==ROMA

UN

IVERSITA DEGLI STUDI

Roma Tre University
Ph.D. in Computer Science and Engineering

Improving privacy, provisioning,
and scalability in inter-domain
networks

Habib Mostafaei

Improving privacy, provisioning, and scalability in inter-domain
networks

A thesis presented by
Habib Mostafaei
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Computer Science and Engineering

Roma Tre University
Dept. of Engineering

Spring 2019

COMMITTEE:
Prof. Giuseppe Di Battista

REVIEWERS:
Prof. Antonio Pescapé (University of Naples Federico II)
Prof. Marco Chiesa (KTH Royal Institute of Technology)

To Arezou

Acknowledgments

First and foremost I thank Allah, the Lord of the worlds, the compassionate,
and the merciful, for empowering me to complete this work.

I express my deepest gratitude to my Advisor, Professor Giuseppe Di Bat-
tista, who gave me the opportunity to join computer networks group of Roma
Tre University and do research in the field of inter-domain routing. He taught
me many research concepts of computer networks and supported my transi-
tion to new research field. He always has great ideas on the real networking
problems.

A special thank goes to Gabriele Lospoto who was a great friend and almost
like a second advisor for me. Learning and implementing new concepts in our
research works went very fast with his invaluable feedbacks. I also worked with
Massimo "Max" Rimondini for the first eight months of my PhD. Max is a
great researcher and friend.

I am glad to have had opportunity to collaborate with other professors of
compunet lab like Professor Maurizio Pizzonia and Professor Maurizio Patrig-
nani. I would like to thank them.

I am very thankful to Professor Antonio Pescapé which I did research with
him during the first year of my PhD education and even a bit earlier. We had
very fruitful collaborations. I am also very thankful to Professor Marco Chiesa
which I did PrIXP and DeSI projects with him. I appreciate both professors
for reviewing this thesis. Your comments helped me improve the quality of this
work.

I am very thankful to Professor Michael Menth for his hospitably during my
visiting stay at the University of Tuebingen. He was my advisor the last year
of my PhD and we worked on programmable networks. We had very fruitful
and impressive discussions and collaborations. He taught me how to criticize
the results of a running algorithm and the context of a research paper before
submitting it to a venue.

vii

viii

I am very thankful to my Italian friends at compunet and MICLab labs
who helped me in doing my bureaucratic with different offices within and out
of university. They had to have several phone calls to solve my issues. Federico
Griscioli, Vincenzo Roselli, Giordano Da Lazzo, Valentino Di Donato, Cosimo
Pallazo, Patrizio Angelini. There is a great atmosphere at compunet lab with
its members. We had great time together specially during lunch and coffee
time and I would like to thanks Marco Di Bartolomeo, Diego Penino, Roberto
Di Lallo, Professor Fabrizio Frati.

I would like to thank the members of chair of Communication networks at
the university of Tuebingen, Daniel Merling, Fredrick Hauser, Mark Schmidt,
Andreas Stockmayer, and Wolfgang Braun. We had several fruitful discussions
during the time that I was in Tubingen.

Finally, the loveliest thank goes to my wife Arezou who stayed with me
during the whole period of my PhD education. She had to often share her time
with me to finish my ongoing projects. Arezou was extremely supportive and
patient.

Contents

Contents

List of Tables

List of Figures

1 Introduction

1.1
1.2

Contributions
Outline

2 Background

2.1
2.2
2.3
24
2.5
2.6
2.7

Inter-domain Networks
Inter-domain Routing
Route Server
Border Gatewy Protocol (BGP)
Congestion Control
Network Emulation L.
Software-Defined Networking (SDN)

3 Privacy of Routing Policies at IXPs

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introduction o
Background: Route Server Architecture
Enforcing Privacy of Routing Policies
Discussion on Security Issues
Experimentso oo
Related Work o o
Conclusions and Future Works

ix

ix

xil

xiii

Lo V)

© 0o ot gt G

CONTENTS

Experimenting SDN in Inter-Domain

Networks 33
4.1 Introduction 34
4.2 Related Work 36
4.3 From Netkit to SDNetkit 38
4.4 A Simple Example and Success Stories 40
4.5 Configuration Considerations 45
4.6 Limitations of Network Emulators 47
4.7 Conclusions and Future Work 48
Multi-Provider VPNs in Software-Defined

Federated Networks 49
5.1 Introduction 50
5.2 Related Work 52
5.3 Best Practices for Federated Networks 54
5.4 SDN-based Federated Networks 55
5.5 Subscribing to a SDN Federated VPN Service 60
56 A Complete Example 69
5.7 Takeaway 76
5.8 Evaluation. o 77
5.9 Conclusions and Future Work 83

A Decentralized SDN Architecture

for IXPs 85
6.1 Introduction 86
6.2 Related work oo 88
6.3 SDX based IXP Architectures 91
6.4 A New SDN Architecture for Internet eXchange Points 93
6.5 A Routing Policy Model 95
6.6 From Policies to Forwarding Rules 98
6.7 The Architecture of our SDN-controller 107
6.8 Applicability Considerations 109
6.9 Evaluation. 111
6.10 Conclusion e 117
Activity-based Congestion Management (ABC) 121
7.1 Introduction 121
7.2 Related Work o 122

7.3 Activity-Based Congestion Management (ABC) 123

CONTENTS

7.4 SDN and Data Plane Programmability Using P4
7.5 P4-Based Implementation of ABC
7.6 Evaluation Methodology
7.7 Performance Evaluation
7.8 Conclusion e

8 Conclusions
List Of Publications

Bibliography

xi

126
128
131
132
135

137

141

145

List of Tables

4.1 A comparison among simulation systems in terms of type (e.g. cen-
tralized, distributed, or remote testbed) and supported OpenFlow
VETSIONS. &« v v v v v i e e e e e e e e e e e 36

6.1 Comparison of SDN-based solutions for inter-domain routing. . . . 89

xii

List of Figures

21

2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

4.3

4.4

5.1
5.2

9.3
5.4

The interconnection of two domain networks via a private peering

link. 6
Interconnection of domains at an Internet eXchange Point (IXP). . 7
IXP architecture with a route server. 8
Congestion occurs when the traffic exceeds the network capacity. . 11
Reference architecture of route server. 19
The architecture of an IXP infrastructure. 23
Architecture for checking the integrity of the RS software. 25
Architecture of our RS-software prototype implementation. 27
CDF of the number of messages issued by the RS-software. 28
CDF of the number of messages issued by members. 28
Overview of the SDNetkit architecture. 39
Topology for the Hybrid node. S1 is the device in which OpenFlow

and OSPF simultaneously run. 41
Topology for the Hybrid topology. S1 and S2 are pure OpenFlow-
enabled switches, whereas all other devices are IP-speaking nodes. 43
Topology used to experiment a single network for forwarding both
control and standard traffic. 0000000 46
Reference scenario for SDNS., 57
Logical architecture of our SDN-controller, consisting of a set of
components each devoted to a specific task. 61
An example of insert primitive.o L 68
Interaction among OpenFlow switch, name servers, and SDN-controller

in case of Partial configuration scenario. 71

xiii

xiv

5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13

7.1

7.2
7.3
7.4
7.5

List of Figures

Messages exchanged to support communication between H1 and H2,

for different translation strategies. 75
Control plane impact in a federated network consisting of two ISPs. 79
Control plane impact in a federated network consisting of three ISPs. 80
Number of queries in the federated network. 81

Our architecture in which SDN is moved in the provider’s side in
order to avoid policies sharing and to easily identify responsibilities. 94
Graph representation of a policy only containing the AN D operator. 102

Tree representation of a policy containing the OR operator. 103
Example of how to use metadata to encode network reachability

information. 105
High level view of the internal architecture of our SDN-controller. 107

A detailed view of the internal architecture of the PolicyHandler. . 108
The topology used for the functionality tests. It simulates a simple

IXP consisting of four members, each announcing just one prefix. . 112
Percentage of consumed RAM in the proactive approach with a
growing number of BGP announcements. 113
Percentage of consumed RAM in the reactive approach with a gro-
wing number of BGP announcements. 114
Percentage of consumed RAM at C2 in both approaches increasing
the number of policies.o 116
Percentage of consumed RAM in the proactive approach with a
growing number of BGP announcements. 117
Percentage of consumed RAM in the reactive approach with a gro-
wing number of BGP announcements. 118
Time analysis about the time spent by DESI to perform its activity. 119

Activity metering and tagging is performed only by ingress nodes.
Both ingress and core nodes apply activity AQM during packet
forwarding. Figure taken from [MZ18]. 124
P4 processing pipeline. Lo o 0oL 127
Resource sharing of Client 0 and Client 1, both sending CBR traffic. 133
Resource sharing of Client 0 and Client 1, both sending TCP traffic. 135
Resource sharing of Client 0 and Client 1, Client 0 sends CBR traffic
while Client 1 has 1 TCP connection. 136

Chapter 1

Introduction

Communications in today’s network and on the Internet spans over different
networks. An inter-domain network consists of several individually controlled
domains in which each of them has its own physical infrastructure and routing
protocols. There is a central control for each domain which takes the control of
the whole network. However, several domain networks interconnect to exchange
their traffic based on business agreements. Each domain network in the context
of this work can be considered as an Internet Service Provider (ISP). Each ISP
may connect its network to an Internet eXchange Points (IXPs) to improve its
connectivity benefiting from peering to the IXP.

Within the network, new technologies evolved during the last years provi-
ding more flexible control on the network operations and efficiently exploiting
the network resources. One of the most promising technologies is Software-
Defined Networking (SDN) [Thel3] which is seen as an enabler to program the
network behavior using a centralized controller. SDN promises several advanta-
ges such as flexibility in controlling the network behavior without downgrading
forwarding performance, efficiency in routing optimization, facilitating imple-
mentation and administration, and cost reduction. Accordingly, inter-domain
networks can leverage the advantages of SDN to issue new network services
with respect to customers’ demands. Further, recent innovations in data plane
programming add more advantages like fast packet processing to the networ-
king world.

Network services may span over multiple providers’ network. Issuing and
provisioning such a service over the network of different providers comes with
several challenges due to the diversity of network devices and protocols. This

2 CHAPTER 1. INTRODUCTION

makes the network provisioning a difficult task which costs at least in terms of
time and physical resources. Furthermore, the traffic of network services may
cross several IXPs which is prone to revealing business agreements of members
to a third party. We observe that the privacy of routing policy at IXPs is not
guaranteed despite the rapid innovation in networking. The same issue exists
for the IXPs that are built based on SDN concepts called Software-Defined
eXchange (SDX) [GVST15,GMB™16]. Despite SDX benefits, its architectures
come with several shortcomings like privacy and scalability. SDX exploits the
controller to perform route computations for the members which scales poorly
when the number of members grows. The focus of this thesis is on the research
problems that are resided within the context of inter-domain networks.

1.1 Contributions

This work focuses on the privacy, provisioning, and scalability of inter-domain
networks which is resulted in five contributions aiming at improving them.

The contribution of this thesis starts with an overview of privacy challenges
on IXPs and its architecture with Router Server (RS). Members of an IXP with
RS can have one Border Gateway Protocol (BGP) multi-lateral peering instead
of having several BGP bi-lateral peerings. However, the privacy of routing
policies at IXPs is not preserved. This may reveal the Service Level Agreements
(SLAs) or business relationships among the member of IXPs to a third-party.
We propose a new RS implementation for RS-software at IXP which does not
require to permanently store the routing polices at RS-machine. Additionally,
we provide a mechanism for the members to attest the RS-software running on
RS-machine. Such a mechanism allows the members to check the correctness
of RS-software running on an RS-machine. Our simulation results showed that
our architecture adds a negligible overhead to current IXP to improve the
privacy.

The second contribution of this work is called SDNetkit which is an emulator
to experiment SDN in multi-domain or inter-domain networks. This emulator
is based on widely used Netkit emulator which empowers it with SDN-related
software like Ryu [ryul7] framework and OpenVswitch [ovsl7]. It removes
the limitations imposed by current SDN simulators and emulators in creating
an inter-domain network scenarios. SDNetkit creates a Linux-based Virtual
Machine (VM) for each network device. Each VM of SDNetkit has all required
routing suits and daemons to run an inter-domain network. We show several
use-cases for SDNetkit.

1.1. CONTRIBUTIONS 3

The third contribution starts with overview of challenges for offering a new
network service like Virtual Private Network (VPN) in the federated networks
and how we can overcome these challenges by leveraging the concept of SDN.
Issuing new network services like VPN service spanning on more than two
networks demands several challenges like long setup time and complex configu-
rations. These issues are referred to provisioning. Best practices to reach such
goals demand long setup time, i.e., 5 days. We leverage SDN to overcome such
challenges in SDN-enabled federated networks. We propose a framework to
allow the customers of a federated network to create a federated VPN service
by using the current backbone network. To do so, a configuration language
with three simple yet effective primitives is proposed. The members of each
customer exploit these primitives to join or leave a federated VPN service. The
members of a federated VPN service exploit the Domain Name System (DNS)
to quickly set a federated network. The framework uses the available backbone
network to issue federated VPN service to save cost. The SDN-controllers for
each member of a federated VPN service setups the required configuration for
connecting the members.

The fourth contribution of this work relies on proposing a decentralized
architecture for a Software-Defined eXchange (SDX) or SDN-based IXP to im-
prove the privacy of routing policies and scalability. The current SDX solutions
suffer from privacy and scalability issues. We propose a policy language for the
members of SDX to define fine-grained routing policies for their traffic. The
language takes high level user-defined routing polices and generates low-level
forwarding rules to install on top of SDN-enables switches of each member at
IXP. The language is able to find the dependency among the forwarding rules to
allow the traffic of members to be forwarded to right destination. The solution
is able to leverage non-BGP best paths to balance the traffic of participants.
Furthermore, the proposed architecture provides backward compatibility for
current IXPs meaning that it does not modify the IXP fabric.

The final contribution of this work is the implementation of Activity-based
Congestion management (ABC) in the data plane programming language, e.g.,
P4. The object of this work is to introduce ABC as a congestion management
for future networks as well as a use-case for P4. The ABC does not require
any signaling in core nodes of the network and it can handle the congestion
in the network without storing per-packet or per-flow information. Users can
maximize their throughput by sending traffic at their fair share. ABC prefers
to drop the packets of heavy users over light user in the case of congestion.

4 CHAPTER 1. INTRODUCTION

1.2 Outline

This thesis is structured as follows. Chapter 2 contains general concepts in
inter-domain networks including its definition, related technologies, and proto-
cols. Chapter 3 introduces the basic building blocks of an IXP and explains its
privacy issues. We propose an architecture to preserve the privacy of routing
policies at IXP. Chapter 4 overview the shortcoming of SDN-based simulators
and emulators to perform an SDN-based experiment on multi-domain net-
works. Then, it introduces SDNetkit in ch as a promising solution to overcome
the limitations of current de-facto emulator for SDN, i.e. Mininet. Chapter 5
proposes an SDN-based framework to issue Virtual Private Network (VPN)
services in federated networks. We show how SDN can decrease the required
time to offer a VPN service spanning over multiple providers’ network. Chap-
ter 6 introduces a decentralized architecture for an SDN-based exchange point.
We first give an overview of current SDX architecture and then we explain
the privacy and scalability issues of these architectures. Lately, we introduce
DEST as a solution to overcome the privacy and scalability issues of SDXs. The
investigations of physical resource consumption revel that DESI requires less
physical resources to handle the IXPs’ operations. We provide the P4 imple-
mentation of ABC in chapter 7. We briefly introduce the basic concepts of
SDN and P4 in this chapter. Then, we explain how ABC can be implemented
in the data plane. The simulation results on a P4-enabled switch depict that
ABC can protect traffic of light users over heavy users. Chapter 8 concludes
this work.

Chapter 2

Background

In this chapter, we give an overview of the basic concepts and technologies in
inter-domain networks. We explain inter-domain routing concept and Route
Server. We briefly describe the Border Gateway Protocol (BGP) and its deci-
sion process since it is the only inter-domain routing protocol. Then, we state
congestion control and network emulation. Finlay, we describe the concept of
Software-Defined Networking (SDN) and its related technologies and protocols.

2.1 Inter-domain Networks

The Internet consists of thousands of interconnected networks called dom-
ains. Each domain consists a set of network devices, e.g., routers, and hosts
which are managed by an independent organization called Autonomous System
(AS) [Bonll]. Google, cisco, and level3 are some example domains to state a
few. The communications among the devices of these networks are packet ba-
sed and routing protocols are in charge of computing paths for each network.
Each domain network implements its own routing policies on the Internet.

2.2 Inter-domain Routing

The inter-domain routing is in charge of computing and propagating routes
among different domain networks. However, the protocols that are leveraged
to compute and distribute the routes inside a domain are called intra-domain
routing protocols. In this work we focus on inter-domain routing. Each domain
network consists of several routers which are responsible to maintain the routing

http://www.google.com
http://www.cisco.com
http://www.level3.com

6 CHAPTER 2. BACKGROUND

information. Border routers are used to connect different domain networks on
the Internet.

The connection between two border routers can be performed in two diffe-
rent ways. First, the two border routers can be directly connected through a
dedicated link called private inter-domain link or private peering link [Bon11].
Fig. 2.1 shows a private peering link among domains A and B via their bor-
der routers, namely, R1 and R2. This type of connection is useful when an
organization or a university connects its network to an ISP. Second, a domain
network may connect to several domains. Having many private peering links
results in increasing the cost for the domain. A cheap solution for this problem
is connecting to an Internet eXchange Point (IXP). An IXP is a neutral phy-
sical place that many providers connect their network to exchange their traffic
at a shared-cost and better connectivity. Fig. 2.2 depicts an IXP with three
domain networks. Each border router belonging to a domain is connected to
the IXP via a physical link. Each magenta dotted link illustrates a peering link
between two different domains.

Domain A Domain B

R2

Physcial link

= == == Peering link

Figure 2.1: The interconnection of two domain networks via a private peering
link.

When a domain is willing to peer with an IXP, it brings its own router
to IXP and connects its border router to the switch fabric of an IXP. An
IXP consists of a Local Area Network (LAN) that is composed of routers
of different IXP’s participants. When a domain wishes to exchange traffic
with other domains it uses leverages this LAN. A packet-based mechanism is

2.2. INTER-DOMAIN ROUTING 7

Domain C

Domain A Domain B

Physcial link

= == = Peering link

Figure 2.2: Interconnection of domains at an Internet eXchange Point (IXP).

exploited for exchanging the routing information.

Inter-domain routing requires to take care of economical agreements or Ser-
vice Level Agreements (SLAs) among the domains and the cost of a route is
important than other quality-related metrics like bandwidth and delay. These
economic relationships or SLAs are converted to peering relationships among
the domains in inter-domain routing. A detailed discussion for different ty-
pes of relationships can be found in [Bonll]. The relationships among vari-
ous domains in inter-domain routing are defined by inter-domain routing po-
licies [Bonl1]. A routing policy consists of three main items, namely, import,
export, and ranking algorithm. An import filter specifies the accepted routes
by a domain while an export filter determines the routes that can be advertised
by a domain. The ranking algorithm determines the best route to a destination
prefix based on the available routes to that prefix within a domain.

8 CHAPTER 2. BACKGROUND

2.3 Route Server

Members of the same domain in inter domain routing require to establish a full
mesh connectivity to exchange traffic with other domains. This direct peering
allows the member to acquire the information that are reachable by adjacent
routers and select optimum path to reach a destination. Unfortunately, main-
taining a full mesh routing connectivity information on the switch with large
number of routers is impractical [Has95]. To alleviate the full mesh problem
RFC 1863 proposes to user route server. Typically, IXPs offer a service called
Route Server (RS). An RS allows the member to easily exchange their traffic
with other members by establishing a peering session with RS instead of having
several peering sessions with each other.

Fig. 2.3 depicts the architecture of an IXP with three members and a RS.
Each dotted line presents a BGP peering session between the member router
and the RS. However, RFC 7947 [JHRB16b| describes the implementation of
RS within an IXP.

Route Server

Figure 2.3: IXP architecture with a route server.

The routing information of members of an IXP are stored in suitable data
structures which are used for path computations by the RS. The RS performs

2.4. BORDER GATEWY PROTOCOL (BGP) 9

path computations based on received paths from the neighbors and their rou-
ting policies. Then, it performs the path selection and finally propagates the
best path to the neighbors.

Each IXP member can specify the export policy for each destination IP
prefix; i.e., the set of IXP members that are allowed to receive it announce-
ments. The export policy of each member must be revealed to the IXP which
is supposed confidential due to business reasons. Due to privacy concerns some
network operators are reluctant to connect to the IXPs [CDC*17].

2.4 Border Gatewy Protocol (BGP)

The Internet relies on a single inter-domain routing protocol which is called
Border Gateway Protocol (BGP) [Bon11]. The current version BGP is defined
in RFC4271 [RLHO06]. The routing information in BGP is exchanged via es-
tablishing a BGP session with a border router of an AS which is called BGP
speaker. The end-points of a BGP session are called BGP peers. A BGP ses-
sion is a Transport Control Protocol (TCP) connection on port 179 of two BGP
speakers. The BGP error notification mechanism assumes that TCP supports
graceful close, i.e., all the outstanding data will be successfully delivered to the
destination before the connection is close [RLH06].

A BGP speaker advertises a route toward a prefix, more specifically, it
announces the IP prefix and the inter-domain path to reach that prefix. The
inter-domain path is called AS-path in BGP context. When a BGP speaker
advertises an IP prefix it will receive traffic from that IP prefix.

Each BGP speaker belongs to a unique AS which has an integer number cal-
led Autonomous System Number (ASN). After establishing a BGP session, two
BGP speakers can exchange BGP messages which contain reachability infor-
mation. The reachability information contains the IP address of systems that
are reachable by a BGP speaker. The Network Layer Reachability Information
(NLRI) field of a BGP update message carries this information.

Each BGP speaker contains three different data structures to store the
Routing Information Bases (RIBs), namely,

e Adj-RIBs-In. The Adj-RIBs-In contains the incoming routes from BGP
peers. These routes are available as input for the BGP decision process.

e Local Routing Information Base (Loc-RIB). The Loc-RIB stores all accep-
table routes for this router.

10 CHAPTER 2. BACKGROUND

e Adj-RIB-Out. The Adj-RIB-Out stores the BGP routes that have been
advertised to each BGP peers.

The routing information that BGP speakers use to forward packets or con-
struct the forwarding tables to forward packet are stored in routing tables.
These tables accumulate by the routes that are: 1) directly connected net-
works, 2) static routes, 3) and routes learned from Interior Gateway Protocol
(IGP) and BGP protocols. The routing information can be exchanged by ot-
her BGP speakers via BGP update messages. Here, we explain just the basic
concepts of BGP that are useful for this thesis. More detail about the BGP,
its features, it decision process can be found in [Bonll, RLHO06].

The BGP Decision Process

The decision process selects the routes by applying the routing policies. The
output of this process is a set routes that will be advertised to peers. A key
different between BGP and inter-domain routing is that each domain can select
its own preferred route to a destination prefix based on learned routes from
toward that prefix [Bonll]. Import and export filters and ranking algorithm
has impact on route selection in the BGP decision process.

There are several attributes that are used to rank the BGP routes like local-
pref and AS-path to mention a few for the context of this work. The local-pref
is an attribute that specifies an integer number. This number is used to prefer
a route over other routes. The AS-path is an attribute that determines the
ASes that announced a prefix and corresponds to a route to a destination.
More information about the attributes for BGP route selection can be found
in [RLHO06, Bon11]. Among all available paths to a specific destination, the
BGP decision process selects one path as the best BGP path to that prefix and
announces the path to peers.

2.5 Congestion Control

When the number of packets in the network is higher than the capacity of the
network it causes packet delay and loss resulting in performance degradation.
This kind of situation called congestion [TW96]. The duration of congestion
can vary from milliseconds to hours. Consequently, the impact of congestion
on the applications depends on the duration and severity of congestion and the
application design to handle congestion [GT13]. If the duration of congestion
is short enough or the application can tolerate the congestion the user may not

2.5. CONGESTION CONTROL 11

experience any performance degradation. Therefore, congestion is a problem
when its duration is long.

Fig. 2.4 depicts the onset of a congestion. When the number of sent pac-
kets is equal to or less than the carrying capacity of the network, the packet
delivery is proportional to the number of sent packets. However, when the
traffic load approaches the network carrying capacity, burst of traffic fills up
the routers’ buffer and some packets are lost. The lost packets consume the
network capacity, therefore the number of delivered packets is less than ideal.
In this circumstance the network is congested.

Congestion

Total peak

Capacity of the network

packets/seconds

Time
Figure 2.4: Congestion occurs when the traffic exceeds the network capacity.

The network and transport layers are responsible for handling congestion in
the network. Since the circumstance happens in the network, the network layer
experiences it and should decide what to do with the excess packets. However,
the most effective way to control the congestion is reducing the traffic load.
This requires the collaboration of network and transport layers. The principles
of congestion control are defined in RFC 2914 [Flo00]. More detailed discussion
on various approaches to control congestion can be found in [TW96, Bonl1].
However, all transport protocols in Internet should address congestion control.

The Transmission Control Protocol (TCP) is one of the widely used trans-
port protocols on the Internet which is a highly reliable host-to-host protocol
in packet-switched computer communication networks [APB09, Pos81]. TCP
defines several different congestion control algorithms. RFC 5681 describes

12 CHAPTER 2. BACKGROUND
each of TCP congestion control algorithms in more detail [APB09].

2.6 Network Emulation

Testing network protocols and applications has been a difficult task for years
and current advances in software and hardware makes it even more complicated.
The network emulation rapidly gains the attention of researchers, teachers, and
network administrators in simulating the behavior of a real network due to ease
of use and low cost [PRO8]. With network emulators, the administrators can
quickly set up a network configuration to check its functionality based on the
expected behavior. The researchers can validate their theoretical models in
practical network environments. The teachers can educate the students how
to configure a network on a Personal Computer (PC) for education purposes.

A network emulator is different from simulator, which allows the users to
compute the evolution of a network. More specifically, the emulator allows the
user to produce the behavior of real network devices [PRO8]. It consists of a
set of software/hardware platform which enables running of the same software
on the real network devices. Typically, in an emulator the network testing is
performed by exchanging a set of packets between devices in such a way that
they occur on real networks.

2.7 Software-Defined Networking (SDN)

Software-Defined Networking (SDN) is a networking paradigm that changes
the way of controlling the network devices. SDN refers to the ability of soft-
ware applications to dynamically program the forwarding behavior of network
devices [KRVT15b|. Each network device, e.g., a router or a switch, has two
main planes, namely, control plane and data plane. The forwarding decisi-
ons are made by the control plane while data forwarding is performed using
the data plane. In traditional (IP) networks these plane were coupled and it
was difficult to mange the network. SDN separates them. The control plane
is controlled via a centralized unit, which is called controller, via Application
Programming Interfaces (APIs). Afterward, the network devices act based on
installed forwarding rules by the controller. The OpenFlow [MAB™08] is the
most notable APIL

Each SDN-enabled network with OpenFlow protocol has three main compo-
nents [Opel8]; flow table,secure channel, and OpenFlow protocol. Each device
in OpenFlow context, i.e., datapath, has one or more flow tables. Each flow

2.7. SOFTWARE-DEFINED NETWORKING (SDN) 13

table performs packet lookup and forwarding. The OpenFlow switch commu-
nicates with the controller via one or more secure channels. The controller
manages each OpenFlow switch via the secure channel. Each flow table con-
tains a set of flow entries. Each flow entry has three main fields; match fields,
counters, and a set of instructions to match the packets. If a match occurs
with an incoming flow, the associated instructions to that match will be exe-
cuted. If the incoming flow does not match with a flow entry of a flow table,
the outcome depends on the configuration of table-miss flow entry. Therefore,
the outgoing flow depends on the matching field and its action.

SDN controller in such networks has the following tasks [Thel3]. 1) Trans-
lating of SDN application layer requirements to SDN datapath. 2) Providing
a global view of the network to the SDN applications.

Controlling the network with a centralized unit brings several advantages
like easily programming the network applications or leveraging the network
information by all applications to take decisions [KRVT15b]. Initially, it was
supposed that there is a single controller to control the forwarding behavior of
the whole network’s devices. An SDN network may have more than a single
controller for scalability, performance, or robustness reasons [WZHW17].

Data Plane Programmability

Programming the network through the controller facilitates the network ma-
nagement, but it limits the flexibility of the controller for future protocols to
support. To program a network through a controller with new features the
following steps are required. First, the features should be supported by the
hardware. Second, a suitable API should be provided for the controller to pro-
gram hardware. These may result in long production delay. Furthermore, the
communication links between the controllers and devices may result in packet
processing delay. These limitations can be removed by data plane program-
ming.

Data plane programming has been recently introduced to facilitates innova-
tion in networking [BDGT14]. It enables the definitions of new protocols and
their behavior without waiting for the vendors to offer them.

Programming Protocol-Independent Packet Processing (P4) [BDG'14] is
a data plane programming language which is introduced for these definitions.
Programming the network in P4 is not limited to application-specific integrated
circuit (ASIC) any more. The language is hardware agnostic aiming at fast
innovation in networking protocols and fast packet processing. The features
provided by P4 have the potential to shape the future of networking.

Chapter 3

Privacy of Routing Policies at
IXPs*

Internet eXchange Points (IXPs) serve as landmarks where many network ser-
vice providers meet to obtain reciprocal connectivity. Some of them, especially
the largest, offer route servers as a convenient technology to simplify the se-
tup of a high number of bi-lateral peerings. Due to their potential to support
a quick and easy interconnection among the networks of multiple providers,
IXPs are becoming increasingly popular and widespread, and route servers are
exploited increasingly often. However, in an ever-growing level of market com-
petition, service providers are pushed to develop concerns about many aspects
that are strategic for their business, ranging from commercial agreements with
other members of an IXP to the policies that are adopted in exchanging routing
information with them.

Although these aspects are notoriously sensitive for network service provi-
ders, current IXP architectures offer no guarantees to enforce the privacy of
such business-critical information. We re-design a traditional route server and
propose an approach to enforce the privacy of peering relationships and routing
policies that it manages. Our proposed architecture ensures that nobody, not
even a third party, can access such information unless it is the legitimate owner
(i.e., the IXP member that set up the policy), yet allowing the route server to

*Part of contexts in this chapter is based on the following publication: Chiesa, M., di
Lallo, R., Lospoto, G., Mostafaei, H., Rimondini, M. and Di Battista, G., 2017, May. PrIXP:
Preserving the privacy of routing policies at Internet eXchange points. In Integrated Network
and Service Management (IM), 2017 IFIP/IEEE Symposium on (pp. 435-441). IEEE.

15

16 CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

apply the requested policies and each IXP member to verify that such policies
have been correctly deployed. We implemented the route server and tested our
solutions in a simulated environment, tracking and analyzing the number of
exchanged control plane messages.

3.1 Introduction

Organizations that offer Internet-based services (Internet Service Providers,
Content Delivery Networks, etc.) join the Internet eXchange Points (IXPs)
in order to quickly and easily reach a number of other parties networks, and
gain the level of connectivity they need [DDdAS15]. However, such organizati-
ons are usually concerned with business-critical aspects for which IXPs do not
currently provide any technical solutions. These aspects include, among the
others: (i) privacy of the peering relationships, which are an evidence of the
existence of commercial agreements; (ii) privacy of routing policies, which de-
termine what kind of traffic can flow between peering partners; (iii) security of
the network infrastructure (links, devices), that might be traversed by sensitive
traffic.

Currently, IXPs offer a very useful service, called Route Server (RS). An
RS allows each member connected to an IXP to easily exchange traffic with
other members by establishing a peering session with the RS, instead of having
one peering with each other member he wants to be connected to. Peering
sessions are handled by the Border Gateway Protocol (BGP), the standard
interdomain routing protocol. Surely, this functionality significantly reduces
the effort needed by the IXP members to connect to the Internet.

Ensuring the privacy and correctness of Internet peering policies is a desired
requirement for many Internet entities as this information reflects business re-
lationships, such as commercial agreements, which must comply with stringent
Service Level Agreements (SLAs). Very often, RS functionalities are mainly
leveraged by small providers and Content Delivery Networks (e.g. [AI16,LIN16,
FRA16,MIX16]) since these players have strong interests in connecting to many
IXP members by just setting up a single BGP peering with RS. On the other
hand, big Internet players, with very few exceptions (e.g. Google [AI16]), tend
to not have BGP peerings with an RS. We argue that this trend is the result of
exposing an IXP member to a potential violation of privacy in terms of BGP
policies when peering with an RS. In fact, each peering policy would be stored
within appropriate data structures at the RS and, potentially, these can be al-
tered by a malicious software. As a result, most Tier-1 ISPs require their peers

3.2. BACKGROUND: ROUTE SERVER ARCHITECTURE 17

to sign Non Disclosure Agreements (NDAs) when peering with them [Peel2].

In this chapter, we present PrIXP, an RS system that improves both the
privacy guarantees of confidential peering information and the security of the
RS. Our key idea is to prevent the RS from locally storing any BGP policies.
Instead, the RS queries routing policies in on-demand manner by means of a
second communication channel that we instantiate between the RS and each
IXP member. Namely, each time the RS performs a routing operation, it le-
verages this extra channel to retrieve from each member its routing policies
such as the set of member neighbors that should receive certain routing in-
formation and the local preference over routes of each member. To guarantee
the correct execution of the BGP routing protocol at the RS, we leverage Intel
proprietary Software Guard eXtensions (SGX) technology [MABT'13], which
allows external entities to attest that a remote software has not been tampered
by a malicious attacker. Finally, to enable incremental deployment, we discuss
a BGP compatible mechanism that can be used in place of the extra channel,
thus requiring no hardware modifications at the IXP member side.

The rest of this chapter is organized as follows. In Sec. 3.2, we provide an
overview of a common real-world architecture of a route server deployed inside
IXPs. In Sec. 3.3, we describe our system in detail, presenting a complete
example of an interaction between the route server and the IXP members con-
nected to it. In Sec. 3.4, we address the security issues associated with peering
with a traditional RS by describing our solution for allowing any IXP member
to check the integrity of the RS. In Sec. 3.5, we evaluate our system by using
a real-world trace of BGP updates from one of the largest IXP worldwide. In
Sec. 6.2, we review the most relevant contributions related to Internet routing
privacy and security. Finally, we draw conclusions and future work in Sec. 5.9.

3.2 Background: Route Server Architecture

In this section, we describe the typical architecture of a RS service offered
to the members of an IXP (e.g. [RSFT14]). To the best of our knowledge,
many large IXPs such as DE-CIX, AMS-IX, and NYIIX are currently using
RS implementations based on that architecture.

Before entering into the details, we introduce terminology and definitions
that will be largely used throughout the chapter. We define the RS-software as
the piece of software implementing the RS functionality and the RS-machine
as the physical hardware that runs the RS-software. We also define the peering
LAN as the local network managed by the IXP where its members connect

18 CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

and establish BGP peerings among themselves and with the RS-software.

In a standard scenario, each member of an IXP establishes a number of
bi-lateral BGP peerings with all the members with whom it has agreed to
exchange network traffic for certain IP prefix destinations. Such bi-lateral
peerings usually correspond to commercial agreements between the involved
parties. In contrast to this approach, many IXPs provide RS services as a
convenient alternative for their members to simplify the setup of peerings while
optimizing the operation of the BGP control plane. Indeed, RSes reduce the
configuration effort required by network operators to join and manage many
bi-lateral BGP sessions at large IXPs, since having a single BGP peering with
the RS is enough to be connected with the other members.

We now describe the set of operations that an IXP member should perform
in order to make use of RS services. First, the IXP member establishes a
single BGP peering towards the RS-machine with the RS-software, which is
responsible for forwarding any BGP announcements according to the routing
policies configured by the members. The above scenario is denoted as a multi-
lateral peering, where the RS acts as the center of a star topology where the
members are called clients.

The architecture of an RS-software is shown in Fig. 3.1. In this figure, AS1,
AS2, AS3, and AS4 are members of the IXP, each of them connected to the
IXP using a BGP-speaking router, where the dashed lines labeled B1, B2, B3,
and B4 represent BGP peering sessions. Each of these routers independently
keeps a routing table that stores the IP prefixes coming from its own network,
as well as those received from its multi-lateral peers through the RS. The
rounded dashed box labeled “RS-software” represents an instance of the RS
routing software, where the contents of the box depict the most important
data structures that are maintained by the software and the channels used to
move data among these structures. We now describe each basic component
represent in the figure.

Tables. The basic data structures maintained by an RS are BGP tables.
A BGP table contains a set of routing entries, each of them consisting of an
IP prefix and the BGP message announcing that prefix. Multiple entries for
the same prefix may exist, though only one of them is marked as the best one
that should be propagated to the other members. For each member, an RS-
software keeps a distinct table that stores all the routes that are announced
towards that client from other clients. In order to support the exchange of
routing information among these tables, the RS also maintains a single master
table, which usually aggregates all the routes received from all the client-specific

3.2. BACKGROUND: ROUTE SERVER ARCHITECTURE 19

~ AST ~ AS2
o= P
e “.. B1 By o
"~.':." """"""""""""""""""""""" .:‘.""
LT AST's - AS2's ||
' | routing m routing | !
! table P1 P2 table b
: Master
p routing]
table
' [AS3's | p3 P4 | Asa's ||
i routing routing | |
- T ene liBa
= — RS-Software =)
A3 oAs4
Figure 3.1: Reference architecture of route server.
tables.

Protocols. The RS software leverages different communication channels for
transferring information among tables, called protocols. BGP routes are ex-
changed between a client and one of the member-specific tables inside the
RS-software through a BGP session (lines B1, B2, B3, B4 in Fig. 3.1). The
routes learned from these sessions can then be propagated between the diffe-
rent tables using a RS-specific protocol, which corresponds to the links among
the BGP tables (thick lines P1, P2, P3, and P4 in Fig. 3.1). A pipe is a bidi-
rectional communication channel connecting two tables, such that every route
added to one table is immediately inserted into the other (or “peer”) table, and
vice versa. This applies to all routes, regardless of whether they are marked as
best or not. Although in BIRD pipes can be used to connect an arbitrary pair
of tables, the best practice is usually to just link each client-specific table with
the master table [RSF*14].

Filters. In order to support arbitrary routing policies, it is also possible to
define filters. A filter is typically a fragment of code, possibly written in a speci-
fic programming language, that supports evaluation of arithmetic expressions,

20 CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

conditional statements, etc. Filters are applied on each BGP announcement
ever time they are exchanged through BGP sessions or RS-specific protocols.
A filtering operation can have three possible outcomes: (1) forwarding the
announcement, (2) modifying some attributes in the announcement before for-
warding it, and (3) dropping the announcement. BIRD supports the definition
of both import and export filters: for the case of the bgp protocol, import filters
are applied to BGP announcements received by the RS from the clients, while
for the case of the pipe protocol import filters are applied to BGP routes when
they are copied from a client-specific table to the master table. Export filters
are applied in the opposite direction in both cases. Of course, each IXP mem-
ber may have custom inbound and outbound BGP policies set up in its own
routing software. Filters can be statically configured within the RS software by
the IXP operators. This practice is commonly adopted for limiting the risk of
IP-prefix hijacking. The common way to perform filtering is encoding the set
of members to whom a routing announcement must be sent via specific BGP
attributes that are attached to the announcement itself, i.e., via BGP commu-
nities, where each BGP community simply consists of a pair (z,y) of values.
We define a whitelist export policy as the set of members (AS 1,...,AS N)
encoding all members that are allowed to receive a BGP announcement. A
whitelist is expressed by a sequence of community values starting with a spe-
cial community (0 : IXP _id), followed by a sequence of other community values
(IXP_id,AS i), for each ¢ = 1,..., N representing all members to which for-
ward the announcement. In the same way, we define a blacklist export policy as
a sequence of community values encoding the set of ASes (AS_1,...,AS_N)
that should not receive a BGP announcement. A blacklist always starts with
a special community (IXP_id : IXP_id) and it is followed by a pair (0, AS_i),
for each member that is denied to receive the announcement.

Best Route Selection and Propagation. Unless filters enforce restricti-
ons, the adoption of a specific internal protocol, as explained before, causes
all BGP routes to be copied between the tables it links, retaining all their
attributes and including non-best routes. Each best route for a member is
computed using the information gathered in its specific member routing table.
This strategy ,combined with the fact that pipes are established between each
client-specific table and the master table, allows IXP operators to overcome
the well-know problem known as path hiding, which arises whenever filters are
applied [JHRB16a, RSF114]. This is a well-known problem that might affect
members if the RS-software acts as a standard BGP router, where a single mas-
ter route table is used to collect all the route announcements and to compute a

3.3. ENFORCING PRIVACY OF ROUTING POLICIES 21

unique best route for all the customers. For example, consider the case in which
there are four members (AS1, AS2, AS3, and AS4) connected to a RS-machine
through a multi-lateral peering. An IP prefix 7 is announced by AS1 and AS2
and the latter one defines a restricted policy that prevents AS3 to receive the
announcement containing 7. Also, suppose that the RS-software runs the best
route process only considering the routes contained in the master table and
that computation selects the route passing through AS2 as the best one. In
this case, this route is only advertised to AS4, leaving AS3 without any route
towards 7, even though a route passing through AS1 exists. Breaking down the
master table into per-member tables makes possible to run independent best
route computation on each member table, preventing the above situation to
happen. Although the BGP configuration language allows routes to be ranked
based on the local preferences of each member, today’s RSes do not support
this mechanism and the best route is computed based on a global ranking, as
defined in [RLHO6].

3.3 Enforcing Privacy of Routing Policies

In this section, we describe how PrIXP improves the level of privacy for the
members’ routing policies within an RS-machine. In our system, each member
can easily leverage the RS’s functionalities (e.g. BGP routes dispatch based on
export policies and local-preference tools) while minimizing the risk of leaking
any confidential information. Our system does not propose an entirely new
cryptographic protocol, but leverages well-established techniques (e.g., TLS,
SGX) to secure channels and performing remote attestation. Those techniques
can be replaced by any equivalent technology.

We observe that current RSes designs (described in Sec. 3.2) require IXP
members to disclose their export policies. In fact, any peering relationships
among the IXP members can be reconstructed by simply looking at the client-
specific routing tables stored in memory or on disk. In fact, the table of a
member ASz contains all the routes received by other ASes, thus revealing what
are the export policies of each member towards ASxz. Moreover, any enhanced
RS service that allows the IXP member to rank their available routes based on
their specific local preferences would raise additional privacy concerns. In fact,
such services would require each member to disclose their ranking policies to
the IXP.

We now describe the security assumptions and the threat model on which
our system is based. First, we assume that the attacker does not have visibility

22 CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

of data traffic. Namely, an attacker cannot eavesdrop the packets sent through
the peering LAN of the IXP in order to infer the peering relationship among
the members. Second, we assume that the attacker operates on the RS-machine
during a short time interval in which he tries to take a snapshot of as much
information as possible from the content stored in the route server system,
possibly tampering the RS-software itself.

Our system is based on the following principles. The only information that
is stored within the PrIXP RS is the one needed to maintain the established
BGP sessions with the IXP members and, for each announced prefix, the set of
members that have a route towards it. The routing policies of the IXP mem-
bers are never permanently stored by the RS-software inside the RS-machine
so as to minimize the risk of privacy breaching. In contrast, these policies are
asked to the members in response to the reception of a BGP announcement
that has to be dispatched. We make use of an extra communication channel
for retrieving this information, which can be set up using standard techniques
(e.g. SSL/TLS). We observe that, in order to minimize the modification requi-
red at the member side, it would be worth to investigate how to implement this
channel by tweaking the BGP protocols. The idea is to leverage Conditional
Route Advertisement, a BGP route dissemination feature that allows to con-
ditionally announce one or more prefixes upon the reception of some specific
routes. Such a feature is currently supported by important vendors, as shown
in ([Sup16, Tec16]).

The extra communication channel is used by the PrIXP RS to query each
member for the following information: (i) the export policies of a routing an-
nouncement (e.g. the set of members to whom a route should be propagated)
and (ii) the local preferences over routes of each BGP member that is entit-
led to receive a BGP message. We now provide a detailed description of the
operations performed by the PrIXP.

A Complete Example. A simplified scenario that we use to illustrate how
our system works is depicted in Fig. 3.2. The RS-machine is placed in the
middle of the drawing, while the three members (M1, M2, and M3) are con-
nected to the IXP physical infrastructure. For our convenience, we assume
that M1, M2, and M3 are also the identifier of the three members, respectively.
The rounded rectangle containing the whole drawing represents the peering
LAN and we assume that the peering LAN consists of a single switch. Each
dashed line represents a BGP session, whereas dotted lines represent the extra
communication channel used by PrIXP to query each member. To make use
of the RS’s functionalities, each member establishes a BGP session with the

3.3. ENFORCING PRIVACY OF ROUTING POLICIES 23

M3
7

s 1
.
s
.

M1 1 M2
-

Peering LAN

&> T -sl RS-Software ...
-

RS-Machine

Figure 3.2: The architecture of an IXP infrastructure.

RS-software. Each member can still establish bi-lateral BGP sessions with the
other members as in traditional RSes.

Once all the BGP connections are established, members can use them to
exchange routing information among each other. For instance, suppose that M1
and M2 send an announcement towards an IP prefix 7 to the RS-software, which
is responsible for dispatching it according to the members’ routing policies.
Upon receiving this message, PrIXP asks M1 for the export-policy. Member M1
replies to this request by communicating a set of BGP communities encoding a
policy that allows the RS-software to advertise the announcement to M3. After
delivering the message, the RS-software stores in its memory that it received a
route for 7 from M1, but it deletes any other additional information (e.g. the
export policies and the BGP attributes contained in the announcement).

Now, suppose that also M2 sends an announcement towards 7 to the RS-
software. When the RS-software receives that message, it checks whether there
exist other routes announced towards w. Then, it asks each member that
announced a route towards m (M1 and M2) for the export policies of their an-
nouncement using the extra communication channel. Member M1 communica-
tes again that its announcement must be announced to M3, while M2 instructs

24 CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

the RS-software to propagate its message to both M1 and M3. Upon recei-
ving the export policies, the RS-software knows which routes can be exported
to each member. In order to select the best one, the RS-software asks each
member with at least two available routes for the local-preference of each route
announcement. In our case, the RS-software asks M3 to provide the ranking
over the routes announced by M1 and M2. Once M3 provides its local prefe-
rence, the best route is sent to M3. As for M2, the only route that is available
to be exported to it is the one through M3, which is then propagated accor-
dingly. Note that, this last step is performed over the BGP peering. After that
computation, the RS-software discards all the information used to propagate
the routes, except for the mapping between routes and members who announ-
ced them. This operations allows us to minimize the risk of leaking routing
policies whenever an attacker can observe the state of the RS-software for a
short interval of time. Note that having a single BGP decision process for each
member makes our RS-software not affected by the path hiding problem.

3.4 Discussion on Security Issues

In this section, we describe some security considerations, addressing the pro-
blem of how a member can verify that the RS-software has not been tampered
or replaced by another malicious software. To minimize the risk of leaking con-
fidential information, we assumed in Sec. 3.3 that each member is connected
to a trusted execution of the PrIXP RS-software. Under our threat model, we
assume that the attacker may quickly replace the RS-software to collect confi-
dential information that can be read by the attacker next in the future. For this
reason, we also define an RS security architecture, depicted in Fig. 3.3, which is
based on recent advancements in remote attestation protocols. A trusted aut-
hority issues a certified version of the RS-software that each member can verify
on its local machine, implemented according to the description of the PrIXP
system in the previous system, represented by a triangle in the picture. Un-
fortunately, to allow all the IXP members to be able to check that at any time
the RS-software is behaving as expected, having just a certified version of the
RS-software is not enough, because a member does not have any tools to attest
at any time that exactly the certified version of the software is running. Indeed,
an attacker can suitably replace that certified version of the RS-software. To
solve this problem, we rely on the recent advancements on Remote Attestation,
which allows changes to the RS-software to be detected by authorized parties.
Intel Security Guard eXtension (SGX) [MABT13] is an example of a technology

3.4. DISCUSSION ON SECURITY ISSUES 25

2.1 Verify(P):
P — L 1. Ask (SGX, P, RS software) |

‘2. Send(SGX, P, RS software)

SGX

2.2 Run(RS) |
v

3.Ask (P)
4. Send (P)

Customers }

IXP

Figure 3.3: Architecture for checking the integrity of the RS software.

that allows programmers to implement remote attestation procedures.

Each SGX program needs a proof to be executed on a SGX-enabled ma-
chine. In our architecture, the trusted authority provides to the RS-machine
an SGX program and a proof P, respectively depicted by the circle and the
lock in Fig. 3.3.

The integrity check works as follows. First, the RS-machine, which has an
SGX processor, sends to trusted authority a request to obtain the RS-software,
the SGX program and the proof P. This is represented as the step 1 in the
figure. Upon receiving this request, the trusted authority sends back to the
RS-machine the RS-software, the SGX program and the proof P. This is step
2 in the figure. At this point, the RS-machine owns all the necessary pieces to
correctly run the verified RS-software. This task is accomplished by the SGX
program that can run if and only if the proof P has been verified (step 2.1).
In order to guarantee that the RS-machine will run the correct version of the
RS-software, the SGX-program will check that the hash of the RS-software to
be executed corresponds to the one that is hard coded in the SGX-program
retrieved from the central authority (step 2.2). At this point, whenever a
member wants to check the integrity of the RS-software, it asks the trusted
authority for the proof P, which is denoted as step 3 in the figure. Upon

26 CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

receiving the proof P, a member performs a remote attestation against the
SGX program running at the RS-machine by using the proof P (steps 4 and 5
in the picture).

Since the proof P used by a member for the remote attestation is the
same used by the SGX program at the RS-machine to run the RS-software,
the operation succeeds. If an attacker aims at replacing the RS-software, he
must also replace the SGX program, otherwise the hash-check would not allow
him to run its own RS-software. This implies that a new proof P must be
provided to the SGX-machine in order to run the malicious SGX-program. At
this point, if the attackers succeed in running its malicious SGX-program and
RS-software, the remote attestation performed by any member using the proof
P would fail, as the SGX-machine would alert the user the SGX program is
not the legitimate one.

In this chapter, we do not propose any new cryptographic protocol, but
we leverage well-established techniques (e.g. TLS for the extra communication
channel and SGX for remote attestation). Those techniques can be replaced
by any equivalent technologies without altering the PrIXP functionalities.

3.5 Experiments

To assess the effectiveness of PrIXP, we simulated our system (available at [Uni16])
using a trace of BGP updates from one of the largest IXP worldwide with se-
veral hundreds of members whose name cannot be disclosed in this chapter.
Our simulation aims at estimating how much overhead our methodology in-
troduces in terms of BGP control plane messages. We do not measure CPU
overhead or memory utilization, since we do not expect both of them to be a
bottleneck as PrIXP only uses simple access to data structures and stores less
information than traditional RSes.

First, we implemented a prototype RS-software written in Python, as de-
picted in Fig. 3.4, including a decision process acting according to the route
dispatching mechanism described in Sec. 3.3. To easily manipulate BGP mes-
sages within the RS-software, we relied on ExaBGP [EN16], a software tool for
easily interfacing and managing BGP sessions in a convenient JSON format.
The input of our simulation is a dump of all the routes announced inside a
big European IXP in a one hour time interval. We ran two different experi-
ments: the first one using a traditional RS-software that does not guarantee
any privacy, and the second one using PrIXP. During each experiment, we
collected the number of exchanged messages to quantify the communication

3.5. EXPERIMENTS 27

JSON
ExaBGP <€---------- » Python Code
A
1
1
BGP 1 Route Server
\4
[Member]

Figure 3.4: Architecture of our RS-software prototype implementation.

overhead due to the extra channel communication. To put ourselves in the
worst-case condition, we assumed that each member is willing to send its route
announcements to any other member.

The percentage of members that received at least a certain amount of BGP
announcements from the RS-software is depicted in Fig. 3.5. The red line refers
to the standard RS-software, whereas the black one represents the CDF for
our methodology. We see that in PrIXP around 95% of the members received
roughly 5000 BGP announcements more that with respect to the standard RS-
software, which is an overhead by a factor of 1.5. We argue that this amount
of overhead is affordable for a member, considering the time interval taken into
account. The number of messages sent by each member to the RS-software is
depicted in Fig. 3.6. Note that the red line is now very close to the leftmost
part of the graph, showing that only a few members announce many routes,
while the vast majority of the IXP members are not involved in sending many
BGP routes. In this case, we observe a significant increase in terms of number
of messages, since that amount includes the messages exchanged on the extra
communication channel in order to ensure privacy at the RS-software, which is
not guaranteed in the standard approach. We argue that it is due to the fact
that the PrIXP does not store in memory any routing information at the RS,
thus forcing the members to send them when required.

To allow members to verify the integrity of the RS-software, we used OpenSGX (
[TDST16, Opel6]), an open source implementation of SGX. This experiment
aims at verifying that the remote attestation mechanism described in Sec. 3.4
behaves as expected. We produced a hash value of the PrIXP implementation.

28

Percentage of members

Percentage of members

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

5000

CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

T

T T rr_/

T
RS-software standard approach ——
RS-software our methodology ——— |

10000 15000 20000 25000 30000

Number of BGP messages sent by the RS (up to)

35000

Figure 3.5: CDF of the number of messages issued by the RS-software.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Figure 3.6: CDF of the number of messages issued by members.

T T T

| [ﬁﬁ RS-software standard approach ———

[RS-software our methodology ——— |
I I I

0 5000 10000 15000 20000

Number of BGP messages sent by the members (up to)

25000

3.6. RELATED WORK 29

Then, we wrote an SGX program that executes the RS-software only if the
hash of the RS-software corresponds to the one of the precomputed hash. To
generate the proof P of the SGX program, we used a key issued by the trusted
authority, according to Fig. 3.3. We ran the SGX program on a virtual machine
acting as RS-machine. After checking the checksum of the RS-software, our
SGX program successfully executed it. At that point, we tried to perform a
remote attestation from an external client towards the SGX program running
on the RS-machine. To do that, we provided the trusted proof P from the
external machine to the SGX one, and in that case, the remote attestation
succeeded. After that, we altered the code of the RS-software, and the SGX
program detected the change as it did not run the malicious RS-software. As
the final step, we executed on the RS-machine a malicious SGX program with
a proof P’ generated using a malicious key, with an altered version of the RS-
software. The member detects that the RS-software was tampered since the
remote attestation fails.

Performance overhead and threats of SGX. We are aware that leveraging
SGX may add some overhead to our RS-software. This overhead comes when
SGX executes the enclave code [ATG 16, TSB18]. The SGX performance over-
head can be categorized as follows. 1) Since the privileged instructions cannot
be executed within the enclave and it requires system calls. 2) Enclave pays to
write in memory and cache misses because memory encryption engine (MEE)
encrypts and decrypts cache lines. 3) Application that require extra protected
physical memory, which is called the enclave page cache (EPC), should swamp
pages between EPC and unprotected DRAM. This requires further encryption
and decryption. Furthermore, SGX is vulnerable to several attacks like cache
timing and page table side-channel attacks and several works tried to protect
it like [OTK*18].

3.6 Related Work

In this section, we overview the most relevant work to ours along two dimen-
sions: (i) securing the Internet routing computation and (ii) preserving the
privacy of the routing policies on the Internet.

Security of Internet routing. Several attempts have been made by the
Internet community in order to secure the Internet routing from malicious
activity such as IP-prefix hijacks and similar attacks. The set of techniques
developed to curb these malicious activities range from Resource Public Key
Infrastructure (RPKI) [BA13], which is used to verify whether the originator of

30 CHAPTER 3. PRIVACY OF ROUTING POLICIES AT IXPS

a BGP announcement is the legitimate one, to Secure BGP (S-BGP) [KLS00],
which allows any entity to verify the authenticity and authorization of BGP
control traffic. We note that, beyond large-scale deployment issues with these
techniques, none of them can actually be used to guarantee the IXP network
will correctly propagate the BGP announcements. The IXP operator can still
(i) do not propagate a BGP route or (ii) select any of its known routes as the
best one. Nevertheless, an implementation of a RPKI-based route server is
in [KK14].

Several efforts have been made to improve the level of security offered by
RPKI and S-BGP. These efforts include the most closely related work to ours,
SPIDER [ZZG™" 12|, which devised a distributed mechanism that allows the
peers of a network to verify a number of nontrivial properties of its interdomain
routing decisions (such as adherence to the BGP protocol) without revealing
any additional information (beyond those revealed by the underline protocol,
i.e., BGP). When casting this mechanism in the IXP setting, SPIDER allows
each IXP member to verify that the IXP is not deviating from the BGP protocol
(i.e., sending non-best routes), but it requires the IXP members to disclose their
routing policies to the IXP operator.

Privacy of Internet routing. In [GSP'12| and [CDC*16], Secure Multi-
Party Computation (SMPC) techniques have been used in order to compute
Internet routing paths without revealing to any party the routing policies of the
Internet entities. SMPC is a branch of cryptography that studies the problem
of computing a function over their inputs while keeping those inputs private.
As the authors themselves recognize [GSP*12|, the main drawback of using
SMPC lies in the inherent difficulty of scaling it to a large number of partici-
pants, as the computational and communication complexity easily becomes a
bottleneck, especially when the SMPC function is required to be robust against
malicious attackers.

Kim et al. [KSHT15] make extensive use of Intel SGX to preserve the pri-
vacy of ISPs’ policies and to guarantee the correct propagation of BGP an-
nouncements. SGX is a proprietary hardware-based mechanism that allows
programmers to create enclaves of memory by means of special processor’s in-
structions. In order to limit our dependency with a proprietary building block,
we use SGX to remote attestation only, providing the privacy of routing policy
in a distributed manner.

3.7. CONCLUSIONS AND FUTURE WORKS 31

3.7 Conclusions and Future Works

During the last decade, IXPs emerged as economically advantageous solutions
for interconnecting multiple Internet entities. While RS services have been
deployed at IXPs to ease the operators from the burden of managing hundreds
of BGP sessions, the usage of such services have been hindered by the privacy
concerns regarding the disclosure of the members’ routing policies to external
commercial parties such as the IXP.

We designed PrIXP, an RS service that allows to redistribute BGP rou-
ting information according to the import/export policies specified by the IXP
members while minimizing the risk of leaking that information to any curious
or malicious entity. We demonstrated that PrIXP has little message overhead
compared to traditional non-secure RSes and it requires only minor modifica-
tions at the members’ side.

In the next future, we plan to pursue the following directions. First, we in-
tend to improve our prototype implementation, aiming at reducing the control
plane overhead introduced by the current version and assessing the computa-
tional overhead in our system. Second, we will extend our experimental setup
to in order to gather information about other relevant metrics such as the time
spent by a member to receive the legitimate routes. Finally, we will devote
our efforts towards eliminating any hardware modification at the members side
in order to ease the deployment of PrIXP at any IXP by tweaking the BGP
protocol.

Chapter 4

Experimenting SDN in
Inter-Domain Networks*

Mininet is the de-facto standard simulation environment for experimenting
with SDN enabled networks based on the OpenFlow protocol. Although Mi-
ninet is powerful and not resource hungry, it has a strong limitation: it is not
possible to use it for networks in which both OpenFlow and standard distri-
buted routing protocols (e.g. Open Short Path First, OSPF) simultaneously
run.

In this chapter we present SDNetkit, an enhanced release of the widely used
Netkit network emulator that overcomes the limitation imposed by Mininet.
We improved Netkit by adding all needed software to run OpenFlow based
networks (e.g. OpenVSwitch and the Ryu framework). We show two use cases
in which OpenFlow and standard protocols coexist. In particular, we address
interoperability problems by presenting one use case in which OpenFlow nodes
interact with standard ones (e.g. OSPF routers) in multi-domain networks,
as well as one use case in which the OpenFlow protocol and OSPF run on
the same machine, discussing some problems related to specific configurations.
We believe that having the possibility to experiment SDN also in presence of
interoperability scenarios results in opening to new research perspectives.

*Part of contexts in this chapter is based on the following publication: Mostafaei, H.,
Lospoto G., di Lallo R., Rimondini M., Di Battista G., SDNetkit: A Testbed for Experi-
menting SDN in Multi-Domain Networks, 2017 IEEE Conference on Network Softwarization
(NetSoft), Bologna, 2017, pp. 1-6.

33

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN
34 NETWORKS

4.1 Introduction

Researchers and practitioners interested in SDN need systems to perform expe-
riments with OpenFlow [MABT08] and, over the years, Mininet, [LHM10] was
the leader among those systems. The majority of the experiments on SDN, in
particular based on the OpenFlow protocol, have been carried out on top of
that light and easy to use simulation environment, that provides a very simple
interface to the final users. Nevertheless, Mininet is not the only SDN-ready
simulator: many others exist, like NS-3 [Jurl3], Estinet [WCY13], distributed
mininet [LO15], Maxinet [WDS*14], Mininet CE [AS13], even if Mininet is
one of the most popular and supported ones. By using Mininet, it is possible
to create arbitrary topologies, as well as running several OpenFlow-enabled
devices, connecting them at will and run customized SDN controllers written
by exploiting any available SDN framework (e.g. Ryu [ryul7]).

To provide OpenFlow functionalities, Mininet relies on OpenVSwitch [ovs17]
that is a software switch equipped with an implementation of the OpenFlow
protocol. Mininet can be seen as an orchestrator of OpenVSwitch instances,
taking care of creating suitable connections among them according to what
the user declares in the definition of the topology. However, it suffers from
two strong limitations. First, with Mininet it is not possible to test topolo-
gies where legacy devices (e.g. IP-speaking routers running traditional routing
protocols) coexist with OpenFlow-enabled devices. Second, it assumes that
the controller is back-to-back, i.e., directly connected, with each device in the
network.

We argue that these two weaknesses pose severe limitations in experi-
menting interesting scenarios, such as interoperability among SDN-enabled and
legacy devices, as well as how the communication among controller and SDN-
enabled devices is affected by network changes (e.g. failures). For simplicity,
we call the latter scenario network control.

It is reasonable to think that no currently operating provider will fully
migrate its network to an SDN-enabled one in just a single step. As it often
happens, an incremental process will take place, in which SDN-enabled and
legacy devices will coexist for a certain amount of time. Hence, when emulating
networks involving multiple ISPs, where each of them is at an intermediate step
of the migration process towards SDN, it is crucial to have the possibility to
emulate networks composed both by SDN-enabled devices and by legacy ones.
This results in the interest in experimenting interoperability scenarios that,
at this moment, cannot be emulated by any freely available SDN/OpenFlow
simulator. On the other hand, the assumption that the SDN controller is

4.1. INTRODUCTION 35

directly connected to every SDN-enabled device in the network might not be
always satisfied for several reasons. Having a management network connecting
among them an SDN controller and devices leads to interesting experiments,
like reactivity to failures in the network and which is the impact of those failures
on the communication among controllers and SDN-enabled devices in terms of
how much time the controller spends in producing a new data plane.

In this chapter, we present SDNetkit, an emulator built on top of the wi-
dely used Netkit network emulator [net17]. We enhanced Netkit by adding
SDN functionalities. More specifically, we added OpenFlow software that ma-
kes Netkit SDN-ready. With SDNetkit is possible to overcome the limitations
imposed by Mininet. In SDNekit it is possible to set up topologies in which
legacy and SDN-enabled devices coexist, that is not feasible with most used
simulation systems. Also, it is possible to simultaneously run the OpenFlow
protocol and standard routing protocols (e.g. by using Quagga) on the same
device. SDNetkit opens to the possibility of having SDN controllers and SDN-
enabled devices not directly connected, giving the opportunity to test both
interoperability and control network scenarios. To the best of our knowledge,
SDNetkit is the first freely available emulator providing such functionalities.
For the first release of SDNetkit, we provide basic software for SDN capabilities.
Essentially, with SDNetkit is possible to run OpenVSwitch instances to set up
OpenFlow devices and use the Ryu framework [ryul7]| as the controller. We
point out that this is just an initial choice. Indeed, there are no limitations in
adding other software to provide SDN/OpenFlow functionalities (e.g. it is pos-
sible to add other SDN frameworks for implementing custom controllers, other
SDN-enabled switch implementations, or general software for testing SDN).

The rest of the chapter is organized as follows. In Sec. 6.2 we review the
most relevant state of the art about network simulators and emulators for SDN
and OpenFlow, pointing out which are the differences among them and SD-
Netkit. In Sec. 4.3, we present basic concepts on Netkit, highlighting how we
improved it in order to create SDNetkit. We also briefly describe the SDNetkit
architecture. In Sec. 5.6 we show two use cases aiming at presenting scenarios
to test interoperability and network control, involving multiple providers si-
multaneously offering services in the network. In Sec. 4.5 we discuss issues we
experienced in setting up specific configurations for network control. Finally,
in Sec. 5.9 we report future improvements to SDNetkit we are interested in
pursuing.

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN

36 NETWORKS
’ Platform ‘ Type ‘ OpenFlow Support ‘
Mininet [LHM10] Centralized 1.0, 1.3
Mininet CE [AS13] Centralized 1.0, 1.3
Maxinet [WDS*14] Distributed 1.0, 1.3
Distributed Mininet [LO15] Distributed 1.0, 1.3
NS-3 [Jurl3] Centralized 1.0,1.31
Estinet [WCY13] Centralized 1.0, 1.3
MiniNExT [min17] Centralized 1.0, 1.3
Ofelia [ofel7] Remote testebed 1.0
ToMaTo [tom17] Remote testbed 1.0

Table 4.1: A comparison among simulation systems in terms of type (e.g.
centralized, distributed, or remote testbed) and supported OpenFlow versions.

4.2 Related Work

In this section, we review the most relevant state of the art with respect to SDN
and OpenFlow simulators and emulators, pointing out the differences among
them and SDNetkit.

Table 4.1 shows an overview of the available tools. We group them into
three categories: (1) centralized platforms, namely systems that run on a local
machine; (2) distributed platforms, namely systems that run on distributed en-
vironments (e.g. clusters); and (3) remote testbeds, namely physical networks
that offer to the users the possibility of experimenting SDN by providing vir-
tual overlay networks built on top of the physical infrastructure. In the rest
of the section we discuss each category, giving an overview of the simulation
systems.

Centralized Platforms - Mininet is the most used system allowing users
to experiment with SDN, more specifically OpenFlow, capable networks. It
uses a lightweight virtualization technique to create and manage OpenVSwitch
instances and provides an extensible CLI and API for rapid prototyping. Un-
fortunately, it does not provide any support for experimenting with interope-
rability scenarios, namely networks in which OpenFlow and standard routing
protocols (e.g. OSPF) simultaneously run.

MiniNExT is an extended version of Mininet which enables the possibility

L The support to OpenFlow 1.3 is carried out by a thirdy party module [ns317]

4.2. RELATED WORK 37

of experimenting networks also running traditional routing protocols. It intro-
duces the support for standard routing suite (e.g. Quagga). Unfortunately, the
system is not easily extensible and it is no longer supported.

Despite the name, Mininet CE (Cluster Edition) is a centralized system
allowing the creation of multiple Mininet instances over a single machine. These
tools have in charge the task of coordinating those instances in such a way that
they collaborate. As for Mininet, it does not allow network devices to run
traditional routing protocols.

NS-3 (Network Simulator) allows the users to run SDN networks with Direct
Code Execution (DCE) module. The tool just supports OpenFlow 1.0 speci-
fications. Additionally, it allows the network topologies to have interactions
with the real-time network components. A performance comparison of NS-3
with other tools like Mininet can be found in [IYZR16].

EstiNet is a network simulator and emulator which supports OpenFlow
based networks. It provides the capability of using well known controllers, like
NOX/POX or Floodlight. Those controllers run on a host which is created by
Estinet. As for Mininet, and all platform based on it, Estinet does not support
the usage of standard routing protocols. In addition, it is not freely available.

Distributed Platforms - Distributed Mininet [LO15] has been introduced
in order to support the Mininet execution over a distributed environment. The
basic idea of that system is to create several cooperating Mininet instances
and span them over a cluster of physical machines, for scalability purposes.
Nevertheless, it is able to just run OpenFlow devices.

MaxiNet [WDS14] is another extension of Mininet to span a large network
on several physical machines instead of using a single one. This feature gives
to MaxiNet the possibility of emulating networks with the size of a data center
with several thousands of the nodes and servers. The general idea behind
Maxinet is to create several workers which run the original Mininet. Then, by
exploiting a centralized API, the tool can have access to the clusters of Mininet
instances. A set of suitable APIs are provided for Maxinet to interconnect and
control the Mininet instances. This tool also inherits the limitations of Mininet
to experiment mixed scenarios.

Remote testbeds - Systems falling in this category are meant as services
offering overlay networks relying on a physical infrastructure. Examples are
OFELIA and ToMaTo. They offer the possibility of creating custom networks
in which OpenFlow devices run. The level of OpenFlow support of this platform
is poor (just OpenFlow 1.0 is supported) and they still have problems with
respect to interoperability.

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN
38 NETWORKS

With respect to every system discussed so far, SDNetkit aims at overcoming
those limitations, providing an emulator for experimenting interoperability and
network control scenarios, which are not feasible by using Mininet and systems
based on it. Also, emulating networks with SDNetkit is not more laborious
than experimenting with standard networks (e.g. in terms of effort required to
configure devices and set up the network itself), in contrast to what happens
with other tools (e.g. NS-3). In addition, SDNetkit is scalable and extensible,
in terms of software (e.g. standard tools or SDN software) that can be installed
inside that system. It also provides a simple interface to the final users allowing
them to easily create and run custom topologies.

4.3 From Netkit to SDNetkit

In this section, we give a brief overview about Netkit, showing its architecture
and presenting several basic concepts. Finally, we describe how Netkit has been
enriched in order to provide SDN functionalities, resulting in SDNetkit.

Netkit [netl7] is a network emulator allowing users to run complex net-
work topologies and to experiment the behavior of standard routing protocols
(e.g. OSPF). Netkit has two strengths: first, it does not require administrative
privileges to run. Second, it does not require many resources to be executed.

The emulation approach used by Netkit is very simple: every network device
is a virtual machine. Resources owned by each virtual machine are mapped
to portions of the corresponding resources on the host which Netkit is running
on. Each virtual machine is equipped with a disk, a memory, and one or
more virtual network interfaces. The virtual machine disk is a file in the host
machine, containing all software that can be executed inside the virtual machine
itself (e.g. routing protocols daemons). The memory is shared with the host
and it can be set independently for each virtual machine. Finally, the network
interfaces are connected among them exploiting virtual hubs. By using those
virtual hubs, each virtual machine is also able to access the Internet. The
network functionalities of each virtual machine depend on the software that is
running. That software can be run starting from the virtual file system that is
owned by each virtual machine. For instance, a device can act as a standard
switch whether standard ethernet bridge administration software is executed
(e.g. by using the brctl suite) or as a router by properly populating the IP
routing tables (e.g. by running routing protocols).

Netkit and SDNetkit share exactly the same architecture. Indeed, SDNetkit
has been built on top of Netkit by adding SDN software to the virtual file system

4.3. FROM NETKIT TO SDNETKIT 39

SDNetkit
() Virtual file system
. Other Processes
§ Routing software (e.g. bind)
:‘15 Scripts e .
= . .
- . SDN software (e.g. Openvswitch and Ryu
§ : framework) !
vtools
User-Mode Linux
A J
Host kernel

Figure 4.1: Overview of the SDNetkit architecture.

of each virtual machine. In the rest of the section we focus on the description of
the SDNetkit architecture. The SDNetkit architecture is depicted in Fig. 4.1.
SDNetkit, represented by the dotted square in the figure, runs on top of the
host kernel by exploiting User-Mode Linux (UML) [uml17], a software allowing
a kernel to run as an userspace process. Each SDNetkit virtual machine has
its own virtual file system containing all software that can be executed in the
virtual machine itself. Examples of software are routing protocols suite (e.g.
Quagga) and software for specific purposes (e.g. BIND for DNS functionalities).
The interaction between users and SDNetkit is made by a collection of scripts
(vtools and 1ltools in the picture) that allow a user to run a single virtual
machine or more cooperating virtual machines, respectively. In the SDNetkit
terminology, a lab is a network composed of many virtual machines connected
among them. A lab is described by a folder containing a configuration file in
which the user specifies how virtual machines are connected to each other. In
that file it is possible to tune specific parameters for each virtual machine (e.g.
the amount of memory). Also, for each virtual machine, there is a startup file
containing specific configurations (e.g. network interface configurations) and
a folder containing configurations used by software running inside the virtual
machine itself (e.g. Quagga configuration files).

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN
40 NETWORKS

In order to introduce SDN functionalities in Netkit, we equipped it with
ad-hoc software. More specifically, we added the support to the OpenFlow
protocol, the most used protocol enabling SDN capabilities, by including in
the virtual file system OpenVSwitch as the OpenFlow-enabled switch and the
Ryu framework as SDN controller. SDNetkit now supports up to OpenFlow
version 1.3 [Opeld]. We point out that other SDN software can be added to
Netkit without any restrictions, by simply adding it to the virtual file system.
It can be selectively done on each virtual machine or by building a new file
system that is used as starting file system during the boot phase of each virtual
machine. For example, we can simply upgrade the OpenFlow version from
1.3 to one of the latest versions like 1.5. More detailed information can be
found here [net17]. Such an architecture guarantees that SDN software can run
together with standard one on each virtual machine. This opens the possibility
to test scenarios in which standard devices running standard protocols (e.g.
OSPF) can interact with OpenFlow switches running OpenVSwitch instances.
Also, by using SDNetkit it is possible to simultaneously run those software on
the same device. To the best of our knowledge, SDNetkit is the first emulator
enabling such an interoperability mode.

4.4 A Simple Example and Success Stories

In this section, we present two use cases, in order to show how mixed scenarios
can be realized and tested. The first use case shows how OpenFlow and OSPF
simultaneously run on the same device. We call such a use case Hybrid node.
The second aims at presenting a network in which OpenFlow nodes interact
with standard ones. We name such a use case Hybrid topology.

Hybrid Node Use Case

The hybrid node use case is implemented by using a simple topology in which
at least one device simultaneously runs both OpenFlow and a standard routing
protocol. We chose to run OSPF as routing protocol on the hybrid node. We
point out that other routing protocols (e.g. RIP) can be executed without any
restrictions. The reference topology is depicted in Fig. 4.2.

Controller is an SDNetkit virtual machine running an instance of the Ryu
framework. The goal of such a machine is to correctly manage the hybrid node.
Routers R1 and R2 are IP-speaking nodes running OSPF. The role of those
devices is to show that it is possible to handle OpenFlow devices by using a

4.4. A SIMPLE EXAMPLE AND SUCCESS STORIES 41
Quagga H2

9 ==

OpenFlow

o — (—— o]
Controller H1

Figure 4.2: Topology for the Hybrid node. S1 is the device in which OpenFlow
and OSPF simultaneously run.

dedicated management network, in contrast to what happens in Mininet, where
this scenario cannot be carried out. H1 and H2 are virtual machines acting as
standard hosts. S1 is the hybrid node and arrows in the figure summarize
which protocol runs on which network interface for that node. On that virtual
machine, both OpenVSwitch and Quagga, more specifically OSPF, are running.
The S1’s virtual network interfaces connecting it to the two hosts are OpenFlow
ports, namely they have been assigned to the OpenVSwitch software process
by using the ovs-vsctl suite, whereas the port connecting S1 to R2 has been
assigned to the Quagga routing protocol suite by writing specific statements in
the OSPF configuration file.

We set up an SDNetkit lab implementing this topology and run it in order
to check whether Controller and S1 properly communicate. To do that, we wrote
a very simple piece of software on top the Ryu framework showing information
about the hybrid node once it successfully performed the handshake with the
controller. We observed that both Controller and S1 can communicate. After
that, we added to our Ryu-based software a piece of software aiming at in-
structing S1 to send to Controller machine all ARP traffic. We verified that the
OpenFlow message carrying such a rule, i.e., the rule to send all ARP traffic
to Controller, reaches S1 and it is correctly installed in its flow table. Once this
check passed, we perform a ping from H1 to H2 and we verified that all ARP
requests issued by H1 matched the rule previously installed on S1 and they

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN
42 NETWORKS

finally reached the Controller.

With this very simple use case, we showed that by using SDNetkit it is
possible to create dedicated management networks and those networks can be
arbitrarily complex.

Hybrid Topology Use Case

The hybrid topology use case is implemented starting from the reference sce-
nario we used in [MLBT17a] and it is depicted in Fig. 4.3. In that topology,
there are three different domains, ISP1, ISP2, and ISP3, each running its rou-
ting protocols. In this case, there are no hybrid nodes: each device runs either
OpenFlow protocol or legacy routing protocols, like OSPF. The goal of this use
case is to show how pure OpenFlow devices interoperate with IP-speaking ones.
To accomplish this task, we performed a test in which H1 issued a DNS request
in order to resolve the H2’s domain name. With this example, we are able
to validate the interoperability among OpenFlow-enabled and legacy devices,
verifying whether the name resolution is successfully carried out.

Such a scenario is more complex with respect to the hybrid node one. Rou-
ters from R1 to R9 are IP-speaking devices running OSPF. Since such a scenario
is multi-domain, routers R4, R5, and R6 also run an instance of the Border Gate-
way Protocol (BGP) in order to establish BGP peering among them. Switches
S1 and S2 are pure OpenFlow-enabled devices, namely, on those virtual ma-
chines an instance of OpenVSwitch is running. Each of them is handled by
a controller that is directly connected to the switch. We remark that even if
this is not a reasonable assumption (in general such a back-to-back connection
might not be set up in production networks), we showed in the previous use
case that they can communicate by using an arbitrarily complex management
network.

We placed a set of name servers in the network, realizing a DNS hierarchy.
In particular, there is a root name server in the domain ISP3, as well as an
authoritative name server for the domain which ISP1 and ISP2 belong to. We
assume that this name server is authority for .it. Other name servers are
ISP1-NS and ISP2-NS that are authority for ISP1 and ISP2, respectively. Finally,
there are two customers, Customerl and Customer2, that are connected to ISP1
and ISP2 respectively. Each of them has its own public IP subnet and comes
with a local name server (NS1 for Customerl and NS2 for Customer2). All traffic
issued by those customers pass through the OpenFlow-enabled switches S1 and
S2. By doing so, we are able to carry out our experiments. We recall that in
this use case, we focus on DNS traffic.

4.4. A SIMPLE EXAMPLE AND SUCCESS STORIES 43

Authoritative
Name Server

T

ISP1-NS

ISP2-NS

Controller ISP1 Controller ISP2

Customer 1
100.0.0.0/16

Customer 2
200.0.0.0/16

4=

NS1 H1 H2 NS2

Figure 4.3: Topology for the Hybrid topology. S1 and S2 are pure OpenFlow-
enabled switches, whereas all other devices are IP-speaking nodes.

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN
44 NETWORKS

First of all, we wrote an SDN controller that is able to properly handle:
(1) ARP traffic; (2) ICMP traffic; and (3) DNS traffic. We need to handle
ARP traffic since the interfaces of S1, as well as those of S2, are on two dif-
ferent collision domains, namely each of them has an IP address belonging to
different subnets. Hence, we need to intercept all ARP traffic coming from R1
and produce suitable ARP request towards R2. Basically, our SDN control-
ler instructs S1 to act as a standard router. Obviously, the same happens for
S2. To accomplish such an operational mode, we install on S1’s flow table a
rule to send all ARP traffic to the SDN controller. Once that traffic reaches
the controller, it properly reacts by producing suitable ARP packets and it
sends them to the OpenFlow-enabled device using specific OpenFlow messages
(e.g. PacketOut). We successfully verified that ARP traffic has been handled
according to what we expected.

In order to handle DNS packets, our controller simply installs a pair of
rules to allow traffic coming from and directed to Customerl to be forwarded to
the next router on the path (R2 and R1, respectively). To issue DNS packets,
we executed standard commands for DNS lookup, like dig (with the option
+trace in order to verify the interactions between all name servers in the
network) and host. We checked that the rules have been correctly installed on
the OpenFlow-enabled devices and they have been matched by DNS packets
issued by H1.

Finally, we performed an experiment in order to verify whether ICMP traffic
is correctly managed. Our controller installs a pair of rules in the S1’s flow
table in order to forward traffic generated from and directed to Customerl.
Our controller does the same on S2 to forward Customer2 traffic. After that,
we executed a ping from H1 towards H2 (and vice-versa) and we verified that
ICMP traffic has been correctly forwarded.

With this use case, we showed that SDNetkit is able to run topologies in
which pure OpenFlow devices cooperate with standard ones. SDNetkit also
allows users to create topologies that are arbitrarily complex: the topology we
used in this chapter is just an example aiming at showing that having such
an interoperability feature is feasible. On the other hand, we used a very
simple controller with respect to that used in [MLB*17a]. SDNetkit does not
introduce any limitations in terms of what a controller can do: it is possible to
implement SDN controllers that are complex at will.

4.5. CONFIGURATION CONSIDERATIONS 45

4.5 Configuration Considerations

In this section we report a collection of experienced issues in producing specific
configurations, aiming at providing a more complete view of what SDNetkit
allows users to do. Surely, having the possibility to use a dedicate management
network, as shown in Sec. 5.6, is a plus to experiment with SDN testbeds.
The best solution might be to use the same network interfaces of a virtual
device to forward both control (e.g. OpenFlow messages) and standard traffic
(e.g. packets exchanged between source and destination). We tried to do
that, unfortunately experiencing several problems that we summarize in the
following. We argue that the issues which we dealt with cannot be directly
ascribed to SDNetkit.

We refer to the topology depicted in Fig. 4.4 in order to achieve the goal of
using the same network interfaces of a device to forward both traffic generated
by end hosts and traffic generated by protocols running on the devices (e.g.
OpenFlow, OSPF, BGP, ...). Arrows in the figure show a summary of how
network interfaces are assigned to Quagga and/or OpenVSwitch processes for
this scenario. We now explain the details of such choices.

In that network, R1, R2, and R3 are hybrid nodes. H1 and H2 are hosts
and Controller is the SDN controller. The network interface connecting R1 with
Controller has been assigned to Quagga process. OSPF is running on that
interface. On the other hand, the network interface of R2 connecting it to H1,
as well as the network interface connecting R3 and H2, have been assigned to the
OpenVSwitch process. Since we are exploiting the same network for different
types of traffic, each router runs both OSPF and OpenFlow. Differently from
the use cases reported in Sec. 5.6, in this use case some network interfaces
of a device are simultaneously assigned to different processes. The network
interfaces of each hybrid node connecting it with each other have been assigned
to both Quagga and OpenVSwitch processes, since OSPF is used to compute
a routing allowing each hybrid node to reach the controller and OpenFlow
is used to install rules on the network devices in order to forward standard
traffic. Those configurations are possible and have been accomplished without
any problems.

Then, we have to configure routers so that they can interact with the con-
troller. The first step consists in allowing the OSPF packets to reach each
router in order to compute a routing that is used to forward OpenFlow messa-
ges. To allow that traffic to traverse OpenFlow-enabled devices, a set of rules
must be pre-installed on them. Those rules are statically installed, since they
are used to allow each OpenFlow-enabled device to reach the SDN controller.

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN
46 NETWORKS

Controller

OSPF +

R2

OpenFlow

(—— o (—— o
H1 H2

Figure 4.4: Topology used to experiment a single network for forwarding both
control and standard traffic.

4.6. LIMITATIONS OF NETWORK EMULATORS 47

By doing so, it is not convenient to determine which is the network interface
to use to send out such a traffic, since in case of a failure there are no routing
protocols being able to compute a new routing and to automatically change
the value of the out port in the OpenFlow rule. OpenFlow provides a suita-
ble action to accomplish this task: the NORMAL action, that we used for this
purpose. The semantics of this action is to handle all traffic matched by the
rule using the standard protocol stack. However, since OpenVSwitch is a layer
2 switch with OpenFlow capabilities, what we observed is that the traffic is
sent broadcast on every network interface, that is the usual operational mode
of a switch. This is an undesirable behavior for our goal. Indeed, we expected
that the traffic was processed by Quagga in order to allow OpenFlow messages
to reach the SDN controller. Such a behavior results in the impossibility for
OpenFlow devices that are not directly connected to the controller to establish
a connection with the controller itself.

We also faced with another problem, that is a direct effect of the previous
one. The control channel of an OpenFlow-enabled is managed by the controller
and if an OpenFlow-enabled device is not able to reach the controller, we
cannot install any rule on the device. However, the OpenFlow-enabled device
can handle the flows based on the installed rules. We became aware of such
an issue by performing the following experiment. We manually installed on R2
and R3 rules (by using the ovs-ofctl command) to handle traffic generated
by the hosts. More specifically, those rules matched ARP and ICMP traffic,
forwarding those packets on suitable output ports. We observed that those
rules have never been matched.

We believe that OpenVSwitch is not suitable to realize such a use case. We
also argue that replacing it with an implementation that also supports layer 3
capabilities (e.g. OSHI [SVL"16]) might be enough to set up such a scenario.

Consider that the limitations we put in evidence can be easily overcame by
configuring a pair of VLANs on each of the connection between routers and
by using one VLAN for the control traffic and the other VLAN for standard
traffic.

4.6 Limitations of Network Emulators

Since SDNetkit is a network emulator it comes with some performance limita-
tions. SDNetkit runs on a single machine and like other tools it comes with
some limitations. The limitations of network emulator can be described as fol-
lows [Ram13, AOC™10]. 1) The reliability of the results is difficult to validate

CHAPTER 4. EXPERIMENTING SDN IN INTER-DOMAIN
48 NETWORKS

because it depends on several factors. The results of network emulators can
be useful if they are comparable with the results of a real network. 2) The
scalability of an emulator relies on at least two factors; the computation time
and the memory usage. Each component of an emulated network requires me-
mory space which is bounded with the available memory of the system. The
execution time of each event depends on the processing power of the system
and can vary.

4.7 Conclusions and Future Work

We present SDNetkit, a network emulator with SDN capabilities built on top
of Netkit. We show several use cases discussing scenarios also involving multi-
domain networks, like interoperability and network control, that cannot be
realized with current systems for experimenting with SDN technologies. We
also discuss specific configuration settings, pointing out issues that prevent us to
test other scenarios. Also, by using SDNetkit is possible to run any application
on every virtual machine, opening to the possibility of running scenarios that
are application software oriented.

As future research direction, we plan to create more use cases, aiming at
carrying out interesting interoperability scenarios for multi-domain networks.
Moreover, we intend to further enhance SDNekit, by adding new SDN software
that can be used to overcome the limitations we dealt with, since it also gua-
rantees the interaction with the application level, as shown in Sec. 5.6. We are
also planning to release a container-based version of SDNetkit.

Chapter 5

Multi-Provider VPNs in
Software-Defined Federated
Networks™

Federated networks represent a remunerable operational way allowing federated
partners to increase their incomes through a sharing resource process. They
have been primarily used in the context of cloud computing; nowadays they
are also used to provide connectivity services, like Virtual Private Networks.
However, providing such a service by using standard technologies in federated
networks requires a non negligible effort from different points of view (e.g.
configuration effort).

In this chapter we propose an SDN-based framework aiming at overcoming
limitations in currently adopted best practices to issue Virtual Private Net-
works in federated networks. Relying on the SDN architecture, we propose
a method allowing federated providers to quickly and easily create federated
networks, reducing unneeded costs (e.g. new hardware), as well as a way for
customers to fast access federated services, without any explicit actions from
providers. We evaluate our framework by using SDNetkit [ML*17]. We focus

*Part of contexts in this chapter is based on the following publication: Mostafaei, H.,
Lospoto G., di Lallo R., Rimondini M., Di Battista G., Sdns: Exploiting sdn and the dns
to exchange traffic in a federated network. In Network Softwarization (NetSoft), 2017 TEEE
Conference on, pages 1-5. TEEE, 2017. and another part is on the following publiction:
Mostafaei, H., Lospoto G., di Lallo R., Rimondini M., Di Battista G., A Framework for
Multi-Provider Virtual Private Networks in Software-Defined Federated Networks, under
review.

49

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
50 FEDERATED NETWORKS

on analyzing the impact of our implementation on both control and data plane,
in terms of number of control messages exchanged in the network and size of
the forwarding tables, respectively.

5.1 Introduction

Federated networks represent a collaborative operational way for Internet Ser-
vice Providers (ISPs) to increase revenues by sharing resources [GGT10]. A
federated network can be defined as a network in which federated partners
or members (e.g. ISPs) share their own resources with any other federated
member in order to satisfy growing demands from customers or possibly issue
value-added services (e.g. services that could not be provisioned without the
federated network itself).

One of the most relevant benefits of such a network is the increase of pro-
viders’ incomes. On the other hand, there are critical steps that must be
carried out in order to join a federated network, like identifying and defining
cost models, and agreeing on standard operational tasks (e.g. monitoring).
Those examples are just a short list of needed steps, but they give the idea
that creating a federated network is not so trivial. At the beginning, federated
networks were defined to operate in the context of cloud computing. Neverthe-
less, the promising benefits brought by them encouraged ISPs to provide other
services. During the years, several projects arose, like GEANT [geal7a] and
Beacon [beal7], with different aims while sharing the same idea of federation.

After discussing with several Italian ISPs, we asked ourselves whether the
benefits of federated networks could be exploited to issue other services (e.g.
connectivity). One of the most used connectivity service in today’s networks
are Virtual Private Networks [RR06] (VPNs). Issuing that service in a network
directly managed by a single ISP is not trivial, since many protocols must
cooperate in order to set up a VPN. Also, the provisioning of that service
is expensive at least in terms of time. As a consequence, it is even more
challenging to span a VPN over two or more networks, that are managed by
different ISPs by definition of federated network. Actually, such a service is
provisioned in a federated fashion by GEANT [geal7b]. One of the strong
points they specify in describing their VPN service is the ability to quickly
delwver it: 7’5 days are needed”. Thus, our question is: Is there a way to reduce
such a provisioning time?

In this chapter we propose a framework allowing federated ISPs to quickly
and easily: 1) create a federated network; 2) set up a VPN service; and 3) allow

5.1. INTRODUCTION o1

customers to join or leave from the service autonomously, namely without any
direct actions (e.g. configuration activity) performed by the ISPs. We define
such a service federated VPN, namely a VPN allowing customers connected to
different federated ISPs’ networks, but in the same VPN, to exchange traffic
with each other. Qur framework relies on SDN and is built on top of [{LRB16]
and [MLB*17a].

In [dLRB16], we propose several mechanisms to support SDN-based end-to-
end connectivity in federated networks by means of source and destination IP
addresses translation. In that chapter, we also introduce the operations that
the SDN-controllers have to carry out in order to keep the customer information
updated. In [MLB"17a], we illustrate how the SDN-controllers interact with
the DNS and show how this interaction enables the SDN-controller to get infor-
mation about the IP addresses that are replaced by applying the mechanisms
described in [dLRB16].

The main contributions of this chapter can be summarized in: 1) drastically
reducing the time needed to provision the federated VPNs and 2) relying on the
SDN architecture to set up the federated network and to provide the federated
services.

We reach those goals by providing a configuration language that allows each
federated ISP to easily define federated networks as well as quickly configure
and provision federated VPNs. We provide a set of primitives that allow cu-
stomers to join or leave from federated VPNs on-demand, thus reducing both
explicit configuration actions of the ISPs and the time required to set up or
down the federated VPNs. Also, in order to allow ISPs to keep unchanged
their whole network architecture, we introduce in the network the smallest
number of SDN-enabled devices. Finally, we exploit the SDN architecture to
interact with the application level (e.g. the DNS system), allowing each ISP
to keep unchanged any IP address plan previously assigned to its customers.
The interaction with the DNS is crucial. Indeed, inside a federated network,
there are no guarantees about the fact that the IP addresses of each customer
participating to a VPN do not overlap. Since this requirement is mandatory,
such an interaction allows providers to not change the IP address plan of the
customers.

Our framework does not have any significant impacts on the ISPs’ networks.
Indeed, it is completely agnostic with respect to any forwarding strategy adop-
ted by the ISP (e.g. IP or MPLS). Also, our framework does not have any
impact over any existing configuration: federated VPNs built exploiting our
framework coexist with standard VPN set up by using legacy technologies. A
customer can be simultaneously served by a federated VPN and a standard one

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
52 FEDERATED NETWORKS

without any limitations. We claim that a strong add-value of our framework is
the following: customers sharing the same IP address plan can be part of the
same federated VPNs, without any limitation. In the evaluation, we focus on
two coordinates: control- and data-plane impact. Our experiments show that
the number of control plane messages linearly grow with respect to the number
of DNS queries in the network, regardless of the amount of traffic injected in
the network. On the other hand, the impact on the data-plane, measured in
terms of SDN rules installed at the SDN-enabled devices linearly depend on
the number of customers per ISPs that join the federation.

The rest of the chapter is organized as follows. In Sec. 6.2 we review the
state of the art. In Sec. 5.3 we discuss today’s best practices for federated net-
works. In Sec. 5.4 we show our framework and how it can be used to tackle the
most common problems in today’s federated networks. In Sec. 5.5 we present
our configuration language and our primitives, explaining how they allow a fast
delivery of the service. In Sec. 5.6 we show a complete example, detailing the
interaction between SDN and the DNS. In Sec. 5.7 we summarize the benefits
of our framework. In Sec. 6.9 we discuss the results of our experiments. Finally,
in Sec. 5.9 we draw conclusions and future research perspectives.

5.2 Related Work

In this section, we review the most relevant literature proposing SDN as the
architecture to support the provisioning of federated services in federated net-
works. Also, we compare with proposals to set up VPNs over different ISP’s
networks.

Federated networks are widely used for cloud computing [cfl12, GGT10,
KGK15]. Over the years, several aspects have been addressed, starting from
analyzing architectures for federated networks. In [cfl12] authors present a
layered architecture in order to provide cloud services (IaaS, PaaS, and SaaS).
Such services are provisioned exploiting a collaboration among providers that
share their resources, aiming at increasing their incomes.

Providers are interested in federating and providing services in a federated
manner because the business model behind such a collaborative network pro-
mises costs reduction and remuneration increase. In [GGT10], authors discuss
models to guarantee specific levels of remuneration for federated cloud services.
Also, toolkits for modeling and simulating cloud services have been discussed
in [CRB'11]. Attempts of using SDN to issue federated cloud services have
been made, as reported in [KGK15], where authors propose an architecture in

5.2. RELATED WORK 93

which a software agent handles shared resources used to issue the cloud service.
Meantime, several research projects, like GEANT [geal7a] and Beacon [beal7],
arose. They build federated networks in which federated services (e.g. VPNs)
are issued by sharing resources owned by each federated ISP, investigating the
potential of such a model in terms of performance and costs effectiveness.

We argue that other services (e.g. connectivity) beyond cloud computing
can take advantages from the federated network model. Indeed, the GEANT
network also offers federated VPN services [geal7b] to its customers. In order
to provide such a service, they rely on VLANSs to cross multiple ISP’s networks.
As they admit, the provision of a VPN in their network requires a non-negligible
amount of time (order of days). In [SF14] authors propose a mechanism based
on the LISP protocol [FFML13] to span a VPN in a multi-provider network.
The main drawback is that each ISP must adopt LISP.

All the proposals that rely on standard technologies either require a non-
negligible amount of time to make the federated services available to the users or
impose assumptions that are not applicable in real networks. In both cases, the
provisioning is highly impacted. In contrast, our framework aims at simplifying
the provisioning of the federated services, demanding to the SDN-controllers
the management of all the aspects related to the federation. Thus, both the
configuration effort and the amount of time to set up the federated services are
reduced.

We believe that the SDN architecture is a key component in dealing with
current challenges for federated networks [FBP110] and for providing new ser-
vices. In [dLRB16] we proposed a mechanism based on SDN to support end-to-
end connectivity spanning several ISP’s networks and in [MLB™17a] we built on
top of that paper a mechanism based on the DNS to simplify the communica-
tion among end-hosts. In this chapter, we extend [ILRB16] and [MLB*17a] by
providing a framework to easily subscribe to federated VPN services, avoiding
delays introduced by provisioning issues. Unfortunately, federated networks
still have to deal with challenges [FBP*10] that make the provisioning of fede-
rated services difficult and costly, both in terms of money and human resources.
Relying on SDN, we address those challenges, proposing a framework that is a
first, but complete step, addressing the today’s federated network issues.

With respect to the application of SDN to the interdomain routing, Soft-
ware Defined eXchange point (SDX) [GVST15] represents the first and the
most significant proposal in that direction. SDX introduces SDN in the layer 2
switching fabric allowing the interconnection among the members of the Inter-
net eXchange Point (IXP). To overcome some specific limitations, an industrial
version of SDX has been also proposed [GMBT16]. To further improve the sca-

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
54 FEDERATED NETWORKS

lability, Endeavour [ACC™17] proposes a specific architecture for the layer 2
fabric switch network of the IXPs. In Software Defined Inter-domain routing
(SDI) [WBL*16], the authors propose a new SDN-based protocol in order to
improve several aspects (e.g. multipath interdomain routing). Nevertheless,
our framework does not impose specific IXPs’ architecture, since we consider
IXPs as interconnection points, regardless specific technologies.

5.3 Best Practices for Federated Networks

In this section, relying on the GEANT project [geal7a], we describe the typical
architecture and the best practices adopted to create a federated network.

The main idea behind the GEANT federated network is what they call fe-
derated PoP [PGPT]. A federated PoP is a physical place in which all ISPs
involved in a federation connect to each other. In general, establishing a fe-
derated PoP needs many steps, consisting of different activities. For instance,
there is the need of establishing connectivity (e.g. by using dark fiber), as well
as overcoming technical difficulties (e.g. due to different physical layer techno-
logies). Other steps regard the need of installing and using new hardware
(e.g. switches) that will be used by each ISP to connect to each other and
all equipments to monitor the services issued by the federation. The network
hardware in a federated PoP can be either hardware owned by the provider
itself or shared hardware owned by the federation. It is easy to note that the
federated PoP architecture strictly recall that of any Internet eXchange Point
(IXP), where providers are interconnected in order to allow their customers to
exchange traffic.

Surely, federated PoPs allow each ISP to clearly identify a specific way to
join a federated network, as well as to isolate the federated network traffic from
the standard one; on the other hand, a federated PoP introduces costs for both
installing and maintaining (also including configuration effort) the devices used
in that place. Moreover, a non trivial agreement process has to be carried out
in order to clearly define operations and responsibilities among federated ISPs
in the federated PoP. Once a provider connects to a federated PoP and agrees
on the policies, it can start to share resources with other providers and to
issue services. Even if this model has been recognized to become the standard
architecture for federated networks, it also introduces challenges [FBP*10],
like: 1) management, namely the need of collaboration in standard network
operations, like configuration, troubleshooting, and monitoring; 2) technological
differences, namely the lack of well defined standards could originate problems

5.4. SDN-BASED FEDERATED NETWORKS 39

due to different ways to realize the forward traffic at physical layer; and 3) user
view, namely the absence of a common interface clearly describing how to access
federated services, hiding the collaboration among providers to the final users.

We argue that the aforementioned challenges involve not only technological
aspects. On one hand, coordination activities must be carried out in order to
plan the architecture (e.g. protocols or components needed to issue services).
On the other hand, identifying responsibilities inside the federation itself and
agreeing on costs (e.g. federated service prices and the level of remuneration
for each provider, possibly based on the resources it shares in the federation) is
a task that needs to be accomplished by non-technical staff inside the provider.
This observation might have a strong impact especially when a new service is
issued for the first time.

Our framework relies on an architecture proposing several mechanisms that
solve those problems, making the creation of a federated network, as well as
the subscription to and the provisioning of the federated VPN service straight-
forward and easy. We argue that avoiding the need of having federated PoPs
allows ISPs to reduce the amount of time spent in coordination activities as
well as technological and management issues. Also, several costs can be re-
duced. Indeed, being present in a PoP represents a cost, often recurrent, for
the provider. Examples of those costs are equipment (e.g. switches), network
infrastructures (e.g. fibers, possibly considering multiple physical circuits for
the interconnection), and housing (e.g. rent of space in the rack for the net-
work devices). On the other hand, a provider has to consider costs for the
SDN-enabled devices, if its devices are not SDN-enabled.

5.4 SDN-based Federated Networks

In this section, we present a SDN-based framework dealing with the main
problems related to the implementation of federated networks. By relying on
the SDN architecture, we argue that our solution is able to address all challenges
reported in Sec. 5.3 (and discussed in |[FBP10]), namely: 1) management
problems; 2) technological differences problems; and 3) absence of a unified
user view.

Of course, Internet can be perceived as the biggest federated network, since
providers collaborate with each other in order to provide services to their cu-
stomers. However, such a collaboration is not based on resource sharing, ma-
king Internet different from federated networks built on top of that concept.
Also, through the adoption of federated networks, providers are able to issue

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
56 FEDERATED NETWORKS

value-added services, like VPNs spanned over two or more ISPs’ networks. Ne-
vertheless, federated networks based on traditional technologies lead to many
challenges [FBP*10].

We choose to rely on the SDN architecture since it brings flexibility in
issuing services and it makes the provisioning phase easier. Such a choice
allows us to overcome the challenges in current federated networks architecture.
Indeed, we identify one main problem in the architecture described in Sec. 5.3,
namely the federated PoP. On one hand, such an interconnection point brings
several benefits (e.g. clear identification of a place in which providers can
federate and clear responsibilities assignment to each federated provider). On
the other hand, federated PoPs are duplicates of IXPs, requiring further effort
for ISPs in terms of expenses and configurations (e.g. buying and managing
devices used in the federated PoP). We argue that having a BGP session with
an ISP or being connected to an IXP is enough to create a federation and this
requirement is easily satisfied by ISPs. Also, each ISP can be connected to
several IXPs simultaneously as well as it can have multiple bilateral peerings
with no restrictions.

Our framework relies on this observation. By doing so, we preserve all the

benefits of a federated PoP (e.g. clear identification of responsibilities) and
save addictive costs due to new hardware. Removing the idea of having a
federated PoP, combined with the centralized approach offered by SDN, allows
us to address and solve the aforementioned challenges. Before going in deep,
we present a reference scenario.
Reference Scenario - A reference scenario for our framework is depicted in
Fig. 5.1. We assume that each partner of the federated network is an Internet
Service Provider (ISP) offering connectivity to a set of customers. The federa-
ted network of Fig. 5.1(a) has exactly three partners whose networks are called
ISP1, ISP2; and ISP3, respectively. Such networks run IP-based routing proto-
cols inside their backbones (e.g. OSPF for intra-domain routing and BGP for
inter-domain routing). Routers R1, R2, and R3 are border routers establishing
a BGP peering as in traditional networks not involving federations.

More generally, a federated network can have several partners. We assume
that each of them has a border router peering with the border routers of the
other partners. As we already said in this section, Internet eXchange Points
(IXPs) are a natural place for establishing such peerings, therefore IXPs are
convenient premises for setting federated networks. We represent the IXP
connecting the federated ISPs through a dashed circle with a light grey back-
ground. In the IXP, we assume — without loss of generality — that all ISPs are
connected through a legacy (no-SDN) layer 2 switch S. Exploiting the IXP

5.4. SDN-BASED FEDERATED NETWORKS o7

—
LﬁAuthority 1 (HRoot Name
| Name Server 1 Server

Internet

Customer 3

(a) Overview of a federated network including three ISPs connected through an IXP
allowing them to exchange traffic to each other and to access Internet.

ISP1 ispl.it

Authority 100.0.0.0/8
Name Server
for ispt.it

ﬁ@Controller ISP1
o ——cnt.ispl.it

| Local Name Server
for Customer 1 (NS1)

| nsi.clispl.it

Dm Customer1
10.0.01 cLispl.it

=
10.0.0.0/16

(c) A detalied view of the internal architecture of a customer.

Figure 5.1: Reference scenario for SDNS.

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
98 FEDERATED NETWORKS

itself, each ISP can also reach Internet. We assume that somewhere in Internet
there are (at least) two name servers: 1) a root and 2) an authoritative name
server for the ISPs’ domains.

Routers PE1, PE2 and PE3 are Provider Edges (PEs) and collect the traf-
fic coming from the customers attached to the IPS’s network. Each ISP in
Fig. 5.1(a) has one customer (Customerl, Customer2 and Customer3, respecti-
vely). Each customer is connected to the ISP’s network through an IP-speaking
router acting as a Customer Premise Equipment (CPE); those devices are CPE1
for Customerl, CPE2 for Customer2, and CPE3 for Customer3. Each of those
routers is, in turn, connected to an SDN-enabled device, more specifically an
OpenFlow-enabled switch (OF1 for Customerl, OF2 for Customer2, and OF3
for Customer3); placing such devices between the CPEs with the PEs allows us
to take the control of all traffic generated by each customer.

Figs. 5.1(b) and 5.1(c) depict the internal architecture of an ISP and of
a customer, respectively. Referring to Fig. 5.1(b), each ISP has a public IP
subnet used to allow the communication over the Internet and it has a public
domain name (ispl.it for ISP1). The same happens for ISP2 and ISP3, even if
we do not report in this chapter a specific drawing. Inside each ISP’s network,
there is an SDN-controller (cnt.ispl.it) having in charge the management of
each SDN-enabled device. We assume that each ISP belonging to the federated
network has an SDN-controller in order to provide the service. Even for SDN-
controllers, the same happens for ISP2 and ISP3.

With respect to the internal architecture of a customer (Fig. 5.1(c)), we
assume that it has a private IP address subnet used for internal purposes.
Also, there is a local name server (NS1 with domain name nsl.cl.ispl.it). The
same happens for Customer2 and Customer3, even for the internal IP address
subnets: indeed, we allow communication among end-hosts possibly sharing
exactly the same IP address. The local name servers might be placed in a
publicly accessible portion of the network. If this is the choice, each machine
inside the customer must be re-configured pointing to such an external device.
Leaving the local name servers inside the local networks, there is no need of
this extra effort. Also, placing those servers behind the SDN-enabled switch
allows us to take the control over the DNS traffic generated by the customers.

Referring to Fig. 5.1, when H1 (residing in Customerl) wants to exchange
traffic with H2 (residing in Customer2), we say that those customers join a
federated VPN allowing them to send traffic each other. This operation is
steered by the SDN-controllers of each federated ISP, that undertake specific
operations in order to set up the federated VPN. Note that by using standard
technologies (e.g. Layer 3 [RR06] or Layer 2 VPNs [KRO07]), this service cannot

5.4. SDN-BASED FEDERATED NETWORKS 99

be provided, since IP addresses overlap is forbidden. Note that Customerl can
be part of any other VPN provided by ISP1 using standard technologies, as
for example MPLS VPN. Also, each ISP can still provide services that are not
SDN-based without any restrictions.

In the rest of the section, we address one by one problems reported in [FBP*10]

and related to management, technological differences, and unified user view,
explaining how we address each of them and which solutions our framework
implements.
Management Problems — Management problems happen when common
network operations, such as monitoring activities, have to be carried out.
Such operations need a strong coordination among members of the federated
PoPs [FBP*10] and agreeing to reach that goal might not be a trivial process.
It is easy to see that if the federated network is built exploiting a federated PoP,
those activities might involve working teams belonging to different providers.
Also, systems used to carry out such activities should include the policies of
all federated members, leading in an increase of complexity.

Our framework does not introduce any further connection point, except the

IXP which each provider is already connected to. By doing so, each federated
ISP carries out performance and monitoring activities independently by each
other federated provider, reducing both hardware and human resources costs.
In addition, as all customers are forced to send traffic passing through SDN-
enabled devices (as shown in Fig. 5.1), tracking the traffic belonging to the
services provided by the federation is also easy. This is not the only benefit
that our framework brings. Indeed, each provider is able to autonomously
accomplish the task related to the recognition of responsibilities, since there
are not shared interconnection points (e.g. federated PoPs) and each federated
ISP only manages its own network, keeping costs unchanged.
Technological Difference Problems — Technological problems arise when
ISPs adopt different protocols to interconnect each other [FBP+10]. A preli-
minary step consists in agreeing on shared choices (e.g. in terms of routing
protocols), allowing each ISP to interconnect to each other. Unfortunately,
there is no a standard interface to access a federated network [FBP*10], re-
sulting in a complication when a service has to be issued.

Our framework does not impose such constraints, since each federated ISP
comes with its own infrastructure that is completely independent from each
other, allowing providers to choose protocols to use in their network, preven-
ting coordination activities needed by the federated PoPs. The only intercon-
nection point, as we said, is the IXP, where each provider is already connected
to in order to access Internet and exchange traffic. Our framework requires

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
60 FEDERATED NETWORKS

to have several SDN-enabled switches, autonomously managed by each provi-
ders. Thus, SDN-controllers take the control over the traffic generated by the
customers and it is very simple to achieve with SDN.

Unified User View Problems — Unified user view problems occur when a
customer does not perceive the federated network as a single one. An example
of this problem is the following: consider the case in which a customer wants to
join a federated VPN. That customer asks to its provider to set up the federated
VPN allowing it to exchange traffic with another customer connected to the
network of a federated partner. If such a request takes a non negligible amount
of time for being accomplished (e.g. order of hours or days), a customer might
perceive that its provider is not able to issue that service autonomously, but it
needs to collaborate with other ISPs, making the federated network visible to
the users.

A solution to this problem consists in providing a unified way to access
federated services that allows each federated ISP to accomplish on-demand
customer requests. Also, after receiving such requests, each federated ISP must
act as much as possible independently, consequently reducing the collaboration
in order to gain in terms of both amount of involved human resources (e.g.
technical staff for devices configuration) and required time to provision the
service. This is what our framework does. It makes available a set of primitives
that each customer uses to access a federated service. By doing so, each ISP
has a unified and standard way to accept the customer requests and to start a
collaboration with one or more federated ISPs in order to issue the service. In
our framework such a task is carried out by the SDN-controllers, that cooperate
with each other after a primitive has been received. This collaboration leads on
exchanging information related to the federated service and does not require
strict constraints, except the reachability among the SDN-controllers (e.g. by
exposing them on Internet using public IP addresses).

5.5 Subscribing to a SDIN Federated VPN Service

In this section we describe a configuration language for supporting federated
networks and VPN services and a set of primitives allowing customers to join
or leave such services.

Our configuration language is simple and it just contains information about
federated networks and the federated VPN service, without any impact on any
existing configuration. The configuration, written with our configuration lan-
guage, is located at the SDN-controller, and it does not require any additional

5.5. SUBSCRIBING TO A SDN FEDERATED VPN SERVICE 61

4 A

SDN controller

D>
Remote
controllers

Customer request handler

Figure 5.2: Logical architecture of our SDN-controller, consisting of a set of
components each devoted to a specific task.

configuration over standard IP-speaking routers. In particular, our configura-
tion language includes a set of static information (e.g. which are the federated
networks the provider belongs to and all information about the SDN-controllers
of other federated ISPs) and a set of dynamic ones (e.g. list of federated VPNs),
that are updated based on the customer requests performed by using our pri-
mitives.

Federated VPN is a collaborative service. Therefore, all SDN-controllers
must have the configuration for that service always updated and consistent. To
support this requirements, we internally design our SDN-controller as depicted
in Fig. 5.2. Incoming and outgoing arrows mean that those components can
be publicly accessed by customers and remote controllers, respectively (e.g.
they have a public IP address). Note that the SDN-controller is not publicly
accessible, avoiding to expose it to possible security issue. We divide our SDN-
controller into three logical components: 1) the Customer Request Handler,
which handles the requests coming from the customers to join or leave from a
federated VPN; 2) the Remote Controller Handler, which takes care of keeping

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
62 FEDERATED NETWORKS

the information about the federation and the federated VPNs updated; and
3) the SDN controller, which manages the SDN switches.

Security Considerations — With respect to the communication between
SDN-controllers and SDN-switches, we rely on the guidelines suggested by the
OpenFlow standard [Opel4]. We also extend the adoption of Secure Socket
Layer (SSL) or Transport Layer Security (TLS) technologies to the communi-
cation between customers and providers (e.g. exchange of primitives), as well
as to the communication among SDN-controllers. Since those phases need to
be publicly accessed, we made several design decisions, in such a way to not
expose the SDN-controller on the Internet, preventing it to be a possible target.

The components which really need to be accessed by the Internet are the
Customer Request Handler and the Remote Controller Handler. Indeed, the
first one must be reached by the customers that want to access the federated
VPN service, whereas the latter one is used for the communication between
the SDN-controllers. By doing so, the SDN-controller is not publicly exposed,
hence the functionality of the SDN switches is not compromised by possible
attacks. To further reduce the risk of cyber attacks, those components might
run on different machines, exchanging information by means of private networks
(e.g. standard point-to-point VPNs). Regardless of the specific setting, suitable
interoperability mechanisms are used (e.g. JSON files or databases) to allow
the communication among the components, so that the SDN-switches can be
instructed with proper OpenFlow rules.

We highlight that the proposed architecture has the goal of preventing
malicious users to take the control of the SDN-controllers, as well as, avoiding
denial of service attacks against the SDN-controllers themselves. We argue
that the components that can be publicly accessible (from the Internet or
by a possible malicious customer) are the Remote Controller Handler and the
Customer Request Handler, namely those components that do not act the SND-
enabled switches, preventing a direct interaction with the SDN controller. We
state that such an architecture is crucial. Indeed, if an SDN-controller was
hacked, an attacker could install in the SDN switches arbitrary forwarding
rules, so taking the control of the traffic issued by the customers. On the
other, if one or more SDN-controllers was made unavailable, the SDN-switches
would not be able to properly handle the requests coming from the customers,
making the federated service unusable. In this chapter we do not address
problems related to robustness in case of controller failures.

We also define a set of primitives used to keep the configuration consistent;
they are used by customers that want to join (or leave) the service at any
time. This makes our proposal more flexible and scalable with respect to

5.5. SUBSCRIBING TO A SDN FEDERATED VPN SERVICE 63

standard VPN services, that require changes in the configuration files of the
network devices in order to support such an on-demand feature. We argue
that our framework makes the whole provisioning process more agile. For sure,
the decision of federating with other providers requires a set of agreements
that must be carried out (e.g. cost models) and they are not address by our
framework. Nevertheless, our framework provides several mechanisms to make
the creation of federated networks and the provisioning of federated services
easier.

We argue that our configuration language and our primitives, together with
the SDN architecture, represent our solution for solving problems discussed in
Sec. 5.4.

A Configuration Language for Federated Networks and Federated
VPNs Services — Our configuration language is XML-based. The goal is to
specify a set of parameters used to easily set up both federated networks and
federated VPNs, without modifying any existing configurations. Our choice
of relying on XML does not restrict the adoption of any other formats (e.g.
JSON), as long as the semantic stays unchanged. The configuration is the
input of the SDN-controller, that — based on its content — allows or denies a
customer to access the service. We explain the structure of our configuration
language relying on the following example (see code in listing 5.1).

The root of the XML tree is the element <federations>, containing all federa-
ted networks the ISP belongs to. Indeed, each partner can participate in more
federated networks at the same time and each customer can join multiple fede-
rated VPNs belonging to different federated networks. We define the element
<federation> as a child of the root element and it contains information about the
ISPs in the federated network. Each federated network has a globally unique
name.

The <federation> element represents a federated network. In this exam-
ple, ISP1 and ISP2 belong to a federated network called ISP1 — ISP2 — net.
The <myself> element contains all information about the SDN-controller of
the ISP’s network in which this configuration is deployed. The most rele-
vant information are the URL and the IP address if the SDN-controller (e.g.
cnt.ispl.it and 100.100.100.1, respectively). Additionally, a fake ip subnet is
used by SDN-controllers in scenarios where hosts sharing the same IP address
need to exchange traffic, as reported in Fig. 5.1. Indeed, IP addresses in the
fake ip_subnet are used as a temporary replacement of the actual destination
IP address. The public_ip_subnet is used to translate private addresses into

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
64 FEDERATED NETWORKS

<federations>
<federation name="ISP1-ISP2-net">
<myself>
<isp id="1" name="ispl.it">
<controller name="cnt.ispl.it" ip="100.100.100.1"/>
<nat fake="192.168.0.0/24" public="100.200.0.0/24"/>
</isp>
</myself>
<isps>
<isp 1d="2" name="isp2.it">
<controller name="cnt.isp2.it" ip="200.200.200.1"/>
<nat public="200.150.0.0/24"/>
</isp>
</isps>
<vpns>
<vpn id="1" name="C1-C2-vpn">
<isp id="1" name="ispl.it">
<customer name="cl.ispl.it">
<site name="sl.cl.ispl.it" timestamp="0">
<datapath ip="100.0.0.123" in_port="1"
out_port="2"/>
<subnet private_network="10.0.0.0/16"/>
<ns domain="nsl.cl.ispl.it" ip_address="
— 10.0.0.3"/>
</site>
</customer>
</isp>
<isp id="2" name="isp2.it">
<customer name="c2.isp2.it">
<site name="sl.c2.isp2.it" timestamp="0">
<subnet private_network="10.0.0.0/16"/>
<ns domain="n2.c2.isp2.it" ip_address="
<~ 10.0.0.3"/>
</site>
</customer>
</isp>
</vpn>
</vpns>
</federation>
</federations>

Listing 5.1: A configuration example for the language.

5.5. SUBSCRIBING TO A SDN FEDERATED VPN SERVICE 65

public ones, as in standard NAT implementation. Note that, by doing so, any
forms of tunneling are avoided, resulting in the full MTU being kept available.
Note that if the ISP belongs to multiple federations, the <myself> element must
be declared once for each federation. The <isps> element contains the list of
all the other SDN-controllers belonging to the federated network. Even in this
case, the relevan information are represented by the URL and the IP address of
each controller. However, the element <nat> inside <isps> does not contain the
fake ip_subnet, since it is used from the SDN-controller of the ISP’s network
in which the end-host that starts the communication resides.

The <vpns> element contains both the list of all federated VPNs defined
inside the federated network and the information about the customers belon-
ging to each VPN. In this example, there is only a federated VPN, called
Cl —C2—wvpn.

This configuration allows customers Customerl and Customer2 to exchange
traffic in the federated VPN. Customerl is connected to the ISP1’s network
through an SDN-enabled switch whose IP address is 100.0.0.123; its traffic
comes from SDN-enabled switch port number 1 (the SDN-enabled port con-
necting OF1 and CPE1) and goes out from SDN-enabled switch port number
2 (the SDN-enabled port connecting OF1 and PE1). Those information are
provided by the <datapath> element. The subnet used by the customer is re-
ported in the <subnet> element, whereas information about which is the local
name server for that customer are found in the <ns> element. Customer2 is a
remote customer (we recall that this is the piece of configuration deployed at
the ISP1’s SDN-controller). In this case information about the SDN-enabled
switch are not provided, since the ISP1’s SDN-controller does not manage that
switch. All the other information are taken as for Customerl.

We highlight that the information inside the configuration of each SDN-
controller represents the minimum set of information to be specified to allow
two (or more) customers to establish a federated VPN. Also, the configuration is
simplified: it is now centralized and no more distributed over multiple devices,
making the troubleshooting easier. As a consequence, the provisioning time of
the federated services is reduced.

It is important to note the information enclosed inside <myself> and <isps>
subtrees are static and manually configured by each ISP after reaching agreements
with other ISPs on creating a federated network. While the content of the
<vpns> element is dynamically generated. Indeed, federated VPNs’ parameters
are reported in the configuration exploiting several primitives allowing custo-
mers to easily access federated VPN.

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
66 FEDERATED NETWORKS

Finally, all the information provided in the configuration are commonly

known by a provider. Indeed, providers know the port (physical of virtual)
at the PE which each customer is connected to, as well as which are the IP
addresses used to interconnect each CPE to the PE.
Primitives to Join Federated VPN Services — Each ISP belonging to a
federated network makes available to all its customers a set of primitives that
they can use to join or leave the federated VPN service. Those primitives are
received by the Customer Request Handler, that performs, cooperating with
the other components, checks in order to allow (or deny) a customer to join
the service. The customers do not need to know the presence of the SDN
controllers in the ISP’s network. Indeed, such primitives can be provided to
customers by means of easy-to-use user interfaces, like a web portal, allowing
the usage of the federated VPN intuitive and flexible.

We define three main primitives: Insert, Update, and Delete. The Insert
primitive is used by a customer to join a federated VPN. Using this primi-
tive, the customer specifies several parameters. With the Update primitive,
the customer can ask the SDN-controller to modify the parameters previously
declared by the Insert primitive (e.g. by adding or removing information). Fi-
nally, using the Delete primitive, a customer exits the federated VPN. By using
those primitives, a customer can specify policies in order to allow or deny other
customers to exchange traffic with it. Such policies are verified by all the SDN-
controllers in the federated network and the result of such an operation is sent
back to each customer. There are two types of checks. The first one prevents a
malicious customer to establish federated VPNs with other customers that are
not interested in exchange traffic with it. The second type allows customers
to receive traffic from and to send traffic to specific end systems. We deeply
illustrate them.

Suppose that there are two customers, C1 and C2, and C1 is a malicious
customer trying to set up a VPN with C2. Note that the VPN can be esta-
blished if and only if both C1 and C2 issue the Insert. C1l sends an Insert to
the Request Customer Handler of its provider. Once that component receives
that Imsert, it transfers suitable information to the SDN-controller, so that it
can contact the remote SDN-controller. On the other side, C2 should send an
Insert to the Request Customer Handler of its provider to establish the VPN.
Since C2 is not interested in setting up such a VPN, it does not send any Insert
to that component. Hence, the SDN-controller of the C2’s provider replies to
the SDN-controller of C1’s provider that the federated VPN cannot be set up,
because it did not receive any Insert from C2. This is the first type of checks.

The second type is the following. Suppose that two large customers, C3

5.5. SUBSCRIBING TO A SDN FEDERATED VPN SERVICE 67

and C4, want to establish a VPN, but they only allow a small subset of their
end systems to exchange traffic. Suppose that ES3 is the set of allowed end
systems of C3, whereas ES4 is the set of allowed end systems of C4. After
the VPN is established , the two customers start to exchange traffic. Both the
SDN-controllers issue forwarding rules to enable the communication among the
end systems belonging to ES3 and ES4, so that if one of the customer tries to
send traffic to or receives traffic from one end system that does not fall in the
declared sets, the communication is forbidden. So, the SDN-controllers are
acting as firewalls. We now describe the semantics of the primitives.

Insert — By using this primitive, a customer asks its provider to join the fede-
rated VPN service. Insert takes as input four parameters: 1) Customer that
is the name of the customer; 2) Description is a set of parameters describing
in detail information about the customer. In this set, a customer specifies its
subnet, and (optionally) the IP address of a local name server. Those infor-
mation are translated into the element <site> contained in the subtree <vpn> of
the configuration. Note that the information about the <datapath> element can
be inferred by the SDN-controller exploiting proper data structures defined by
the OpenFlow protocol (e.g. the in_port can be inferred by the Packetln mes-
sage) and relying on utility functions made available by the underlying SDN
framework (e.g. the Ryu framework offers functions to get auxiliary informa-
tion about the OpenFlow switches, like their IP address); 3) VPN is the ID of
the federated VPN which the customer joins. By looking at this parameter,
the SDN-controller can properly identify the <vpn> subtree to update. After
choosing the federated VPN, the customer can also express a set of policies,
declaring the set of customers inside the federated VPN which it is available
to exchange traffic with; 4) Time contains information about how much time a
customer wants to use the federated VPN service. After that time, the custo-
mer is no longer part of the service. This information is stored as the value of
the parameter timestamp of the subtree <sites.

Referring to Fig. 5.1, an example of the primitive Insert sent by Customerl
to the Customer Request Handler of the ISP1’s SDN-controller is Fig. 5.3 (we
recall that Customer2 has to send a similar primitive to its provider):

Upon receiving an Insert, the Customer Request Handler checks whether a
federated VPN having the name reported in the Insert primitive corresponding
to the key VPN already exists. If it is not the case, then it creates a new <vpn>
element assigning to it an id automatically generated and the name reported
in the primitive, namely C1 — C2 — vpn. Then, it sends the primitive to the
Remote Controller Handler, so that the latter forwards the information to the

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
68 FEDERATED NETWORKS

Primitive: INSERT
Customer:
+ Name: c1.isp1.it
+ Site: s1.c1.ispl.it
Description:
+ Customer IP subnet: 10.0.0.0/16
+ Local Name Server:
+ URL: ns.c1.isp1.it
+ IP Address: 10.0.0.3
VPN: C1-C2-vpn
Time: 0

Figure 5.3: An example of insert primitive.

Remote Controller Handler of the remote provider.

Thus, the Customer Request Handler of the two providers are able to create
the element <isp id="1" name="isp1.it"> as child of the element <vpn id="1" name="C1-C2-vpn">
for the Customerl and Customer2 configurations, respectively. Based on the
information associated to the keys Customer and Time reported in the pri-
mitive, new elements are added to the configuration, namely the element
<customer name="c1.isp1.it"> and its child <site name="s1.c1.isp1.it" timestamp="0">. At
this point, information about the <datapath> element is added to the configura-
tion. Such an information is inferred by inspecting the traffic coming from the
SDN-enabled switch, which the traffic generated by each customer is forced
to pass through. Finally, customer’s information are included in the confi-
guration, by creating the elements <subnet private_network="10.0.0.0/16" /> exploi-
ting the key CustomerlPsubnet of the element Description carried by the pri-
mitive and <ns domain="ns.c1.isp1.it" ip_address="10.0.0.3" /> exploiting the keys URL
and IPAddress of the sub-element LocalNameServer contained in the primitive.
We point out that in case the federated VPN already exists, those steps are
skipped, since the information is already in the configuration.

After performing those checks, the Remote Controller Handler of the ISP1’s
SDN-controller sends the primitive received by Customerl to the Remote Con-
troller Handler of the ISP2’s SDN-controller, as well as ISP2’s does the same
with the primitive received by Customer2. Once that message reaches the des-
tination SDN-controller, it undertakes several operations over its configuration

5.6. A COMPLETE EXAMPLE 69

based on the content of the receipt message. We highlight that no human
resources have been involved in this procedure and the service is provisioned
without any delay potentially introduced by the federated nature of the net-
work. By adopting our framework, the collaboration among providers, as well
as to provision a service, is completely delegated to the Request Customer
Handler, the SDN-controllers and the Remote Controller Handler.

Update - By using this primitive, a customer can modify what declared in the
Insert. Indeed, Update takes as input the same parameters of Insert. Also, this
primitive is used to keep the information of the customers updated.

Delete - By using this primitive, a customer can leave the federated VPN before
the Time parameter declared in the Insert primitive expires. Delete takes three
parameters as input: Customer, Description, and VPN. They have the same
semantic described for the Insert. This information is propagated among the
providers having customers in the declared VPN, so that the information in
the federated network is consistent.

5.6 A Complete Example

In this section we provide a complete example of our framework, showing the
whole interaction between two end-hosts, sharing the same IP address and
belonging to two different customers connected to different ISPs’ network. Re-
ferring to Fig. 5.1, we suppose that host H1, whose domain name is h1l.cl.ispl.it
and its IP address is 10.0.0.1, resides in Customerl and host H2, whose dom-
ain name is h2.c2.isp2.it and its IP address is 10.0.0.1, resides in Customer2.
Consequently, we call H1 source and H2 destination. We divide the example
in three steps: 1) federated VPN access request performed by the customers;
2) domain name resolution undertaken by the source; and 3) IP traffic sent by
the source towards the destination.

1) Accessing the Federated VPN Service — As described in Sec. 5.5, the
first operation carried out by customers that want to join the federated VPN
service is to require the access to the service itself. It is done by sending an
Insert to the Request Customer Handler, that is handled accordingly to the
description in Sec. 5.5. After this step, each SDN-controller owns a configura-
tion, allowing it to provision the service.

2) Name Resolution Process — It is very common in the Internet establis-
hing a communication between end-systems starting from the destination URL.
Our framework includes a SDN-steered name resolution process that works as
follows.

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
70 FEDERATED NETWORKS

When the source wants to exchange traffic with the destination starting
a domain name, it sends a recursive DNS request message to its local name
server. In our example, H1 starts a recursive DNS lookup by sending a DNS
request to NS1, in order to obtain the H2’s IP address (in this example we
concentrate on A resource record, but the interaction is analogous to any other
type of resource records). According with the DNS name resolution process,
that we report for reader convenience, after receiving the recursive DNS request
message from H1, NS1 performs a set of iterative DNS queries to obtain the
IP address of the destination. The name resolution process undertaken by NS1
starts by contacting the root name server, and it finishes when the authoritative
name server for the destination issues a DNS answer message containing the
destination’s IP address. It is easy to see that in our example such interaction
cannot take place: if IP address overlap occurs, we cannot exclude that the
local name servers NS1 and NS2 have exactly the same IP address. If this is
the case, when NS1 tries to send a DNS request message to NS2, that packet
will never exit Customerl’s network. A very simple solution is to move out the
local name servers from the private network of the customers. This operation
consists in changing the IP address of the name servers from a private IP
address to a public one. However, such a choice has a non negligible impact
on the configuration (e.g. reconfiguration of the end-hosts is also needed) and
it is unclear that the customer wants to make public its local name server.

We propose a mechanism relying on SDN to allow local name servers with IP
addresses in the same subnet (potentially having exactly the same IP address)
to exchange DNS traffic. By observing the DNS traffic, the SDN-controllers
can manipulate it in a suitable way, that is transparent for the end users. Our
proposal does not require to place any DNS daemon (e.g. BIND [binl7]) at
the SDN-controller. This prevents to introduce any other configuration effort.
We only need that the whole traffic generated by customers passes through the
SDN-enabled switch, in order to be (possibly) forwarded to the SDN-controller.
Our proposal is based on two main steps: 1) We determine which is the IPS’s
network hosting the destination and acquire the IP address of the authoritative
name server for the domain of the destination; 2) We resolve the destination’s
domain name. The second step requires a communication among the SDN-
controllers (cnt.ispl.it and cnt.isp2.it in our reference example). In rest of the
section we assume that H1 has domain name hl.cl.ispl.it whereas the domain
name associated to H2 is h2.c2.isp2.it.
Determining the IP Address of a Name Server — Since the SDN-controller has
to interact with local name servers placed in private networks with private IP
addresses, it needs two important information: the first one is the customer’s

5.6. A COMPLETE EXAMPLE 71

ISP1's SDN

Root
NS1 OF1 controller NS for it NS

O EEIEE RS

1
:
1Q: Arecord forh2.c2.isp2. it\:
\
:
i

NS Auth ISP2

>

' 1 1 1
: — : : : :
1 : Q : ! 1 1
! : . } AlforQ ! !
! I TOOA1 : I I
1 ' IT): 1 1 1
: 1 :<—' : 1 :
1 ! A1 1 : 1 1 1
1 |<—l ' 1 1 1
' Q| - ' i :
! —— ! . .
! ! 3 l L A2forQ !
: I A2 : : :
1 ' IT): 1 1 1
: U : : :
! g ! : | |
: — : : :
| : l : l ! >,
: : '« l ! | A3forQ
: : LA : : :

Figure 5.4: Interaction among OpenFlow switch, name servers, and SDN-
controller in case of Partial configuration scenario.

network in which that name server resides, and the second is the IP address
of that name server. To achieve this, we propose two different approaches,
and we exploit the configuration described in Sec. 5.5. Indeed, the element
<site> contains the whole needed information. The difference between these
two approaches resides in the fact that in the first one the IP address of the
customer’s local name server is in the configuration of the SDN-controller,
whereas in the second it is not, as described in Sec. 5.5. We call these scenarios
Fuyll and Partial configuration, respectively. In this chapter, we focus on the
Partial scenario, since the Full is described in [MLB'17a].

The Partial configuration scenario is more interesting to address, even if
the interaction among network devices and machines (e.g. name servers and
SDN-controllers) is more complex, as shown in Fig. 5.4). In Sec. 5.5, we argued

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
72 FEDERATED NETWORKS

that the specification of the IP address of the local name servers is optional.
Such a choice is motivated by two reasons. First, it simplifies the configuration.
Second, since local name server typically has a private IP address, a customer
could change it without notifying the ISP, leading to possible misconfiguration
problems among the SDN-controllers. Hence, we define a technique to retrieve
this information, avoiding such an issue.

At the beginning, H1 sends a recursive DNS request message to NS1, which
starts the iterative part of the name resolution process by querying the root
name server. With respect to the first approach we discussed, the SDN-enabled
switch forwards this packet in the ISP1’s network without sending it to the
SDN-controller, so that it can reach the root name server. Upon receiving
that DNS request message, the root name server answers with a DNS answer
message containing information about the authoritative name server for that
domain. Upon receiving the DNS answer message coming from the root name
server, OF1 forwards this packet to ISP1’s SDN-controller. Since we are as-
suming that the authoritative name servers of all the customers are private,
the SDN-controller inspects the content of the DNS answer, aiming at veri-
fying whether it contains some information on the authoritative name server
for the destination’s domain. If it is not the case, the SDN-controller sends
that packet to OF1, by instructing that device to forward the DNS answer to
NS1. This process carries on until a DNS answer containing information about
the IP address of NS2 (reported as a glue record of a NS DNS record) reaches
the SDN-enabled switch, allowing ISP1’s SDN-controller to understand which
is the IP address of NS2. In this case, the DNS answer message is not forwar-
ded to NS1, preventing it to exchange traffic with a name server potentially
having the same IP address, but residing in a different network (we recall that
customers in different IPS’s networks might share the same IP subnet.)

There are differences between the two approaches we presented. First, in
the Full configuration approach there are no other name servers involved in the
communication except NS1. Also, the SDN-controller looks at the DNS request
messages produced by NS1. Second, in the Partial configuration approach,
other name servers are involved in the communication and the SDN-controller
inspects the DNS answer messages sent by those name servers.

Resolving Domain Names in Presence of IP Addresses Overlap — Up to now,
we described how a SDN-controller determines the IP address of the autho-
rity name server for the destination and information about which is the ISP’s
network hosting that name server. Now, we can describe in detail how our
SDN-based technique performs the name resolution process. With respect to
the standard DNS name resolution process, in our approach the communica-

5.6. A COMPLETE EXAMPLE 73

tion between NS1 and NS2 is mediated by the SDN-controller of the source,
namely cnt.ispl.it in our example. Note that this mediation is needed, since
the TP address of NS2 is in the same subnet of NS1, so if NS1 tries to directly
send a DNS request message to NS2, that packet will never leave Customerl’s
network.

Once ISP1’s SDN-controller acquires the IP address of NS2, it issues a DNS
request message Q directed to that name server based on the DNS request
message produced by the source and it sends that DNS message to ISP2’s
SDN-controller by using a dedicated communication channel. This is possible
because the public IP address of each SDN-controller in the federated network
is part of the configuration. Upon receiving Q, ISP2’s SDN-controller forwards
it to the correct name server (this information is part of the configuration),
which replies with H2’s TP address.

After receiving the DNS answer message issued by NS2, ISP2’s SDN-controller
sends that DNS message to ISP1’s SDN-controller. Consider that, before for-
warding the DNS answer message to NS1, ISP1’s SDN-controller must check
whether the destination host has an IP address that is in the same subnet of
the source. Such a check is mandatory, since we allow the communication with
a potentially fully overlap of IP addresses, and in this case H1 and H2 exactly
share the IP address 10.0.0.1. Hence, ISP1’s SDN-controller has to change the
IP address contained in the DNS answer message, preventing H1 to send traffic
inside its network, or to itself. To do that, each controller owns a set of fake
IP addresses to use for this purpose, that are declared in the configuration as
shown in Sec. 5.5. ISP1’s SDN-controller picks an IP address from the fake
set and replaces the original H2’s IP address with the fake one, keeping this
association in suitable internal data structures. At the same time, it sends to
the SDN-enabled switch a set of rules to forward the traffic according to this
IP address replacement action. In this way, H1 is not aware of the fact that it
is sending traffic to a destination with an IP address in the same subnet. It is
interesting to note that, by using this technique, also NS1 and NS2 can share
the same IP address, since the interaction between these two name servers is
mediated by the SDN-controllers. At this point, H2’s domain name has been
resolved and H1 is able to send traffic.

3) Sending IP Traffic to the Destination — Once the source acquires the
IP address of the destination, it starts to send traffic. Since the communication
is being established between end-hosts with private IP addresses, translation
strategies are needed. We now describe the Network Address and Port Trans-
lation (NAPT) strategies that we apply to support communications between
hosts in different customer sites within a federated network. These strate-

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
74 FEDERATED NETWORKS

gies are used to alter the IP addresses (and, possibly, the TCP/UDP ports)
of exchanged packets in such a way that traffic between hosts with private
addresses can be routed on a public IP network. Address translations are per-
formed by SDN-enabled switches according to packet manipulation rules in
their SDN flow tables. As soon as the source emits a packet to establish a
TCP/UDP connection towards the destination, the SDN-controllers install on
OF1 and OF2 suitable translation flow entries to support the communication
between the hosts. We describe three strategies: 1) Client Port Preservation
(CPP); 2) Client Announces Port Selection (CAPS); and 3) Lazy Address and
Port Selection (LAPS). In the rest of the section, we present the CPP strategy
(CAPS and LAPS strategies can be found in [dLRB16]) and we refer to specific
OpenFlow messages defined in [Opel4].

Client Port Preservation — This NAPT strategy is inspired by the “port preser-
vation” approach in [AJ07]: for this reason we call it Client Port Preservation
(CPP). According to this approach, the internal (private) source TCP/UDP
port number of an outbound packet should be kept untouched, as long as this is
possible: only if two hosts use the same source port number, then they should
be mapped to two different public IP addresses. We describe the CPP strategy
exploiting the sequence diagram in Fig. 5.5. The horizontal arrows in the fi-
gure represent messages exchanged among OF1, ISP1’s SDN-controller, ISP2’s
SDN-controller, and OF2 to support such a connection. Black arrows represent
messages that are common to all our address translation strategies, whereas
gray arrows represent those that are required only by some of them. The CPP
strategy works as follows. Each controller has a pool of public IP addresses
that can be used to perform address translation, as reported in Sec. 5.5. Be-
fore any packet exchanges takes place, all the SDN-controllers involved in the
federated VPN mutually exchange messages (IP_Map) carrying information
about their private address space: thus, every SDN-controller becomes aware
of the existence and location of every IP subnet in the federation. After that,
assume that a packet for a new TCP/UDP connection is received by OF1.
We indicate with src[pvt_IP:pvt PORT] the private IP address and TCP/UDP
port of the packet’s source host (H1), and with dst[pvt IP:pvt PORT] the
private IP and port of the packet’s destination host (H2). OF1 buffers the
received packet and forwards a copy of it to ISP1’s SDN-controller (Packetln
message). It picks from its own pool an available public IP address src[pbl_IP]
to be associated with src[pvt IP], keeping port src[pvt PORT] untouched, then
it notifies the binding between src[pvt IP] and src[pbl IP] to ISP2’s SDN-
controller (Bind _Signaling message). ISP1’s SDN-controller also asks ISP2’s
SDN-controller for a public IP address and port to be used to contact the des-

5.6. A COMPLETE EXAMPLE 75

OF1 ISP1's SDN ISP2's SDN OF2

H1 controller controller
Pi(: 5 IP_Map %
i src[pvt_IP:pvt_PORT],: <€ >

i dst[pvt_IP:pvt_PORT])
: N

§ 3 1
>, Packetin % I-E
Find_Citrl ’ I

\

§ t_ Ctr_IP §

' Bind_Signaling >

: 3‘ Map_Request ‘

: 3‘ L

3 3 : FlowModification

Barrier Request

‘ Barrier Reply

: : P

: : Map_Reply >;

; : ACK 3

: <€ >

: FlowModification ! 3

<€ ! 1

3 PKt(3

: i srclpvt_IP:pvt_PORT];
dsfipvt_IP:pvt_PORT]) o
' : -

Figure 5.5: Messages exchanged to support communication between H1 and
H2, for different translation strategies.

tination host (Map_Request message). At this point, ISP2’s SDN-controller as-
sociates a public IP address dst[pbl IP] from its own pool to dst[pvt IP], and an
available port dst[pbl PORT] to dst[pvt PORT], and sends FlowModifications
to OF2 to install two packet manipulation rules. One rule applies to packets
going from OF1 to OF2 and performs the following address translations (left
side represents matched fields whereas right side represents how they are rewrit-
ten): srclpbl_IP:pbl_PORT], dst[pbl_IP:pbl PORT]— src[pvt_IP:pvt_PORT],
dst[pvt_IP:pvt PORT] (note that src[pbl PORT]=src[pvt PORT]). This rule
restores the original private source and destination IP /port of a packet when
it reaches Customer2, so that the packet can correctly reach the destination
host and any source-based traffic engineering policies can be applied. The ot-
her rule applies to response packets for the same TCP/UDP connection that
go from OF2 to OF1, and accomplishes the opposite translations. Next, a

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
76 FEDERATED NETWORKS

BarrierRequest is issued by ISP2’s SDN-controller, which waits for OF2 to con-
firm the installation of the above rules using a BarrierReply. At this point,
ISP2’s SDN-controller replies to ISP1’s SDN-controller with a Map__Reply mes-
sage, informing that host dst[pvt _IP:pvt PORT] can be reached by sending pac-
kets to dst[pbl IP:pbl PORT]. ISP1’s SDN-controller sends FlowModifications
to OF1 to install the following rules affecting packets going from OF1 to OF2:
srclpvt_IP:pvt_PORT], dst[pvt_IP:pvt_PORT|— src[pbl_IP:pbl_PORT], dst[pbl_IP:pbl_PORT],
and similar rules for packets from OF2 to OF1. Finally, the installed rules are
applied to the packet buffered at OF1, which is eventually forwarded: since all
its IP addresses are public, it can successfully traverse the backbones of ISP1
and ISP2 (and, possibly, the Internet) to reach OF2, where the original source
and destination addresses are restored.

5.7 Takeaway

By relying on the SDN architecture and providing both a configuration lan-
guage and a set of primitives, we built a framework that is able to make the
process of creating federated networks and subscribing to a federated VPN
service simple and straightforward. Our framework aims at reducing the effort
of providing federated VPN services, as well as simplifying the creation of a
federated networks. Also, the traffic isolation typically provided by standard
VPNs is still guaranteed to the extent that a provider adopts MPLS in its
backbone. Indeed, our SDN-switches are placed outside the MPLS domain
since they interconnect the CPE with the PE. Since the SDN-controllers of
our framework instruct the SDN-switches to issue standard IP packets, they
can be encapsulated into MPLS packets once they reach the PE routers, as
in standard VPN fashion. Recalling the main challenges of Sec. 5.3, we now
summarize how we solve those issues.
Management Problems — Avoiding additional interconnection points, each
federated provider is still able to manage its network as it prefers, without
any constraints in terms of collaboration with other federated partners. Our
choice to delegate to the SDN-controllers the task of handling the federation
and every federated service issued relying on such a network allows us to be in-
dependent from any kind of collaboration, having benefits for many operations,
e.g. monitoring.

Also, agreeing on remuneration is very simple, since that traffic is easily
recognizable starting from the IP addresses used during the translation phase.
A strong point in favor of such a choice is that each provider acts independently

5.8. EVALUATION 7

from each other in order to decide which public IP addresses are used for that
purpose. Remember that such choices are exchanged among federated ISPs at
the beginning, allowing them to be aware about which traffic belongs to the
federation.

Technological Differences Problems — As our framework does not require
any ad-hoc place to interconnect, except the IXP that has a well defined in-
terface for exchanging information (e.g. BGP protocol), each provider can use
any routing protocol or transmission technology without coordinating with ot-
her federated partners. Also, the SDN architecture plays a key role. Indeed,
being able to take centralized decision and sharing them among SDN-controllers
exploiting a dedicated communication channel allows us to easily reach intero-
perability. Also, the choice of using NAT strategies to realize VPNs allows the
SDN-enabled switches to issue IP packets, making the traffic forwarding com-
pletely independent from specific data plane protocols used in the backbone
(e.g. MPLS).

Unified User View — We argue that our configuration language and primiti-
ves represent a solid way to provide a standard interface to access the federated
VPN service. Furthermore, delegating the coordination activities to the SDN-
controllers reduces the amount of time needed for provisioning the service. By
relying on our framework, we argue that users perceive the federated VPN
service as issued by a single provider, keeping hidden the collaboration among
ISPs.

Drawbacks of our framework — We recognize a major drawback in our
framework. Although we do not impose any constraints with respect to the
protocol adopted by each provider inside the backbone, we assume that each
federated ISP has (at least) an SDN controller plus an SDN-enabled switch
collecting the traffic of its federated customers. On one hand, such assumptions
do not impact the network architecture of the ISP; on the other hand, the SDN
equipment might represent a cost for the provider. We argue that a reasonable
trade-off for choosing our solution is the size of the federation (in terms of both
ISPs and customers) and the flexibility degree that the federated partners want
to achieve.

5.8 Evaluation
To validate the effectiveness of our framework, we implemented a prototype

SDN-controller by relying on the Ryu framework [ryul7] and OpenFlow 1.3 [Opel4].
We focus our evaluation activity on both control and data plane, analyzing

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
78 FEDERATED NETWORKS

how many messages (OpenFlow and DNS) are exchanged in the federated net-
work and which is the impact on each OpenFlow-enabled switch of setting up
a federated network. We do not evaluate monitoring and fast setup aspects.
Indeed, we do not provide any contributions in terms of how to monitor the net-
work: we just claim that we propose a solution for monitoring issues described
in [FBP10]. On the other hand, fast setup is achieved by the SDN-controller,
in contrast to [geal7al.

We run our experiments on SDNetkit [ML*17], an SDN-enabled enhance-
ment of Netkit [netl7], a widely used network emulator. Within SDNetkit,
we used BIND [binl7] to implement name server functionalities and OpenVS-
witch [ovs17] to implement OpenFlow devices. We run our SDN-controller on
topologies reflecting the scenario in Sec. 5.4. Our implementation is compo-
sed by three main components: 1) Primitive Handler, to handle the primitives;
2) DNS Handler, to handle DNS messages; and 3) Routing Handler, to compute
the routing.

In our experiments, we focus on considering three different coordinates:
1. number of ISPs in the federated network, 2. number of customers per ISP,
and 3. number of VPNs in the federated network. We run several simulations on
different topologies, that are built according to the following criteria. First, we
build a federated network consisting of two ISPs. In such a federated network,
we connect to each ISP a number of customers varying in the range [1, 5]. Then,
we set up a number of VPNs varying in the range [1,5]. Also, we assume that
a customer can be part of a single VPN. Hence, the number of VPNs has to be
determined according to the number of customers per ISP (e.g. with a single
customer per ISP, we cannot create more than one VPNs, with two customer
we can set up at most two VPNs, and so on). Each customer consists of a
host and a local name server, authority for that host. Second, we did the same
in a federated network consisting of three ISPs. During each simulation, we
perform DNS resolution and standard ping among any pair of hosts belonging
to the same VPN, in order to issue the maximum number of DNS queries. We
now briefly describe which is the impact of our SDN-controller on both control
and data plane.

Control plane impact — To evaluate the impact of our implementation on
the control plane, we measure the amount of DNS and OpenFlow packets ex-
changed in the network in order to allow a source to exchange traffic with a
destination. We count the number of DNS and OpenFlow packets on each in-
terface of each OpenFlow-enabled switch in the network, namely OF1, OF2, and
OF3. With respect to the OpenFlow packets, we point out that we only consider
PacketIn, PacketOut, and FlowModification messages, since our implementation

5.8. EVALUATION 79

Number of DNS packets
Number of DNS packets

Number of 1 Number of 1
VPNs Number of VPNs Number of
customers customers

(a) Number of DNS packets exchange in (b) Number of DNS packets exchange in
the Full configuration scenario. the Partial configuration scenario.

Number of OpenFlow packets
Number of OpenFlow packets

Number of 1 Number of) 1
VPNs Number of VPNs Number of
customers customers
(c) Number of OpenFlow packets ex- (d) Number of OpenFlow packets ex-
change in the Full configuration scenario. change in the Partial configuration scena-
rio.

Figure 5.6: Control plane impact in a federated network consisting of two
ISPs.

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
80 FEDERATED NETWORKS

Number of DNS packets
Number of DNS packets

Number of 1 1
VPNs Number of VPNs Number of
customers customers

Number of

(a) Number of DNS packets exchange in (b) Number of DNS packets exchange in
the Full configuration scenario. the Partial configuration scenario.

Number of OpenFlow packets
Number of OpenFlow packets

Number of 1 Number of 1 2
VPNs Number of VPNs Number of
customers customers
(c) Number of OpenFlow packets ex-(d) Number of OpenFlow packets ex-
change in the Full configuration scenario. change in the Partial configuration scena-
rio.

Figure 5.7: Control plane impact in a federated network consisting of three
ISPs.

5.8. EVALUATION 81

120 120
—&- Federated network with 2 ISPs ~&- Federated network with 2 ISPs

=i~ Federated network with 3 ISPs =k Federated network with 3 ISPs

Number of queries
Number of queries

Number of VPNs Number of VPNs

(a) Federated network with four custo- (b) Federated network with a single
mers per ISP. VPN.

Figure 5.8: Number of queries in the federated network.

affects those types of messages (e.g. OpenFlow handshake and keepalive mes-
sages are independent by any controller implementations). Also, we consider
both Full and Partial configuration scenarios, as discussed in Sec. 5.6.

Fig. 5.6 shows the total number of DNS (Figg. 5.6(a) and 5.6(b)) and Open-
Flow (Figg. 5.6(c) and 5.6(d)) messages exchanged in a federated network with
two ISPs. We observe that the number of messages (both DNS and OpenFlow)
grows with respect to the number of customers connected to each ISP, while
it decreases when the number of VPNs increase. We ascribe this behavior to
the fact that the number of messages strictly depends on the number of que-
ries in the network. Indeed, if more queries are performed by many sources,
more DNS packets are issued in order to get the IP address of each desired
destination. Regardless from which scenario (Full or Partial configuration) we
are considering, our SDN-controller has to interact with such DNS packets, im-
plying an increasing number of OpenFlow messages. Those considerations are
validated by looking at Fig. 5.8. Indeed, we observe that the number of queries
grows with respect to the number of customers (Fig. 5.8(b)), while decreases
with respect to the number of VPNs (Fig. 5.8(a)). This is due to the fact that
increasing the number of VPNs means reducing the number of destinations
per VPN, reducing the total number of queries, and - consequently - the total
number of messages.

The same considerations are valid in the case of a federated network consis-
ting of three ISPs. The total number of DNS and OpenFlow messages exchan-
ged in the network is depicted in Fig. 5.7. Of course, in this case we observe
a greater number of messages (almost 2000). Such an increase with respect to
Fig. 5.6 has to be ascribed to the fact that adding a new ISP in the federa-

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
82 FEDERATED NETWORKS

ted networks results in increasing the number of customers belonging to the
federated network itself and, consequently, the total number of destinations.
Since we already discussed how the number of destinations affects the number
of queries and which is their impact on the total number of messages exchanged
in the network, those results are perfectly aligned with what we expect, also
considering results shown in Fig. 5.8. It is worth to observe that the scalability
of our framework is the same of the DNS service. Indeed, we do not add any
DNS messages to the name resolution process, as in the Partial configuration
scenario. Rather, in the Full configuration scenario, we prevent several DNS
messages (e.g. DNS messages directed to the root name servers) to be forwar-
ded in the network. On one hand, having the IP address of a local name server
in the configuration saves a lot of DNS and OpenFlow messages. On the other
hand, retrieving that information from the DNS resolution process is a plus
from a configuration point of view (see Sec. 5.6), but it represents a cost con-
sidering the number of exchanged messages, that is — in any cases — the same
of any DNS service.

We also analyzed the correlation among the number of queries and the

number of DNS messages. Pearson’s correlation coefficient was used for this
measurement. The correlation between the number of queries and the number
of DNS messages in Full configuration scenario is 0.99 while for the Partial
configuration scenario, this coefficient has a value of 0.90. This correlation for
OpenFlow messages of Full configuration scenario is 0.99 and for Partial one
is 0.90.
Data plane impact — By default, our prototype SDN-controller installs two
rules: one for ARP packets and another one for DNS packets. Indeed, all
traffic belonging to those classes needs to be processed by the SDN-controller in
order to allow the SDN-enabled switches to exchange traffic with the neighbor
routers (ARP packets) and to allow the DNS Handler to properly steer the
name resolution process (DNS packets).

We also provide an analytical model to count the number of required rules to
install on the SDN-enabled switches. Assume that C'is the number of customers
per ISP. First, we count the number of required rules for Full configuration
scenario. As foregone, we need one rule to handle ARP packets. To handle
DNS packets, we need 2 x C rules and for handling IP packets, the controller
needs to install 4 x C' + 2 rules. The number of OpenFlow rules in the Full
configuration scenario (OFp¢) is

OFpc=14+2xC)+(4xC+2)=6xC+3 (5.1)

While for the Partial configuration scenario, we have the same number of rules

5.9. CONCLUSIONS AND FUTURE WORK 83

for ARP and 2 x C + 2 rules for handling DNS packets. Finally, we need
4 x C + 2 rules for IP packets. The overall number of OpenFlow rules for the
Partial configuration scenario (OFp¢) can be computed as follows;

OFpc =14+ (2xC+2)+(4xC+2)=6xC+5 (5.2)

Primitive Handler — This component has in charge the task of processing primi-
tives sent by customers. After analyzing the content of each primitive, it writes
proper information in the SDN-controller configuration, as shown in Sec. 5.5.
Basically, this component does not have any impact on the data plane.

DNS Handler — This component is in charge of steering the name resolution
process. After resolving a domain name, the DNS Handler installs a rule to
send IP traffic toward the destination to the controller. This rule is needed,
since it triggers the Routing Handler, whose task is to act as shown in Sec. 5.6.
Note that, for each possible destination, one rule is needed, resulting in a
number of rules that is linear with respect to the number of destinations in the
federated VPN.

Routing Handler — Routes in the networks are computed by this component.
In particular, for each pair of end-hosts, it installs two rules. The first handles
the traffic directed to the destination, whereas the second allows the traffic to
come back from the destination to the source. Thus, the number of the rules
is quadratic with respect to all possible combinations among end-hosts. Since
this situation is not so common in computer networks (destinations are less
than sources), the number of rules is linear with respect to the number of pair
(source,destination). Optimizations might be carried out attempting to reduce
that amount of rules.

Finally, the evaluation shows that our system is able to manage federated
networks with a small number of VPNs. Of course, having a single SDN-
controller might be a limitation under different point of views (e.g. scalability
and robustness). By increasing the number of SDN-controllers per ISP, our
framework is able to handle a growing VPN demand.

5.9 Conclusions and Future Work

In this chapter, we propose a framework enabling fast creation of federated
networks. We show that the today’s federated network architecture can be
simplified by adopting SDN. Also, we demonstrate that our framework does
not impact any existing configuration, as well as any existing architecture. It

CHAPTER 5. MULTI-PROVIDER VPNS IN SOFTWARE-DEFINED
84 FEDERATED NETWORKS

does not require architectural changes, except the adoption of SDN-controllers,
that is a reasonable assumption.

As research perspectives, we intend to go deeply in improving our current
implementation, providing a more complete software enabling federations to
use it in order to issue federated services. We believe that in a world where
IPv4 address exhaustion is being a problem — also due to the slow IPv6 adop-
tion [gool7,ripl7] — our solution represents a valid alternative that allows ISPs
to provide value-added services to their customers, without introducing any
scalability issues.

Chapter 6

A Decentralized SDIN Architecture
for IXPs*

Applications of Software-Defined Networking (SDN) to the Internet Routing
come with great promise for supporting the ever-growing performance requi-
rements posed by Internet applications. Yet, deployment in production of the
most promising applications of SDN at the Internet eXchange Points (IXPs)
like iISDX has so far been an elusive goal. We argue that the inherent centraliza-
tion of these SDN approaches hinders real-world deployment for the following
reasons: privacy (i.e., operators are reluctant to share private routing infor-
mation), separation of responsibilities (i.e., the IXP running the centralized
controller is involved in the routing and forwarding at too many levels), and
scalability (i.e., the number of rules installed by the SDN controller is too
large).

In this chapter, we take a new approach to applying SDN at IXPs, called
DESI. In our design, operators join the IXP with their own SDN equipment
while requiring no modifications to the IXP fabric; thus, supporting separation
of responsibilities. The members of the IXP use the SDN controller to exchange
BGP messages, coordinate with other members, and install the forwarding state
into the SDN switches connected to the IXP. We present two mechanisms to
install this forwarding state that strike a different tradeoff between forwarding

*Part of contexts in this chapter is based on the following publication: Kumar D., Los-
poto G., Mostafaei, H., Chiesa M., Di Battista G., DeSI: A Decentralized Software-Defined
Network Architecture for Internet eXchange Points, under review in International Journal of
Network Management.

85

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
86 FOR IXPS

space and processing time. Policies are never shared with unintended parties,
thus satisfying privacy. To spur adoption, we introduce an expressive, yet
simple, language to configure the routing policies of the members. We evaluate
the practical feasibility of our system on Kathara, a system emulator for SDN
and legacy networks, in order to test the resource consumption of our proposal.

6.1 Introduction

Modern-day Internet applications pose ever-growing performance requirements
on the Internet. Such services require heterogeneous support for performance
from the underlying network, including high-bandwidth (e.g., Cloud backup [MBHM13])
and low-latency (e.g., video streaming [SGH14]). Yet, the underlying network
protocol used to determine the Internet paths through which domains send
Internet traffic, i.e., the Border Gateway Protocol (BGP), is alarmingly obli-
vious to such performance metrics, ultimately hindering performance. Un-
fortunately, modifying BGP "overnight" has proven to be an elusive goal as
it requires to reach some sort of wide consensus among independent network
entities. Researchers and operators have therefore concentrated efforts to im-
prove the status-quo at the emerging crossroads of Internet traffic, i.e., Internet
eXchange Points (IXPs), where hundreds of organizations connect to exchange
traffic at a reduced cost.

IXPs have traditionally acted as mere layer-2 interconnects that transit pac-
kets among BGP-speaking networks. The Software-Defined-eXchange (SDX) [GVST15]
is a revolutionary IXP architecture that brings the high programmability of
Software-Defined Networking (SDN) [KRV*15a] to the IXP ecosystem. Both
IXP operators and IXP members program the IXP fabric through a well-
defined interface (e.g., OpenFlow [MABT08]) to implement their routing poli-
cies. The potential impact of SDXes is huge: a recent work [CDAT16] showed
the high benefits of improved Traffic-Engineering, security, traffic monitoring,
network management, and more. Yet, the most notable SDX architecture, i.e.,
iSDX [GMB*16], has so far failed to be deployed in production for many rea-
sons. First, several SDX architectures collect all the members’ routing policies
in a central controller owned by a third, possibly untrusted, entity. These
policies dictate how packets should be routed at the IXP and therefore re-
veal potentially business information that is deemed confidential [CDC*17].
Second, SDXes solutions that install the forwarding policies of different IXP
members on the same physical device (e.g., iISDX) may exacerbate any dispute
regarding the separation of responsibility in case of failures in delivering traffic.

6.1. INTRODUCTION 87

In fact, traditional Layer-2 IXPs clearly separates the responsibility of IXPs,
i.e., transporting traffic between two statically configured MAC addresses, from
selecting the routes through which sending traffic, which is left to the operators
and does not involve any computation on a third party entity (e.g., the SDX
controller). Third, solutions that install forwarding state in the IXP fabric tend
to scale poorly in the number of members and configured policies. A recent
study from a large IXP operator [HVSC16] showed that the forwarding state of
recently proposed SDXes quickly explodes in the number of policies, ultimately
refraining IXPs from deploying SDN solutions at IXPs.

We argue that any SDX architecture, e.g., iISDX, must satisfy the following
requirements: privacy, i.e., the routing policies of the IXP members should not
be disclosed to any unintended third party, possibly including the IXP itself,
separation of responsibility, i.e., identifying who is responsible of what in case of
outages should be easy, forwarding state scalability, i.e., the IXP fabric should
scale to the size of the largest IXPs (and beyond), thus limiting the amount
of forwarding state required to support the SDX architecture, and expressive
policy language, i.e., IXP members need to forward packets according to their
business- and performance-driven requirements.

In this chapter, we present our envisioned architecture for SDXes, called
DESI, that satisfies all of the above requirements. First, we argue that IXPs
should not be involved in the route computation among members. Instead, in
DESI, IXP members connect to the IXP with their own SDN-enabled equip-
ment, including an SDN switch to be connected to the SDX fabric as well
as an SDN controller to configure the switch and coordinate with other IXP
members. This fundamentally different approach to the design of SDX ar-
chitectures comes with huge benefits in terms of privacy (policies are stored
locally), separation of responsibilities (IXPs are not involved in the route com-
putation), and forwarding state scalability (each IXP member only stores its
forwarding state). In DESI, IXP members use two complementary mecha-
nisms for the installation of the forwarding state to scale the forwarding state.
Through a proactive approach, an IXP member installs the whole forwarding
state regardless of whether some rules are never matched by actual data pac-
kets. This approach has the benefit of quickly handling the incoming traffic
but may result in overly large forwarding tables whose size may not be sup-
ported by the underlying SDN hardware ! Through a reactive approach, the

ISDX routing policies rely on wildcard matching, thus requiring TCAM support from
the underlying SDN switch. TCAM space is often limited due to being a power-hungry and
expensive resource.

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
]8 FOR IXPS

DESI controller installs a forwarding rule only after a packet matching that
rule is received by the SDN switch. With this approach, an operator limits
the amount of forwarding state needed to support the defined forwarding rules
but introduce additional latency and controller load overheads for each packet.
DESI relies on a combination of these two approaches to achieve forwarding
state scalability. Finally, we introduce an expressive policy language, inspired
by Pyretic [RMF'13], that can be used by the IXP members to define their
routing policies.

We evaluated our system to assess its practical feasibility in term of physical
resource consumptions. We observed that the most critical resource of DESI,
i.e., the member controller, scales well in the number of policies and BGP
announcements being installed.

The reminder of the chapter is structured as follows. Sec. 6.2 reviews the
most relevant contributions for the application of SDN to the inter-domain rou-
ting and IXPs. Sec. 6.3 briefly illustrates the current SDX-based architectures.
Sec. 6.4 presents the architecture of DESI. Sec. 6.5 shows our routing policy
model, introducing basic concepts of our policy language. Sec. 6.6 introduces
the reactive and proactive approaches, explaining the main differences between
them. Sec. 6.7 explains the architecture of our SDN-controller and Sec. 6.8
states several applicability considerations. Sec. 6.9 shows the results we col-
lected during the evaluation of our SDN-controller. Finally, Sec. 6.10 draws
the conclusions and describes the research perspectives opened by our system.

6.2 Related work

In this section, we review the most relevant literature related to the application
of SDN to IXPs. We describe the application of SDN to inter-domain routing,
limiting the scope to those that are more related to ISPs. Table 6.1 gives
an overview of the state-of-the-art, putting in evidence the differences among
them.

An IXP can be seen as a LAN which each IXP member is connected to,
in order to establish BGP peering with other members (ISPs). Typically, the
switching fabric consists of a set of standard layer-2 switches.

Software-Defined Internet eXchange Point (SDX) [GVS*t15] is the first at-
tempt to apply SDN to the inter-domain routing inside IXPs. In SDX, standard
BGP outbound policies are overridden by an SDN controller, improving the
flexibility of the BGP protocol. The most relevant SDX contribution consists

89

RELATED WORK

6.2.

dDHE pue I[[01u0d sok TB[[OTJT0D JST (yp3ms a1our 10 9uo) Juspusdep JXI Toquowt 1od suo ISEa
JdDE pu® IB[[013u0d [eqo[3 uMmowy-j0u SID[[01IUOD [BIO] umowy-j0u SI9[[OIYU0D JO ADIRIDIY osseadsy
dDHF SUIPLLIA0 puR I9][01)10D UMOTY-)OU 19][019T10D SOUDIIMS [RIDADS 1 orIqeg 28pH
IB[[OTTOD UMOWY-)0T IB[[OTT0D JST UMOWY-)0T Taquiaur 1ad auO 1as

JdHE PU® I9[[OIUOD I0ARIPUT uUMOWY-)0u I9[[OIIUOD I0ARIPUT] SODITMS [RIADS Toquow 1d auo + T IoAeapuy
JdDHE pue I[[01u0d uUMOWY-j0u TD[[OTIT0D X (ST Y2IIMS BUO Toquow 1d auo + T Xas!
JdDE pue I9[[01)u0d uMOwY-10u IB[[01JU0D YIIIMS BUO 1 xXas

Aq pendwod yyeg Joayo Aouspuede(q Aq pe[puey se[ny Sulpiemioq JLIqR] YOHMS SID[[0IIUOY) JO IDqUUINN LN

“Surnol urewop-I19jul 10j SUOIINOS paseq-N (S Jo uosiredumor)

‘T°9 91qeL

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
90 FOR IXPS

in replacing the IXP switching fabric with an SDN-capable switch handled by
a centralized controller which collects the policies of each member.

SDX suffers of scalability problems [GMB*16], in terms of control plane
computation time and the number of generated forwarding rules. Those issues
are addressed by an improved version called industrial-SDX (iSDX) [GMB™*16].
In iSDX the control plane computation time is reduced by introducing, in
addition to the IXP SDN controller, another SDN controller on the ISP side,
so that the control plane computation is distributed along multiple controllers,
while the number of forwarding rules is reduced by introducing compression
mechanisms. The iSDX architecture imposes two strong limitations for the
ISPs: 1) each of them must be equipped with an SDN controller and 2) they
must share their policies in the centralized SDN controller inside the IXP. Also,
identifying responsibilities becomes difficult in case of faults.

Herman et al. [HVSC16] report that currently employed switch platforms
are incapable of supporting iSDX because of the lack of flow tables. Also, the
policy compression mechanism of iSDX is too heavy for the current hardware.

Endeavour [ACCT17] reduces the number of installed rules on the SDN-
enabled switch of an IXP switch fabric (70% less than those of SDX and
iSDX). Endeavour is built on top of SDX [GVS*t15], iSDX [GMB*16], and
Umbrella [Brul6]. It proposes a new architecture for an IXP switch fabric
which is composed of edge and core switches. The rules are installed on edge
switches, while the core switches are in charge of forwarding traffic to its de-
signated egress points. This architecture helps to improve the scalability of
IXP fabric even if it adds duplication in forwarding state while installing the
inbound and outbound routing policies of the participants. The proposed ar-
chitecture introduces a mechanism to check (possible) dependencies among the
forwarding rules.

In contrast to SDX, iSDX, and Endeavor, our architecture does not replace
the IXP switching fabric with as an SDN-based one. Indeed, we introduce SDN
only on the ISP side, without forcing other members to be equipped with an
SDN controller. Finally, we preserve backward compatibility with providers
that are not interested in using SDN on their side.

Software Defined Inter-domain routing (SDI) [WBL*16] provides the flex-
ibility for routing policies based on the header fields of IP packets. SDI can
check for the possible dependencies among the forwarding rules but fails to
perform the BGP peering among the participants. It relies on SDI peering
sessions among the members without leveraging the IXP peering LAN.

Edge Fabric [SKC*17] is an SDN-based Facebook solution to improve the
capacity of the network to better steer Facebook traffic through the continents.

6.3. SDX BASED IXP ARCHITECTURES 91

It aims at avoiding congestions in near real-time. Espresso [YMRT17] is a
Google solution for the Google network. Espresso cares more about traffic
engineering issues than generating rules to install on switching fabric. The
idea behind the Espresso architecture is to scale cost-efficiently to Internet
peering and allow application-aware routing for Google network. Edge Fabric
and Espresso have been devised for Facebook and Google networks and it is
not clear how and if they are applicable for general-purpose IXPs networks.

6.3 SDX based IXP Architectures

This section describes the typical architecture of an SDN-based IXP (we mainly
concentrate on the latest version of SDX, which is called iSDX [GMB*16])
discussing the main components and explaining their functionalities.

Components

The main components of the architecture are the following.

1) An SDN-enabled switch. To program the switching fabric of an IXP,
there is the need of at least one SDN-enabled switch. It is the collector of
the policies of all the ISPs that participate to the IXP.

2) A BGP route server. Currently, the most important IXPs offer a route
server. An ISP can substitute its bi-lateral peerings with just one peering
with the route server. The route server computes the best routes to reach
the target prefixes and redistributes such routes to the ISPs. The iSDX
route server is implemented with ExaBGP [EN16].

3) An IXP controller. The controller cooperates with the route server to
integrate the BGP policies with custom outbound and inbound policies.

4) The Members’ SDN-controllers. Each participant to the IXP can have
its own SDN-controller that shares part of the computations performed by
the IXP controller. This improves the scalability of the architecture.

5) The Members’ border routers. Each member runs (at least) one border
router to exchange BGP messages with the router server. The route server
can check the BGP reachability information of each member by checking
the BGP update messages that come from these devices.

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
92 FOR IXPS

SDX and iSDX Architectures

SDX was the first attempt to bring SDN to inter-domain routing, but it does
not scale for the following reasons: 1) it generates many SDN rules to handle
traffic and currently available TCAM size for SDN-enabled switches is not able
to maintain them [HVSC16] and 2) the computation time to generate low-level
forwarding table entries from high-level forwarding policies, which may change
the forwarding behavior of BGP [GMB™16], is high.

It is worth stating that SDX and iSDX inherit the same approach in rule
generation because they used the same mechanism with different compression
method to generate the initial rules from SDN-policies of participants.

There are two key design improvements in iSDX with respect to the original
SDX proposal. First, the control plane computations of iSDX are partitioned
among the participants’ controllers which ensures that the routing policies of
a participant remain independent from the others. Second, the BGP and the
SDN policies are kept separate. This avoids the recomputations that can be
triggered when new updates are received. Once the control plane computation
is carried out, a forwarding equivalence class (FEC) for each member is created,
in order to allow the forwarding of the traffic. For this goal, the reachability
information is encoded inside a tag which is stored inside the destination MAC
address field of the packets’ header. To do so, the multiple match-action tables
feature of an OpenFlow-enabled switch is leveraged. iSDX uses one table for
inbound and one for outbound policies of each participant. A virtual MAC ad-
dress is used to encode the reachability information. We remark that a MAC
address consists of 48 bits. Considering a very large IXP with 1024 partici-
pants, iISDX needs 10 bits to encode the next-hop ASes. The remaining 37 can
be exploited for encoding the received prefix from participants. According to
iSDX [GMBT16] each unique prefix is announced at most by 27 participants
which requires one bit per member to encode them. By using 6 bits for the
bitmask, the iSDX could encode the reachability information of each announ-
ced prefix. This encoding is performed in the inbound table of a participant as
the virtual MAC (VMAC) and will be replaced by the real MAC of destination
in the outbound table of the receiver. This way of encoding the reachabi-
lity information is called hierarchal encoding. To keep the VMAC updated,
many gratuitous ARP messages are injected into the IXP’s LAN;, increasing
the overhead of the whole network.

We leverage the same mechanism for encoding the reachability information
for each prefix, but we rely on the OpenFlow metadata registry.

6.4. A NEW SDN ARCHITECTURE FOR INTERNET EXCHANGE
POINTS 93

Limits of the Existing SDX Architectures

Although the proposed architectures are the result of a deep and sophisticated
research work, up to now very few IXPs adopted SDX or iSDX technologies
(as far as we know, just one IXP is based on SDX [ACC*17]). This, in our
opinion, depends on the following main aspects.

The first issue is the privacy of routing policies. Current architectures do
not offer a guarantee on the privacy of the policies of the participants. Both the
IXP SDN-controller and the Route Server have shared equipment. Anybody
that is allowed to enter such machines can access information that can unveil
(totally or partially) the policies of the members [CALL*17].

A second issue is that the proposed architectures do not allow to clearly
separate and identify who is responsible for what in case of outages. Namely,
in a traditional IXP the center of the architecture is a basic layer-2 switch, with
limited intelligence and limited capabilities (in large IXPs this is substituted
by more complex layer-2 switch fabric; however, its overall behaviour is the one
of a simple switch). This allows, in case of problems, to clearly separate the
responsibility of members and the responsibility of the IXP. In SDX and iSDX
the central SDN-enabled switch and the IXP controller are sophisticated ma-
chines where the policies of all participants are mixed into a unique container.
This does not allow to have a clear boundary between the ISPs and the IXP.

A third issue is the scalability. Integrating into a unique switch the policies
of a large-size IXP can be unfeasible [HVSC16].

Finally, the current architectures do not provide any service for checking the
consistency of members’ policies. Namely, SDX and iSDX lack a component
that is devoted to check whether one or more policies might compromise the
effectiveness of other policies, resulting in an undesired traffic forwarding.

6.4 A New SDN Architecture for Internet eXchange
Points

In this section, we describe our architecture for an SDN-based Internet eX-
change Point. We point out the main differences between SDX and DESI, in
order to show how we overcome the limitations imposed by the SDX architec-
ture.

Our architecture is depicted in Fig. 6.1. Each provider joins the IXP with
its own SDN-enabled switch and its own SDN-controller. In the figure, there
are three providers, whose names are ISP1, ISP2; and ISP3. They are connected
to the IXP peering LAN by means of SDN-enabled switches, which are called

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
94 FOR IXPS

IXP Switch
Fabric

Figure 6.1: Our architecture in which SDN is moved in the provider’s side in
order to avoid policies sharing and to easily identify responsibilities.

OF1, OF2, and OF3. Each SDN-enabled switch is handled by a specific SDN-
controller, namely C1, C2, and C3. Such an architecture does not impose any
limitations on the possibility for a provider to be interconnected to multiple
IXPs. We provide more details about this scenario in Sec. 6.8.

In Fig. 6.1, routers R1, R2, and R3 are IP-speaking devices directly con-
nected, on a specific port, to the SDN-enabled devices and they represent
the whole network of each provider. Note that the IXP switch fabric is not
SDN-based. We decided to move SDN capabilities inside the network of each
provider. Such a choice has two advantages: first, policies are not stored any-
more in a centralized place; second, each provider independently acts on its
own SDN-enabled device, still having the flexibility offered by SDN, but avoi-
ding the possibility of compromising the policies of any other IXP member
connected to the IXP.

Still referring to Fig. 6.1, while the bold lines are physical connections, the
dotted ones represent BGP peerings. This is another change we introduce. In
order to allow each provider to be as flexible as possible, we assume that the
peerings are established between SDN-controllers. T The most valuable benefit
is the possibility of easily interacting with the BGP control plane table which
enables the chance of using multiple paths for the inter-domain routing.

6.5. A ROUTING POLICY MODEL 95

Another consideration regarding the choice of publicly exposing the con-
troller on the peering LAN. We argue that such a situation is not dangerous
for IXP members, for two reasons. First, the peering LAN is typically assumed
to be trusted; second, only the BGP speaker component of the SDN-controller
is publicly exposed on that LAN.

6.5 A Routing Policy Model

In this section we describe our routing policy model, which is based on a
language allowing each provider to forward traffic along multiple paths. Also,
we discuss the semantic of our language, highlighting its main properties.

Our language does not replace the BGP configuration of members for out-
bound and inbound policy specification. Rather, it can be used in conjunction
with the BGP policy specification language in order to extend the standard
BGP capabilities. So, the backward compatibility with standard BGP spea-
kers is preserved. Also, we do not exploit Pyretic [RMFT 13|, since it is based
on the POX controller and it imposes constraints on the controller to use, while
our proposal is more general. We now introduce the model that represents the
building block on which we build our language.

We model the IXP as the set of the ISPs connected to the IXP itself. Let
Z be such a set. Also, let BGP C Z x T be the set of all the BGP peerings
established at the IXP. Given any two providers i1, i € Z, we say that ¢; and s
establish a BGP peering if and only if (i1,i2) € BGP. All the BGP neighbors
of an ISP are modeled as a set: Vi,j € Z, if (i,7) € BGP, then j € N; C T
and ¢ € Nj C Z, namely j belongs to the set of all the BGP neighbors of i and
i belongs to the set of all the BGP neighbors of j, respectively. Finally, given
two ISPs 4, j such that j € N;, we define P; as the set of all the IP prefixes
announced by j to i.

Each provider specifies a set of policies to route traffic through the Internet.
Given a provider i € Z, P; is the policy set of i. We define a policy p € P; as a
pair p = (match — neighbors). The match is a (possibly empty) expression.
The operators of the expression are the logical operators AND (A) and OR (V).
In our language, expressions including the AN D operator are evaluated before
of those including the OR operator. The atomic elements of the expression are
relational conditions in the form atom = walue. Each atom is an element of
the quadruple (srcip, dstip, srcport, dstport), where: 1) srcip is a source IPv4
or IPv6 address; 2) dstip is a destination IPv4 or IPv6 address; 3) srcport is a
source TCP or UDP port; and 4) dstport is a destination TCP or UDP port.

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
96 FOR IXPS

None of the elements is mandatory: a policy without any match condition
means all the trafficc. We define M), as the set of all the atoms in the match
conditions of p. Note that M, can be extended by including any matchable
field defined in the OpenFlow specification [MABT08].

The neighbors part of the policy p € P; is a list of neighbors N,, C A,
that are candidates to receive the packets that match the policy. Hence, we
assume that a single type of action exists within each policy whose semantic
is: (potentially) forward to a meighbor. Such an assumption is not restrictive,
since our language does not replace the BGP policy specification.

Consider the following example. Referring to Fig. 6.1, suppose that ISP1 has
two BGP peerings, one with ISP2 and another one with ISP3 (this is made pos-
sible by the interconnection with the standard IXP fabric switch), and suppose
that it wants to send a portion of its outgoing traffic to ISP2 and another por-
tion to ISP3, according to some field of the packet header. By using a standard
BGP policy specification language, this is not feasible, since BGP computes a
single best path and all the traffic is forwarded along that path.

Given ISP1,ISP2,ISP3 € T and ISP2,ISP3 € Nispi, consider the

following policies p1,p2 € Prsp1:
p1 = (dstip = 20.1.2.0/24 A dstport = 80 — (ISP2,ISP3))
pe = (dstport = 21V dstport = 22 — (ISP3))
Also, consider a prefix 7 = 20.1.2.0/24 such that 7 € P/£E? and 7 € PIEE3.
The semantic of p; is: send all the traffic whose destination IP address falls in
the subnet 20.1.2.0/24 and whose destination port has value 80 to ISP2. Else,
(either ISP2 does not announce that prefix or it is not reachable for temporary
connectivity problems), send that traffic to neighbor ISP3. The semantic of
policy po is: send all the traffic whose destination port has value either 21
or 22 to neighbor ISP3. Observe that p; and ps use a subset of the available
atoms. If not specified in the policy, an atom is considered as a wildcard. Also,
the BGP routing must support the traffic forwarding through the neighbors
specified in the actions part of the matched policy.

Note that policy p; allows the traffic to be forwarded to ISP2 even if ISP2 is
not the best choice for BGP. In order to send that traffic to ISP2 it is enough
that ISP2 announces prefix 20.1.2.0/24. We augment the semantic of a policy by
implicitly stating that if none of the neighbors specified in the action announces
the prefix mentioned in the match, then the traffic is forwarded according to the
BGP computation, even if the neighbor to which the traffic is being forwarded
is not mentioned in the actions part of the policy.

Finally, our language allows for a double level of priority level. Indeed, the
first level is expressed inside the policy when multiple neighbors are defined in

6.5. A ROUTING POLICY MODEL 97

the actions list, as reported in policy p;. In that case, forwarding traffic to
neighbor ISP2 has higher priority than forwarding traffic to neighbor ISP3. The
second priority level is among policies. In the example, policy p; has higher
priority than policy ps. This means that policy p; must be checked always
before policy po and the latter one can be considered by the SDN controller
if and only if traffic cannot be forwarded according to policy p;. Hence, the
policy priority levels are defined by the order of the policies themselves. Such
an ordering might lead to a problem that we call Covering Problem.

The Covering Problem

As we just said, the order of the policies defines their priority. It is important
to note that such an order could lead to the situation in which a policy will
be never selected, even if it should. This circumstance might happen due
to human error. This situation can happen either in proactive or reactive
approaches. Before the formal definition of such a problem, we show this with
an example. Referring to Fig. 6.1, suppose that ISP1 wants to forward traffic
with dstport = 80 to neighbor ISP2 and traffic with dstport = 80 and the
source IP address falling in the subnet 2.0.0.0/8 to the neighbor ISP3. The
ISP1’s network administrator might write the following two policies:

p1 = (dstport = 80 — (ISP2))

p2 = (dstport = 80 A srcip = 2.0.0.0/8 — (ISP3))

Also, suppose that both ISP2 and ISP3 send BGP announcements for the same
IP prefix 7. Now, suppose that two flows must be forwarded according to those
policies. In particular, the flows have the following (portion of the) header:

f1 = (srcip = 1.0.0.1, dstip = 3.0.0.1, srcport = 10, dstport = 80)

fa = (srcip = 2.0.0.1, dstip = 3.0.0.1, srcport = 11, dstport = 80)

and the IP address 3.0.0.1 belongs to the announced IP prefix 7, so that it can
be reached through ISP2 or through ISP3.

In the intention of the ISP1’s network administrator, flow f; must be forwar-
ded according to policy p;, whereas the flow fo must be forwarded according
to policy pe. Suppose that the first packets that arrive belong to f;. Then,
the SDN controller selects policy pi, installing into the open-flow switch the
corresponding OpenFlow rule. Upon receiving the flow f2, the SDN-enabled
switch already has a rule to use. Hence, that flow is forwarded according to the
OpenFlow rule installed after the selection of policy p;1, resulting in a policy
mis-usage. We call such a problem Cowvering Problem, since policy p; covers
policy pa, preventing its selection. In contrast to [KARW16], we do not aim
at finding dependencies for performance purposes. Indeed, we aim at guaran-

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
98 FOR IXPS

teeing that the forwarding is performed according to what an ISP wants to
achieve.

Before formally showing the Covering Problem, we define the priority of a
policy: given i € Z and p € P;, pr(p) is the priority value of p.

Definition. Given iy,is,i3 € Z and p1,p2 € Py, such that pr(p1) > pr(p2),
we say that p1 covers p, if the following two conditions are satisfied: 1) Vn €
N(p1) and ¥Ym € N(p2), P> P> # 0 and 2) My, C M,,.

11

Roughly speaking, the Covering problem states that, given any two policies
of the same provider, the policy with the higher priority value must be the
policy with the largest match condition set, if one of the two policies has the
match condition set that fully includes the other. Note that the Covering
problem does not occur if the match condition sets of any two policies partially
overlap.

To overcome the covering problem, it is enough to give higher priority to the

covered policy (p2 in the example). This results in writing the policies (p; and
p2) in the reverse order. Hence, given i € 7, we say that the set Pff = {p2,;}
is the set of cover-free policies, where:
po = {(dstport = 80 A srcip = 2.0.0.0/8 — (ISP3)) and
p1 = {dstport = 80 — (ISP2))
Note that: 1) the policies set Pff is not affected by the covering problem,
and 2) such a new policies order makes pr(ps) > pr(p1). If the order of the
policies induces a covering problem, DESI must arise a notification, without
undertaking any specific action (e.g. by executing any re-ordering algorithm
for the policies). This means that this problem does not depend on the BGP
announcements, since it is only a static check of the policies.

6.6 From Policies to Forwarding Rules

After a computational process inside the SDN controller, a policy is translated
into one or more suitable forwarding rules to be installed inside each SDN-
enabled switch (e.g. OpenFlow rules). Such rules allow the device to forward
the traffic to the proper neighbors. In the rest of the section we describe such
a process, which consists of a sequence of steps.

Before explaining the process of generating forwarding rules from policies,
we clarify the difference between policies and forwarding rules. While a policy
represents a high-level way to declare how traffic must be routed in the network,
a forwarding rule is the translation of that policy, resulting in suitable data

6.6. FROM POLICIES TO FORWARDING RULES 99

structures which are deployable into the SDN-enabled switches. In our case,
each policy is translated into one or more OpenFlow rules. More details are
given in Sec. 6.9.

We present two approaches, that we call Reactive Approach and Proactive
Approach. The first one performs the translation from policies to rules when the
traffic reaches the switch, whereas the latter one computes such a translation
before any packets reach the device. Of course, each approach comes with
its benefits and drawbacks. Before going deep in the description, we discuss
several differences between them.

The reactive approach performs the translation from policies to rules once
the traffic reaches the SDN-enable switch. Such an approach allows the SDN-
controller to be fast during the start-up phase, namely then the controller is
started, whereas it might be slower when the traffic reaches the device, forcing
the packets to be buffered in the SDN-enabled switch waiting for a forwarding
rule. Indeed, computing the translation can be time-consuming due to the
amount of control plane information to handle.

On the other hand, the proactive approach is complementary. It reduces
the amount of time that the packets must wait in the device’s buffers before
being forwarded. Indeed, the most benefit of this approach consists in allowing
the traffic to be immediately forwarded as soon as it reaches the device, since
the rules are already deployed. On the other hand, the start-up phase might
need a lot of time, especially if the full routing table is announced by some
neighbors and needs to be processed in order to perform the translation from
policies to forwarding rules.

For those reasons, we argue that the reactive approach is a suitable solution
for those providers which handle few amount of entries in their routing tables
(e.g. small providers with few upstreams which announce them the default
route). The proactive approach can be adopted by big providers that directly
handle the full routing table and need to be fast in forwarding a big amount
of traffic (e.g. transit Autonomous Systems).

Thus, there are no limitations in adopting one of the two approaches under
different conditions, provided that benefits and drawbacks of each approach
are evaluated in advance.

We describe the details of those approaches in the following.

The Reactive Approach

In the reactive approach several conditions must be taken into account. First
of all, there could be dependencies among policies. If such a situation happens,

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
100 FOR IXPS

the SDN-controller must be able to detect it and acts properly. To support
that task, we define the Dependency Graph, which is a graph modeling specific
relations among policies.

The Dependency Graph

The policies set P.f, shown in Sec. 6.5, is not affected by the covering problem.
However, such a policies set might be affected by another issue. Suppose that a
traffic flow matching the policy ps (e.g. dport = 80) reaches the SDN-enabled
switch and there is no suitable rule in the forwarding table of the switch to
match that flow. According to the reactive approach, a packet of that flow
is sent to the controller, so that it selects the suitable policy to apply. After
selecting the policy ps and translating it into a forwarding rule, the SDN-
enabled switch is able to route the packets.

Now, suppose that a new traffic flow arrives at the same SDN-enabled
switch. That traffic still has in the header of the packets the value dstport = 80,
but the source IP address now falls in the subnet 2.0.0.0/8. The traffic flow
must be forwarded according to the policy p;, but it is not, since that traffic
flow matches the previously installed forwarding rule (e.g. the rule obtained
from the policy ps).

Through this very simple example, it is evident that two policies, or more,
might depend on each other. In particular, this is true when a lower priority
policy is matched before a higher one. To avoid this problem, we introduce
the concept of Dependency Graph. The dependency graph is a directed graph
G = (V, E) modeling dependency relationships among the policies, in which:
1) V is the set of the vertices. Each vertex represents a policy. Hence, we say
that V' = P, and 2) F is the set of the edges. Each edge is a pair (vq, va) where
v1,v2 € V. Since the graph is oriented, the pair (v1,ve) represents an edge
from v1 to vs.

Given a set of policy P, the dependency graph for that set of policy is a
graph G = (P, E) where P is the set of the vertices, each of which models a
policy, and Vp;, p; € P where i # j, (p;,p; € E if and only if the two following
conditions are satisfied: 1. Pr(p;) < Pr(p;) and 2. M(p;) N M(p;) # 0. Tt is
easy to note that the graph G = (P.s, E) is the dependency graph for the set
Py, where Py = {p1,p2}, and E = {(p2,p1)}. In fact, Pr(p2) < Pr(p:) and
M (p2) N M(p1) = (dstport = 80).

We highlight that the covering problem and the dependency graph address
two different problems, but complementary. In particular, the covering problem
is the problem of a higher policy which prevents the selection of a lower one,

6.6. FROM POLICIES TO FORWARDING RULES 101

whereas the dependency graph is a data-structure aiming at avoiding to forward
the traffic according to a lower priority policy in place of a higher one, if present.
Alg. 1 builds the dependency graph.

Algorithm 1 Creating dependency graph among the policies

1: Input The set of policies (P) for a controller
2: Qutput The set of dependent policies.

3: procedure CREATEGRAPH

4: state all policies as M (p)

5: for each p € P do

6: create a vertex for each policy p
7 end for

8 M(p;) < match fields of vertex i

9 M (p;) < match fields of vertex j

10: i< pr(p) > start with a policy with a higher priority
11: for i=1to P do

12: pick a policy p

13: pick corresponding vertex for p

14: for j=1to j <ido

15: pick the policy for vertex j

16: if M(pj) C M(pz) then

17: add an edge from vertex i to vertex j

18: else if (M(p;) 2 M(pi)) A (M(p;) N M(p;) # 0) then
19: add an edge from vertex i to vertex j

20: end if

21: end for

292: end for

23: end procedure

At the beginning, the set of all the vertices of the graph is built (lines 4-7).
After that, given any pair of policy, they are represented by means of their
match part (lines 8 and 9). Each policy is now compared with each other: if
a policy j has the match condition set that is a subset of the match set of a
lower priority policy ¢ (lines 16 and 17), then an edge from vertex i to j is
added, as well as in lines 18 and 19. After building the dependency graph,
the SDN-controller is now able to produce the suitable set of forwarding rules
that allow the traffic to be forwarded without any mistakes. This step is called
Ezpansion Process and we explain it in the following.

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
102 FOR IXPS

(dstport=80 A srcip=2.0.0.0/8)

Wll ﬂ 7}’12

Figure 6.2: Graph representation of a policy only containing the AN D ope-
rator.

The Expansion Process

In this section, we describe the policy expansion process, namely how the po-
licies are translated into forwarding rules. We explained in Sec. 6.5 that our
routing policy model uses two operators: AND and OR. Since the match
part of an OpenFlow flow entry can be seen as a sequence of match conditions
evaluated by using the AND operator (e.g. a packet matching all the fields
specified in the match condition), we start our explanation by considering a po-
licy whose match part consists of a set of matching conditions using the AN D
operator. After that, we show how policies including the OR operator are
translated into an equivalent set of policies which only use the AN D operator,
making the translation process straightforward.

As the first step of the expansion process, we build a tree for each policy in
which the parent node in the tree indicate the used operator and the leaves of
the tree show the match fields. Fig 6.2 depicts an example of such a representa-
tion. After the tree is built, we run on it a Depth-First Search (DFS) algorithm
on it in order to create the forwarding rule to install on the device. According
to Sec. 6.5, we consider wildcard (x) for all the other match conditions which
do not explicitly appear in the policy itself, and we assume them in AN D with
all the other match conditions.

Relying on this representation, we are now able to represent a policy contai-
ning the OR operator into a set of policies only containing the AN D operator.

6.6. FROM POLICIES TO FORWARDING RULES 103

(dstport=21V dstport=22)

Figure 6.3: Tree representation of a policy containing the OR operator.

Consider the policy:

p = (dstport = 21 V dstport = 22 — (n))
According to the representation we just described, we build the tree shown in
Fig. 6.3. We run the DFS algorithm on this tree. Each time a node containing
an OR operator is visited, a new sub-policy is created. By doing so, the policy
p leads to two policies, which we call p’ and p”, that only contain the AND
operator. In particular, those two policies are:
p’ = (dstport =21 — (n))
p’" = (dstport = 22 — (n))
To better clarify the presence of wildcards and operators, p’ and p” can be seen
in the following way:
p' = (srcip = x A dstip = x A\ srcport = * A dstport = 21 — (n))
p" = (srcip = x A dstip = x A srcport = x A dstport = 22 — (n))

As second step of the expansion process, we actually expand the policy.

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
104 FOR IXPS

By expanding, we mean to check whether the BGP routing allows the policy
itself. To do that, we need to interact with the BGP Routing Information Base
(RIB). Indeed, once a packet arrives in the switch, a policy is selected. Then,
we check whether there is an entry in the BGP RIB allowing that packet to
be forwarded according to the action part of the policy. If so, the policy is
expanded. This means that, if no destination IP address is specified in the
match part of the policy, that IP address is added, after a lookup in the RIB.
We describe it in more detail.

Suppose that a packet matching policy p arrives at the SDN-enabled switch,
whose destination IP address is 7. Since no destination IP address is specified in
p (dip = x), that value must be specified, in order to avoid possible mismatch
with other forwarding rules. So, a lookup in the BGP RIP is carried out,
checking whether 7 € P(n). If it is the case, the policy p is expanded by
setting dip = w. Hence p becomes:

p = ((dstport = 21 V dstport = 22) A dstip =7 — (n)).

The expansion process represents the last step, and it results in the creation
of a set of forwarding rules. As anticipated in Sec. 6.4, we now describe the
proactive approach.

The Proactive Approach

In proactive approach all the policies are translated into forwarding rules before
the traffic flows reach the SDN-enabled switch, namely during the startup phase
of the SDN-controller.

As reported in Sec. 6.3, iISDX relies on the destination MAC address to en-
code all the reachability information, namely the set of neighbors which a flow
can be sent to. We rely on the same encoding iSDX implements, but we exploit
the metadata registry, an available data-structure in the OpenFlow specifica-
tion [Opel8]. It has two advantages: first, we can encode more information,
since the metadata consists of 64 bits, whereas the MAC address is 48 bits
long; second, since we do not change the destination MAC address, we do not
need to inject additional ARP traffic in the network, reducing the overhead of
the whole IXP’s peering LAN.

Now, we show how we exploit the OpenFlow metadata to encode network
reachability information. We assume that:

1. the BGP RIB table is ordered based on the announced IP prefixes;

2. the metadata is a pair (ID,mask) and they have the same length. This
assumption is natively supported by the OpenFlow specification [Opel8].

6.6. FROM POLICIES TO FORWARDING RULES 105

BGP RIB Table OpenFlow Tables

2 100008 | ISP4 10.0.0.08 11110 — (1111000100 | * 80 . 1SP5
3 100008 |1sP5 11.00.08 10001 —» (10001,10000) | * . 21 1sP1
4 100008 | IsP8 120008 11000 (11000,01000) . . . 1SP20
5 110008 | ISP1 - D1 130008 10000
6 110008 | ISP3 14.0.0.08 10000 BGP best paths
7 120008 | I1SP1 16.0.0.008 01000
8 120008 | isP4 16.0.0.0/8 00100
9 130008 | ISP1 17.00.0%8 00010
10 11400058 | ISP20 18.0.0.0%8 11000
111500008 | ISP21 19.0.0.0%8 00001

i~ D2
12 160008 | ISP22
18 |17.0008 | 15P23 IDs sets composition

7 ID1 = (ISP1, ISP4, ISP5, ISP, ISP3)

14 |180008 | ISPt L o3 1D2 = (ISP20, ISP21, ISP22, ISP23, ISP15)
15 | 18.0.0.0/8 | 1SP20 1D3 = (ISP1, 1SP20)
16 [19.0.0.08 | ISP15 } D2

Figure 6.4: Example of how to use metadata to encode network reachability
information.

We use two OpenFlow tables to forward traffic according to the policies defined
at the SDN-controller.

Fig. 6.4 shows an example of how we encode network reachability infor-
mation in the OpenFlow metadata. To do that, we rely on several sets. Each
element of these sets is an ID, namely a value that uniquely identifies a provider
(e.g. the Autonomous System number). Two conditions are needed to create
a new set. These conditions do not have to simultaneously occur. Each set is
created when two conditions happen. The values for the metadata registry are
built relying on those sets. For simplicity, we assume that the metadata is 5
bits length, so that each IDs set exactly contains 5 elements as well which will
be used as mask. The proactive approach consists of three steps: 1) building
the set of the IDs, that are used to populate the metadata registry. Since we
assume that metadata is 5 bits length, each ID strictly contains only 5 elements
as well; 2) filling the OpenFlow Table 1; and 3) filling the OpenFlow Table 2.

First, our controller builds the set of IDs. This step is accomplished in the
following way. At the beginning, no IDs sets are present. Then, our controller
starts to scan the BGP RIB table. It finds that provider ISP1 announces the
prefix 10.0.0.0/8. So, the first set, called ID1, is created and the first element
of that set is the IS ISP1. Still scanning the BGP RIB table, ISP4 announcing
10.0.0.0/8 is the second entry found. Since we have space in the set ID1 (4
bits are still available), ISP4 is included in that set. Such a process continues
until the set ID1 is full. This condition happens when reaching the BGP RIP

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
106 FOR IXPS

entry number 9. Once the entry number 10 is being scanned, a new ISP is
found, namely ISP20. Since the set ID1 is full, a new set, called ID2, is created
and the bit in position one correspond to ISP2. This is the first condition that
triggers the creation of a new IDs set. The second condition that triggers the
creation of a new set is the following. If a prefix is announced by two or more
providers that are already inside two or more IDs sets, then a new IDs set is
needed. Such a condition applies when scanning lines 14 and 15 of the BGP
RIP table. Indeed, the prefix 18.0.0.0/8 is announced by providers ISP1 and
ISP20. Since ISP1 is in set ID1 and ISP2 is in set ID2 (because of prefixes
10.0.0.0/8 and 14.0.0.0/8, respectively), a new set, called ISP3, is needed. The
first step is accomplished.

The second step, namely filling the OpenFlow Table 1, is carried out. The
first OpenFlow table contains an entry for each prefix in the BGP RIB table.
Each entry is associated with a metadata value that is built in the following
way: there is a bit set to 1 for each provider that announces the prefix. The
choice of which bit is set to 1 depends on the position of the ID in the set. As
an example, consider the first entry of the OpenFlow Table 1. Prefix 10.0.0.0/8
is announced by ISP1, ISP4, ISP5, ISP8. Since those providers belong the set
ID1, the metadata value for the considered prefix is 11110.

Finally, the third step, namely filling the OpenFlow Table 2, is accomplis-
hed. This step involves the policies defined at the controller. Indeed, there is
an entry for each policy defined. Consider the policy:
p1 = {(dstport = 80 — (ISP5))
and a traffic flow:
f1 = (sreip = 1.0.0.1, dstip = 10.0.0.1, sreport = 10, dstport = 80)
then an entry is built in the following way: since the destination falls in the
subnet 10.0.0.0/8 and this subnet is announced by providers ISP1, ISP4, ISP5,
and ISP8, the metadata 11110 must be used. Since the policy p; must be ta-
ken into account and the metadata value does not give any information about
which is the neighbor which the traffic must be forwarded to, a mask is needed.
Since policy p; has ISP5 in the action atom, the mask 00100 must be used to
forward the traffic. This process results in the creation of the first entry for the
OpenFlow Table 2 in Fig. 6.4. After the last forwarding rule is installed be-
cause of a policy, this table contains the rules for forwarding the traffic simply
according to the BGP best paths. We recall that this is the forwarding rule we
apply whether the incoming traffic does not match any policies or whether the
BGP routing does not allow the traffic to cross the neighbors specified in the
action part of the policies.

6.7 THE ARCHITECTURE OF OUR SDN-CONTROLLER 107

2] 2]
BGPSpeaker PacketHandler

)

2] 2]
PolicyHandler =31 NetworkHandler

Figure 6.5: High level view of the internal architecture of our SDN-controller.

6.7 The Architecture of our SDN-controller

In this section we illustrate the internal architecture of our controller. We show
the main components of our system and how they cooperate with each other
in order to allow the traffic to be forwarded according to the policies defined
by the user.

The internal architecture of our SDN-controller is shown in Fig. 6.5. It
consists of four main components, called: 1) BGPSpeaker, 2) PacketHandler,
3) Network Handler, and 4) PolicyHandler. We now discuss each component
in detail.

The BGPSpeaker component implements a BGP speaker being able to es-
tablish BGP peering with other speakers, to receive and to announce the BGP
packets and to maintain a full BGP RIB. This component is crucial for two main
reasons: it guarantees backward compatibility with the standard IP-speaking
routers running the BGP protocols and it allows the policies to be expanded,
according to the process widely described in Sec. 6.6.

The PacketHandler component offers basic functionalities for parsing and
creating standard packets used by the controller to accomplish its tasks. For
example, our SDN-controller relies on this component to handle the ARP traffic
exchanged on the peering LAN of the IXP.

The NetworkHandler component allows the SDN-controller to interact with
each SDN-enabled switch. This component implements most of the functiona-
lities described in Sec. 6.8.

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
108 FOR IXPS

PolicyHandler

2] 2] 2]
PolicySplitter DependencyGraph Cover
y A A
Hl g]
Loader < PolicyContainer
N > NetworkHandler
. 2R
PolicyChecker f——¢
A
PolicySelector > PacketHandler
\
2] 2]
Expander > BGPSpeaker

Figure 6.6: A detailed view of the internal architecture of the PolicyHandler.

Finally, the PolicyHandler component is the most important one. It im-
plements all the algorithms described in this paper. It represents the core of
our SDN-controller and carries out most of the functionalities. We now deeply
illustrate this component and how it works.

The internal representation of the PolicyHandler is depicted in Fig. 6.6. It
consists of a set of sub-components, each of which performs a specific task.
The Loader component simply loads the policies (e.g. from a file) and builds
the suitable data-structures representing them. It cooperates with the Split-
ter component in order to build policies only containing the AN D operator,
according to Sec. 6.6. After the policies have been loaded, they are stored in
the PolicyContainer component, which exploits the DependencyGraph compo-
nent to build the graph of policies dependencies described in Sec. 6.6. Also, by
interacting with the Cover component, the PolicyContainer is able to raise a
warning in case of a problem of covering among policies is happening. Finally,
it interacts with the PolicyChecker to check whether policies are syntactically

6.8. APPLICABILITY CONSIDERATIONS 109

correct. Now, the policies are available to be selected and then translated into
forwarding rules according to the approaches described in Sec. 6.6.

The PolicySelector component selects a policy from the set of policies. In
case of the Reactive approach, this component is triggered once a packet reaches
the network devices; if the Proactive approach is running, then it is triggered in
advance (e.g. during the start-up phase of the controller). The interaction with
the network devices explains why it exploits the NetworkHandler component,
whereas the interaction with the PacketHandler is justified by the need of
interacting with the traffic. Finally, it also interacts with the Expander to
carry out the expansion process described in Sec. 6.6. To perform such a step,
the Expander needs to exploit the BGPSpeaker component, which provides a
simple way to access the information contained in the BGP RIB. We recall
that such an interface can be made available since that component implements
a fully standard BGP speaker capable of establishing BGP peering.

6.8 Applicability Considerations

In this section, we discuss several aspects related to the applicability of DESI.
We focus on considerations about specific scenarios and backward compatibi-
lity with standard (or legacy) solutions (e.g., interconnection with IP-speaking
nodes running the BGP protocol).

It is very common that a provider is interconnected to many IXPs. This
choice is typically motivated by either resilience or performance reasons. In
the first case, a provider typically implements the primary-backup strategies
over the peering, whereas in the second scenario, load-balancing policies are
applied. In every case, there might be the need of having multiple controllers.
On one hand, more controllers represent a valid fault-tolerance strategy. On
the other hand, performance increases whether each device is handled by its
own controller, especially in the case of processing the full routing table.

Many techniques can be adopted to design solutions using multiple con-
trollers. The first solution is built according to the master-slave architecture,
consisting of a pair of controllers. A controller of that pair (called master) is
actually managing the SDN-enabled devices and the second one (called slave)
starts to act when the other fails. In case robustness is very crucial, more than
two controllers can be used, resulting in a cluster. In this case, we assume
that both master and slave controllers handle all the SDN-enabled devices. So-
metimes, such an architecture is natively supported by the OpenFlow devices.
Indeed, it is possible to set two (or even more) controllers during the device

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
110 FOR IXPS

configuration: one acting as master and the others acting as the slave. In this
scenario, the OpenFlow device typically sends the same information to all the
controllers, allowing them to have the internal knowledge of the network per-
fectly aligned. Relying on keep-alive messages, the switch is able to verify if the
master controller is running or not. In case of failure, the device immediately
changes the controller, giving to the slave the role of master, being ready to
change once again as soon as the master becomes again reachable.

If this operational way is not supported by the device, multiple controllers
can still be used. Nevertheless, the synchronization among the controllers is
demanded to the controller themselves, that now have to exchange information
about the SDN-enabled devices autonomously, without any kind of support
from the device. This synchronization is carried out according to standard
strategies used in distributed systems (e.g., cold or warm approaches), so that
the slave can replace the master without any lack of information. Surely, other
solutions can be implemented, provided that the internal state of the controllers
is aligned when the master fails and the slave replaces it.

Another scenario involving multiple controllers is the following. A provider
might choose to have a single controller for each IXP it is connected to. The
main difference with the previous scenario is that in this case each controller
handles a single device, or in general a subset of the whole devices the provider
has in different IXPs, whereas in the master-slave approach each controller
handles all the devices. Even in this approach, controllers must synchronize
their internal states. As a solution, iBGP peering among the controllers can be
set as in standard architectures. Also, route reflectors strategies can be applied
for increasing the scalability.

Backward Compatibility

Another consideration in terms of applicability is referred to the backward com-
patibility. Indeed, our architecture is fully compliant with standard (or legacy)
ones. There are no limitations in establishing BGP peering with other provi-
ders which use IP-speaking node. Our solution does not force other providers
in the IXP to have an SDN-controller. Our SDN-controller is able to esta-
blish BGP peering with either other SDN-controllers or standard IP-speaking
routers without requiring any specific configuration on both sides.

6.9. EVALUATION 111

Route Server

As final consideration, we discuss about route servers. It is very common that
IXPs offer the possibility to each participant to establish BGP peering with one
or more router servers. A route server is a collector of BGP announcements, al-
lowing providers to have multiple logical interconnections by setting up a single
BGP peering instead of multiple ones. Even in this case, our SDN-controller
is able to establish a peering with the route server, with no technological limi-
tations. There could be just a limitation in terms of the possibility to choose
among different paths. Indeed, a route server typically computes a single best
path and then only that path is announced along each BGP peering. This ope-
rational way reduces the number of available alternatives that each provider
has. Apart from that, there are no restrictions.

Even if other considerations might be done, we argue that what we discussed
in this section is a significant sample addressing the most important aspects
related to the adoption of our proposal in production environments.

6.9 FEvaluation

We implemented a prototype version of DESI based on the Ryu framework [ryul7]
to validate the practical applicability of our approach. The reason to choose
Ryu is that it provides an implementation of a standard BGP speaker. We used
Kathara [BILD18] emulator to create a network and to run all the SDN compo-
nents of the testbed. We focus our measurements on scalability aspects, taking
into account the impact of our proposal in terms of resource consumption and
required time to perform its tasks.

Our simulations consisted of two parts. First, we built a small IXP to run
our implementation run in order to test the functionality of our controller.
Second, we focused on resource consumption on the machine hosting the con-
troller and the time spent by DESI to carry out its activities. The tests were
carried out varying both BGP announcements and the number of policies for
both the Reactive and the Proactive approaches.

We first illustrate our testbed and several preliminary functionality tests.
Then, we show and discuss the results of the resource consumption tests.
The testbed. We run our experiments in an Ubuntu virtual machine equipped
with 2 GB of RAM and two Intel Core i5 with 2.8 GHz.

Fig. 6.7 shows the topology used to run our functionality experiments. The
network contains a simple IXP consisting of four members (AS10, AS20, AS30,
and AS40), each equipped with an SDN-enabled switch (OF1, OF2, OF3, and

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
112 FOR IXPS

50.0.04 OF4 OF2 50.0.0.2

AS40 R4

Figure 6.7: The topology used for the functionality tests. It simulates a
simple IXP consisting of four members, each announcing just one prefix.

OF4) and with an SDN-controller (C1, C2, C3, and C4). Inside each provider’s
network we place a standard IP-speaking node (R1, R2, R31, R32, and R4)
representing the whole network of the provider itself. In the case of member
AS30, we use two nodes (R31 and R32) to reproduce the case in which a
provider connects multiple border routers in the IXP. This is typically done for
robustness or performance purposes, like primary/backup or load balancing
strategies, respectively. The IXP switch fabric is a legacy layer 2 switch.

In the testbed, we assume that each controller is directly connected to its
corresponding SDN-switch. This assumption is not restrictive. Indeed, since we
do not introduce any constraints on the provider’s backbone, we only need IP
connectivity between SDN-controller and SDN-switch. Note that there are two
connections between those components. These connections represent logical
links: one link is used for the OpenFlow messages, whereas the second one is
used for the BGP messages. We highlight that this interconnection is logical
and not physical. Indeed, every technology that guarantees traffic isolation can
be used (e.g. VLAN).

6.9. EVALUATION 113

100 - - . .

Consumed RAM (%)
S (o) (0]
o o o

N
o
T
1

OH—Hi Aali 1 1 1
0 1000 2000 3000 4000
Number of BGP announcements

Figure 6.8: Percentage of consumed RAM in the proactive approach with a
growing number of BGP announcements.

Each SDN-controller establishes a BGP peering with all the other control-
lers. Within those peerings, each provider announces a single prefix. Also,
each SDN-controller gets its policies from a file. No restrictions are applied,
namely, each controller does not filter anything, resulting in a full-mesh of
peerings. For this experiment, we run both the reactive and the proactive
approaches. We considered the following conditions: 1) We checked that each
controller was able to successfully perform ARP requests over the peering LAN.
This check is needed to allow the BGP messages to reach the right controller.
2) We checked that each BGP announcement was able to reach any other pro-
vider. We also checked that the announcements were successfully stored in the
BGP RIB of each controller. 3) We checked that the traffic generated by each
provider towards each known destination in the IXP was correctly forwarded
according to the policies of each member. The above functionality experiments

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
114 FOR IXPS

were successfully carried out for each approach. Namely, we observed that our
implementation works as expected.

We now show the results of resource consumption. For those experiments,
we focus on a pair of SDN-controllers having a peering between them.

100

oo
o

Consumed RAM (%)
e ()]
(o] o

]
o

DT"—_H—H—'—H—-H

0 5000 10,000 15000 20,000 25,000 30,000
Number of BGP Announcements

Figure 6.9: Percentage of consumed RAM in the reactive approach with a
growing number of BGP announcements.

Resource consumption measurements varying the number of BGP
announcements. The first test we perform refers to the amount of consu-
med resources by a controller which issues a growing number of BGP announ-
cements. In this scenario, we measure the amount of consumed RAM. We
perform experiments for reactive and proactive approaches.

Fig. 6.8 shows the consumed RAM by an SDN-controller issuing a growing
number of BGP announcements. We perform this experiment with a number
of BGP announcements in the range [0,4500]. We observe that the percentage
of RAM grows almost linearly with the number of BGP announcements. In

6.9. EVALUATION 115

particular, during the experiments, our SDN controller consumes at most less
than 5% of the available RAM.

Fig. 6.9 shows the results for the reactive approach. We increase the num-

ber of BGP announcements up to 30,000 and we still observe that the RAM
grows linearly. Essentially, if no traffic reaches the SDN-enabled switch, both
approaches have the same performance. For the test, no policies are given as
input to the controller, so that the forwarding is accomplished according to the
BGP control plane.
Resource consumption measurements varying the number of policies
in presence of traffic. In the second experiment, we keep fixed the number
of BGP announcements to 1,000 and we vary the number of the policies in
the range [100,1000]. For this experiment we use two controllers, C1 and C2.
Controller C1 issues the BGP announcements, whereas C2 processes policies
once it receives BGP messages from C1.

Fig. 6.10 depicts the amount of consumed RAM for the controller C2. Inte-
restingly, C2 requires the same amount of RAM for both approaches. Even in
this case, the amount of required RAM linearly grows with the number of poli-
cies. We ascribe this behavior to the fact that regardless the running approach,
the controllers have all the needed information to issue the forwarding rules in
its data-structure, so that it does not need additional resources (in terms of
RAM) to perform the task of sending OpenFlow rules to the SDN-switch.
Resources consumption measurements varying the number of BGP
announcements in presence of traffic. Finally, we perform an experiment
similar to Test 2, in which we keep fixed the number of policies while we vary
the number of BGP announcements. We still consider two controllers, C1
and C2, where C1 issues BGP announcements and C2 loads the policies and
properly acts based on the implemented approach. We run this experiment
giving 100 policies as input to C2.

Figs 6.11 and 6.12 show the amount of RAM consumed by C2. It is in-
teresting to note that in the case of the reactive approach, the amount of
consumed RAM is essentially constant, while in the case of proactive approach
the amount of RAM grows linearly. We ascribe such a trend to the fact that
in the proactive approach, C2 has to perform several operations in advance,
regardless to the fact that the issued forwarding rules are used by some flows or
not, while in the case of the reactive approach, C2 performs operations only if
required. Those experiments are conducted by injecting in the network traffic
that match several policies given as input to C2.

Time analysis. To assess the scalability of DESI, we perform several ex-
periments measuring the time spent by our system to: 1) handle BGP announ-

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE
116 FOR IXPS

100 - - . .

Consumed RAM (%)
n ()] (0]
o o o

N
o
T
1

e ﬂ——ﬂ——'——"—"—_T
O 1 1 1 1
200 400 600 800 1000
Number of policies

Figure 6.10: Percentage of consumed RAM at C2 in both approaches incre-
asing the number of policies.

cements; 2) translate policies into OpenFlow rules; 3) install the OpenFlow
rules. Fig. 6.13 shows the results of this experiments. In Fig. 6.13a, we show
the time required to handle the BGP announcements received by a provider.
We varied the number of BGP announcements in the range [0,20000] and the
time spent to DESI linearly grows with the number of BGP announcements.
Similarly, Fig. 6.13b and Fig. 6.13c show the time spent by DESI to trans-
late policies into OpenFlow rules and to install them in the OpenFlow switch,
respectively. We varied the number of policies in the range [0, 1000] and, even
in this case, the time required to DESI linearly grows with the number of poli-
cies. Note that, in the case of installing policies into OpenFlow rules, of course
we are not considering the time induced by the network latency. By the way,
that time can be considered negligible, since the management network typically
used by providers induces a delay of few milliseconds (typically, less then 10).

6.10. CONCLUSION 117

100 T T T T T T

Consumed RAM (%)
S (o) (0]
o o o

N
o
T
1

O 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

Number of BGP announcements

Figure 6.11: Percentage of consumed RAM in the proactive approach with a
growing number of BGP announcements.

As a general consideration, these results show that our controller scales
reasonably well.

6.10 Conclusion

We present DESI, a decentralized SDN-based architecture for IXPs. DESI gua-
rantees the privacy of routing policies of ISPs , while opening to the possibility
of overriding the standard traffic forwarding driven by BGP. Also, DESI does
not make the troubleshooting due to possible outages difficult, leaving the IXPs
switch fabric as simple as possible. DESI opens interesting research perspecti-
ves. Indeed, we are aware of possible deflection problems [BGFV17], namely
possible forwarding loops induced by the choice of the non-best BGP paths. Ne-

CHAPTER 6. A DECENTRALIZED SDN ARCHITECTURE

118 FOR IXPS
100 - - . . .

—~ 80 1
>
=

<< 601 T
o
e}
£

S a0} .
[%2]
c
3

20 7

OF 1 = = 1 8 HI ll |1 = 1 = 1

50 100 150 200 250 300

Number of BGP announcements

Figure 6.12: Percentage of consumed RAM in the reactive approach with a
growing number of BGP announcements.

vertheless, we are also studying strategies and countermeasures, mainly based
on the Gao-Rexford conditions [GRO1], to avoid such a possible issue. Also,
we are interested in exploring the possibility of extending DESI with novel
data-plane programmability paradigms, like P4 [BDGT14].

6.10. CONCLUSION 119

o
>

b
®
&

@
8

°

@

N
8
N
ol
°
=

o
S

5
rules in seconds
b
5 &
)
[

o
Time to produce OpenFlow

Required time in seconds

@
o
2

o

Time to install OpenFlow rules (seconds)
=
8

0 5,000 10,000 15,000 20,000 200 400 600 800 1000 200 400 600 800 1000
Number of BGP announcements Number of policies Number of policies

(a) Required time to (b) Required time to trans- (c) Required time to install
handle BGP announce- late policies into OpenFlow OpenFlow rules generated
ments. rules. by a set of policies.

Figure 6.13: Time analysis about the time spent by DESI to perform its
activity.

Chapter 7

Activity-based Congestion
Management (ABC) In
Programmable Networks*

Activity-based congestion management (ABC) is a stateless-core method for
bandwidth sharing among users in packet-switched communication networks.
ABC features a domain concept where ingress nodes record in packet headers
the activity information which depends on the traffic volume recently sent by
the user. Forwarding nodes rely only on this activity to take drop decisions
in case of congestion, in particular, they do not require per-user or per-flow
information. In this chapter, we report about an ABC prototype in P4 and
show selected performance results that demonstrate the ability of this prototype
to protect light users against heavy users. ABC provides an environment where
users can maximize their throughput by sending at their fair share and which
incentivizes the use of congestion control.

7.1 Introduction

Future mobile networks like fifth generation (5G) will consist of small cells that
possibly issue large traffic rates with high fluctuations [JITT16]. As quality of
service (QoS) is required, economic provisioning of the transport network is

*Part of contexts in this chapter is based on the following publication: Mostafaei, H.,
Merling, D., Menth M., Experience from a P4-Based Prototype for Activity-Based Congestion
Management (ABC), under review in IEEE Communications Magazine.

121

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT
122 (ABC)

a challenge. Datacenter networks and residential access networks of Internet
service providers (ISPs) have uses cases with similar requirements.

To avoid QoS degradation, scalable bandwidth-sharing mechanisms for con-
gestion management may be helpful, but they need to be simple and effective.
That means, light users should be protected against overload caused by heavy
users while avoiding per-user signaling and information within the transport
network.

We discuss activity-based congestion management (ABC) for that purpose.
It implements a domain concept where edge nodes run an activity meter that
measures the traffic rates of users and add activity information to their packets.
Forwarding nodes leverage activity-based active queue management (activity
AQM) which leverages this information to preferentially drop packets from
most active users in case of congestion. In [MZ18], ABC has been proposed in
its current form and extensive simulation results have demonstrated that ABC
can effectively protect light users from heavy users to such an extent that single
TCP connection from a light user does not suffer in the presence of congestion
caused by a large constant bitrate (CBR) traffic stream of a heavy user.

As ABC requires additional header information and new features in edge no-
des and forwarding nodes, it cannot be configured on conventional networking
gears. However, advances in network programmability support the definition
of new headers and node behavior. The network programming language P4 is
a notable example [BDG114].

In this work, we report about P4-based prototype for ABC. It demonstrates
the technical feasibility of ABC while pointing out difficulties that may occur
when porting the implementation to other platforms. Furthermore, we present
experimental results which confirm the simulative findings of [MZ18].

The reminder of the chapter is structured as follows. Section 7.2 briefly re-
views related work. Section 7.3 explains the ABC concept in detail. Section 7.4
gives an introduction to SDN and P4. Section 7.5 describes the ABC imple-
mentation in P4. Section 7.6 presents our evaluation methodology. Section 7.7
reports experimental results. Finally, Section7.8 concludes this work.

7.2 Related Work

A comprehensive overview of congestion management techniques can be found

in [Brol3]. Here, we discuss some methods which are similar to ABC.
Core-stateless fair queueing (CSFQ) [SSZ98]| also features a domain con-

cept. Edge nodes label meter the traffic rate of flows or users and record

7.3. ACTIVITY-BASED CONGESTION MANAGEMENT (ABC) 123

them in packet headers. Forwarding nodes leverage this information together
with online rate measurement to detect congestion and to determine suita-
ble drop probabilities for packets. With ABC, forwarding nodes rather use
queue lengths instead of rate measurement to detect congestion and activity-
depending queue thresholds to drop packets. The performance of CSFQ and
ABC has been compared in [MZ18] using simulation.

Fair dynamic priority assignment (FDPA) [CBB*17] is a fair bandwidth
sharing method for TCP traffic. It assigns to the TCP traffic of light users a
higher priority than to the TCP traffic of heavy users. FDPA is implemented
in OpenFlow and P4. It assigns different priority to users’ traffic based on their
traffic rate. While FDPA is applicable only for responsive traffic, ABC works
with responsive traffic, non-responsive traffic, and combinations thereof.

An approximate per-flow fair-queueing approach (AFQ) for reconfigurable
switches has been proposed in [SLAK18]. Tt leverages the features provided by
data plane programmability like per-packet state to dynamically determine a
suitable egress port to a packet. AFQ leverage multiple queues per port and
rotates their priority. However, the functionality of AFQ is not supported by
all target switches. In contrast, ABC exploits the length of available queues to
enforce bandwidth sharing.

7.3 Activity-Based Congestion Management (ABC)

We review the concept of ABC. We first describe the domain structure and its
components. Then, we introduce the activity meter and the activity AQM in
more detail and discuss properties of ABC.

ABC Overview

ABC features a domain concept which is shown in Figure 7.1. Ingress nodes
leverage activity meters to measure the rate of traffic aggregates that enter
the ABC domain. They derive an activity value for each packet and record
that value in its header. Such an aggregate may be, e.g., the traffic of a single
user or a user group. Thus, ingress nodes require traffic descriptors for any
aggregate that should be tracked.

Forwarding nodes of an ABC domain, i.e., ingress nodes and core nodes,
implement an activity AQM for each outgoing interface. They calculate a
moving average A,,q of the activity of all forwarded packets. They leverage
this value A,,4 and the activity A of a received packet to determine the drop

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT
124 (ABC)

ABC domain

&

Edge node w/
activity meter
& marker, activity
AQM

=

-
Core node w/
activity AQM

g

Figure 7.1: Activity metering and tagging is performed only by ingress nodes.
Both ingress and core nodes apply activity AQM during packet forwarding.
Figure taken from [MZ18].

threshold Tgrop. If the current queue length exceeds that threshold, the packet
is dropped. This enforces fair resource sharing among traffic aggregates within
an ABC domain.

Egress nodes of an ABC just remove the activity information from packets
leaving the ABC domain.

Activity Meter

Ingress nodes run an activity meter per monitored traffic aggregate. The acti-
vity meter measures a time-dependent traffic rate R,,. In [MH17], several al-
gorithms have been documented and compared for that purpose. They all can
be configured with a memory which essentially relates to the time over which
the rate is computed. We denote the memory for the activity meter by Maps
which is a configurable value. An activity meter is additionally configured with
a reference rate R, and computes the activity of a packet by A = logQ(%—m).
The activity is written into the header of a packet before passing it to the ABC
domain.

7.3. ACTIVITY-BASED CONGESTION MANAGEMENT (ABC) 125

Activity AQM

Forwarding nodes run an activity AQM per outgoing interface. The activity
AQM runs an activity averager that computes a moving average A4 over the
activity of all successfully forwarded packets. Thus, A4,y reflects mainly the
activity values of recently forwarded packets. Algorithms for moving averages
can also be found in [MH17]. They are configured with a memory, too, to
control how fast old samples lose impact on the computed average value. We
denote the memory of the activity averager by M 4.

When a forwarding node receives a packet, the AQM calculates the drop
threshold by Tgrop(A) = max(Qmin, Qase — V(A — Aqug))- If the current queue
length @ of the egress port exceeds that threshold, the packet is dropped.
Qpase 18 a baseline value around which packet dropping should start. The
drop threshold Ty, is lower for packets with an activity larger than A,,, and
it is larger for packets with an activity lower than A,,,. Therefore, packets
with larger activity are preferentially dropped in the presence of congestion.
The parameter v controls that differentiation. The configurable value Qi
prevents packet dropping in the absence of congestion.

ABC Properties

Ingress nodes require state information per aggregate, i.e., a configurable traffic
descriptor to map the traffic to its activity meter, a counter and a configurable
memory value My, for rate metering, and a configurable reference rate R,..
The memory value M 4,; should be the same for all aggregates within the ABC
domain while the reference rate R, may be used for service differentiation. That
means, aggregates with larger reference rates can obtain a larger capacity share
than aggregates with lower reference rates. This claim is backed by simulation
results in [MZ18].

Forwarding nodes require state information only per egress port, i.e., a
counter for the activity averager and the configurable parameters v, Qin,
Qbpase, and M a4, whereby the latter should be the same for all egress ports
within an ABC domain. Appropriate values depend on forwarding capacity
and queue size. In [MZ18] their impact on resource sharing has been studied
and reasonable values have been proposed for a link speed of 10 Mb/s and a
queue size of 24 packets. Thus, only edge nodes of an ABC domain require
per-aggregate state while core nodes require only state information per egress
port. This makes ABC a scalable congestion management system for closed
networking domains. As potential packet dropping depends on the activity

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT
126 (ABC)

value contained in packet headers, activity meters and forwarding nodes should
be trusted devices. Otherwise, malicious users may avoid ABC control by
inserting low activity values and obtain unfairly large traffic rates.

In [MZ18], ABC has been extended to support service differentiation with
different per-hop behaviors (PHBs). These extensions are simple but we omit
them here for the sake of brevity.

7.4 SDN and Data Plane Programmability Using P4

We briefly explain the concept of software-defined networking (SDN) and in-
troduce data plane programmability with the programming language P4 and
its processing pipeline.

Software-Defined Networking

Conventional networking relies on distributed protocols that are run by swit-
ching devices to determine forwarding actions. E.g., self-learning bridges fill
the forwarding tables in Ethernet networks and routing protocols compute for-
warding tables for IP networks. In contrast, SDN leverages a network controller
to populate forwarding tables of switching devices through a protocol which
is mostly denoted as southbound interface. OpenFlow is a well-known exam-
ple and appropriate switches implement its application programming interface
(API). This concept of SDN is said to decouple data plane from control plane.
Forwarding rules may be coarse- or fine-granular and they may be configu-
red statically or on demand. Therefore, SDN increases network flexibility and
simplifies network management [KRV*15b].

Data Plane Programmability Using P4

The controller-based approach in SDN makes the control plane more flexible.
However, SDN approaches like OpenFlow can work only with existing headers
and forwarding behavior that are configurable through the API. To enable
new forwarding behavior on networking devices and to support new headers,
networking devices require new forwarding logic, i.e., their data plane needs
to be programmed instead of configured. P4 [Th] is a programming language
for that purpose that may be applied on P4-capable switches. Reprogrammed
switches offer an API for configuration purposes. It may be used to manually
configure match action tables or it may be leveraged by a controller to configure
forwarding devices automatically and on demand. Thereby, this form of data

7.4. SDN AND DATA PLANE PROGRAMMABILITY USING P4 127

plane programmability also implements the SDN concept. The definition of
that controller is not part of P4.

A P4 program defines a pipeline for packet processing. It is installed and
configured on the switches through the API. The pipeline of a P4 switch is
visualized in Figure 7.2.

Runtime

forwarding rules

D
1 P : B E o
N Q r} l';' r’= P U
A T
-
T E E S U
R R E T
R

Ingress pipeline Engress pipeline

packet modification+ packet modification
egress selection

Figure 7.2: P4 processing pipeline.

When a packet is processed by the pipeline, first its is parsed. Throughout
the whole pipeline, the parsed header fields are carried together with so-called
standard metadata, e.g., the port on which the packet has been received. In
addition, it is possible to define metadata fields (user-defined metadata) to
store calculated values during processing, e.g. to implement flags for decisions
later in the pipepline. The parser is followed by a programmable sequence of
match action tables. The entries of a table are called rules and each consists
of a match part, and a set of actions. Rules are installed, modified or deleted
during runtime by a controller. When a table lookup is performed, a header
or metadata field is matched onto a table and the field is compared with the
match part of each rule until a matching rule is found. There are different kind
of match types, e.g., longest prefix match, wildcard or exact match. If an entry
matches, the corresponding set of actions, e.g., change header fields and/or
update metadata counters for statistics, is executed and no further matching
on this particular table is executed. To implement IP forwarding, a match
action table would match on the destination IP address of the packet and the

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT
128 (ABC)

corresponding action would be sending the packet to the appropriate egress
port. It is possible to define a sequence of match action tables and to match on
different tables depending on the match of a previous one. However, to prevent
processing loops, it is not possible to match onto a table a second time. The
first sequence of match action tables is called ingress pipeline. Normally it
is used to adapt header fields and to determine the egress port of a packet.
After the egress pipeline has concluded, the header fields and/or metadata are
matched on a second sequence of match action tables: the egress pipeline. After
processing, the packet is deparsed and sent if a port has been specified.

With P4 new headers can be defined and their fields can be used for mat-
ching rules. We leverage this feature for our ABC implementation since ingress
nodes of the ABC domain record the activity of the corresponding aggregate
in a new packet header.

The action sets of a match action table consist of pre-defined primitive acti-
ons like adding or removing a header, reading and writing header or metadata
fields, adding or subtracting values, or dropping a packet. It is possible to
call custom functions within an action set. Those functions are called externs
and the set of available externs depends on the P4-capable switch. On some
switches it is even possible to define new externs. Depending on available ex-
terns, it may be possible to perform floating point calculations or to encrypt
and decrypt fields.

7.5 P4-Based Implementation of ABC

We now describe the implementation of ABC in P4. We first introduce the
leveraged P4 features. Afterwards we explain the P4 packet processing pipeline
for ABC.

Supported ABC Feature Set

An ingress node of an ABC domain activity-meters the traffic and records the
activity in the packet header. A forwarding node performs activity AQM, i.e.,
it calculates the average activity Aqy4 of recently forwarded ABC packets and
possibly drops packets depending on their activity and A4y in case of conge-
stion. An egress node removes the ABC header before the packet leaves the
ABC domain. Our data plane implementation features ingress node, forwar-
ding node, and egress node behavior. An ABC controller configures traffic
descriptors, reference rates R,, and the same memory M4, for all aggregates

7.5. P4-BASED IMPLEMENTATION OF ABC 129

on ingress nodes, as well as Qpase, 7, @min, and the same memory M4 4 on all
forwarding nodes.

We only provide a data plane implementation for ABC. A controller imple-
mentation is straightforward as it statically configures ingress and core nodes.
For testing purposes we utilize a python script that populates the match action
tables with appropriate entries. For the sake of readability we omit some techni-
cal details about P4 programming, the P4 code and P4 syntax. For details we
refer to the P44 specification [P4S17] and the P4;¢ specification [Th].

Metadata

We leverage standard metadata in our P4 program to obtain packet information
for activity metering and activity AQM. Since activity metering relies on time-
dependent rate measurement, the packet arrival time is required. Additionally,
the queue length of the egress port is needed to determine whether a packet
should be dropped. Both values are available through standard metadata. To
store calculated values throughout the pipeline, we rely on several user-defined
metadata fields.

Header

ABC ingress nodes calculate aggregate activities and record them in packet
headers. We define a header for that purpose which consists of a 32 bit field.
ABC ingress nodes push this header onto packets entering the ABC domain.
In P4 it is possible to access all headers of a packet and not just the top-most
header. Thus, this very simple header is sufficient for a simple prototype as
other header information is also available for forwarding decisions. Activity
values are floating point numbers which are not supported by P4. Therefore,
we multiply activity values with 10° and store these values as integers within
the 32 bit field. This causes only negligible inaccuracy.

Externs

Activity metering and activity AQM require logarithmic and exponential ope-
rations. Since both are not supported natively by P4, we leverage extern
functions to implement the necessary functionality. To that end, we added
the desired C++ code for the necessary extern functions to the source code
of the target switch which is the software switch BMv2 version 1.10.3. For
more up to date versions with potentially changed structure and capabilities,

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT
130 (ABC)

we recommend to copy the code of the extern functions and to manually in-
sert them at the appropriate places in the source code. After recompilation of
the software switch our user-defined extern functions were available for our P4
program. The use of such externs makes P4 programs target-specific. In par-
ticular hardware switches offer only very restricted possibilities to add custom
extern functions.

In our P4 implementation we leverage extern functions to measure time-
dependent traffic rates, calculate the packet and average activity, and take
packet drop decisions. Those externs are required for the ABC algorithm itself
and are called within the ingress control flow.

This requires access to the queue length of the egress port. As this infor-
mation is not available in the ingress control flow but in the egress control flow,
we developed the following workaround. The queue length of the egress port
is read from standard metadata and written to a variable by another extern
function which is called by the egress control flow whenever a packet is sent.
This variable is accessed by another extern function in the ingress control flow
to obtain the current queue length of the egress port. This workaround may
cause slight inaccuracies as the ingress control flow utilizes not the current
queue length but the queue length from the instant when the last packet was
sent by the egress port.

Ingress Control Flow

To implement the behavior of an ABC edge node, the first match action table
matches on the source IP address of the packet. This is necessary to calculate
the user-specific activity by an extern function by the aid of the previously in-
troduced metadata. The resulting value is then written into the packet header.
This lookup implements activity metering in ABC edge nodes. Afterwards, the
destination IP address is matched onto another table to determine the egress
port. Additionally, activity AQM needs to be applied to the packet. The ne-
cessary operations namely, calculating the average acitivty, reading the egress
queue size and making the drop decision are performed by additional extern
functions at this point. At the end, the extern function that makes the drop
decision sets an user-defined metadata field that acts as a drop flag. In the P4
processing pipeline the packet is passed to the egress control flow or dropped
depending on the drop flag.

For our proof of concept the ABC control flow is only applied to traffic that
is sent from the clients to the server. Traffic that goes from server to clients

7.6. EVALUATION METHODOLOGY 131

does not pass the ABC domain and is forwarded simply by a match on the
destination IP address.

Egress Control Flow

The egress control flow handles accepted packets. Since the egress port has
already been determined in the ingress control flow, the egress control flow
only needs to call an extern function, that reads the current egress queue size
and writes it into the designated variable. Afterwards, the packet is sent.

7.6 Evaluation Methodology

In this section we describe the experimental setup of our evaluation. First, we
explain the setup of our mininet environment leveraging a P4 software switch,
followed by a description of our experiment design.

Network Design

We emulate a network leveraging mininet version 2.2.2. Two users are con-
nected to a BMv2 P4 software switch via links with 100Mb/s capacity each.
The switch itself is connected to a server via a 10Mb/s link and the buffer size
for this connection is 24 packets. All links are configured in the same way with
a delay of 5ms.

Experiment Design
Scenarios

In each scenario two users try to reach a server. The access links of the two users
have a higher capacity than the link that connects the switch and the server.
Thus, it is possible for a user to turn the link between switch and server into a
bottleneck by sending with a high traffic rate. We have two users. One user acts
as the heavy user that tries to gain as much bandwidth as possible by relying
on an aggressive sending behavior. The second user is a passive, light user.
The light user always sends with a constant traffic rate or a constant number
of TCP flows. In each run we configure the heavy user with an increase traffic
rate or number of TCP flows. During the run, we measure the throughput
of each user on the server. We do this with and without ABC and compare
the throughput. We focus on three scenarios with different combinations of

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT
132 (ABC)

non-responsive (UDP) and responsive (TCP) traffic. In the TCP scenario the
light user establishes one TCP flow and we vary the number of TCP flows of
the heavy user. In the UDP scenario we vary the traffic rate of heavy user
while the light user sends with a constant traffic rate. In the last scenario we
mix TCP and UDP traffic. We increase the UDP traffic rate for the heavy
user and the light user establishes one TCP connection. For each link delay
(5ms or 50ms) we measure the throughput for 300 seconds after running the
experiments with 60 seconds. Each such run is done 10 times to average the
resulting throughput.

Technical Setup

All experiments ran on a virtual machine with Ubuntu 14.04, 4 CPU cores with
3.5GHz and 8 GB of RAM. We leveraged version 3.1.7 of Iperf3 for TCP and
UDP traffic generation.

ABC Parameter

In Section 7.3 we explained ABC. To keep the explanations simple we focused
only on the concept and did not introduce the different parameters. They are
explained in detail in [MZ18]. For the sake of reproducibility of our results
and to make a comparison with [MZ18] we included our parameter set in this
section. We take the values for these parameters from [MZ18]. Q.uin = 12
packets, Qpgse = 20 packets, v = 16, Map = 3s, Maa = 0.3s, R, = 10%.

7.7 Performance Evaluation

In the following we report experimental results with the P4-based ABC imple-
mentation. The detailed simulation results of ABC can be found in [MZ18].
We first describe our evaluation methodology and then we discuss performance
results from three different experiment series.

Evaluation Methodology

The clients send CBR or TCP traffic via a switch to a server using Iperf3
version 3.1.7. We measure the throughput for 300 seconds. We repeat such
experiments 10 times, average the obtained throughput for each user.

We run all experiments on a virtual machine with Ubuntu 14.04, 4 CPU
cores with 3.5GHz, and 8 GB of RAM. To simplify comparison between ex-

7.7. PERFORMANCE EVALUATION 133

perimental and simulation results, we run experiments with the same ABC
parameter settings as in the simulation study in [MZ18]. These configuration
parameters are: May = 3's, R, = 10 Kb/s, Maa = 0.3 s, Qpase = 20 packets,
v = 16, and Qi = 12 packets.

Resource Sharing with CBR Traffic

In a first experiment series both clients send CBR traffic. Client 0 transmits
at different rates Ry € {2.5,5,6,7,7.5,8,9,10,12.5,15} Mb/s while Client 1
sends at at Ry = 7.5 Mb/s. Figure 7.3 shows the obtained throughput for both
clients.

12- :
=0 \\Vith ABC
=== \\ithout ABC
10' K N A A
m— Client O
= =Client 1 (7.5 Mb/s)
L 8
o
= -
5s
) 3 r _
o o)
o S
3 =
E 4l ~ o= =9 & O -~ - o~ —
— 'Y = == = = -
N
A
2 A A
N
\
0- M m e = = —aA
25 5.0 10.0 12.5 15.0

7.5
Traffic rate RO of Client 0 (Mb/s)

Figure 7.3: Resource sharing of Client 0 and Client 1, both sending CBR
traffic.

Without ABC, the throughput of Client 0 continuously increases with incre-
asing traffic rate Ry while the throughput of Client 1 decreases. In particular

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT
134 (ABC)

the throughput is proportional to the sent traffic rate of both clients. Thus,
unfair sending behaviour is rewarded with higher throughput. This is different
with ABC. The throughput of Client 0 continuously increases with increasing
traffic rate Ry while the throughput of Client 1 continuously decreases only as
long as its traffic rate Ry is lower than the traffic rate Ry of Client 1. For larger
traffic rates Ry, Client 0 obtains only a very small throughput while almost
all traffic of Client 1 reaches the server. Reason for that phenomenon is that
traffic from more active users is preferentially dropped in case of congestion.
In this experiment, resources are not shared fairly but the client with lower
throughput is able to increase its packet loss probability by reducing his trans-
mission rate, which improves its throughput as long as the transmission rate
is larger than the fair share. Thus, ABC creates an ecosystem that rewards
clients sending at their fair share and which incentivizes the use of congestion
controlled transport protocols. Note that ABC creates this ecosystem based
on the parameter values that are provided apriori. The fairness comes from
the amount of sent traffic of a client and its contracted traffic rate.

Resource Sharing with TCP Traffic

In a second experiment series both clients send TCP traffic. We vary the
number of TCP saturated connections of Client 0 while Client 1 has only a
single saturated TCP connection. Thus, Client 0 is a heavy user while Client
1 is a light user. Figure 7.4 shows the obtained throughput for both clients.

Without ABC, the throughput of Client 0 clearly increases with increasing
number of TCP connections while the throughput of Client 1 clearly decrea-
ses. With ABC, the throughput of both clients remains around 5 Mb/s if the
number of TCP connections for Client 0 increases. Thus, fair resource sharing
is well approximated.

Resource Sharing with CBR and TCP Traffic

In the third experiment series Client 0 sends CBR traffic at different rates Ry €
{2.5,5,6,7,7.5,8,9,10,12.5,15} Mb/s while Client 1 has a single saturated
TCP connection. Figure 7.5 shows the obtained throughput for both clients.
Without ABC, the throughput of Client 0 increases with increasing trans-
mission rate while the throughput of Client 1 decreases to such an extent that
it can only use the bandwidth left over by Client 0. If the transmission rate of
Client 0 exceeds the capacity of the bottleneck link, Client 1 achieves hardly
any throughput. This is different with ABC. Client 0 can increase its throug-

7.8. CONCLUSION 135

12]
= Client 1 (1 TCP flow)
10! | = =Client0
Y
wt== \\ith ABC -
g | === Without ABC -

Throughput (Mb/s)
(a7]

4 8 16 2

2
Number of TCP flows of Client 1

Figure 7.4: Resource sharing of Client 0 and Client 1, both sending TCP
traffic.

hput by increasing its transmission rate only up to a value that is only slightly
larger than its fair share of 5 Mb/s and the remaining capacity is utilized by
Client 1. Thus, ABC supports fair resource sharing even under challenging
conditions.

7.8 Conclusion

In this chapter we reviewed activity-based congestion management (ABC) for
fair resource sharing and reported a prototype implementation in P4 and ex-
perimental results. Our prototype proves basic technical feasibility of ABC
on programmable switches. However, the prototype leveraged several extern

CHAPTER 7. ACTIVITY-BASED CONGESTION MANAGEMENT

136 (ABC)
10.0 I
f —e— With ABC
| —A = Without ABC
= 75/
= I
% |
s 5.0 !
o
S A
S ,A'
e
1 A
— 25 /

2.5 50 75 10.0 12.5 15.0
Traffic rate RO of Client 0 (Mb/s)

Figure 7.5: Resource sharing of Client 0 and Client 1, Client 0 sends CBR
traffic while Client 1 has 1 TCP connection.

functions that can be implemented on a software switch but may currently
not be available on hardware switches. Thus, P4-capable hardware switches
should provide a wider range of externs to support richer use cases. Experimen-
tal results with the prototype implementation confirmed the resource sharing
results previously obtained with simulations [MZ18]. We reported only results
for a bottleneck link delays of 5 ms, but experimental results for bottleneck
link delays of 50 ms are similar. Thus, ABC works not only in a simulation
environment but also in an emulation environment with real networking stacks.
After all, ABC provides an ecosystem where users can maximize their throug-
hput by sending at their fair share in case of congestion, which incentivizes the
use of congestion controlled transport protocols. As ABC does not require per-
user states in core nodes, it is a scalable mechanism for fair bandwidth sharing
which may be attractive for 5G transport networks, data center networks, or

7.8. CONCLUSION 137

residential access networks of ISPs.

Chapter 8

Conclusions

Issuing value-added network services in the inter-domain networks leads to
several challenging problems in terms of privacy, provisioning, and scalability
due to the co-existence of several technologies and protocols. These challenges
can be mitigated by employing Software-Defined Networking (SDN). The SDN
allows the network administrators to easily define network services on the SDN-
based networks. However, relying on a centralized controller to manage the
whole network suffers from many problems like scalability and privacy. In
this work, we improve privacy, provisioning, and scalability in inter-domain
networks with and without leveraging SDN.

First in chapter 3, we studied the privacy of routing policies at IXPs. An
IXP can leverage router server (RS) to offer multi-lateral peering to IXP’s
participants. Current RS at IXPs failed to provide guarantee on the privacy of
agreements among the members. We proposed an RS implementation for IXPs
not only guarantees the privacy of routing policies but also ensures the security
of RS software. We validate our system through a simulated environment and
the results showed that the system adds a negligible amount of overhead to
ensure the privacy of routing policies. The members of IXP can attest the
RS-software. We leveraged the open source implementation of Intel SGX to
secure our RS-software and to attest the running software. The performed test
confirmed that the implementation can detect any malicious behavior at RS
machine.

In chapter 4, we introduce SDNetkit as an emulator to perform experiments
on SDN-based inter-domain networks. We categorized the current state-of-
the-art works on available simulators and emulators based on their supported

139

140 CHAPTER 8. CONCLUSIONS

OpenFlow versions. We point out several interesting use-cases that can be
performed by SDNetkit which are not supported by current tools. Running se-
veral protocols on each virtual machine of SDNetkit is one of the main features
which give the opportunities to run the required routing daemons, e.g., Qugga,
for inter-domain routing. SDNetkit requires the configuration files for each VM
as they are demanded to run the experiments in a real physical system.

In chapter 5, we showed that how a complex and time-consuming efforts to
setup and provision a network service spanning over several domains can be
simplified at least from configuration point of view by using SDN. We proposed
an architecture for federated networks to issue value-added services by levera-
ging the advantages of SDN and the available backbone network of customers.
Best practice like Geant suggests to use federated PoP to issue such a service
which increases the cost because of renting a physical place, buying racks, elec-
tricity costs, etc. We devised a configuration language with simple yet effective
primitives for the customers of federated networks to easily join and leave a
federated VPN service. The proposed system exploits Domain Name System
(DNS) to identify the customers aiming at sharing their resources. The control
plane evaluation results showed that the proposed system does not introduce
any overhead message to establish a federated VPN service. The system uses
an SDN controller for each customer of a federated network which aims at
scalability of the system.

In chapter 6, we proposed a decentralized architecture to improve the scala-
bility and privacy of SDX-based IXPs, i.e., SDXes. The members of an IXP can
bring their SDN-controllers along with OpenFlow-enabled switches to establish
peering with other members. The proposed architecture is IXP fabric agnostic
meaning that the physical infrastructure remains unchanged. We proposed a
new policy language for the system which allows the members to describe their
customized routing policies regarding their goals like traffic engineering. The
language ables to detect dependencies among the routing policies which is never
considered by current state-of-the-art works. We evaluated the performance of
our system regarding the physical resource consumption and the results showed
that the SDN-controller of each member does not occupy much resources from
each virtual machine. In our system, each member stores its own routing poli-
cies and agreements with other IXP’s participants at its SDN-controller aiming
at not revealing information to any third-party. Like other SDX solution, our
system allows overriding of BGP paths meaning that the controller can select
non-BGP best path to steer the traffic of members aiming at load-balancing.

In chapter 7, we implemented activity-based congestion management (ABC)
in P4 network programming language which is able to process packets at line

141

rate. With ABS edge nodes perform activity metering and tag packets with
activity value while forwarding nodes leverage this information to drop the
packets of heavy users in the case of congestion. ABC makes an ecosystem so
that users can maximize their throughput by sending fair traffic rate. However,
ABC drops packets of heavy users in the case of congestion because they have
higher activity value. We showed that ABC fairly works with responsive, non-
responsive, and combinations thereof.

We believe that there are several open problems that can be considered
as research directions. Leveraging SGX for RS-software comes with overhead.
There are solutions to decrease the SGX overhead [ATG" 16, TSB18]. SGX is
also prone to attacks like side channel attack [OTK™18]. This requires further
investigation in RS-software implementation. The next open question is how
a federated VPN service can be issued leveraging data plane techniques. Inte-
racting with the SDN-controller to issue a federated VPN service adds to the
system which can be removed by programming the network directly in data
plane instead of control plane. The proposals for Software-Defined eXchange
(SDX) assumed that there is no dependency among the routing policies of the
members. We proposed a mechanism to find dependency among routing poli-
cies. However, more efficient algorithms can be designed to find the dependency
among the policies even more to generate the SDN-based forwarding rules from
the policies because the capability of SDN-enabled switches to place the rules
are limited.

List Of Publications

Published papers

1. Habib Mostafaei, Michael Menth, Mohammad S Obaidat, et al. A lear-
ning automaton-based controller placement algorithm for software-defined
networks. pages 1-6, 2018

2. Habib Mostafaei, Gabriele Lospoto, Roberto di Lallo, Massimo Rimon-
dini, and Giuseppe Di Battista. Sdnetkit: A testbed for experimenting
sdn in multi-domain networks. In Network Softwarization (NetSoft), 2017
IEEE Conference on, pages 1-6. IEEE, 2017

3. Marco Chiesa, Roberto di Lallo, Gabriele Lospoto, Habib Mostafaei, Mas-
simo Rimondini, and Giuseppe Di Battista. Prixp: Preserving the privacy
of routing policies at internet exchange points. In Integrated Network and
Service Management (IM), 2017 IFIP/IEEE Symposium on, pages 435—
441. TEEE, 2017

4. Roberto di Lallo, Federico Griscioli, Gabriele Lospoto, Habib Mostafaei,
Maurizio Pizzonia, and Massimo Rimondini. Leveraging sdn to monitor
critical infrastructure networks in a smarter way. In Integrated Network
and Service Management (IM), 2017 IFIP/IEEE Symposium on, pages
608-611. IEEE, 2017

5. Habib Mostafaei, Gabriele Lospoto, Andrea Brandimartey, Roberto Di Lallo,
Massimo Rimondini, and Giuseppe Di Battista. Sdns: Exploiting sdn and
the dns to exchange traffic in a federated network. In Network Softwari-
zation (NetSoft), 2017 IEEE Conference on, pages 1-5. IEEE, 2017

143

144 LIST OF PUBLICATIONS

Under review papers

1. Habib Mostafaei, Gabriele Lospoto, Roberto di Lallo, Massimo Rimon-
dini, and Giuseppe Di Battista. A framework for multi-provider virtual
private networks in software-defined federated networks. International
Journal of Network Management, 2019. Under review

2. Habib Mostafaei, Daniel Merling, and Michael Menth. Experience from
a pd-based prototype for activity-based congestion management (abc).
IEEE Communications Magazine, 2019. Under review

3. Davinder Kumar, Gabriele Lospoto, Habib Mostafaei, Marco Chiesa, and
Giuseppe Di Battista. Desi: A decentralized software-defined network
architecture for internet exchange points. IEEE Transactions on Network
and Service Management, 2019. Under submission

Other Published Papers

1. H. Mostafaei. Energy-efficient algorithm for reliable routing of wireless
sensor networks. IEEE Transactions on Industrial Electronics, 66(7):5567—
5575, July 2019

2. Habib Mostafaei and Michael Menth. Software-defined wireless sensor
networks: A survey. Journal of Network and Computer Applications,
119:42 — 56, 2018

3. Mahmood Javadi, Habib Mostafaei, Morshed U. Chowdhurry, and Je-
mal H. Abawajy. Learning automaton based topology control protocol
for extending wireless sensor networks lifetime. Journal of Network and
Computer Applications, 122:128 — 136, 2018

4. Habib Mostafaei, Antonio Montieri, Valerio Persico, and Antonio Pes-
capé. A sleep scheduling approach based on learning automata for wsn
partialcoverage. Journal of Network and Computer Applications, 80:67—
78, 2017

5. H. Mostafaei, M. U. Chowdhury, and M. S. Obaidat. Border surveil-
lance with wsn systems in a distributed manner. IEEE Systems Journal,
12(4):3703-3712, Dec 2018

10.

11.

145

Paola G Vinueza Naranjo, Mohammad Shojafar, Habib Mostafaei, Zahra
Pooranian, and Enzo Baccarelli. P-sep: A prolong stable election routing
algorithm for energy-limited heterogeneous fog-supported wireless sensor
networks. The Journal of Supercomputing, 73(2):733-755, 2017

Habib Mostafaei. Learning automaton-based self-protection algorithm for
wireless sensor networks. IET Networks, 7:353-361(8), September 2018

Habib Mostafaei, Mohammad Shojafar, Bahman Zaher, and Mukesh Sing-
hal. Barrier coverage of wsns with the imperialist competitive algorithm.
The Journal of Supercomputing, 73(11):4957-4980, 2017

Habib Mostafaei and Mohammad S Obaidat. A greedy overlap-based
algorithm for partial coverage of heterogeneous wsns. In GLOBECOM
2017-2017 IEEE Global Communications Conference, pages 1-6. IEEE,
2017

Habib Mostafaei and Mohammad S Obaidat. A distributed efficient al-
gorithm for self-protection of wireless sensor networks. In 2018 IEEFE
International Conference on Communications (ICC), pages 1-6. IEEE,
2018

Habib Mostafaei, Antonio Montieri, Valerio Persico, and Antonio Pes-
capé. An efficient partial coverage algorithm for wireless sensor networks.
In 2016 IEEE Symposium on Computers and Communication (ISCC),
pages 501-506. IEEE, 2016

Bibliography

[Th]

The P4 Language Consortium. P416 language specification.
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf. Accessed June.
2018.

[ACCT17] G. Antichi, I. Castro, M. Chiesa, E. L. Fernandes, R. Lapeyrade,

|AT16]
[AJ07|

D. Kopp, J. H. Han, M. Bruyere, C. Dietzel, M. Gusat, A. W. Moore,
P. Owezarski, S. Uhlig, and M. Canini. Endeavour: A scalable sdn
architecture for real-world ixps. IEEE Journal on Selected Areas in
Communications, 35(11):2553-2562, Nov 2017.

AMS-IX. Amsterdam internet exchange point members, Sept 2016.

F. Audet and C. Jennings. Network Address Translation (NAT) Be-
havioral Requirements for Unicast UDP. IETF RFC 4787, January
2007.

[AOCT10] Alberto Alvarez, Rafael Orea, Sergio Cabrero, Xabiel G. Paifieda,

Roberto Garcia, and David Melendi. Limitations of network emulation
with single-machine and distributed ns-3. In Proceedings of the 3rd
International ICST Conference on Simulation Tools and Techniques,
SIMUTools 10, pages 67:1-67:9, ICST, Brussels, Belgium, Belgium,
2010. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[APB09] Mark Allman, Vern Paxson, and Ethan Blanton. Tcp congestion

[AS13]

control. RFC 5681, September 2009.

Vitaly Antonenko and Ruslan Smelyanskiy. Global network modelling
based on mininet approach. In Proceedings of the second ACM SIG-
COMM workshop on Hot topics in software defined networking, pages
145-146. ACM, 2013.

147

148 BIBLIOGRAPHY

[ATGT16] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth,
Andre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran,
Dan O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rii-
diger Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure
linux containers with intel SGX. In 12th USENIX Symposium on Ope-
rating Systems Design and Implementation (OSDI 16), pages 689-703,
Savannah, GA, 2016. USENIX Association.

[BA13] R. Bush and R. Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol. IETF RFC 1997, June 2013.

[BDGT14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-
own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, et al. P4: Programming protocol-independent pac-
ket processors. ACM SIGCOMM Computer Communication Review,
44(3):87-95, 2014.

[beal7] Beacon European Project. http://www.beacon-project.eu/, 2017.

[BGFV17] Riidiger Birkner, Arpit Gupta, Nick Feamster, and Laurent Van-
bever. Sdx-based flexibility or internet correctness?: Pick two! In
Proceedings of the Symposium on SDN Research, SOSR ’17, pages
1-7. ACM, 2017.

[BILD18] Gaetano Bonfiglio, Veronica Iovinella, Gabriele Lospoto, and Giu-
seppe Di Battista. Kathara: A container-based framework for im-
plementing network function virtualization and software defined net-
works. In Proc. IFIP/IEEE Network Operations and Management
Symposium (NOMS 2018), 2018. To appear.

[bin17] Bind name server software. https://www.isc.org/downloads/bind/,
Jan 2017.

[Bonll] Olivier Bonaventure. Computer Networking: Principles, Protocols,
and Practice. The Saylor Foundation, 2011.

[Brol3] Broadband Internet Technical Advisory Group (BITAG). Real-time
network management of internet congestion. Technical report, 2013.

[Brul6] Marc Bruyére. An outright open source approach for simple and prag-
matic Internet exchange. PhD thesis, Université de Toulouse, Univer-
sité Toulouse ITI-Paul Sabatier, 2016.

BIBLIOGRAPHY 149

[CBB*17] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, and B. Sanso.
Towards approximate fair bandwidth sharing via dynamic priority
queuing. In 2017 IEEFE International Symposium on Local and Metro-
politan Area Networks (LANMAN), pages 1-6, June 2017.

[CDAT16] Marco Chiesa, Christoph Dietzel, Gianni Antichi, Marc Bruyere,
Ignacio Castro, Mitch Gusat, Thomas King, Andrew W. Moore,
Thanh Dang Nguyen, Philippe Owezarski, Steve Uhlig, and Marco
Canini. Inter-domain Networking Innovation on Steroids: Empowe-
ring IXPs with SDN Capabilities. IEEE Communications Magazine,
54(10):102-108, 2016.

[CDC*16] Marco Chiesa, Daniel Demmler, Marco Canini, Michael Schapira,
and Thomas Schneider. Towards securing internet exchange points
against curious onlookers. In Applied Networking Research Workshop
(ANRW 2016), 2016.

[CDC*17] Marco Chiesa, Daniel Demmler, Marco Canini, Michael Schapira,
and Thomas Schneider. SIXPACK: Securing Internet eXchange Points
Against Curious onlooKers. In In Proc. CoNEXT 2017, 2017.

[CALL*17] Marco Chiesa, Roberto di Lallo, Gabriele Lospoto, Habib Mosta-
faei, Massimo Rimondini, and Giuseppe Di Battista. Prixp: Preser-
ving the privacy of routing policies at internet exchange points. In
Integrated Network and Service Management (IM), 2017 IFIP/IEEE
Symposium on, pages 435-441. IEEE, 2017.

[cfl12] Cloud federation in a layered service model. Journal of Computer and
System Sciences, 78(5):1330 — 1344, 2012.

[CRB*11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F.
De Rose, and Rajkumar Buyya. Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Pract. Exper., 41(1):23—
50, 2011.

[DDdS15] Marco Di Bartolomeo, Giuseppe Di Battista, Roberto di Lallo, and
Claudio Squarcella. Is it really worth to peer at ixps? a comparative
study. In Proc. 20th IEEE Symposium on Computers and Communi-
cation (ISCC 2015), pages 421-426, 2015.

150 BIBLIOGRAPHY

[dLGL*17] Roberto di Lallo, Federico Griscioli, Gabriele Lospoto, Habib Mos-
tafaei, Maurizio Pizzonia, and Massimo Rimondini. Leveraging sdn to
monitor critical infrastructure networks in a smarter way. In Integrated
Network and Service Management (IM), 2017 IFIP/IEEE Symposium
on, pages 608-611. IEEE, 2017.

[dLRB16] Roberto di Lallo, Gabriele Lospoto, Massimo Rimondini, and Gi-
useppe Di Battista. Supporting end-to-end connectivity in federa-
ted networks using SDN. In Melike Erol-Kantarci, Brendan Jennings,
and Helmut Reiser, editors, Proc. IEEE/IFIP Network Operations and
Management Symposium (NOMS 2016), pages 759-762, 2016.

[EN16] Exa-Networks. Exabgp. https://github.com/Exa-Networks/exabgp,
Sep 2016.

[FBP*10] Lars Fischer, Bartosz Belter, Milosz Przywecki, Maribel Cosin, Paul
Van Daalen, Marijke Kaat, Ivana Golub, Branko Radojevic, Srdjan
Vukovojac, and Andreas Hanemann. Building federated research net-
works in europe. In Terena Networking Conference, 2010.

[FFML13] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID
Separation Protocol (LISP). RFC 6830 (Experimental), January 2013.

[Flo00] S. Floyd. Congestion Control Principles. RFC 2914, September 2000.

[FRA16] FRANCE-IX. France Internet eXchange Point members.
https://www.franceix.net/en/france-ix-paris/members-in-paris/, Sept
2016.

[GT13] Technical Working Group et al. Real-time network management of
internet congestion. Technical report, 2013.

[geal7a] Géant European Project. http://www.geant.net, 2017.

[gealTb] Géant European Project VPN services.
https://www.geant.org/Services/Connectivity _and_network/Pages/VPN _Services.a
spx, 2017.

[GGT10] L. Goiri, J. Guitart, and J. Torres. Characterizing cloud federation
for enhancing providers’ profit. In Proc. CLOUD, 2010.

BIBLIOGRAPHY 151

[GMB*16] Arpit Gupta, Robert MacDavid, Riidiger Birkner, Marco Ca-
nini, Nick Feamster, Jennifer Rexford, and Laurent Vanbever. An
industrial-scale software defined internet exchange point. In Procee-
dings of the 13th Usenixz Conference on Networked Systems Design
and Implementation, NSDI'16, pages 1-14, Berkeley, CA, USA, 2016.
USENIX Association.

[g0017] Google ipv6 statistics. https://www.google.com/intl/en/ipv6/statistics.html,
Jan 2017.

[GRO1] Lixin Gao and J. Rexford. Stable internet routing without global
coordination. IEEE/ACM Transactions on Networking, 9(6):681-692,
Dec 2001.

[GSP*12] Debayan Gupta, Aaron Segal, Aurojit Panda, Gil Segev, Michael
Schapira, Joan Feigenbaum, Jenifer Rexford, and Scott Shenker. A
new approach to interdomain routing based on secure multi-party com-
putation. In Proceedings of the 11th ACM Workshop on Hot Topics
in Networks, HotNets-XI, pages 37-42, New York, NY, USA, 2012.
ACM.

[GVST15] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P Do-
novan, Brandon Schlinker, Nick Feamster, Jennifer Rexford, Scott
Shenker, Russ Clark, and Ethan Katz-Bassett. Sdx: A software defi-
ned internet exchange. ACM SIGCOMM Computer Communication
Review, 44(4):551-562, 2015.

[Has95] Dimitry Haskin. A bgp/idrp route server alternative to a full mesh
routing. RFC 1863, October 1995.

[HVSC16] Siem Hermans, Arién Vijn, Jeroen Schutrup, and Joris Claassen. On
the feasibility of converting AMS-IX to an Industrial-Scale Software
Defined Internet Exchange Point, 2016.

[IYZR16] Jared Ivey, Hemin Yang, Chuanji Zhang, and George Riley. Compa-
ring a scalable sdn simulation framework built on ns-3 and dce with
existing sdn simulators and emulators. In Proceedings of the 2016
Annual ACM Conference on SIGSIM Principles of Advanced Discrete
Simulation, SIGSIM-PADS ’16, pages 153-164, New York, NY, USA,
2016. ACM.

152 BIBLIOGRAPHY

[JDS*16] Prerit Jain, Soham Jayesh Desai, Ming-Wei Shih, Taesoo Kim, Se-
ong Min Kim, Jae-Hyuk Lee, Changho Choi, Youjung Shin, Brent By-
unghoon Kang, and Dongsu Han. Opensgx: An open platform for sgx
research. In NDSS, 2016.

[JHRB16a| E. Jasinska, N. Hilliard, R. Raszuk, and N. Bakker. Internet ex-
change BGP route server. IETF draft-ietf-idr-ix-bgp-route-server-10,
Apr 2016.

[JHRB16b| Elisa Jasinska, Nick Hilliard, Robert Raszuk, and Neils Bakker.
Internet exchange bgp route server. RFC 7947, September 2016.

[JITT16] Mona Jaber, Muhammad Ali Imran, Rahim Tafazolli, and Anvar
Tukmanov. 5G Backhaul Challenges and Emerging Research Directi-
ons: A Survey. IEEE Access, 4:1743 — 1766, April 2016.

[JMCA18] Mahmood Javadi, Habib Mostafaei, Morshed U. Chowdhurry, and
Jemal H. Abawajy. Learning automaton based topology control proto-
col for extending wireless sensor networks lifetime. Journal of Network
and Computer Applications, 122:128 — 136, 2018.

[Jur13] P. Jurkiewicz. Link modeling using ns-3.
https://github.com /mininet/mininet /wiki/Link-modeling-using-
ns-3, Sep 2013.

[KARW16] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Wal-
ker. Cacheflow: Dependency-aware rule-caching for software-defined
networks. In Proceedings of the Symposium on SDN Research, page 6.
ACM, 2016.

[KGK15] M. Koerner, C. Gaul, and O. Kao. Evaluation of a cloud federation
approach based on software defined networking. In 2015 IEEE J0th
Local Computer Networks Conference Workshops (LCN Workshops),
pages 657-664, Oct 2015.

[KK14] Kyoungha Kim and Yanggon Kim. The security appliance to bird
software router. In Proceedings of the 8th International Conference on
Ubiquitous Information Management and Communication, page 37.
ACM, 2014.

BIBLIOGRAPHY 153

[KLM*19] Davinder Kumar, Gabriele Lospoto, Habib Mostafaei, Marco
Chiesa, and Giuseppe Di Battista. Desi: A decentralized software-
defined network architecture for internet exchange points. IEEE Tran-
sactions on Network and Service Management, 2019. Under submis-
sion.

[KLS00] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (s-bgp).
IEEE Journal on Selected Areas in Communications, 18(4):582-592,
April 2000.

[KRO7] K. Kompella and Y. Rekhter. Virtual Private LAN Service (VPLS)
Using BGP for Auto-Discovery and Signaling. RFC 4761 (Proposed
Standard), January 2007.

[KRV*15a] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Verissimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-Defined Networking: A Comprehensive Survey. Proceedings
of the IEEE , 103(1):14-76, 2015.

[KRV*15b] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo,
Christian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14-76, 2015.

[KSHT15] Seongmin Kim, Youjung Shin, Jaehyung Ha, Taesoo Kim, and
Dongsu Han. A first step towards leveraging commodity trusted exe-
cution environments for network applications. In Proceedings of the
14th ACM Workshop on Hot Topics in Networks, HotNets-XIV, pages
7:1-7:7, New York, NY, USA, 2015. ACM.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a lap-
top: Rapid prototyping for software-defined networks. In Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,
Hotnets-IX, pages 19:1-19:6, New York, NY, USA, 2010. ACM.

[LIN16] LINX. London internet exchange point route server members.
https://www.linx.net /tech-info-help /route-servers, Sept 2016.

[LO15] Bob Lantz and Brian O’Connor. A mininet-based virtual testbed for
distributed sdn development. In ACM SIGCOMM Computer Com-
munication Review, volume 45, pages 365-366. ACM, 2015.

154 BIBLIOGRAPHY

[MAB*08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Tur-
ner. Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69-74, March 2008.

[MAB*13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Ro-
zas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar.
Innovative instructions and software model for isolated execution. In
Proceedings of the 2Nd International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, HASP ’13, pages 10:1—
10:1, New York, NY, USA, 2013. ACM.

[MBHM13] Ali Jose Mashtizadeh, Andrea Bittau, Yifeng Frank Huang, and
David Mazieres. Replication, History, and Grafting in the Ori File
System. In In Proc. SOSP, 2013.

[MCO18] H. Mostafaei, M. U. Chowdhury, and M. S. Obaidat. Border sur-
veillance with wsn systems in a distributed manner. IEEE Systems
Journal, 12(4):3703-3712, Dec 2018.

[MH17] Michael Menth and Frederik Hauser. On Moving Averages, His-
tograms and Time-Dependent Rates for Online Measurement. In
ACM/SPEC International Conference on Performance Engineering
(ICPE), 1’Aquila, Italy, April 2017.

[min17] Mininext, mininet extended. https://github.com /USC-
NSL/miniNExT, Mar 2017.

[MIX16] MIX. Milan Internet eXchange Point members, Sept 2016.

[ML*17] Habib Mostafaei, Gabriele Lospoto, , Roberto di Lallo, Massimo Ri-
mondini, and Giuseppe Di Battista. SDNetkit: A testbed for experi-
menting sdn in multi-domain network. In Workshop on Multi-Provider
Network Slicing and Virtualization (MPNSV 2017), 2017.

[MLB*17a] Habib Mostafaei, Gabriele Lospoto, Andrea Brandimarte, Roberto
di Lallo, Massimo Rimondini, and Giuseppe Di Battista. SDNS: Ex-
ploiting sdn and the dns to exchange traffic in a federated network.
In Proc. IEEE Conference on Network Softwarization (NetSoft 2017),
2017.

BIBLIOGRAPHY 155

[MLB*17b] Habib Mostafaei, Gabriele Lospoto, Andrea Brandimartey, Ro-
berto Di Lallo, Massimo Rimondini, and Giuseppe Di Battista. Sdns:
Exploiting sdn and the dns to exchange traffic in a federated network.
In Network Softwarization (NetSoft), 2017 IEEE Conference on, pages
1-5. IEEE, 2017.

[MLAL*17] Habib Mostafaei, Gabriele Lospoto, Roberto di Lallo, Massimo
Rimondini, and Giuseppe Di Battista. Sdnetkit: A testbed for expe-
rimenting sdn in multi-domain networks. In Network Softwarization
(NetSoft), 2017 IEEE Conference on, pages 1-6. IEEE, 2017.

[MLAL"19] Habib Mostafaei, Gabriele Lospoto, Roberto di Lallo, Massimo Ri-
mondini, and Giuseppe Di Battista. A framework for multi-provider
virtual private networks in software-defined federated networks. In-
ternational Journal of Network Management, 2019. Under review.

[MM18] Habib Mostafaei and Michael Menth. Software-defined wireless sensor
networks: A survey. Journal of Network and Computer Applications,
119:42 — 56, 2018.

[MMM19] Habib Mostafaei, Daniel Merling, and Michael Menth. Experience
from a p4-based prototype for activity-based congestion management
(abc). IEEE Communications Magazine, 2019. Under review.

[MMO™18] Habib Mostafaei, Michael Menth, Mohammad S Obaidat, et al. A
learning automaton-based controller placement algorithm for software-
defined networks. pages 1-6, 2018.

[MMPP16] Habib Mostafaei, Antonio Montieri, Valerio Persico, and Antonio
Pescapé. An efficient partial coverage algorithm for wireless sensor net-
works. In 2016 IEEE Symposium on Computers and Communication
(ISCC), pages 501-506. IEEE, 2016.

[MMPP17] Habib Mostafaei, Antonio Montieri, Valerio Persico, and Antonio
Pescapé. A sleep scheduling approach based on learning automata for
wsn partialcoverage. Journal of Network and Computer Applications,
80:67-78, 2017.

[MO17] Habib Mostafaei and Mohammad S Obaidat. A greedy overlap-based
algorithm for partial coverage of heterogeneous wsns. In GLOBE-
COM 2017-2017 IEEE Global Communications Conference, pages 1—
6. IEEE, 2017.

156 BIBLIOGRAPHY

[MO18] Habib Mostafaei and Mohammad S Obaidat. A distributed efficient
algorithm for self-protection of wireless sensor networks. In 2018
IEEF International Conference on Communications (ICC), pages 1-6.
IEEE, 2018.

[Mos18] Habib Mostafaei. Learning automaton-based self-protection algorithm
for wireless sensor networks. IET Networks, 7:353-361(8), September
2018.

[Mos19] H. Mostafaei. Energy-efficient algorithm for reliable routing of wi-
reless sensor networks. IEEFE Transactions on Industrial Electronics,
66(7):5567-5575, July 2019.

[MSZS17] Habib Mostafaei, Mohammad Shojafar, Bahman Zaher, and Mukesh
Singhal. Barrier coverage of wsns with the imperialist competitive
algorithm. The Journal of Supercomputing, 73(11):4957-4980, 2017.

[MZ18] M. Menth and N. Zeitler. Fair resource sharing for stateless-core
packet-switched networks with prioritization. IEEE Access, 6:42702—
42720, 2018.

[netl17] Netkit: The poor man’s system to experiment computer networking.
http://netkit.org, Jan 2017.

[ns317] Openflow 1.3 module for ns-3. http://www.lrc.ic.unicamp.br/ofswitch13/,
Apr 2017.

[NSM*17] Paola G Vinueza Naranjo, Mohammad Shojafar, Habib Mosta-
faei, Zahra Pooranian, and Enzo Baccarelli. P-sep: A prolong sta-
ble election routing algorithm for energy-limited heterogeneous fog-

supported wireless sensor networks. The Journal of Supercomputing,
73(2):733-755, 2017.

[ofel7] Openflow in europe: Linking infrastructure and applications.
http://www.fp7-ofelia.eu/, Mar 2017.

[Opel4] Open Networking Foundation. OpenFlow Switch Specification, ver-
sion 1.3.4, Mar 2014.

[Opel6] OpenSGX. "opensgx: An open platform for intel sgx".
https://github.com/sslab-gatech /opensgx/, Sep 2016.

[Opel8] Open Networking Foundation. OpenFlow Switch Specification, 2018.

BIBLIOGRAPHY 157

[OTK " 18] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein,
and Christof Fetzer. Varys: Protecting SGX enclaves from practical
side-channel attacks. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 227-240, Boston, MA, 2018. USENIX As-
sociation.

[ovs17] Openvswitch. http://openvswitch.org/, Jan 2017.
[P4S17] The P4 Language Specification Version 1.0.4, May 2017.

[Peel2] Dr. Peering. Peering policy clauses collected from 28 companies. "In-
ternet Peering Workshop", 2012.

[PGP*| Milosz Przywecki, Ivana Golub, Darko Paric, Maribel Cosin, Paul van
Daalen, Gerben van Malenstein, Peter Kaufmann, Ralf Paffrath, and
Jari Miettinen. Federated pop: A successful real-world collaboration.

[Pos81] Jon Postel. Transmission control protocol. RFC 793, September 1981.

[PRO8] Maurizio Pizzonia and Massimo Rimondini. Netkit: easy emulation of
complex networks on inexpensive hardware. In Proceedings of the 4th
International Conference on Testbeds and research infrastructures for
the development of networks & communities, page 7. ICST (Institute
for Computer Sciences, Social-Informatics and ..., 2008.

[Ram13] Sebastian Rampfl. Network simulation and its limitations. In Procee-
ding zum Seminar Future Internet (FI), Innovative Internet Techno-
logien und Mobilkommunikation (IITM) und Autonomous Communi-
cation Networks (ACN), volume 57, 2013.

[rip17] Ripe ipv6 statistics. https://stats.labs.apnic.net/ipv6/, Jan 2017.

[RLHO6] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-
4). RFC 4271 (Draft Standard), January 2006.

[RMF*13] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rex-
ford, and David Walker. Modular sdn programming with pyretic.
Technical Reprot of USENIX, 2013.

[RRO6] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private Networks
(VPNs). RFC 4364, February 2006.

158 BIBLIOGRAPHY

[RSFT14] Philipp Richter, Georgios Smaragdakis, Anja Feldmann, Nikolaos
Chatzis, Jan Boettger, and Walter Willinger. Peering at peerings: On
the role of ixp route servers. In Proceedings of the 2014 Conference on
Internet Measurement Conference, IMC *14, pages 31-44. ACM, 2014.

[ryul7] Ryu: component-based software defined networking framework.
https://osrg.github.io/ryu/, Jan 2017.

[SF14] N. Shen and D. Farinacci. LISP Multi-Provider VPN Use-Cases, July
2014.

[SGH14] Y. Shuai, M. Gorius, and T. Herfet. Low-latency Dynamic Adaptive
Video Streaming. In In Proc. Broadband Multimedia Systems and
Broadcasting (BMSB),, 2014.

[SKC*17| Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-
Bassett, Harsha V Madhyastha, Italo Cunha, James Quinn, Saif Ha-
san, Petr Lapukhov, and Hongyi Zeng. Engineering egress with edge
fabric. In Proceedings of the ACM SIGCOMM 2017 Conference (SIG-
COMM’17). ACM, New York, NY, USA, 2017.

[SLAK18] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krish-
namurthy. Approximating fair queueing on reconfigurable switches.
In 15th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 18), pages 1-16, Renton, WA, 2018. USENIX
Association.

[SSZ98] Ton Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing;:
Achieving approximately fair bandwidth allocations in high speed net-
works. In Proceedings of the ACM SIGCOMM ’98 Conference on
Applications, Technologies, Architectures, and Protocols for Compu-
ter Communication, SIGCOMM 98, pages 118-130, New York, NY,
USA, 1998. ACM.

[Sup16] Cisco Support. Configuring and verifying
the bgp conditional advertisement feature.
http://www.cisco.com/c/en/us/support/docs/ip /border-gateway-
protocol-bgp/16137- cond-adv.html, Sep 2016.

. Salsano, P. L. Ventre, F. Lombardo, G. Siracusano, M. Gerola,
SVL*16] S. Sal P. L. Vi F. Lombardo, G. Si M. Gerol
E. Salvadori, M. Santuari, M. Campanella, and L. Prete. Hybrid

BIBLIOGRAPHY 159

ip/sdn networking: Open implementation and experiment manage-
ment tools. IEEE Transactions on Network and Service Management,
13(1):138-153, March 2016.

[Tecl6] Juniper TechLibrary. Configuring conditional installation of prefixes
in a routing table, Apr 2016.

[Thel3] The Open Networking Foundation. Sdn architecture overview. Techni-
cal report, 2013.

[tom17] The topology management tool (tomato). http://tomato-lab.org/,
Mar 2017.

[TSB18] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. Vault:
Reducing paging overheads in sgx with efficient integrity verification
structures. In Proceedings of the Twenty-Third International Confe-
rence on Architectural Support for Programming Languages and Ope-
rating Systems, ASPLOS ’18, pages 665-678, New York, NY, USA,
2018. ACM.

[TW96] Andrew S Tanenbaum and David Wetherall. Computer networks.
Prentice hall, 1996.

[uml17] The User-mode Linux Kernel. http:/ /user-mode-
linux.sourceforge.net/, 2017.

[Unil6] Roma Tre University. "computer networks research groups".
https://bitbucket.org/rdl87/prixp/src, Sep 2016.

[WBL'16] Yangyang Wang, Jun Bi, Pingping Lin, Yikai Lin, and Keyao
Zhang. Sdi: a multi-domain sdn mechanism for fine-grained inter-
domain routing. Annals of Telecommunications, 71(11):625-637, Dec
2016.

[WCY13] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang. Estinet
openflow network simulator and emulator. IEEE Communications
Magazine, 51(9):110-117, 2013.

[WDS* 14| Philip Wette, Martin Draxler, Arne Schwabe, Felix Wallaschek,
Mohammad Hassan Zahraee, and Holger Karl. Maxinet: Distributed
emulation of software-defined networks. In Networking Conference,
2014 IFIP, pages 1-9. IEEE, 2014.

160 BIBLIOGRAPHY

[WZHW17] G. Wang, Y. Zhao, J. Huang, and W. Wang. The controller pla-
cement problem in software defined networking: A survey. IEEE Net-
work, 31(5):21-27, 2017.

[YMR'17] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett,
Matthew Holliman, Gary Baldus, Marcus Hines, Taceun Kim, Ashok
Narayanan, Ankur Jain, et al. Taking the edge off with espresso:
Scale, reliability and programmability for global internet peering. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 432—445. ACM, 2017.

[ZZGT12] Mingchen Zhao, Wenchao Zhou, Alexander J.T. Gurney, Andreas
Haeberlen, Micah Sherr, and Boon Thau Loo. Private and verifia-
ble interdomain routing decisions. In Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, SIGCOMM ’12, pages
383-394. ACM, 2012.

	Contents
	List of Tables
	List of Figures
	Introduction
	Contributions
	Outline

	Background
	Inter-domain Networks
	Inter-domain Routing
	Route Server
	Border Gatewy Protocol (BGP)
	Congestion Control
	Network Emulation
	Software-Defined Networking (SDN)

	Privacy of Routing Policies at IXPs
	Introduction
	Background: Route Server Architecture
	Enforcing Privacy of Routing Policies
	Discussion on Security Issues
	Experiments
	Related Work
	Conclusions and Future Works

	Experimenting SDN in Inter-Domain Networks
	Introduction
	Related Work
	From Netkit to SDNetkit
	A Simple Example and Success Stories
	Configuration Considerations
	Limitations of Network Emulators
	Conclusions and Future Work

	Multi-Provider VPNs in Software-Defined Federated Networks
	Introduction
	Related Work
	Best Practices for Federated Networks
	SDN-based Federated Networks
	Subscribing to a SDN Federated VPN Service
	A Complete Example
	Takeaway
	Evaluation
	Conclusions and Future Work

	A Decentralized SDN Architecture for IXPs
	Introduction
	Related work
	SDX based IXP Architectures
	A New SDN Architecture for Internet eXchange Points
	A Routing Policy Model
	From Policies to Forwarding Rules
	The Architecture of our SDN-controller
	Applicability Considerations
	Evaluation
	Conclusion

	Activity-based Congestion Management (ABC)
	Introduction
	Related Work
	Activity-Based Congestion Management (ABC)
	SDN and Data Plane Programmability Using P4
	P4-Based Implementation of ABC
	Evaluation Methodology
	Performance Evaluation
	Conclusion

	Conclusions
	List Of Publications
	Bibliography

