoustic purposes.

The alternative approach based on the combination of RANS and Large Eddy Simulation
(LES), namely Detached Eddy Simulation (DES) model, is used to detect the noise sources
of the INSEAN E779A marine propeller.

This last is deeply investigated, both axial and inclined (drifted) conditions are assessed.
The outcomes highlight very interesting and almost unknown aspects. The most important is
the effectiveness of the DES simulation in terms of noise sources detection; indeed, it is able
to detect and propagate pressure and velocity fluctuations induced by the turbulence, which
revels themselves as a major noise source. However, effects of reflective CFD boundary con-
ditions turn out to be critic, affecting the fluid dynamic solution in the mid field far from the
blades and wake. A wide discussion concerning this phenomenon is included in the disser-
tation; besides, an uncommon application of the FWH-P is used to characterize acoustically
the CFD/DES reflective behaviour avoiding the evaluation of field contribution.

The DES hydrodynamics of the INSEAN E779A propeller is also used, in this context,
as base of comparison to assess the noise source detection capabilities (concerning the same
device) of a 3D panel method solver, based on the potential flows hypothesis along with the
Bernoulli Equation. Interesting results confirm that such hydrodynamic solution is suited
only for the near field noise detection, in that, just a diameter away from the body the effects
of turbulent flow (not modeled by the potential based code) are of major importance in the
noise generation mechanisms. In conclusion, a test case concerning with a simplified model
of rotating slender blade is used in order to assess the approach proposed in Chapter 4 (i.e.
to directly account with sheet vorticity layers).

Particularly the combined FWHE/FWHE-H formulation, proposed in section 5.5 and
theoretically applicable to face the "end cap" issue, at least in case of potential wakes partially
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embedded inside the permeable surface, is used to extend the FWHE model to the direct

inclusion of the acoustic effect due to a potential wake.
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5.2 Discretization Strategy

A zero-th order boundary element method (BEM) is inhere used to discretize the integral
boundary representation of the FWH-P and the K-Equation reported in Eq. (3.5) and Eq.
(3.8), respectively. The numerical solution is obtained, for both, by dividing the moving
body surface S into quadrilateral panels and assuming p′ to be piecewise constant. To this
aim let us at first consider the FWH-P Equation. Specifically, dividing S into M panels Sj,
for an acoustic observer located outside the data surface in a point indicated by xk, Eq. (3.5)
reads

p′(xk, t) =
M

∑
j=1

Tkj +
M

∑
j=1

Rkj +
M

∑
j=1

Ckj p′j(t− ϑkj) +
M

∑
j=1

Dkj ṗ′j(t− ϑkj) +
M

∑
j=1

Ukj +
M

∑
j=1

Vkj

(5.1)
The function f (t − ϑkj) indicates that f must be evaluated at the emission time (t − ϑ)

whereas the coefficients are defined in the following way

Ckj = −
∫

Sj

{
∇Ĝkj · n

}
ϑkj

dS

Dkj =
∫

Sj

{
∇ϑ̂ · n Ĝkj

}
ϑkj

dS

Tkj = −ρ0

∫
Sj

{
v · nv · ∇Ĝkj

}
ϑkj

dS (5.2)

Rkj = −ρ0

∫
Sj

{
[v · n(1− v · ∇θ)]˙ Ĝkj

}
ϑkj

dS

Ukj = −
∫

Sj

{
ρ u− · n u+ · ∇Ĝ

}
ϑkj

dS

Vkj = −
∫

Sj

{[
ρ u− · n (1− u+ · ∇ϑ)

]
˙ Ĝ
}

ϑkj
dS (5.3)

where Ĝkj = Ĝ(xk, x).
The evaluation of the retarded coefficients in Eq. (5.2) requires the knowledge of the

compressibility delay which is achieved by solving the following equation

|x(t)− y(t− ϑ)|
c0

− ϑ = 0 (5.4)

The solution of Eq. (5.4) represents a typical root-finding problem which in case of
rotational surfaces are find out through an iterative procedure, such as Newton Raphson and
bisection methods. On the contrary, the time delay for translating surfaces is achieved by the
solution of a second order algebraic equation in ϑ.

Similarly, the discretization of the K-Equation, (see Eq. (3.8)), yields

p′(xk, t) =
M

∑
j=1

Bkj ψj(t− ϑkj) +
M

∑
j=1

Ckj p′j(t− ϑkj)

+
M

∑
j=1

Dkj ṗ′j(t− ϑkj) (5.5)
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where ψj denotes
∂p′

∂ñ

∣∣∣
yj

whereas the coefficients are defined as follows

Bkj =
∫

Sj

{
Ĝkj
}

ϑkj
dS

Ckj =
∫

Sj

{
−

∂Ĝkj

∂ñ
+

1
c2

0
Ĝkj

∂

∂t
[v·n(1−v·∇ϑ)]

}
ϑkj

dS

Dkj =
∫

Sj

{
Ĝkj

(
∂ϑ

∂ñ
+ 2

v · n
c2

0

)}
ϑkj

dS (5.6)
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5.3 Analytical Acoustic Singular Solutions for Validation Pur-
poses

This section proposes a methodological approach aimed to assess the reliability of the
FWH-P and the K-Equation.

Such goal is achieved through the use of singular solutions of the wave equation, partic-
ularly monopoles and vortex ring, i.e. a closed series of vortex line.

Particular emphasis is given to the understanding of mechanisms behind the spurious

noise generation (i.e. the acoustic effect of eddies convected through the porous surface,
known as End Cap issue) using the rototranslating vortex ring as noise source.

Besides, the analysis of the porous surface location with respect to the nonlinearities
(particularly through the use of monopoles), allows to draw interesting conclusions about the
effects of their partial inclusion as well as to achieve comparisons between the FWH-P and
K-Equation.

5.3.1 Translating Monopole

The cases study inhere analyzed concern the acoustic pressure comparison between a sin-
gle translating monopole, (see Chapter 2.4 for theoretical details), embedded by a permeable
surface.

As specified in Appendix A.3.1 and A.3.2, the Eqs. (3.5) and (3.8), i.e. the FWH-P and
K-Equation respectively, may be tailored for both a translating or rototranslating permeable
surface; thus, both configurations are here assessed in order to prove the consistency of the
results. To this aim two spherical porous surfaces moving rigidly and rotating around a
translating monopole are used to reproduce the induced acoustic pressure of the noise source
through the use of the FWH-P solver.

The simple mathematical form of the considered noise source allows to achieve the ana-
lytic expression of the disturbance pressure gradient upon the spherical porous surface , (for
theoretical details see Appendix B.2). Therefore, beside to the outcomes of the FWH-P nu-
merical model, the K-Equation is used to carry out acoustic predictions used as further base
of comparison.

The results concern the acoustic pressure signature in the time domain for observers
which are translating rigidly with the monopole and comparisons based on the directivity
pattern.

5.3.1.1 Analysis of Surface Kinematics

The following results highlight the capability of the FWH-P to reproduce the acoustic
pressure induced by the monopole independently on the kinematics of the porous surface.

The investigated layout is shown in Fig. 5.1; it depicts a translating monopole embedded
by a rototranslating spherical porous surface. Besides, the position of microphones is listed in
tables 5.1 and 5.2 . The noise source is located in the origin of the axis and characterized by
a pulsating frequency ωp= 340 rad/s. The thermodynamic conditions of the fluid at rest are
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FIGURE 5.1: Spherical porous surface embedding a monopole;
contours of instantaneous disturbance pressure

those identified by the air temperature T = 15 C◦ to which correspond a density ρ = 1.225
kg/m3 and a sound speed c0 = 340 m/s, thus resulting in a wave number k = ωp/c0 = 1.

Near Field Microphones

Name x[m] y[m] z[m]
Obs 1 0.0 2.0 0.0
Obs 2 0.0 0.0 2.0
Obs 3 0.0 -2.0 0.0
Obs 4 0.0 0.0 -2.0

TABLE 5.1

Far Field Microphones

Name x[m] y[m] z[m]
Obs 5 0.0 200.0 0.0
Obs 6 0.0 0.0 200.0
Obs 7 0.0 -200.0 0.0
Obs 8 0.0 0.0 -200.0

TABLE 5.2

Moreover, the velocity translation is set to v0 = 170 m/s which corresponds to an
advancing Mach number equal to 0.5 whereas the angular velocity of the rototranslating
permeable surface is chosen equal to the pulsation ωp of the monopole.

It is worth to note that in order to keep the subsonic condition, the radius of the porous
surface is limited to be less then one meter, and is set to 0.45 m. On the contrary the translat-
ing porous surface does not require any kinematic condition on the radius; however in order
to be consistent with the rototranslating solution, it is set to 0.45 m. Figures 5.2 to 5.5 show
the comparison between the solutions carried out through the application of potential com-
pressible flows theory along with the Bernoulli Equation and the acoustic pressure provided
by the FWH-P as function of non dimensional time t̄ = (t/2π)ωp. Particularly, the FWH-P
outcomes refer to rototranslating and translating porous surface, here indicated by FWH-P-R
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and FWH-P-T, respectively, for the near-field microphones listed in tab 5.1. Similarly, Figs.
5.6, to 5.9 show the same comparison for the far-field microphones listen in tab 5.2.

For the sake of conciseness, from here on the acoustic solution obtained by applying the
potential flows theory combined with the Bernoulli equation will be referred as Bernoulli
solution and used as baseline for the comparisons.
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FIGURE 5.3: Translating monopole, kinematics of the permeable
surface analysis. Acoustic pressure at Obs 2

The agreement between the Bernoulli solutions and the outcomes of the FWH-P model,
both for translating and rototranslating permeable surfaces are in excellent agreement. This
confirms that, when the all noise sources are embedded inside the porous surface, i.e. the
monopole and the nonlinear induced flow field, the predicted acoustic pressure by the FWH-
P approach is in excellent agreement with the Bernoulli solution.
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surface analysis. Acoustic pressure at Obs 4
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FIGURE 5.7: Translating monopole, kinematics of the permeable
surface analysis. Acoustic pressure at Obs 6
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FIGURE 5.8: Translating monopole, kinematics of the permeable
surface analysis. Acoustic pressure at Obs 7
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5.3.1.2 Comparison Between FWH-P and the K-Equation

The purpose of this section is twofold: i) to validate the K-Equation ii) to assess the
differences with the FWH-P approach on the same case study.

Particularly the effect of the permeable surface location is assessed in order to understand
the behaviour of two solvers when the radius of the spherical surfaces shrinks toward the
acoustic emitter (i.e. the monopole). To this aim the radius of the permeable surface ranges
between 0.45 m to 0.112 m going trough 0.225 m.

5.3.1.2.1 The FWH-P Solution

Figs. 5.10 to 5.13 show the comparison between the Bernoulli reference solution and
the acoustic pressure obtained for the near field observers listed in Tab. 5.1 by the FWH-P
solver, as function of the radius of the porous surface.

Since the solution is not dependent on kinematics of the porous surface, the choice,
arbitrary in principle, is on the rototranslating configuration. It goes without saying that the
FWH-P solver provides excellent results for all the near field microphones, independently on
the radius of the porous spherical surface, as shown in Figs. 5.10 to 5.13.
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FIGURE 5.10: Translating monopole, effect of the FWH-P sur-
face radial dimension. Acoustic pressure at Obs 1

Akin to the near field microphones, Figs. 5.14 to 5.17 show the comparison for the far
field microphones listed in Tab. 5.2. Also for these microphones the agreement between the
Bernoulli and FWH-P solutions is excellent and practically independent on the radius of the
spherical porous surface.

In order to obtain information on frequency content of the predicted acoustic signature,
the directivity pattern of the monopole is reported in Figs.5.18 and 5.19 for observers located
2 m away in radial direction from the monopole in the plane yz. Fig 5.18 depicts the di-
rectivity pattern at the frequency ωp which shows an excellent agreement with the Bernoulli
reference solution. On the contrary, Fig. 5.19 shows the directivity pattern at frequency 2ωp

(incidentally, it is only due to the non linear flow field induced by the monopole) which is
not well reproduced. As a matter of fact, Fig. 5.19 shows an overestimation of the directivity
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pattern at that frequency, that, even in the better case (i.e. the largest surface) is an order of
magnitude greater than the Bernoulli prediction.

This behaviour get worst as the permeable surface goes near to the monopole. Such
results suggest that quadrupole contributions neglected outside the porous surface, also in
the case of the largest one, are not negligible 2.

The effect is an overestimation of the FWH-P outcomes at frequency 2ωp which would
be balanced by the inclusion of the quadrupole source term around the porous surface in a
way to embed all the nonlinear flow field. This statement is very similar to the definition of
spurious noise although it is usually associated to the acoustic effects of eddies convected
through the permeable surface.

5.3.1.2.2 The K-Equation Solution

The same analysis described in section 5.3.1.2.1 is hereafter carried out through the use
of the K-equation, (see section 3.3 for theoretical details). Akin to the FWH-P solution, the
kinematic of the porous surface is rototranslating.

Figs. 5.20 to 5.23 and Figs. 5.24 to 5.27 show the acoustic pressure comparisons for the
near and far field microphones listed in Tabs. 5.1 and 5.2, respectively, when the acoustic
surface approaches the monopole source. For all observers, it is clear that the solution related
to the larger porous surface is in excellent agreement with the reference signal provided
by the Bernoulli Equation, whereas (differently to the FWH-P solution), approaching the
monopole, the acoustic surface is no longer able to correctly reproduce the acoustic signal of
the acoustic emitter.

Such results are not surprising, in that, the K-Equation only gives physical consistent
predictions when the permeable surface is placed in a linear zone of flow field, i.e. where

2The FWHE recasts the continuity and momentum equations in terms of monopoles and dipoles over the
permeable surface and qudrupoles into the field outside it. Hence, it provides a reinterpretation of the fluid
dynamic flow field (for example that induced by the monopole) in terms of these sources. From this standpoint
talking about quadrupole contributions when a monopole is the source of noise makes sense.
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= 2

p′, ∂p′/∂n and ∂p′/∂t satisfy the wave equation. It proof, in accordance with the literature
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FIGURE 5.20: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 1
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FIGURE 5.21: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 2
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FIGURE 5.22: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 3
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FIGURE 5.23: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 4
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FIGURE 5.24: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 5

outcomes, the better capability of the FWH-P approach to include non linear noise contri-
butions when the permeable surface is located where flow nonlinearities are present (i.e. the
quadrupole contribution are not fully embedded inside the permeable surface).

This feature will turn out to be of major importance when the noise source detection
is made through a Finite Volume Code; in that case, as we will see later on, to be able to
locate the porous surface as close as possible to the noise sources represents a considerable
numerical advantage.

Let us now consider the directivity pattern. Akin to the FWH-P solution Fig. 5.28 shows
at frequency ωp an excellent agreement with the Bernoulli solution even in case of the tightest
porous surface. On the contrary, the K-Equation predicts a directivity pattern at frequency
2ωp which magnitude increases when the permeable surface approaches to the monopole,
yielding an important overestimation of the Bernoulli solution. Although similar to the out-
comes of the FWH-P, such behaviour, in case of the K-Equation, is more pronounced (see
Figs. 5.19 and 5.29).
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FIGURE 5.25: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 6
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FIGURE 5.26: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 7

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n

c
e

 p
re

s
s
u

re
 [

P
a

]

t
-
   [non dimensional time]

Bernoulli solution
K-Eq. 0.45R

K-Eq. 0.225R
K-Eq. 0.112R

FIGURE 5.27: Translating monopole, effect of the K-Equation sur-
face radial dimension. Acoustic pressure at Obs 8
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FIGURE 5.28: Comparison between K-Equation and Bernoulli di-
rectivity pattern at the nondimensional frequency ω

ωp
= 1

The genesis, as in the case of the FWH-P, is due to the incomplete inclusion of the non-
linear flow field features induced by the monopole, as widely discussed in section 5.3.1.2.1.
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FIGURE 5.29: Comparison between K-Equation and Bernoulli di-
rectivity pattern at the nondimensional frequency ω

ωp
= 2
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Differences in the magnitude between the FWH-P and the K-Equation predictions, at
frequency 2ωp, are instead explained following the dissertation in Appendix A.1.1; in that
appendix, the theoretical interpretation of the difference between them, in terms of neglected
the quadrupoles, is given. Essentially, it comes out that the K-Equation neglects a larger
amount of noise sources respect to the FWH-P whenever the permeable surface is located
where flow nonlinearities are present. Such difference, thus, explains the different predictions
between the two acoustic models (i.e. FWH-P and the K-Equation) when the permeable
surfaces approach to the monopole.
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5.3.1.3 Effect of External Noise Sources on the FWH-P Solution

Let us now consider the layout depicted in Fig. 5.30 where a monopole placed outside
the acoustic surface, at a point of coordinates x = 0.0 m, y = 0.0 m, z = −2.0 m, is
moving with the same velocity and flow condition of the previous one. The acoustic pressure
predictions for an observer located in the origin of axis (i.e. inside the porous surface) and
for the obs1 listed in tab. 5.1 is carried out with the FWH-P solver and compared with the
Bernoulli reference solution.

FIGURE 5.30: Monopole out of the porous surface; contours of
instantaneous disturbance pressure

Fig. 5.31 depicts the acoustic pressure comparison in case of the microphone inside the
porous surface; according with the findings of Chapter 3, the surface contributions due to an
external noise source give rise, for an internal observer, to a pressure signature which has
the opposite value of that induced by the field contribution. Therefore, the acoustic pressure
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FIGURE 5.31: Acoustic pressure for an internal observer due to
the external monopole
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(for any observer) inside the porous surface is exactly that which would be balanced by the
quadrupole field contribution.
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FIGURE 5.32: Acoustic pressure for an external observer due to
the external monopole

Such property is useful to verify that the porous surface is located in a manner to include
all the flow field noise sources in those application involving complex flow body interactions.
Another important property of the porous approach is shown in Fig. 5.32 which depicts
the acoustic pressure induced by external noise source on external observer. The acoustic
pressure, for this observer is null. This condition is verified for any observers outside the
porous surface, for which, noise sources outside the permeable surface would give their
contribution, if were included, only through the quadrupole source term.

This also implies that in case of external noise sources the combination of monopole and
dipole distributions upon the porous surface balance, giving rise to a zero contribution to the
external acoustic pressure.
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5.3.2 Rototranslating Monopole

Hereafter the capabilities of the FWH-P approach to replicate signals from rototranslating
sources of noise is assessed through the use of a spinning monopole. To this aim the acoustic
reference signal and the input data over the porous surface are provided by the theoretical
model described in section 2.4, based on the potential flow theory for compressible flow and
the Bernoulli Equation. The test case is characterized by a monopole rotating around the
z axis and translating with three different velocity directions. The monopole is located at
x = 0.0 m, y = 0.2 m, z = 0 m and is spinning around the z axis with an angular velocity
ωz = 340 rad/s whereas the translating velocity has a magnitude equal to |V0| = 170 m/s
and is directed in a such way to form an angle with the z axis of 0◦, 30◦ and 60◦ in the zy
plane.

The flow condition are characterized by air at rest at the temperature of 15 C◦ with a
density ρ = 1.225 kg/m3 and a sound speed c0 = 340 m/s.

Akin to subsection 5.3.1, the pulsating frequency is set equal to ωp = ωz to which
corresponds a characteristic wave number k = 1 whereas a cylindrical porous surface is
used to reproduce the acoustic pressure induced by the rototranslating monopole through the
FWH-P solver.

The cylinder is centered at the origin of the reference system; it has a radius of 0.45 m and
a length of 2 m. The acoustic porous surface may be either translating and rototranslating,
therefore input data over the surface must be compliant with its kinematics.

Figure, 5.33 depicts a sketch of the monopole, whereas Fig. 5.34 shows the configuration
under analysis in which it is embedded inside the cylindrical porous surface.

FIGURE 5.33: Sketch of the rotating monopole

Figures 5.35 to 5.38 depict the acoustic pressure comparison between the Bernoulli so-
lution and that provided by the FWH-P solver for both kinematics of the acoustic surface,
translating and rototranslating. The former is referred as FWH-P-T whereas the latter by
FWH-P-R; besides, the solutions concern the near field observers listed in Tab. 5.1. Simi-
larly, Figs. 5.39 to 5.42 show the same comparison for the acoustic observers located in the
far field and listed in Tab. 5.2.
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FIGURE 5.34: Cylindrical porous surface embedding a rotating
monopole, contours of pressure
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FIGURE 5.35: Rototranslating monopole, acoustic pres-
sure comparison at Obs 1
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FIGURE 5.36: Rototranslating monopole, acoustic pres-
sure comparison at Obs 2

The agreement between the Bernoulli reference solution and the acoustic pressure pro-
vided by the FWH-P in both configuration, translating and rototranslating is excellent for all
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FIGURE 5.37: Rototranslating monopole, acoustic pres-
sure comparison at Obs 3
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FIGURE 5.38: Rototranslating monopole, acoustic pres-
sure comparison at Obs 4
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FIGURE 5.39: Rototranslating monopole, acoustic pres-
sure comparison at Obs 5
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FIGURE 5.40: Rototranslating monopole, acoustic pres-
sure at Obs 6
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FIGURE 5.41: Rototranslating monopole, acoustic pres-
sure comparison at Obs 7
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FIGURE 5.42: Rototranslating monopole, acoustic pres-
sure comparison at Obs 8
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conditions of translation velocity. However, for the rototranslating configuration the FWH-
P formulation is much less computationally efficient, especially at a high Mach number 3.
This condition is essentially due to the compressibility time delay evaluation which in case
of rotating surfaces is more computational expensive. Therefore, whether the data input on
the acoustic surface are suitable for both configuration, the solution for translating acoustic
surface represents the best choice.

3The comment about the computational effectiveness concerns essentially the evaluation of the source-
observer time delay. The rototranslating kinematic of the porous surface entails an iterative backwards roots
finding procedure. On the contrary the case of translating permeable surface allows the analytic evaluation of the
time delay. Hence, the quantification of the effectiveness in terms of computational time cannot be done since it
depends (strongly) on the position of the acoustic observer (the consideration of the computational effectiveness
is qualitative)
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5.3.2.1 Multi Monopoles at High Advancing Speed

In this subsection the behaviour of the FWH-P solver for application involving rotat-
ing noise sources moving with an high advancing ratio, as helicopter rotor configurations is
addressed.

To this aim let us consider five pulsating monopoles, translating at velocity v0 = 180
m/s along a direction inclined of 10◦ respect to the ground and spinning at angular velocity
Ω = 6 Hz with respect to the vertical direction, describing circles of radius 0.2 m.

Referring to the monopole M1 (see Fig. 5.43), each monopole Mk (k = 2, 3, 4, 5) is
placed on a horizontal plane 0.2 m away from to the previous one and is shifted 72◦ around
the vertical axis (counterclockwise) respect to the azimuthal position of preceding point-
source (coordinates of the sources are listed in Tab.5.3). Density and sound speed of the
fluid medium are ρ0 = 1.225 kg/m3 and c0 = 340 m/s respectively, whereas the pulsating
frequency is equal to Ω. Following the velocity-potential theory for compressible flows, the
pressure disturbance and the surface data for the FWH-P formulation, are evaluated by the
Bernoulli Equation at given observer positions. To this aim, a cylindrical surface 5.67 m
long, co-axial with the direction defined by v0, having radius 1 m with end-caps placed in
the horizontal plane, is taken as permeable surface S. Such a surface is assumed to translate
rigidly at velocity v0. Figure 5.44 depicts the contour-plot of the monopoles induced-pressure
pulses upon S at t = 0, whilst Figs. 5.45, 5.46, 5.47 propose the comparison between the
Bernoulli-based signals and those predicted by the FWH-P solver at observers (co-translating
at velocity v0) whose coordinates are summarized in Table 5.4. As shown, the agreement
between pressure predictions is excellent. In addition, for a single pulsating monopole that
moves as described above, Fig. 5.48 shows the directivity pattern, in the YZ plane on a
circle of radius 2 m, for the first harmonic of the radiated noise spectrum. As expected, the
agreement is excellent also in this case.

FIGURE 5.43: Sketch of the set monopoles layout.
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FIGURE 5.44: Acoustic porous surface and instantaneous
contour of the induced pressure.

x[m] y[m] z[m]

M1 0.2 2.27 0.4

M2 0.06 1.32 0.2

M3 -0.16 0.12 0.0

M4 -0.16 -1.25 -0.2

M5 0.06 -2.46 -0.4

TABLE 5.3: Sources position.

x[m] y[m] z[m]

Obs1 0.0 4.76 0.84

Obs2 0.0 -476.22 -83.97

Obs3 1.20 0.0 0.0

TABLE 5.4: Microphones position.
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Bernoulli results at Obs1.
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FIGURE 5.46: Comparison between FWH-P and
Bernoulli results at Obs2.
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FIGURE 5.47: Comparison between FWH-P and
Bernoulli results at Obs3.
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FIGURE 5.48: Comparison between noise directivity pat-
terns.
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5.3.3 Vortex Ring, the End Cap Phenomenon

Inside a permeable cylindrical surface S, 1.82 m long with diameter D = 0.75 m, let us
consider a rectangular vortex-ring lying on a horizontal meridian plane, moving with axial
velocity of 100 m/s and spinning around the cylinder axis at an angular velocity of 37.5 rad/s.
The surface S is assumed to be rigidly connected to the vortex-ring whose internal length is
1.57 m. A sketch of this configuration is depicted in Fig.5.49: the observers Obs1, Obs2
and Obs3, whose coordinate are listed in Tab 5.5 are co-translating with S and placed in a
plane normal to the cylinder axis, at a radial distance D from it. The pressure disturbance
induced by the vortex-ring, as long as the input data on the FWH-P surface, are computed by
the Bernoulli Equation combined to the Biot-Savart law.

FIGURE 5.49: Sketch of the porous surface crossed by a potential vortex and the acous-
tic observers layout .

x/D y/D z/D
Obs1 1.0 0.0 1.0
Obs2 1.0 0.0 -2.0
Obs3 1.0 0.0 -3.0

TABLE 5.5: Microphones non dimensional position with
respect to the porous surface diameter, vortex ring analysis.

In view of application to rotary-wing devices (propellers or rotors) for which, unavoid-
ably, the downstream closure intersects the wake vortices, it is useful to investigate what
happens in terms of noise prediction when the acoustic surface encloses only a portion of
the vortex-ring. To this aim, Fig. 5.49 shows the contour plot of the pressure upon S in-
duced by a vortex-ring C, 3 m long, whose filaments parallel to the cylinder axis intersect the
closure section (outflow disk). To prevent unrealistically large pressure and velocity distribu-
tions over the outflow disk, a suitable vortex core is used; here, a Rankine-type modeling is
adopted. At a first glance, the pressure disturbance at observers located outside S is caused by
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FIGURE 5.50: Sketch of the vortex cut across the outflow disk.

only the three vortex filaments inside the cylinder, whereas, those outside it, do not provide
any acoustic contribution via the permeable surface integration in that they act as quadrupole
sources of sound. This statement does obey the rules outlined by the used of generalized
functions in the derivation of the FWH-P equation but, theoretically, is valid as long as the
external sources of noise do not lay on the permeable surface (differently, note that the pres-
ence of sources of sound placed on the interior side of the acoustic surface is acoustically
admissible). The problem herein examined is inherently out of this assumption because of
the penetration between vortex and acoustic surface. To this aim figs 5.51, 5.52 and 5.53
show the comparison between the Bernoulli-based and the FWH-P acoustic pressure with
and without the inclusion of the outflow disk at obs1, obs2 and obs3, respectively. The re-
moval of the effect of the outflow disk is one of the most adopted practice shown in literature
to face the highlighted End Cap issue. Albeit physically inconsistent the solution at obs1 pro-
vide a good estimation of the Bernoulli solution in both configuration with and without the
inclusion of the outflow disk. The good quality of predictions at upstream observers is only
due to the weak effect of downstream sources on upstream pressure field. Indeed, the FWH-P
acoustic pressure for the acoustic observers obs2 and obs3 depicted respectively in figs. 5.52
and 5.53 badly reproduce the Bernoulli solution in both open or closed configuration when
the observers are located near to the outflow disk. The issue may be overcome by splitting
C into two closed contributions of the same intensity, Ci inside and Co outside the acoustic
surface, respectively, separated by an infinitesimal axial distance ε (see Fig. 5.50 for clarity).
The comparison between the FWH-P and Bernoulli pressure signals for ε = 6.2510−3[m]

and only relative to Ci are shown in Figs. 5.54 and 5.55. Akin to the monopole case-studies
the agreement is excellent, thus confirming the capability of the FWH-P approach to well
capture the pressure disturbance due to the sources of noise enclosed by the acoustic surface,
for listeners located outside S.
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Moreover, Figs. 5.56, 5.57 and 5.58 show a very good agreement between FWH-P added
to the pressure induced by Co and Bernoulli reference signals (namely outer contribution in
the figures) 4, for the obs1 , obs2 and obs3 respectively. By letting ε go to zero, the use of a
vortex core modeling is needed and converged results are expected. However, it is found that,
for values less than a threshold ε̂ (here equal to 6.2510−3[m]), the closer Ci and Co are to the
outflow disk, the higher the discrepancies of FWH-P acoustic predictions. Such a behaviour
is due to the physically inconsistent fact that any vortex core modeling does not comply with
the wave equation (or the Laplace equation for the incompressible case as herein).

It is also worth to note that the FWH-P solutions without the outflow disk (either in case
of the vortex split into Ci and Co or in the original configuration) coincide, proving once
again, the effectiveness of the splitting procedure (see the green line in Figs. 5.52,5.57 and
5.53,5.58 relative to the Obs 2 and Obs 3, respectively). This is reasonable, in that, the union
of Ci and Co, being them very close (ε = 6.2510−3[m]), is "seen" by the other two remaining
portion of the porous surface (i.e. the inflow disk and the mantle of cylinder) as the original
vortex. On the contrary, in case the outflow disk is included, the outcomes of the acoustic
model arising from the split vortex (into the Ci and Co parts around the outflow), or in the
original configuration going trough the outflow, are very different (see the blue line in Figs.
5.52, 5.57 and 5.53,5.58 for the Obs 2 and Obs 3, respectively).
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FIGURE 5.51: Vortex crossing the outflow disk, compari-
son between FWH-P and Bernoulli solutions at Obs1.

Such behaviour highlight the generation of spurious noise, in that, in principle, the in-
clusion of the outflow disk implies that only the acoustic effect of the inner vortex portion
is taken into account (the influence of the external portion via the porous surface is null).
Hence, if none spurious noise generation mechanism were present, both FWH-P outcomes
(relative to the vortex split or not), would have been the same also in the presence of the
outflow.

4The so called "outer" contribution represents the induced pressure evaluated at the considered observer
through the potential flow theory along with the Bernoulli Equation. It concerns with the closed (in order to
be compliant with the Helmholtz’s theorems) vortex outside the porous surface.
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FIGURE 5.52: Vortex crossing the outflow disk, compari-
son between FWH-P and Bernoulli solutions at Obs2.
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FIGURE 5.53: Vortex crossing the outflow disk, compari-
son between FWH-P and Bernoulli solutions at Obs3.
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FIGURE 5.55: Comparison between FWH-P and
Bernoulli solutions at Obs3 relative to the Ci vortex.
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FIGURE 5.56: Vortex split around to the end cap. Com-
parison between FWH-P and Bernoulli solutions at Obs1.
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FIGURE 5.58: Vortex split around to the end cap. Com-
parison between FWH-P and Bernoulli solutions at Obs3.
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5.4 Assessment of the Permeable FWHE

In the following the effectiveness of the Permeable FWHE (namely FWH-P) to account
with the noise prediction of rotary wing configurations is assessed; both simplified test cases
and devices of industrial interest are investigated. Specifically, different aero/hydrodynamic
solvers are used either to provide the velocity and pressure upon the porous surface and to
carry out the disturbance pressure used as baseline for comparison with the FWH-P acoustic
solutions.

5.4.1 Slender Blade Propeller by 3D Panel Method Aerodynamics

The purpose of this subsection is the assessment of the FWH-P equation in case of noise
generated by rotating bodies moving through the flow. Besides, the acoustic effects of the
End Cap on realistic configurations are investigated in order to extend the suggestion ob-
tained in the case of a single free-divergence vortex ring (see section 5.3.3). Specifically,
the aeroacoustic behaviour of a simplified propeller model, composed of a single rectangular
blade 1 m long, with a linear twist distribution ranging from 55◦ (at the root) to 19◦ (at the
tip), constant chord c = 0.1 m, root cut-off of 0.2 m and NACA 0012 airfoil sections, is
investigated.

The operating conditions are defined by the horizontal advance ratio J = U/nD equal to
0.75 and three different angles of inclination (in the vertical plane) of the translating velocity,
(0◦, 15◦, 30◦). Symbol n = 4.77 Hz denotes the blade angular velocity, D = 2 m indicates
the blade diameter, whereas U represents the magnitude of the advancing velocity.

The simulation is carried out with air at rest, at a temperature of T = 15 C◦, which
corresponds a density ρ = 1.225 kg/m3 and a speed of sound C0 = 340 m/sec.

The permeable surfaces used for aeroacoustic computations are cylinders with generatrix
line parallel to the direction of the advancing speed, rigidly translating with the propeller hub.
The pressure disturbances at observers co-moving with the propeller hub, as well as pressure
and velocity field distributions upon the permeable surfaces, are evaluated by combining
a fully-validated panel method solver with the Bernoulli Equation. Such solution is valid
under the assumptions of unsteady, incompressible, inviscid and irrotational flows around
three-dimensional lifting bodies, herein extended to the analysis of propellers in arbitrary
motion (see section 2.2).

5.4.1.1 Axial Motion

The condition of axial motion (i.e. characterized by a rotational and advancing velocity
laying on the same direction) of the above described single blade configuration is hereafter
investigated.

Particularly, the following two acoustic analysis are carried out:
i) a case in which the blade and wake are fully embedded inside the porous surface

depicted in Fig. 5.59
ii) a condition in which the potential wake downstream of the rotor crosses the outflow

disk (shown in Fig. 5.60) giving rise to the so called End Cap issue. In the following, such
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aspect is deeply investigated because it represents one of the most concerning aspect in the
application of the permeable configuration for which a debate is still open.

5.4.1.1.1 Fully Embedded Condition

The layout is characterized by a cylindrical porous surface able to completely embed the
blade and five turns of prescribed wake; the axial position of the inflow disk upstream the
rotor is x = −1.5 m, y = 0 m, z = 0 m whereas it has axial and radial dimension of 10 m
and 2 m, respectively. The location of the acoustic observer is listed in Tab. 5.6.

FIGURE 5.59: Blade and wake embedded inside the porous surface.

FIGURE 5.60: Potential wake interacting with the porous surface, high-
light of the End Cap issue.
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Figures 5.61, 5.62, 5.63 and 5.64 concern the comparison between the FWH-P approach
and the Bernoulli reference signals.

x[m] y[m] z[m]

Obs1 -4.0 0.0 4.0

Obs2 0.0 0.0 4.0

Obs3 4.0 0.0 4.0

Obs4 8.0 0.0 4.0

TABLE 5.6: Microphones position for the mono blade case.

The agreement is excellent for all observers, thus demonstrating, once again, the capa-
bility of the porous approach to replicate acoustic signals generated by moving sources of
sound along with the non-linear induced flow field.
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FIGURE 5.61: Fully embedded slender blade and wake, acoustic
pressure comparison between FWH-P and Bernoulli at Obs1.

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n
c
e
 P

re
s
s
u
re

 [
P

a
]

t
-
   [non dimensional time]

Bernoulli FWH-P

FIGURE 5.62: Fully embedded slender blade and wake, acoustic
pressure comparison between FWH-P and Bernoulli at Obs2.
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FIGURE 5.63: Fully embedded slender blade and wake, acoustic
pressure comparison between FWH-P and Bernoulli at Obs3.
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FIGURE 5.64: Fully embedded slender blade and wake, acoustic
pressure comparison between FWH-P and Bernoulli at Obs4.

5.4.1.1.2 End Cap Condition

The analyzed configuration is characterized by a cylindrical porous surface embedding
the blade and only a portion of the wake; the axial position of the inflow disk upstream the
rotor is x = −1.5 m, y = 0 m, z = 0 m whereas it has axial and radial dimension of 6.5 m
and 2 m, respectively.

The intersection of the wake with the outflow disk give rise to the End Cap condition
depicted in Fig. 5.60. Acoustic spurious effects due to such phenomenon are related, as
already said in Chapter 3, to the effects induced by the omission of the field contribution of
the FWHE. Essentially, when eddies are convected through the outflow disk of the porous
surface, the acoustic model give rise to spurious noise contribution; such effect would be
canceled out by the volume integral of the FWHE if it were extended over the vortexes
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portion outside the permeable surface. Thus, once the field contribution is neglected, the
balancing effect is not longer present.

Hereafter, the main phenomena arising by the occurrence of the end cap are highlighted.
The interaction of the potential wake, which is a thin vorticity layer released from the

trailing edge of a lifting body, (numerically described by a finite distribution of doublets
layers) produces the following two phenomena when intercepts the closure section of the
porous surface:

• the flow field induced on the porous surface by the thin vorticity layer, partially embed
inside it, is not physical consistent with the wave operator (it acts as an open vortex,
violating the Helmholtz’s second theorem). Therefore, the resulting acoustic pressure
carried out by the FWH-P approach is related with a fictitious noise sources distribution
over the permeable surface which in turns produces spurious noise.

• aerodynamics based on the velocity potential inherently rises numerical issues when
the source of noise (the potential wake) and the data surface (the closure disk) get too
closer. Such phenomenon does not allow to resolve correctly the aerodynamic over
the outflow disk (it would require a very fine discretization). Usually, for aero/hydro-
dynamic applications, the Rankine-type vortex-core is used to avoid spikes of the in-
duced velocity; however, acoustically it does not comply with wave equation.

Keeping in mind these issues, our purpose is thus to evaluate some possible solutions of
the problem in the framework of potential vortex. The above considerations, in addition to
the findings of section 5.3.3, suggest as possible way to face the End Cap issue the cutting of
the wake (composed by an unsteady discrete space distribution of vorticity layer numerically
described by doublets panels) over the intersection with the outflow disk (it results in splitting
the panels in two different around the outflow). The two resulting parts of the divided panels
keep the same ∆φ (i.e. the intensity of the doublets) they had before the split at the considered
time. In the following it will be shown how such cut does not affects the aerodynamic solution
if the gap between the two resultant panels is negligible with respect to the wake dimension.

Such procedure avoids the problem related with the violation of the Helmholtz’s theorem
(all noise sources inside the porous surface are acoustically physically consistent). The effect
of proximity source-observer, i.e wake panels-outflow disk is also avoided, at least beyond a
certain gap ε. Figures 5.65 and 5.66 show the result of the proposed procedure. The distance
between the internal and external wake panels has here the analogous meaning of the ε dis-
tance considered in the section 5.3.3 such that when ε → 0 the original wake configuration
is obtained. Although this, the wake cutting procedure turn out to be trickier than the sim-
ple vortex ring due to its helicoidal shape. A possible solution to achieve the goal, avoiding
any geometrical modification of the original wake, is to remove a row of panels where the
intersection wake-outflow disk occurs.

In the following, in order to assess the capability of the proposed technique two ε dis-
tances are analyzed, the larger is obtained cutting out two rows of panels whereas the shorter
removing only one row.
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Let us at first consider the shorter ε, Fig. 5.67 shows the comparison between the
Bernoulli and the FWH-P acoustic signature relative to the blade and the inner part of the
wake. The signals are in good agreement even if it is not as good as that obtained with the
fully embedded configuration. This is probably due to the fact that such ε is not wide enough
to avoid the aforementioned interaction phenomena.

In order to confirm such suggestion Figs. 5.68 and 5.69 show the acoustic pressure com-
parison between the Bernoulli signal relative to the external portion of wake and that arising
by the FWH-P (obviously also in this case considering as noise source only the external
wake) for the two different distances ε.

Particularly Fig. 5.68 shows the comparison of the acoustic pressure provided by the
FWH-P solver and by the Bernoulli Equation for the Obs2. Such comparison concerns the
closest ε and two different discretization strategies of the outflow disk.

The finest discretization provide better results with respect to the coarser, (the physical
result should be a null acoustic pressure for the FWH-P approach since the noise sources are
outside the porous surface). However, although quite low with respect to that predicted by
the Bernoulli outcome, both the FWH-P solutions are unacceptable.

Differently, the results shown in Fig. 5.69, referring to the larger gap, depict an acoustic
pressure which is an order or magnitude lower with respect to that obtained with the closest
gap.

In view of this, the shorter ε turn out to be not suited, essentially because not able to
avoid numerical uncertainties in the fluid dynamic data over the permeable surface (due to
the inaccurate resolution of the singularities at the outflow disk).

Based on the foregoing, the following results refer to the configuration having the larger
ε.

Figure 5.70 shows, for the Obs 2, the comparison between the Bernoulli solution relative
to blade and wake (the original configuration without any cut), the solution with the gap ε and
the FWH-P outcome summed with the outer contribution (i.e. the acoustic pressure induced
by the external part of the wake at the considered acoustic observer, evaluated through the
Bernoulli Equation).

The agreement between all the three solutions is excellent, thus proving that such proce-
dure represents a viable approach to avoid the End Cap issue.

Furthermore, Fig. 5.71 shows for the same observer the pressure signals comparison
predicted by the FWH-P with and without the inclusion of the outflow disk, indicated by
FWH-P w/o and FWH-P, respectively, against the Bernoulli reference solution. In the same
figure is also shown the comparison with respect to the solution obtained by summing the
FWH-P closed configuration and the outer contribution (obviously predicted through the
Bernoulli Equation).

The open configuration (i.e. that without the outflow disk), at least for this observer seems
to provide better results in terms of wave shape. However, the mean value of the acoustic
signature is not correctly reproduced. Similar considerations may be drawn for the Obs1,
reported in Fig. 5.72; both the open and closed solution well reproduce the wave shape of
the reference signal. Also for this observer differences in the mean value are present.



5.4. Assessment of the Permeable FWHE 89

On the contrary, very different consideration may be drawn for the observers Obs3 and
Obs4 reported respectively in Figs. 5.73 and 5.74.

In this case, both the open and closed configuration provide a bad estimation of the acous-
tic pressure.

FIGURE 5.65: Segmentation of the wake crossing the outflow
disk, the End Cap issue.

As in the case study of the vortex ring (see section 5.3.3), the spurious noise contributions
due to the end cap are strongly related with the position of the observers with respect either
to the noise sources and the porous surface. Particularly, such effects are negligible for
observers upstream the rotor (where the intensity of the singularities over the closure disk
vanish) whereas are maximum near and going behind the outflow disk for both, open and
closed configurations of the porous surface. It means that, for these observers, leave noise
sources outside the acoustic surface or leave it open, thus neglecting the effect of hypothetical
surface S+, such that S

⋃
S+ would enclose all noise sources, produces badly estimation of

the acoustic pressure.

FIGURE 5.66: Enlargement of the wake interruption across the
outflow disk.
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FIGURE 5.67: Comparison between FWH-P and Bernoulli solu-
tions relative to the inner contribution at Obs2.
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FIGURE 5.68: FWH-P vs. Bernoulli solution (only external
wake); case of the closest wake cut (ε) across the outflow disk.
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FIGURE 5.69: FWH-P vs. Bernoulli solution (only external
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FIGURE 5.70: FWH-P summed to the outer contribution vs.
Bernoulli solution relative to the whole and cut wake at Obs2.
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FIGURE 5.71: Comparison between FWH-P, FWH-P without the
outflow disk and the Bernoulli solution at Obs2.
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FIGURE 5.72: Comparison between FWH-P, FWH-P without the
outflow disk and the Bernoulli solution at Obs1.
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FIGURE 5.73: Comparison between FWH-P, FWH-P without the
outflow disk and the Bernoulli solution at Obs3.
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FIGURE 5.74: Comparison between FWH-P, FWH-P without the
outflow disk and the Bernoulli solution at Obs4.

5.4.1.2 Inclined Inflow Condition

The inclined condition is inhere addressed (blade and wake in case of θ = 30◦ are de-
picted in Fig 5.75). For an advancing speed inclined of θ = 15◦ downward, Figure 5.76 de-
picts the lateral view of the pressure map upon S enclosing the blade and the potential wake
convected downstream, here limited to three revolutions. Making reference to observers po-
sition shown in Fig. 5.76, whose coordinates in a frame of reference centered at the hub
are given in Table 5.7, Figs. 5.77, 5.78 and 5.79 compare the Bernoulli-based converged
predictions with those carried out by the FWH-P for the inclined advanced speed condition
of θ = 30◦, from the Obs1 to Obs3 respectively. As expected, the agreement is very good.
Similarly, Figs. 5.80, 5.81 and 5.82 show a very good agreement for the case of inclined
advanced speed condition θ = 30◦.
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FIGURE 5.75: Front view of the blade operating in inclined
inflow condition - ϑ = 30◦.

FIGURE 5.76: Side view of the blade, wake, acoustic surface
and observers.

x/D y/D z/D

Obs1 -3.0 0.0 4.0

Obs2 0.0 0.0 4.0

Obs3 3.0 0.0 4.0

TABLE 5.7: Nondimensional microphones position.
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FIGURE 5.77: Comparison between FWH-P and Bernoulli results
in oblique-flow at Obs1 - 15◦.
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FIGURE 5.78: Comparison between FWH-P and Bernoulli results
in oblique-flow at Obs2 - 15◦
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FIGURE 5.79: Comparison between FWH-P and Bernoulli results
in oblique-flow at Obs3 - 15◦.
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FIGURE 5.80: Comparison between FWH-P and Bernoulli results
in oblique-flow at Obs1- 30◦
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FIGURE 5.81: Comparison between FWH-P and Bernoulli results
in oblique-flow at Obs2- 30◦.
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5.4.2 Horizontal Axis Wind Turbine by RANS Aerodynamics

This section shows the application of the FWH-P technique to rotary wing devices whose
fluid dynamic data over the porous surface are given by a Computational Fluid Dynamic
(CFD) solver.

Specifically it concerns the aeroacoustic predictions of a three bladed Horizontal Axis
Wind Turbine model scale, operating in axial onset uniform flow condition. Aerodynamic
input data upon the porous surface, as well as the disturbance pressure reference used as
baseline for comparisons are provided by a RANS simulation using the Spalart and Allamaras
one equation closure model.

The accuracy of CFD aerodynamic results has been proven in [64] through comparisons
with experimental data that include blade airloads and downstream velocity field within a
5-diameter length domain behind the rotor disk.

Geometrical and operating conditions are here briefly given.
The rotor diameter is D = 0.9m whereas the tip-speed ratio λ = ωD/2 U∞ = 6 in

which ω = 133.33 rad/s and U∞ = 10 m/s indicate the angular velocity of the rotor and
the freestream velocity, respectively. The Reynolds number based on the tip chord length is
Re = 1.036 105.

Aerodynamic data are carried out from a computational grid composed of many patched
and partially overlapped structured blocks, with those closer to the blades assuring fine res-
olution of the wake portion closer to the tip and root, (see Fig 5.83). More details may be
found in [64].

As widely discussed in Chapter 3 to obtain a completely equivalence between the FWH-
P based acoustic solution and the field disturbance pressure provided by the fluid dynamic
solver all the quadrupole source term must be embedded inside the porous surface. In order
to locate the quadrupole noise sources Fig. 5.84 depicts the field distribution of the L2 norm
of the Lighthill stress tensor for a section of field orthogonal to the y = 0 axis. As may be ob-
served in Fig. 5.84 the Lighthill stress tensor cannot be fully embed inside the porous surface
unless to extend it until to the boundary of the CFD computational domain. In principle, such
procedure would be not correct from an acoustic standpoint because of the proximity with
the computational fictitious boundary conditions (i.e. a zone where the flow field feature,
pressure or velocity, are imposed). The effects induced by such part of the field are, form
the fluid dynamic point of view, handled through the use of suited clustering grid strategies.
To this purpose a stretching in the calculus grid is (always) introduced with essentially two
intents: i) to limit the number of the grid elements in order to be compatible with the avail-
able computational resources, i.e. limit the computational time and the usage of memory ii)
to introduce a numerical dissipation in order to "insulate" the zones of fluid dynamic interest
(i.e. near rotor and wake) from the numerical effects of the fictitious boundary conditions.

Thus, in this and following cases, the common practice adopted is to limit the axial and
radial extension of the porous surface about to the most resolved zone of the computational
grid (i.e. where the CFD code is able to detect the physical consistent noise sources) [65].
The advantage of using porous surface tight to the resolved computational grid is twofold. It
allows to limit the cut-off of high frequency acoustic phenomena as well as to keep out, with
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respect to the porous surface, the effect of the boundary conditions. This is simply explained
by the fact that pressure waves cannot cross cells with a characteristic length greater than
their wave length; thus, de facto, coarse grid cells act as a low pass filter.

Based on these findings, in this and following applications the location of the permeable
surface is obtained as a trade-off between the inclusion, inside it, of the L2 norm of the
Lighthill stress tensor (which will be almost ever partially cut out) and the relative position
with respect to the CFD grid features.

As widely discussed in chapter 3, such practice is acoustically safe, i.e. is not associated
with a lost of acoustic noise features or affected by numerical issues as long as interactions
between eddies convected downstream of the rotor and the permeable surface are avoided
(namely, End Cap issue).

To this aim the Jeong’s criterion [66], known as the σ2 parameter, is here used to de-
tect the most important vortical structures in the field. Such criterion is based on the central
eigenvalue of the symmetric part of the velocity gradient; its isosurfaces of a certain nega-
tive value are associated to the vortical structures and used to detect the core of vortices
convected downstream of the rotor.

Fig. 5.85 depicts the isosurfaces σ2 = 10−3 (the value is non dimensional); the main
vortical structures predicted by the RANS simulations ends approximately after a couple of
diameter downstream the rotor. Thus, it is fair to expect that vortices do not cross the porous
surface if the end cap is located beyond this distance.

Such diffusive behaviour of the RANS simulation, although useful from a numerical
point of view (i.e. the permeable surface may be located quite close to the body regardless to
the End Cap issue), is not compliant with the physic of the problem; it is essentially due to
the excessive turbulent viscosity predicted by the turbulence model.

Besides, although the RANS model well detect the dynamic inside the boundary layer,
the numerical dissipation outside it prevents the transmission of the high frequency phenom-
ena from the boundary layer to the porous surface (which is usually located away from the
rotor in order to include as much as possible field contributions).

This makes the acoustic prediction insensitive with respect to the velocity and pressure
fluctuation related with the turbulence phenomena inside the boundary layer (notably, the
interaction with the trailing edge represents for the wind turbines a major noise source, see
chapter 1).

Therefore, these CFD data are essentially unsuited for an accurate evaluation of the aeroa-
coustic field having the purposes to assess the effect of the flow field noise sources.

Nevertheless, a comparison between the pressure signals predicted by the porous for-
mulation and those directly obtained by the CFD solver is presented. Three closed porous
cylindrical surfaces depicted in fig 5.86 having diameter equal to 1.25D and lengths 2D, 3D,
4D, respectively, fixed with the turbine blades are considered.

The comparison is shown for three acoustic observers, Obs1, Obs2, Obs3 located at
radial position 0.75D from the cylinder axis, and at axial positions x = −0.259D, x = 0
and x = 0.75D, for x = 0 denoting the rotor disk plane. The location of microphones is
chosen in a manner to be as close as possible to the most resolved grid in order to avoid
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fictitious numerical contributions in the reference disturbance pressure directly carried out
by the CFD solver.

FIGURE 5.83: CFD Computational calculus grid and topology.

FIGURE 5.84: Contours of non dimensional norm of the Lighthill stress
tensor

As depicted in Figs. 5.87, 5.88 and 5.89 for all of the observers considered, and for all
of the surface lengths the agreement between CFD and FWH-P results is very good: indeed,
even the 2D-length surface is capable of accurately capture the signals, in that enclosing the
noise sources generated by the CFD solver.
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FIGURE 5.85: Jeong’s criterion for the vortex core detection, σ2 = −10−3.

FIGURE 5.86: Porous surfaces embedding the CFD/RANS predicted
Lighthill stress tensor norm.

Very similar results may be seen in Figs. 5.90, 5.91 and 5.92 5 which show the same
comparison between the CFD solution and that provided by the FWH-P solver without the
closure disk.

Also in this case the agreement between two solutions is excellent, proving that all noise
sources affecting the acoustic pressure at the considered observers are embed inside the
acoustic surface. As evident, the character of the predicted noise signature is periodic and it

5The subscripts w/o in Figs.5.90,5.91 and 5.92 indicate that the acoustic effects induced by the outflow disk
of the porous surface are not included in the computation of the acoustic pressure predicted by FWH-P approach.
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FIGURE 5.87: Comparison between the FWH-P and CFD out-
comes at Obs1.
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FIGURE 5.90: Comparison between the FWH-P and CFD out-
comes at Obs1, porous surface without the closure disk.
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FIGURE 5.91: Comparison between the FWH-P and CFD out-
comes at Obs2, porous surface without the closure disk.
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does not highlight any presence of broadband noise component. Thus, although the FWH-P
outcomes are in agreement with the CFD solution, the noise prediction turn out to be unable
to describe the acoustic effects due to the turbulence. In fact, the high frequencies content
expected in the acoustic pressure (due to the well known "swishing" acoustic character of the
wind turbines noise) is not present.

Essentially, this is due to the noise detection features of the RANS model, in that able
to account only for those sources related with the vorticity field convected (and quite soon
damped) downstream of the rotor.
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5.4.3 Four Bladed E779A Propeller by DES Hydrodynamics

The hydroacoustics of INSEAN E779A four-bladed marine propeller in open water is
inhere investigated.

Operating conditions are defined by homogeneous onset flow relative to an advance ratio
J = U∞/(n D) = 0.88 where U∞ = 5 m/s is the freestream velocity, n = 25 rps the
number of rotation per second and D = 0.22 m the propeller diameter.

Hydrodynamic data input over the permeable surface, as well as those of reference for
the comparisons with the FWH-P solutions, are provided by a Detached Eddy Simulation
whose details are found in [67].

Such numerical technique is able to combine the RANS model in the boundary layer and
the LES model in the field away from the body. The RANS model being designed through
a time averaging process of the Navier Stokes Equations only allows to accurately model
the effect of the turbulence inside the boundary layer. However, as seen in the case of the
wind turbine it is absolutely not appropriate to detect the vorticity and turbulence in the flow
field, especially for hydroacoustic purposes (see also [32]). On the contrary the LES solution
provides good results because based on a space filtering technique which allows to solve the
Navier Stokes Equations above a characteristic parameter depending on the dimension of the
computational cells.

As consequence the energy cascade is better reproduced by the closure model, thus allow-
ing to detect the time space dependence of velocity and pressure on turbulence phenomena.

From an acoustic standpoint this represents an undoubted advantage; indeed, the DES
model allows to detect the unsteady distribution of velocity and pressure due to high fre-
quency phenomena over a porous surface located away enough from the body to include
"all" the quadrupole source terms.

Therefore, the acoustic model once "coupled" with the CDF/DES simulation is able to
propagate their acoustic effect in the (mid) far field.

The hydroacoustic analysis shown in the following concerns with seven hydrophones
whose coordinate are listed in tab. 5.8.

5.4.3.1 DES Running Average Based Hydrodynamics

The flow field features predicted through the DES solution allow to separate the acoustic
effect due to the turbulence from those related with vortical structures downstream of the
rotor.

Such decomposition is allowed by the CFD solution performed on the rotating reference
system moving rigidly with the body, namely (SRC). If the turbulence were not present the
flow field solution relative to the homogeneous onset inflow would give rise to a constant
flow field pressure and velocity with respect to the (SRC).

Therefore, the unsteadiness of the field, with respect to that frame of reference, are due to
the effect of the turbulence phenomena only. From this standpoint, a time averaging process
performed over the unsteady hydrodynamic flow field data, yields, (provided that the number
of collected samples have a significant statistical meaning) a time independent value of flow
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field pressure and velocity with respect to the (SRC). Such averaging process may be used
to achieve the following time decomposition of the signals, which for the sake of conciseness
is here reported only for the velocity (the same is for the pressure):

u(x, t) = u(x) + u′(x, t)

u(x) =
1
t

∫ t

0
u(x, τ) dτ

u′(x, t) = u(x, t)− u(x).

(5.7)

Here u(x) is the mean time independent flow field velocity, u′(x, t) is the fluctuating part
around the mean value, whereas u(x, t) is the total velocity predicted by the DES solu-
tion. This procedure is statistically known as running average, and is oriented to verify the
achieved asymptotic convergence of the wake downstream the rotor.

It is worth to note that, even though the same decomposition of Eq.(5.7) is used to derive
the RANS model from the Navier Stokes Equations, the running average solution is concep-
tually different.

It is derived afterwards on the base of the flow field solved by the DES technique with
the Smagorisky closure model. Thus, this procedure only represents a data decomposition
that is just a post processing keeping all the features of DES data.

Acoustically speaking, it allows to characterize the noise sources related with a mean

vortical flow field excluding, de facto, the effect of the turbulence. As we will see later, the
proposed decomposition represents a considerable advantage and provides an insight in the
noise generation phenomena.

For the sake of completeness, the following acoustic results are based on the quantities ū
and p̄, having the meaning of Eq. (5.7); the comparison with the CFD/DES data are as well
based on the time evolution of p̄.

Samples for the average solution have been collected from the 6-th to the 16-th revolution,
which represent a statistical significant time window.

From the acoustic standpoint two different porous surfaces, open and closed, are used
(both fixed in the rotating blade space). The radial dimension is chosen equal to 0.57D for
both, whereas the axial length of the shorter is 2.75D, located close to the finest grid zone;
the other has a length 4.72D and encloses the zone where spatial variations of the Lighthill
stress tensor are present.

The location of seven hydrophones used in the hydroacoustic analysis is listed in tab 5.8.
Since the baseline for the reliability/comparison purposes of the FWH-P solution is the

CFD disturbance pressure, the microphones are located in the very near field in order to limit
the effects of numerical disturbing phenomena occurring in the computation of the CFD so-
lution.

Figure 5.93 depict the local position of the observers with respect to the topology of the
computational grid and the propeller. Moreover, Figs. 5.94 and 5.95 depict the porous sur-
faces with respect to the flow field Lighthill stress tensor L2 norm and the iso-surface of the
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Name x[m] y[m] z[m]
Obs 1 -1.0D 0.0 0.75D
Obs 2 -0.5D 0.0 0.75D
Obs 3 0.0 0.0 0.75D
Obs 4 0.5D 0.0 0.75D
Obs 5 1.0D 0.0 0.75D
Obs 6 1.5D 0.0 0.75D
Obs 7 2.0D 0.0 0.75D

TABLE 5.8: Acoustic observers location

Jeong’s criteria σ2 = −10−3 which are used to detect the core of the vortices downstream of
the rotor.

Figures 5.96, 5.97, 5.98, 5.99 and 5.100 concern the acoustic signals comparison be-
tween CFD and FWH-P approach over a non dimensional period of rotation for the first five
hydrophones.

The results are in very good agreement, independently on the kind of porous surface
considered (note that FWH − Plong and the FWH − Pshort indicate the axial extension of
the porous surfaces, whereas subscripts w/o indicates the absence of the outflow disk).

For these observers, the contribution from the downstream end-cap is negligible and, also
in the absence of it, the open cylinders well capture the acoustic contribution.

The acoustic predictions at Obs6 and Obs7 are in very good agreement with the CFD
data only when the longer porous surface is used to evaluate the acoustic pressure, both with
or without the end-cup. On the contrary, for these observers the shorter permeable surface
is unsuited, in fact neither closed nor open configuration provide good results, as depicted in
figs. 5.101 and 5.102.

FIGURE 5.93: E779A propeller, CFD grid topology and acoustic ob-
servers position.
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FIGURE 5.94: Vortices core detection through the Jeong’s σ2 = 0.01
method and acoustic porous surfaces

Hence, considering the observers Obs6, Obs7 and referring to the shorter porous sur-
face S; leaving not-negligible downstream sources of noise outside S (i.e the case with the
end-cap), or leave it open (i.e. without the end-cup), thus ignoring the contribution of a vir-
tual closing surface S+, such that S ∪ S+ would surround the whole set of sound sources,
produces similar drawbacks in the predicted acoustic signature.

In conclusion the acoustic predictions based on the averaged CFD solution shown a com-
plete agreement between the two solvers provided that the noise sources are embedded inside
the acoustic surface. Therefore, the effects of the vortical field on the acoustic pressure are
well captured by the FWH-P outcomes, thus proving it is able to radiate them in the mid and
far field correctly.

FIGURE 5.95: Frobenius norm of non dimensional Lighthill stress tensor
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5.4.3.2 Unsteady DES Hydrodynamics

In this subsection the unsteady DES field solution is used to evaluate the contribution of
the turbulence to the acoustic pressure signature generated by the INSEAN E779A propeller.
The operating condition, as well the observers, are the same of the section 5.4.3.1.

The acoustic analysis has been made over a period after the 16 th revolution which cor-
responds to an averaged solution having a complete envelop of the flux tube downstream of
the rotor. Therefore, the eventual presence of unsteady phenomena is related only with the
turbulence phenomena and not to transient dynamics of the wake.

In this case two porous surface depicted in Fig. 5.103 having length equal to 5.1375D
and 3.1864D have been used in the acoustic analysis. The enhanced extension, compared to
the averaged solution is due to the increased strength of noise sources, related with the spatial
and time derivative of the Lighthill stress tensor involved in the unsteady simulation.

For the sake of clarity, the legend "CFD" refers (in the following figures) to the distur-
bance pressure predicted by the unsteady DES simulation over a non dimensional period of
revolution, whereas "FWH-P" indicates the outcomes of the acoustic model using unsteady
CFD/DES data over the porous surface.

Figures 5.105, 5.106, 5.107 show a good agreement between the CFD and FWH-P solu-
tions; the suffix s and l in these figures stand for the short and long porous surface, respec-
tively, whereas w/o indicates the acoustic solution without the end cap.

It is also worth to note that the impermeable solution of the FWHE in which only the
linear noise contributions are accounted for, namely (FWH − L) provides good results for
the same hydroacoustic observers.

Figures 5.104, 5.108, 5.109 and 5.110 relative to the observers Obs1, Obs5, Obs6, Obs7,
respectively, show instead comparisons DES vs. FWH-P which are not as good as expected
regardless to the axial dimension of the porous surface and to the presence of the outflow
disk.

An interpretation of such discrepancies between DES and FWH-P results will be given
later .

Beside to the aforementioned differences between signals, what catch the eyes is that
acoustic signatures predicted by the FWH-P technique based on the CFD/DES unsteady hy-
drodynamic data are very different form those based on the running average, both in wave
shape and amplitude.

This result suggests that the turbulent phenomena have a crucial role in the noise gen-
eration phenomena. In fact, looking at Obs6 and Obs7 depicted in Figs. 5.109 and 5.110,
respectively, the acoustic pressure predicted by the solution accounting for the effects of the
turbulence is about an order of magnitude higher with respect to the result provided by the
average solution.

These results highlight how the acoustic role played by the large vortical structures seem
to be of second importance respect to that induced by the turbulence.

Similar consideration can be drawn by considering acoustic signals related to the shorter
and longer porous surfaces, which are very similar both in the waveform and amplitude,
either in closed and open configuration.
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Such a behaviour may be also ascribed to the turbulence effects.
Indeed, the most intense quadrupole noise sources are located inside the shorter acoustic

surface containing the finest CFD grid, in that fine clustering features allow to the DES
technique a better modeling of the fluctuating flow field induced by the turbulence (the DES
model numerically solves the scale of eddies above a parameter based on the cell dimensions
and models those below it ). In this manner, the additional noise contributions introduced
in the acoustic signal by the longer acoustic surface are de facto irrelevant (i.e. the CFD
field zone included in the longer porous surface contains, with respect to the shorter, coarser
grid cells which prevent to the DES model a profitable detection and propagation of noise
phenomena having shorter characteristic waves length).
It is also worth to note that the pressure at Obs1, which is located upstream (thus theoretically
less prone to the effects of flow field fluctuations) shows a considerably modified waveform
and amplitude respect to the average solution.

In addition to that, it is also interesting to note that the linear solution of the FWHE yields
a negligible acoustic pressure after a diameter downstream the rotor. Similar results were as
well obtained by Ianniello in [22].

Some interesting considerations may also be carried out observing that the FWH-P solu-
tions based on the running averaged data are very close to that provided by the impermeable
configuration (FWH − L). Figures 5.104 to 5.108 show that at least for the first five mi-
crophones the two solution are very similar. Then, we can conclude, once again, that the
difference in the acoustic prediction is given by the direct inclusion of the volume contribu-
tions accounting for the turbulence phenomena.

A further insight in the noise generating mechanism can be obtained looking at observers
very near the rotor, i.e. Obs1, Obs2 and Obs3 shown in Figs.5.105, 5.106 and 5.107, respec-
tively.

For these acoustic observers the linear contributions seem to play the major role in the
noise generation, according to the fact that there, the energy is introduced by rotor in the flow
and the cascade is just at the begin (up to a diameter).

Once again this shed light on the effect of the turbulence: when the energy is transferred
by the cascade to the turbulent eddies, i.e. going downstream of the rotor, these eddies start
to play the dominant role in noise generation, whereas the linear one soon decay.

Besides, since in radial direction the CFD grid remains fine enough to describe the fluctu-
ating phenomena, a convergence analysis on the radius of the cylinder is carried out in order
to verify that all the quadrupole sources terms are accounted for.

To this aim, a couple of porous surface ( see, Fig.5.111) with length equal to the shorter
one (i.e. 3.1864D) and radial dimension equal to 0.65D and 0.74D, are assessed.

The largest porous surface is intentionally located close to the microphones having radial
position equal to 0.75D; this condition is still suitable from a numerical standpoint and offers
some interesting suggestion on the noise detection capability of the CFD code.

Figures 5.112 to 5.118 show that the acoustic signature is practically independent from
the radius of the porous surface in terms of the wave shape. There are slight differences in the
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sparks which may be expected from the different location of the porous surface with respect
to the noise sources and to the CFD grid.

However, one question is not yet solved.
Why does the CFD based prediction are slightly different with respect to the FWH-P

outcomes at observers located away from the rotor disk?
The answer to this question may be find out considering the different purposes of the two

solvers. Indeed the CFD finite volume solvers are usual oriented to the prediction of aero-
dynamic loads whereas an effective evaluation of the mid field pressure would require some
additional numerical technique that represent useless additional effort. The disturbance pres-
sure in the mid field may be indeed affected by reflecting waves at the boundaries, especially
when low dissipative convective schemes are used to reduce the numerical dissipations asso-
ciated with the finite volume technique. Such numerical issues are well known and may be
solved by the introduction of suited boundary conditions based on the characteristics method
of the Navier-Stokes Equation [68] . Although this would represent the solution of the prob-
lem, it goes beyond the purpose of this work; however, an interpretation of such phenomena
is inhere reported because useful to better understand the numerical results.

To this aim, the time evolution of the Lighthill stress tensor Frobenius norm well address
the encountered issue. Particularly, some frames are collected over a period of time between
the 16th and 17th revolutions, which also correspond to the windowing time of the acoustic
simulation. Figure 5.119 show the mentioned behaviour for six angular position of the pro-
peller, the images are relative to the non dimensional time 0.136 to 0.275, corresponding to
angular positions from 49◦ to 99◦, with increment of 10◦. For the sake of conciseness only
this angular range is inhere reported because sufficient to understand the phenomena. The
Lighthill stress tensor norm is representative of the quadrupole field noise sources distribu-
tion.

The images clearly depict the effect of the CFD boundary condition which behave as
a sort of pulsating noise source, whose contribution grows and diminishes, as depicted in
figures, about five times in a complete revolution of the propeller.

The intensity of such noise sources have quite low magnitude so that the bouncing de-
picted in the figures weakly (or not at all) affect the fluid dynamic solution in the very near
field. This is accomplished by using the stretch in the computational CFD grid which filters
the low frequencies spurious contributions coming from the fictitious boundary condition in
a way to insulate the very near field of the hydrodynamic solution.

Thus, although the aforementioned effects, the noise detection may be considered reliable
and the fluid dynamic data may be profitably used to perform acoustic analysis whenever the
porous surface is located tightly to the blades and wake structure (in that effects of CFD
boundaries are confined only out with respect to the permeable surface and therefore not
accounted by it). Proof of this statement may be find out in the outcomes of the FWH-P
solution based on the larger acoustic surface. Indeed, as may be seen in Figs. 5.112 to 5.118
results coming from that permeable surface are practically identical to those provided by
the tightest porous surface. Such result gives us the information that noise sources contained
between the acoustic surfaces (those which would differentiate the solution between the three



5.4. Assessment of the Permeable FWHE 113

FIGURE 5.103: Vortex core detection through the Jeong’s criterion σ2 = −0.03,
acoustic surfaces and observers.

porous surface) are practically null. This let us conclude that the contained noise sources (by
all the three porous surface) are those that play the dominant role in the noise generated
by the propeller and the wake. On the contrary, as widely discussed in Chapter 3, external
noise sources (respect to the porous surface) do not give any contribution to the acoustic
pressure predicted by the FWH-P (they would be accounted by the field contribution). Hence,
if the aerodynamic data are trustable near the rotor and wake structure, as they are, also
the acoustic effects propagated by the permeable surface are reliable. Differently, the CFD
disturbance pressure accounts for the whole field features, i.e. it is not possible to distinguish
the disturbance pressure due to the boundary conditions from the total one. This explains the
different prediction between the two solvers away from the rotor.

In conclusion the problem may be summarized as follows; the discretization strategy of
the CFD domain produces a zone near the rotor and wake protected by the undesired effects
of the fictitious boundary conditions. Thus, a physical consistent flow field solution near the
rotor and wake is carried out by the CFD-DES solution. Acoustically speaking the noise
detection in these zones is still physically consistent.

On the other hand, the FWH-P formulation does not account for the external noise sources
(with respect to the porous surface) because it would be accounted by the field contribution
if it were evaluated (see 3.2.1 for details); thus, yielding an acoustic prediction accounting
only with those physical consistent noise sources inside it.

On the contrary, the disturbance pressure predicted by the CFD at the considered observer
is instead affected by the boundary conditions effects (it accounts for all field contributions).

This explains the difference between the CFD based and the FWH-P solution. It also
gives an indication about the effect of the CFD boundaries and provides the cue to understand
the limits in the extension of the acoustic computational domain in order to avoid the radiation
of numerical not physical consistent noise sources.
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FIGURE 5.104: Observer 1, FWH-P/DES comparison of the un-
steady solutions.
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FIGURE 5.105: Observer 2, FWH-P/DES comparison of the un-
steady solutions.
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FIGURE 5.106: Observer 3, FWH-P/DES comparison of the un-
steady solutions.
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FIGURE 5.107: Observer 4, FWH-P/DES comparison of the un-
steady solutions.
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FIGURE 5.108: Observer 5, FWH-P/DES comparison of the un-
steady solutions.
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FIGURE 5.109: Observer 6, FWH-P/DES comparison of the un-
steady solutions.
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FIGURE 5.110: Observer 7, FWH-P/DES comparison of the un-
steady solutions.

FIGURE 5.111: Vortex core detection Jeong’s criterion σ2 = −0.03,
enlarged acoustic surfaces and observers
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FIGURE 5.112: Observer 1, FWH-P/DES comparison of the un-
steady solutions, larger porous surfaces.
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FIGURE 5.113: Observer 2, FWH-P/DES comparison of the un-
steady solutions, larger porous surfaces.
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FIGURE 5.114: Observer 3, FWH-P/DES comparison of the un-
steady solutions, larger porous surfaces.
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FIGURE 5.115: Observer 4, FWH-P/DES comparison of the un-
steady solutions, larger porous surfaces.
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FIGURE 5.116: Observer 5, FWH-P/DES comparison of the un-
steady solutions, larger porous surfaces.
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FIGURE 5.117: Observer 6, FWH-P/DES comparison of the un-
steady solutions, larger porous surfaces.
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FIGURE 5.118: Observer 7, FWH-P/DES comparison of the un-
steady solutions, larger porous surfaces.
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FIGURE 5.119: From top left to bottom right the non dimensional Lighthill
tensor norm relative to the angular positions from 49◦ to 99◦ over the 16-th

revolution,
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5.4.4 Four Bladed E779A Propeller, DES vs 3D Panel Method Hydrodynamics

This subsection investigates the capabilities and drawbacks of potential-based hydrody-
namic data for the prediction of the noise signatures generated by marine propellers in open
water.

A fully-validated, three-dimensional, unsteady, free-wake panel method, along with the
Bernoulli Equation, are combined with the Ffowcs Williams and Hawkings Equation for
permeable surfaces to yield the sound signals at hydrophones located in the near-field.

A comparison with the pressure disturbances coming directly from a Detached Eddy
Simulation (DES) of the propeller and those predicted by a FWH-P/DES approach, for the
configuration analyzed in section 5.4.3, is proposed to shed light on the limits of applicability
of Boundary Element Method (BEM) hydrodynamics for propeller hydroacoustics.

Here, DES input data over the acoustic surface come from a running-averaged solution
of the collected data, yielding a vortical flow filtered by any turbulence-induced effect. Such
processing is adequate to investigate the strength of a BEM formulation in capturing the tonal
noise hydrodynamic sources.

To this aim, an analysis of the unsteady data set suggests to consider as statistically
significant, those hydrodynamic samples ranging from the 6th to the 16th propeller revolution.
As depicted in figs. 5.122 to 5.125, respectively from Obs1 to Obs4, the agreement among
predictions is excellent: the noise is dominated by vorticity phenomena, well captured by
the BEM hydrodynamic solver, as confirmed also by the analysis in the frequency domain
highlighted in figs. 5.136 to 5.139 where the frequency content of the signals shows only
tones multiples of the shaft frequency 4 f0.

At Obs5 depicted in fig. 5.126, the waveform and peak-to-peak agreement starts to get
worse.

The frequency analysis in fig.5.140 exhibits a contribution at f0 that is the main respon-
sible of the waveform distortion.

This phenomenon is amplified at Obs6 and Obs7, depicted respectively in Figs. 5.127,5.128
where FWH-P/BEM and FWH-P/DES predictions are no more comparable.

At this position, the FWH-P/DES signature is characterized by an important contribu-
tion from the first harmonic differently from the FWH-P/BEM outcome that remains purely
dominated by the 4 f0 frequency. Similar considerations hold at Obs7.

The above results suggest that, within a longitudinal distance of 0.5D÷ 1D from the hub,
propeller hydroacoustics is dominated by potential wake vorticity effects.

However, moving downstream, the DES averaged field detects important vorticity contri-
butions that deeply modify the overall sound. Although averaged, these contributions are the
results of complex interactions among vortices occurring during propeller revolution, that,
locally, may give rise to stronger vortex structures inducing higher level of noise behind the
disk.

For instance, this happens at Obs7 (see fig.5.128) where the noise magnitude is almost 5
times greater than at Obs6 located one radius upstream.

For completeness, it is of interest to compare the vorticity field predicted by BEM and
DES-averaged simulations.
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Making reference to the longitudinal XZ plane (see 5.93), up to 2D downstream the
propeller disk, Fig. 5.120 compares the contour map of the vorticity component along the Y
axis predicted by DES and the trailing wake location carried out by BEM (black lines).

The overall propeller wake features, such as wake contraction, tip-vortices spacing/growth
along X and mid-span trailed vorticity, are coherently described by the two solvers in the near
wake region (up to 1D downstream).

Further downstream, BEM predicted tip-vortex location shows a slight shift towards the
propeller disk which is not present in DES simulation. This is confirmed also by the thrust
coefficients values shown in Tab 5.9 where BEM predictions are about 5 % higher than DES
outcomes.

DES running average BEM
KT=0.1335 KT=0.1407

10QK=0.2843 10QK=0.2971

TABLE 5.9: Thrust and torque numerical predictions

Nevertheless, the general shape of the trailed-wake is satisfactorily described.
Finally, note that BEM-predicted wake tends to roll-up in the region close to the rotation

axis similarly to what happens at the blade tip; such an nonphysical solution is mainly due to
the lack of a suitable hub-vortex model interacting with blades vorticity. In that flow region
DES calculations correctly show the presence of the hub-vortex.

Next, the comparison between FWH-P/BEM results and those carried out through the
unsteady DES data set on the acoustic surface, is proposed.

The FWH-P/DES computations in Figs. 5.129 to 5.135, including here turbulence-
induced noise effects, oscillate about the predictions provided by the FWH-P/BEM solver, at
least up to Obs4 (see Figs 5.129 to 5.132).

At Obs2 and Obs3 (see Figs 5.130 and 5.131), turbulence-induced noise is almost negli-
gible, since the waveforms, noise levels and frequency content of the overall sound are very
similar to those predicted by the running averaged technique.

At Obs4, see Fig. 5.132, turbulence sources of sound determine a distortion of the signal;
differently from Obs2 and Obs3, the spectrum, (Figs. 5.143 to 5.149) highlights acoustic
energy spread out over all the harmonics herein analyzed (≤ 20 f0).

Nevertheless, the FWH-P/BEM signal captures the main features of the noise and pro-
vides a sort of average signature about which the FWH-P/DES prediction oscillates.

Akin to the running-averaged case previously discussed, from Obs5 on, the comparison
between signals is no more reasonable; broadband noise due to flow field vorticity and tur-
bulence, even the 4 f0 harmonic, is not well captured by the FWH-P/BEM approach. As a
matter of fact, the characterization of the tonal hydrodynamic sources of sound by a potential-
based theory is allowed only if the acoustic analysis concerns the very near field, that, for
this advancing ratio, is about one radius downstream.

Differently, vorticity and/or turbulence effects have to be modeled by a more suitable
hydrodynamic simulations.
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At lower advancing ratios, such effects are expected to become more relevant because of
the higher thrust delivered by the propeller blades; hence, the use of a BEM hydrodynamics
might be not adequate for tonal noise predictions too.

FIGURE 5.120: Vorticity field along the Y axis predicted by DES-averaged simulations com-
pared to trailing wake location by BEM (black lines).

FIGURE 5.121: Section plane y=0; comparison between the vortical structures predicted by
the isosurfaces of σ2 = 0.01 of the average DES simulation and the free wake predicted by the

BEM approach.

However, apart from Obs1, a good agreement between DES and FWH-P/DES signals
is observed. At Obs 2 and Obs3, turbulence-induced noise is almost negligible, since the
waveforms, noise levels and frequency content of the overall sound, depicted in Fig.7, are
very similar to those predicted by the running averaged technique.

At Obs4, turbulence sources of sound determine a distortion of the signal; differently
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FIGURE 5.122: Comparison among noise signals predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 1.
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FIGURE 5.123: Comparison among noise signals predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 2.

form Obs2 and Obs3, the spectrum highlights acoustic energy spread out over all the har-
monics herein analyzed (up to 20 f0).

Nevertheless, the FWH-P/BEM signal captures the main features of the noise and pro-
vides a sort of average signature about which the FWH-P/DES prediction oscillates.

Akin to the running-averaged data set case previously discussed, from Obs5 on, the com-
parison between signals is no more reasonable; broadband noise due to flow field vorticity
and turbulence is exhibited and the 4 f0 harmonic is also bad captured by the FWH-P/BEM
approach.

In essence, the characterization of the tonal hydrodynamic sources of sound by a potential-
based theory is allowed only if the acoustic field concerns with the very near field, that, for
this advancing ratio is about one radius downstream. At lower advancing ratios, such effects
are expected to become relevant because of the higher thrust delivered by the propeller blades;
hence, the use of a BEM hydrodynamics might be not adequate for tonal noise predictions.
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FIGURE 5.124: Comparison among noise signals predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 3.
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FIGURE 5.125: Comparison among noise signals predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 4.
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FIGURE 5.126: Comparison among noise signals predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 5.
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FIGURE 5.127: Comparison among noise signals predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 6.
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FIGURE 5.128: Comparison among noise signals predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 7.
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FIGURE 5.129: Comparison among noise signals predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 1.
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FIGURE 5.130: Comparison among noise signals predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 2.
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FIGURE 5.131: Comparison among noise signals predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 3.
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FIGURE 5.132: Comparison among noise signals predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 4.
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FIGURE 5.133: Comparison among noise signals predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 5.
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FIGURE 5.134: Comparison among noise signals predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 6.
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FIGURE 5.135: Comparison among noise signals predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 7.
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FIGURE 5.136: Comparison among noise spectra predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 1.
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FIGURE 5.137: Comparison among noise spectra predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 2.
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FIGURE 5.138: Comparison among noise spectra predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 3.
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FIGURE 5.139: Comparison among noise spectra predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 4.
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FIGURE 5.140: Comparison among noise spectra predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 5.
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FIGURE 5.141: Comparison among noise spectra predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 6.
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FIGURE 5.142: Comparison among noise spectra predicted by
DES, FWH − P/BEM and FWH − P/DESAveraged at obs 7.
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FIGURE 5.143: Comparison among noise spectra predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 1.
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FIGURE 5.144: Comparison among noise spectra predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 2.
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FIGURE 5.145: Comparison among noise spectra predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 3.
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FIGURE 5.146: Comparison among noise spectra predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 4.
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FIGURE 5.147: Comparison among noise spectra predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 5.
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FIGURE 5.148: Comparison among noise spectra predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 6.
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FIGURE 5.149: Comparison among noise spectra predicted by
DES, FWH− P/BEM and FWH− P/DESUnsteady at obs 7.
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5.4.5 Four Bladed INSEAN E779A by DES Hydrodynamics, Comparisons with
the K-Equation

In this subsection the same layout of section 5.4.3 is analyzed through the permeable ap-
proach of the Hybrid Lighthill-Ffowcs Williams and Hawkings Equation for moving surfaces
(H-FWHE), which recasts into the well known K-Equation (theoretical details are reported
in Chapter 3.3).

Comparisons with the solutions carried out by the FWH-P on the same configuration are
also proposed.

5.4.5.1 Running Average Based Solution

Akin to subsection 5.4.3.1, let us considered the fluid dynamic data from the CFD-DES
running average solution. Figure 5.150 depicts the acoustic surfaces used in the simulations:
the longest is the same used with the the FWH-P formulation, having a radius equal to 0.75D
and a length of 4.72D. The wider porous surface depicted in red has a radius of 0.67D and a
length of 3.25D.

The acoustic pressure signatures reported in Figs. 5.151 to 5.157 are relative to the ob-
servers listed in Tab. 5.8. It is worth to note that the comparison between the K-Equation and
the CFD based solution are in excellent agreement only for the largest porous surface.

The solution based on the same grid used for the FWH-P simulations, the tighter one,
confirms the behaviour shown in the analysis concerning the monopole (see 5.3.1.2.2). It
confirms the K-Equation as more demanding model with respect to the surfaces dimension
compared to the FWH-P formulation because of the different content in the neglected field
contribution (it needs a wider porous surface to produce convergent results). Since the ad-
vantages to be as close as possible to the noise sources are relevant, the FWH-P solution
represents the best choice also because the data input of the FWH-P solver are easier to get
from the CFD code, being the primary outputs.

FIGURE 5.150: Porous surfaces, observer and contours of Lighthill stress
tensor Frobenius norm
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FIGURE 5.151: Observer 1, comparison between the FWH-P,
K-Equation and CFD average-based pressure signatures.
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FIGURE 5.152: Observer 2, comparison between the FWH-P,
K-Equation and CFD average-based pressure signatures.
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FIGURE 5.153: Observer 3, comparison between the FWH-P,
K-Equation and CFD average-based pressure signatures.
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FIGURE 5.154: Observer 4, comparison between the FWH-P,
K-Equation and CFD average-based pressure signatures.
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FIGURE 5.155: Observer 5, comparison between the FWH-P,
K-Equation and CFD average-based pressure signatures.
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5.4.5.2 Unsteady DES Based Acoustic Simulation

The unsteady DES solution of the INSEAN E779A marine propeller is here used to assess
the capabilities of the K-Equation in case of intense quadrupole noise sources induced by a
turbulent flow field.

To this aim the same porous surface used in the section 5.4.3.2 is used to carry out the
acoustic analysis. Particularly, the cylinder has a radius equal to 0.65D and a length of
3.1864D. The same acoustic observers used in the previous analysis and listed in Tab. 5.8
are here addressed.

For those observers Figs. 5.158 to 5.164 show the comparison between the CFD based
solution and those provided by the K-Equation and the FWH-P approach. The results are in
excellent agreement for all observers only between the K-Equation and the FWH-P approach
whereas differences with the CFD solution are present.

Such differences confirm what said about the effect of the boundary conditions of the
CFD based prediction.

The similarities between the FWH-P and the K-Equation also provide further confirma-
tions about the fact that noise sources surrounded by the permeable surface are those effec-
tively generated by the propeller motion; thus, those to account for a physical consistent noise
radiation.

Regarding to this, the unsteady case is characterized by intense quadrupole noise sources
due to the turbulence; these are localized where the CFD grid is fine enough to well predict
the energy cascade (see Fig.5.165, notably the fine block of the CFD solution downstream
the rotor).

Unsteady predictions from the K-Equation and FWH-P are therefore in perfect agreement
because both are able to embed this zone; otherwise, as shown for the case of the averaged
simulation, the solutions would have been different by the virtue of their different capability
to account for nonlinearities over the permeable surface.
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FIGURE 5.158: Observer 1, comparison between the FWH-P,
K-Equation and CFD unsteady pressure signatures.
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FIGURE 5.159: Observer 2, comparison between the FWH-P,
K-Equation and CFD unsteady pressure signatures.
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FIGURE 5.160: Observer 3, comparison between the FWH-P,
K-Equation and CFD unsteady pressure signatures.
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FIGURE 5.161: Observer 4, comparison between the FWH-P,
K-Equation and CFD unsteady pressure signatures.



5.4. Assessment of the Permeable FWHE 139

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n
c
e
 p

re
s
s
u
re

 [
P

a
]

t
-
   [non dimensional time]

 CFD  K-Eq. 0.74D  FWH-P 0.74D

FIGURE 5.162: Observer 5, comparison between the FWH-P,
K-Equation and CFD unsteady pressure signatures.
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FIGURE 5.163: Observer 6, comparison between the FWH-P,
K-Equation and CFD unsteady pressure signatures.
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FIGURE 5.164: Observer 7, comparison between the FWH-P,
K-Equation and CFD unsteady pressure signatures.
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FIGURE 5.165: Permeable surface with respect to contours of Lighthill
stress tensor norm.
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5.4.6 INSEAN E779A Propeller In Yaw Condition by DES Hydrodynamics

In the following, the hydroacoustic behavior of the INSEAN E779A four-bladed pro-
peller in drifting condition is addressed through the FWH-P approach.

The main geometrical features of this rotating device are given in [69]. It moves hori-
zontally in open water at a yaw angle of 20◦, with advance ratio J equal to 0.71 and angular
velocity n = 25 Hz.

The hydrodynamic data are provided by a Detached Eddy Simulation technique along
with the Smagorisky turbulence model. The hydroacoustic analysis is performed for hydro-
dynamic conditions characterized by a fully-developed propeller wake structure (converged
CFD solution).

Noise signatures evaluated at observers translating with the hub are based on the knowl-
edge of the unsteady pressure and velocity field distributions upon a cylindrical acoustic
surface S moving with the propeller hub.

The hydrodynamic analysis of the vortical/turbulence structures evolution behind the pro-
peller disk guides the optimal placement of S in order to avoid impact phenomena; to comply
with this requirement, S is chosen with generatrix line laying in a horizontal plane and in-
clined of 13.5◦ respect to the x axis.

Figure 5.166 shows a top view of the propeller (rotating about the x axis and translating
with velocity U = 4.034 m/s), enclosed within three different cylindrical surfaces, 14D long,
with radius equal to 0.8D, 0.85D and 0.9D, respectively.

These surfaces are used to check the convergence of the noise predictions, that is, to
verify that the volume noise contribution, i.e. the Lighthill stress tensor T , is well-captured
by the surface integral terms.

The analysis of the unsteady spatial distribution of the T Frobenius norm (namely ‖T‖2),
outside them proves that it is negligible with respect to the values of ‖T‖2 inside. Is also
worth to note that, unlike the configurations analyzed before, here the drifting operating con-
ditions produce a finite axial dimension of the Lighthill stress tensor. Indeed the interactions
between the flow structures shed downstream of the rotor and the oblique inflow condition
give rise to a high turbulent viscosity which quickly dissipate the energy introduced by the
propeller in the flow.

Hence, a finite axial zone shows important time space dependencies of the ‖T‖2 also in
correspondence of the coarse CFD grid. Therefore its acoustic behaviour may not be a priori
neglected; thus, the acoustic grid is located in order to embed all of it despite the cut-off
effect of the coarse grid downstream the most refined blocks. For conciseness, Fig. 5.166
depicts the contour plot of ‖T‖2 at the beginning of the 15th revolution.

For the sixteen observers co-moving with the propeller hub (shown in Fig 5.167 along
with the CFD grid topology), whose coordinates with respect to a rectangular frame of ref-
erence centered at the hub are listed in Tabs. 5.10 and 5.11, Figs. 5.170 to 5.185 show the
comparison between the time histories of FWH-P and CFD results (time is nondimensional
with respect to the shaft period of revolution).

Results are in good agreement only between the FWH-E solutions obtained with the three
different porous surfaces.
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The FWH-P solutions and those provided by the CFD DES solver are considerably dif-
ferent both in waveform and amplitude for all the acoustic observers.

Upstream microphones

x/r y/r z/r
Obs1 -1.945 -0.469 2.0
Obs2 -1.945 1.531 0.0
Obs3 -1.945 -0.469 -2.0
Obs4 -1.945 -2.469 0.0

Blade plane microphones

x/r y/r z/r
Obs5 0.0 0.0 2.0
Obs6 0.0 2.0 0.0
Obs7 0.0 0.0 -2.0
Obs8 0.0 -2.0 0.0

TABLE 5.10: Non dimensional hydrophones coordinates with respect to the
propeller radius.

1D downstream microphones

x/r y/r z/r
Obs9 1.945 0.469 2.0

Obs10 1.945 2.469 0.0
Obs11 1.945 0.469 -2.0
Obs12 1.945 -1.531 0.0

2D downstream microphones

x/r y/r z/r
Obs13 3.89 0.938 2.0
Obs14 3.89 2.938 0.0
Obs15 3.89 0.938 -2.0
Obs16 3.89 -1.062 0.0

TABLE 5.11: Non dimensional hydrophones coordinates with respect to the
propeller radius.

Such discrepancies between the FWH-P based solutions and the CFD DES outcomes are
not expected because as may be seen in Figs. 5.166, 5.168 and 5.169 the main noise sources
seem to be embed inside the porous surface.

Moreover the finest CFD grid (the only capable to describe the fluctuating velocity and
pressure component due to the turbulence phenomena) is quite close to the observers and
should contains the most intense noise sources.

On the basis of what seen in section 5.4.3.2, concerning the effect of the CFD boundary
conditions, a deep analysis on the hydrodynamic flow field is necessary.

To this aim, Figs. 5.186 and 5.187 show the time evolution of the L2 norm of the Lighthill
stress tensor.

Particularly, Fig. 5.186 depicts a time series of images from the non dimensional time
t = 0.811 to t = 0.850 over the 14-th revolution in which the acoustic analysis is focused.
The high part of the figures depict a growth in time of the non dimensional Lighthill stress
tensor norm which goes from the top boundary of the CFD grid to the center of the field.
Moreover Fig. 5.187 shows a following phase between t = 0.855 to t = 0.894 in which
‖T‖2 vanishes from the top boundary and becomes to appear in the bottom going trough a
configuration where the Lighthill stress tensor is present almost only near the propeller and
wake.

This behaviour is periodic and can be observed about seven times in a revolution time.
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FIGURE 5.166: Nondimensional Frobenius norm ‖T‖2 of the Lighthill stress
tensor, vortex core detection through the Jeong’s σ2 = −0.2 and acoustic porous

surfaces.

FIGURE 5.167: CFD grid topology and microphones location.

The spatial distribution of these nonphysical noise sources is mainly located at the lateral
outflow boundaries where the phenomenon shows the maximum intensity, being null at the
inflow boundary.

In order to have an insight into this phenomena we need to recall the definition of the
Lighthill stress tensor which reads T =

{
[ρ(u⊗ u)] + [(p− p0)I− c2

0
(ρ− ρ0)I] + V

}
.

The first term ρu⊗ u is called the Reynolds stress tensor. It is a nonlinear quantity that can
be neglected except where the motion is turbulent; the spatial distribution of the Reynolds
stress tensor obtained in the hydrodynamic simulation complies with this statement because
weakly affects the flow field far from the propeller-wake and is null at the boundaries.

The most important contribution to the Lighthill tensor at the boundary of computational
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FIGURE 5.168: CFD grid, σ2=-0.2 vortex core detection and acoustic surfaces

FIGURE 5.169: Enlargement of nondimensional Frobenius norm ‖T‖2
of the Lighthill stress tensor and acoustic surfaces.

domain is instead related with the second term, which represents the excess of momentum
transfer by the pressure over that in the ideal (linear) fluid of density ρ0 and sound speed
c0 [57] . This is produced by wave amplitude non-linearity, and by density variations in the
source flow.

Being the latter contribution of the Lighthill stress tensor the one showing not physic
behaviour at the boundary of the field, we suppose that such issue is related with the handling
of the pressure condition at the boundary [68] which, for acoustic purposes, should be treated
using suited condition based on the characteristic method.

Nevertheless, the hydrodynamic solution near the body is insulated from the external
field by the effect of the discretization strategy. This is well evident in Fig. 5.186 and Fig.
5.187 showing a zone near the body and wake where the Lighthill stress tensor is practically
uninfluenced by the effect of the boundary conditions. In other words, the noise sources
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FIGURE 5.170: Comparison between FWH-P and CFD solutions
at Obs1.
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FIGURE 5.171: Comparison between FWH-P and CFD solutions
at Obs2.

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 100

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n
c
e
 p

re
s
s
u
re

 [
P
a
]

t
-
  [Non dimensional time]

 CFD 
 FWH-P 0.80 D

 FWH-P 0.85 D
 FWH-P 0.90 D

FIGURE 5.172: Comparison between FWH-P and CFD solutions
at Obs3.
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FIGURE 5.173: Comparison between FWH-P and CFD solutions
at Obs4.
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FIGURE 5.174: Comparison between FWH-P and CFD solutions
at Obs5.
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FIGURE 5.175: Comparison between FWH-P and CFD solutions
at Obs6.



5.4. Assessment of the Permeable FWHE 147

-500

-400

-300

-200

-100

 0

 100

 200

 300

 400

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n
c
e
 p

re
s
s
u
re

 [
P
a
]

t
-
  [Non dimensional time]

 CFD 
 FWH-P 0.80 D

 FWH-P 0.85 D
 FWH-P 0.90 D

FIGURE 5.176: Comparison between FWH-P and CFD solutions
at Obs7.
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FIGURE 5.177: Comparison between FWH-P and CFD solutions
at Obs8.
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FIGURE 5.178: Comparison between FWH-P and CFD solutions
at Obs9.
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FIGURE 5.179: Comparison between FWH-P and CFD solutions
at Obs10.
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FIGURE 5.180: Comparison between FWH-P and CFD solutions
at Obs11.
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FIGURE 5.181: Comparison between FWH-P and CFD solutions
at Obs12.
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FIGURE 5.182: Comparison between FWH-P and CFD solutions
at Obs13.
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FIGURE 5.183: Comparison between FWH-P and CFD solutions
at Obs14.
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FIGURE 5.184: Comparison between FWH-P and CFD solutions
at Obs15.
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FIGURE 5.185: Comparison between FWH-P and CFD solutions
at Obs16.

detection is still good if the porous surface is located tightly around the nonlinear flow field
generated by blade and wake.

5.4.6.1 Characterization of the Fictitious Noise Sources

The evaluation of the sound generated by the above mentioned fictitious sources located
out from the permeable surface would theoretically require the evaluation of the field contri-
bution which is out of the purposes of this work.

Although this, this subsection proposes an evaluation of such contribution exploiting the
embedding procedure definition. Such technique used to derive the FWHE (see Appendix
A.1 for theoretical details) implies a discontinuous pattern of the acoustic pressure across the
porous surface such that it is zero inside whereas it assumes different values outside.

One of the implications is that, for observers inside the porous surface, the surface inte-
gral contributions give rise to an acoustic pressure balanced by the field contribution of the
FWHE (see also 3.2.1).

Hence, for observers inside the permeable surface the induced acoustic pressure by ex-
ternal noise sources coincides with the opposite value of the integral surface contribution (
for clarity see the prove of such property carried out through the use of monopoles 5.3.1.3).

In order to exploit this property, let us consider the three porous surfaces depicted in Fig.
5.188 which embed the same acoustic observers of the previous analysis listed in Tabs. 5.10
and 5.11.

Figures 5.190 to 5.205 depict the comparison between the acoustic pressure induced at
the aforementioned observers by the external noise sources due to the fictitious effect arising
by the boundary conditions. For all the observers these contribution play a significant role
on the pressure field, thus explaining the differences between the FWH-P based solution and
those predicted by the CFD code. Although the intensity of the bouncing pressure may be
weak by its own and then difficult to find out in the CFD predicted field, the integral over the
whole volume produces fictitious acoustic disturbances up to an order of magnitude greater
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FIGURE 5.186: From top left to bottom right the non dimensional Lighthill
tensor norm relative to the non dimensional time t = 0.811 to t = 0.850

over the 14-th revolution

respect to the real noise sources. Besides, the acoustic pressure signatures obtained with
the external porous surfaces are practically invariant with respect to their axial and radial
dimension, thus confirming that the fictitious noise sources are located away from the body
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FIGURE 5.187: From top left to bottom right the non dimensional Lighthill
tensor norm relative to the non dimensional time t = 0.855 to t = 0.894

over the 14-th revolution

and wake, that are the real noise sources.
This also prove our suggestion that the effect of the boundaries affects the pressure field

of the CFD based solution because it accounts for all the "sources" in the field (i.e. it is
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FIGURE 5.188: Porous surfaces embedding the observes, contour of the non di-
mensional Lighthill stress tensor relative to the non dimensional time t = 0, 855

FIGURE 5.189: Enlargement of the porous surfaces embedding the acoustic ob-
servers.

elliptical). As already said, the numerical dissipation due to the CFD grid clustering features
intentionally introduced to produce a zone of almost undisturbed flow condition around the
propeller-wake makes the noise source detection reliable.

Based on these considerations, the acoustic signature provided by the FWH-P model is
now compared to the CFD disturbance pressure purged of the contribution coming from the
boundary condition. This contribution comes from the tightest porous surface embedding the
observers, called FWH − P1.05D.
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FIGURE 5.190: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs1.
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FIGURE 5.191: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs2.

-500

-400

-300

-200

-100

 0

 100

 200

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n
c
e
 p

re
s
s
u
re

 [
P
a
]

t
-
  [Non dimensional time]

 CFD solution 
FWH-PD1.05

FWH-PD1.05L
FWH-PD1.25

FIGURE 5.192: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs3.
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FIGURE 5.193: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs4.
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FIGURE 5.194: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs5.
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FIGURE 5.195: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs6.
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FIGURE 5.196: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs7.
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FIGURE 5.197: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs8.
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FIGURE 5.198: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs9.
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FIGURE 5.199: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs10.
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FIGURE 5.200: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs11.
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FIGURE 5.201: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs12.
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FIGURE 5.202: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs13.
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FIGURE 5.203: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs14.
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FIGURE 5.204: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs15.
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FIGURE 5.205: Comparison between the CFD solutions and the
FWH-P related with the external noise sources at Obs16.

This choice is based on the fact that although the solutions coming from the externals
(with respect to the acoustic observer) porous surface are very similar, from a theoretical
standpoint some noise sources remains trapped between the internal and external porous
surfaces (with respect to the observers).

However, the purpose of this technique is only to carry out a baseline for comparison for
the acoustic solution of the FWH-P technique, since it provides by its own a filtering effect
with respect to the external noise sources (for clarity see also 3.2.1).

Figures 5.206 to 5.221 show the above mentioned comparison where the solution called
CFD w/o outer indicates the CFD solution to which has been subtracted the acoustic contri-
bution due to the boundary condition. All the pressure signature are in excellent agreement,
thus proving that the porous formulation of FWH equation provide a excellent estimation of
the acoustic pressure when coupled with a noise source detection made with the CFD solver.
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FIGURE 5.206: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs1.
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FIGURE 5.207: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs2.
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FIGURE 5.208: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs3.
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FIGURE 5.209: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs4.



5.4. Assessment of the Permeable FWHE 161

-400

-300

-200

-100

 0

 100

 200

 300

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n
c
e
 p

re
s
s
u
re

 [
P
a
]

t
-
  [Non dimensional time]

 CFD w/o outer 
 FWH-P 0.80 D

 FWH-P 0.85 D
 FWH-P 0.90 D

FIGURE 5.210: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs5.
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FIGURE 5.211: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs6.
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FIGURE 5.212: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs7.
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FIGURE 5.213: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs8.
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FIGURE 5.214: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs9.
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FIGURE 5.215: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs10.
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FIGURE 5.216: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs11.
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FIGURE 5.217: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs12.
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FIGURE 5.218: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs13.
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FIGURE 5.219: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs14.
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FIGURE 5.220: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs15.
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FIGURE 5.221: Comparison between FWH-P and CFD without
the boundaries induced noise at Obs16.
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5.4.6.2 Frequency Content

Figures 5.222 to 5.237 show the comparison between the frequency content of the pres-
sure signature at microphones listed in Tabs. 5.10 and 5.11.

The sampling frequencies of the CFD simulation is set up to 4500 Hz; then the analyzed
frequency range is extended up to the value f

f0
= 22.5, where f0 = 25 Hz is the shaft

rotational frequency. The spectrum is dominated by a frequency f
f0
= 7 of the CFD raw data;

it is present for all the observers, even for those located downstream of the rotor, with almost
everywhere the same amplitude. Therefore, such frequency content is probably associated
with those nonphysical contribution coming from the boundary conditions.

Indeed, the comparisons between the FWH-P solutions and those obtained from the CFD
signals without the CFD boundary associated contributions show a very good agreement all
over the frequency range of the spectrum.

Besides, the frequency content at f / f0 = 7 is highly attenuated with respect to the solu-
tion relative to the raw CFD data for all microphones and in particular for those downstream,
whereas the broadband character of the signal is well evident and retained with respect to the
raw CFD data.

However, even considering possible coupling phenomena related to the vortical struc-
tures downstream the rotor (which may slightly move the frequency tonal content around the
2BPF) the amplitude relative to f / f0 = 7 is suspiciously high for those microphones located
upstream and downstream of the rotor.

Therefore, nevertheless the already cited filtering effects of the CFD computational grid,
further investigation are required to verify the genesis of such frequency component.

As a last consideration, at each observer the solution provided by the impermeable FWH
configuration, inhere indicated by FWH-linear, is present only in the plane of blades and it is
able to predict only the tonal contributions at the first and second BPF.
In conclusion, the sound of the INSEAN 779A in drifting conditions seems to be dominated
by the non linear terms which give rise to a signal with a frequency content spread all over
the spectrum for all the observers, even those located in the blade plane.
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FIGURE 5.224: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs3.
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FIGURE 5.225: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs4.
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FIGURE 5.223: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs2.
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FIGURE 5.226: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs5.
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FIGURE 5.227: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs6.
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FIGURE 5.228: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs7.
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FIGURE 5.229: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs8.
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FIGURE 5.230: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs9.

 0

 20

 40

 60

 80

 100

 120

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
m

p
lit

u
d

e
 [

P
a

]

f/f0

CFD
CFD w/o outer
FWH-P 0.80D 
FWH-P 0.85D 
FWH-P 0.90D 

FWH-linear

FIGURE 5.231: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs10.
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FIGURE 5.232: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs11.
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FIGURE 5.233: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs12.
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FIGURE 5.234: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs13.
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FIGURE 5.235: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs14.
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FIGURE 5.236: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs15.
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FIGURE 5.237: Comparison between the frequency con-
tent of the FWH-P and CFD outcomes at Obs16.
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5.5 Assessment of the Combined FWHE/H-FWHE Formulation

In this section the acoustic effects induced by quadrupole source terms over a thin vortic-
ity layer are evaluated following the approach proposed in Chapter 4.

Particularly, the hybrid formulation of Eq. (4.16) is used to extend the FWHE model in
order to keep into account disturbance pressure signals from a field surface side of intense non
linear noise contribution. It is worth to remind that, unlike to the standard approach followed
to evaluate the quadrupole noise contributions (i.e the volume integral or the permeable ap-
proach) the purpose inhere is only to assess the effect of quadrupole noise contributions over
a surface side of discontinuity for the Lighthill stress tensor (whenever it is identifiable). As
highlighted in section C.2, the linear FWHE formulation is not able, by its own, to directly
account for these contributions (as in the case of a potential wake convected downstream a
lifting body) unless to embed the discontinuity surface inside the porous one. In that regard,
it is also shown that thickness and loading noise contributions vanish when integrated over
the discontinuity surface.

In view of this, the presented approach proposes to include the effects of quadrupole noise
contributions over a potential wake surface through additional noise sources (monopole and
dipole over it), whose intensity is derived by a manipulation of the FWHE volume term.

In Appendix C.4 it is also proved that these contributions correspond to the difference
between the K-Equation and the linear FWHE (applied to the same surface).

Notably, Eq. (4.16) can be used to achieve the acoustic pressure prediction in applica-
tions where a contact discontinuity, as a potential wake, cannot be fully embedded inside the
porous surface (see Fig. 5.238).

In a such condition, following the proposed approach, the contribution over the wake
outside the porous surface is accounted for by the jump of the normal derivative of the acous-
tic pressure, namely ∆

(
∂p′/∂ñ

)
, integrated over the wake itself.

FIGURE 5.238: Discontinuity contact which goes through the porous surface.

Therefore, it represents a possible way to handle the End Cap issue in case of potential
based applications. Although interesting, the applicability is limited by unquestionable nu-
merical difficulties, such approach is indeed rather difficult to code; besides, the evaluation
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x[m] y[m] z[m]
Obs1 -2.0 0.0 2.0
Obs2 0.0 0.0 2.0
Obs3 2.0 0.0 2.0
Obs4 3.0 0.0 2.0
Obs5 6.0 0.0 2.0
Obs6 8.0 0.0 2.0
Obs7 10.0 0.0 2.0

TABLE 5.12: Microphones position.

of aerodynamic input it is not straightforward (because of the rather wide use of differential
geometry needed to describe the flow field behaviour across the wake). These issues has to
be accounted in the application of this particular acoustic model.

On the other hand, it is worth to note that it is capable of partially retain the quadrupoles
outside the permeable surface, and, above all, to maintain the physical consistency in the
noise source detection in case of potential vortices crossing the outflow disk.

Keeping in mind these consideration, the application to face the End Cap issue is not here
carried out; in the following, analysis are limited only to assess the effectiveness to retain a
portion of quadrupole sources in the noise prediction.

The best approach, from this standpoint, is the application to a impermeable configuration
of the FWHE, since it allows to better evaluate the acoustic effects of non linear contribution
over the wake (with respect to the noise sources over the body).

To this aim, the aeroacoustic behavior of a simplified propeller model, composed of a
single rectangular blade 1 m long, having constant twist equal to 40◦, constant chord c =

0.1 m, root cut-off of 0.2 m and NACA 0012 airfoil sections, is investigated.
Two different operating conditions are defined by the horizontal advance ratio J =

U/nD equal to 0.3 and 0.7244, where n = 4.77 Hz is the rotational frequency of the shaft,
D = 2 m indicates the blade diameter and U represents the magnitude of the advancing
velocity.

Both the aforementioned advancing conditions refer to axial motion. The wake shape is
considered prescribed and composed by 6 turns.

The fluid dynamic data needed by the acoustic model (i.e. the pressure over the blades
and the ∆(∂p/∂ñ) across the wake surface) as well as the pressure signatures used as baseline
for comparisons are given, in the framework of potential flows, by the use of unsteady 3D
panel method along with the Bernoulli Equation (details of the theoretical model are reported
in section 2.2).

The observer positions are listed in Tab. 5.12 whereas Fig. 5.239 depicts their relative
position with respect to the layout of the blade-wake concerning the advance ratio J=0.7244.

Figures 5.240 to 5.246 show comparisons between the Bernoulli solution, those carried
out by the linear formulations of the FWHE and the combined FWHE/H-FWHE, indicated
as FWH and FWH-K, respectively, for the advance ratio J=0.7244.

The results show an invariant solution between the FWHE impermeable outcomes and
that provided by the FWH-K model for the first three microphones, those near the blade.
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FIGURE 5.239: Layout of the blade, wake and observers at
J=0.7244, contours of normal velocity over the wake.

This result is not surprising because in that zone the effect of the blade is of major im-
portance compared to the non linear contribution over the wake.

Besides, the advance ratio J = 0.7244 is associated to a low loaded condition of the
blade, and then, to a weak velocity jump induced over the wake surface.

However, slightly differences between pressure signature from FWH and the outcomes
of FWH-K are present downstream of the blade, thus proving that, the non linear terms
provide a not negligible contribution.
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FIGURE 5.241: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs2, J=0.7244.
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FIGURE 5.242: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs3, J=0.7244.
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FIGURE 5.243: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs4, J=0.7244.
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FIGURE 5.244: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs5, J=0.7244.

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n

c
e

 p
re

s
s
u

re
 [

P
a

]

t
-
   [non dimensional time]

Bernoulli FWH-K FWH

FIGURE 5.245: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs6, J=0.7244.

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0  0.2  0.4  0.6  0.8  1

D
is

tu
rb

a
n

c
e

 p
re

s
s
u

re
 [

P
a

]

t
-
   [non dimensional time]

Bernoulli FWH-K FWH

FIGURE 5.246: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs7, J=0.7244.
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In order to verify the effect of a greater jump of tangential velocity over the wake a
operating condition with J = 0.3 is considered.

Figures 5.248 to 5.254 depict the acoustic pressure comparison between the Bernoulli
solution, the impermeable FWHE ad the FWH-K Equation for the observers listed in Tab.
5.12.

Similarly to the case study at J=0.7244, the first three microphones are weakly affected
by the non-linear sources of noise over the wake.

On the contrary, the microphones Obs5, Obs6 and Obs7 show a consistent contribution
to the acoustic pressure induced by the wake, which moves the FWHE solution towards the
Bernoulli signal.

This is an encouraging result which suggests further investigation on the role plated by
the field discontinuity surface of the Lighthill stress tensor. This is also confirms that such
technique could be profitably applied to face the End Cup issue.

FIGURE 5.247: Layout of the blade, wake and observers at J=0.3,
contours of normal velocity over the wake.
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FIGURE 5.248: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs1, J=0.3.
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FIGURE 5.249: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs2, J=0.3.
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FIGURE 5.250: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs3, J=0.3.
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FIGURE 5.251: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs4, J=0.3.
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FIGURE 5.252: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs5, J=0.3.
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FIGURE 5.253: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs6, J=0.3.
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FIGURE 5.254: Comparison between the Bernoulli, the linear
FWHE and the FWH-K acoustic predictions at Obs7, J=0.3.
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Chapter 6

Concluding Remarks

The present work deals with the noise prediction from rotating-wings devices whose
operating conditions induce significant flow field noise sources.

Powerful tools based on the Acoustic Analogy, such as the permeable approach of FWHE
and the Hybrid Lighthill-Ffowcs Williams and Hawkings Equation (namely FWH-P and K-
Equation, respectively), have been implemented and fruitfully used to predict the noise sig-
nature.

In addition, a novel approach has been proposed to extent the application of the porous
approach of the FWHE to the presence (outside the permeable surface) of thin layers, where
intense gradients of velocity, pressure or density may occur.

The first part of the thesis has been devoted to the methodological approach, as to under-
stand the main features of the porous formulations.

To this aim, their capabilities have been first investigated through the use of singular
solutions of the wave equation.

At the first glance, the use of moving monopoles with translating and rototranslating kine-
matics allowed to compare the outcomes of the acoustic models against analytic baselines.
Although excellent results confirmed that, both permeable approaches represent a viable way
to achieve the noise prediction of moving sources of sound, differences between the FWH-P
and the K-Equation soon have been highlighted. In Particular, numerical results have con-
firmed (in accordance with literature outcomes) the FWH-P technique as the most effective,
in that, capable to provide reliable acoustic predictions when the permeable surface is located
closer, with respect to the K-Equation, to the noise sources.

The different behaviour between the FWH-P and the K-Equation has been theoretically
related to the different non linear contribution which the models are able to account for. In-
teresting results on that highlight how, even in case of such simple acoustic emitters (i.e the
monopoles), the incomplete inclusion (inside the permeable surface) of flow nonlinearities
induced by the sources gives rise to a wrong noise prediction. Notably, erroneous predic-
tions concern with the overestimation of specific frequency contents (correlated with the
acoustic effects of flow nonlinearities) which would be canceled out by the inclusion of all

quadrupoles in the acoustic models.
Such statement perfect match with the definition of spurious noise, although commonly

associated to the acoustic effects of eddies crossing the boundary of the permeable surface.
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In order to fill the knowledge gap and get a better insight on the spurious noise gener-
ation mechanisms a rototranslating potential vortex ring, based on the Biot-Savart law and
the Bernoulli Equation, allowed to evaluate the noise effects of a vortex partially embedded
inside the permeable surface.

The numerical findings highlight that its genesis is due to a combination of two factors:
i) the partial enclosure of non linear flow field (the phenomenon shown also in the case study
of the monopoles)
ii) the effect of the nonphysical (inconsistent) noise source detection arising when only a
portion of a vortex falls inside the porous surface (as it violates the Helmholtz’s theorem: "A
vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid or form a
closed path").

Therefore, as in the case study of the monopoles, the spurious noise would be canceled
out by the inclusion of the quadrupole field contribution (of the acoustic models) if it were
extended up to the end of the vortex.

The numerical results show that the spurious noise represents a non negligible unwanted
acoustic effect especially for those observers located near the zone where the interactions
between vortex-permeable surface occur.

Possible suggestions to mitigate such issue has been proposed in view of applications
to realistic configurations, where the presence of eddies crossing the closure of the porous
surface is unavoidable.

The acoustic analysis of rotary wing devices started with a simplified case study concern-
ing a single rotary lifting blade device. In this case the noise sources detection process has
been based on the aerodynamic solution provided by a 3D panel method solver based on the
potential flows theory along with the Bernoulli Equation.

Akin to the outcomes of the singular sources, the permeable approach of the FWHE
proved to well match the reference signals. Hence, its effectiveness in the noise predictions
has been confirmed, providing that all noise sources, those over the body and in the flow field
are embedded inside the surface.

Besides, similar issues to those encountered with the vortex ring, confirm the End Cap

issue as the major limitation in the application of the permeable approach.
A very good agreement between the FWH-P predictions and the Bernoulli based so-

lutions have been as well found out for the mono blade case study operating in inclined
flow conditions (i.e. a case characterized by rotational axis and hub translation velocity not
aligned).

A similar test case, concerning the simplified single blade configuration, has been used
to assess the effectiveness of the combined FWHE/H-FWHE. Such formulation represents
the most innovative content of the thesis; in fact, it allows to keep into account the noise
generated by quadrupole contributions (by their direct integration) over a surface where the
Lighthill stress tensor shows a discontinuous pattern.

Numerical results exhibit that, the acoustic effects of potential wakes (side of the tangen-
tial velocity jump) assume a considerable importance.
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However, although satisfying outcomes, one of the most interesting application of such
technique, i.e. the use oriented at the mitigation of the end cap phenomenon, has not been
verified.

As a matter of fact, it might be a very interesting cue for future works. Indeed, in cases
where thin vorticity layers go trough the porous surface, the acoustic effects of quadrupole
contributions could be partially retrieved through such technique and, above all, the consis-
tency in the noise detection maintained (as the integration is extended over the whole vortex).

The methodological part of the thesis ends with the aforementioned simplified single
blade configurations.

Further numerical investigation concern with a considerable number of cases involving
the aero/hydro-acoustics analysis of devices as underwater propellers and wind turbines.

As widely discussed along the thesis, they are acoustically characterised by the effects of
the field noise sources, therefore representing an ideal benchmark to assess the effectiveness
of the permeable approach of FWHE and the H-FWHE models.

To this aim a fruitful noise sources detection able to characterize the turbulence and
vorticity phenomena generated by these devices has been provided by a finite volume fluid
dynamic solver (CFD).

Although the high level reached by such techniques, the computational resources needed
to perform Direct Numerical Simulation (able to resolve the turbulence scales, thus to fully
characterize the quadrupole noise sources) is nowadays unapproachable for applications of
industrial interest. Hence, models based on the eddy viscosity have been used to model the
energy cascade inside the fluid domain.

Among them the Reynolds Averaged Navier Stokes Equations (RANSE), used in the
analysis of the wind turbine, is turned out to be not able to accurately predict the velocity and
pressure fluctuations characterizing the turbulent phenomena away from the rotor.

Indeed, the predicted acoustic field by the FWH-P, although showing a complete agree-
ment with the CFD solution, is unable to describe the acoustic effects of the turbulence and
weakly able to account with those related with the vorticity field induced by the rotor down-
stream it (i.e. only the rotational noise sources are well detected).

The high frequencies phenomena expected by the well known swishing character of wind
turbines noise are not highlighted. Such result can be ascribed to the following two reasons:
i) the first regards the numerical dissipation of the RANSE model, which even if is able to
well detect the dynamics of the boundary layer is also prone to filtering effects due both to the
eddy viscosity modeling and to the grid features. ii) operating conditions, inhere the nominal
tip speed ratio λ = 6 has been analyzed. In this condition the dynamics of boundary layer
weakly interact with the trailing edge of the blades; such behaviour is emphasized by the
absence of inflow turbulence. Besides, the acoustic effects related with change in the wind
direction as well as those related with the inflow turbulence are not predicted because not
accounted by the fluid dynamic simulation.

Thus, further investigations are suggested in order to have a broadband noise characteri-
zation of such devices. As a matter of fact, it can be achieved only through turbulence models
capable of accurately predict the flow field induced sources.
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For what concern the underwater noise predictions of propellers, hydrodynamic simu-
lations based on the DES turbulence model has been used in that able to get the strength
points of the RANSE in resolving the boundary layer and the effectiveness of the LES in the
solution of the near-mid flow field features.

A considerable advantage of these techniques is the reasonable level of numerical dissipa-
tion of the modern numerical integration schemes, in that, they allow to propagate fluctuating
phenomena predicted by the turbulence model far enough to reach the permeable surface. For
these reasons, the unsteady CFD/DES simulations have proven to be particularly well suited
to detect noise sources due to the turbulent phenomena.

In this regard, one of the most interesting outcomes of this work concerns with the decou-
pling of the acoustic effects of turbulence from those related with the large vortical structure
released downstream of the rotor. This has been achieved by exploiting the properties of the
DES hydrodynamics of the E779A INSEAN marine propeller in axial motion by the means
of the running average process.

Results show how, the effect of turbulence produces disturbance pressure up to an or-
der of magnitude greater then those related with large vortical structures just two diameters
downstream of the rotor.

The importance of flow field fluctuating behaviour (i.e. of the quadrupole noise contri-
bution) in the noise generation mechanisms is also highlighted by the spatial identification of
the noise sources. Indeed, it comes out that the finest resolved computational CFD domain
is the most important acoustic region in the flow field. This comply with the capabilities of
the turbulence model, in that, the finer is the gird resolution the better is the energy cascade
predicted by the DES model.

On the contrary, the linear contribution of the FWHE, i.e. thickness and loading noise
fast decay in space and become negligible just a diameter downstream the propeller.

The outcomes of a 3D panel method hydrodynamics, based on the potential flows theory
and the Bernoulli Equation, turn out to well detect only the near field noise sources for the
INSEAN E779A propeller operating at the same conditions of the aforementioned analysis.
As a matter of fact, the acoustic predictions based on that hydrodynamics well match those
from the DES up to approximately a diameter downstream of the rotor. This also confirms
how, behind such distance, the major role to the noise generation is played by the turbulence
phenomena.

Similar findings came out from the analysis of the E779A INSEAN marine propeller
operating in drifting condition (i.e. the condition characterized by rotational axis not aligned
with the hub translation velocity). Such a operating condition forces the blades to exchange
much more energy with the flow around it producing zones with high velocity and pressure
gradients.

As expected, the field noise contributions associated to the turbulence phenomena play
an even greater (with respect to the axial case) role in the noise generation mechanisms.
The noise signature is indeed dominated by a high broadband content, which is massively
present even in the zone near the blades where the thickness and loading noise components
are expected to be dominant.
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Finally, last but not least outcome concerns with the unexpected role played by the bound-
ary conditions of the CFD/DES field solution in the noise sources detection process.

Throughout the thesis is highlighted how, especially in case of unsteady simulations, re-
flective effects at the boundaries of the CFD computational domain can lead to wrong acous-
tic predictions. Essentially, being them not transparent, as should be, produce unwanted
bouncing of pressure perturbations coming from inside the field. As a matter of fact, the
pressure waves bounced at the boundaries turn out to have weak intensity by its own, thus
being substantially ineffective from the hydrodynamic point of view (at least for the hydro
loads evaluation, may instead be dangerous for the convergence of the solution). On the
contrary, the CFD/DES pressure predictions far from the body are deeply affected by the
reflective effects, since them account for all contributions (i.e. even if the bouncing are weak
the solution accounts for all the computational domain).

Using some interesting mathematical properties of the FWH-P formulation has been pos-
sible to characterize acoustically they overall intensity without computing any field contri-
bution. It turns out that, sometimes, the integral contribution of the fictitious noise sources
associated to the boundary of the CFD domain is even greater than those of the rotor and
wake.

However, in this regard, is important to keep in mind the two following considerations:
i) the capability of the permeable approach to account only with the internal noise sources
allows to neglect in the acoustic prediction the presence of the fictitious CFD noise sources
at the boundary condition;
ii) besides, the clustering grid strategy of the CFD computational domain insulates the zone
near the rotor and wake by the external field in a way to let the effects of fictitious boundary
condition outside to the zone of interest for the hydrodynamic solution. This means that,
theoretically, the presence of reflecting boundaries weakly or not at all influence the noise
source detection near the body (similarly to what happened for the hydro loads evaluation).

Hence, at the first glance, the aforementioned effects can be considered ineffective for the
acoustic prediction if the permeable surface is located tightly around the most intense noise
sources.

On the contrary the CFD solution, far from the body, is deeply affected by such condition
making prohibitive any comparisons with the FWH-P outcomes.

The assessment of the effectiveness in the filtering process due to the clustering grid
strategy could represents a cue for future works. In particular, specific adaptations of the
CFD solvers, for instance with the inclusion of particular boundary condition techniques
suited for acoustic purposes, might clarify the effectiveness of standard approaches in the
near field noise source detection.

Concerning the future possible works, analysis on the acoustic effects of turbulence for
propellers working at lower advancing ratio, even in case of non isolated configuration, may
confirm (as we expect) the outcomes of this thesis for a wider range of operating conditions.
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Appendix A

Appendix A

A.1 The Differential Problem

Here the general form of the Ffowcs Williams Hawkings and Hybrid Lighthill-Ffowcs
Williams and Hawkings Equations is derived.

Let us assume that the fluid is compressible and undergoes to transformations with neg-
ligible entropy changes; by combining the continuity and momentum equations

dρ

dt
+∇ · (ρu) = 0

d(ρu)
dt

+∇ · (ρu⊗ u) = ∇ · (−pI + V)

(A.1)

the following Lighthill equation is obtained

�2 p′ =
1
c2

0

∂2 p′

∂t2 −∇
2 p′ = ∇ · ∇ · T (A.2)

where u, ρ, and p are the flow field velocity, density and pressure, respectively. Besides,
c0 is the sound speed in the medium at rest, p′ = c2

0(ρ− ρ0) = c2
0 ρ′ denotes the acoustic

pressure, V is the viscous stress tensor, T =
[
ρu⊗ u + (p′ − c2

0ρ′)I−V
]

is the Lighthill
stress tensor whereas p0 and ρ0 are the pressure and density fields in the undisturbed medium,
respectively.
Furthermore, let us consider a moving permeable surface S enclosing both the flow field
noise sources and solid surfaces (i.e. the bodies surfaces) in a volume V . By the introduction
of a domain function E(x, t) such that

E(x, t) =

{
1 if x ∈ <3 \ V
0 if x ∈ V

(A.3)

the embedding procedure allows to recast the original Lighthill equation in an unbounded
problem through the following expression for the acoustic pressure

p̂′(x, t) = E(x, t)p′(x, t) (A.4)

Combining Eq. (A.2) with Eq. (A.4) the following infinite–space problem is obtained
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�2 p̂′ = E∇ · ∇ · T−∇p′ · ∇E−∇ · (p′∇E)
1
c2

0

[
ṗ′Ė + (p′Ė)·

]
(A.5)

representing the extension of the Lighthill equation to account for the presence of moving
bodies, hereafter referred as Hybrid Lighthill-Ffowcs Williams and Hawkings Equation for
Moving Surfaces (H-FWHE).

A.1.1 The Ffowcs Williams and Hawkings Equation

The Ffowcs Williams and Hawkings Equation (FWHE) is obtained from Eq. (A.5) by
recasting the quadrupole source term as follows

E∇ · ∇ · T = ∇ · ∇ · (ET)− (∇ · T) · ∇E−∇ · (T∇E) (A.6)

recalling that p′ = c2
0(ρ− ρ0) and T + p′I = P + ρu⊗ u where P = [(p− p0)I−V] is

the compressive stress tensor, combining Eq. (A.5) and Eq. (A.6) one obtains

�2 p̂′ = ∇ · ∇ · (E T)−
[
∇ · (p′I + T)

]
· ∇E+

−∇ · [(p′I + T)∇E] + 2ρ̇Ė + ρË− ρ0Ë (A.7)

Through the use of the continuity and momentum equations Eq. (A.7) recasts as

�2 p̂′ = ∇ · ∇ · (ET)−∇ · (P∇E) + ρu̇ · ∇E + 2ρ̇u · ∇E +

− ρu · ∇(u · ∇E) + 2ρ̇Ė + ρË− ρ0Ë (A.8)

Moreover noting that the material derivative
DE
Dt

following a flow field point is given by

DE
Dt

= Ė + u · ∇E (A.9)

and its time derivative

˙
(

DE
Dt

) = Ë + u̇ · ∇E + u · ∇E· (A.10)

one obtains

2ρ̇(Ė + u · ∇E) + ρ[Ë + u̇∇E− u · ∇(u · ∇E)] = 2
∂

∂t
(ρ

DE
Dt

)− ρ
D2E
Dt2 (A.11)

Combining Eq. (A.8) with Eq. (A.11) yields

�2 p̂′ = ∇ · ∇(ET)− ρ0Ë−∇ · (P∇E) + 2
∂

∂t
(ρ

DE
Dt

)− ρ
D2E
Dt2 (A.12)
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Eq. (A.12) represents the Ffowcs Williams and Hawkings equation for permeable surfaces,
governing the aeroacoustic field around a volume V moving in arbitrary motion with respect
to the air space.
In order to re-write the FWHE in a more suitable mathematical form, let the boundary of S
be mathematically defined by f (x, t) = 0, with f > 0 outside S and such that ∇ f = n,
where n is the outward unit normal vector. Observing that E(x, t) = H[ f (x, t)], where H
denotes the Heaviside function, the following relations hold

∇E =
dH
d f
∇ f = δ( f ) n (A.13)

DE
Dt

=
dH
d f

D f
Dt

= δ( f )
D f
Dt

(A.14)

The material time derivative, following a fluid particle, is given by

D f
Dt

=
∂ f
∂t

+ u · ∇ f (A.15)

where
∂ f
∂t

indicates the Eulerian derivative; furthermore, following a material point on the
surface S that moves with velocity v, the time derivative of f (x, t) is equal to

D f
Dt

=
∂ f
∂t

+ v · ∇ f = 0 (A.16)

It results that following a fluid particle, the material derivative may be written as

D f
Dt

= (u− v) · n (A.17)

Thus, accounting for Eqs. (A.13), (A.14) and (A.17), the material derivative
DE
Dt

may be
written as

DE
Dt

= (u− v) · ∇E (A.18)

Moreover combining the continuity equation with the Eq. (A.18) yields

2
∂

∂t
(ρ

DE
Dt

)− ρ
D2E
Dt2 =

∂

∂t
[
ρ(u− v) · ∇E

]
−∇ ·

[
ρu [(u− v) · ∇E]

]
(A.19)

Thus, rearranging Eq. (A.12) using Eq. (A.19) and recalling that, for any vector field a, b, c,

(a⊗ b) c = (b · c) a the following form of the FWHE is obtained

�2 p̂′ = ∇ · ∇ · (ET)− ∂

∂t
(ρ0

∂E
∂t

)−∇ · (P∇E) +
∂

∂t
[ρ(u− v) · ∇E)]

− ∇ · [ρu⊗ (u− v)∇E)] ∀x ∈ <3 (A.20)
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Accounting for Eqs. (A.9), (A.13) and (A.18), it comes out that Ė = −v · n δ( f ) and hence

−ρ0Ë =
∂

∂t

[
−ρ0

∂E
∂t

]
=

∂

∂t
[ρ0 v · n δ( f )] (A.21)

Thus substituting Eq. (A.21) in Eq. (A.20) and accounting for Eq. (A.13) the FWHE recasts
as follows

�2 p′ =
∂

∂t
[ρ0 v ·∇ f δ ( f )] +

∂

∂t
[ρ (u− v) ·∇ f δ ( f )]

− ∇ · [P ∇ f δ ( f )]−∇ · [ρ u⊗ (u− v) ∇ f δ ( f )]

+ ∇ ·
{
∇ · [T H( f )]

}
∀x ∈ <3 (A.22)

where the bar over the derivative symbol denotes generalized differentiation. Equation (A.22)
is written by using the typical notation for the FWHE.

If the surface S, moving with velocity v, is impermeable,
DE
Dt

= 0 and Eq. (A.20) re-
duces to

�2 p̂′ = ∇ · ∇ · (ET)− ρ0Ë−∇ · (P∇E) (A.23)

that is

�2 p′ =
∂

∂t
[ρ0 v ·∇ f δ ( f )]−∇ · [P ∇ f δ ( f )] +

+ ∇ ·
{
∇ · [T H( f )]

}
∀x ∈ <3 (A.24)

A.1.2 Hybrid Lighthill-Ffowcs Williams and Hawkings Equation for Moving
Surfaces

A re-writing of Eq. (A.5), namely (H-FWHE), in a most known form is hereafter pro-
posed.

To this aim let the boundary of S be mathematically defined by f (x, t) = 0, with f > 0
outside S and such that ∇ f = n, where n is the outward unit normal vector.

Observing that E(x, t) = H[ f (x, t)] and recalling that
∂H
∂t

= −n · vδ( f ) and∇H( f ) = nδ( f )
the following form of Eq. (A.5) is obtained

�
2 p′ = − ∇p′ · nδ( f )−∇ · [p′nδ( f )] + (A.25)

− 1
c2

0

[
∂p′

∂t
δ( f )n · v +

∂

∂t
(p′δ( f )n · v)

]
+ H∇ · ∇ · T

which recasts as follows

�
2 p′ = −

(
∂p′

∂n
+

1
c0

∂p′

∂t
Mn

)
δ( f )−∇ · [p′nδ( f )] + (A.26)

− 1
c0

∂

∂t

[
p′Mnδ( f )

]
+ H∇ · ∇ · T
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Eq. (A.26) is a rearrangement of the Lighthill equation for moving surfaces where the
linear part represents the well known Kirchhoff formula for moving surfaces also called K

equation [61]. Note that the linear source terms of Eq. (A.26) are related with the acoustic
pressure p′ and its time and normal derivative over f (x, t) whereas the quadrupole is related
with the flow field noise sources outside the acoustic surface.

A.2 General Integral Solution

For a surface S in rigid–body motion with respect to the air space (SRA) and subject to a
distribution of noise sources over it, in addition to those present outside, the inhomogeneous
wave equation given by Eq. (A.22) or Eq. (A.26) govern the propagation of an acoustic
disturbance throughout the fluid domain. Thus, to derive the general structure of integral
solution for both equations, let us consider the following inhomogeneous wave equation

−�2û = χ + z · ∇E +∇ · (Z∇E) +
∂

∂t
(k2

∂E
∂t

)

+ k1
∂E
∂t
− ∂

∂t
(z1 · ∇E)

(A.27)

forced by generic vectorial and tensorial fields z, z1 and Z, respectively, where E denotes the
Heaviside H( f (x, t)) function and û = u E a generic variable to be propagated. In addition,
let the boundary conditions at infinity and the initial conditions be homogeneous for all the
perturbative quantities involved.

The application of the Green function method that combines Eq. (A.27) with the funda-
mental wave equation problem

−�2G = δ(x− x∗, t− t∗)

G = 0 ∀x ∈ ∞

G = 0 t = ∞
∂G
∂t

= 0 t = ∞ (A.28)

yields the following integral solution of the Eq. (A.27) in the SRA

E(x∗, t∗) u(x∗, t∗) =
∫ ∞

0

∫
<3

G χdVdt

+
∫ ∞

0

∫
<3
∇ · (Z∇E) GdVdt

+
∫ ∞

0

∫
<3

∂

∂t
(k2

∂E
∂t

) GdVdt

−
∫ ∞

0

∫
<3

∂

∂t
(z1 · ∇E) GdVdt

+
∫ ∞

0

∫
<3

k1
∂E
∂t

dVdt

+
∫ ∞

0

∫
<3

z · ∇E GdV dt (A.29)
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where

G(x∗ − x, t− t∗) =
−1
4πr

δ(t− t∗ +
r
c0
) (A.30)

being x and x∗ the source and observer positions in the SRA, respectively, t∗ the time of
observation, t the emission time of the signal and r = |x∗ − x|. Since the surface S moves
like a rigid–body, in the space rigidly connected with it (referred as body–space, SRC) E is
time-independent; thus, it is convenient to transform the above air–space solution into one
expressed in the SRC space.

To distinguish the air–space from the body–space, from here on (x, t) indicates an event
in the air space whilst (y, t̄) is used for an event in the body space; moreover, the pedix y is
used to denote tensorial and vectorial quantities whose images is referred to the body–space.
In the air–space, the fundamental equation for rigid-body motion yields

x(y, t̄) = x0(t̄) + R(t̄)y (A.31)

where x0 denotes the air–space image of the body point y = 0 and R is an orthogonal tensor
representing a rigid–body rotation around x0 (the Jacobian of the rigid–body transformation
is equal to one). In addition, the time derivatives between the two spaces are related by

∂

∂t
=

∂

∂t̄
− vy · ∇y (A.32)

where ∇y = RT∇ denotes the body–space gradient operator and vy = RT ∂x
∂t̄

the body–
space vector of the velocity of y relative to the air space. For the next mathematical manipu-
lations let us observe that, for any function h(t̄) and g(t̄)

∫ ∞

0
h(t̄)δ[g(t̄)]dt̄ = ∑

k

∫ ∞

0

h(t̄)
ġ(t̄)

δ(t̄− t̄k)dt̄ (A.33)

where t̄k represents a roots of g(t̄) = 0. Referring to the body–space and combining Eq. A.29
with Eqs. A.30, A.33, the support of the Dirac delta function and its time derivative are easily

identified, being g = (t̄− t̄∗ +
|ry|
c0

), ġ = 1− ry ·
vy

c0|ry|
with ry = RT[x(y∗, t̄∗)− x(y, t̄)]

and ġ = 1− ry ·
vy

c0|ry|
. Hence, by combining the above relations with Eq. A.29 and per-

forming an integration by parts (with the condition û = 0 at infinity), the integral solution of



A.2. General Integral Solution 191

Eq. A.27 in the body–space reads

E(y∗) u(y∗, t∗) =
∫ ∞

0

∫
<3

Ǧ χdVdt̄ +

−
∫ ∞

0

∫
<3
(Zy∇yE) ∇yǦdVdt̄

−
∫ ∞

0

∫
<3

k2
dBE
dt̄

(
dBǦ
dt̄

)dVdt̄

+
∫ ∞

0

∫
<3
(z1y · ∇yE)

dBǦ
dt̄

dVdt̄

+
∫ ∞

0

∫
<3

k1
dBE
dt̄

ǦdVdt̄

+
∫ ∞

0

∫
<3
(zy · ∇yE) ǦdVdt̄ (A.34)

where the (Eulerian) time derivative dB/dt̄ is expressed as

dB

dt̄
=

∂

∂t̄
− vy · ∇y (A.35)

being ∂/∂t̄ the material derivative (that is following a body point), zy = RTz, Zy = RTZR
whereas Ǧ(y− y∗, t̄− t̄∗) = Ĝ δ(t̄− t̄∗ + ϑ) with

Ĝ =

[∣∣∣1− ry · vy

c0|ry|

∣∣∣−1 −1
4π|ry|

]
θ

(A.36)

In Eq. A.36, [...]θ denotes that Ĝ is a retarded function since it is evaluated at the emission
time (t̄∗− ϑ) that, for subsonic flows, is given by the (unique) root of the equation g(t̄) = 0.

Although mathematically consistent, the use of Eq. A.34 in acoustic calculations is im-
practical. However, a form of solution suitable for numerical purposes is easily obtained
noting that

• ∇yE = δ( f )ny|∇y f | so, for any body–space vector a(y, t)

∫ ∞

0

∫
<3

a · ∇yE δ(t̄− t̄∗ + ϑ)dVdt̄ =
∫

S

[
a · ny

]
θ

dS (A.37)

• the time-independence of E implies
dBE
dt̄

= −vy · ∇yE; hence, for any f (y, t̄) Eq.
A.37 yields∫ ∞

0

∫
<3

f
dBE
dt̄

δ(t̄− t̄∗ + ϑ)dV dt̄ = −
∫

S

[
f vy · ny

]
θ

dS (A.38)

• since ϑ = ϑ(y, y∗, t̄∗), the relation ∇yǦ = ∇yĜ δ + Ĝ ∇yδ recasts

∇yǦ = ∇yĜ δ(t̄− t̄∗ + ϑ) + Ĝ δ̇(t̄− t̄∗ + ϑ)∇yϑ (A.39)

• dBǦ
dt̄

= Ĝ δ̇− vy · ∇yǦ



192 Appendix A. Appendix A

•
∫ ∞

−∞
f δ̇dt̄ = − ḟ (0)

Accounting for the above relations, the integrals at the left-hand-side of Eq. A.34 are
transformed into

I1 =
∫ ∞

0

∫
<3
(Zy∇yE) ∇yǦdVdt̄ =

=
∫

S

[
(Zyny) · ∇yĜ− (Żyny) · ∇yϑ Ĝ

]
ϑ

dS

I2 =
∫ ∞

0

∫
<3

k2
dBE
dt̄

(
dBǦ
dt̄

)dVdt̄ =

=
∫

S

{
k2 vy · nyvy · ∇yĜ +

[
k2 vy · ny(1− vy · ∇yϑ)

]̇
Ĝ
}

θ
dS

I3 =
∫ ∞

0

∫
<3
(z1y · ∇yE)

dBǦ
dt̄

dVdt̄ =

= −
∫

S

{[
z1y · ny(1− vy · ∇yϑ)

]̇
Ĝ + z1y · nyvy · ∇yĜ

}
θ

dS

I4 =
∫ ∞

0

∫
<3

k1
dBE
dt̄

ǦdVdt̄ = −
∫

S
Ĝ
[
k1 vy · ny

]
θ

dS

I5 =
∫ ∞

0

∫
<3
(zy · ∇yE) ǦdVdt̄ =

∫
S

[
zy · nyĜ

]
θ

dS

where all the time derivatives are performed in the body–space. Finally, combining the above
integrals, the boundary integral solution of Eq. (A.27) everywhere in <3 yields

E(y∗)u(y∗, t∗) =
∫ ∞

0

∫
<3

Ǧ χdVdt̄− I1 − I2 + I3 − I4 + I5 (A.40)

From here on, without any ambiguity or possibility of confusion, the notation is simplified to
avoid the proliferation of symbols.

application to the FWHE

By assuming û = p̄′, Z = P + ρu ⊗ (u − v), χ = −∇ · ∇ · (ET), k2 = ρ0, z1 =

ρ(u − v), k1 = 0 and z = 0, Eq. (A.22) is represented by Eq. (A.27). Noting that
(a⊗ b)c = (b · c)a and I4 = I5 = 0, for u− = (u− v) and u+ = (u + v) the integral
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solution for the permeable FWHE, written in the space rigidly moving with S reads

E(y∗)p′(y∗, t∗) =
∫ ∞

0

∫
<3

Ǧ χdVdt̄

−
∫

S

[
(Pn) · ∇Ĝ− (Ṗn) · ∇ϑ Ĝ

]
θ

dS

− ρ0

∫
S

{
v · nv · ∇Ĝ + [v · n(1− v · ∇ϑ)]˙ Ĝ

}
θ

dS

−
∫

S

{
ρu− · n u+ · ∇Ĝ

}
θ

dS

+
∫

S

{[
ρu− · n(1− u+ · ∇ϑ)

]̇
Ĝ
}

θ
dS (A.41)

application to the H-FWHE

Equations A.5 and A.27 matches for û = p̄′, χ = E ∇ · ∇ · T, z = ∇ p̄′, Z = I p̄′,

k1 = −∂ p̄′

∂t
/c2, k2 = − p̄′/c2, z1 = 0. In this case, I3 = 0 and the following boundary

integral representation in the body space is obtained

E(y∗, t∗) p̄′(y∗, t∗) = −
∫

V
Ĝ [∇ · ∇ · T]θ dV +

∫
S

[
∂ p̄′

∂ñ
Ĝ− p̄′

∂Ĝ
∂ñ

]
θ

dS

+
∫

S

[
Ĝ

∂ p̄′

∂t̄

(
∂ϑ

∂ñ
+ 2

v · n
c2

0

)]
θ

+
1
c2

0

∫
S

[
p̄′ Ĝ

∂

∂t̄
[v·n(1−v·∇ϑ)]

]
θ

dS (A.42)

where
∂

∂ñ
=

∂

∂n
− 1

c2
0
(v · n) (v · ∇).

A.3 Kinematic of the Acoustic Surface

In the following two different expressions of Eq. (A.41) are proposed to account with
rototranslating or translating motion of f (x, t) = 0.

A.3.1 Roto-translating Motion

In this subsection an expression of Eq. (A.41) suitable for porous surfaces enclosing
rotating blade devices is proposed. To this aim v and n, the singularities Ĝ,∇Ĝ and quan-
tities related to the compressibility delay ϑ, ∇ϑ are here written with respect to the rotating
reference system rigidly connected with the surface S. The relations between air-space and
body-space here used as introduced in Appendix A.2 with the same meaning of symbols.

To this aim the kinematic of the acoustic surface is described by x(y, t̄) = x0(t̄) + R(t̄)y
where y represents the position of the acoustic surface respect to the reference frame moving



194 Appendix A. Appendix A

with it. Besides, R is an orthogonal tensor representing a rigid–body rotation around x0 at the
angular velocity of the body ω. The surface points velocity is obtained by the time derivative

of x(y, t̄) with respect to the air frame reference, namely v =
∂x(y, t̄)

∂t̄
= v0 + ΩR(t̄)y

where v0 is the translating velocity, Ω the skew-tensor such that, for any vector c, ω× c =

Ωc. Therefore vy(y, t̄) = RT(t̄)v0 + Ωyy represents the body space image of v where
Ωy = RT(t̄)Ω.

The velocity time derivative with respect to the rotating reference frame provides
v̇y = −ΩyRT(t̄)v0, furthermore the body space image of the normals ny = RT(t̄)n is time
invariant, thus ṅy = 0.

The compressibility delay is obtained by the solution of ϑ =
|x(t̄∗)− y(t̄∗ − ϑ)|

c0
which

is a non linear equation; due to the transcendental functions involved in the rotational motion
the solution is obtained by the means of the Newton-Raphson iterative method. Furthermore
∂ϑ

∂t̄
= 0 since ϑ = ϑ(y, y∗, t̄∗) has not functional dependencies on t̄, thus also ∇ϑ· = 0.

In order to determine a suitable expression for ∇Ĝ note that Ĝ is a retarded function,
thus the following functional dependencies Ĝ = Ĝ (y, y∗, t̄∗, t̄∗ − ϑ(y, y∗, t̄∗)) must be take
into account in the derivation process. To this aim if f ϑ is a retarded function, the application
of the multiple chain differentiation rule allows to obtain the following expression

∇y f ϑ (y, t̄∗ − ϑ(y, y∗, t̄∗)) =
∂ f
∂y

∣∣∣∣
τ

+
∂ f
∂τ

∣∣∣∣
y

∂τ

∂ϑ

∂ϑ

∂y
(A.43)

where ry = R(τ)[x(t̄∗)− y(τ)] represents the body space image of the observer source

radius, Mr =
vy

c0
· r̂y, r̂y =

ry∣∣ry
∣∣ whereas τ = (t̄∗ − ϑ) is the emission time.

The application of the Eq. (A.43) provides (see, Ref.([41]))

∇yϑ = −
r̂y

c0 (1−Mr)
(A.44)

and

∇yĜ =− 1
4π

[
r̂y∣∣ry

∣∣2 (1−Mr)
−

Ωy r̂y

c0
∣∣ry
∣∣ (1−Mr)

2 −
vy − 2 vr r̂y

c0
∣∣ry
∣∣2 (1−Mr)

2

]

− 1
4π

[
RT v̇ · r̂y

c2
0

∣∣ry
∣∣ (1−Mr)

3 r̂y −
v2

y − v2
r

c2
0

∣∣ry
∣∣2 (1−Mr)

3
r̂y

]
(A.45)

A.3.2 Translating Motion

It may be obtained as particular case of the solution presented in A.3.1 for the rototrans-
lating motion in which R = I Ωy = 0 and ṅ = 0. The compressibility delay comes from

ϑ =
|x(t̄∗)− y(t̄∗ − ϑ)|

c0
, that reduces to a second order algebraic equation in ϑ.
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B.1 Monopole in Helicoidal Motion

The acoustic pressure induced by a steady-state subsonic rototranslating monopole is
herein derived. To this aim, let us consider a source of mass, pulsating at angular frequency
ωp in a fluid at rest, moving, throughout it, with velocity v respect to a frame of reference
connected to the undisturbed fluid medium (SRA). Under these assumptions the equation
governing the propagation of the velocity potential field is

−�2φ = sin(ωpτ)δ(x− x∗, τ − t) (B.1)

where where �2 is the D’Alambertian operator, x and x∗ identify source and receiver po-
sitions, respectively, in the SRA, whilst t denotes the current time at which the disturbance
generated in x at time τ is received. The integral solution of Eq. (B.1) by the Green function
technique yields [38]

φ(x∗, t) =
∫ ∞

0

∫
<3

Ĝ sin(ωpτ)δ(τ − t + ϑ)δ(x− x∗)dV(x)dτ = Ĝ sin
[
k
(
c0t− ϑ̂

)]
(B.2)

where k = ωp/c0 is the wave number and

Ĝ = − 1
4πr | (1 + Mr) |

∣∣∣∣
ret

(B.3)

is the retarded Green function with r = x(τ)− x∗(t), r = |r| and Mr = v · (r/|r|) = v · r̂.
The subscript |ret states that quantities are computed at the emission time τ = t− ϑ, where
ϑ = |r|c0 is the compressibility time delay, that is the time required to a signal generated at
x to reach the observer location in x∗. The linearized Bernoulli equation for compressible
unsteady isentropic flows yields the acoustic pressure everywhere in the field; by assuming
the observer undergoing an arbitrary steady motion with velocity vobs it reads

p
′

ρ0
= − ∂φ

∂t

∣∣∣∣
b
+ vobs · ∇∗φ−

∇∗φ · ∇∗φ
2

(B.4)

where the subscript ∗ indicates that the gradient operator is performed respect to the observer
position and |b states that the time derivative is computed following it. In order to apply
Eq. (B.4), it is convenient to refer to a frame of reference rigidly connected to the monopole
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(SRC); to this aim, in analogy with the developments addressed in Appendix A.2, from here
on subscript y represents the body space image of a air-space physical quantity.
In the air–space, the rigid-body motion for both the source and observer is given by

x(y, τ) = x0(τ) + R(τ)y

x∗(y∗, t) = x0(t) + R(t)y∗(t)

where x0 denotes the air–space image of the body point y = 0, R is an orthogonal tensor
representing a rigid–body rotation around x0 (the Jacobian of the rigid–body transforma-
tion is equal to one) whilst y and y∗ identify the SRC placements of the monopole and
observer, respectively. Moreover, noting that ry = R(τ) [x(y, τ)− x∗(y∗, t)] Eq. (B.3) be-
comes equivalent to

Ĝ = − 1
4πry | (1 + Mr) |

∣∣∣∣
ret

(B.5)

with Mr = (vy · r̂y)/c0 and vy = RT(τ)v the SRC image of the absolute velocity v. Letting
v0 be the translating speed of the monopole along a generic direction in the 3D space and ω

its rotational velocity about a spinning axis (in general different from the advancing direction)
vy = RT(τ)v0 + Ωyy where Ωy denotes the body-space image of the skew-tensor Ω such
that, for any vector c, ω× c = Ωc. Observing that a generic retarded function F is such
that F = F [y, y∗(t), t, t− ϑ(y, y∗, t)], the application of the multiple chain differentiation
rule provides

∇∗F =
∂F
∂y∗

∣∣∣∣
ret

+

[
∂F
∂τ

∣∣∣∣
y∗

∂τ

∂ϑ

]
ret

∂ϑ

∂y∗
(B.6)

and
∂F
∂t

=

[
∂F
∂t

∣∣∣∣
y∗

]
ret

+

[
∂F
∂y∗

∣∣∣∣
t
· ∂y∗

∂t

]
ret

+
∂F
∂τ

∣∣∣∣
t,y∗

∂τ

∂t
(B.7)

that, applied to Eq. (B.2) provides

∇∗φ (x, t) = ∇∗Ĝ sin [kc0 (t− ϑ)]− kc0Ĝ cos [kc0(t− ϑ)]∇∗ϑ (B.8)

and
∂φ

∂t
=

∂Ĝ
∂t

cos [kc0(t− ϑ)] + Ĝkc0 cos [kc0(t− ϑ)]

(
1− ∂ϑ

∂t

)
(B.9)

respectively. In the following steps, the mathematical operators of Eq. (B.6) and Eq. (B.7)
applied for F = ϑ and F = Ĝ are briefly outlined.

• ∇∗ϑ

By applying the multiple chain rule to the delay function and noting that∇∗ry = −R(ϑ),
it derives

∇∗ϑ = −
RT(ϑ)r̂y

c0(1 + Mr)
(B.10)
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• ∇∗Ĝ

The first term at RHS of Eq. (B.6) may be written as

∇∗Ĝ
∣∣
ret =

∇∗ | ry |
4π | ry |2 (1 + Mr)

+
∇∗Mr

4π | ry | (1 + Mr)2 (B.11)

where
∇∗Mr =

1
c0
∇∗[vy · r̂] =

1
c0
[∇∗vy]

T r̂y +
1
c0
[∇∗ry]

Tvy (B.12)

∇∗ r̂y = ∇∗
ry

| ry |
=
∇∗ry | ry | −ry ⊗∇∗ | ry |

| ry |2
(B.13)

Noting that ∇∗| ry | = −RT(ϑ)r̂y, ∇∗vy = 0 and (a⊗ b) · c = (b · c) a for
any vectors a, b, c, the combination of Eq. (B.11) with Eqs. (B.12), (B.13) yields

∇∗Ĝ
∣∣
ret =

−RT(ϑ)r̂y

4π | ry |2 (1 + Mr)
+

[(
vy · r̂y

)
RT(ϑ)r̂y − RT(ϑ)vy

]
4π | ry |2 c0(1 + Mr)2 (B.14)

Furthermore, the derivative of Ĝ respect to the retarded time τ = t− ϑ reads

∂Ĝ
∂τ

∣∣∣∣∣
y∗

=

∂|ry|
∂τ

4π | ry |2 (1 + Mr)
+

∂Mr
∂τ

4π | ry | (1 + Mr)2 (B.15)

being
∂ | ry |

∂τ
= vy · r̂y = vr

∂Mr

∂τ
=

1
c0

[
v̇y · r̂y +

| vy |2 −v2
r −Ωyry · vy

| ry |

] (B.16)

Finally, by combining Eq. (B.14) with Eq. (B.15) and ∂τ/∂θ = −1, the following
expression is derived

∇∗Ĝ =−
RT(ϑ)

(
r̂y + My

)
4π | ry |2 (1 + Mr)

2 +
RT(ϑ)r̂y

(
M2 + Mr

)
4π | ry |2 (1 + Mr)

3 (B.17)

+
RT(ϑ)r̂y

(
Ṁy · r̂y −My ·Ωy r̂y

)
4πc0 | ry | (1 + Mr)

3

where My = vy/c0, M2 = (vy · vy)/c2
0 and Ṁy = v̇y/c0.

• ∂Ĝ
∂t

The first term at RHS of Eq. (B.7) may be written as ∂Ĝ
∂t

∣∣∣∣∣
y∗


ret

=

∂|ry|
∂t

4π | ry |2 (1 + Mr)
+

∂Mr
∂t

4π | ry | (1 + Mr)2 (B.18)
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with

∂ry

∂t
= −RT(τ)v0 − R(ϑ)Ωy∗

∂ | ry |
∂t

=
∂ry

∂t
· r̂y

∂Mr

∂t
=

1
c0

[
∂vy

∂t
· r̂y + vy ·

∂r̂y

∂t

] (B.19)

Finally, by combining Eq. (B.14) and Eq. (B.15) with Eq. (B.18) one obtains

∂Ĝ
∂t

=
RT(ϑ)

(
r̂y + My

)
4π | ry |2 (1 + Mr)

2 ·
∂y∗

∂t

+

(
1− ∂ϑ

∂t

)
4π | ry | (1 + Mr)

[
vr

| ry |
+

v̇y · r̂y

c0(1 + Mr)
+
| vy |2 −v2

r −Ωry · vy

c0 | ry | (1 + Mr)

]

−
[
RT(τ)v0 + R(ϑ)Ωy∗

]
4π | ry |2 (1 + Mr)

·
[

r̂y +

(
vy − vr r̂y

c0 (1 + Mr)

)]
(B.20)

The pressure disturbance at (x∗, t) depends on the observer kinematics (see Eq. (B.4))
that, in the SRC, is described by y∗(t). Two kinds of motion are hereafter considered: i)
a steady-state translation in the same direction of the monopole advancing speed; ii) a ro-
totranslation rigidly connected with the monopole. In the first case, for x∗(t = 0) defying
the SRA observer position at the initial time, the equation of motion, referred to the SRC is
defined by y∗(t) = RT(t)x∗(t = 0) whereas ∂y∗/∂t = −ΩyRT(t)x∗(t = 0). Differently,
in the second case, the observer moves in connection to the monopole; thus, without loss of
generality, by assuming the SRC and SRA coincident at t = 0, y∗(t) = Ix∗(t = 0) whereas
∂y∗/∂t = 0, being I the unit tensor.

The particular case of a monopole in uniform translation may be easily obtained from the
above considerations by imposing Ω = 0 and R(t) = I. However, since compressibility
delays are analytic, in the next section an equivalent derivation is shown for completeness.

B.2 Translating Monopole: an Equivalent Derivation

For a pulsating monopole in uniform translation at velocity v, the solution of Eq. (B.2)
is given by

φ (x∗, t) = − 1
4πrβ

sin
[
k
(
c0t− ϑ̂

)]
(B.21)

where the retarded Green function of Eq. (B.5) recasts

Ĝ = − 1
4πrβ

(B.22)

For the next steps, let e1, e2, e3 be the unit vectors of a Cartesian frame of reference x1, x2, x3,
rigidly connected with the monopole. Assuming v = −v0e1, rβ =

√
(M2

0∆x2
1 + β2r2),
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β2 = (1−M2
0), ∆xk = (y− y∗) · ek k = (1, 2, 3), r = y− y∗, r = |r| and M0 = |−v0e1/c0|,

it is easy to show that, for the case here considered, the compressibility delay comes from the
acoustically-consistent solution of an algebraic quadratic equation, whose solution is

ϑ̂1/2 =
M0∆x±

√
M2

0∆x2 + β2r2

β2 (B.23)

Akin to section B.1, the application of the Bernoulli Equation requires the knowledge of
the mathematical operators defined in Eq. (B.4); to this aim, details are summarized in the
following steps.

• ∇∗φ

From Eq. (B.21) one obtains

∇∗φ =
∇∗rβ

4πr2
β

sin
[
k
(
c0t− ϑ̂

)]
+

k cos
[
k
(
c0t− ϑ̂

)]
4πr2

β

∇∗ϑ̂ (B.24)

where

∇∗rβ =
−
[
β2r∇∗r + M2

0∆x1∇∗∆x1
]

rβ
(B.25)

and
∇∗ϑ̂ =

∇∗rβ + M0∇∗∆x1

β2 (B.26)

• ∂φ

∂t

From Eq. (B.21) one obtains

∂φ

∂t
=

∂rβ

∂t
4πr2

β

sin
[
k
(
c0t− ϑ̂

)]
−

k cos
[
k
(
c0t− ϑ̂

)]
4πr2

β

(
kc0 −

∂ϑ̂

∂t

)
(B.27)

with
∂rβ

∂t
=

β2

rβ

∂r
∂t

;
∂ϑ̂

∂t
=

1
rβ

∂r
∂t

(B.28)

Similarly to section B.1, the pressure disturbance at (x∗, t) depends on the observer kine-
matics; for a steady-state translation in rigid connection with the monopole, y∗ = y∗(t = 0)
whilst ∂r/∂t = 0. Differently, for an observer that translates at the same velocity of the
monopole, spinning about the direction of v at angular velocity ω, the observer location is
defined by y∗(t) = RT(t)y∗(t = 0) where

R(t) =

1 0 0
0 cos(ωt) −sin(ωt)
0 sin(ωt) cos(ωt)

 (B.29)
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defines the rotation matrix around the x1 axis. Therefore

∂r
∂t

= r̂ · ∂r
∂t

= r̂ · dR
dt

y∗(t = 0) (B.30)

providing

∂φ

∂t
= −

∂r
∂t

4πr3
β

(
β2 sin

[
k
(
c0t− ϑ̂

)]
+ k cos

[
k2 (c0t− ϑ̂

)])
−

k2 cos
[
k
(
c0t− ϑ̂

)]
4πr3

β

(B.31)
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C.1 Jump Relation Across the Wake

The analytic description of the potential wake behaviour is made using the continuity and
momentum equations (see Eq.(C.1) and Eq. (C.2), respectively) that for a generic disconti-
nuity surface read

∆[ρ(u− v) · n] = 0 (C.1)

∆[ρu(u− v) · n− Pn] = 0 (C.2)

Where P = −pI + V is the compressive stress tensor, u is the flow field velocity on a
material point over the wake surface and v is the kinematic velocity of a geometric point
belonging to the discontinuity surface.

Under the assumption of constant density across it (i.e. it is not side of shocks), the Eq.
(C.1) provides ∆un = ∆vn = 0. This implies that the wake is an impermeable surface, thus
having a null jump of normal velocity across it. For further discussions let us consider the
wake as surface of class C2 embedded in a 3D Euclidean space using a Cartesian coordinate
system. Considering also a parametric representation of the surface such that each space
coordinate (x, y, z) is a continuous real differentiable function of two curvilinear coordinate
ξ1 and ξ2 given by:

x(ξ1, ξ2) = x(ξ1, ξ2)e1 + y(ξ1, ξ2)e2 + z(ξ1, ξ2)e3 (C.3)

From this standpoint a covariant base such that gα =
∂x
∂ξα

and the contra variant gγ such

that gα · gγ = δ
γ
α define the metric of surface over a local tangent plane. The local normal

direction is defined as n =
g1 × g2√

a
where a is the determinant of the surface covariant metric

tensor [70] . The velocity field onto a certain material point of the wake is expressed in
terms of covariant base as u = unn + uαgα, where un = u · n and uα = u · gα represent
respectively the normal and tangential velocity field respect to the wake surface.

Thus, the jump velocity across the wake reads ∆u = ∆unn+∆uαgα and being ∆un = 0
only the tangential component is present, namely ∆u = ∆uαgα . Moreover the projection of
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Eq. (C.2) over the normal direction yields

ρ∆un(un − vn) + unρ∆(un − vn) + ∆p = 0 (C.4)

recalling that ∆un = 0, the combination of Eq. C.4 with the continuity equation yields a
null pressure jump across the wake, namely ∆p = 0. Moreover the time derivative of Eq.C.4
yields the following result

∆̇p = −un ∆[ρ(un − vn)]
·−∆un[ρ(un − vn)]

· − ˙∆un[ρ(u− v) · n]− u̇n ∆[ρ(u− v) · n]
(C.5)

Combining the Eq. (C.5) with Eqs. (C.1) and (C.2) yields ∆̇p = 0, meaning that the time
derivative of the pressure jump over the wake is equal to zero.

The following of this section is devoted to the determination of an analytical expression
of ∆(∂p′/∂ñ) required by Eq. (4.16). Recalling that

∂p′

∂ñ
=

∂p′

∂n
−∇p ·MM · n (C.6)

the Euler equation under the hypothesis of negligible mass forces may be used to express the
pressure gradient as follows

ρ
Du
Dt

= −∇p (C.7)

Moreover, for the purposes of the thesis the time derivative in Eq. (C.7) is expressed in
terms of a Lagrangian reference system as follows

d u
dt

=
∂u
∂t
− (v · ∇) u (C.8)

where ∂ u/∂t and du/dt are the time derivative made with respect to a Lagrangian and
Eulerian observer, respectively. In addition v is the velocity of geometric point in which the
time derivative is evaluated, thus combining Eq. (C.8) with Eq. (C.7) the Euler equation for
a Lagrangian observer reads

ρ

[
∂u
∂t

+ (u− · ∇)u
]
= −∇p (C.9)

where u− = u− v. The projection of Eq. (C.9) over the normal direction yields the follow-
ing expression of the normal pressure derivative

ρ
∂u
∂t
· n + ρ

[
(u− · ∇)u

]
· n = −∂p

∂n
(C.10)

In order to obtain the jump of the normal derivative across the wake the Eq. (C.10) is
turned in terms of a covariant base defined over the wake surface.
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Considering the covariant base defined in Eq. (C.3) such that gα =
∂x
∂ξα

and the resulting

contra variant gγ = gαgαγ where gαγ indicates the inverse local metric tensor, the gradient

operator may be expressed as ∇ =
∂

∂ξα
gα +

∂

∂n
n. The same covariant base is also used to

express all the other vector quantities involved in the Eq. (C.10). Thus, in terms of covariant
base the flow field velocity time derivative in Eq. (C.9) reads

∂u
∂t

=
∂uα

∂t
gα +

∂gα

∂t
uα +

∂un

∂t
n +

∂n
∂t

un (C.11)

Moreover being

(u− · ∇)u =

[
(uβ (−)gβ + u(−)

n n) · ( ∂

∂ξα
gα +

∂

∂n
n)
]
(uγgγ + unn) (C.12)

considering that gα · gβ = δ
β
α and gα · n = gγ · n = 0

(u− · ∇)u = (uα (−) ∂

∂ξα
+ u(−)

n
∂

∂n
)(uγgγ + unn) (C.13)

In addition noting that

•
∂gγ

∂ξα
=

∂gα

∂ξγ
= Γβ

αγgβ + bαγn, where bαγ =
∂gα

∂ξγ
· n and Γβ

αγ =
∂gα

∂ξγ
· gβ

• ∂n
∂ξα

= −bβ
α gβ, where bβ

α is the mixed surface curvature tensor such that bβ
α = bαγgγβ

• ∂n
∂n

= 0 and
∂gγ

∂n
= 0

the Eq. (C.13) reads

(u− · ∇)u = uα (−) ∂uγ

∂ξα
gγ + uα (−)uγ(Γβ

αγgβ + bαγn) + u(−)
n

∂uγ

∂n
gγ+ (C.14)

u(−)
n

∂un

∂n
n− unuα (−)bγ

α gγ + uα (−) ∂un

∂ξα
n

Finally, combining Eq. (C.11) with Eq. (C.14) 1 the projection of Eq. (C.10) over the normal
direction yields the following expression

−1
ρ

∂p
∂n

=
∂un

∂t
+ uα (−)uγbαγ + u(−)

n
∂un

∂n
+ uα (−) ∂un

∂ξα
(C.15)

The application of jump condition to the Eq.(C.15) recalling that ∆un = 0 and noting
that the surface curvature tensor bαγ is a continuous function though the wake surface yields
the following expression of the jump for the normal derivative of the pressure

−1
ρ

∆
(

∂p
∂n

)
= ∆

(
uα (−)uγ

)
bαγ + u(−)

n ∆
(

∂un

∂n

)
+ ∆

(
uα (−)

) ∂un

∂ξα
(C.16)

1The proposed expression is valid only for axial flow condition with a prescript time independent wake model
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The last step is represented by the application to the jump operator to the Eq. (C.6) which
yields

∆
(

∂p′

∂ñ

)
= ∆

(
∂p′

∂n

)
− ∆ (∇p) ·MM · n (C.17)

noting that the expression of the jump pressure gradient over the wake in terms of curvilinear

coordinate yields ∆(∇p) = ∆
∂p
∂ξα

gα + ∆
∂p
∂n

n and recalling that the jump condition occurs

only over the normal local direction, i.e. ∆(
∂p
∂ξα

) = 0, the following relation is obtained

∆
(

∂p′

∂ñ

)
= ∆

(
∂p′

∂n

) (
1−M2

n
)

(C.18)

Finally, combining Eq. (C.16) and Eq. (C.6) yields

∆
(

∂p′

∂ñ

)
= −ρ

[
∆
(

uα (−)uγ
)

bαγ + u(−)
n ∆

(
∂un

∂n

)
+ ∆

(
uα (−)

) ∂un

∂ξα

] (
1−M2

n
)

(C.19)
In Eq. (C.19) bαβ

is the surface covariant curvature tensor whereas uα (−) = uα − vα and

u(−)
n = un − vn. Moreover ∆uβ represent the jump of the flow field velocity in tangential

direction and
∂un

∂ξα
represent the tangential derivative of the normal flow field velocity over

the contact discontinuity. Finally ∆(
∂un

∂n
) is the jump across the discontinuity for the the

normal derivative of the normal flow field velocity.

C.2 The Linear FWHE Across a Potential Wake

The particularization of the linear FWHE (i.e. the Eq. (3.5) neglecting the quadrupole
source term) over a potential wake is here carried out. For such configuration it reads

p′FWHk
(x, t) = −ρ0

∫
Sk

∆
[

v · n v · ∇Ĝ +
(

v · n (1− v · ∇ϑ)
)�

Ĝ
]

ϑ

dS

−
∫

Sk

∆
[
(Pn) · ∇Ĝ−

(
Pn
)� · ∇ϑ Ĝ

]
ϑ

dS (C.20)

−
∫

Sk

∆
[

ρu− · n u+ · ∇Ĝ +
(

ρu− · n (1− u+ · ∇ϑ)
)�

Ĝ
]

ϑ

dS

where ∆ = [.]u − [.]l and subscripts refer to the two sides of the discontinuity surface.
Without ambiguity, the upper side of k(x, t) is associated to the direction of the normal n =

∇k. Moreover, noting that v,∇Ĝ and∇ϑ are continuous functions through the jump surface,
the first integral of Eq. (C.20) gives rise to a null contribution. This results perfectly match
with the physics of the contact discontinuity surface, which has not thickness by definition.
Furthermore, recalling that the quantities ∆P = 0, (∆P)� = 0, ∆(ρu−) = 0 and ∆(ρu−)� =
0 (see Appendix C.1 for theoretical details) also the second and third integral contribution do
not provide any contribution to the acoustic pressure. This is a very important results because



C.3. The K-Equation Across a Potential Wake 205

it proof that the acoustic pressure provided by the linear configuration of the FWHE over a
contact discontinuity is identically null.

C.3 The K-Equation Across a Potential Wake

The particularization of the linear H-FWHE (i.e. the Eq. (3.8) neglecting the quadrupole
source term) across a potential wake is hereafter carried out. For a such configuration it reads

p′Kk
(x, t) =

∫
Sk

∆

[
∂p′

∂ñ
Ĝ− ∂Ĝ

∂ñ
p′
]

θ

dS(y)

+
∫
Sk

∆
[

Ĝ
∂p
∂t

(
∂ϑ

∂ñ
+ 2

v · n
c02

)]
θ

dS(y)

+
1

c02

∫
Sk

∆
[

p′Ĝ
∂

∂t
[v · n(1− v · ∇ϑ)]

]
θ

dS(y) (C.21)

where ∆ = [.]u − [.]l and subscripts refer to the two sides of the discontinuity surface.
Without ambiguity, the upper side of k(x, t) is associated to the direction of the normal
n = ∇k = 0. Moreover, akin to the FWHE see Appendix C.2, noting that: i) v, ∇Ĝ
and ∇ϑ are continuous functions through the jump surface, thus their jump across the wake
is null. ii) ∆P = 0 and (∆P)� = 0, see Appendix C.1. Taking into account the above
considerations the specification of Eq. (C.21) across a potential wake reads

p′Kk
(x, t) =

∫
Sw

[
∆
(

∂p′

∂ñ

)
Ĝ
]

ϑ

dS(y) (C.22)

An expression suitable for numerical applications of ∆ (∂p′/∂ñ) is reported in Appendix
C.19.

C.4 An Insight into the Quadrupole Surface Sources

In this section the quadrupole source contribution of the FWHE, (see Eq. 3.2) is recast
into the Lighthill-like jet noise term in addition to surface contribution throughout a suitable
combination of the H-FWHE and the FWHE. (see Eqs. (3.2) and (3.7), respectively). By
subtracting the Eq. (3.2) to Eq. (3.7), i.e the FWHE to H-FWHE, the following equation is
obtained

�2(p′H−FWHE − p′FWHE
)
=

{(
∂p′

∂n
+

1
c0

∂p′

∂t
Mn

)
δ( f )−∇ · [p′nδ( f )]

− 1
c0

∂

∂t

[
p′Mnδ( f )

]
+ H∇ · ∇ · T

}
−
{

∂

∂t
[ρ0 v ·∇ f δ ( f )] +

∂

∂t
[ρ (u− v) ·∇ f δ ( f )]

−∇ · [P ∇ f δ ( f )]−∇ · [ρ u⊗ (u− v) ∇ f δ ( f )] +∇ · ∇ · [T H( f )]

}
= 0 (C.23)
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where the RHS of Eq. (C.23) represent the difference between the forcing terms relative to the
H-FWHE and FWHE, contained in the first and second couple of curly brackets, respectively.
Similarly, the LHS represents the difference of D’Alambertian operator forced by the above
mentioned forcing terms. Since both are an exact rearrangement of the Lighthill equation
(see Appendix A.1), the difference is identically null. Therefore, recasting the Eq. (C.23) as
difference between the non-linear and linear contribution one obtains

∇ · ∇ · [T H( f )]− H∇ · ∇ · T =

{(
∂p′

∂n
+

1
c0

∂p′

∂t
Mn

)
δ( f )−∇ · [p′nδ( f )]

− 1
c0

∂

∂t

[
p′Mnδ( f )

]}
−
{

∂

∂t
[ρ0 v ·∇ f δ ( f )] +

∂

∂t
[ρ (u− v) ·∇ f δ ( f )]

−∇ · [P ∇ f δ ( f )]−∇ · [ρ u⊗ (u− v) ∇ f δ ( f )]

}
(C.24)

Thus, noting that

∇ · ∇ · (HT) = H∇ · ∇(T) +∇ ·
(
T∇H

)
+∇H ·

(
∇ · T

)
(C.25)

Moreover, combining Eq. (C.24) with Eq. (C.25) yields

∇ ·
(
T∇H

)
+∇H ·

(
∇ · T

)
=

{(
∂p′

∂n
+

1
c0

∂p′

∂t
Mn

)
δ( f )−∇ · [p′nδ( f )]

− 1
c0

∂

∂t

[
p′Mnδ( f )

]}
−
{

∂

∂t
[ρ0 v ·∇ f δ ( f )] +

∂

∂t
[ρ (u− v) ·∇ f δ ( f )]

−∇ · [P ∇ f δ ( f )]−∇ · [ρ u⊗ (u− v) ∇ f δ ( f )]

}
(C.26)

The application of the standard Green function technique summarized in Appendix A.2
allows to turn the Eq. (C.26) into the following integral form

−
∫
<3

∫ ∞

0
Ǧ∇ · (T∇H) dtdV −

∫
<3

∫ ∞

0
Ǧ∇H · (∇ · T) dtdV = p′K − p′FWHEl

(C.27)

Where, p̃′K is the acoustic pressure associates with the integral terms contained inside
the first curly brackets which corresponds to the linear solution (i.e. obtained neglecting
the quadrupole contribution) of the Hybrid Lighthill-FWHE, see Eq. (3.8). Similarly, the
integral solution of elements contained in second curly brackets provide the linear solution
of the FWHE, namely (FWHEl), see Eq. (3.5).
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Moreover, the application of the standard Green function technique (see Appendix A.2
for theoretical details) allows to turn the Eq. (C.25) into the following integral form

−
∫
<3

∫ ∞

0
Ǧ∇ · ∇ · {HT} dtdV = −

∫
<3

∫ ∞

0
Ǧ∇ · (T∇H) dtdV

−
∫
<3

∫ ∞

0
Ǧ∇H · (∇ · T) dtdV −

∫
<3

∫ ∞

0
Ǧ H∇ · ∇(T) dtdV

(C.28)

recalling that

p′χ(x, t) = −
∫
<3

∫ ∞

0
Ǧ∇ · ∇ · {H T} dtdV (C.29)

combining Eq. (C.28) with Eq. (C.27) the following form of the quadrupole source term of
the FWHE is obtained

p′χ(x, t) = p′K(x, t)− p′FWHE(x, t)−
∫
<3

∫ ∞

0
H∇ · ∇ · T Ǧ dtdV (C.30)

In Eq. (C.30), p′K(x, t) and p′FWHE(x, t) represent the linear solution (i.e. without the field
contribution) of the H-FWHE and FWHE.
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Appendix D

Appendix D

D.1 XNAVIS Finite Volume Code

The governing equations for the unsteady motion of an incompressible viscous fluid are
briefly recalled in this section. The equations are written in an inertial frame of reference; as
some blocks on the total grid move to follow possible moving boundaries, the general form
of the governing equations are written with respect to a moving control volume. The conti-
nuity and momentum equation in non–dimensional integral form (with respect to a reference
velocity u∞ and a reference length L) are∮

S(V)
u · n dS = 0

∂

∂t

∫
V

u dv +
∮

S(V)
(Fc −Fd) · n dS = 0

(D.1)

V being a control volume, S(V) its boundary, and n the outward unit normal. In equa-
tion (D.1), u is the flow velocity vector whereas Fc and Fd represent convective (inviscid
and pressure components) and diffusive fluxes, respectively:

Fc = pI + (u− v) u

Fd =

(
1

Re
+ νt

) [
∇u + (∇gradu)T] (D.2)

where v is the local velocity of the control volume boundary, Re = U∞L/ν the Reynolds
number, ν the kinematic viscosity, whereas νt denotes the non–dimensional turbulent vis-
cosity. In the following equations, ui indicates the i–th Cartesian component of the velocity
vector (the Cartesian components of the velocity will be also denoted with u, v, and w); p is
a variable related to the pressure P and the acceleration of gravity g (parallel to the vertical
axis z, downward oriented) by p = P + z/Fr2, Fr = U∞/

√
gL being the Froude number.

The problem in Eq. D.1 is closed by enforcing appropriate conditions at physical and
computational boundaries. On solid walls, the relative velocity is set to zero (whereas no
condition on the pressure is required); at the (fictitious) inflow boundary, velocity is set to
the undisturbed flow value, and the pressure is extrapolated from inside; on the contrary, the
pressure is set to zero at the outflow, whereas velocity is extrapolated from inner points.
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At the free surface, whose location is one of the unknowns of the problem, the dynamic
boundary condition requires continuity of stresses across the surface; if the presence of the
air is neglected, the dynamic boundary conditions read []

p = τijninj +
z

Fr2 +
κ

We2

τijnit1
j = 0 (D.3)

τijnit2
j = 0

where τij is the stress tensor, κ is the average curvature, We =
√

ρU2
∞L/σ is the Weber

number (σ being the surface tension coefficient), whereas n, t1 and t2 are the surface nor-
mal and two tangential unit vectors, respectively. The actual position of the free surface
F(x, y, z, t) = 0 is computed by enforcing the kinematic condition

D F(x, y, z, t)
D t

= 0 (D.4)

Initial conditions have to be specified respectively for the velocity field and the free sur-
face configuration; specifically we set

ui(x, y, z, 0) = ūi(x, y, z)

F(x, y, z, 0) = F̄(x, y, z)
(D.5)

NUMERICAL MODEL

Spatial discretization

For the numerical solution of the equations (D.1), the fluid domain D is partitioned into
Nl structured blocks Dl , each subdivided into Ni×Nj×Nk disjoint hexahedrons Dl

ijk. In the
numerical scheme adopted here, the blocks are not necessarily disjoint, they can be partially
overlapped, as it will be explained in the following sections. Conservation laws are then
applied to each finite volume:

6

∑
s=1

∫
Ss

U · n dS = 0

∂

∂t

∫
Vijk

U dV +
6

∑
s=1

∫
Ss

(Fc −Fd) · n dS = 0

(D.6)

where Ss is the s-th face of the finite volume Dijk, whose measure is Vijk.
In order to obtain second order accuracy in space, convective and viscous fluxes in the

momentum equations, as well as surface integral of the velocity in the continuity equation,
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have to be computed by means of trapezoidal rule:∫
Ss

U · ndS = ulnl |0 As + O(∆2 As)∫
Ss

Fc · ndS = Fc
s|0 As + O(∆2 As)∫

Ss

Fd · ndS = Fd
s

∣∣∣
0

As + O(∆2 As)

(D.7)

where the subscript 0 means that the quantities are computed at the face center, As is the
measure of Ss, ∆ is the diameter of Ss and:

Fc
s =

 u1(ul − vl)nl + pn1

u2(ul − vl)nl + pn2

u3(ul − vl)nl + pn3



Fd
s =

 τ1lnl

τ2lnl

τ3lnl


(D.8)

where vl , l = 1, 2, 3 are the components of the velocity of the control volume. The stress
tensor at the cell interface is computed as:

τlm|i+ 1
2 ,j,k = νi+ 1

2 ,j,k

(
∂um

∂xl
+

∂ul

∂xm

)
i+ 1

2 ,j,k
(D.9)

The derivatives of the velocity vector are obtained by means of a finite volume approxima-
tion:

∂um

∂xl

∣∣∣∣
i+ 1

2 ,j,k
=

1
Vi+ 1

2 ,j,k

∫
Σ

i+ 1
2 ,j,k

umnldS + O(∆2) (D.10)

where the integral is extended to the volume Vi+ 1
2 ,j,k (whose boundary is Σi+ 1

2 ,j,k) that in-
cludes the cell face Si+ 1

2 ,j,k and is overlapped to half the cell (i, j, k) and half the cell (i +
1, j, k). In equation (D.9), νi+ 1

2 ,j,k denotes the sum of the kinematic and turbulent viscosity at
the cell face.

The computation of the convective fluxes Fc
s and the surface integral of the velocity in the

continuity equation requires the evaluation of pressure and velocity at the face center. To this
aim, a second order ENO-type scheme has been adopted [71]. These schemes were originally
developed for compressible fluid flows, on the basis of the hyperbolic nature of the inviscid
part of the Navier-Stokes equations. The extension to incompressible flows is possible when
working in pseudo-compressible formulation.

The building block of this kind of algorithms is the Godunov’s scheme (1959), in which
the flux vector at cell interface is computed as the solution of a Riemann problem, whose
right and left states are given by the values of the numerical solution at two neighboring cell
centers. For example, at the cell face i + 1

2 , j, k:

Fc
i+ 1

2 ,j,k = Fc(ql , qr) = Fc(qi,j,k, qi+1,j,k) (D.11)
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q being the vector of the state variables, which, for pseudo–compressible flows, take the
form: q = (p, u1, u2, u3)T. This scheme yields oscillation-free discrete solutions, also when
the exact solutions are discontinuous. However it can be shown that the resulting scheme
is only first order accurate. Higher order accurate (up to any finite order) oscillation free
solutions can be obtained by modifying the evaluation of the right and left states of the
Riemann problem as explained in [71]. In the particular case of second order accuracy, it
can be shown that left and right states have to be evaluated as:

ql = qi,j,k +
1
2

minmod(∆i−1/2, ∆i+1/2)

(D.12)
qr = qi+1,j,k −

1
2

minmod(∆i+1/2, ∆i+3/2)

where ∆i+1/2 = qi+1,j,k − qi,j,k and minmod is a function that is applied to each vector
component:

minmod(x, y) =

=

{
0 if xy ≤ 0
sign(x)min(|x|, |y|) if xy > 0

(D.13)

It is easy to prove that:

ql= qi,j,k +
1
2

minmod(∆i−1/2, ∆i+1/2)

= qi,j,k +
1
2

∂ q
∂x

∣∣∣∣
i,j,k

∆x + O(∆x2) (D.14)

= qi+1/2,j,k + O(∆x2)

and:
qr = qi+1,j,k −

1
2

minmod(∆i+1/2, ∆i+3/2)

= qi+1,j,k −
1
2

∂ q
∂x

∣∣∣∣
i+1,j,k

∆x + O(∆x2)

= qi+1/2,j,k + O(∆x2)

(D.15)

and therefore, the Riemann flux being a Lipschitz continuous function of its arguments:

Fc(ql , qr) = Fc(qi+1/2,j,k) + O(∆x2) (D.16)

The evaluation of the convective flux vector requires the solution of a Riemann problem
at each cell interface. In order to simplify the algorithm, a second order accurate solution was
used in place of the exact one, which must be computed iteratively, given the nonlinearity of
the problem; details of the algorithm can be found in [72].
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Temporal integration

The semi-discrete system of equations can be rewritten in vector form as:

Λ
∂ Vq

∂t

∣∣∣∣
ijk

+Rijk = 0 (D.17)

where Λ = diag (0, 1, 1, 1) and:

q =
1
Vijk

∫
Vijk

(p/β, u, v, w)T dV (D.18)

being the volume average of the unknowns. Moreover, in the previous equation Rijk repre-
sents flux balance on the current cell; β is the pseudo compressibility factor (for more details
about artificial compressibility method, see [43]).

In order to have a fully implicit scheme and to obtain a divergence free velocity field,
a dual (or pseudo) time–derivative (see [42] for more details) is introduced in the discrete
system of equations

∂ Vq
∂τ

∣∣∣∣
ijk

+ Λ
∂ Vq

∂t

∣∣∣∣
ijk

+Rijk = 0 (D.19)

and the solution is iterated to steady state with respect to the pseudo time τ, for each physical
time step.

The time derivative in the previous equation is approximated by means of a second order
accurate three–points backward finite difference approximation formula, whereas the inte-
gration with respect to the pseudo time is carried out by means of an implicit Euler scheme,
i.e.

(Vq)m+1
ijk − (Vq)m

ijk

∆τ
+

Λ
3 (Vq)m+1

ijk − 4 (Vq)n
ijk + (Vq)n−1

ijk

2∆t
+Rm+1

ijk = 0

(D.20)

where the superscripts n and m denote the real and dual time levels, ∆τ is the pseudo time
step and ∆t is the physical time step. The previous equation is then solved with respect to
qm+1

ijk as in the Beam and Warming’s scheme (1978), i.e. the equation is rewritten in "delta"
form (

I + 3∆τ

2∆t
Λ
)

δ(Vq)m
ijk + ∆τ

∂Rijk

∂(Vq)

(
δ(Vq)m

ijk

)
=

−∆τ

[
Λ

3 (Vq)m
ijk − 4 (Vq)n

ijk + (Vq)n−1
ijk

2∆t
+Rm

ijk

] (D.21)

I being the identity matrix and δ(Vq)m
ijk = (Vq)m+1

ijk − (Vq)m
ijk. The operator in the left

hand side of the previous equation is solved by an approximate factorization technique. The
resulting scheme is unconditionally stable to the linear analysis. Local dual time step ∆τijk

and a multi-grid technique [73, 74] have been used in order to improve the convergence rate
of the sub–iteration algorithm.
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Turbulence model

Although the above equations are in principle able to carry out a Direct Numerical Sim-
ulation (DNS), applications of engineering interest are computationally too demanding for
available resources. Therefore the effect of turbulence phenomena are modeled through nu-
merical techniques based on the turbulent viscosity.
Specifically, to evaluate it different approaches are available:
i) Reynolds Averaged Navier Stokes Equations (RANSE) with one–equation Spalart and Ala-
maras [48] closure model
ii) Large Eddy Simulation (LES) with Smagorisky [49] closure model
These models are based respectively on the time average and spatial filtering of the Navier–
Stokes equations whose give rise to additional terms that must be modeled to close the prob-
lem. For the both the averaged equation are closed by modeling (−ρu′iu

′
j) where bar indi-

cates a averaging process such that ū = ui − u′i in which ūi and u′i represent the mean and
disturbance velocity, respectively. For the RANS model the mean value is intended respect
to the time whereas for the LES as spatial filtering technique (Favre filter).
Moreover, a suitable combination of both model (RANS/LES) namely Detached Eddy Sim-
ulation (DES) allows through a transition criteria able to swap between the Spalart-Alamaras
(RANS) in the boundary layer and the Smagorisky (LES) in the flow field [50]. In the fol-
lowing the models are briefly outlined.

Reynolds-averaged Navier-Stokes Equation model

For the sake of completeness the model by [48] is recalled here. The model is based on
the eddy viscosity concept, i.e. on the assumption that the Reynolds stress tensor (−ρu′iu

′
j)

is related to the mean strain rate through an apparent turbulent viscosity (eddy viscosity) νt:

−u′iu
′
j = νt

(
∂ūi

∂xj
+

∂ūj

∂xi

)
(D.22)

νt is computed by means of an intermediate variable ν̃ and the relation:

νt = ν̃ fv1(χ); χ =
ν̃

ν
; fv1(χ) =

χ3

χ3 + C3
v1

(D.23)

The variable ν̃ is computed from the solution of a partial differential equation that reads

Dν̃

Dt
= cb1 [1− ft2] S̃ν̃

−
[
cw1 fw −

cb1

k2 ft2

] [ ν̃

d

]2

(D.24)

+ ft1∆U

+
1
σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2] ,

where S̃ = S + [ν̃/(k2d2)] fv2, S is the magnitude of the vorticity vector, d the distance
from the wall, ft1, ft2, fw, fv2 are functions that depends only on χ and the distance from the
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wall; finally, the c-s and k are constants. The first two terms in the right hand side represent
production and destruction of ν̃, respectively; the third one is the so-called "trip" term, that
allows to specify the laminar-turbulent transition point location (in the results shown in the
next section, this term was always turned off); the last part is a dissipation term, that contains
also a non conservative portion cb2(∇ν̃)2 which is responsible, together with the non-linear
part of the diffusion term∇ · (ν̃∇ν̃), for the advection of a turbulent front into non-turbulent
regions.

LES, Smagorinsky–Lilly model

Akin to the RANS model it is based on the eddy viscosity concept, i.e. on the following
assumption

−u′iu
′
j = νt

(
∂ūi

∂xj
+

∂ūj

∂xi

)
(D.25)

The first Subgrid Scale Modeling (SGS) was developed by Smagorinsky–Lilly [75], and used
in the first LES simulation by [49]. It models the eddy viscosity as:

νt = (Cs∆g)
2
√

2S̄ijS̄ij = (Cs∆g)
2 |S̄| (D.26)

Where

Sij =
1
2

(
∂ūi

∂xj
+

∂ūj

∂xi

)
(D.27)

and ∆g is the grid size and Cs is a constant.

Detached Eddy Simulation

In order to switch to an LES (Large Eddy Simulation) far from rigid boundaries (where
a RANS simulation is retained to overcome the difficulties encountered with the use of LES
in near–wall regions) [50], a new distance function d̃ is used, defined by:

d̃ = min (d, CDES∆) (D.28)

CDES being another constant and ∆ the larger cell size along the three coordinate lines.

Free surface simulation

The presence of the free surface is simulated by mean of a single-phase level-set approach
developed in [44], which is briefly recalled here.

In level set approaches (see for example [76] and [77]), a smooth function φ(x, y, z, t),
whose zero level coincides for t = 0 with the free surface, is defined in the whole physical
domain (i.e. in both liquid and air phases); the kinematic boundary condition (D.4) is ex-
tended to all the points in the domain, yielding a transport equation for the level set function:
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FIGURE D.1: Computational domain. Squares: nodes in the liquid phase;
circles: nodes in the gas phase. Full symbols: nodes where the kinematic

condition (D.33) is enforced.

∂ φ(x, y, z, t)
∂t

+ (~u−~v) · ∇φ(x, y, z, t) = 0

φ(x, y, z, 0) = d(x, y, z)
(D.29)

~u being the velocity of the underlying flow, ~v the grid velocity and d(x, y, z) the signed
distance from the free surface at t = 0. The zero level of the function φ(x, y, z, t) represents
the free surface location for t > 0; moreover, initializing φ(x, y, z, t) as the signed distance
from the surface of discontinuity, the sign of the level set function remains unchanged at
material points. In classical two–phase level set approaches, the density and the molecular
viscosity of the fluid are then assumed to depend on the sign of the level set function; to avoid
numerical difficulties related to sharp discontinuities, density and viscosity have a smooth
transition around the zero level φ(x, y, z, t) [77].

In order to maintain the thickness of the interface constant in time and avoid mass loss
[77], level set function has to remain a distance function for t > 0. In the so–called re–

initialization step, the level set function φ(x, y, z, t) is replaced, at each time step, by a new
function φ̃(x, y, z, t) with the same zero level, but again representing the distance from the
interface; the function φ̃(x, y, z, t) is computed at each physical time step as the asymptotic
(steady state) solution, with respect to the pseudo–time τ, of the equation:

∂φ̃

∂τ
+ sign(φ)(|∇φ̃| − 1) = 0 (D.30)

where sign is the sign function [78].
In the single–phase algorithm adopted here, only the liquid phase of the fluid is computed;

the computational domain is formally decomposed in (see figure (D.1)):

• grid points close to the surface of discontinuity (full circles and full squares in fig-
ure (D.1)): the level set function is computed by means of the evolution equation (D.29);
velocity and pressure in the liquid region (full squares) are computed by means of the
Navier Stokes and continuity equations (D.1); pressure is evaluated by using the dy-
namic boundary condition and the velocity is extrapolated at the points in the air phase
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(full circles);

• grid points in the liquid phase region (empty squares in figure (D.1)): the solution is
computed by the numerical solution of the governing equations (D.1), and the level set
function is enforced to be a distance function by means of equation (D.30);

• grid points in the “air” region (empty circles in figure (D.1)): the level set function is
computed from equation (D.30) in order to get a distance function, and an extension
velocity is computed as done by Adalsteinsson and Sethian [79].

It has to be noted that, in the single–phase formulation, the solution outside the water region
is not required; however, the extension of the velocity field outside the water region ensures
second order accuracy also close to the interface.

It was found convenient, when computing free surface flows around complex geometries
with curvilinear grids, to split the level set function as:

φ(x, y, z, t) = ϕ(x, y, z, t) + z (D.31)

where the function ϕ(x, y, z, t) is the solution (from equation (D.29)) of:

∂ ϕ

∂t
+ ~u · ∇ϕ + w = 0 (D.32)

By doing so, it is easier to assign the boundary condition for the level set function at inflow,
that reduces to ϕ(x, y, z, t) = 0.

An ENO technique (similar to the one used for the bulk flow) is used to discretize equa-
tion (D.32); to this end, the equation is first rewritten in terms of curvilinear coordinates:

∂ ϕ

∂t
+ Um ∂ϕ

∂ξm
+ w = 0 (D.33)

Um = (ui − vi)
∂ξm

∂xi
being the contra–variant components of the velocity vector. The

derivatives of the function ϕ(x, y, z, t) at cell center are approximated by a second order
finite difference formula; considering, for instance, the (i, j, k)–cell center, for the coordinate
line ξ1 it reads:

∂ϕ

∂ξ1
= ϕi+ 1

2 ,j,k − ϕi− 1
2 ,j,k (D.34)

The interface values ϕi+ 1
2 ,j,k is computed as:

ϕi+ 1
2 ,j,k = ϕi,j,k +

minmod(∆ϕ|i+ 1
2

, ∆ϕ|i− 1
2
)

2
(D.35)

if U1
i,j,k ≥ 0, or:

ϕi+ 1
2 ,j,k = ϕi+1,j,k −

minmod(∆ϕ|i+ 3
2

, ∆ϕ|i+ 1
2
)

2
(D.36)
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η

i−1/2

i+1/2

j−1/2

j+1/2

i,j,k

i+1,j,k

FS

FIGURE D.2: Free surface detection and extrapolation of pressure.

if U1
i,j,k ≤ 0, and similarly for ϕi− 1

2 ,j,k. It has been proved by [71] that this procedure yields
a second order approximation to (D.29).

As for the bulk flow, the time discretization of the level-set function is fully implicit and
the time derivative is discretized by a three point backward formula. The dual-time stepping
technique was used to solve the resulting system of non linear equation, which are solved
simultaneously with the Navier-Stokes equations.

For the nodes in the water region which are not close to the surface of discontinuity
(empty squares in figure (D.1)), the level set function is enforced to be a distance from the
interface when the sub–iteration converges. To this aim, the constrain |∇φ| = 1 is enforced
by means of an iterative (with respect to the pseudo-time τ) marching ENO scheme with
second order accuracy, where the above condition is rewritten as an evolution equation for
the level set function φ(x, y, z, t):

∂ φ

∂τ
+ sign(φ)

[
∇φ

|∇φ| · ∇φ− 1
]
= 0 (D.37)

Then, by using the definition (D.31), the previous equation is rewritten in term of ϕ(x, y, z, t)
as:

∂ ϕ

∂τ
+ ~w · ∇ϕ + b = 0 (D.38)

where:
~w = sign(φ)

∇φ

|∇φ|

b = sign(φ)
[

φz

|∇φ| − 1
] (D.39)

This equation is solved with respect to ϕ(x, y, z, t) with a scheme analogous to the one used
to solve the kinematic equation (D.32) at the points adjacent to the free surface, with char-
acteristic speed ~w. The same equation is used to update the level set function values in
the air phase. It can be seen, that, when the sub–iteration converges, it provides a function
φ(x, y, z, t) that satisfies equation (D.29) on the surface φ(x, y, z, t) = 0 and it is a distance
function at any other points. Note that φ(x, y, z, t) is a distance function also at points close
to the free surface (full symbols in figure (D.1)) because of equation (D.45) (see later). Once
the function ϕ(x, y, z, t) is known throughout the whole domain, the free surface is located
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by the surface φ(x, y, z, t) = ϕ(x, y, z, t) + z = 0. The intersection of this surface with
the underlying grid line is computed as follows (see figure D.2). Consider, for instance, the
coordinate line ξ1; when in two adjacent points (i, j, k) and (i + 1, j, k) the condition

φi,j,k φi+1,j,k ≤ 0 (D.40)

holds, it means that the free surface cuts the segment Pi,j,k − Pi+1,j,k at some point PFS (Pi,j,k

is the position vector that locates the i, j, k point). Then, the portion of the segment below the
free surface is:

η =
|PFS − Pi,j,k|
|Pi+1,j,k − Pi,j,k|

=
|φi,j,k|

|φi+1,j,k − φi,j,k|
(D.41)

if φi,j,k < 0, the level set function having been defined as the distance from the interface. A
similar relation holds for φi+1,j,k < 0, with i and i + 1 interchanged.

The computation of the residuals for the RANS equations at those points whose neigh-
boring cells are not all into the water region need some attention. In fact, in these cases the
numerical convective and viscous fluxes at interfaces that separate two cells, of which one
is in the air region (as the interface

(
i + 1

2 , j, k
)

in figure (D.2)), must be evaluated; in these
points the proper information to compute the correct flux are needed to retain second order
accuracy. To circumvent this difficulty, the following procedure is applied. The pressure at(
i + 1

2 , j, k
)

is extrapolated as:

pi+ 1
2 ,j,k = pi− 1

2 ,j,k +
1

1
2 + η

(pFS − pi− 1
2 ,j,k) (D.42)

with
pi− 1

2 ,j,k =
pi,j,k + pi−1,j,k

2
(D.43)

where pFS is computed from the dynamic boundary condition (D.3).
Once the pressure is known, the normal velocity at (i + 1

2 , j, k) is computed by solving
the Riemann problem: (

pi+ 1
2 ,j,k − pw

)
+ λ

(
un|i+ 1

2 ,j,k − un|w
)
= 0 (D.44)

being λ = ûn +
√

û2
n + β and where pw and un|w represent the known state on the water

side, computed as in (D.12). The tangential velocity is simply extrapolated along the normal
to the free surface, given by ∇φ/|∇φ|, as in the following equation (D.45). The remaining
dynamic boundary conditions for the tangential stresses in (D.3) are explicitly enforced when
computing the viscous fluxes at the cell interface

(
i + 1

2 , j, k
)
.

Outside the water region, extension velocities are computed as:

∇φ · ∇ui = 0 i = 1, 2, 3 (D.45)

which guarantees that φ(x, y, z, t) evolves as a distance function also at the points adjacent
to the free surface (full circles in figure (D.1); see, for the proof, [79]). Since this relation has
to be satisfied only when the sub-iteration converge, the previous relation is substituted by an
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evolution equation for the velocity components ui:

∂ ui

∂τ
+∇φ · ∇ui = 0 (D.46)

which is solved by a second order ENO scheme analogous to the one used to solve the
kinematic equation (D.32) and equation (D.38), characteristic speed being ∇φ. Note that
the values of the velocity, pressure and turbulent viscosity in the air phase are useless when
steady state is attained, and therefore they do not affect the formal accuracy of the numerical
scheme. Nevertheless, their estimation is of great importance during the iterative procedure
at those points that change their physical state from air to water, for which an initial estimate
is needed.

Spatial discretization - Overlapping grids

In this section the basic elements of the overlapping grid discretization (or “chimera”
method) for both fixed grids and its extension to moving grids will be briefly recalled. For
more details and examples of applications the reader is referred to [51, 52, 80].

The introduction of chimera capabilities in the RANS code is given through a modifica-
tion of both the boundary conditions and internal point treatment for those zones where over-
lapping appears. In particular, besides the natural type (i.e. wall, symmetry, inflow, outflow,
...), a new type of boundary conditions, the “chimera” type, is added for those boundaries
where the solution must be interpolated from other blocks. For this cell, the first step is to
find a “donor” cell, i.e. a cell that contain the face center for which an interpolation is needed.
In order to retain the best possible approximation, if a boundary cell fall within more that one
donor cell, the smallest one is picked as basis for interpolation. Once the donor is identified,
then a convex set of eight donor cell centers is searched, and a tri-linear interpolation is used
to transfer the solution from one block to the boundary of the one under analysis.

As to internal points, we look at first for possible overlapping for each cell centers. If this
overlapping is found, the cell is marked as a “hole” only if the donor cell is “smaller” than
the one we are considering. As for boundary cell centers, is more that one possible donors
is found, the smallest is chosen as donor. Differently form standard chimera approaches,
however, the cell marked as holes are not removed from the computation but the interpolated
solution is enforced by adding a forcing term to the Navier-Stokes equations, in a “body-
force” fashion:

qn+1
chimera = qn

chimera − ∆t
[
Rn +

k
δ

(
qn
chimera − qn

interp

)]
(D.47)

In the previous equation q is the vector of the dependent variables,R is the vector of the
residuals, k = O(10) is a parameter chosen through numerical tests, and δ is the minimum
between the cell diameter and the physical time step. This approach is particularly useful
when using multigrid and approximate factorization, as it allows to maintain a structured
data set.
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For the point that fall within a rigid body, the forcing term in the equation is analogous
to the previous one, but the velocity in the forcing term is equal to the local velocity of the
body.

When dealing with moving grids, of course the grid topology must be re-computed at
each time step. In order to speed-up the algorithm, we can exploit the information we have
form the previous time step to search donor cells and holes. In particular, for each face center
on a chimera boundary, we start the search of the possible donor from the knowledge of the
previous ones. For the “holes”, the first check is made to verify if the cell is still overlapped
by a cell of the same block. When these initial approximations fails to yield a new donor set,
the general search procedure is re-started.

D.2 The Differential Aerodynamic Problem for the Velocity Po-
tential

For an inviscid, non–conducting, shock–free, initially isentropic and initially irrotational
(initially at rest and in thermodynamic equilibrium) flow, the velocity field may be described
by means of a velocity potential function φ(x, t) such that u = ∇φ.
Similarly to the pressure disturbance, the velocity potential is governed by the following
non–homogeneous wave equation [40]

−�2φ = σ (D.48)

where σ =

[
(c2 − c2

0)∇2φ + 2u · u̇ + u · ∇u2

2

]
/c2 denotes all the non–linear terms.

The problem is completed by the boundary conditions. In the air frame of reference, the
boundary condition at infinity is given by φ = 0 (fluid at rest). Then, the surface S of the

body is assumed to impermeable; hence (u − v) · n = 0 yields
∂φ

∂n
= v · n, where v is

the velocity of the points of the surface. In addition for lifting flows the issue of the wake
has to be addressed. A detailed analysis is given in Ref. [40] and Ref. [81]. Here, it is
sufficient to note that an inviscid isentropic initially–irrotational flow remains irrotational at
all times except for those points that come in contact with the surface of the body, because
Kelvin’s theorem is not applicable in this case. These points form a surface on which the
flow is not necessarily potential. This surface, called the wake, is a surface of discontinuity
for the potential. From the application of the conservation of mass and linear momentum
across a surface of discontinuity, it results that the fluid does not penetrate it (the wake is a

material surface) and hence ∆(
∂φ

∂n
) = 0, and in addition the pressure is continuous across

it. Furthermore, the Bernoulli theorem yields that the potential jump across the wake, ∆φ,
remains constant following a wake point and equal to the value it had when it left the trailing
edge.
Following the same procedure used in the previous section to extend to the whole space the
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potential governing equation, here the domain function E(x, t) defined as

E(x, t) =

{
1 if x ∈ <3 \ V
0 if x ∈ V

(D.49)

is introduced, and the extended function φ̂(x, t) = E(x, t) φ(x, t) is defined. Then using the
mathematical relations

∇2 [Eφ] = E∇2φ +∇E · ∇φ +∇ · (φ∇E) (D.50)

and

∂2φ̂

∂t2 = (φĖ)˙+ φ̈E + φ̇Ė (D.51)

the equation governing the velocity potential is recast in the following form

−�2φ̂ = E σ +∇E · ∇φ +∇ · (φ∇E)− 1
c2

0

[
φ̇Ė + (φĖ)̇

]
(D.52)

that is valid ∀x ∈ <3.
Observing that E(x, t) = H[ f (x, t)] and recalling Eq. (A.13), Eq. (D.52) may be written as

−�2φ̂ = σ H( f ) +∇φ · n δ( f ) +∇ · [φ n δ( f )] +

− 1
c2

0

{
φ̇Ḣ( f ) +

[
φḢ( f )

]̇}
∀x ∈ <3 (D.53)

Accounting that Ḣ( f ) = −v · ∇H = −v · n δ( f ) one obtains

−�2φ̂ = σ H( f ) +∇φ · n δ( f ) +∇ · [φ n δ( f )] +

− 1
c2

0
{−φ̇ v · n δ( f ) + [−φ v · n δ( f )] }̇ ∀x ∈ <3 (D.54)
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