
Roma Tre University
Ph.D. in Computer Science and Engineering

Cybersecurity of Industrial
Control System.

Innovative solutions to enhance
the security posture.

Federico Griscioli

Cybersecurity of Industrial Control System.
Innovative solutions to enhance the security posture.

A thesis presented by
Federico Griscioli

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

Autumn 2019

Committee:
Prof. Maurizio Pizzonia, Roma Tre University, Italy

Reviewers:
Prof. Tiago José dos Santos Martins da Cruz, University of Coimbra,
Portugal
Prof. Erik Poll, Radboud University, The Netherlands

To my Family and my roots that let me fly
To light and fresh air.

To the gift for seeing far away with an open heart.

Contents

Contents vi

1 Introduction 1
1.1 Industrial Control Systems . 1
1.2 Cyber Security in Industrial Control System 3
1.3 Advanced Persistent Threats and Lesson Learned 4
1.4 Software Defined Networks and Industrial Control System . . . 7
1.5 Cloud Computing and Industrial Control System 8
1.6 Thesis Outline . 10

2 Enabling Promiscuous Use of Thumb Drives 15
2.1 State of the Art and Background 17
2.2 Requirements . 18
2.3 Security and Threat Models . 21
2.4 Architecture . 23
2.5 Example of Use . 28
2.6 Security Analysis . 29
2.7 Applicability Considerations . 31

3 BadUSB Attacks: Hardware-based Protection 35
3.1 Background . 36
3.2 Architecture . 37
3.3 Interactions . 39
3.4 Security analysis . 42

4 USBCaptchaIn: Integrated USB Attacks Protection 45
4.1 State of the Art . 46
4.2 Actors and Requirements . 49

vi

CONTENTS vii

4.3 Security and Threat Model . 50
4.4 Architecture . 51
4.5 Security Analysis . 60
4.6 Ensuring Full Integrity and Providing Additional Functionalities 63
4.7 Applicability Considerations . 64
4.8 Prototypical Realisation and Feedbacks from Experts 66

5 Software Defined Networking applied in the Industrial Con-
trol System Environment 69
5.1 State of the Art and Background 70
5.2 Application Context and Terminologies 71
5.3 Requirements . 73
5.4 A Methodology and an Architecture 74
5.5 Problem Formulation for the Off-Line Routing Solver 77
5.6 Standard streams: methodology and algorithm 80
5.7 Evaluation . 83
5.8 Possible Variations and Improvements 87

6 Integrated Solution for Industrial Control System Defence 91
6.1 State of the Art . 93
6.2 The Preemptive Project . 94
6.3 Tools Integration and Evaluation 95
6.4 Discussion . 102
6.5 Improvement of Preemptive Framework 105

7 A Scalable Way to Use Authenticated Data Structures in
the Cloud for Industrial Control Systems 109
7.1 State of the Art . 112
7.2 Background . 115
7.3 Models and Terminology . 118
7.4 The Blocking Approach . 128
7.5 Overview of Intermediate and Main Results 131
7.6 The Simplified Pipeline-Integrity Protocol 137
7.7 An ADS-Based Quasi-Fork-Linearisabile Protocol 153
7.8 The Pipeline-Integrity Protocol 162
7.9 Dealing with Non-Ideal Resources 169
7.10 Experimental Study . 170

8 Conclusions 179

viii CONTENTS

9 Acknowledgments 183

10 Appendix 185

Bibliography 199

Chapter 1

Introduction

1.1 Industrial Control Systems

Operational technology (OT) is a generic term used to identify hardware and
software used to control physical equipments and processes. One of the major
segment of the OT is the Industrial control systems (ICSs). ICS is made for
of several parts, like, Supervisory Control and Data Acquisition (SCADA) and
Programmable Logic Controllers (PLC) largely used in the industrial sector
and critical infrastructure [SPL+11].

Such a systems differ from regular Information Technology (IT) systems in
several ways, and also for their security objective. IT systems have as their
primary objective the confidentiality of the data. In contrast, ICS is mainly
focused on the availability of the industrial process. Note that, both IT and
ICS have the integrity as a second security goal.

IT and ICS world also different for requirements in term of latency. In the
ICS it is common to have application requiring low latency, like the applications
in charge of interacting with device at the process level.

The ICSs is generally segmented in different areas, each one with a specific
role. According to the PERA model [Wil98] there should be five different zones.
We consider a simplified architecture of an ICS (see Figure 1.1) composed by
the following areas:

(I) enterprise zone (management/corporate): the zone where IT infrastruc-
ture systems and applications are placed,

1

2 CHAPTER 1. INTRODUCTION

Enterprise Zone
Enterprise
Site Business Plan & Logistic

Operations & Control Zone
Site Manufacturing

Operations & Controls

Process Zone
Supervisor control

Basic Control

Process

Figure 1.1: Simplified architecture of an Industrial Control System.

(II) operations and control zone:, the zone that is in charge of managing and
controlling the operations needed to produce the end product, and

(III) process zone: the zone where are placed the devices that directly control
the manufacturing process, i.e., sensors and actuators.

The architecture of ICSs has been changing in the last few years. Originally
ICSs were built without cybersecurity in mind and having as a main concern
the reliability. The old ICSs were protected by a physical isolation between
the process zone and the rest of the world, called air gap. The air gap aims at
eliminating network interfaces that can be potentially exploited by attackers
to gain unauthorised access to the system. Many ICSs implement the isolation
by firewalls instead of physical isolation arguing that a software isolation it is

1.2. CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEM 3

enough to guarantee a proper protection.

The use of firewalls instead of the air gap is increasingly common. Recently,
we are witnesses of a certain convergence between IT and OT driven by the idea
that this integration can enable additional features and increase the flexibility
and the efficiency of the systems. For instance, a direct connection between the
enterprise and the process can enable data analysis and, especially, predictive
analytics in order to facilitate real-time decision. This could be potentially
a benefit for time-sensitive decisions for which the latency between events at
process level and decisions, mostly taken at corporate level, is relevant. For
instance, in this way, the performance of the system and the efficiency, in
term of usage of the resources, can be enhanced. The integration of the high
connectivity and all features typical of the IT world (e.g., mobile applications)
with the OT world can potentially boost up the productivity of the system.

1.2 Cyber Security in Industrial Control System

The cyber security scenario is deeply changed in the last few years. Nowadays,
most of the attacks are launched by wealthy organizations. It is common to
recognise behind skilled attacks criminal organizations or countries (i.e. foreign
intelligence) that combat silent wars by means of cyberweapons. Both of them
are high motivated and with a lot of capital to invest in this kind of activities.
That means they have the capability to tailor attacks for specific targets so
that the possibility of failure is drastically reduced.

Critical infrastructures, and especially ICSs, are privileged targets of these
attacks. Likely, it is due to the important role covered by these systems in
the society. Indeed, an attack against an automation system, like an electrical
utility, could be disastrous having an huge impact on common people. This
is a possible case in which a cyber-attack can become a cyberweapon. In
the last decade, the architecture of the ICSs is changed drastically. Also if
the ICSs are still focused on the service, hence on the availability, they are
moving fast to become a realisation of the system much more sophisticated.
Air gap between the process zone and corporate zone seems to be unrealistic, as
information exchanges result to be essential for process and business operations
to function effectively. Further, innovative attacks as the Advanced Persistent
Threats (APTs) [FMC11a] have largely demonstrated the air-gap is not totally
effective as a security defence. Indeed, there are several pathways that can be
travelled to reach an air gapped system like removable media such as thumb

4 CHAPTER 1. INTRODUCTION

drives, CDs, DVDs. Indeed, thumb drives can be considered an effective mean
of infection [TDF+16].

The convergence between IT and OT exposes the ICSs to a set of vulnerabil-
ities that are typical of the IT world. Leveraging the IT, on one hand enhances
the usability of ICSs but, on the other hand, increases the attack surface since
the system exposes an additional set of interfaces that can be exploited by an
attacker. For instance, we can take into account the use of mobile application
to have a view of the process level. For sure, it creates value in term of usability
but it also turns out to be a potential direct entry point to infect remotely the
sensors in charge of monitoring the manufacturing process.

We argue the integration of IT with OT exposes the latter at a set of ad-
ditional risks that are challenging to face. Unfortunately, defences that are
often effective in the IT are not easy applicable in the ICS due to the strict
requirements of availability. A simple deployment of a patch or keeping the
system up-to-date is most of the time unfeasible. This becomes more relevant
in the ICS where is pretty normal to find legacy devices for which is likely to
have exploitable vulnerabilities.

At the moment, one of the most relevant challenge regarding the security
of ICSs is the speed at which threats change. It is fundamental to change the
approach to the security and the mindset in order to face threats introduced
by the new design of such systems and all recent innovations. A recent trend
in the design of new ICSs is the so call security by design for which systems
are designed by the beginning having the security in mind. The main focus is
to make the developing system as free of vulnerabilities and robust to attacks
as possible. Security by design is a guiding principle that leads to build the
security in every part of the system so that the security becomes an implicit
result. The long life-cycle of the equipments in a ICS suggests that it is common
to have legacy devices in such environments. The downside is that assuming
that a new part of the system has been just designed according to security by
design approach and deployed, a cooperation of this part with another legacy
could introduce weaknesses that could be hard to patch and make the new part
somehow vulnerable.

1.3 Advanced Persistent Threats and Lesson Learned

The rapidity of the change of the ICS threats scenario and the new approach
to the design of such systems force organizations to modify their approach

1.3. ADVANCED PERSISTENT THREATS AND LESSON LEARNED 5

to security. While traditional threats continues to be an important concern,
attacker are more and more skilled. Nowadays, we talk about Advanced Persis-
tent Threats [Col13]. This term has evolved from its birth. Today it is used to
stress the capability of this kind of malware to compromise effectively a system
remaining hidden for long time.

APTs are so sophisticated to be able to bypass common protections and
remain hidden for long time, also years. Once an APT has taken the control
of the first machine of the target system, as a first step, it opens a communi-
cation channel with a machine placed outside the organization, called master
and control, and starts gathering information about the internal structure of
the system and its possible vulnerabilities. The master and control is in charge
of harvesting all information sent by the worm and processing them in order to
tailor the attack technique to the specific victim system. In this way, the attack
has high probability to perform undetected lateral movements and silently exfil-
trate sensitive information. An attack against the manufacturing process often
represents the last stage of the APT since, with high probability, it is going
to be detected by the the Intrusion Detection System (IDS) of the organization.

Stuxnet [FMC11a] is the first APT. Discovered in the 2010, it targeted an
Iranian nuclear power plant physically isolated (i.e., without any connection
outside the power plant). This worm is the demonstration of how the air-gap
approach is an ineffective defence against such innovative attacks. Indeed, the
initial infection vector was a thumb drive containing a malware, introduced
in the target environment by a contractor or an insider. Once, the first com-
puter was compromised, Stuxnet became to spread over the internal network in
search of a specific device with Windows OS (e.g., Simatic Field PGs) designed
to program Programmable Logic Devices (PLCs). Such devices was compro-
mised exploiting a known Windows vulnerability and was used as a foothold
to change the code in the PLC which were in charge of controlling the process.
This approach suggests the attacker(s) had performed an information gathering
before the attack and, hence, the attack has been created with a specific target
in mind. Then, a master and control has been used to update the Stuxnet
executable in order to perform lateral movements and reach the ultimate goal
that was to sabotage the system. Indeed, the last stage performed by that
worm was to alter the speed of power plant centrifuges and shut them down.
Since the monitor and control system was already compromised, the disruption
of the process was not detected till the effects were evident.

6 CHAPTER 1. INTRODUCTION

The APTs have pointed out a new innovative pattern of attack that mixes
not known vulnerabilities, called 0-days, to old vulnerabilities to achieve their
final objective that can alter the manufacturing process, like Stuxnet, or ex-
filtrate information, like, for example, Duqu [BPBF11]. APTs are partially
automated and partially involve humans intervention realised by means of the
establishment of a connection with a master and control. The presence of a
skilled attacker guarantees an effective ability to adapt the attack to the spe-
cific targeted system. Unexpected changes or defences deployed in real time
can be circumvented thanks to human analysis and reasoning. USB thumb
drives turned out to be an effective infection vector [TDF+16]. They can be
weaponised to compromise also physically isolated systems (i.e., air-gapped
systems) and protected by traditional defences.

Most of the time, these advanced threats enter into an organization as
something legitimate, e.g., legitimate traffic or file. Once the system has been
infected, an APT executable replicate itself in order to lateral-move over the
system while remaining hidden as long as possible. So, the traditional defences
result to be totally ineffective. A reactive approach to security seems to be
no longer adequate. The idea of waiting for a visible sign before acting does
not work with APT since, most of the time, when something becomes visible
the attack has already reached the final target and every action is by then
worthless. According to that, a change of the mindset to security is vital. It is
important to start thinking as if the system were under attack every moment.
The huge step forward done by APTs with respect to other type of threats is the
persistence. Other malwares try to compromise a target using a limited list of
techniques. If after a while they do not succeed, they jump to the next target.
This is not true for APTs. Instead, these persistent malwares keep trying
till they are successful. The organizations should switch from a reactive to a
proactive approach and the attack surface has to be reduced to the minimum
possible. The deployment of defences focused on blocking infections at the
first stage is a must. These defences have to take also into account the use of
USB thumb drives to circumvent the first line of protections placed to isolate
properly the internal perimeter of the system from the outside. There is not
a silver bullet to secure a system, especially when we talk about the malwares
that nowadays are targeting ICSs: the defence in depth concept has to be
applied. This concept is based on the idea that a single technology is not able
to safeguard a systems but different levels of protections are needed. Detection
techniques that properly integrate heterogeneous data collected from different
parts of the system, e.g., from process and corporate, are valuable to increase

1.4. SOFTWARE DEFINED NETWORKS AND INDUSTRIAL CONTROL
SYSTEM 7

the probability to identify APT-like attacks.

1.4 Software Defined Networks and Industrial Control
System

Software Defined Networking (SDN) [Fun12] is a relatively new paradigm ini-
tially used to describe the OpenFlow project [MAB+08] devised in Stanford
University.

The SDN technology has been changing how networks are designed simpli-
fying the network management and enabling innovation. The main change with
respect to the traditional approach to the network management is the separa-
tion of the control plane from the data plane and the possibility to set up the
behaviour of the network devices (e.g., routers and switches) by software. The
control plane represents the “mind” that is in charge of taking decision how to
move packets. The data plane represents the “arm” that is in charge of mov-
ing the packets according to the instructions given by the control plane. The
decision-making process is centralised in a controller that, having an overview
of the entire network, can control multiple elements of the data plane like, for
example, switches and routers. The behaviour of the data plane for a specific
traffic flow (also simply called flow) is characterised by rules that define the
actions to perform.

Two control models are possible: reactive and proactive. We have a reactive
control model when the switch (or router) consults the controller to know how
a new flow has to be handled. The downside of this approach is that for each
flow there is an additional latency induced by consulting the controller. On the
other hand, the benefit of this approach is that it makes network management
particularly flexible since each flow is routed according to the status of the
network at that specific instant of time. We have a proactive control model
when the controller populates the flow tables of the switches (or routers) in
advance with respect to the flows arrival. The benefit of this approach is that
it eliminates the latency due to the request sent to the controller to know how
to handle flows. The downside is that the routing policies have to be defined
ahead in time and, hence, the system could result to be a little bit less flexible
with respect to the reactive control model.

The architecture of ICS are growing increasingly complex (e.g., smart grids).

8 CHAPTER 1. INTRODUCTION

The demand of additional functionalities, like for example the data analytics,
requires more connectivity within the system. In a static environment such
as the industrial system, where the traffic patterns are pretty limited and the
equipments have a long life-cycle, changes in the network architecture can be
not so easy to do. The SDN and its flexibility seems to suit well the needs of
the ICSs.

The centralised role of the controller enables the implementation of the
network security policies and their update in an easy way and almost in real-
time. So, using SDN to implement dynamic security policies is possible, too.
The possibility to set up data-plane elements (e.g., routers and switches) via
software, along with the capability of the controller to have “the big picture”,
allows the deployment of new functionalities without modifying the legacy part
of the system. It is possible to implement security defences as well. SDN could
make possible to use different detection and effective incident-response tech-
niques. Once an alarm of a possible attack is raised, the reaction time interval
can be incredibly small. The capability to reroute easily and quickly all traffic
(i.e., it can be done automatically by a software) makes the system robust to
Denial of Service Attack (DoS). Furthermore, if a malicious traffic is detected,
the attack can be investigated routing that specific flow toward an ICS honey-
pot. Under specific conditions (e.g., an attack is ongoing), it is also possible to
dynamic change the system segmentation scheme in order to isolate a part of
the organization that could have been eventually compromised.

In literature there are several works that investigate the adoption of SDN in
Industrial Automation. Kalman [Kál16] analyses the different aspects of SDN
in a industrial scenario including security. It also shows the possible enhance-
ments to mitigate the challenges related to network segmentation. Khandakar
et al. [ABGS18] propose a network SDN-based architecture, called Software
Defined Industrial Automation Network, that aim at improving network scala-
bility and efficiency. Piedrahita et al. [PGG+18] present an architecture based
on SDN able to automatically respond to an attack against a water treatment
process.

1.5 Cloud Computing and Industrial Control System

The Cloud Computing, in the rest called also cloud, as defined by the NIST,
is a model for enabling ubiquitous, convenient, on-demand network access to a

1.5. CLOUD COMPUTING AND INDUSTRIAL CONTROL SYSTEM 9

shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction [MG+11]. The
cloud provides three different services models:

Software as a Service (SaaS). In case of SaaS, an application (software)
runs in the cloud infrastructure. The users do not have any visibility to
underlying infrastructure that in completely transparent to them. They
do not have to control or manage the network, servers, the operating
system or the storage.

Platform as a Service (PaaS). In case of PaaS, the capability to deploy
software into the infrastructure is provided to the users. PaaS provides
platform layer resources like, for example, a software development frame-
work or deployment components. As for the SaaS, the end users do not
have to manage the infrastructure but they could have control of the
configuration settings for the application-hosting environment.

Infrastructure as a Service (IaaS). In case of IaaS, computing resources
in form of hardware, storage, and networking are provided to the clients.
A virtualization technology needed to manage these resourced could be
provided as well. Also for IaaS the underlying cloud infrastructure is
transparent to the users who, instead, have to control and manage the
operating systems, storage, and the deployed applications.

According to the scenario mentioned in the Section 1.1, the ICSs have
been evolving over the years to facilitate the information exchange with the
system [WSJ17]. The automation systems has been embracing the new tech-
nologies faster than in the past. This trend seems to suggest that in the next
future the cloud could be fully integrated in ICS environments. For instance,
the cloud potentially well fits a scenario in which agility and flexibility in pro-
duction plants are needed.

The sensors and actuators are becoming more intelligent by embedding new
functionalities. The cloud can help these functionalities and allows real-time
data sharing among plants distributed in various locations as, for instance, in
case of oil, gas utilities and smart grids. Just mentioning the cloud to security
people working in a ICS environment stresses them out. Most of them believes
there is no way to adopt solution based on the cloud computing and guarantee,
at the same time, a good level of security. We argue this can be possible by

10 CHAPTER 1. INTRODUCTION

means of a deep understanding of the cloud and of its potential security weak-
nesses. Indeed, a sufficient awareness is the only way to integrate the cloud
with an ICS architecture without introducing new vulnerabilities exploitable
by an attacker. Changes of the existing architecture, that could be needed,
have to be designed carefully to avoid the growth of the attack surface.

A private cloud is provisioned for exclusive use by a single organization
and, in general, can be owned and managed by the organization itself or by an
external provider. If a cloud provider is involved, it has to be considered po-
tentially an untrusted third party. In case of hybrid cloud, the infrastructure is
a composition of two or more distinct cloud infrastructures that remain unique
entities. We talk about public cloud when the cloud services are offered by the
Internet. In this case different organizations and users can use the resources
from the same infrastructure at the same time.

In the ICS context there are strict requirements in term of availability and
the data exchange, especially at process level, are critical for the correct func-
tioning of the system. According to that, a deployment of a cloud service based
on the private model seems to be a better solution in term of security. Another
possible approach could be the use of an hybrid model on which the services
that are considered critical are provided by a private cloud, while services less
critical (or not critical at all) can be provided by a public cloud.

A real case in which the cloud is used within an ICS can be, for example,
the adoption of the SaaS for the process historians. This data stored in cloud
can be integrated with the real-time process data, picked from different plants
remotely connected, to have efficient data analytics process. Due to the diver-
sity of the data (i.e., different manufacturing processes) and the huge amount
of data in place (i.e., several remote plants), leveraging the cloud represents a
feasible, cheap, and easy way. It is worthy of note that, in this case, the cloud
represents the enabler of an additional feature that would have been hard to
realise differently. Goldin et al. [GFG+17] presents a possible example of cloud
computing infrastructure for big data analytics in the process control industry.

1.6 Thesis Outline

The purpose of this thesis is to provide techniques that, along with traditional
defences, can enhance the improvement of the cyber security posture of indus-

1.6. THESIS OUTLINE 11

trial control systems.

The research undertaken in this work has been motivated mainly by the
needs of innovative defences able to mitigate risks concerning the new threat
scenario of industrial control systems. Indeed, the common protection adopted
by ICSs seems not to be effective against innovative attacks (e.g., APT) any
more. Moreover, ICSs are changing rapidly to satisfy requests of higher inter-
connectivity (e.g., connection between enterprise and process zone) and intro-
duction of additional features that can boost up the governance (e.g., IT-typical
components and data analytics process). This revolution exposes these systems
to a new infection vectors from which is challenging to protect considering the
complexity of deploying new components, especially in the process zone.

We started with an overview of the current cyber security scenario and
how it has been changing over the last decade. We introduced also the cloud
computing and the software defined networking. These technologies, typically
belonging to the IT world, can create value in the ICSs in the next future.

As mentioned in Section 1.3, to deal with APT a change of the mindset to
security is needed. A single defence technique does not seem to be enough any
more. Te high-profile attacker often penetrate into the system with a traffic
that looks like legitimate.

An analysis of techniques used by such innovative attacks targeting ICS
suggested the USB thumb drives are effective infection vector that can be used
to bypass the first perimeter of defence and jump directly into the critical
part of the system (i.e., critical machines) that has to be carefully protected.
Leveraging a USB thumb drive allows attackers to compromised also system
that are strongly isolated by means of air-gap.

In Chapter 2 we show a method that adopts cryptographic techniques to
inhibit critical machines from reading possibly malicious files coming from reg-
ular machines (i.e., machines that are potentially a sources of attacks against
critical machines) on untrusted USB thumb drives. The proposed approach
acts in a preventive way and exposes limited attack surface for any malware,
even those based on zero-days.

The more a malware appears as something legitimate and the higher is
the probability it passes undetected. The BadUSB attack [NK16] techniques
allows an attacker to exploit a legitimate functionality (e.g., keyboard typing)
to infect a system. In this situation, traditional defences result to be totally

12 CHAPTER 1. INTRODUCTION

ineffective. The idea behind BadUSB is to modify the firmware of USB devices
in order to impersonate a different USB peripheral like, for instance, a mouse of
a keyboard. It allows an attacker to send malicious commands to the host the
USB device is plugged into and provides a way to eavesdrop, replay, modify,
fabricate, or exfiltrate data.

In the Chapter 3 we address this security issue focusing on mice and key-
boards. We propose a new approach that, before allowing the device to be
used, forces the user to interact with it physically, to ensure that a real human-
interface device is attached. Our implementation is hardware-based and, hence,
can be used with any host, comprising embedded devices, and also during boot,
i.e., before any operating system is running. Considering that our approach
does not require any special feature from USB devices neither, it well suits the
ICS environment and can be easily integrated with legacy system as well.

In Chapter 4, we present an integration of the works shows in Chapter 2
and Chapter 3. The result is a solution that addresses the security issues due to
threats coming both from malware hidden in files stored in the thumb drives
and from BadUSB attacks. Our solution allows a promiscuous use of USB
thumbs drives while guaranteeing an high level of defence. The main com-
ponent of the architecture we propose is an hardware, called USBCaptchaIn,
intended to be in the middle between a critical machine and all USB devices.
We do not require users to change the way they use thumb drives and to avoid
human-errors, we do not require users to take any decision. The proposed
approach is highly compatible with already deployed products of a ICS envi-
ronment and proactively blocks malware before they reach their targets.

In critical infrastructures, communication networks are used to exchange
vital data among elements of Industrial Control Systems (ICSs). Due to the
criticality of such systems and the increase of the cybersecurity risks in these
contexts (see Section 1.2), best practices recommend the adoption of Intrusion
Detection Systems (IDSes) as monitoring facilities. The choice of the positions
of IDSes is crucial to monitor as many streams of data traffic as possible. This is
especially true for the traffic patterns of ICS networks, mostly confined in many
subnetworks, which are geographically distributed and largely autonomous.

In Chapter 5, we introduce a methodology and a software architecture that
allow an ICS operator to use the spare bandwidth that might be available in
over-provisioned networks to forward replicas of traffic streams towards a sin-
gle IDS placed at an arbitrary location. We leverage certain characteristics

1.6. THESIS OUTLINE 13

of ICS networks, like stability of topology and bandwidth needs predictability,
and make use of the Software-Defined Networking (SDN) paradigm. We fulfil
strict requirements about packet loss, for both functional and security aspects.
Finally, we evaluate our approach on network topologies derived from real net-
works.

In Chapter 6, we present an overview of a solution devised to improve the
cyber security of ICSs adopting an innovative approach. This solution, devel-
oped within the context of Preemptive European Project [Par], encompasses
several detection and prevention tools. Each of them aims at addressing a spe-
cific security aspect and use data collected in different part of the system, i.e.,
heterogeneous data from host, process, and corporate network. All data are
integrated and correlate in order to decrease false positives and increase the
chance to detect also APT-like attacks. The alarm are displayed to user by
means of a Human-Machine Interface (HMI) that allows the human decision-
making process.

As mentioned in the Section 1.1, the ICS environments have been evolving
over the years picking up (relatively) new technologies that are emerging in
other fields, most of the time in the IT world. In the Section 1.5, we point
out the importance of the cloud computing also in the context of automation
systems and how it represents a paradigm that is a good candidate to be inte-
grated into the next ICS architectures.

Public cloud storage services are widely adopted for their scalability and
low cost. However, delegating the management of the storage has serious im-
plications from the security point of view. We focus on integrity verification
of query results based on the use of Authenticated Data Structures (ADS). An
ADS enables efficient updates of a cryptographic digest, when data changes,
and efficient query verification against this digest. Since, the digest can be up-
dated (and usually signed) exclusively with the intervention of a trusted party,
the adoption of this approach is source of a serious performance degradation,
in particular when the trusted party is far from the server that stores the ADS.

In Chapter 7, we show a protocol for a key-value storage service that pro-
vides ADS-enabled integrity-protected queries and updates without impairing
scalability, even in the presence of large network latencies between trusted
clients and an untrusted server. Our solution complies with the principle of
the cloud paradigm in which services should be able to arbitrarily scale with

14 CHAPTER 1. INTRODUCTION

respect to number of clients, requests rates, and data size keeping response
time limited. We formally prove that our approach is able to detect server mis-
behaviour in a setting whose consistency rules are only slightly weaker than
those considered by previous literature. Our solution is valuable in a industrial
system, for instance, in case there are many unintelligent devices (e.g., sensors)
that store data in a remote private cloud. In this case, the integrity of data
store in the cloud is guaranteed while maintaining the possibility to achieve
high throughput keeping limited latency. A remote server can use these data
as input of a data analytics process.

Chapter 2

Enabling Promiscuous Use of
Thumb Drives

In the past decade, a growth of cyber-attacks directed toward Industrial Con-
trol Systems (ICS) has been observed [ICS11]. Specifically crafted malware can
be used by attackers to alter an industrial process or gather industrial secrets,
and, in the end, gain some market or political advantage. Cyber-attacks to
critical infrastsructures constitutes a serious risk for society [Lew14]. Histori-
cally, SCADA systems, PLCs, and other elements of ICSs are built to provide
high levels of safety and reliability but are not prepared to contrast software
attacks effectively. Further, attacks to ICSs can be quite advanced, exploiting
zero-day vulnerabilities and knowledge of regular antiviruses to evade their de-
tection [VGA13]. Due to the inherent criticality of ICSs, best practices [SFS11]
suggest to isolate the most critical parts of the system from other IT compo-
nents, either physically or by means of firewalls. To overcome the limitation of
a poorly connected environment, file transfers are usually performed by means
of USB thumb drives and other removable storage devices (RSDs). The use of
RSDs turned out to be an important vector of malware spread [Rau11] mak-
ing isolation efforts to protect ICSs from the rest of the IT systems largely
ineffective.

In this Chapter, we propose an architecture that enables the promiscu-
ous use of RSDs in critical infrastructures, while preserving security. In our
approach, machines are either critical (SCADA, embedded devices, etc.) or
regular (pesonal notebooks, company PC, etc.). We consider regular machines
and RSDs as possible sources and vectors of attacks against critical machines.

15

16 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

Figure 2.1: A promiscuous use of a removable storage device.

Consider the file copy scenario with promiscuous use of a RSD that is depicted
in Fig. 2.1: (1) a critical machine (e.g. a development workstation) writes some
data (e.g. a new logic) into the RSD, (2) the RSD is plugged into a, possibly
compromised, regular machine, which can infect the logic or add other mali-
cious files in the RSD, and (3) the RSD is plugged into a critical machine (e.g.
a SCADA server) that is the destination of the file copy and also the target
of the attack. Our goal is to allow this kind of use while preventing (poten-
tially malicious) data or code originated from regular machines to spread into
critical ones. We do that by introducing a form of cryptography-based access
control solely in critical machines, which are the only trusted part in our ar-
chitecture. Exceptional data flows from regular machines to critical machines
are completely mediated by a special critical machine called gatekeeper. Our
approach does not rely on malware signatures and is a strong obstacle to the
spread of zero-day attacks, even if RSDs are used promiscuously in critical and
regular machines. Our architecture requires just small additional software to
be included in critical machines, and hence it is easily deployable in real ICS
environments. Furthermore, the complete mediation approach enables security
policies that may also involve human decisions and complex workflows, and
hence can support arbitrarily high security levels with a cost that does not
depend on the number of machines to protect.

The rest of this Chapter is organized as follows. In Section 2.1, we review
the state of the art and provide some background. Section 2.2 formalizes the
requirements we intend to meet. In sections 2.3, we describe the security
model and the threat model on which we base our work. Section 2.4 shows
the architecture of the proposed solution. Section 2.5 provides an example of
use of our architecture. Section 2.6 provides a security analysis. Section 2.7
discusses the applicability of our approach in ICS environments.

2.1. STATE OF THE ART AND BACKGROUND 17

2.1 State of the Art and Background

Our problem fits the well known Biba integrity model [Bib77], which describes
a set of access control rules that can be used to protect the integrity of certain
data. In the Biba model, each element is associated to an integrity level. The
rules of this model deny any flow of information from lower levels to higher
levels and can be summarized with the statement “no read down, no write
up”. This model is implemented in recent versions of the Windows operating
system [RS09] and, in principle, can be adopted also in ICS environments.
However, any form of access control on a filesystem must be performed by a
trusted operating system, while we want an USB thumb drive to be usable
even on untrusted machines.

There are a number of products on the market that specifically address
security for removable storage devices (e.g., see [bit]) and USB thumb drives
(e.g., see [top]). These are mostly focused on confidentiality, which, however,
is not our primary objective. In these cases, support to integrity is on a file
basis or on a block basis, and there is no integrity protection for the whole
storage: an attacker can delete selected portions of data and also revert part
of them to a previously saved version. Further, all solutions imply some form
of authentication, usually password-based, but once the user is authenticated,
full access to data is allowed, and a malware can easily infect the stored files.

To mitigate the risk for critical systems to be infected by a malware, an
antivirus can be adopted and properly configured to scan the data stored in
the USB thumb drive before any access. Most commercial antiviruses perform
detection based on a database of known malware signatures. This approach has
some drawbacks: it cannot detect zero-days attacks, it needs regular signatures
updates to keep its effectiveness, its performances depend on the size of the data
to be protected, and it cannot protect from generic tampering, since tampered
data in general does not contain any recognizable malware.

Concerning techniques for checking the integrity of data, a large body of
work is known in literature. Many rely on robust cryptographic hash func-
tions [RS04]. When the dataset to be protected is large, using hash functions
is inefficient. In fact, for each change, even small ones, the hash of the whole
dataset have to be re-computed. Also, to check the authenticity of a small part
of the dataset, the hash of the whole dataset should be checked. Authenticated
data structures (ADS) allow a user to efficiently update a cryptographic hash
of a large dataset when just a small part of the dataset is changed. For an
ADS, the hash of the whole dataset is called root hash or basis. They also
allow a user to efficiently check the integrity of a small subset of data by only

18 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

comparing against the root hash an integrity proof of size O(log n) with n the
size of the data. Supposing that only the root hash is known to be genuine, it
is possible to check the integrity of a small subset of data, efficiently. Widely-
known ADSs are Merkle Hash Trees (MHT) [Mer88] and authenticated skip
lists [GT00]. For these data structures, updates and checks are performed in
logarithmic time with respect to the size of the dataset, which is comparable to
the efficiency of many indexes for databases and filesystems. For this reason,
MHTes or other ADSs have been used in commercial, free, or research prod-
ucts. For example, MHTes were used for securing filesystems (see for example,
[LKMS04, SvDJO12]). Authenticated data structures were also adopted to au-
thenticate relational database operations [DGMS03]. The problem of efficiently
using ADSs with regular DBMS was studied in [MS05, DBP07, PPP10a].

2.2 Requirements

In this section, we list the requirements that, in our opinion, should lead the
design and development of a solution for our problem. For each requirement,
we provide a brief description. When needed, we also provide some motivations
or point out criticalities.

Discernment. The solution should prevent critical machines from reading
data whose source is not a critical machine. To realize this, the solution
should be able to distinguish data (and meta-data) written by critical
machines from those written by other, possibly malicious, machines. This
should be possible even if read and write operations are performed on a
RSD by distinct machines, and even if those machines do not share any
other common knowledge beyond that stored into the RSD.

Full Integrity. The solution should be able to detect a vast range of integrity
violations, comprising deletions or restoration of previous versions of files
or parts of them. This will enable the detection of attacks vectored by a
RSD regardless of the kind of the attack and of the attacker. Restoration
of previous backup of an entire volume is not considered an integrity
violation.

Timeliness. Violations should be detected before tampered data or code is
used or run inside a critical machine. For our purposes, it is essential to
adopt a pure proactive approach. Indeed, malicious data or code that is
used or run in ICS might immediately (and seriously) impair it.

2.2. REQUIREMENTS 19

Interoperability. The solution should be usable in conjunction with the ex-
isting systems and software suites (SCADA, HMI, harsh laptops, devel-
opement environments, inventory management, etc.), without requiring
any invasive change to those products.

Usability. The solution should preserve the convenience and high usability
perceived by users when using RSDs. It should enable the promiscuous
use of RSDs, i.e., the user should be able to use a RSD on both critical and
non-critcal systems and even on systems that are not under the control
of the organization that runs the ICS.

Efficiency. The solution should not introduce asymptotic complexity over-
head on read and write operations, i.e., all operations on the filesystem
of an RSD should run in at most O(log n) time (where n is the amount
of data stored) as with regular non-protected storage technologies.

This should be true also for read and write operations on small parts of
large files in order to enable the use of RSDs for storing databases or
virtual environments

20 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

D
is

c
.

F
u

ll
In

t.
T

im
e
l.

In
te

r.
U

sa
b

.
E

ffi
c
.

A
c
c
e
ss

C
o
n
tr

o
l

-
-

+
+

+
+

A
n
ti

v
ir

u
s

-
-

=
+

+
-

E
n

c
ry

p
ti

o
n

-
=

+
=

-
+

(-
)

In
te

g
ri

ty
S

y
st

e
m

+
+

+
+

+
+

+
y
es

,
=

li
m

it
ed

,
-

n
o

T
a
b

le
2
.1

:
C

om
p

ar
is

on
of

se
cu

ri
ty

so
lu

ti
o
n

s
fo

r
R

S
D

s
w

it
h

re
sp

ec
t

to
th

e
re

q
u

ir
em

en
ts

d
es

cr
ib

ed
in

S
ec

ti
on

2.
2.

2.3. SECURITY AND THREAT MODELS 21

Table 2.1 summarizes the effectiveness of currently available solutions in
meeting the requirements described above, while the last line refers to the
approach that is the subject of this chapter and is described in Sections 2.4.

Access control relies on meta-data stored on RSDs, hence, it does not guar-
antee discernment. Indeed, a malicious machine can easily circumvent access
control ignoring meta-data during writing operations. Access control does not
encompass integrity checks.

Antiviruses cannot discern data written by malicious software from data
that comes from critical machines. They aims at recognizing malicious data
inspecting the entire device and matching data with malware signatures stored
in its database. The complexity of this approach is proportional to the amount
of data saved on a RSD. Antiviruses perform real integrity checks only on
systems files, which however are not stored on RSDs.

Encryption solutions change the way the user interacts with RSDs (they
need passwords or new drivers) and hence have low usability. User authenti-
cation can be used to discern different users but it is not suitable for distin-
guishing if the source of the data is a critical or regular machine. Furthermore,
encryption performed on large files suffers of a penalty, in term of efficiency,
when carried out at file-level and not at block-level. Most encryption solutions
support integrity only at block-level or at file-level.

2.3 Security and Threat Models

We model an ICS as a set of machines that exchange data only by means of
RSDs. Machines in our model are workstations, notebooks, SCADA systems,
etc. Machines are either critical or regular. Critical machines are intended to
be the parts of the ICS in which an “infection” can have a big impact on the
physical process. Critical machines require special protection, while regular
machines do not. In the following, we call critical (regular) realm the set of
critical (regular) machines.

In our threat model, the threats originate in the regular realm and spread
into the critical realm by means of malicious or accidental writing on RSDs.
The objective of the attack is to let malicious code or data to be read by at
least one critical machine when the RSD is plugged in it. The objective of
our defense is to avoid that this can happen. In this setting, to protect the
critical realm, it is enough to forbid information flows from the regular realm
to the critical realm. All other information flows can be allowed. This ideal
setting conforms to the Biba integrity model [Bib77] with just two integrity

22 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

levels, where the rule “no read down, no write up” applies and the critical and
regular realms are the higher and lower integrity level respectively. However, in
real ICS environments, certain data or software have to be transferred from the
regular realm to the critical realm (e.g., software or documentation provided
by a vendor). In our security model, this is possible only by means of a special
machine called gatekeeper. The gatekeeper realizes the “complete mediation”
security principle [SS75], which is a well-accepted approach when a security
boundary should be traversed, playing the same role of firewalls in networking
and of the security reference monitor for operating systems.

In our security model, we consider only information flows that are realized
by means of read and write operations on RSDs that are plugged into, or un-
plugged from, machines. RSDs are not machines. They should be considered as
a mere medium for data and they do not have capabilities to carry out any form
of access control. We allow the same RSD to be promiscuously used in both
critical and regular machines. Regular read operations performed on RSDs do
not allow the reader to distinguish data written by critical machines from data
written by regular machines and malicious regular machines can perform any
kind of write operation. This means that any constraint on information flow
should be enforced during read operations performed by critical machines.

The main objective of our approach is to equip critical machines with se-
curity features so that each critical machine can, without any doubt, assess if
the data returned by a read operation on a RSD is exactly what was written
by other critical machines.

In our threat model, an attack can involve the injection of malicious code
in any file stored in a RSD or the tampering of any data stored in it. In
ICSs, several kinds of files can be attacked: control logic, firmware files to be
installed on embedded devices, user documents, technical documentation, etc.
We do not distinguish among them. For the purpose of our analysis, attaching
malicious code to any file or tampering with any kind of data are changes that
are equally illegal. We also consider an attack any change performed by regular
machines to metadata or directory structures. In our threat model, restoring a
previous version of a file is a freshness attack, but restoring the whole content of
a RSD at a previous version is not considered an attack. We consider this as a
restoration of a previous backup (see Requirement Full Integrity in Section 2.2).

Since in our model RSDs are passive, we explicitly do not consider attacks
that illegally change the firmware of the RSDs like, for example, BadUSB [NL14].

2.4. ARCHITECTURE 23

Figure 2.2: Relationships between (regular or critical) machines and remov-
able storage devices in our approach. Critical machines can read only from
secure zones, and protected read operations fail on data written by illegal write
operations.

2.4 Architecture

In this section, we describe the architecture of our solution that we call integrity
system. In our architecture, critical machines are equipped with the integrity
system that forbids read access when data-tampering is detected.

The main actors in our architecture are machines and RSDs. Figure 2.2
summarizes their relationships and the operations that machines can perform
on RSDs. For the sake of simplicity, in the following, we refer to RSDs as having
only one volume. In our approach, each RSD contains one or more special
directories, which we call secure zones. Critical or regular machines can read
or write a secure zone. For critical machines, these operations are performed
under the protection of the integrity system while for regular machines they are
not. For critical machines, it is strictly forbidden to perform read operations
on parts of an RSD that do not belong to a secure zone.

The integrity system, installed in critical machines, redefines the semantic
of usual read and write operations at the system call level, hence, applications
are automatically and transparently protected at each read or write opera-
tion issued by standard means. This is also true for any piece of ICS-specific
software like, for example, a SCADA suite.

In the following, we describe each kind of operation involved by our ap-
proach.

Protected-Read. Protected-reads are the read operations performed by crit-
ical machines on secure zones. The integrity system changes the semantic
in the following way: each protected-read checks the integrity of the read
data, if data is recognized as authentic (we will also say genuine) the data
is reported to the application as in the regular read semantic, if data is

24 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

recognized as not authentic, an error is reported. Special care is taken
in order to link the read data with their check to avoid time-of-check to
time-of-use attacks.

Protected-Write. Protected-writes are the write operations performed by
critical machines on secure zones. The integrity system changes the se-
mantic in the following way: each protected-write operation writes the
data on the secure zone and stores additional data in the RSD to enable
integrity checks during protected-read operations. Since write operations
can involve read operations (e.g., for metadata), if integrity problems are
detected an error is reported.

Illegal-Write. An illegal-write is a write operation performed on a secure
zone by a regular machine or by any other mean. A regular machine
is not equipped with the integrity system, hence, it cannot update the
additional information that allows subsequent protected-read operations
to recognize the data as authentic: the data changed by an illegal-write
are always recognized by the following protected-reads as not authentic.

Plain-Read. Plain-reads are normal read operations performed by regular
machines when reading any part of an RSD.

The above rules forbid any data flow from the regular realm to the criti-
cal realm. The special gatekeeper machine exceptionally allows ICS operators
to perform transfers that are normally forbidden. To do that, the gatekeeper
behaves partially as a critical machine and partially as a regular one: (i) it
performs plain-read operations from outside the secure zone of an RSD, and
then (ii) it performs protected-write operations on the secure zone of the RSD
of the data just read. In our approach, the gatekeeper is the single point where
data flow policies must be configured and enforced. While the actual policies
may depend on the specific industrial context, they should cover (a) authentica-
tion of the operator that requires the transfer, (b) authorization of the transfer
according to the policy of the organization, and (c) logging of the details of
the operations performed to allow subsequent auditing. Our gatekeeping ap-
proach enables to scale-up the security level that on organization can achieve
enabling the implementation of arbitrarily deep analysis of the data to be trans-
ferred. This analysis can possibly involve automatic antivirus-like checks for
known malwares, human-based analysis by specialized security personnel, and
human-based authorization from management to check the motivation of the
transfer. Since the gatekeeper is a single enforcement point, the cost of the

2.4. ARCHITECTURE 25

Figure 2.3: The elements of the integrity system and their positions within
a critical machine and a removable storage device (RSD).

security realized by the gatekeeper depends only on the strength of the policy
and not on the number of critical machines to protect.

The elements of the realization of the integrity system are shown in Fig-
ure 2.3. In our solution, system calls related to read and write operations on
RSDs are intercepted and their semantic is changed in the way we described
above. A possible way to do this is to implement the integrity system func-
tionalities as a patch to the operating system kernel. Even if this is surely the
most efficient way to realize our ideas, it requires considerable effort to handle
all the technicalities that a kernel space development encompasses. For our
prototype, we opt for a simpler approach. We leverage available open source
software that allows a developer to realize a filesystem solely developing code
that runs in user space. Dokany [Dok], for the Windows operating system, and
FUSE [Fus], for the Linux operating system, are kernel drivers that enable this.
The main module of the integrity system is the integrity manager that runs in
user space as a system process. User processes that perform system calls that
encompass read and write operations are intercepted by the Dokany (or FUSE)
driver, which, in turn, triggers proper callbacks of the integrity manager. To
realize the protected-read and protected-write operations, the integrity man-
ager needs to access the RSD. This is accomplished by using the regular read
and write primitives provided by the kernel.

When the integrity system is running and a RSD is plugged in, the RSD
is automatically mounted (as usually happens in current operating systems)
but the operating system is configured so that only the integrity manager can
access it. The integrity manager, by means of Dokany or FUSE, shows to
user processes a distinct virtual volume that has the exact content of the real
RSD. All read and write operations performed by user processes on the virtual

26 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

Figure 2.4: Correspondence among parts of the secure zone Z and the au-
thenticated data structure T .

volume are replicated by the integrity manager on the real RSD, with the
semantic change explained above, unless they infringe the rules of our security
model.

Each critical machine M stores its private key, a corresponding certificate,
denoted by CERT(M) and signed by a unique Certification Authority (CA).
Private key and certificate are generated during the installation of the integrity
manager on M . Machine M also stores the public key of the CA. Given a
certain state of a secure zone Z, a hash of its current content is denoted by
h(Z) and its signature is denoted by signM (h(Z)). For each secure zone Z, the
RSD stores accessory data comprising a signature and a last writer certificate.
When the content of Z is updated byM , M computes signM (h(Z)) and stores it
in the RSD as the signature of Z along with CERT(M) as last writer certificate
of Z. Another critical machine M ′ can check the integrity of Z relying only
on the content of the RSD and on its locally stored public key of the CA. A
detailed security analysis is provided in Section 2.6.

For performance reasons, each RSD contains an inventory of the secure
zones that are available in that RSD. In this way, the integrity manager can
efficiently find secure zones when a RSD is mounted. A critical aspect for the
efficiency of the whole integrity system is the time complexity of protected read
and protected write operations. We adopt a specifically tailored ADS, stored
on the same RSD for each secure zone, to speed up both the computation of
h(Z) after each protected write and the check of the integrity of small parts
of the content of Z for each protected read. Fig. 2.4 shows the structure of
the ADS for a generic secure zone Z. The ADS is denoted T and it supports
integrity checks for the directory structure of Z, metadata, and contents of all
files. As for MHT (see Section 2.1), T is a tree whose nodes store hashes of the
composition of the hashes of their children, and whose leaves store the hash
of the corresponding data. The value h(Z) introduced above is the root hash
of T . Each file in Z corresponds to a subtree in T , we call it a file-subtree.
The directory tree of Z corresponds to a part of T , where all file-subtrees were

2.5. EXAMPLE OF USE 27

pruned, we call it Tdir. T is represented in a hidden directory in the RSD.
Tdir is represented as a directory tree that mimics the directory structure of
Z. File-subtrees are a variation of MHTs inspired by history trees [CW09] and
adapted to support generic file content. Each file-subtree is stored in a single
file, using only append and overwrite operations, which are the only ones that
are supported by operating systems on files. The remaining technical aspects
of the representations of Tdir and file-subtrees are trivial and are omitted.

We developed a first prototypical implementation of the integrity manager
under Linux in Java. We carefully designed the management of the ADS us-
ing a concurrent approach based on the actor model and realized it using the
Akka [Typ] framework. Our intent was to limit as much as possible the impact
of the ADS on the performances experienced by the user. Our implementation
keeps recently used parts of the ADS cached in memory and allows several
protected-read/protected-write operations to be executed in parallel. The in-
tegrity manager is interfaced with Fuse by means of the fuse-jna [Per] library.
One can argue that introducing such a complex architecture for managing a
filesystem can badly impact performances. Our preliminary experiments show
that for thumb drives the additional overhead is negligible with respect to
timings involved in normal user interactions, like working on documents and
opening multimedia files.

Our integrity system complies to all requirements introduced in Section 2.2
(see also see Table 2.1). Discernment: if the data in the secure zone is recog-
nized to be genuine, the integrity system is sure that it comes from a critical
machine (see Section 2.6). Full Integrity: the signature is the signed hash
of the whole content of the secure zone and all integrity checks are performed
against it. Timeliness: the checks of the integrity system are performed as
part of each protected read operation. If any tampered data is detected, the
protected-read operation returns an error. Interoperability: any RSD can be
used to store a secure zone. Also, no changes to ICS-specific software is required
to adopt the integrity system. Usability: the user can use his/her RSD in any
machine without providing any password, and the integrity system is required
only for critical machines. Efficiency: the adoption of ADSs allows any op-
eration on the filesystem to be performed without introducing any significant
asymptotic overhead with respect to common filesystem implementations.

28 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

Figure 2.5: Example of use of a RSD for a data transfer between two critical
machines M and M ′ equipped with the integrity system. The RSD is also
promiscuously used in a, possibly compromised, regular machine X.

2.5 Example of Use

In this section, we show an example of use of a RSD to transfer data between
two critical machines M and M ′ equipped with our integrity system. We also
provide a detailed description of the operations performed by the integrity man-
ager during protected-read and protected-write operations. In our example, a
file is copied from M to M ′, but the RSD is plugged into a possibly compro-
mised regular machine X before being plugged into M ′. In the following, we
show the most important steps performed by the elements of our architecture
(see Figure 2.5).

1. A user adopts a common file manager application to copy a file F from
the local hard disk of critical machine M to a secure zone Z of the RSD.
This operation encompasses at least one write system call.

2. The write system call is intercepted by the FUSE/Dokany driver, which
performs a corresponding callback for the integrity manager.

3. The integrity manager performs the following updates on the RSD (protected-
write):

2.6. SECURITY ANALYSIS 29

a) F is added to Z,

b) the ADS for Z is updated to account for the presence of F and for
its content, the root hash h(Z) of the ADS is also updated,

c) the signature is updated to signM (h(Z)),

d) the last writer certificate is updated to cert(M)

4. The user plugs the RSD into a, possibly compromised, regular machine
X. If X is compromised, it may tamper with file F in Z. Machine X
can only perform illegal-write operations on Z and cannot update the
signature to match the different content of Z.

5. The user plugs the RSD into critical machine M ′ and use the file man-
ager to copy F form Z into the local hard disk of M ′. This operation
encompasses at least one read system call.

6. The read system call is intercepted by the FUSE/Dokany driver, which
performs a corresponding callback for the integrity manager.

7. The integrity manager performs the following operations (protected-read):

a) it fetches the data required to fulfill the read operation,

b) it feteches the corresponding ADS proof (see Sections 2.1) compris-
ing its root hash h(Z),

c) it checks the consistency of the proof, both internally and with the
read data,

d) it checks the root hash h(Z) of the proof against the signature for
Z stored in the RSD,

e) it checks the signature against the the public key that is read from
the last writer certificate. The authenticity of that certificate is
verified using the CA public key locally stored in M ′.

8. If all checks are successful, the requested data are returned to the file
manager application. If any of the checks fail, an error is returned.

2.6 Security Analysis

As detailed in Sections 2.3 and 2.4, the objective of the integrity system is
to protect critical machines by malware or other forms of attack coming from

30 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

regular machines. We do that by enforcing that critical machines can only read
(from RSDs) only genuine data coming from other critical machines and by
detecting violation of this rule before tampered data can reach user processes.

Our approach encompasses a certain number of assumptions: (I) critical
machines are not compromised when the integrity system is installed, (II) gate-
keeper effectively checks (and possibly blocks) data flowing from the regular
realm toward the critical realm, (III) critical machines cannot communicate
with regular machines with means other then RSDs and console operators are
trusted, (IV) attackers cannot know private keys and cannot force the CA
to sign a new certificate, (V) a limited number of software modules have no
security flaws, namely, the integrity manager, the FUSE/Dokany driver, the
filesystem driver, and the USB driver (see Figure 2.3), (VI) the adopted cryp-
tographic primitives have no security flaws, and (VII) RSDs are passive (see
Section 2.3). By Assumptions I and III, the only vector of attack are RSDs
plugged into critical machines. By Assumption VII, any attack conveyed by
RSD should leverage some form of data or code stored in it (see also Sec-
tion 2.3). By the rules stated in Section 2.3, critical machines can read only
data stored in secure zones. By Assumption V, read operations are supposed to
involve only code that have no security flaws, hence, malformed filesystem data
structures cannot be used to attack a critical machine. By Assumption II, no
malicious file from the regular realm is admitted in the critical realm. Hence,
the only remaining possibility for an attack is trying to make user processes to
read tampered data or meta-data from a secure zone stored in a well-formed
filesystem.

Since RSDs are completely untrusted, the attacker, for example a compro-
mised regular machine, can freely tamper with any data stored in the RSD (see
Section 2.3). This includes data stored in the secure zone, and all accessory
data stored in the RSD by the integrity system, namely, the signature, the
certificate of the last writer, and the secure zones inventory. Let us consider a
tampering of the secure zone. Since the result of any read operation is checked
against the signed hash (by means of the ADS), the tampering of secure zone
data is easily detected. The attacker can try to avoid detection by tampering
also the ADS. An attack to the ADS, that does not change the root hash,
requires to find a collision for the hash function on which the ADS is based,
which is against Assumption VI. On the other hand, to change the root hash
the attacker should be able to violate the signature. However, cryptographic
attacks are ruled out by Assumption VI and, by Assumption IV, we assume
that private keys and the CA are adequately protected.

Tampering only with the signature, the last writer certificate, the ADS, or

2.7. APPLICABILITY CONSIDERATIONS 31

the inventory ends up in a false positive. In fact, in those cases, while the secure
zone may be genuine, the integrity system has no way to prove it, hence, it
behaves as if the secure zone was corrupted denying any access to it. However,
ensuring data availability is not within the objective of the integrity system.

Accidentally, we point out that an attacker that can intercept, and possi-
bly change, the communication between the host and the RSD does not gain
any particular advantage. Noteworthy, in this context, Assumption VII can be
relaxed. In fact, if a malicious firmware is used to realize a man-in-the-middle
between storage and host, with the intent to show tampered data to the host,
our approach is still effective in preventing the attack. Essentially, Assump-
tion VII is only needed to rule out from our analysis attacks that comes from a
RSD and are not related to data storage, like those that end up in keystrokes
injection [NL14].

If a protected-write operation is partially executed, for example because
the RSD is unplugged abruptly, either part of the data in the secure zone or
part of the accessory data (e.g. the signed hash) is not written. In this case, a
protected-read, detects a tampering.

In case of disclosure of a private key, critical machines cannot be consid-
ered secure anymore. To ease the recovery from such abnormal situation, our
architecture can easily be extended to handle certificate revocation lists that,
however, may require manual distribution on the critical machines since, in our
approach, they may lack connectivity (see also Section 2.7).

2.7 Applicability Considerations

The advantage of adopting the solution described in this chapter in an ICS
context is twofold: (i) regular USB thumb drives can be used for exchanging
files among critical machines in a safe manner and (ii) the organization can
enforce any security policy, possibly integrated with human-based processes,
to restrict the data that are transferred into the critical realm.

In the following, we discuss the hypothesis of our model, as well as the
usability and deployment impact of the integrity system.

Model vs. Reality

In describing our approach, we stated several hypothesis, we now review the
most important ones from the point of view of the applicability.

32 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

• We have supposed that there is no connection between critical machines
and regular machines. Isolation between critical machines and the rest
of the IT machines is the best practice for ICS security [SFS11], even
if this is often obtained by firewalling. The model introduced in Sec-
tion 2.3 also assumes that all ICS components interact solely by means
of RSDs. However, this assumption can be relaxed. Actually, intercon-
nection among critical machines and interconnection among regular ma-
chines do not compromise the effectiveness of our approach. Furthermore,
interconnecting critical machines may ease the distribution of certificate
revocation lists as proposed in Section 2.6

• Concerning the assumptions of trusted operators, non-compromised fresh-
installed critical machines, private keys, and protected CA, we expect
them to be enforceable by the application of appropriate policies. These
policies are likely to be already adopted in a typical environment that
can take advantage of our integrity system.

• We assumed the absence of security flaws in specific drivers or parts of
the kernel and in the integrity manager (see Assumption V). This attack
surface is quite small with respect to other security measures on which
ICS usually relies. For example, for the access control enforced by the
operating system to be effective, the whole kernel should be flawless.
Also, software certification procedures restricted to the parts identified
by Assumption V can be applied.

• We have assumed that RSDs are passive devices in the sense they do
not have computational power. In our opinion, this is the most critical
assumption. Indeed, RSDs are not passive and they run a firmware that
can host a malware. If that malware shows malicious data to a critical
machine, our integrity system can still detect the attack. However, the
integrity system cannot detect attacks in which the malicious firmware
impersonates a different kind of device (e.g., a keyboard), like in the
BadUSB attack [NL14]. Other research works deal with defending from
these kinds of attacks and can in principle be adopted along with our
approach (see for example [TBB15a]).

Usability

From the point of view of the user, our approach is highly usable. Contrary to
current suggested best practices [SFS11], with our approach, users are allowed

2.7. APPLICABILITY CONSIDERATIONS 33

to use the same RSD with any machine without relaying on passwords and
without the need to install specific software. In fact, this is not needed for
regular machines, while installation of the integrity manager on critical machine
is expected to be performed by the organization in a strictly controlled manner.
Furthermore, data coming from critical machines can be read anywhere.

The user may notice that additional data are stored in the RSD for ADSs,
signatures, last writer certificates, and the inventory. We think that this has a
small impact on the usability of the system.

Obviously, a user should be aware that any write operation in the secure
zone, performed by a regular machine is actually detected as a tampering when
read by critical machines. A possible usability problem is due to users that
tamper with a secure zone by mistake. Users should be trained to create a new
empty secure zone by proper utilities to easily recover from this situation.

Concerning the need to transfer data or code from a regular machine to a
critical machine, the gatekeeper approach (see Section 2.3 and 2.4) addresses
the problem. It also enables customization of the security checks so that a
good trade-off between usability and security can be achieved for each specific
applicative context.

Since the integrity system relies on efficient ADSs that have sublinear time
execution for all kinds of read and write operations, no relevant performance
penalties should be observed by the user. This was also recognized in prelimi-
nary experiments (see Section 2.4).

Deployment Impact

Our approach allows on organization to use regular RSDs, it does not need spe-
cial software on regular systems, and it is easy to deploy on critical machines.
In fact, it does not need any change to existing operating systems, compris-
ing those commonly adopted in ICS, like MS Windows. Also, no networking
change is needed since our integrity system does not require any communication
channel among machines, beyond that provided by RSDs.

The integrity system is required only inside critical machines where the
protection is crucial. Since critical machines are supposed to be in a limited
number, slightly higher management standards are supposed to be affordable.

The key management is quite simple. The deployment of the integrity sys-
tem in an ICS environment requires only the presence of an off-line CA, well
protected and managed, (which may already be present in the organization
for other purposes) and a proper installation procedure that involves the cre-

34 CHAPTER 2. ENABLING PROMISCUOUS USE OF THUMB DRIVES

ation of a certificate for each critical machine. Aspects related with certificate
revocations have been dealt with in Section 2.6.

To be effective, our approach requires the gatekeeper and the certifica-
tion authority to be properly secured by hardening, control of physical access,
etc. The gatekeeper provides the organization with great flexibility about the
security policies, but this means that they should be carefully designed and
possibly integrated with business or decision processes. For strict security poli-
cies, traversing the gatekeeper may be costly, hence, it is advisable to deploy a
critical machine realizing a repository of commonly used files ready to be used
in the critical realm.

Special care should be taken when dealing with critical machines realized
using a virtualization technology. Actually, in that context, new attacks that
involve the hypervisor are possible. In particular, bugs in the hypervisor can
enable unexpected communication among machines in the same host. Also, the
host itself can be target of an attack. Consequently, a good security practice
is to consider the host and the guests either all critical or all regular. Further,
guest access to RSDs is mediated by the hypervisor, so the hypothesis that this
mediation is bug-free must also be taken into account to preserve the validity
of the analysis developed in Section 2.6.

Chapter 3

BadUSB Attacks:
Hardware-based Protection

Traditionally, USB security mostly deals with thumb drives and their role as
infection vector or as vehicle for confidential information leakage. Recently, the
presentation of the BadUSB [NK16] class of attacks disclosed new threats that
involve USB. These attacks are based on a modification of the device firmware,
that forces the infected device, typically a thumb drive, to behave as a different
kind of device, for example as a keyboard. A malicious “virtual” keyboard can
inject commands that end up in a malware infecting the host. These malicious
commands could download a malware from the Internet, but can also create
it on-the-fly, for example, by “typing” the content of a malicious script and
running it. In this context, regular antiviruses are largely ineffective, since
the malicious USB device is exploiting basic capabilities (e.g., typing operating
system commands) that the user is normally allowed to use.

The primary countermeasure proposed against BadUSB was to protect USB
devices by a firmware authentication feature that limits the firmwares that
can be uploaded into a device to those signed by the device vendor (see for
example [IRO16]). However, this approach protects devices but not hosts,
which are secured only if they are forcibly limited to interact with just protected
devices. This strongly limits the usability of USB devices and it is insecure, if
the limitation is delegated to error-prone user behaviour.

GoodUSB [TBB15b] is a software solution that aims at protecting the host
against BadUSB attacks. When a new USB device is attached, a message is
shown to the user, which must declare his/her expectation about the function-

35

36 CHAPTER 3. BADUSB ATTACKS PROTECTION

alities of the device.

In this chapter we present USBCheckIn, an hardware solution that is able
to protect any kind of USB host against attacks from devices that claim to be
human interface devices but are not. The basic idea is that the authenticity of
a real human interface device can be easily checked by asking the user to use
it. To authorize a human intreface device to connect to the host, USBCheckIn
instructs the user to perform certain actions on the human interface device by
showing messages on its own display. This makes it completely independent
from host capabilities and, hence, compatible with any kind of host. While
devising USBCheckIn, we focused on verification of keyboards and mice, and we
designed the human-machine interaction for high usability (e.g., just 3 gestures
to verify a mouse), while preserving security and keeping the probability of a
successful brute-force attack negligible.

USBCheckIn has several advantages with respect to other state-of-the-art
proposals. (1) It requires a human to provide a proof that the device is, indeed,
a human interface device. This ensures that even naive or malicious users
cannot behave in a way that the attack is successful. (2) It is compatible
with any kind of USB hosts, USB devices, operating systems, BIOS, and boot
loaders. (3) It does not rely on signatures, heuristics, or parameters that are
provided by the device.

Our contributions are the following: (1) we describe the architecture of
USBCheckIn (Section 3.2), (2) we show the interaction between USBCheckIn,
the user, and the device that leads USBCheckIn to determine if the device is
indeed a real human interface device (Section 3.3), (3) we provide a security
analysis of our approach (Section 3.4).

A companion video, showing a prototypical realization of USBCheckIn, can
be downloaded from the Internet [vid].

3.1 Background

In this section we briefly recall some of the basic concepts about the USB
protocol.

An actor in the USB communication can have one of two roles: device or
host. When a device is plugged into the USB port of an host system, the host
performs an enumeration. During this stage, the host discovers the class of
the device and its type. This chapter mainly deals with devices belonging to
the Human Interface Device (HID) class as defined by the USB standard, in

3.2. ARCHITECTURE 37

particular, of type mouse and keyboard1. Other device classes refer, for exam-
ple, to mass storage, printing, and audio/video streaming. HIDs are used to
submit human input to the system and hence are fundamental in the BadUSB
attack. In this chapter, we focus on the authorization of mice and keyboards
while inhibiting the use of other HIDs, like joysticks. After enumeration has
been performed by the host, normally the device can be used until it is dis-
connected. The device can simulate a physical disconnection from the host by
sending a detach signal. This allows the device to trigger a new enumeration
and present a class and a type different from the previous enumeration. In-
deed, a physical USB device can be composite and can show to the host several
interfaces, each of them with a distinct 〈class, type〉 pair. For the purpose of
this chapter, they can be considered distinct devices, since, the communication
channels from the host toward each interface of the device are completely in-
dependent, hence, any filtering can be selectively performed. A device never
speaks autonomously (beside the detach signal case). The protocol states that
the host periodically polls all the devices (interfaces), which must start replying
within a very short time, compared to frame length. Timing is so strict that a
malicious reply from a non-polled device gets mixed with the genuine answer
and discarded. The host does not poll the next device until either receive a
reply or a timeout expires. Reply packets have no source field, but since they
can only follow a poll from the host, their source is easily deduced.

3.2 Architecture

In this section we present the architecture of USBCheckIn, as shown in Fig-
ure 3.1. USBCheckIn is equipped with two USB ports: one upstream port and
one downstream port (up/down ports). The up port of USBCheckIn is con-
nected to one of the USB ports of the host system we intend to protect. For
full protection, we assume that all other USB ports of the host are not used
(e.g., they might be physically disabled) and all devices the user intends to at-
tach to the host are actually attached, possibly through a hub, to a down port.
For the sake of simplicity, we present the architecture of USBCheckIn with only
one down port. The handling of additional down ports is a straightforward ex-
tension of the approach proposed in this chapter. Near the up port, there is
an orange LED that indicates that the host is powering USBCheckIn and it
is correctly working (e.g., it is not suspended). Near the down port, there is

1Actually, with the word “type” we refer to the value of the bInterfaceProtocol field in
the USB standard.

38 CHAPTER 3. BADUSB ATTACKS PROTECTION

FILTER

UP
RELAYER

USB DEVICE HOST

TFT
DISPLAY

UP PORT
STATUS LED

DOWN PORT
STATUS LED

CONTROLLER

DOWN
RELAYER

IN INOUT OUT

DOWNSTREAM
PORT

UPSTREAM
PORT

MOUSE
AUTHORIZATOR

KEYBOARD
AUTHORIZATOR

OK BUTTON

Figure 3.1: The architecture of USBCheckIn.

a status red/green LED. The LED blinks green when one of the attached de-
vices, possibly through a hub, is undergoing the authorization procedure, turns
fixed green when all devices are successfully authorized and can interact with
the host, and turns blinking red if the authorization procedure of one of the
attached devices failed too many times and the device must be disconnected.
Messages required for user interaction are presented to the user on a 2.1” TFT
display which is embedded in USBCheckIn. An “ok” button is also present,
since a direct interaction is needed for certain special cases (see Section 3.3).

USBCheckIn is based on the Beaglebone Black board [bea16] on which a
Linux kernel is running. In USBCheckIn, a software, running in user space,
intercepts, inspects, redirects, and injects USB traffic between up and down
ports, depending on the state of the authorization procedure, as described in
Section 3.3. The USBCheckIn software is made up of several components.

Relayers. On one side, up/down relayers are responsible of sending and re-
ceiving packets to and from the USB ports. On the other side, packets
are forwarded to and received from the filter.

Filter. The filter is in charge of performing standard USB initialization steps
(like enumeration, see Section 3.1) and passes USB packets to and from
the relayers and the controller depending on the authorization status of
the device as explained in Section 3.3.

3.3. INTERACTIONS 39

Figure 3.2: Interactions and messages among user, device, USBCheckIn, and
host. The diagram shows messages for the keyboard authorization procedure.

Controller. The controller orchestrates the filter, the display, the status leds
and the authorizator to realize the authorization procedure and human-
machine interaction described in Section 3.3.

Authorizators. Authorizators manage the authorization process of HIDs con-
nected a down port, by generating challenge codes, keeping track of the
number of attempts, and checking the correctness of the submitted code
(see Section 3.3). Each authorizator corresponds to a specific type of
HID. The correct authorizator is chosen by the controller according to
the type declared by the device.

The software running on USBCheckIn is a customised version of USBProxy
[Spi16]. The filter and the authorizators are USBProxy plugins. The commu-
nication between the device connected to a down port and the down relayer
is realized by means of libUSB [lib16], a library that supports the interaction
with generic USB devices, while the communication between the host and the
up relayer is realized by means of gadgetFS, a linux kernel module that allows
the Beaglebone to act as a client towards the host.

3.3 Interactions

In this section, we describe the interactions between four actors: a human,
USBCheckIn, the USB device just plugged, and the host. In the absence of
USBCheckIn, when a device is directly attached to a host, the host enumerates
the device (see Section 3.1). When USBCheckIn is attached to the host, it
prompts the user to connect a device by showing a proper message on the
display (see Figure 3.2, step 1, and the companion video [vid]). When the user

40 CHAPTER 3. BADUSB ATTACKS PROTECTION

attaches the device to USBCheckIn, the latter performs the enumeration (step
2). In this phase, USBCheckIn recognizes the capabilities of the device and
records all provided data.

If the device is an HID, USBCheckIn starts the authorization process asking
to the user to input, by means of the HID itself, a randomly-generated
challenge code (Step 3).

In case of a keyboard the challenge code is a 5-characters alphanumeric
string, which is communicated to the user by showing on the display a message
like the following

New keyboard found

To start using it please type:

57X6A

The user types/clicks the elements of the challenge code (Step 4). For each
of them, the element (for a keyboard is a key code, for a mouse is a click event)
is sent by the device to USBCheckIn according to HID normal behaviour and
the regular USB protocol (Step 5). The authorizator checks that each received
element matches with the corresponding element of the challenge code. If it
matches, USBCheckIn provides a visual feedback to the user (Step 6). For
example, for a keyboard, by coloring green the corresponding element on the
display. Then, USBCheckIn loops expecting further elements and checking
them until the challenge code is finished.

If the user correctly inputs all challenge elements, USBCheckIn notifies
her/him that the new device has been authorized and that it can be used
(step 7). At the same time, USBCheckIn impersonates the device toward the
host by performing a “replay” of the enumeration that was previously recorded
(step 8). Then USBCheckIn performs an handoff by configuring the filter to
short-circuit the up relayer and the down relayer (step 9). USBCheckIn keeps
monitoring the exchanged packets between the host and the device in order to
recognize hardware or logic detach/re-attach operations and then trigger a new
authorization procedure, when needed.

If any of the received elements does not match the corresponding element of
the challenge code, the authorization is started over again showing a message
that, for a keyboard, are like the following.

Wrong code - try again.

To start using the keyboard pls type:

7E5N3

3.3. INTERACTIONS 41

Figure 3.3: The mouse authorization method. (a) Allowed target positions
and radius R. (b,c,d) The three steps of the authorization: in (a) just two
rows are available for second target positioning, in (b) and (c) three rows are
available.

The authorization process can be tried (steps 3-6) for a maximum of three
times. After three wrong attempts, USBCheckIn definitely blocks the device,
ignoring any more input from it, and shows a message on the display, as follows:

*** Authorization failed ***

Device claims to be a [device type].

Is it true? Is the device malicious?

To check it again, press the ok button.

In this message, “[device type]” can be “keyboard” or “mouse”. To try again,
the user has to push the “ok” button on the USBCheckIn hardware, then
the authorization procedure starts over from step 2. This physical interaction
makes a completely automatic brute-force attack impossible. This message is
displayed also when a malicious device tries a guess attack.

If the device is a mouse, USBCheckIn asks the user to move a pointer on
the display to draw a line between two randomly-placed targets, for 3 times.
The procedure was selected to obtain a good compromise between security and
usability. In this case, each element of the challenge is a pair of points of the
display, and the input of the user matches the element of the challenge if and

42 CHAPTER 3. BADUSB ATTACKS PROTECTION

only if the distance between the points of the challenge and the clicked ones is
below a certain radius. The radius is chosen so that 24 non-overlapping targets
can fit in the display (see Figure 3.3). Instruction messages for the user are
adaptively placed on the display on an unused zone to allow higher freedom in
target positioning. See section 3.4 for a security analysis. If the class of the
device is not HID, the display shows to the user the capabilities declared by
the device with a message like the following:

The connected device claims to be:

a webcam

To authorize it, hold down OK for 2 secs.

Once the message is displayed, the user has to authorize the device explicitly,
by means of long-pressing the button located on USBCheckIn. If the user
allows the device, USBCheckIn replays the enumeration toward the host and
the filter is programmed to short-circuit the relayers for that USB traffic. After
that, the device can directly communicate with the host. To deny the device,
the user just disconnects it.

3.4 Security analysis

In this section, we discuss the effectiveness of USBCheckIn in protecting any
host from BadUSB attacks that mimic HID behaviour, for example performing
keystroke injection.

Our approach is not vulnerable to human mistakes. In fact, we do not ask
to the user to take any decision, like accepting device features or choosing in
a list of allowed device classes (but for the case of non-HID devices, which are
not the primary target of this work). Actually, not even a malicious user can
force USBCheckIn to authorize a device that claims to be an HID but offers
no means to the user to provide the requested challenge code.

Our approach is extremely well protected against guessing/brute-force at-
tacks. For keyboard authorization, the challenge code consists of 5 characters
each ranging within 26 letters plus 10 digits. The probability for a malicious
device to correctly guess a random challenge in three attempts is 3 over 365

(i.e., 1 over about 20 millions). For mouse authorization, each challenge code
consists of 3 pairs of points. The first point of each pair ranges within 24 possi-
ble positions. The second point ranges within the unused positions that remain
after the text message is placed: 11 for the first elements (Figure 3.3b) and 17
for the second and third element (Figures 3.3c and 3.3d). The probability of

3.4. SECURITY ANALYSIS 43

a successful attack in 3 attempts is 3 over 243 · 11 · 172 (i.e., 1 over about 14
millions).

It is worth noting that a malicious device has no clue about the success or
failure of each attempt and after three failed attempts the human intervention
is required to gain more attempts. Non-HID devices cannot maliciously mimic
HID behaviour: once a device is authorized as non-HID, any attempt to mimic
HID behaviour requires a re-enumeration that can be triggered by a detach
signal, which in turn triggers a new authorization process by USBCheckIn.

The above analysis assumes that USBCheckIn has no security bugs and it
is not compromised. While this is a demanding assumption, honoring it for
a dedicated hardware is surely easier than honoring it for a software which
runs on the host. In fact, the security of USBCheckIn is based on the security
of a reasonably small and stable amount of software (the software we devel-
oped, USBProxy, libUSB, and the kernel), while for a host-based solution all
software running on the machine should be trusted unless proper mandatory
access control configurations are in place, which may not be feasible in many
environments. Also, certification procedures are much easier for an isolated
system.

Finally, we note that our approach has an obvious limit: it cannot prevent a
malicious HID to actually allow the user to enter the challenge code. However,
other proposals, like for example [TBB15b], have similar limitations and, to
our knowledge, this is still an open problem.

Chapter 4

USBCaptchaIn: Integrated USB
Attacks Protection

Cyber-attacks to critical infrastructures constitute a serious risk for society
[Lew14]. Specifically crafted malware can be used by attackers to alter an
industrial process or gather industrial secrets, and, in the end, gain some
market or political advantage. Due to the inherent criticality of ICSs, best
practices [SFS11] suggest to isolate the most critical parts of the system from
other IT components, either physically or by means of firewalls. To overcome
the limitation of a poorly connected environment, file transfers are usually
performed by means of USB thumb drives and other Removable Storage De-
vices (RSDs). The use of RSDs turned out to be an important vector of
malware spread [Rau11] making isolation efforts to protect ICSs from the rest
of the IT systems largely ineffective. Further, the recent class of attacks called
BadUSB [NK16] disclosed new threats that involve USB devices. These attacks
are based on a modification of the device firmware, that forces the infected
device, typically a thumb drive, to behave as a different kind of device, for ex-
ample as a keyboard. In this way, a malicious firmware can inject commands
that end up in a malware infecting the host. These malicious commands could
download a malware from the Internet, but can also create it on-the-fly, for
example, by “typing” the content of a malicious script and running it.

Regular antiviruses are largely ineffective against innovative malware, i.e.
malware that exploit zero-day vulnerabilities, and, especially against BadUSB
attacks since they exploit basic capabilities (e.g., typing operating system com-
mands) that the user is normally allowed to use.

45

46
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

In this chapter, we present an architecture based on a dedicated hardware,
called USBCheckIn that is an integration of the solutions presented in Chap-
ter 2 and 3. The idea is to have an hardware that enables promiscuous use of
RSDs in critical infrastructures, while preventing the spread of both conven-
tional and firmware-based malware into the critical machines.

In our approach, machines are either critical (SCADA, embedded devices,
etc.) or regular (personal notebooks, company PC, etc.). We consider regular
machines and RSDs as possible sources and vectors of attacks against critical
machines.

Our goals are to allow this kind of use while preventing (potentially mali-
cious) data or code originated from regular machines to spread into critical ones
as well as prevent the damage of critical machines by malicious firmware. To
achieve the first goal, we rely on cryptographic integrity protection along with
the use of authenticated data structures for efficiency. Our approach does not
rely on malware signatures and is a strong obstacle to the spread of zero-day
attacks, even if RSDs are used promiscuously in critical and regular machines.
To achieve the second goal, we rely on an hardware-based “captcha”. The basic
idea is that the authenticity of a real Human Interface Device (HID) can be
easily checked by asking the user to use it. Our hardware-based solution does
not require any change to host systems and, hence, it is easily deployable in
real ICS environments.

The rest of this chapter is organized as follows. In Section 4.1, we review
the state of the art. Section 4.2 introduces actors involved in our solution and
formalises the requirements we intend to meet. In Sections 4.3, we describe the
security model and the threat model on which we base our work. Section 4.4
shows the architecture of the proposed solution. Section 4.5 provides a security
analysis. In Section 4.6, we modify our solution to provide additional security
features. Section 4.7 discusses the applicability of our approach in ICS envi-
ronments. In Section 4.8, we present a prototype of the proposed solution and
report informal feedback from experts.

4.1 State of the Art

To mitigate the risk for critical systems to be infected by a malware, an an-
tivirus can be adopted and properly configured to scan the data stored in the
USB thumb drive before any access.

Most commercial antiviruses perform detection based on a database of
known malware signatures. This approach has some drawbacks: it cannot

4.1. STATE OF THE ART 47

detect zero-days attacks, it needs regular signatures updates to keep its effec-
tiveness, its performances depend on the size of the data to be protected, and
it cannot protect from generic tampering. Further, the class of attacks that
leverage on the modification of the firmware (BadUSB attacks) makes regu-
lar antivirus largely ineffective since they use capability this kind of devices
are allowed to use. However, it may detect or block further malware actions
occurring after the BadUSB attack.

The primary countermeasure proposed against BadUSB was to protect USB
devices by a firmware authentication feature that limits the firmwares that
can be uploaded into a device to those signed by the device vendor (see for
example [IRO16]). However, this approach protects devices but not hosts,
which are secured only if they are forcibly limited to interact with just protected
devices. Further, this strongly limits the choice of USB storage devices and it
is insecure, if the limitation is delegated to error-prone user behaviour.

GoodUSB [TBB15b] is a software solution that aims at protecting the host
against BadUSB attacks. When a new USB device is attached, a message is
shown to the user, which must declare his/her expectation about the function-
alities of the device. The user has to make a decision, that means there is the
possibility to incur in a human mistake or a deliberate malicious human be-
haviour. A similar approach is adopted by [KS17, LHK+16]. USBlock [MW18]
consider the timing of USB traffic similarly to certain the intrusion detection
approaches for IP networks.

There are a number of products on the market that specifically address
security for RSD (e.g., see [bit]) and USB thumb drives (e.g., see [top]). These
are mostly focused on confidentiality, which, however, is not our primary ob-
jective. In these cases, support to integrity is on a file basis or on a block
basis, and there is no integrity protection for the whole storage: an attacker
can delete selected portions of data and also revert part of them to a previously
saved version. Further, all solutions imply some form of authentication, usu-
ally password-based, but once the user is authenticated, full access to data is
allowed, and a malware can easily infect the stored files. Further, the adoption
of a password as a protection impacts the usability in term of ease to allow
different people to use the device, i.e., the possibility to pass the device from
hand to hand.

Integrity

Concerning techniques for checking the integrity of data, a large body of work
is known in literature.

48
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

Protecting information by means of integrity in a scenario where exist dif-
ferent type of machines (i.e. regular and critical) recalls the well known Biba
integrity model [Bib77], which describes a set of access control rules that can be
used to protect the integrity of certain data. In the Biba model, each element
is associated with an integrity level. The rules of this model deny any flow of
information from lower levels to higher levels and can be summarised with the
statement “no read down, no write up”. This model is implemented in recent
versions of the Windows operating system [RS09]. However, any form of access
control on a filesystem must be performed by a trusted operating system, while
we want an USB thumb drive to be promiscuously usable even on untrusted
machines.

Many integrity approaches rely on robust cryptographic hash functions [RS04].
When the dataset to be protected is large, using hash functions is inefficient.
In fact, for each change, even small ones, the hash of the whole dataset have to
be re-computed. Also, to check the authenticity of a small part of the dataset,
the hash of the whole dataset should be checked. Authenticated Data Struc-
tures (ADS) allow a user to efficiently update a cryptographic hash of a large
dataset when just a small part of the dataset is changed. For an ADS, the
hash of the whole dataset is called root hash or basis. They also allow a user
to efficiently check the integrity of a small subset of data by only comparing
against the root hash an integrity proof of size O(log n) with n the size of the
data. Supposing that only the root hash is known to be genuine, it is possible
to check the integrity of a small subset of data, efficiently.

Widely-known ADSs are Merkle Hash Trees (MHT) [Mer88] and authenti-
cated skip lists [GT00]. MHTs are balanced search trees where leaves contains a
cryptographic hash of the data and each internal node contains a cryptographic
hash of a concatenation of the hashes stored in the children. For MHTs, the
proof for a leaf l is made of the hashes stored in the sibling of the nodes that
are in the path from l to the root.

For these data structures, updates and checks are performed in logarithmic
time with respect to the size of the dataset, which is comparable to the efficiency
of many indexes for databases and filesystems. For this reason, MHTes or
other ADSs have been used in commercial, free, or research products. For
example, MHTes were used for securing filesystems (see for example, [LKMS04,
SvDJO12]). Authenticated data structures were also adopted to authenticate
relational database operations [DGMS03]. The problem of efficiently using
ADSs with regular DBMS was studied in [MS05, DBP07, PPP10a].

4.2. ACTORS AND REQUIREMENTS 49

4.2 Actors and Requirements

The actors of our solution are machines, humans, and USB devices. USB
devices can be USB HIDes (for simplicity we consider only mice and keyboards)
or RSDs. Machines are divided in critical and non-critical (or regular). The set
of critical (non-critical) machines is the critical (non-critical/regular) realm. We
consider critical realm as the part of the system that requires special protection
against malware generated in the non-critical realm and spread by means of
RSDs, which include thumb drives.

In the USB protocol, the newly attached device declares its type to the
host (i.e., if it is a keyboard, mouse, or RSD). As for the protocol, a device is
allowed to act only according to the type it stated.

We consider two different possible ways to interact with machines: data-
flows and inputs. We define data-flows as data transferred from machine to
machine realised by means of read and write operations on RSDs. We define
inputs as data generated by device that allege to be HIDes. We have a malicious
data-flow when the flow is from a regular machine to a critical machine. We
do not consider a data-flow as malicious when data pass through a regular
machine to a critical machine with the mediation of a special component of the
architecture called Gatekeeper (see Section 4.4). We have a malicious input
when the input is generated by a RSD that states to be an HID and, hence,
the input itself was not generated by an interaction between a human and the
HID.

Most of requirements considered in the design of this solution are the same
we took into account in Chapter 2. In the following, we remind the require-
ments already defined and list the new ones thought for this solution, namely,
Resiliency to Human Misbehaviour and Determinism.

Discernment (Ds). The solution should prevent malicious data-flows and
malicious inputs from reaching while allowing non-malicious ones.

Full Integrity (FI). The solution should be able to detect malicious data-
flows. In other words, the solution has to detect all kinds of integrity
violations, comprising deletions and restoration of previous versions of
files or parts of them.

Timeliness (T). Malicious data-flows and malicious inputs should be de-
tected before they reach critical machines.

Interoperability (I). The solution should be usable in conjunction with the
existing systems and software suites (SCADA, HMI, harsh laptops, de-

50
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

velopment environments, inventory management, etc.), without requiring
any invasive change to those products.

Usability (U). The solution should preserve the convenience and high usabil-
ity perceived by users when using RSDs and USB HIDes.

Efficiency (E). The solution should not introduce asymptotic complexity over-
head. Since operations for regular non-protected storage technologies run
in at most O(log n) time, where n is the amount of data stored, we man-
date our solution cannot increase this complexity. For HID, we accept
only constant time operations.

Resiliency to Human Misbehaviour (R). The solution should be not vul-
nerable to human mistakes or intentional misbehaviour, hence, it has not
to be based on any decision made by humans.

Determinism (Dt). The solution should be regarded deterministic for any
practical purpose, that is, the probability that each single attack to be
successful should be so small to make any brute-force attack not viable.

4.3 Security and Threat Model

We model an ICS as a set of machines (e.g. notebooks, workstations, SCADA,
embedded systems, etc) equipped with USB ports. In our model we assume
that only RSDs and HIDes can be used as USB devices. Different USB devices
are not allowed. RSDs and HIDes can be used promiscuously in both critical
and non-critical realm. We define a RSD as malicious when it states to be an
HID.

All data generated in the critical realm are considered trusted. Data flows
from regular to critical realm are forbidden and allowed only using a gatekeeper
(see Section 4.4). All other information flows should be allowed. This ideal
setting conforms to the Biba integrity model [Bib77] with just two integrity
levels, where the rule “no read down, no write up” applies and the critical and
regular realms are the higher and lower integrity level respectively.

Physical keyboards and mice are considered trusted and cannot be source
of infections. RSD devices are considered non-trusted due to the possibility to
change the firmware so that the device can act in a malicious way, i.e in a way
that aim at damaging the system.

In our model, we consider an attack to be (1) any write operation per-
formed by a regular machine on something that is supposed to be read by a

4.4. ARCHITECTURE 51

critical machine comprising addition, deletion and changes to data, metadata
and directory structure, and (2) any input generated by malicious RSDs that
reaches a critical machine.

4.4 Architecture

In this section, we describe the architecture of our solution. We equip each
critical machine with an hardware, that we call USBCaptchaIn, intended to be
connected to one of the USB ports of the host. USBCaptchaIn is itself provided
with a USB port where other USB devices can be connected. The idea is that
USBCaptchaIn should always be in the middle between any USB device that is
intend to be connected with a critical machine and the critical machine itself.
For this reason, we assume that USBCaptchaIn cannot be unplugged from the
machine and each critical machine has all available USB ports either protected
by USBCaptchaIn or disabled.

In our approach, regular machines are not equipped with any specific hard-
ware or software. The general architecture is depicted in Figure 4.1. We
also consider a special machine called gatekeeper that allows exceptional data
transfer from regular to critical machines and whose details are described in
Section 4.4. We now focus on the internal architecture of USBCaptchaIn.

USBCaptchaIn

The internal details of USBCaptchaIn are shown in Figure 4.2. USBCaptchaIn
is equipped with two USB ports: one upstream port and one downstream port
(also called up/down ports). The up port of USBCaptchaIn is connected to
one of the USB ports of a critical machine that we intend to protect. All USB
devices that a user intends to attach to the critical machine should be attached
to a down port. For the sake of simplicity, we present the architecture of
USBCaptchaIn with only one down port. The introduction of additional down
ports is a straightforward extension of the approach proposed in this chapter.

Near the up port, there is an orange LED that indicates that the host is
powering USBCaptchaIn and it is correctly working. Near the down port, there
is a status red/green LED. The LED blinks green when one of the attached
devices, possibly through a hub, is undergoing the authorisation procedure,
turns fixed green when all devices are successfully authorized and can interact
with the host, and turns blinking red if the authorization procedure of one of the
attached devices failed too many times and the device must be disconnected.

52
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

USBCaptchaIn Critical
Machine

Regular
Machine

USBCaptchaIn

Gatekeeper

A
u
d

it
in

g

S
o
ft

w
a
re

No unprotected USB

ports

Protected and

unprocteted USB

ports

Unprotected USB

ports

Figure 4.1: Components of the proposed architecture.

Messages required for user interaction are presented to the user on a 2.1” TFT
display which is embedded in USBCaptchaIn.

In USBCaptchaIn, a software intercepts, inspects, redirects, and injects
USB traffic between up and down ports. When a user attaches the device to
USBCaptchaIn, the interaction between device and USBCaptchaIn follows the
USB protocol: an enumeration phase is performed, during which the device is
supposed to provide specific information about itself. USBCaptchaIn listens
the capabilities declared by the device and records all information provided
during enumeration. If the device declares to be a RSD, USBCaptchaIn be-
haves as described in Section 4.4. If it declares to be a HID, USBCaptchaIn
behaves as described in Section 4.4. In both cases, the software realises the
rules described in our security model. The actual operation depends on the
state of the authorisation procedure described in the above mentioned sections.

USBCaptchaIn encompasses the following components.

4.4. ARCHITECTURE 53

Screening Router

Integrity
Subsystem

HID Authorizator

Mouse

Authorizator

Keyboard

Authorizator

RSD Authorizator

Controller

Figure 4.2: Components of the USBCaptchaIn device.

Screening Router. The screening router is in charge to route, USB packets
to and from the ports, the controller, and the integrity subsystem. Its
action depends on the authorization status of the device as explained
in Sections 4.4 and 4.4, which may end up in filtering out certain USB
traffic. It also performs standard USB enumeration, when a new device
is connected.

Integrity subsystem. The integrity subsystem handles read and write oper-
ations related to RSDs and executes additional actions to guarantee that
the data flows constraints of our security model are met (see Section 4.3).
The integrity techniques adopted are detailed in Section 4.4.

Controller. The controller orchestrates the display, the status leds, and the
authorizators to realise the authorization procedure and human-machine
interaction described in Section 4.4 and 4.4. It also reconfigures the
screening router depending on the result of the authorisation procedure.

54
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

Authorizators. The authorizators manage the authorisation process of RSDs
and supported HIDes types. The correct authorizator is chosen by the
controller according to what is declared by the device. The RSD Au-
thorizator performs some consistency checks (see Section 4.4), while each
HID Authorizator generates challenge codes for the user, keep track of
the number of attempts, and check the correctness of the submitted code
(see Section 4.4).

Integrity Subsystem and RSD Authorization

The integrity subsystem is in charge to ensure that data flows through RSDs
comply to the constraints described in Section 4.3. Essentially, any data trans-
fer from regular machines to critical machines should be blocked (exceptions
are handled as described in Section 4.4). To efficiently perform this task and
fulfil the Requirement E, we base our solution on ADSs (see Section 4.1).

Each RSD has a secure partition and an ADS partition. In the secure
partition, we store data to be protected. In the ADS partition, we store an ADS
over the data do be protected plus some additional cryptographic information.
The state of the ADS is tightly coupled with the content of the secure partition.

RSDs store sequentially-numbered equal-sized blocks of bytes. In the USB
protocol read and write operations issued by the host are at block level. The
integrity subsystem intercepts these operations and inhibits those targeting
blocks outside the secure partition. Operations that target the secure parti-
tion are performed along with additional tasks: reading encompasses integrity
checks based on the ADS and writing encompasses update of the ADS. The
root-hash of the ADS is kept signed in the ADS partition and used during the
integrity checks. In the following, we provide the details of our solution.

In our approach, the identifiable operations are the same of the Chapter 2
that, for convenience, we remind in the following.

Protected-Read. Protected-reads are read operations performed by the crit-
ical machine on data stored in the secure partitions of a RSD. Protected-
reads are mediated by USBCaptchaIn, which checks the integrity of the
read data. If data is recognised as genuine, the data is reported to the
critical machine as result of the read. If data is recognised as tampered,
the read operation is blocked and an error is communicated to the critical
machine. As detailed below, this fulfil Requirements Ds, T, R and Dt
and partially FI.

4.4. ARCHITECTURE 55

Protected-Write. Protected-writes are the write operations performed by
the critical machine on data stored in the secure partitions of a RSD.
Protected-writes are mediated by USBCaptchaIn, which additionally up-
dates the ADS and the signature of the root hash. During the ADS
update some integrity checks are performed. If they fail, an error is
communicated to the critical machine. This contributes to fulfilment of
Requirements Ds, T, R, and partially FI.

Illegal-Write. An illegal-write is a write operation performed on a secure
partition by a regular machine. The data changed by an illegal-write are
always recognised by the subsequent protected-reads as tampered.

Plain-Read. Plain-reads are normal read operations performed by regular
machines when reading any part of a RSD comprising the secure partition.

Secure and ADS partitions are realised as regular partitions on the RSD.
Before the Integrity Subsystem starts to mediate the interaction between host
and RSD, the RSD authorizator performs the following checks that guarantee
the safety of read/write operations performed by the Integrity Subsystem.

1. It reads the partition table and check its compliance with its standard
format to exclude attacks at this level.

2. It identifies secure and ADS partitions. If they are not present, this
procedure is aborted and the RSD is not authorised.

3. It checks the correctness of format and size of the ADS partition.

4. If the above actions are successful, it configures the screening router to
pass all host read/write requests to the Integrity Subsystem. Further, it
asks the Integrity Subsystem to initialise itself for handling the identified
secure and ADS partitions (see below).

Before describing the Integrity Subsystem we need to introduce some con-
cepts. Within each partition, we adopt the common approach of identifying
blocks by a numbering, assigning zero to the first block of that partition. The
size of the partitions are defined at the moment of their creation. Creation of
partitions is handled by a specific software that can create only partitions with
empty state, which are always recognised as genuine by USBCaptchaIn. This
software just resizes existing partitions (like standard partitioning tools do) and
create secure and ADS partitions with the empty state. This procedure can

56
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

be performed on regular machines without affecting security, since partition
creation does not imply any data flow in the sense described in Sections 4.2
and 4.3.

Each USBCaptchaIn device keeps, in local storage, its own private key and
a corresponding certificate signed by a unique Certification Authortiy (CA),
whose public key is also stored. We denote by U an instance of USBCaptchaIn
and by CERT(U) its certificate. Given a certain state of the secure partition
Z, the hash of its current content, i.e. the root-hash of the ADS, is denoted
by h(Z) and its signature is denoted by signU (h(Z)). The ADS partition
contains special fields named signature and last writer certificate, that stores
signU (h(Z)) and CERT(U), respectively. where U is the last USBCaptchaIn
that wrote in that RSD.

During initialisation of the Integrity Subsystem, right after the authori-
sation of the RSD, the last writer certificate is read and verified against the
certificate of CA. The root-hash and its signature are read and verified against
the last writer certificate. If any of these steps fails, the RSD is blocked and
no operations are allowed on it, otherwise the root-hash is considered trusted.

When the critical machine asks to read a block b from Z through U , U
retrieves the proof of b from the ADS (see Section 4.1). If it is consistent with
the current trusted root-hash, the content of b is deemed to be genuine and is
passed to the critical machine. When the critical machine asks to update Z
through U , the ADS (comprising root-hash) and the signature should also be
updated. This fulfils Requirements Ds, T, R, and Dt as far as access to RSDs
is concerned.

To fulfil Requirement E, USBCaptchaIn has a caching mechanism: it per-
forms update of the ADS partition only when there are no write operations
pending, with a timer triggering the actual write, similarly to what regular
operating systems do. The last writer certificate is updated the first time it is
changed.

This approach does not completely fulfil Requirement FI. In fact, it cryp-
tographically detects all kinds of tampering except the full reversion of both
secure and ADS partitions to an older genuine version. A version of our ap-
proach that completely fulfil Requirement FI is presented in Section 4.6. A
detailed security analysis is provided in Section 4.5.

We now describe the representation of the ADS in the ADS partition and
its relationship with the secure partition (see Figure 4.3).

For the sake of simplicity, we assume the secure partition contains n blocks,
where n is a power of 2. In this case, our ADS has n leaves, in one-to-one
correspondence with the blocks of the secure partition, and is a complete binary

4.4. ARCHITECTURE 57

Figure 4.3: Relationship between secure partition, ADS, array, and ADS
partition.

Markle Hash Tree (see Section 4.1). From the properties of binary trees, the
total number of nodes (comprising internal ones) is 2n−1. Each leaf of the ADS
is the hash of the content of the corresponding block of the secure partition.
We represent the ADS with an array of 2n − 1 elements (one for each node)
following a sequential representation. We assume the nodes of the ADS to be
numbered from 0 to 2n− 2, from the root to the leaves following a breath-first
search order. According to this numbering scheme, each node v has 2v + 1
as left child and 2v + 2 as right child. We represent the ADS as an array
whose elements correspond to the nodes of the ADS according to the above
defined numbering. The array stores only the hash, since the relationship
between nodes are implied by the above mentioned rules. The ADS partition
additionally stores signature and last write certificate, whose size is fixed. Let
m be the size of the cryptographic hash and B the size of the blocks in bytes.
The size of the representation of the ADS is (2n − 1)m while the size of the
secure partition is nB. It turns out that, for large n, the size of the ADS is
2m/B the size of the secure partition. For example, for B = 4096 (which is a
typical size for disk I/O) and m = 32 (like for sha256), the ADS introduce a
storage overhead of just about 1.6%.

58
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

HID Authorisation

In this section, we describe the HID authorisation process and interaction be-
tween USBCaptchaIn, the user, and the HID (i.e., a keyboard or a mouse),
that occurs when the latter is plugged into the down port.

The authorisation process is based on a physical interaction between hu-
man beings and the HID just connected. After the enumeration phase, US-
BCaptchaIn starts the authorisation process asking to the user to input, by
means of the HID itself, a randomly-generated challenge code.

The interaction for an HID that declares to be a keyboard is summarised
in Chapter 3. Hereunder, we briefly reminder the procedure. The challenge
code is a 5-characters alphanumeric string, which is communicated to the user
by showing on the display a message. The user types the elements of the
challenge code which for a keybord are characters. Each typed character is
sent by the device to USBCaptchaIn according to the normal USB protocol
for HID. The authorizator checks that each received element matches with the
corresponding element of the challenge code. If it matches, USBCaptchaIn
provides a visual feedback to the user. For a keyboard we colour green the
corresponding correctly typed element on the display. Then, USBCaptchaIn
loops expecting further elements and checking them until the challenge code is
finished.

If the challenge inputs are correctly inserted, USBCaptchaIn notifies the
user that the new device has been authorised and that it can be used.

At the same time, USBCaptchaIn impersonates the device toward the host
by performing a “replay” of the enumeration that was previously recorded.
Then USBCaptchaIn configures the screening router to short-circuit (logically)
the up and down ports.

USBCaptchaIn keeps monitoring the exchanged packets between the host
and the device in order to recognise hardware or logic detach/re-attach opera-
tions and then trigger a new authorisation procedure, when needed.

If any of the received elements does not match the corresponding element
of the challenge code, the authorization is started over again showing a proper
message

The authorisation process can be tried for a maximum of three times. After
three wrong attempts, USBCaptchaIn definitely blocks the device, ignoring any
more input from it.

To try again, the user has to detach and re-attach the device. This physical
interaction makes a completely automatic brute-force attack impossible (see
Section 4.5 for further details). Clearly, this is also the message displayed

4.4. ARCHITECTURE 59

when a device maliciously declares to be a keyboard and tries a repeated guess
attack. This approach fulfil Requirements Ds and T.

If the device is a mouse, USBCaptchaIn asks the user to move a pointer on
the display to draw a line between two randomly-placed targets, for 3 times.
The procedure was selected to obtain a good compromise between security and
usability.

In this case, each element of the challenge is a pair of points of the USB-
CaptchaIn display.

Note that, instruction messages for the user are adaptively placed on the
display on an unused zone, after the first point was chosen, to allow higher
freedom in target positioning and make the required interaction harder to guess
for a malicious RSD that pretends to be a mouse. See Section 4.5 for a security
analysis.

Once the HID is authorised, USBCaptchaIn allows the HID to interact
directly with the host, without adding any overhead to the USB packets ex-
changed by them, complying with Requirement E.

Gatekeeper

The above described architecture ensures high level of security and usability
but does not support the relevant use case of bringing new legitimate data or
software into the critical realm, like for example manuals or firmwares. They
may be available in the regular realm and the first time they enter the critical
realm we need to performs accurate audit. The role of the gatekeeper is to
ensure that these checks are performed in accordance with the policy of the
organisation.

The gatekeeper realises the “complete mediation” security principle [AJGS83].
It plays the same role of firewalls in networking and of the security reference
monitor for operating systems. Practically, it is a dedicated machine that
(i) has some USB ports non-protected by USBCaptchaIn from which any file
can be read, (ii) runs a specific software that performs thorough audits on the
read data, and (iii) writes the audited data on a secure partition on a RSD
plugged into USBCaptchaIn, which in turn is connected to the gatekeeper on
a different port. Clearly, the security of the software in the gatekeeper and of
the whole gatekeeper machine is paramount.

The gatekeeper is the single point where data flow policies must be config-
ured and are enforced. While the actual policies may depend on the specific
industrial context, they should cover (a) authentication of the operator that
requires the transfer, (b) authorization of the transfer according to the policy

60
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

of the organization, and (c) logging of the details of the operations performed
to allow subsequent auditing. Our gatekeeping approach enables to scale-up
the security level that an organization can achieve enabling the implementation
of arbitrarily thorough analysis of the data to be transferred and arbitrarily
complex workflow to obtain the authorisation, which may involve human deci-
sion.

4.5 Security Analysis

The intent of this section is to explicit a number of assumptions and to show
that, under those assumptions, with the adoption of the proposed solution, the
critical realm cannot be compromised. We recall that, protection from denial
of service, i.e., making data not accessible, is not among the objectives of the
proposed solution.

We consider the following assumptions:

(I) USBCaptchaIn does not have security bugs and it is not compromised,

(II) all HIDes and RSDs communicate with the host through USBCaptchaIn,

(III) the gatekeeper effectively checks (and possibly blocks) data flowing from
the regular realm toward the critical realm,

(IV) critical machines cannot communicate with regular machines by means
of other then RSDs and trusted console operators,

(V) attackers cannot obtain a private key (which we assume to be generated
within USBCaptchaIn at production time and never exported) or force
the CA to sign a new certificate and CA is not compromised,

(VI) the adopted cryptographic primitives have no security flaws, and

(VII) an attacker cannot unplug USBCaptchaIn from the host.

Our approach is not vulnerable to human mistakes or intentional misbe-
haviour. In fact, we do not ask to the user to take any decision. Integrity
checks process is totally transparent to the user. During the authorisation pro-
cess of HIDes, the user does not have to accept device features or choose in
a list of allowed device classes. Actually, not even a malicious user can force
USBCaptchaIn to authorise a device that claims to be an HID but offers no

4.5. SECURITY ANALYSIS 61

physical means to the user to provide the requested challenge code. By the
above considerations, we can argue that our approach fulfil Requirement R.

By Assumption (I), USBCaptchaIn cannot be compromised by inserting
RSDs that contains malformed data (e.g., a malformed partition table or ADS
partition).

By Assumption (IV), the only vector of attack are RSDs plugged into crit-
ical machines. By Assumptions (II) and (VII), all communications between
USB devices and critical machines are mediated by USBCaptchaIn.

By Assumption (I), there is no way to bypass the authorisation process of
HIDes than guessing and brute-force attack against the challenge code. While
Assumption (I) is a demanding one, honoring it for a dedicated hardware is
surely easier than honoring it for a software which runs on the host. In fact,
the security of USBCaptchaIn is based on the security of a reasonably small
and stable amount of software, while for a host-based solution all software run-
ning on the machine should be trusted unless proper mandatory access control
configurations are in place, which may not be feasible in many environments.
Further, certification procedures are much easier for an small embedded system
whose elements do not change.

The authorisation process of HIDes is extremely well protected against
guessing/brute-force attacks. For keyboard authorisation, the challenge code
consists of 5 characters each ranging within 26 letters plus 10 digits. The prob-
ability for a malicious device to correctly guess a random challenge in three
attempts is 3 over 365 (i.e., 1 over about 20 millions). For mouse authorisa-
tion, each challenge code consists of 3 pairs of points. The first point of each
pair ranges within 24 possible positions. The second point ranges within the
unused positions that remain after the text message is placed: 11 for the first
elements b) and 17 for the second and third element. The probability of a suc-
cessful attack in 3 attempts is 3 over 243 ·11·172 (i.e., 1 over about 14 millions).
The above considerations show that our approach meets Requirement Dt as far
as HID authorisation is concerned.

It is worth noting that a malicious device has no clue about the success or
failure of each attempt and after three failed attempts the human intervention is
required to gain more attempts. Devices recognised as RSDs cannot maliciously
mimic HID behaviour: once a device is authorised as non-HID, any attempt
to mimic HID behaviour requires a re-enumeration that can be triggered by
a logic detach signal, which in turn triggers a new authorisation process by
USBCaptchaIn.

USBCaptchaIn cannot prevent a malicious HID (i.e., a keyboard or a mouse
containing malicious code embedded in the firmware), to actually allow the

62
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

user to enter the challenge code. Other proposals, like for example [TBB15b],
have similar limitations. However, solutions like [MW18] analyse the timing
characteristics of the USB traffic which may detect a malicious HID. Nothing
prevents to integrate into USBCaptchaIn a similar approach.

About the integrity checks process, critical machines can read only data
stored in secure partitions. By Assumption (III), no malicious file from the
regular realm is admitted in the critical realm. Hence, the only remaining
possibility for an attack is trying to make critical machines to read tampered
data from a secure partition.

Since RSDs are completely untrusted, the attacker (e.g., a compromised
regular machine) can freely tamper with any data stored in the RSD (see
Section 4.3). This includes data stored in the secure partition, and all data
stored ADS partition, namely, ADS, signature, and last writer certificate. Let
us consider a tampering of a secure partition. Since the result of any protected-
read operation is checked against the signed hash, through the proof derived
by the ADS in the ADS partition, the tampering of data stored in the secure
partition is easily detected.

Now, let us consider an attacker who replaces the content of the secure and
ADS partition with an old version of them. In this case, the check of the signed
hash with the result of a protected-read matches. As mentioned in Section 4.4
we do not completely fulfil Requirement FI. See Section 4.6 for a description
of the improvement that we propose to the approach described in Section 4.4
to fulfil Requirement FI completely.

The attacker can try to avoid detection by tampering also the ADS par-
tition. An attack to the ADS, that does not change the root hash, requires
to find a collision for the hash function on which the ADS is based, which is
against Assumption (VI). On the other hand, to change the root hash the
attacker should be able to violate the signature. However, this attack is ruled
out by Assumption (VI) and, by Assumption (V). The attacker cannot get
private key from USBCaptchaIn for Assumption (I).

Tampering only with the signature, the last writer certificate, or the ADS
ends up in a false positive. In fact, in those cases, while data contained in the
secure partition may be genuine, the integrity system has no way to prove it,
hence, it behaves as if the secure partition was corrupted denying any access
to it. We recall that ensuring data availability is not within the objective of
our solution.

If a protected-write operation is partially executed, for example because
the RSD is unplugged abruptly, the data in the secure partition, the ADS, the

4.6. ENSURING FULL INTEGRITY AND PROVIDING ADDITIONAL
FUNCTIONALITIES 63

signature and the last writer certificate may not be written or may be partially
written. In this case, a protected-read, detects a tampering.

4.6 Ensuring Full Integrity and Providing Additional
Functionalities

As noted in Sections 4.4 and 4.5, the solution presented till now, does not
completely fulfil Requirement FI. In fact, reversion to a previous version of the
secure parition, along with its consistent ADS parition, is not detected as tam-
pering. This may be regarded as an acceptable behaviour or not depending on
the context. In this section, we modify our solution so that Requirement FI is
completely fulfilled. The changes that we propose are not free. They introduce
additional complexity, and in a certain sense, additional costs. This is the rea-
son why they are presented here as an improvement and not in the main design,
leaving open the possibility to adopt the limited version in situations in which
partial fulfilment of Requirement FI is acceptable. The changes described in
this section also offer the opportunity to provide additional functionalities that
may be desirable.

The new general architecture is shown in Figure 4.4. We introduce a coor-
dination service (CS), whose functionality is to store key-value pairs in which
each key is associated with one RSD (for example, the USB device identifier
may be used for this purpose) and the value is the current root-hash of the
ADS (and in turn of the current state of the secure partition). To connect with
CS, a communication channel is needed. The bandwidth requirement for it is
very small: only the RSD key and the cryptographic hash (the final root-hash)
for each update of the secure partition should be sent. To support it, even a
low bandwidth GPRS connection may be enough. We note that the availability
of CS and of the connection might be an issue. In fact, if CS is not available
or reachable, RSDs cannot be used. However, nothing prevents the adoption
of standard high-availability approaches. Clearly, the communication between
USBCaptchaIn and CS must be properly protected using standard technology
(e.g., TLS [DR08]) and CS must be secured and authenticated.

If we accept the presence of a (low-bandwidth) communication channel, we
can exploit it to provide an additional remote administration/monitoring func-
tionality, which may be enabled on-demand under the control of CS. To realise
this, we equip USBCaptchaIn with the capability to create a VPN toward CS,
then a data connection between USBCaptchaIn and the critical machine can
be created in two ways. If the critical machine supports fully fledged USB pro-

64
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

Regular
Machine

USBCaptchaIn Critical
Machine

Coordination
Service

Root HashCA

USBCaptchaIn Gatekeeper

Figure 4.4: How the Coordination Service fits the architecture described in
Section 4.4.

tocol, USBCaptchaIn may present itself during enumeration with an additional
functionality of USB network card. Otherwise, a physical cable may connect
USBCaptchaIn with a physical network interface of the critical machine.

This architecture may also support a certificate revocation procedure. In
fact, CS may periodically provide to all USBCaptchaIn devices a certificate
revocation list and possibly distribute new certificates.

Additional easy to implement functionalities are logging and monitoring of
RSD activity and capability of administratively disable the use of RSDs on
certain critical machines.

4.7 Applicability Considerations

In the following, we discuss the applicability of our approach in real ICS envi-
ronments.

4.7. APPLICABILITY CONSIDERATIONS 65

RSD Data Integrity Protection Contrary to current suggested best prac-
tices [SFS11], with our approach, users are allowed to use the same RSD with
any machine without relaying on passwords and without the need to install
specific software. It is enough to equip critical machines with USBCaptchaIn.
Protections offered by the integrity subsystem are largely transparent to users,
addressing Requirement U (see Section 4.2). When an RSD is plugged into a
USBCaptchaIn, only the secure partition is accessible to the critical machine.
When an RSD is plugged into a regular machine, secure and ADS partitions
should not be touched. To avoid unintentional tampering of them, the secure
partition can be logically write-protected using capabilities supported by cer-
tain filesystems (e.g., NTFS) or partition tables (e.g., GPT). In this cases, the
secure partition can be mounted read-only on regular machines. Note that, if
the above solutions cannot be adopted (for example for FAT-formatted drives
with MBR partition tables), automatic read-write mounting of a secure par-
tition may happen on a regular machine, which may end up in a detection of
tampering due to automatic changes (e.g., update of mounted-bit flag, auto-
defragmentation, etc.). To avoid this issue, we slightly change the behaviour
described in Section 4.4: we store the content of the secure partition shifted
of (at least) one block, so that, the first block(s) are unused and zeroed. US-
BCaptchaIn provides block numbers translations on-the-fly during protected-
read/write operations. In this way, the filesystem cannot be recognised and
mounting cannot occur on regular machines.

User Interaction with USBCaptchaIn We now discuss the interaction of
the user with USBCaptchaIn with respect to usability (see Requirement U).
For Concerning RSDs, no user interaction is required to authorise a RSD with
well formatted secure and ADS partitions. HIDs authorisation requires the
users to use the device in a regular way. If the device is a keyboard, they have
to type. If it is a mouse, they have to click. A keyboard or a mouse attached
to USBCaptchaIn can be used also to interact during the boot process and to
execute recovery procedures.

Deployment Impact It is easy to deploy USBCaptchaIn in the critical
realm since it does not need any driver on critical machines to work. USB-
CaptchaIn is totally independent from the operating system (OS) of the host
it is connected to. It can be connect to any machine equipped with a USB port
supporting standard USB protocol for keyboard, mouse and/or storage.

66
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

Our approach allows on organization to use any standard RSDs, promiscu-
ously, complying with Requirement I.

The gatekeeper provides the organization with great flexibility about the
security policies, but this means that they should be carefully designed and
possibly integrated with business or decision processes. For strict security
policies, traversing the gatekeeper may be costly, hence, it is advisable to deploy
a critical machine realizing a repository of commonly used files ready to be used
in the critical realm.

The coordination service may be realised in several ways. The simplest one,
supporting only the full Requirement FI, is by ZooKeeper [HKJR10], which also
supports high availability out-of-the-box.

The key management is quite simple. The integrity subsystem requires
only the presence of an off-line certification authority which may already be
present in the organization for other purposes. Aspects related with certificate
revocations have been dealt with in Section 4.6.

We assumed RSDs and HIDes communicate with critical machines through
USBCaptchaIn. This assumption can be easily guaranteed in several ways.
For instance, a costly approach in term of money and changes required for the
deployment, can be to integrate USBCaptchaIn directly into the hardware of
critical machines. Instead, a cheaper approach, for example, can be to leave
in critical machines only one USB port enabled and weld USBCaptchaIn to
that port. Adopting one of these approaches, it is impossible to bypass the
mediation of USBCaptchaIn without physical tampering.

4.8 Prototypical Realisation and Feedbacks from
Experts

We realised two prototypes that implement the more important parts of the
architecture described in Section 4.4. Our main objective is to evaluate the
usability of USBCaptchaIn in practice. We showed the prototypes to ICS
security experts. In this section, we also report their feedback.

We focused on assessing the fulfilment of the usability requirement for the
authorisation process for HID devices and for accessing RSDs, that is for the
use of the integrity system module.

Our first prototype realises USBCaptchaIn (see Section 4.4) on a Beagle-
bone Black board [bea16] on which a Linux kernel is running. In this prototype,
we realised the elements that are needed to test the HID authorisation process,
namely, screening router, controller, and HID authorizators. The software run-

4.8. PROTOTYPICAL REALISATION AND FEEDBACKS FROM
EXPERTS 67

Figure 4.5: The hardware prototype for HID authorisation. The display
shows a message during keyboard authorisation procedure.

ning on USBCaptchaIn is a customised version of USBProxy [Spi16]. The filter
and the authorizator are USBProxy plugins. The communication between the
device connected to a down port and the screening router is realised by means
of libUSB [lib16], a library that supports the interaction with generic USB de-
vices, while the communication between the host and the screening router is
realised by means of gadgetFS, a linux kernel module that allows the Beagle-
bone to act as a client towards the host. We packaged our prototype so that
it can be used on real systems. The final result is shown in Figure 4.5.

Our second prototype mimics the functionalities of the integrity system
module (see Section 4.4). It consists of a software that, differently from our
target design, is intended to be installed in critical machines. However, it
provides the same level of security and a very similar user interaction. In our
simplified realisation, we intercept file system actions at the system call level
by using standard open source drivers [Fus, Dok]. User files and directories
are stored in a regular directory of the RSD, while the corresponding ADS

68
CHAPTER 4. USBCAPTCHAIN: INTEGRATED USB ATTACKS

PROTECTION

is stored in an auxiliary directory according to a proprietary format. Files
and directories can be accessed using the regular system calls of the operating
system. Our software intercepts them and performs corresponding operations
on plain data and on the ADS using regular read and write primitives of the
kernel. More details about this prototype can be found in [GP16].

We showed our prototypes to security experts that we met within meetings
of the Preemptive EU research project [MNG+17]. The feedback was very
positive for both of them. We recorded no complaints about usability. One
of the most appreciated aspects was the possibility to realise them in inde-
pendent hardware. Some of the people we talked with, also suggested that
USBCaptchaIn could be physically mounted within existing hardware whose
USB ports should be protected, while keeping it isolated from the rest of the
system for security. Some have pointed out that promiscuously using RSDs
formatted for use with USBCaptchaIn into other systems may raise annoying
false positives due to users accidentally manipulating integrity-protected data
on a regular system. However, this can be easily mitigated by exploiting sup-
port for soft read-only protection of files (in the prototype) or partitions (in
the target design), which should avoid most of the accidental modifications, as
described in Section 4.7.

Concerning efficiency, on the HID authorisation side, once mice and key-
boards are authorised, the mediation of USBCaptchaIn does not introduce any
noticeable delay for a user with respect to the case where the HIDes are di-
rectly connected to the host. On the integrity protection side, our experiments
performed with our prototype have shown that the additional overhead is negli-
gible with respect to timings involved in normal user interactions, like working
on documents and opening multimedia files. The overhead is mainly due to
the fact that for each operation on data a corresponding operation on the ADS
must also be performed. While for read operations this might be mitigated by
proper caching (which is automatically performed by the operating system in
our prototype), caching is not helpful for write operations. With the diffusion
of USB 3.0 devices, this kind of overhead will progressively be less and less
important. On the other hand, the limited computing power of a cheap board
may severely limit the transfer bandwidth to and from the RSD, with respect
to the bandwidth supported by USB 3.0. However, this aspect is more related
with a market strategy trade-off and out of the scope of this chapter.

Chapter 5

Software Defined Networking
applied in the Industrial Control
System Environment

ICSs are the core of critical infrastructures. They are composed by many
elements that interact by means of a communication network, which we call
ICS network. Main elements of an ICS are embedded devices that control
actuators or gather data from sensors. Special servers are in charge to collect
data from these embedded devices, show them to the control room operators,
record them in a database, change settings according to operators requests,
etc. While the data that flow in an ICS network are very specific, standard
networking technologies can be adopted for its implementation.

In the past decade, a growth of cyber-attacks directed toward ICSs has been
observed [ICS11]. For the security of the ICS networks, best practices suggest
to deploy network-based IDSes [SLP+15]. In regular networks it is acceptable
to observe traffic in a small number of relevant points. However, for reliability
reasons, in ICSs, Supervisory Control And Data Acquisition (SCADA) servers
are close to sensors and actuators, hence, traffic is mostly local. Further,
attacks to ICSs are potentially carried out by organizations (e.g., governments,
intelligence agencies, terrorist groups) that can have insiders and that can
carefully design attacks so that they pass unobserved by sparsely deployed
IDSes. Tapping traffic close to all embedded devices and servers can easily
lead to prohibitive costs. Certain solutions [nex11] make possible to route
traffic replicas using the same ICS network towards one, or a few, IDSes, but

69

70
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

they are not able to guarantee the successful delivery of critical ICS traffic in
all cases.

In this chapter, we present a methodological approach and an architecture
to (i) allow an operator to choose which traffic has to be observed within an
ICS network without installing new hardware, (ii) enable the use of the spare
bandwidth in the network to forward the traffic to be observed toward an IDS,
while avoiding packet loss for regular traffic, and (iii) guarantee that the IDS
receives all the traffic that the operator configured to be observed in order not
to introduce false negatives due to packet loss. Our solution takes advantage
of the fact that topology and bandwidth usage are quite stable in ICS net-
works (see for example [TCB08]), allowing us to assume in advance knowledge
of ICS network’s traffic, since it derives from ICS design, and to perform a
global off-line optimization of switching paths. Furthermore, we support the
usage of the ICS network for additional and occasional traffic, which are always
considered potentially dangerous. We assume that this traffic can be served
with a best-effort approach while maximizing the endeavor in observing it. We
propose an architecture that exploits the Software-Defined Network (SDN) ap-
proach as prescribed by the OpenFlow specifications [Spe13]. We evaluated
our methodology against four network topologies, derived from real topologies
and augmented with realistic networks in the domain of electrical distribution.
Our experiments show that our optimization problem can be easily solved for
those scenarios in reasonable time and our approach makes efficient use of the
bandwidth when the topology allows it.

The rest of the chapter is organized as follows. In Section 5.1, we describe
the state of the art. In Section 5.2, we describe the context of ICSs and intro-
duce basic terminologies. In Section 5.3, we formally state the requirements
that our solution should fulfill. In Section 5.4, we describe our methodology
and our proposed architecture. Section 5.5 introduces the ILP formulation for
our off-line optimization problem and in Section 5.6 we show the on-line algo-
rithm for occasional traffic. In Section 5.7, we evaluate our approach against
realistic scenarios. In Section 5.8, we extend our approach in order to relax
some simplifying assumptions and handle special cases.

5.1 State of the Art and Background

ICS networks make use of proprietary protocols, as shown in [SLP+15]. Those
protocols (e.g. ModBus [MOD96]) are tipically application-layer, and they
allow the communication among ICS devices. In many cases, proprietary pro-

5.2. APPLICATION CONTEXT AND TERMINOLOGIES 71

tocols are used also to compute routing [ODV], but this does not limit the adop-
tion of different link-layer technologies [HCLP15] and new installations tend to
be based on widely adopted standards, like Ethernet. Protocols adopted in ICS
networks do not consider security aspects, hence, well known recommendations
(e.g. [SLP+15]) suggest, among several other countermeasures, the adoption of
IDSes. Forcing network traffic to cross the IDS is not so simple, especially if a
network administrator needs to be flexible in the selection of traffic that has to
be observed. Some flexibility can be gained by adopting proprietary protocols
(like ERSPAN [nex11],[GM17]), which however offers an unhandy solution and
does not guarantee that the rest of the traffic is not affected.

In the last years, a new centralized approach called Software-Defined Net-
working (SDN) is collecting the attention of the research community due to its
promising benefits and, in particular, its flexibility in the selection of the paths
to route packets [KF13]. There have been many attempts in exploiting SDN
in security contexts. Some works [JW13, SBB13] propose to implement the
IDS as an SDN controller module. We argue that such approach poses strong
scalability issues and it is not advisable in the critical infrastructure context. A
different approach consists in exploiting SDN to forward traffic towards one or
more IDSes, as shown in [SSB+14, JHN+14] for the cloud computing applica-
tive context. These solutions cannot be directly adopted in the ICS context
since they do not provide any guarantee about the delivery of regular traffic.

A relevant aspect in our approach is traffic engineering. In [RTZ03], authors
show that having a traffic-matrix allows traffic engineering problems to be easily
solved. Usually, the traffic engineering problem is treated as a multicommodity
flow problem whose solution is described in [AMO93]. Proposals that are
specific to traffic engineering for SDN can be found in [ALW+14, B1́5, AKL13].
At the best of our knowledge, our approach is the first attempt to apply traffic
engineering to the specific context of traffic monitoring by IDS leveraging the
coordinates of the topologies and traffic in ICS networks.

5.2 Application Context and Terminologies

For the sake of simplicity, we assume the ICS network to be isolated from the
corporate network. While this is not completely true in general, still isolation
(physical or by means of a firewall) is the best practice [SLP+15]. Hence, in
the rest of the chapter, we only address traffic monitoring and management
solely in the context of ICS networks. ICS networks connect several kinds of
devices. For the purpose of our discussion we divide them in two categories.

72
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

We call the first category essential : devices in this category can have a very
diverse nature, but they are essential for the correct operation of the ICS, are
part of the ICS design, and are always connected to the ICS network. To
let the reader better understand the applicative context, we provide a more
concrete description. We distinguish them in embedded devices and servers.
Embedded devices1 control actuators gather data from sensors, and realize
closed-loop control for restricted parts of the industrial system. They can send
gathered data to servers and can be remotely controlled or configured, for
example by asking to open/close a circuit switcher or by setting values, called
set-points, that are objective of the closed-loop control, like, for instance, a
target temperature of a heater. Typically, servers are (i) the SCADA, which
gather data from embedded devices and process them, for example, to detect
industrial process faults, (ii) the Human-Machine Interfaces (HMI) that show
to control room operators the current status of the ICS and allow the operator
to specify commands or new set-points for embedded devices, and (iii) the
historian DB, which stores gathered data for future off-line analysis. We call
the second category non-essential : occasionally, other devices can be attached
to the ICS network, for example operators’ notebooks to perform maintenance
of ICS devices or to perform firmware updates.

We call stream a communication between two devices on the ICS network.
We identify it by its source and its destination, specified by IP addresses. Even
though communications are usually bidirectional, throughout this chapter we
consider a stream to be unidirectional, which means that a full communication
between two devices generally encompasses two streams. A stream can be
critical or standard. In a critical stream, source and destination are essential
devices and the properties about the stream are known in the ICS design phase.
In particular their bandwidth demand, source, and destination are known. A
reliable delivery of critical streams is considered fundamental for the proper
working of the ICS and substantial resources are available to guarantee this,
in term of design effort, equipment, etc. A standard stream is not essential for
the current functioning of the ICS and it is not known in advance. It usually
involves at least one non-essential device, but it can be involved in an occasional
communication between two essential devices. Supporting standard streams is
important to enable occasional use of the ICS network for maintenance or
other non-critical activities, hence a best-effort delivery is enough for this kind
of streams.

1For the reader that is acquainted with the ICS context, we are referring to Programmable
Logic Controllers, Remote Terminal Units, Intelligent Electronic Devices, etc.

5.3. REQUIREMENTS 73

From the point of view of the security concerns, both kinds of streams are
equally important, since attacks may involve any of the two with equal chance
of disruptive effects. An attack to the ICS network consists in any action that
introduces unexpected traffic or unexpected changes to standard traffic. To be
more clear, it consists in a source of malicious traffic (e.g. a malware or a rogue
device) or in the action of tampering with any critical or standard stream. We
assume that switches cannot be tampered with. We point out that security of
switching devices is out of the scope of this chapter. We suppose there exists
a centralized Intrusion Detection System (IDS) in the ICS network, which is
able to recognize malicious traffic and properly send alarms.

The goal of this chapter is to provide a flexible way to use a centralized
IDS. To achieve this, we assume that a standard stream σ is duplicated, gener-
ating a replica stream; this action is performed at a network node that we call
observation point. Each replica stream σ̄, associated with σ, originates at the
observation point and ends at the IDS. The extension to several IDSes requires
minimal effort and it is discussed in Section 5.8.

5.3 Requirements

In this section, we list the requirements that our methodology should fulfill.
We also point out the limitations of the current practice.

1. Observation Points – Our methodology should be able to support the
observation of potentially any stream in the network, independently from
topology and IDS placement. For security reasons, we prefer observation
points close to the destination of streams.

Concerning current practice, in certain switches, it is possible to remotely
mirror a port and also tunneling the traffic of the replica (see for example
the ERSPAN technology). However, this approach provides no control
on the bandwidth occupation on each link and it is limited to specific
vendors support.

2. Reliable Replica Forwarding – Our methodology should guarantee
no packet loss for replica streams associated with critical or standard
streams. This is important in order for the IDS to inspect all observed
traffic and avoid false negatives due to packet loss.

Concerning current practice, the adoption of remote mirroring technolo-
gies implies that the replica is delivered with a best-effort approach. To

74
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

overcome this, in principle, traffic engineering and QoS techniques might
be applied. However, this considerably increases the architectural com-
plexity. Further, a centralized management, like the one described in
Section 5.4, is needed anyway.

3. Reliable Critical Streams Forwarding – Our methodology should
be able to configure the ICS network so that, for the critical streams, no
packets loss can occur due to congestion.

This requirement is motivated by the fact that, due to Requirement 1,
replica streams may easily overload some links and make the usual over-
provisioning strategies ineffective. Actually, up to a certain extent, for-
warding reliability can be realized by adopting reliable transport pro-
tocols like TCP. However, support of TCP is non-obvious for certain
embedded devices. Further, retransmission could introduce a delay that
is not acceptable in the ICS context and no bandwidth guarantee is pro-
vided. The adoption of QoS and traffic engineering exhibits the same
drawbacks as discussed for Requirement 2.

4. Standard Streams Usability – Our methodology should allow opera-
tors to use the ICS network for occasional tasks, which results in injecting
new standard streams. While the presence of these streams should not
adversely impact the fulfillment of other requirements, we expect stan-
dard streams to be treated by the ICS network in fair way. Therefore,
usage of the ICS network for occasional tasks produce the same outcome
for all occasional users and applications.

We also consider the well-founded technology constraint that imposes not
to split streams. In fact, if packets of the same stream take different paths,
uncontrolled reordering can happen, which is detrimental for TCP performance
at best and can change the semantics of datagram-based communications at
worst.

5.4 A Methodology and an Architecture

In this section, we describe a methodology and architecture that solve the
problem described in Section 5.2 with the aim of satisfying the requirements
described in Section 5.3.

Our methodology assumes that the network is made of SDN switches that
are compliant with the OpenFlow standard [Spe13]. We exploit the OpenFlow

5.4. A METHODOLOGY AND AN ARCHITECTURE 75

features to: (i) configure network switches to forward critical streams on the
basis of globally optimized paths, (ii) configure network switches to forward
standard streams on the basis of paths chosen by an on-line greedy approach,
(iii) instruct certain network switches (observation points) to duplicate traf-
fic, for the streams that have to be observed (either critical or standard), and
perform the first forwarding step of replica streams towards the IDS, (iv) con-
figure network switches to forward replica for critical streams towards the IDS
choosing paths that are globally optimized by our off-line approach, (v) config-
ure network switches to forward replicas for standard streams along paths that
are dynamically selected with our on-line greedy algorithm, and (vi) configure
shaping of all streams at ingress network switches.

To meet Requirements 2 and 3, we configure the SDN network to shape each
stream at its ingress node, so that packets enter the network at a specified con-
stant rate and all packets exceeding the configured bandwidth are discarded.
For critical streams, the configured maximum bandwidth is determined during
the design as described below, so no packet drop should happen. For standard
streams, this early limiting avoids congestion of internal nodes that could ad-
versely impact critical streams. The shaping configuration exploits the meter
feature of the OpenFlow specifications.

Our methodology encompasses a design phase and an operation phase (see
Fig. 5.1). In the design phase, we require an ICS designer to determine the
network topology and to list the critical streams along with their maximal
required bandwidth. These data are provided as input to an off-line rout-
ing solver, which computes the configuration of the SDN switches for critical
streams. More specifically, the input of the off-line routing solver encompasses
(i) the network topology, (ii) the location of essential devices, (iii) the location
of the IDS, and (iv) for each critical stream its source, its destination and its
bandwidth requirement. The off-line solver produces, for each critical stream,
(i) a forwarding path, (ii) an observation point, and (iii) a forwarding path for
the corresponding replica stream starting at the observation point and end-
ing at the IDS. The off-line solver is based on an ILP formulation, which is
described in detail in Section 5.5.

In the operation phase, we mandate the adoption of a special architecture
(shown in Fig. 5.1) in which an SDN-controller is in charge of configuring for-
warding paths and meters to implement shaping. Its configuration is divided
into two parts: one for critical streams and one for standard streams. The part
related to critical streams is configured on the basis of the result of the off-line
solver and does not change during operation. The part related to standard

76
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

SDN

NETWORK

N
e

w
 S

ta
n

d
a

rd
 S

tr
e

a
m

 S
p

e
ci

fi
ca

ti
o

n

Online Routing

Solver

SDN

Controller

S
ta

n
d

a
rd

 S
tr

e
a

m
 A

ll
o

ca
ti

o
n

a
n

d
 B

a
n

d
w

id
th

 R
e

co
n

fi
g

u
ra

ti
o

n

New Standard Stream

New Standard Stream Specification

Offline

Routing

Solver

� Network topology

� Location of essential devices

� Location of the IDS

� Critical streams with their bandwidth

ICS DESIGNER

O
P

E
R

A
T

IO
N

 P
H

A
S

E
D

E
S

IG
N

 P
H

A
S

E

Figure 5.1: Architecture of our system, with both offline and online routing
solvers.

streams dynamically changes during operation to adapt the configuration of
the ICS network when the set of active standard streams changes. A control
room operator can monitor the status of the ICS network during production
time to have a clear picture of what streams are currently replicated and pro-
cessed by the IDS. During operation, any new packet reaching a network switch
that does not match any of the rules configured in the switch to forward critical
streams is treated as the first packet of a standard stream σ. This packet is
forwarded to the SDN-controller as in the classical SDN approach. To compute
the forwarding path for σ, the SDN-controller takes advantage of an on-line
routing solver. This solver shares with the controller the network topology, and
the current available bandwidth on each link derived from currently allocated
paths. It takes as input the source s and destination t of σ and computes (i) a
forwarding path P for σ, (ii) an observation point op ∈ P (preferably close to
t according to Requirement 1), (iii) a forwarding path Q from op to the IDS,
and (iv) a new assignment of bandwidth for all standard streams comprising

5.5. PROBLEM FORMULATION FOR THE OFF-LINE ROUTING
SOLVER 77

σ. The details of the on-line routing solver are described in Section 5.6. These
information are used by the controller to re-configure the shaping for all stan-
dard streams but σ. The new standard stream σ is configured only after a
small amount of time τ that is dimensioned so that packets related to previous
standard streams that where admitted in the network with the old bandwidth
allocation are guaranteed to reach destination.

Concerning the path selection, our algorithm has a greedy approach keeping
unchanged all paths previously allocated for both kinds of streams. There are
several reasons for this choice: (i) sophisticated optimization techniques, like
those used in in Section 5.5, may take a considerable amount of time, which
can easily be even larger than the lifespan of the new stream and impair the
usability of the network for occasional activities, (ii) modifying the path of a
current stream can introduce temporary inconsistencies in the routing that can
lead to packet loss, which is against Requirements 3 and 2, (iii) since standard
streams have usually a short lifespan, our main goal is to support them within
the requirements listed in Section 5.3, keeping the optimization of their resource
usage as a secondary goal.

5.5 Problem Formulation for the Off-Line Routing
Solver

In this section, we present the ILP formulation that is at the basis of the
off-line routing solver introduced in Section 5.4. For the sake of simplicity,
we made a number of assumptions. Section 5.8 relaxes many of them and
describes several extensions. Our formulation finds, for each critical stream σ,
a forwarding path Pσ, an observation point opσ, and the forwarding path of
the replica stream σ̄ from opσ to the IDS d. Our formulation is a variation
of the well-known multicommodity flow problem [AMO93]. In the following,
the role of commodities are played by streams and we call flow the part of
our solution that pertains to a certain critical stream. In this section, all the
streams are critical unless different specification is provided. Our variation
takes into account the following aspects: (i) streams are unsplittable, i.e., it
is not allowed for a flow to bifurcate (see Section 5.3), (ii) flow demands (i.e.,
stream bandwidth) are fixed and all critical streams must be routed, (iii) each
stream can generate a new replica stream originating at its observation point
which must be the last traversed node before the destination, (iv) nodes of the
network that represent embedded devices and servers do not have switching
capabilities.

78
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

Since replica streams can take up a lot of bandwidth, we make the obser-
vation of a stream optional by introducing a relevance parameter ρσ for each
stream σ, which indicates how important it is for σ to be the observed.

In our formulation, we use the following notation. The network is repre-
sented by a directed graph G = (V,E), where V is a set of vertices and E
is a set of directed edges. Each physical link corresponds to two oppositely
directed edges (v, w). Each edge e ∈ E has a capacity C(e) that corresponds
to the available bandwidth of the link in the corresponding direction. The set
of vertices V is partitioned in two subsets: N , representing network switches,
and M , representing devices with no switching capabilities (e.g., embedded
devices and servers). We assume that there is no connection among vertices
in M . The IDS is denoted by d ∈ M . For the sake of simplicity, we do not
include the SDN-controller in this model, assuming that connectivity between
SDN-controller and network switches is obtained either by a dedicated out-
of-band network or by protecting part of the bandwidth of the SDN network
using proper configurations. A stream is a quadruple σ = (sσ, tσ, Bσ, ρσ) con-
taining its source, its destination, its bandwidth demand, and its relevance,
respectively. A corresponding replica stream is a triple σ̄ = (opσ, d, Bσ̄), where
opσ is its source (such that (opσ, tσ) ∈ E), d is its destination, and Bσ̄ = Bσ is
its bandwidth demand. The set of the critical streams is denoted Crit , the set
of the corresponding replica streams is denoted Rep.

For each e ∈ E we define xeσ ∈ {0, 1} as a variable that has the following
meaning

xeσ =

{
1, if stream σ is being routed through link e

0, otherwise

Analogously, variables xeσ̄ are defined for the corresponding replica stream σ̄
associated with σ. If a stream σ is not observed, it will be xeσ̄ = 0 ∀e ∈ E.

We now define a few convenience functions. We provide definitions for a
critical stream σ ∈ Crit and a vertex v ∈ V , the corresponding definitions for
replica streams σ̄ ∈ Rep are analogous.

Outgoing flow Outσ(v) =
∑

(v,w)∈E

x(v,w)
σ (5.1)

Incoming flow Inσ(v) =
∑

(u,v)∈E

x(u,v)
σ (5.2)

Vertex flow imbalance Fσ(v) = Outσ(v)− Inσ(v) (5.3)

5.5. PROBLEM FORMULATION FOR THE OFF-LINE ROUTING
SOLVER 79

The bandwidth consumed by the critical and replica streams must comply with
link capacities:

Capacity constraints.

∀e ∈ E : C(e)−
∑

σ∈Crit

(xeσ + xeσ̄) ·Bσ ≥ 0 (5.4)

For each critical or replica streams, we need to express flow conservation.
Since flows are unsplittable, each stream generates (consumes) one unit of
flow at its source (destination). Conservation is expressed separately for each
stream:
Flow conservation and demand constraints for critical streams.

∀σ ∈ Crit
∀v ∈ V − {sσ, tσ} : Fσ(v) = 0
Outσ(sσ) = 1,
Inσ(tσ) = 1

(5.5)

We now need to express similar constraints for replica streams. Let Lσ be the
set of the possible observation points for σ, i.e., Lσ = {v ∈ N |(v, tσ) ∈ E}.
Flows should be balanced for all vertices in N −Lσ, and each vertex in Lσ can
produce a unit of replica flow only if it is the last hop of the path assigned to
σ (by unsplittable flow this is unique), and the IDS cannot be source of flow.
Flow conservation and demand constraints for replica streams.

∀σ ∈ Crit
∀v ∈ N − Lσ : Fσ̄(v) = 0

∀v ∈ Lσ : Fσ̄(v) ≤ x(v,t)
σ

∀e ∈ E exiting d : xeσ̄ = 0

(5.6)

The above constraints also imply that Inσ̄(d) ≤ 1, since for each σ only one

variable x
(v,t)
σ can be equal to one by the unsplittable flow property.

As stated above, only vertices in N have switching capabilities. Hence, all
nodes in M should have, for their adjacent edges, flow equal to zero but for
the streams for which they are source or destination:

∀σ ∈ Crit ,∀v ∈M − {sσ, tσ}, e adjacent to v
xeσ = 0

∀σ̄ ∈ Rep,∀v ∈M − {d}, e adjacent to v
xeσ̄ = 0

(5.7)

80
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

Our objective function consists of two parts: the first one expresses the residual
capacity on all the links, while the second states the preference for observing
the streams.

max
∑

σ∈Crit

∑
e∈E

C(e)−Bσ · (xeσ + xeσ̄)

C(e)
+
∑

σ∈Crit

KρσInσ̄(d) (5.8)

Overall, we would like to maximize both parts. In the above formulation we
give precedence to the second part. That is, we prefer to observe streams
with respect to leaving more residual bandwidth. In order to enforce this, we
multiply the second part by K, which we suppose to be big. We also state
that ρσ must be integer and greater than or equal to one, and that K must
be chosen to be larger than the range of values that the first part can take,
namely K > |E| · |Crit |.

5.6 Standard streams: methodology and algorithm

In this section, we describe our on-line algorithm for routing standard
streams and their related replica streams. The algorithm takes as input a
new standard stream σ = (s, t), where s is its source and t is its destination,
and, on the basis of the topology of the network, of the available bandwidth
on the links, and of the previously allocated paths and bandwidth, it produces
as result(i) a path P to be used to forward the packets belonging to σ, (ii) a
switch op ∈ P (observation point) where the traffic of σ is duplicated, (iii) a
path Q to be used to forward the replica stream of the traffic of σ from op to the
IDS, (iv) an assignment of bandwidth for all currently active standard streams,
comprising σ, that should be configured in the ICS network as explained in Sec-
tion 5.4, so that all streams are forwarded respecting Requirements 2 and 4.

Once the path for the new standard stream is computed, our algorithm
re-assigns the bandwidth to all standard streams in order to fulfill Require-
ment 4. Bandwidth reduction entails a reconfiguration of limiting and shaping
and we assume this operation can be safely performed without any packet loss.
However, in order to avoid packet loss during the transition, we should ensure
that no queue grows because of the simultaneous presence of packets bursts
sent with previous configuration of bandwidth and packets of the new stream
σ, which may account for an overall bandwidth greater than one of the links.

To address this issue, the new stream is admitted in the network only af-
ter a small amount of time τ that ensures that all packets injected with the
previous bandwidth configuration are delivered. The parameter τ should be

5.6. STANDARD STREAMS: METHODOLOGY AND ALGORITHM 81

On-Line Routing Algorithm for Standard Streams

Input:

- topology G(V,E) where V = N ∪M (see Section 5.5),

- va new standard stream σ = (s, t) with s, t ∈M ,

- the IDS d ∈ N ,

- sets S and C of standard and critical streams with paths and
bandwith assignment.

Output:

- a path P from t to s,

• an observation point op ∈ P ,

- a path Q from op to d,

- a new bandwidth assignment for streams in S ∪ σ.

1: for all e ∈ E do . compute capacities for WidestPath()
2: Let m be the number of standard streams that shares link e
3: Let β be the capacity of e available for standard streams
4: Assign to each edge e ∈ E a capacity C(e) = β/(m+ 1)
5: end for
6: Let L(i) be the list of vertices in N at distance i from t, with i = 1 . . . k, where

k = dist(s, t)− 2.
7: bbest ← 0, Pbest ← none, Qbest ← none
8: for i in 1 . . . k do
9: for all v in L(i) do . v is a candidate observation point

10: SO←WidestPath(G, s, v)
11: OD←WidestPath(G, v, d)
12: OT←WidestPath(G, v, t)
13: b← min(bw(OT), bw(SO), bw(OD))
14: if b > bbest then
15: bbest ← b
16: op← v
17: Pbest ← SO|OT
18: Qbest ← OD,
19: end if
20: end for
21: . op is the best observation point at distance i from t
22: if bbest > 0 then
23: Recompute bandwidth assignment for streams S ∪ σ using Water Filling

technique [RB07].
24: return Pbest, op, Qbest, new bandwidth assignment for S ∪ σ
25: end if
26: end for

Figure 5.2: Algorithm for handling a new standard stream.

82
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

greater than the maximum delivery latency of any packet, which, however, is
a quite small number and is irrelevant for the vast majority of usage scenarios.
The algorithm is formally described in Figure 5.2. As motivated in Section 5.3,
the algorithm select observation points as close as possible to t and secondarily
try to allocate the largest possible bandwidth. The latter choice takes advan-
tage of the standard WidestPath() function [Pol60], which performs a depth
first search with backtracking looking for the path with the widest bottleneck.
Bandwidths to be used in WidestPath() are computed in the first step of the
algorithm. To account for bandwidth reassignment for previously allocated
standard streams, we estimated the bandwidth available for σ as the the total
bandwidth available for standard streams divided by the number of streams
after the allocation of σ.

Then, the algorithm starts enumerating the candidate observation points op
ordered by increasing distance from t. Within the same value of distance, the
op that allows the widest bandwidth b is chosen. Once b has been computed, it
is compared with bbest, replacing it if and only if b is greater than bbest (lines 14
– 19). At this point, our algorithm recomputes all bandwidth assignment using
the Water Filling (WF) technique [RB07] (lines 22 – 24), allowing us to find
the maximum amount of bandwidth to assign to each stream. We realize WF
in the following way. Suppose, the SDN-controller keeps a data structure that
associates with each edge e the set of streams S(e) passing through e. Let c(e)
be the available bandwidth for standard streams. WF looks for an edge ē such
that ē has the minimum of c(e)/|S(e)|. WF consider ē a bottleneck, hence, all
streams in S(ē) are assigned bandwidth c(ē)/|S(ē)| and discarded. Remaining
bandwidth c(e) are re-computed for all edges and the search is performed again
until all streams are discarded and their bandwidth assigned. In this way, our
algorithm successfully computes: i) Pbest, namely the best available path; ii) op,
namely the starting vertex for replica streams; iii) Qbest, namely the best path
for replica stream; iv) new bandwidth assignment for S and σ.

The complexity of the WidestPath() functions is O(|E|), as it is based on
BFS algorithm, and it is run on each vertex a constant number of times. Hence,
the observation point is found in O(|V ||E|) time. The WF takes O(|E||S|).
Therefore, the overall worst case time complexity of our on-line algorithm is
O(|E|(|V | + |S|)). Actually, in the most common cases, we think the op is
found in time much smaller than O(|V |), so the time complexity can be often
regarded to be O(|E||S|).

5.7. EVALUATION 83

Figure 5.3: Details of the electricity distribution’s substation.

5.7 Evaluation

We validated our approach from three points of view: (i) we assess the efficiency
of our implementation with respect to computation time on realistic instances,
inspired by the electricity distribution domain, for both on-line and off-line
routing solvers, (ii) we show the efficiency of the bandwidth allocation of the
on-line routing solver for standard streams, and (iii) we discuss the ability of
our solution to meet requirements listed in Section 5.3.

We identified four different realistic topologies in the following way. We
selected four large topologies form topology-zoo.org that are equipped with
real link bandwidths or that are fairly mashed. When no links bandwidth are
available 1Gbps links was assumed. We considered each node n to be a router
associated with a city. We equipped each city with a number of electrical
substations whose ICS network is connected to n. Let Bn be the sum of the
bandwidth of all links incident to node n. The node with the largest value
of Bn is also equipped with one IDS serving the whole network. The city
associated with node n, is equipped with qn identical substations. The total
number of substations in the network is q =

∑
n qn. The dimensioning of qn

is provided below. The network of a substation is designed on the basis of
information that can be freely found in the Internet2. Figure 5.3 shows the

2Each of them modeled following the Wikipedia description https://en.wikipedia.org/

84
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

From SCADA To SCADA
Qty Bandwidth Bandwidth

Voltage
Meter

2 10 Kbps 100 Kbps

Circuit
Switches

2 1.5 Kbps 1.5 Kbps

Breakers 2 1.5 Kbps 1.5 Kbps
Current
Meters

2 10 Kbps 100 Kbps

Power
Transformer

1 50 Kbps 500 Kbps

HMI 1 30000 Kbps 3000 Kbps
Historian
DB

1 30000 Kbps 3000 Kbps

Table 5.1: Elements of a substation with the bandwidth of the streams used
for the evaluation.

topology of a single substation with its connection to the router and Table 5.1
shows the devices it contains. Industrial process data are communicated from
embedded devices to the local scada system, and in turn to the HMI and to
the DB. The amount of bandwidth required by these communications is shown
in Table 5.1, which also show the quantity of each sensors/actuators. For the
relevance, we chose always the value 1. We equip each city with a number qn
of substations according to a decreasing power law distribution. In practice,
nodes n are sorted by their value of Bn. For n with the largest Bn, we state
qn = 10. For n in position i, qn = b10/iαc, where α is chosen between 0.7 and
1. When setting the capacities of the edges we reserved 5% of the bandwidth
for standard streams. Data about used topologies are shown in Table 5.2.

To validate our off-line routing solver, we instantiated the ILP problem
for our four topologies and solved them using Gurobi optimizer ver. 6.5. The
formulation set up was performed by using the Python API. The corresponding
code is available on the Internet [sdn]. The computation run on a workstation
equipped with 8 processors Intel Xeon 2.8GHz. Results for the off-line solver are
shown in Table 5.3. The evaluation shows that the formulation of Section 5.5
can be practically used. Considering that the foreseen usage of the formulation

wiki/Electrical_substation

5.7. EVALUATION 85

From Topology Zoo Input for experiments

Name |N | |E|
min

bw

(bps)

max

bw

(bps)

q |N |+
|M |

|E| num.
strms

1 Cesnet 10 9 200M 600M 35 501 920 770
2 AttMpls 25 56 1G 1G 50 726 1357 1100

3 Agis 25 30 45M 155M 42 614 1123 924

4 Uninet 74 101 1G 1G 95 1405 2572 2090

Table 5.2: Data about original topologies, and topologies used in the experi-
mentation.

Results (off-line)
gurobi
exe-
cution
time

number
of ob-
served
streams

max
%bw on
edge

1 12s 764 97.795%
2 30s 1100 62.060%
3 33s 869 98.058%
4 421s 2087 99.455%

Table 5.3: Results of the experimentation for the off-line routing solver.

is during design, running times are quite small. This makes us believing that
our approach could be successfully used even in much larger scenarios. Even
though, solving times are small, they are not suitable for an on-line use. This
justify the introduction of the specific ad-hoc on-line solver, whose algorithm
was presented in Section 5.6.

To validate the on-line routing solver, for each network, we randomly gen-
erated a sequence of events (available at [sdn]) as follows. We suppose that
standard streams are initiated by (human) operators, whose number is propor-
tional to the network size. We choose to have as many operators as substations
(i.e., q). Each operator u is attached to a switch s ∈ N chosen uniformly at ran-
dom and generates a sequence containing two kinds of events: (i) begin(c, u, t)
operator u starts a connection, identified by c, with machine t ∈ M , and
(ii) end(c) connection c ends. Interarrival time between begin of connections is
exponentially distributed with mean 1/λ. Duration of each connection is ex-
ponentially distributed with mean 3/λ (i.e., each operator on average connects
to 3 machines at the same time). We set 1/λ = 5 minutes and the sequence
spans about 10 minutes (from 176 to 576 streams).

86
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

106 107 108 109 1010

bandwidth

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 s

tre
am

 s
et

 w
ith

 th
at

 b
an

dw
id

th

attmpls
agis
cesnet
uninet

Figure 5.4: Density of bandwith assigned to streams for each topology (log
scale on the x-axis).

We initialized the status of the solver with the output of the off-line solver
for critical streams. Then, we run, for each network, the on-line solver on its
sequence of events generated as described above. Figure 5.4 shows a density
diagram, that has on the x-axis possible bandwidth values and on the y-axis
the fraction of streams that had that bandwidth assigned in our experiments.
In our experiment, assigned bandwidth is always very close to the maximum
of the backbone bandwidth. Sometime, if source and destination of the stream
are close each other, assigned bandwith can be larger (cf. Table 5.2).

The off-line optimization, together with the traffic shaping approach de-
scribed in Section 5.4, ensures compliance to Requirements 1, 2, and 3. Fur-
ther, the inclusion of standard streams is performed only by using the spare
bandwidth of each link, thus protecting critical stream and replica streams from
packet loss due to congestion (see Section 5.6). Requirement 4 encompasses
two essential aspects: fairness of bandwidth allocation and response time. Our

5.8. POSSIBLE VARIATIONS AND IMPROVEMENTS 87

approach handle all streams always assigning the same bandwidth to all of
them and dynamically adapting it on the basis of the current needs. This en-
sures fairness at expense of some bandwidth waste, since certain streams may
not use the whole bandwidth assigned to them. To improve this aspect, dy-
namic polling of bandwidth usage should be adopted [ALW+14], however, we
believe that in the ICS context, this approach may not be worth the effort.
Concerning response time, this mostly depends on the internal architecture of
the SDN-controller. A further aspect is the time τ the controller have to wait
to be sure no packet loss occurs when the bandwidth of certain streams have to
be reduced (see Section 5.4). Since τ should be greater than the time a packet
traverse the network, we expect it to be no more than a few milliseconds, which
should be negligible for all applications that are reasonable to use in the ICS
context.

5.8 Possible Variations and Improvements

In this section we discuss possible variations to the approach described in Sec-
tions 5.4, 5.5, and 5.6.

Bandwidth Reservation for Standard Streams. Our approach statically
allocate bandwidth for critical streams and their replica streams, using the
spare bandwidth for standard streams. However, it is easy to use our for-
mulation to explicitly save some bandwidth for this purpose during design by
artificially reducing the capacities C(e) of Constraint 5.4.

Dynamicity. In the description of our approach, we suppose that the needs
for monitoring the critical streams are known in advance and embodied in
the relevance parameters ρσ. However, there are situations in which we may
want to dynamically choose which stream IDS has to analyze. For example,
when an anomaly is recognized, we may want the IDS analysis to focus on the
devices close to it, possibly momentarily giving up the inspection of traffic of
other devices to free up network and IDS resources. This can be supported
by implementing in the controller with capability to switch off observation of
critical streams upon request of the control room operator. Further, operator
may explicitly ask for observation of a critical stream σ that was currently not
observed. To implement this operation, a search for the widest path starting
from the last hop before tσ to the IDS have to be performed. If the resulting
available bandwidth on the widest path is greater than Bσ, the SDN-controller
set up the rules for duplication and forwarding toward the IDS, otherwise the
search can be done backward along the path from the tσ to sσ. Alternatively,

88
CHAPTER 5. SOFTWARE DEFINED NETWORKING APPLIED IN THE

INDUSTRIAL CONTROL SYSTEM ENVIRONMENT

since this somewhat relaxes the support for Requirement 1, the bottlenecks
identified by the widest path algorithm can be used to suggest a set of streams
whose observation can be switched off to free up enough network resources to
satisfy the operator request.

Limited IDS Resources. In our description, we supposed that the IDS has
unlimited computational power. While this might be reasonable if the IDS is
based on cloud technologies, often the designer should deal with IDS limits. If
we suppose that the IDS is known to scale up to a certain bandwidth Bd, the
formulation of Section 5.5 can support it by simply introducing the following
constraint. ∑

σ̄∈Rep

Inσ̄(d) ≤ Bd (5.9)

However, special care should be taken in handling standard streams. In fact,
during the off-line optimization, some IDS bandwidth should be saved for the
analysis of standard streams replicas. Further, on-line routing solver must
consider the IDS bandwidth when calculating the new bandwidth assignment
for all the standard streams in the WF phase. Essentially, both on-line and off-
line solver can address the problem as if the IDS were reachable only through
a link of capacity Bd.

Support for Multiple IDSes. For the sake of simplicity, in our description,
we assumed that only one IDS is present in the ICS network. However, there are
situations in which it might be convenient to have more IDSes d1, . . . , dk ∈ D
distributed across the ICS network. Hence, a stream can be observed by any
of the IDSes. The formulation of Section 5.5 can be changed to support this
in the following way. Variables xeσ̄ are substituted with distinct variable sets
xeσ,d for each IDS d ∈ D. The functions Outσ,d(v), Inσ,d(v), and Fσ,d(v) are
defined for each d ∈ D as obvious variations of Equations 5.1, 5.2, and 5.3. In
Constraint 5.4, xeσ̄ should be substituted by

∑
d∈D x

e
σ,d. Constraints 5.6 should

be substituted by

∀σ ∈ Crit
∀v ∈ N − Lσ : Fσ,d(v) = 0

∀v ∈ Lσ :
∑
d∈D Fσ,d(v) ≤ x(v,t)

σ

∀d ∈ D, ∀e ∈ E exiting d : xeσ,d = 0

(5.10)

Since only one variable among x
(v,t)
σ can be greater than zero (by unsplittability

of flows), the second inequality implies that only one IDS is involved in the

5.8. POSSIBLE VARIATIONS AND IMPROVEMENTS 89

observation of σ. The second of Constrants 5.7 should be substituted by

∀σ ∈ Crit ,∀d ∈ D,∀v ∈M − {d}, e adjacent to v
xeσ,d = 0

(5.11)

Finally, the objective function should be changed into

max
∑

σ∈Crit

(
Kρσ

∑
d∈D

Inσ̄(d)+

∑
e∈E

C(e)−Bσ · (xeσ +
∑
d∈D x

e
σ,d)

C(e)

)
‘ (5.12)

With these changes, the formulation automatically perform IDS assignment to
streams so that objective function is maximized.
Flow Table Size Control. In SDN networks, the number of rules configured
in each network switch is a concern. In fact, rules occupy entries in limited
size flow tables. Since, the SDN-controller configures a rule for each outgoing
stream, limits to the flow table can be take into account by the following con-
straints, where FT (v) is the maximum number of rules that can be configured
in the switch v.

∀v ∈ N
∑

σ∈Crit

(
Outσ(v) +

∑
∀d∈D

Outσ,d(v)

)
≤ FT (v) (5.13)

Chapter 6

Integrated Solution for Industrial
Control System Defence

Industrial Control Systems (ICSs) are involved in control processes of sev-
eral kinds of critical infrastructures, like energy production and distribution,
water distribution, and transportation. In the past decade, a growth of cyber-
attacks against ICSs has been observed [ICS11]. Historically, SCADA (Super-
visory, Control and Data Acquisition) systems, PLCs (Programmable Logic
Controllers), RTUs (Remote Terminal Units) and other elements of ICSs are
built to provide high levels of availability, safety and reliability, but are not
prepared to contrast software attacks effectively. Specifically, crafted malware
can be used by attackers to alter an industrial process, possibly endangering
human lives, or to gather industrial secrets. In several cases reported, the tar-
get of the attack to a Critical Infrastructure was an organization aiming at
gaining some market or political advantage. This kind of attackers may have
available much larger resources than average hackers, being therefore able to
perform quite advanced attacks. This kind of attacks are usually referred to
as Advanced Persistent Threats (APTs). APTs may include exploits to several
zero-day vulnerabilities, may perform special actions to evade antiviruses, and
may carry out infiltration inside organisations that stay undetected for years
(see for example [VGA13, FMC11b]).

A number of standardisation efforts aimed at providing guidelines for cyber-
security within the ICS context (see for example [SFS13, Int15, Nor13]). Usu-
ally, they strive to fit standard IT (Information Technologies) approaches and
tools to ICSs. Indeed, ICSs are very special systems, what makes the appli-

91

92
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

cation of usual approaches hard. A quite deep analysis of the shortcomings of
current standards is provided in [KMP+15a].

In this chapter, we provide an overview of the architecture of a framework
resulting from Preemptive project [Par] emphasising the role of the solutions
described in Chapter 2. Furthermore, we suggest how the integration of the
solutions presented in Chapters 3, 4, and 5 can enhance the effectiveness of the
Preemptive framework.

The goal of Preemptive was to improve the cyber-security of ICSs by devel-
oping innovative methods and tools to detect and protect them from cyber-
intrusions, aiming at being effective even for those involving APTs. Each
Preemptive tool addresses a particular detection and/or prevention problem,
focusing on one of several aspects, e.g., industrial process, communication net-
work, embedded devices, SCADA servers, or the use of USB thumb devices.
The Preemptive project has also devised a specific risk analysis methodol-
ogy [KMP+15b].

Special care was put to consider the peculiarities of the ICSs, both for ex-
ploiting the advantages of the specific context and for taking into account its
constraints. A remarkable feature of the Preemptive approach is the combina-
tion of data coming from all tools into a single stream for real-time analysis,
and its storage into a single database for historical analysis.

Any detected event is reported to the user into customised Human-Machine
Interfaces (HMIs), which show the cyber-security state of the ICS and its evo-
lution over time, highlighting the occurrence of anomalies to the operators.
In the described framework, correlation operations are carried out over the
detected events, so that small, apparently irrelevant and independent, events
coming from different detection tools can be aggregated into one single event
with higher severity, allowing the operator to handle it properly. To conclude,
a tool for asset assessment provides the baseline inventory for both event cor-
relation and risk assessment methodology.

This chapter is organised as follows. In Section 6.1, we review the state
of the art. Section 6.2 provides an overview of the project and mentions its
comprehensive architecture. Section 6.3 shows the results of a realistic testbed.
Section 6.4 discusses limitations and hypothesis. Section 6.5 we analyses how
integrating solution presented in Chapter 2, 3, 4, and 5 can improve the capa-

6.1. STATE OF THE ART 93

Figure 6.1: A Taxonomy for IDS.

bilities of Preemptive framework.

6.1 State of the Art

Preemptive is a quite large project. In this section, we provide only an overview
of the most relevant references. Examples of surveys about Network-based In-
trusion Detection Systems (IDSs) are [DC11, SM08, SSS+10]. Specific results
for SCADA systems are listed in [BS]. A possible taxonomy for IDSs derived
from literature is provided in Figure 6.1, while a taxonomy of Host-based In-
trusion Detection techniques is provided in [JP11].

Examples of different approaches that can be found in literature are [HYQC09,
WFP99, ADCE10, CH14, WD01, WZY06]. Yang et al. [YUH06] proposed an
approach tailored for SCADA systems.

General techniques for anomaly detection in discrete sequences are de-
scribed in [CBK12].

Part of the Preemptive research work performs anomaly detection on data
representing the evolution of the industrial process. The used techniques belong
to the class of Artificial Immune Systems [AIS] and in particular to the class
of Negative Selection Algorithms (NSA) [FPAC94].

Concerning intrusion detection in embedded systems, Reeves et al. [RRL+12]
propose a rootkit detector. Cui et al. [CS11] propose a “symbiote” mechanism,
specifically designed to inject intrusion detection functionality into the firmware

94
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

of the device. Hardware based solutions were also proposed in [AvdWL+13,
FPC09, DKS14, AGH14].

6.2 The Preemptive Project

The Preemptive (PREventivE Methodology and Tools to protect utilitIEs) FP7
European Project aims at providing innovative solutions to enhance cyber-
security of ICSs. It proposes tools and methodologies to detect and prevent
cyber-attacks targeting ICSs of utility companies [VS16]. Preemptive combines
typical low-level detection tools (e.g., dealing with network traffic and system
calls), with process-level misbehaviour detection tools, which are able to de-
tect anomalies by analysing the physical quantities measured on the system.
Thereby, the main contribution of Preemptive consists in the combination of
process, network and host IDSs able to monitor the whole critical infrastruc-
ture, by means of a correlation engine that collects all the events, warnings
and alarms generated by the different tools, elaborating runtime and historical
data to identify APTs, zero-days attacks and other possible complex attacks.

All these components have been designed taking into account common ICSs
and SCADA vulnerabilities that may be exploited by resourceful and motivated
attackers, among which we can distinguish:

• poor networking stack implementations, that make components vulnera-
ble to Denial of Service (DoS) and buffer overflow attacks;

• components exposing interfaces, that allow the configuration or control
of process automation functionalities;

• protocols not defining user authentication or data integrity features, that
allow attackers with network access to manipulate process control infor-
mation.

For what concerns the architecture, the tools and modules that constitute
the Preemptive platform and monitor the ICS components, devices and net-
works are eight, namely:

Host level IDSs:

• IT-HIDS (Host IDS for IT components): monitors and checks anomalies
in standard IT devices (e.g., SCADA servers, historian server, engineering
workstations).

6.3. TOOLS INTEGRATION AND EVALUATION 95

• ED-HIDS (Host IDS for Embedded Devices): monitors and checks anoma-
lies in embedded devices (e.g., PLCs, RTUs).

• HIS (Host-based Integrity System): checks the integrity of storage devices
(e.g., USB thumb drives).

Network level IDSs:

• P-NIDS (Payload-based Network IDS): analyses the packets content to
check anomalies.

• F-NIDS (Flow-based Network IDS): monitors the network looking for
anomalous traffic behaviours.

Process level IDSs:

• PR-IDS (Process Related IDS): detects any abnormal behaviour in the
normal operation of the industrial process.

Discovery Tools:

• ASAS (ASset ASsessment): vulnerability assessment tool that scans the
network to discover the existing devices and provides hosts and network
information (e.g., IP address, Operating System (OS), software version,
open ports, and known vulnerabilities).

Correlation tool:

• CAEA (Context Aware Event Analysis): constitutes the core of the
correlation engine, aiming at the integration and correlation of all the
events/alarms raised by and collected from the tools.

The Preemptive platform’s architecture is depicted in Figure 6.2.

6.3 Tools Integration and Evaluation

Several tests have been carried out in the testbed environment Hybrid Environ-
ment for Development and Validation (HEDVa), located at the IEC laboratory.
It is composed by a combination of virtual machines (VMs), and real field de-
vices. As basis for the validation of the Preemptive platform, we exploited a
SCADA/HMI Server, a database (Historian), an Engineering workstation, an
attacker machine, a virtual switch, and a physical switch, a firewall and 11
RUTs/PLCs (see Figure 6.3), all connected by a number of Virtual Local Area
Networks (VLANs).

96
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

Figure 6.2: General architecture of the Preemptive platform.

6.3. TOOLS INTEGRATION AND EVALUATION 97

F
ig

u
re

6
.3

:
T

h
e

H
E

D
V

a
te

st
b

ed
a
n

d
it

s
u

se
fo

r
th

e
P

re
em

p
ti

v
e

p
ro

je
ct

.

98
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

The HEDVa allows the emulation of high, medium and low voltage distri-
bution and transmission grids, implemented on the RTUs using real historical
data. For the Preemptive framework validation we chose the medium voltage
distribution grid as testbed environment, where the voltage and current values
are not actually obtained from real power sources, but are provided by a master
hidden PLC that sends precomputed values, related to real consumption data
captured in a 24h scenario.

As depicted in Figure 6.3, the Preemptive tools have been implemented in
HEDVa as follows:

• IT-HIDS is installed in the SCADA Server as an activity monitoring
agent;

• PR-IDS is deployed as a VM and analyses both process data flowing on
one of the VLANs and data stored in the Historian by the SCADA Server;

• P-NIDS is on a dedicated VM, analysing traffic to and from the SCADA/HMI
Server;

• F-NIDS is on a dedicated VM and acquires data flowing among the con-
trol network and the field devices;

• HIS is installed on Servers and the Engineering workstation;

• ED-HIDS is installed on a field device, emulated by a Raspberry-PI;

• ASAS is a VM gathering data from all the VLANs;

• CAEA and the Preemptive HMI are installed on a VM, collecting data
from the VLAN and displaying the alarms triggered by the various tools
to the operator;

• the attacker machine is connected to different VLANs, so as to be able
to launch attacks to the various devices of the testbed.

A wide number of cyber-attacks has been performed, among which MitM for
data manipulation, buffer overflow, malicious request to field devices, malware
on USB drives and on host devices, and fuzzing attacks. Table 6.1 shows
the detection results for each type of attack, demonstrating that these are all
detected by at least one Preemptive tool. More specifically, the HIS, IT-HIDS
and F-NIDS tools are able to alert when an attack is entering a system before

6.3. TOOLS INTEGRATION AND EVALUATION 99

perpetrating damages to the physical system. The P-NIDS, PR-IDS and ED-
HIDS can alert once the attacker has already managed to enter the system and
it is aiming at compromising the physical process. Finally, the CAEA enriches
the alerts with semantics information and provides to the operator additional
details, useful to arrest or mitigate the attack. The result is visualised by the
Preemptive HMI, as in the example shown in Figure 6.4.

100
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

A
tt

a
ck

P
-

N
ID

S
P

R
-I

D
S

F
-

N
ID

S
IT

-H
ID

S
E

D
-

H
ID

S
H

IS
C

A
E

A

M
it

M
&

d
at

a
m

an
ip

u
la

ti
on

X
∗

X
X
∗

X
∗

B
u

ff
er

ov
er

fl
ow

X
X

X
X

M
al

w
ar

e
on

U
S

B
X

F
u

zz
in

g
X

M
al

ic
io

u
s

re
q
u

es
t

X
M

al
w

ar
e

on
H

os
t

X

T
a
b

le
6
.1

:
S

u
m

m
ar

y
of

th
e

at
ta

ck
s

a
n

d
d

et
ec

ti
o
n

re
su

lt
s.

(∗
T

h
e

eff
ec

ti
ve

n
es

s
d
ep

en
d

s
o
n

th
e

k
in

d
o
f

d
a
ta

m
an

ip
u

la
ti

on
.)

6.3. TOOLS INTEGRATION AND EVALUATION 101

F
ig

u
re

6
.4

:
E

x
am

p
le

o
f

d
et

ec
te

d
a
tt

a
ck

s
a
s

sh
ow

n
in

th
e

P
re

em
p

ti
ve

H
M

I.

102
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

6.4 Discussion

As the vast majority of security countermeasures, the tools presented in this
chapter shows strengths as well as limitations. This section provides some
discussions about them.

The Preemptive platform mostly targets detection of attacks, albeit pre-
vention is addressed for USB thumb drives. Most of the effort was put into
detecting unknown (zero-day) attacks which might be part of an APT. Hence,
the platform is supposed to be used in a context where baseline risks mitigation
is performed by adopting other conventional countermeasures.

Each tool provides a unique trade-off between effectiveness in pursuing its
specific objectives and certain assumptions on the applicative context but all
tools strive to be compatible with the peculiar needs of an industrial context.
Several tools (IT-HIDS, P-NIDS, F-NIDS, and PR-IDS) embrace the anomaly
detection approach in which deviation from a baseline behaviour is recognised
as malicious. Regardless from the specific technique adopted, this approach
has the following weak points.

1. The assessment of the baseline (training or learning) must be performed
on a data set which undoubtedly represents correct behaviour.

2. When the system legitimately evolves, changing its behaviour, false pos-
itives are detected.

3. A human intervention for re-training is needed when system evolves.

4. The set of behaviours detected as malicious is mostly implicitly described,
essentially impossible to manually tune, and the generalisations with re-
spect to the provided baseline depends on the chosen underlying tech-
nique.

Considering the extreme stability over time of ICSs, Items 2 and 3 have a
small impact. Item 1 requires an appropriate procedure to collect data sets
for future use. Regarding Item 4, a possible approach for mitigating it is to
associate a rule-based engine to allow for manually-configured exceptions.

The tools that are supposed to detect or prevent intrusions on hosts (IT-
HIDS and HIS) have the problem to require the installation of new software,
which might me problematic in practice. For ED-HIDS it even requires to
change PLC kernel, which make that contribution essentially a proof-of-concept
that can inspire some vendor to include that feature in its products. The

6.4. DISCUSSION 103

ASAS assessment tool, has the obvious limitation that cannot be employed to
detect vulnerabilities which are not known to the community of the libraries
on which it is based. Concerning the correlation engine (CAEA), the current
implementation of the runtime data analysis is rule-based, which implies that
configuration should be carried out by an expert. A small help is provided by
the historic data analysis, which suggests rules to be adopted in the runtime
part. However, at the moment, its accuracy is bound to proper parameter
tuning of the underlying Apriori algorithm.

Table 6.2 summarises the tools with their timescale of action. The tools
whose action is immediate have no memory and perform their analyse, and
possibly detect anomalies, for each sample of data that is provided to them.
In those cases, since the time spent in performing the analysis is negligible,
timescale is essentially fixed by the technology context in which they act (e.g.,
network packet transmissions and system calls). Others need to know some
history before the analysis and introduces a delay (like F-NIDS and IT-HIDS).

104
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

T
o
o
l

L
e
v
e
l

A
c
ti

o
n

A
p

p
ro

a
ch

T
im

e
sc

a
le

o
f

a
c
ti

o
n

IT
-H

ID
S

h
os

t
d

et
ec

ti
o
n

a
n

o
m

a
la

y
d

et
ec

ti
o
n

In
th

e
o
rd

er
o
f

o
n

e
m

il
li

se
co

n
d

.

E
D

-H
ID

S
em

b
ed

d
ed

d
ev

ic
es

d
et

ec
ti

o
n

h
eu

ri
st

ic
Im

m
ed

ia
te

,
a
t

th
e

ti
m

es
ca

le
o
f

in
te

rr
u

p
t

h
a
n

d
li

n
g

H
IS

h
os

t
p

re
ve

n
ti

o
n

cr
y
p

to
g
ra

p
h

ic
Im

m
ed

ia
te

,
a
t

th
e

ti
m

es
ca

le
o
f

sy
st

em
ca

ll
s.

P
-N

ID
S

n
et

w
or

k
d

et
ec

ti
o
n

a
n

o
m

a
la

y
d

et
ec

ti
o
n

Im
m

ed
ia

te
,

a
t

th
e

ti
m

es
ca

le
o
f

n
et

w
o
rk

p
ro

to
co

l
co

m
m

u
n

ic
a
ti

o
n

.

F
-N

ID
S

n
et

w
or

k
d

et
ec

ti
o
n

a
n

o
m

a
la

y
d

et
ec

ti
o
n

In
th

e
o
rd

er
o
f

a
fe

w
m

in
u

te
s.

P
R

-I
D

S
p

ro
ce

ss
d

et
ec

ti
o
n

a
n

o
m

a
la

y
d

et
ec

ti
o
n

Im
m

ed
ia

te
,

a
t

th
e

ti
m

es
ca

le
o
f

p
ro

ce
ss

m
ea

su
re

s.

A
S

A
S

n
et

w
or

k
an

d
h

os
t

v
u

ln
er

a
b

il
it

y
a
ss

es
sm

en
t

p
a
ss

iv
e

a
n

d
a
ct

iv
e

n
/
a

C
A

E
A

co
rr

el
at

io
n

d
et

ec
ti

o
n

ru
le

-b
a
se

d
D

ep
en

d
s

o
n

ru
le

s

T
a
b

le
6
.2

:
S

u
m

m
a
ry

o
f

th
e

to
o
ls

w
it

h
so

m
e

o
f

th
ei

r
fe

a
tu

re
s.

6.5. IMPROVEMENT OF PREEMPTIVE FRAMEWORK 105

6.5 Improvement of Preemptive Framework

Integrating data generated by Preemptive framework tools aim at reducing the
false positives and increasing the detection capability. The use of heterogeneous
data, i.e. data at industrial level and ICS network level as input provides
different points of view of the same issue. Comparing such data potentially
enables a detection of effects due an attack which would not detected being
focus on only a specific point of the system. In this way it is also possible
to compensate the limits due to the detection approach used by single tool.
This approach used by Preemptive project is driven by the fact that APT-like
attacks target a system masking malicious activities with legitimate traffic and
it is needed to use innovative detection and prevention approach to face such
malware.

As mentioned in Section 6.2, the initial design of Preemptive framework
encompasses the integrity system presented in the Chapter 2. We call regular
machines the machines representing the potential source of malwares. We call
critical machines the machines to be protected from malwares generated in
the regular machines. The integrity system allows a promiscuous use of a
USB thumb drive both in the regular machines and critical machines while
preserving the security in term of integrity. The integrity system provides an
high level of usability. It requires only the installation of a software in the
critical machines. The actions performed to guarantee that critical machines
do not read tampered data from USB thumb drives are totally transparent to
the users. Indeed, such actions do not affect the way the users perform read
and write operations from/to the USB data storage. Integrating in Preemptive
platform the solution presented in the Chapter 3 it is guaranteed a protection
also against malwares BadUSB-like. It does not require any change on the
machine to protect. It is an hardware-based solution that can be used with
any host equipped with a USB port, hence, comprising embedded systems. It
provides protection also during boot, namely, before any operating system is
running. The idea behind USBCheckIn is to force users to interact physically
with the USB device to use in order to ensure that a real human-interface
device is attached.

Using USBCaptchaIn 4 as a part of the Preemptive framework provides a
total protection against infections spread by means of USB thumb drives, i.e.,
both against “traditional” and BadUSB-like malwares. It is an independent
hardware and, hence, it can easily deployed in industrial control systems. In-
deed, USBCaptchaIn requires only a USB port and does not require any change
to the host it is plugged into.

106
CHAPTER 6. INTEGRATED SOLUTION FOR INDUSTRIAL CONTROL

SYSTEM DEFENCE

The idea is to integrate the Preemptive framework not only in the new
system but also in systems that have been working for a while. Before starting
the integration it is needed to design carefully the deployment. It is important
to decide in advance the traffic to be captured and the specific tapping points,
i.e., the specific points where the traffic is collected.

We argue this is a common approach used by network-based intrusion de-
tection systems both in the IT and OT domain. In this way, it is hard to model
the detection process to the specific conditions of the system. The choice of
the specific traffic that is monitored strongly impacts the capability to detect
advanced attacks. Also if the it is legit to assume the traffic of patter of ICS
is mostly identifiable a priori, a static approach could represent a limit against
attacks that are tailored to the architecture of the target-system. It is worthy
to consider that attacks against ICSs are potentially launched by wealthy or-
ganizations, like governments and terrorist group, that can have insiders and,
certainly have enough resources to design the attack so that it can bypass
unobserved and circumvent common defences.

In Chapter 5 (in the rest call for simplicity also SDN-monitoring) we present
an architecture and a methodological approach that allow an operator to choose
dynamically the traffic to be observed. This solution leverages on software de-
fined network technology that allows to have a centralised managed network
configuration. It enables an flexible adoption of one (or more than one) IDS,
while having the chance to monitor any traffic forwarding it to the IDS inde-
pendently from its location.

Such solution enables the adoption of innovative detection techniques. Pre-
emptive is not an exception. Indeed, assuming a ICS equipped with SDN-
switches, the deployment of the Preemptive framework, along the SDN-monitoring,
is immediate and does not require any specific effort in term of design. The Pre-
emptive tools can be placed everywhere since their location become irrelevant
in term of detection capability. Furthermore, adopting Preemptive platform
along the SDN-monitoring enables additional benefit in term of monitoring
capability. The possibility to change dynamically the monitored traffic could
help in reducing the false positives.

If the events sent to the VBrain Adapter suggest the eventuality of a mali-
cious activities ongoing in the network, it is possible, in a reasonable time, to
change the traffic observation points and/or add new ones. Changing the tap-
ping points provides a new point of view on the system. Adding new tapping
points provides to the Preemptive Context Aware Events Analysis to process
more data. It means the integration process and, hence, the whole detection
process can be more accurate. At the end, if the Preemptive framework still

6.5. IMPROVEMENT OF PREEMPTIVE FRAMEWORK 107

detects malicious activities, it is likely the system is real under attack.

Chapter 7

A Scalable Way to Use
Authenticated Data Structures
in the Cloud for Industrial
Control Systems

Public cloud infrastructures are popular since they enable virtually unlimited
scaling paying only the amount of needed resources, on-demand. However,
the public cloud model, inherently implies that the user delegates to the cloud
provider the management of the infrastructure, and, with it, many security
guarantees that were clearly under her/his control with in-house solutions.
Most users are concerned with data confidentiality, for which there are a large
number of effective cryptography-based tools that can be used. These tools
allow the user to keep control over data confidentiality while keeping the ad-
vantages of the public cloud. The same objective is still difficult to meet for
“fully fledged” data integrity. For data integrity we intend the capability to
detect (malicious or accidental) changes of user data that do not conform to the
will of the user. Usually this capability is provided by (a trusted part of) the
same system that manages user data. If there is only one user, just a sequence
of updates is enough to specify the intention of the user. However, when many
users concurrently update the data, additionally consistency rules should be
specified (see Sections 7.3 and 7.3).

Integrity is usually taken for granted by users, but a cloud provider might
change user’s data either by mistake or maliciously. For example, files or

109

110
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

records might be changed, got lost, reverted to a previous version, or deleted
files or records might be restored. Depending on the kind of application, in-
jecting an outdated version of the data into a business process might lead
to huge loss or damage. Typical sectors in which integrity is paramount are
banking, financial, health, legal, defence, industrial control systems and criti-
cal infrastructures. For this reason, practical means to check the integrity of
data returned by a public cloud before use (i.e., on-line) is highly desirable in
these contexts. Further, both the user and the cloud provider might want to
have a cryptographic proof of the genuineness or of the inaccuracy of the data
to use for dispute resolution. Note that, for deletion, restoration, or reversion
to previous version, signing each file or record individually does not help in
detecting the tampering, while signing the whole dataset with conventional
techniques is effective but highly impractical for most applications. To solve
this, authenticated data structures (ADS) [Tam03] can be adopted.

Using an ADS, an untrusted entity can store a dataset and can answer
queries providing a proof of the validity of the answer to the client. Essen-
tially, an ADS is a mean to keep a cryptographic hash of the dataset that
enable efficient update of the hash upon small changes and efficient integrity
checks of small parts of the dataset against a trusted version of that hash.
Traditionally, ADSs are adopted in a model where a single source asks the
untrusted entity (responder) to update the dataset and a plurality of users can
perform authenticated queries to the responder. Users can validate the queries
results against a cryptographic hash obtained from the source by a trusted
channel. In another traditional model, a single client performs updates and
queries to the untrusted storage.

A large body of research work deals with integrity of outsourced database
with many different approaches that may favour security, efficiency, flexibility of
the queries, etc. However, an on-line integrity verification system for a public
cloud service need to fulfil very strict requirements to avoid impairing the
advantages of the cloud adoption. In particular, the solution should scale with
respect to the amount of data, updates, and clients, with the same approach
the typical cloud storage solutions do. For this reason, the above mentioned
idea of keeping up-to-date a cryptographic hash for a large dataset has been
regarded by many authors as impractical (for example, see [AEK+17, PZM09]).

In this chapter, we address the problem of adopting ADSs while maintaining
the possibility to achieve high throughput keeping limited latency. We define
throughput as the maximum rate of updates per second the system can process.
We define latency (or response time) as the time elapsed form the update re-
ception to the instant when the server is able to serve a read that includes that

111

update. We use ADSs in a model that is different than the traditional ones.
In our setting, a possibly large number of clients performs both authenticated
updates and queries to a single untrusted storage. This model is quite chal-
lenging. Any change in the dataset is reflected in a change of the single hash
of the whole dataset. This turns out to be a bottleneck, since for each change,
the server should contact a trusted party for a signature. In existing proposals
for the same setting, updates are usually applied in batches. However, pro-
cessing of each batch starts after the completion of the previous one, since the
signature of the previous hash is needed (see, for example, [BCK17]). This is
critical if the network latency, between the server and the trusted party, is non-
negligible. Additionally, clients may expect that deviations of the behaviour
of the server from certain consistency rules to be detected. For example, the
system should detect answers from the server that are not consistent with its
past answers.

Our main contribution is a protocol, called pipeline-integrity protocol, that
allows a server to ask (possibly far) trusted parties to authenticate the hash of a
new version of a continuously updated dataset without hindering scalability of
the whole system. We address the scalability problem by allowing the server to
start independent authentication processes that can proceed pipelined. In this
way, both network and trusted resources are shared among several concurrent
authentications, achieving much higher resource usage. We also introduce a
new concept of consistency in a security setting called quasi-fork-linearisability,
which is compatible with our pipelining approach and is only slightly weaker
than fork-linearisability [CSS07]. Fork-linearisability is a form of strong con-
sistency in which the server is allowed to partition clients so that a strongly
consistent history (linearisable) is shown to each partition. This form of consis-
tency is proven to be the best possible in a setting where clients cannot directly
communicate.

We theoretically prove that the pipeline-integrity protocol allows us to
achieve high throughput with practically bounded latencies, provides quasi-
fork-linearisability, and enables clients to detect Byzantine servers that deviates
from the required behaviour. We analytically and experimentally compare la-
tency and throughput of the pipeline-integrity protocol against the traditional
approach, which performs only one authentication at a time.

The rest of the chapter is structured as follows. In Section 7.1, we review the
state of the art. Section 7.2 is dedicated to background on authenticated data
structures and their use. Section 7.3 introduces models and definitions that will
be used in the rest of the chapter. In Section 7.4, we analyse the performances
of the typical interaction of ADS-based client-server protocols. In Section 7.5,

112
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

we provide a brief and intuitive overview of the protocols described in the next
three sections.

In Section 7.6, we describe a simplified version of the pipelined-integrity
protocol, which has weak consistency properties but clearly show the main
ideas we propose to achieve scalability. In Section 7.7, we show a protocol,
and a data structure, to achieve quasi-fork-linearisability that has poor scal-
ability properties but turns out to be compatible with our pipeline-integrity
technique. Section 7.8 describes the complete version of our pipelined-integrity
protocol, which unifies the results of the two previous sections and provide
both scalability and quasi-fork-linearisability. In Section 7.9, we discuss how
to cope with real (non ideal) communication and computation resources. Sec-
tion 7.10 provides experimental evidence of the feasibility and scalability of our
approach.

7.1 State of the Art

A large wealth of research works has dealt with the problem to verify the correct
behaviour of an untrusted storage and many of them explicitly refer to a cloud
computing setting. A good survey of the research in this area can be found
in [ZKM+17].

The effectiveness of each approach can be evaluated with respect to several
aspects. Some of the coordinates that are relevant for this chapter are: (1) the
presence of a trusted entity in the cloud or if only clients are trusted, (2) the
number of clients supported, (3) the load of each client in terms of data stored
and computation performed, (4) the efficiency of the client-server protocol,
(5) the probability with which an anomalous behaviour of the server is detected,
(6) the ability to deal with an unbounded number of queries, and (7) the
support for efficient updates and the consistency model supported.

A proof of retrievability [JK07, BJO09, SW13] is a compact proof by a
filesystem (prover) to a client (verifier) that a target file is actually stored.
The proof of data possession [ABC+07] adds the possibility of data recovery.
A typical limitation of these schemes is that they can only be applied to a
limited number of requests, decided upfront. Also, they usually do not support
efficient update. Some works, such as [FLY+17, LTC+15, ADPMT08], describe
protocols that, up to a certain extent, admit the dynamic update of stored data.
In [WWL+09], the proof of retrievability approach is enhanced so that updates
are efficiently supported and a third party auditor can perform the verification.

Many of the works in this area adopt Authenticated Data Structures (ADS)

7.1. STATE OF THE ART 113

[Tam03], especially when dynamic data operations are required. ADSs have
many advantages: they provide deterministic verification, support dynamic
operations and require the clients to keep only a constant amount of data: a
digest of the whole dataset. This approach has also the advantage to detect
attacks like deletion or reversion to a previous (authentic) version of part of the
data, which require to consider the dataset as a whole. ADSs were successfully
adopted in many works concerning integrity of outsourced Databases (see, for
example, [LHKR06, ZKP15, SP08, YPPK09, PPP10b]). A typical problem
tackled in these works is to support a broad class of queries, efficiently. In
research about verifiable databases a randomized periodic verification process
was proposed (see, for example, [EBM+17, ZAH+13]).

When using ADSs, the single digest must be updated and propagated to all
clients at each update in a secure way. In fact, the approaches based on ADSs
treat a dataset as a single object: if even only one bit is updated the whole
dataset is considered updated. Some works explicitly rule out ADSs on the
basis of their inefficiency in the client-server setting when high concurrency is
needed [AEK+17, PZM09]. Proposing an efficient way of using ADSs in this
setting is exactly the problem addressed by this chapter. The work [AEK+17]
proposes a system based on deferred verification which requires a trusted en-
tity in the cloud (e.g., a special processors like Intel SGX Enclave [MAB+13])
which, however, works only in-memory. The work [PZM09] proposes a dynamic
solution based on signature aggregation [LHKR08], which are much more ex-
pensive than ADSs, in terms of cryptographic computation.

Whenever more clients can concurrently perform updates, a consistency
problem arises. Consistency has a long-standing research history, which was
developed mainly in the areas of databases and multiprocessors architectures
with shared memory (see, for example, [WV01, B+14, VV16, HW90]). Many
papers address the problem of verifying the correct behaviour of an untrusted
storage service in the context of concurrent accesses, with the focus of provid-
ing provable guarantees about consistency. A strong notion of consistency is
embodied in the definition of linearisability [HW90], which essentially states
two things.

1. The outcome of the operations on a shared object have to be consistent
with a sequence of operations H (a history) that conforms with the se-
quence of operations as invoked by each client. It should be noted that
each client can only perform operations sequentially so, from the point
of view of the client, they are totally ordered.

114
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

2. If two operations are not concurrently invoked (by distinct clients), they
must appear in that order in H.

The history H is “chosen” by the server or, more often, is the outcome of
unpredictable network latencies. The server might maliciously show different
values for H to different clients. This violates the obvious notion of integrity
in a shared environment. Ideally, we would like to impose that all clients
see the same H. In [MS02], it is shown that this is impossible to achieve
in a setting in which clients cannot directly communicate or are not syn-
chronised. Hence, the authors introduce a weaker form of consistency called
fork-consistency. This was lately renamed as fork-linearisability in [CSS07].
Fork-linearisability admits that the clients observe an execution that may split
into multiple linearisable “forks”, which must never join. In other words, the
union of the H shown to the clients must be a tree where, at a fork, the set
of operations of the branches are pairwise disjoint. The security aspect in
this definition is bound to the capability of the client to detect the fork as
soon as the server tries to merge two forks, i.e., to propose to a client up-
dates that were kept hidden to that client till that time. A system realising
fork-linearisability is shown in [LKMS04] proposing a quite inefficient protocol.
In [WSS09, FZFF10] ways to enforce fork-linearisability are proposed in a set-
ting where the whole storage is replicate on each client. The research described
in [LKMS04, CSS07, CKS11] allows to store the data on an (untrusted) server
and use vector clocks to give to the clients a partial view of all operations exe-
cuted on the data. It can be proven [CSS07] that to ensure fork-linearisability a
blocking condition is unavoidable. Namely, it is impossible to avoid situations
in which a client must wait another client to perform some actions. The results
in [WSS09, CO14, BCK17] show protocols that allow certain classes of opera-
tions to proceed without waiting. VICOS [BCK17] is probably the work that
is more akin to this chapter, regarding targeted problems. It shows a protocol
that allows several clients to share an ADS preserving fork-linearisability. This
work does not address the problem of the throughput and put considerable
burden on the clients, since each client have to process all updates on the data,
even if they are performed by other clients.

The Depot storage system [MSL+11] provides fork-causal consistency, which
is weaker than fork-linearisability but enables to join forked histories and to
cope with eventual consistency. The Depot approach is compatible with typical
availability and scalability requirements of the cloud but its form of consistency
is harder to handle for applications.

7.2. BACKGROUND 115

In [CO14], a survey of works providing integrity in the dynamic client-server
setting with different consistency guarantees is provided.

7.2 Background

In this section, we recall basic concepts, terminology and properties about
authenticated data structures (ADS), limiting the matter to what is strictly
needed to understand the rest of this chapter. Further details can be found
in [Tam03, MND+04].

For this chapter, an ADS is a container of implicitly ordered key-value
pairs, denoted 〈k, v〉, which are also called elements. The content of the ADS
at a given instant of time is its state. The ADS deterministically provides a
constant-size digest of the set of the key-value pairs of its content with the same
properties of a cryptographic hash of that set. We call it root-hash, denoted
by r. If any element of the set changes, r changes. It is hard to find a set of
elements whose root-hash is a value given in advance. An ADS provides two
operations, the authenticated query of a key k and the authenticated update
of a key k with a new value v′. A query returns the value v and a proof of the
result with respect to the current value of r. If a trusted entity safely stores
the current r, it can query the ADS and execute a check of the proof against
its trusted version of r to verify that the query result matches what expected.
The update operation on k changes v associated with k into a provided v′ and
changes r in r′, as well. The interesting aspect is that a trusted entity that
intends to update k can autonomously compute r′ starting from the proof of
〈k, v〉 that can be obtained by a query.

116
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

〈k
0
,v

0
〉

〈k
1
,
v
1
〉

〈k
2
,v

2
〉

〈k
3
,v

3
〉

D
a
ta
se
t

h
(4
)
=

h
a
sh
(h
(0
)|
h
(1
))

1

h
(5
)
=

h
a
sh
(h
(2
)|
h
(3
))

4
5

6
h
(6
)
=

h
a
sh
(h
(4
)|
h
(5
))

2
h
(0
)
=

h
a
sh
(〈
k
0
,v

0
〉)

0
3

h
(1
)
=

h
as
h
(〈
k
1
,v

1
〉)

h
(2
)
=

h
as
h
(〈
k
2
,v

2
〉)

h
(3
)
=

h
a
sh
(〈
k
3
,v

3
〉)

F
ig

u
re

7
.1

:
A

n
ex

am
p

le
of

M
er

k
le

H
a
sh

T
re

e
w

it
h

fo
u
r

le
av

es
a
n

d
a

b
in

a
ry

st
ru

ct
u

re
.

W
e

ev
id

en
ce

d
th

e
el

em
en

ts
re

ga
rd

in
g

th
e

p
ro

of
of
〈k

1
,v

1
〉.

7.2. BACKGROUND 117

As an example, we briefly introduce a specific ADS, the Merkle Hash Tree
(MHT), however, the same properties hold for others ADSs, like, for example,
the authenticated skip list [GTS01]. A MHT is a binary tree T that is composed
of internal nodes and leaves, see Figure 7.1. Every leaf is associated with a key-
value pair 〈k, v〉. The tree is managed as a binary search tree. Let hash(·) be
a cryptographic hash function. Every node n is labelled by a cryptographic
hash h(n). If n is a leaf, we define h(n) = hash(〈k, v〉). If n is an internal
node, with n′ and n′′ its children, h(n) = hash(h(n′)|h(n′′)). If n is the root
of T , r = h(n) is the root-hash of T . Let k be a key in T , and let l be its
associated leaf. Consider the path (n1, n2, . . . , nm), from l = n1 to nm, where
nm is the root of T . For each ni (i = 1, . . . ,m− 1), let n̄i be the sibling of ni.
The proof for 〈k, v〉 according to T , denoted proof(T, 〈k, v〉) possibly omitting
T and/or v for short, is the sequence (h(n̄1), d1, h(n̄2), d2, . . . , h(n̄m−1), dm−1),
where di ∈ {L,R} indicates if ni is the left or the right child of ni+1. For
example, according to Figure 7.1, proof(T, k1) is the sequence (h(0), R, h(5), L).

It is easy to see that, given proof(T, k) and 〈k, v〉, it is possible to compute
r and that creating a different proof that gives the same r implies braking
hash(·). Also, considering the update of 〈k, v〉 into 〈k, v′〉, the new root-hash
r′ can be easily computed from proof(T, k) just pretending that 〈k, v′〉 is the
value of l. The proof that a key k is not present in T can be given by providing
the proof(T, k1) and proof(T, k2), where k1 and k2 are two consecutive keys
such that k1 < k < k2. After the authenticity of proof(T, k1) and proof(T, k2)
is verified, the proof that k1 and k2 are consecutive can be obtained by checking
that the sequences of di matches regular expressions R∗Lz for k1 and L∗Rz for
k2, where z is a possibly empty common suffix. We do not go into the details
of the addition and deletion of a key. We just note that incomplete binary
trees can be allowed by minimal changes in the above definitions. Changing
the structure of the tree, even without changing the dataset, changes the root-
hash, so the tree structure is part of the state of the MHT, as well. This
contradicts the hypothesis of the deterministic link between the root-hash and
set of elements contained in the ADS. This is essentially a technical problem
that can be solved, for example, by defining a canonical structure of the tree
that deterministically depends on the contained elements and caring that every
operation leaves the tree structure in the canonical state. Clearly, the trusted
entity that is going to compute r′ should get all needed information to re-create
locally the correct path(s) from the leaves involved in the update to the root,
exactly as the ADS is supposed to do. Another approach is to resort to asso-
ciative cryptographic hash functions [TZ94] so that root-hash is independent
from the way leaves are grouped.

118
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

When we have a large set of elements stored in an ADS, but we only need
authentication for a small number of them, known in advance, we can resort
to the pruning technique. Pruning reduces the storage size of the tree, without
changing the root-hash, by removing sections of the tree that are no longer
needed for the expected queries. The basic idea is very simple. Whenever a
subtree have only unneeded leaves, we can remove all the subtree maintaining
only its root. Pruning an ADS reduces the required space, preserves the root-
hash, preserves the capability of producing proofs for the needed keys, and
keeps security intact. Pruning is obvious for a MHT but also other ADSs may
support it.

A typical example of use of an ADS is for outsourcing a key-value store in a
single client setting, keeping in the client only the root-hash r while keeping the
ADS in an untrusted server. In this setting the query and update operations
are as follows.

Query(k). Server returns v and p = proof(〈k, v〉). The client verifies the
consistency of v with p and the local copy of r.

Update(k, v′). The client preventively performs Query(k) getting v and p =
proof(〈k, v〉), and checks p against the local copy of r. Then, the client
pretends the stored value to be 〈k, v′〉 and compute all values along the
path of p accordingly. It comes up with a new value r′ for the root-
hash, which is considered the current root-hash for the next operation.
Then, the client send the operation Update(k, v′) to the server and forget
anything else but r′. When the server receives Update(k, v′), it update
the ADS accordingly recomputing all the hashes all the way up to the
root. Its current root-hash should turn out to be exactly the r′ computed
by the client.

We say that a root-hash r contains an update u if u is part of the sequence of
updates that was applied to the dataset before reaching the state corresponding
to r.

7.3 Models and Terminology

In this section, we provide basic definitions, assumptions and models we use
throughout this chapter. First, we introduce general assumptions and our
definition of scalability. Then, we formally introduce a model of the service
we intend to support assuming correct behaviour of all actors. Finally, we

7.3. MODELS AND TERMINOLOGY 119

formally define the consistency model that will be supported by our approach
in the case of a Byzantine server.

General Setting and Assumptions

The results of this chapter are stated in the setting in which there are a (pos-
sibly large) number of mutually trusted clients, with limited storage that need
to store and share an arbitrarily large amount of data. They do that by relying
on an untrusted server. Certain special clients are in charge of authenticating
operations invoked by regular clients. They do not invoke operations them-
selves. They are called authenticators and we reserve the word clients for
regular clients. We collectively refer to clients and authenticators as trusted
entities. In practice, if deemed convenient, one machine can play both roles.
However, in this chapter, we always deal with them as if they were separate
entities.

Trusted entities can only communicate with the server and are not syn-
chronised. For simplicity, we assume all network communications are reliable
and timings predictable. In other words, we assume that no message is lost,
no network congestion occurs, and the network behaves deterministically and
consistently over time. Since for real systems this assumption does not hold in
general, we discuss the issues arising when network and clients are not reliable
and timings not predictable in Section 7.9. In that section, we also show how
to deal with those issues.

Each trusted entity e can sign data d, by appending it with an asymmetric
encryption of the hash. The signature is denoted by [d]e. We also write [d]
when e is not relevant. We assume that each trusted entity has certificates of
all other trusted entities and hence can securely verify all signatures.

Scalability

For the purpose of this work, when we say that a service scales, we intend that it
is possible to increase volume of operations, data size, and number of clients (by
increasing hardware resources dedicated to the server or network bandwidth)
while keeping the response time bounded. As we will see in the following, when
ADSs are adopted, the client-server protocol plays a fundamental role in the
scalability of the whole system. In particular, for all protocols described in this
chapter, part of the processing must be performed client-side or generally by
a trusted entity. The usual approach blocks the server while waiting a reply
from the trusted entity and shows very bad resource usage. In Section 7.4, we

120
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

formally analyse a client-server protocol adopting this approach and we show
that its response time very badly depends on the throughput. In Section 7.8,
we propose a protocol that does not have this problem while keeping a strong
notion of security.

Key-Value Stores and Consistency

We focus on key-value stores, where we assume keys and values have limited
size. This assumption simplifies the description and the analysis of protocols
and algorithms shown in this chapter. In fact, under this assumption, the
time taken to process or transmit each operation is bounded by a constant.
This help us in focusing the chapter on the interesting aspects of our solution.
In the rest of the chapter, for simplicity, we assume the store offers only two
kinds of operations: (1) read, which gets the value v currently associated with
a key k and (2) update of a key k with a value v, which creates k if it does
not exist or delete it if v =⊥. These basic functionalities are the core of the
features provided by several commercial services and open-source projects of
the NoSQL landscape, see for example [DHJ+07, Apa18, SN16].

Each operation begins with its invocation at the client and terminates when
its response reaches the client. Invocation and response occurs at certain in-
stant of time and are called events. A sequence of events is complete if each
invoke event is matched by one, and only one, following response event in the
sequence, for the same operation, and viceversa. In the following, we mostly
deal with complete sequences and omit to state it explicitly. Each operation
spans an interval of time between the sending of its invocation and the re-
ceiving of its response. Two operations are concurrent if their intervals overlap
otherwise one of the two precedes the other and they are sequential. A complete
sequence of events is sequential if all operations in it are pairwise sequential.
In other words, in a sequential sequence of events, for each operation, its invo-
cation event is followed by its response event with no other event in between.
A sequential sequence also implies a total order on the operations of that se-
quence.

Often, we consider a sequential permutation π of a complete sequence of
events σ. This is essentially a way to represent a choice of an order of the
operations cited in σ. For example, let σ = i1r1i4i2i3r2r3r4. Where ix and rx
denote invocation and response events of operation x. A possible sequential
permutation of σ is π1 = i1r1i4r4i2r2i3r3, expressing the order of operations 1
4 2 3. Another possible sequential permutation of σ is π2 = i3r3i1r1i2r2i4r4,
expressing the order of operations 3 1 2 4. We note that π1 respects the

7.3. MODELS AND TERMINOLOGY 121

time

u

u

u

u

u
u

u
r

r
r

r

r
r

commit commitcommit

r

Figure 7.2: Relationships between operations and commit phases. Operations
are represented by horizontal bars, where invocation is received by the server
at the left extreme of the bar while the operation is considered concluded by
the server at the right extreme of the bar. Each update is labelled u and always
ends during its associated commit. Each read is labelled with r, cannot end
during a commit, and it is associated with its preceding commit.

precedence of operations implied by σ while π2 does not (operations 1 and 3
are reversed).

Consistency is the property of a distributed system to behave according
to the expected semantics of the operations as in a sequential setting, at least
up to a certain extent. Typically, consistency guarantees are formalized in a
setting in which operations are partitioned in sessions, where the operations
of each session are sequential and hence fully ordered in time. Sessions are
supposed to be associated with a client, which expects to see the sequential
behaviour of the operations if no other client interferes. In our model, the
interactions between clients and the server, deviates a bit from this approach.
We now formally describe this interaction. Since, in our setting, consistency is
tightly linked with security, the formal definition of our consistency model is
provided in Section 7.3.

We allow each client to invoke operations concurrently. We force update

122
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

operations to be executed only during commit phases, which are periodically
triggered. Updates are applied respecting the invocation order of each client,
but updates invoked by distinct clients can be arbitrarily interlaced by the
server. Reads can be executed at any time but not during a commit. They
return values according to the state of the key-value store as updated by the
preceding commit. Figure 7.2 pictorially shows an example of how read and
update operations can evolve over time. At the end of a commit, for each
executed update, a corresponding response is sent to the invoking client. While
for a practical implementation this response is optional, in our model we always
consider it.

More formally, we denote by σ a real-time ordered sequence of events. The
invocation event of operation o is denoted by inv(o), its response event by
res(o). Operations in σ are possibly concurrent. We associate with events
a server-time that, for invocation, is the arrival time at the server and, for
responses, is the sending time from the server. For an operation o, its server-
time interval is denoted Io = (tinv(o), tres(o)).

A commit is an atomic procedure executed on the server in a time interval
(tbegin, tend) during which no other operation can change the state of the key-
value store. For brevity, we may treat commits as intervals of time to simplify
notation. Commits do not overlap. An update u is associated with commit χ, if
tres(u) is in χ and u is executed in the context of χ. Each update is associated
with one and only one commit. The only way to change the content of the
key-value store is to commit updates. A read operation r is associated with
a commit χ if χ is the last commit before tres(r). If r is executed before all
commits, it is associated with no commit, and it is called initial. Each non
initial read is associated with one and only one commit. A read operation
returns a result on the basis of the state of the key-value store after the asso-
ciated commit or on the basis of the initial state of the store for initial read
operations.

Consider a sequence σ of events. The server executes read and update
operations according to a certain sequential permutation π and is supposed to
apply updates only during commits. One may ask if π is consistent with the
commits. The following definition formally describes this.

Definition 1 (Commit-correctness). A sequential permutation π of a complete
sequence of events σ is commit-correct with respect to the sequence of commits
χ1, . . . , χn if

π = ρ0ω1ρ1 . . . ωiρiωi+1ρi+1 . . . ωnρn

where

7.3. MODELS AND TERMINOLOGY 123

1. ρ0 is a sequential permutation of all and only the events of the initial read
operations in σ,

2. ρj, with j = 1, . . . , n, is an arbitrary sequential permutation (of events)
of read operations associated with χj, and

3. ωj, with j = 1, . . . , n, is an arbitrary sequential permutation (of events)
of update operations associated with χj that conforms to the invocation
order of each client.

Two operations commute if they provide the same results and state changes
independently on the order they are executed. In our case, any two read
operations associated with the same commit always commute. In all other
cases, this property depends on the keys involved and in general may not
commute. This definition can be naturally extended to a set of operations.
Reordering read operations associated with different commits is forbidden in
our setting, so it does not make sense to ask if they commute.

In the following, we introduce consistency (see Definitions 2 and 5), where
a role is played by preservation of real-time order of events when permuting
them. The following lemma states the relation between commit-correctness
and preservation of the real-time order.

Lemma 1. Given a complete sequence of events σ and a sequence of commits
χ1, . . . , χn such that all and only update operations end during a commit, let
π be one sequential permutations of σ. If π is commit-correct with respect to
χ1, . . . , χn, it preserves the real-time order of all non commuting operations of
σ.

Proof. We prove the statement by induction on the number n of commits. In
the base case, n = 0 and π = ρ0 which only contains read operations. Since all
operations in π commute the statement is trivially true. Now, we prove the in-
ductive case. Suppose the statement is true for π′ = ρ0ω1ρ1ω2ρ2 . . . ωn−1ρn−1,we
prove the statement is true for π = π′ωnρn.

Consider a non commuting pair of operations. If they are both in π′, they
are in real-time order by the inductive hypothesis. Now, we prove that any
o ∈ ωnρn is in real-time order with any distinct o′, if they do not commute
(i.e., if they are not both read operations).

If o is a read operation then o ∈ ρn. Operation o can not occur in σ before an
operation o′ ∈ π′ωn because o is associated with commit χn and must end after
χn. Hence, if o′ is an update u associated with χj , tres(u) ∈ χj ≤ χn < tres(o)

124
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

with j ≤ n and, if o′ is a read r associated with χj , χj < tres(r) < χj+1 ≤ χn <
tres(o) with j < n. This means that o and o′ are either correctly ordered or
concurrent. Clearly, if o′ is in ρn, too, they commute and the statement does
not apply.

If o is an update operation then o ∈ ωn. Following the same reasoning
as above, if o′ is an update u associated with χj , tres(u) ∈ χj ≤ χn 3 tres(o)

with j < n. If j = n, u and o are concurrent, hence, they are not real-time
ordered. If o′ is a read r associated with χj , χj < tres(r) < χj+1 ≤ χn 3 tres(o)

with j < n. Again, this means that o and o′ are either correctly ordered or
concurrent.

Threat Model and Consistency

Clients rely on an untrusted service to store their data. We suppose the server is
operated or hosted by a cloud provider, which may change the data stored in it,
deliberately or by mistake. In this chapter, we assume that all trusted entities
(hence all clients) trust each others and the only possibly malicious actor is the
server. A fundamental requirement of our approach is that it should allow the
clients to recognize any data tampering, right after the reception of the data.
We also mandate that this should be done with high probability, so that it can
be considered deterministic for any practical purpose (like many cryptographic
hash properties are). The attacker can either be the cloud operator itself or
be a third party that compromises the server forcing it to behave maliciously.
From our point of view, both situations are attacks that we aim to detect and
we do not distinguish them in the rest of the chapter.

To define clearly our threat model, i.e., to distinguish between honest and
malicious behaviour, we formally define our consistency model. We first intro-
duce some basic definitions. We consider a set of clients, denoted by C, that ask
the server to perform possibly concurrent operations (read or update). Con-
sider the invoke and response events corresponding to these operations. Events
occurring in the system are totally ordered in a sequence σ, according to their
(invocation sending or response reception) real-time instant at the client. A
sub-sequence of σ is an ordered subset of σ whose order conform to that of σ.

We can consider a subsequence σi of σ, for each client ci ∈ C, so that (at
least) all completed operations occurring at ci are in σi (1). It is also useful to

1Actually, here and in the following definitions of fork-linearisability and quasi-fork-
linearisability we might restrict σi to contain only completed operations occurring at ci.
This change would not affect the following theory. However, we decided to avoid unneeded
changes, with respect to definitions that can be found in literature, in order to ease the

7.3. MODELS AND TERMINOLOGY 125

consider a sequential permutation πi of σi, which is essentially a sequence of
operations, expressing the order in which the effect of those operations should
be considered when executed according to their sequential semantics specifica-
tion. A specific kind of consistency is defined in terms of the existence of σi
and πi satisfying certain conditions. The following is the traditional definition
of the fork-linearisability consistency adapted from [CSS07], for our definition
of key-value store.

Definition 2 (Fork-Linearisability). A sequence of events σ is fork-linearisable
with respect to the semantics of a key-value store, if and only if, for each client
ci, there exists a complete subsequence σi of σ and a sequential permutation πi
of σi such that

1. all completed operations of σ occurring at client ci are in σi,

2. πi preserves the real-time order of σ,

3. the operations of πi satisfy the semantics of their sequential specification,
and

4. for every o ∈ πi ∩ πj, the sequence of the events that precede o in πi is
the same as the sequence of the events that precede o in πj .

Definition 2 should be intended in monotonic sense. That is, consider the
instants in which clients receive operation responses, denoted by t1, t2,
Any consistency definition should hold for the sequences σji and πji seen by
each client ci at each instant tj . Clearly, we expect from a system a consistent

monotonic behaviour in the sense that, σji and πji should be prefix of σj+1
i

and πj+1
i respectively. This aspect is largely left implicit in previous literature,

however, in the following we provide definitions that explicitly take it into
account.

Condition 2 of Definition 2 makes sense for the general case tackled by [CSS07]
(a generic functionality) but is unnecessarily restricting in our case (a key-value
store). Consider two read operations r1, r2 appearing in this real-time order
in σ. Suppose no update operation is between r1 and r2 or is concurrent to
them in σ. Clearly, preserving their real-time order is irrelevant. In general,
it is important to preserve the real-time order only for operations that do not
commute. For this reason, our consistency definition, provided in the following,
relaxes that condition.

comparison of results.

126
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Note that, Definition 2 does not refer to the fact that the operations invoked
by each client should be sequential, hence, it applies also to our setting that
do not force each client to invoke operations sequentially (see Section 7.3).

Condition 4 of Definition 2 embodies the possibility that, at a certain in-
stant, the server can partition clients showing to two distinct partitions dif-
ferent histories (πi) that “fork” starting from a certain common event. Fork-
linearisability is a fork-allowing variant of the definition of linearisability [HW90],
which is considered a strong form of consistency in the literature that assume
the server is not Byzantine. However, authors of [Mer87] prove that certain
kind of Byzantine behaviour (the forks) cannot be detected. On the contrary,
a suitable protocol can detect if the server deviates from fork-linearisability
behaviour, where forks are accepted if they do not join again. In the follow-
ing, we further slightly relax fork-linearisability to make it compatible with our
pipelining approach.

Definition 3. Two sequences π1 and π2 are disjoint-forking iff π1 = αβ1, π2 =
αβ2, with α maximal and non-empty, and either β1 = β2 = ∅ or β1 ∩ β2 = ∅.

A set of n pairwise disjoint-forking sequences constitutes a tree (a path with
no fork is a special case) with at most n leaves, and after each fork the two
branches have to be set-disjoint.

The following property links Definition 3 with Condition 4 of Definition 2.

Property 1. Two sequences π1 and π2 are disjoint-forking if and only if for
every o ∈ π1 ∩ π2, the sequence of the events that precede o in π1 is the same
as the sequence of the events that precede o in π2 .

Proof. First, we prove the necessary condition. Let π1 = αβ1 and π2 = αβ2. In
the case β1 = β2 = ∅ the proof is trivial since the thesis holds for all o ∈ π1 = π2.
In the case β1 ∩ β2 = ∅, we have π1 ∩ π2 = α, hence for every o ∈ π1 ∩ π2 = α,
the preceding elements in π1 and π2 are the same, by construction of α.

Now, we prove the sufficient condition. Consider the latest (i.e., rightmost)
o for which it holds o ∈ π1∩π2. The preceding events are the same in π1 and π2

by hypothesis. We denote α this prefix, which contains o, and the remaining
parts β1 and β2, so that π1 = αβ1 and π2 = αβ2. Sequence α is maximal
by construction and non empty since contains o, at least. If π1 = π2 then
β1 = β2 = ∅. If π1 6= π2, β1 and β2 are not empty, but β1 ∩ β2 = ∅, otherwise
o would not be the latest event satisfying o ∈ π1 ∩ π2.

7.3. MODELS AND TERMINOLOGY 127

Property 1 justifies the introduction of a weaker form of disjoint-forking
and the corresponding slightly weaker form of fork-linearisability, which are
defined in the following and will be used in Section 7.7.

Definition 4 (Quasi-Disjoint-Forking). Two sequences π1 and π2 are quasi-
disjoint-forking iff π1 = αβ1, π2 = αβ2, with α maximal and non-empty, and
either β1 = β2 = ∅ or the following holds. Let Oc be the operation invoked by
client c in β1 ∩ β2. For each client c, all o in Oc are invoked before (in the
real-time order) the first response to an invocation in β1 ∪ β2.

The above definition is clearly weaker than Definition 3, allowing partial
overlap of branches, however, it states that those overlaps are limited. The
extent of this limit depends on when responses are received by c. For example,
c may will to wait a response for an operation o in order to be sure that the
following updates are in the same branch of o, in case of malicious server.
Definition 4 motivates the introduction of the following.

Definition 5 (Quasi-Fork-Linearisability). A sequence of events σ is quasi-
fork-linearisable with respect to the semantics of a key-value store, if and only
if for each client ci, there exists a complete subsequence σi of σ and a sequential
permutation πi of σi such that

1. all completed operations of σ occurring at client ci are in σi,

2. πi preserves the real-time order of σ of all non commuting operations,

3. the operations of πi satisfy the semantics of their sequential specification,
and

4. each pair πi, πj is quasi-disjoint-forking.

We note that, Conditions 2 and 4 of Definition 5 are slightly weaker forms
of the ones that are present in Definition 2, while the other conditions are the
same.

The capability of a protocol to detect deviation from quasi-fork-linearisability
is formalised by the following definition adapted from [CSS07].

Definition 6 (Byzantine Emulation). A protocol P emulates a key-value store
on a Byzantine server with quasi-fork-linearisability, if in every admissible
execution of P the sequence of events observed by the clients is quasi-fork-
linearisable in monotonic sense. Moreover, if the server is correct, then every
admissible execution is complete and has a linearisable history.

128
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

It is worth to further elaborate our comments following Definition 4. Sup-
pose that all clients always wait the response to the previous operation before
invoking the new one. In this case, Definition 3 holds, hence, fork-linearisability
is guaranteed. In this sense, quasi-fork-linearisability can be regarded as a
generalisation of fork-linearisability, which allows one to trade consistency for
efficiency (see Section 7.8).

7.4 The Blocking Approach

The aim of this section is to show formally how adopting ADSs in a client-server
setting with a naive protocol falls short of scalability. Our analysis shows that
the throughput of the system (i.e., the maximum update invocation rate the
system can sustain) can be approximated only at the cost of a very high latency
(i.e., the time an update takes to be included in a read).

In our setting, we have many trusted entities that share a single root-hash.
Since they cannot communicate directly, the common way to share the root-
hash is to sign it and store it in the server. Clearly, only a trusted entity
can legitimately update it. When the dataset have to be updated, the server
must ask a trusted entity, an authenticator, to perform due checks and sign the
new root-hash. The authenticator performs the checks on the basis of proofs
derived from the current instance of the ADS and possibly other information.
The kind of checks the trusted entity performs before signing the root-hash
are responsible of the level of consistency guarantees provided by the whole
system.

We introduce a very simple protocol, which can be regarded as an abstrac-
tion of the authentication part of other protocols described in literature (for
example, see [BCK17, EKPT15, EKPT15, WWL+09, PT07]). For the sake of
simplicity, in this section, we focus on the interaction scheme among the actors,
disregarding all security and consistency aspects that are not strictly needed.
We call it blocking protocol, since its main characteristic is that while the server
is waiting a signed root-hash from a trusted entity c1, it cannot ask another
trusted entity c2 to sign another root-hash. In fact, the checks that c2 should
perform are usually based on data that is part of the reply from c1, for example
the signature of the root-hash provided by c1. We analyse the performance of
this protocol in term of the relation between throughput and response time.

The server keeps a dataset D equipped with an ADS. A group of update
operations are applied to D during a commit as described in Section 7.3. After
each commit D changes version. We denote the versions of D by Di, where i

7.4. THE BLOCKING APPROACH 129

Authenticator Server Clients

Authentication request

Authentication reply

Update invocation

Update response

Read invocation

Read response

Figure 7.3: Interaction according to the blocking protocol.

is the index of the version. Version Di has root-hash ri. The authentication of
Di is [ri]a, which means that trusted entity a has checked that Di derives from
Di−1 by the application of a certain set of updates that conforms to certain
consistency rules.

We consider three different roles.

Client. It is a trusted entity in charge of invoking operations.

Server. It is in charge of executing operations and sending the response to the
client along with an authentication that the server should obtain from an
authenticator.

Authenticator. It is a trusted entity in charge of providing the authentication
for the next version of the dataset upon server request.

Figure 7.3 depicts an example of interaction according to the blocking pro-
tocol. A client starts an operation sending an update invocation or a read
invocation to the server.

The read invocation specifies the key k to read. The server gets the value v
associated with k and generates the corresponding proof(k) against the current
root-hash authentication [ri]. The read response, sent from the server to the

130
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

client, contains k, v, proof(k), and [ri]. The client, at the receiving of the
response, verifies the consistency of k, v and proof(k) against [ri].

The update invocation specifies the key k to update and the new value v′.
At its reception, the server can perform the update procedure autonomously
but cannot produce the authentication for the new version of dataset, since
it cannot sign the new root-hash. It sends an authentication request to an
authenticator containing k, its current value v, proof(k), v′, [ri−1], where i− 1
is the current version index.

Upon reception of an authentication request, the authenticator performs
the following actions.

1. It checks proof(k) of k, v, against [ri−1].

2. It computes ri from k, v′, and proof(k).

3. It sends the authentication reply to the server containing [ri].

To increase the throughput, we allow queueing several update invocations
and let the server asks an authenticator to authenticate all of them, cumula-
tively.

When the server receives an authentication reply, it updates the value of
D from Di−1 into Di, by exploiting the same information that were present in
the request, and consider [ri] as the current authentication. It also sends to all
clients, whose updates were executed, an update response.

Now, we analyse the scalability of the blocking approach. We call authenti-
cation round (or simply round) the process that start when the server sends an
authentication request and ends when it receives the authentication reply. In
the blocking protocol, there is only one round ongoing at a time. We denote by
T the duration of a round. We denote by λ the frequency according to which
update requests are received by the server, expressed in update requests per
unit of time. We assume λ, as well as other parameters, to be constant in time.
Let m = λT be the number of update requests received by the server during
a round. If λ is big enough m > 1, hence, when a round terminates, there are
already further update requests queued. We assume the server immediately
starts a new authentication round when the previous one ends. This setting is
depicted in Figure 7.4. Let tS to be the time needed by the server to prepare
one update to be sent to the authenticator. For simplicity, we assume that all
update requests take the same time tS , m updates take time mtS . Let tN be
the time needed to put an update request into the network for transmission.

7.5. OVERVIEW OF INTERMEDIATE AND MAIN RESULTS 131

For simplicity, we assume that all update requests take the same time tN and,
if m update requests are cumulated into one authentication request, they take
time mtN to be transmitted. We denote by d the transmission (one-way) delay
of the network. We assume this delay to be symmetric. We assume no network
errors. Let tA be the time taken by the authenticator to process one update
request. For simplicity, we suppose that the processing time is the same for
all updates and if m update requests are cumulated into one authentication
request, the time taken by the authenticator to process all of them is mtA. We
assume all other overheads to be negligible, as well as the transmission time of
the authentication reply. It holds that

T = 2d+m(tS + tN + tA). (7.1)

If we suppose the system to work at steady pace, we can substitute m = λT ,
getting

T =
2d

1− λ(tS + tN + tA)
. (7.2)

Figure 7.5 shows how T changes with λ according to Equation 7.2. The
maximum throughput is τ = 1

tS+tN+tA
. Since a client can see its updates

requests accepted only after that the authenticator replies, T is a lower bound
of the response time and goes hyperbolically with λ.

We observe that resources tend to be mostly idle. For simplicity, we suppose
t = tS = tN = tA. The fraction of the round for which each resource is busy
is mt/T = λTt/T = λt, hence, the idle time ratio for each resource is 1 − λt.
Note that, decreasing t (i.e., increasing the speed of the resources) so that T
approaches 2d, makes the idle time ratio to approach 1.

Clearly, increasing the throughput 1/t of the resources increases the cost of
the system. We express the cost of the system vs. the required throughput of
the system λ, for constant T , in the following way. We substitute tS+tN+tA =
3t and m = Tλ into Equation 7.1 and solve by t. We obtain 1

t = 3λT
T−2d as the

cost of each resource.
These results strongly motivate the introduction of a pipelining approach,

which is described in Section 7.6.

7.5 Overview of Intermediate and Main Results

The blocking protocol is not scalable and provides very weak security guaran-
tees (for example, the server can easily reorder updates and reply on the basis
of old versions). In this chapter, we provide a scalable and secure protocol

132
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Authenticator Server

T

d

d

Clients

authe
ntica

tion reque
st

authentication reply

U
p
d
ate

in
vo

cation
s

1/λ

m
·t

N

m
·t

A

authe
ntica

tion reque
st

m
·t

S
m

·t
S

Figure 7.4: The model of server-authenticator interaction, according to the
blocking protocol.

7.5. OVERVIEW OF INTERMEDIATE AND MAIN RESULTS 133

λ

T

τ = 1
tS+tN+tA

2d

Figure 7.5: In the blocking protocol, the duration of an authentication round
(T) hyperbolicly goes to infinite when the arrival frequency of update requests
(λ) approaches the maximum throughput (τ).

that solves the same problem. We incrementally describe the solution in the
next three sections. First, we show how it is possible to pipeline requests to
the authenticator without waiting for its responses. At this stage, no particu-
lar consistency and security are provided. Then, we show a distinct result in
which we do not care about efficiency, but we deal with strong consistency and
security. Lastly, we show how to combine this two results.

In this section, we informally describe the ideas underlining these results,
while complete details and formal proofs are provided in Sections 7.6, 7.7
and 7.8.

The Simplified Pipeline-Integrity Protocol

Our first objective is to devise a protocol that allows the server to send an
authentication request without waiting for the result of the previous one. This
is an essential aspect of our pipelining approach. We observe that the only
information the authenticator sends back to the server is the signature of the
new root-hash. This means that the server may decide to send an authentica-
tion request at any time while being able to build it with all the information,
as in the blocking approach, except for the signature of the previous root-hash.
Hence, our goal is to allow the authenticator to provide a proof that all the
checks it performed were successful, without relying on the signature of the

134
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Computes r1

invoke
read for k

value of k in D2 w/proof
authentication of r2 cond. to r1 cond.

to r0 and signature of r0.

D0 with root-hash r0

D1 with root-hash r1

D2 with root-hash r2

updates from D0 to D1

update
s from

D0 to D1 w/proo
fs

updates from D1 to D2

D3 with root-hash r3

D4 with root-hash r4

updates from D2 to D3

updates from D3 to D4

r1 conditioned to r0
update

s from
D1 to D2 w/proo

fs

r2 conditioned to r1
update

s from
D2 to D3 w/proo

fs

r3 conditioned to r2
update

s from
D3 to D4 w/proo

fs

r4 conditioned to r3
update

s from
D4 to D5 w/proo

fs

update
s from

D5 to D6 w/proo
fs

Computes r2

Computes r3

Computes r4

Computes r5

··
·

ServerAuthenticators Client

t0

t1

t2

t3

t4

t5

t6

t7

Authentication request

Authentication reply

Update invocation

Read invocation

Read response

Figure 7.6: An example of use of conditional authentications to enable
pipelining of authentication requests.

previous root-hash. The resulting proof should be usable by the server to build
complete authentications to be used, for example, in read replies. In our ap-
proach, the authenticator can do that for any kind of checks, no matter how
complex they are.

We introduce the concept of conditional authentication, which is formally
defined in Section 7.6. It expresses the fact that a certain root-hash ri is correct,
if the previous one (ri−1) was. Root-hash ri results from ri−1 by the application
of a sequence of update invocations that passes certain (consistency) checks. A
conditional authentication is a signature of the ordered pair of root-hashes ri−1

and ri. Conditional authentications can be chained with other (conditional or
regular) authentications, if certain conditions are met (see Section 7.6).

In Figure 7.6, we provide an example of how we use conditional authenti-

7.5. OVERVIEW OF INTERMEDIATE AND MAIN RESULTS 135

cations. A regular stream of updates arrives to the server. The server sends
authentication requests to the authenticator at regular intervals of time. In the
example, authentication requests are pipelined since, between an authentica-
tion request and its reply, the server sends other authentication requests. No
root-hash signature is sent in these authentication requests, hence, the authen-
tications contained in the replies are conditioned. In the figure, authentication
requests are sent at instants t1, t2, An authentication request sent at time
ti+1 includes the updates arrived since the sending of the previous authentica-
tion request at time ti. The state of the dataset right after ti is denoted Di

and its root-hash is denoted ri. The proofs in the authentication request sent
at time ti+1 are based on Di. Suppose that between t5 and t6 a read invoca-
tion is received. To authenticate the root-hash of the proof contained in the
response, the server can include the conditioned authentications it received (r2

with respect to r1 and r1 with respect to r0). If the server knows a signature
that authenticate r0, it can be included with those conditional authentications
to provide a chain that has the same semantics of a regular authentication. In
Section 7.6, we formally prove this, we show how to keep the chain bounded,
we provide a formal description of our protocol, and we analyse its scalability.

An ADS-Based Quasi-Fork-Linearisabile Protocol

After having provided a scalable protocol, we focus on consistency and security.
We introduce a protocol, called history-integrity protocol, that securely ensures
quasi-fork-linearisability (see Definition 5) in the sense that any deviation of the
server from that behaviour is detected. We recall that quasi-fork-linearisability
is a consistency model in which the server can fork the history of the updates
showing distinct branches to distinct clients and where intersection among
branches is forbidden, except right after the fork. Essentially, our objective
is to fulfil the following security requirements, which are tightly linked with
some of the consistency constraints introduced in Section 7.3.

R1 Each update should appear exactly once in the sequence of updates to be
applied to the dataset. The order chosen by the server should conform
to the order each client issued its updates. A violation of this rule by the
server must be detected. This requirement is linked with Items 1 and 2
of Definition 5.

R2 Clients should be able to detect if the server is trying to propose outdated
versions of the dataset. That is, each client c should check that each

136
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

dataset version proposed by the server follows the last one that c has
knowledge of. This requirement is linked with the monotonicity definition
introduced in Section 7.3.

R3 Trusted entities should be able to detect the joining of forks according to
the definition of quasi-fork-linearisability. That is, overlapping between
distinct forks is allowed only for the updates invoked before the client
receives any response from the server after the fork. This requirement is
linked with Item 4 of Definition 5.

In Section 7.7, we describe a number of techniques that address the above
requirements in a blocking setting. These techniques turn out to be compatible
with the pipelining approach described above. Now, we briefly describe the
intuition underlying those techniques.

Requirement R1 is addressed by hash-chaining the update invocations of
each client and checking the consistency of the chain for each client on the
authenticator. To keep track of the hash of the last update invocation across
consecutive authentications, we authenticate this information in the very same
ADS used to authenticate the dataset, under special client-keys.

Requirement R2 is addressed hash-chaining the root-hashes of consecutive
versions of the dataset. The server responses to read invocations are always
based on a certain version identified by a root-hash. Consider two consecutive
read responses, ρ1 and then ρ2, sent to a client c based on versions identified
by r1 and r2, respectively. In each response, the server provides a proof of
monotonicity. In our example, this is the proof that r1, that c saw in ρ1,
precedes r2 in the hash-chain of the root-hashes. To obtain a short proof, we
adopt an additional history ADS on this hash-chain whose root-hash is itself
authenticated by the authenticator.

To address Requirement R3, each client sends, along with each invocation,
the indication of the last dataset version it knows. The server must include
this information, equipped with a proof obtained from the history ADS, in
any authentication request. This is enough to enable authenticators to detect
violations of the quasi-disjoint-forking rule.

In Section 7.7, we formally describe the above mentioned techniques and
provide proofs of their security and correctness.

The Pipeline-Integrity Protocol

In Section 7.8, we show that it is possible to combine the above results. Even
if this is the main result of the chapter, the resulting protocol and algorithms

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 137

inherit the technicalities of the previous intermediate results without adding
any new fundamental concept. The messaging scheme is the same that we show
for the simplified pipeline-integrity protocol, hence, the scalability properties,
shown in Section 7.6, are preserved. Security and correctness of the combined
solution, derive from the corresponding security and correctness properties of
the history-integrity protocol, proven in Section 7.7. This extension is possible
because of the chaining properties of the conditional authentications, intro-
duced in Section 7.6.

7.6 The Simplified Pipeline-Integrity Protocol

From the analysis provided in Section 7.4, it is evident that the blocking ap-
proach obtains very poor results, in terms of throughput or latency of the whole
system, compared with the theoretical capability of the distinct elements of the
system. We recall that, according to the blocking approach, the rounds of au-
thentication of the root-hashes are executed sequentially and the server blocks
until the authentication reply is received (see Section 7.4).

In this section, we show how it is possible to create a protocol, which we
call simplified pipeline-integrity protocol, that achieves much better results by
pipelining authentication rounds. For the sake of simplicity, in this section, we
focus only on the interaction scheme among the actors, disregarding all secu-
rity and consistency aspects that are not strictly needed to explain it. Since
the guarantees of the simplified pipeline-integrity protocol are quite modest,
we do not provide any formal proof about them. A consistent and secure (but
inefficient) protocol is shown in Section 7.7. In Section 7.8, that protocol is en-
riched with the interaction scheme shown in this section obtaining consistency,
security and efficiency.

In the simplified pipeline-integrity protocol, invocations and responses for
read and update operations have format and semantics very similar to those of
the blocking approach. The only difference is related to the authentications of
root-hashes, which are substituted by chained authentications, introduced in
the following section.

Conditional and Chained Authentications

Consider an authenticator that is performing consistency checks and is com-
puting and signing the new root-hash. At the same time, the server can apply
updates it is receiving, creating a new status of the dataset and ADS. We recall

138
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

that using ADSs, we can efficiently link a cryptographic hash, called root-hash,
with a large dataset of key-value pairs and that root-hash is supposed to be
authenticated (usually signed) by a trusted entity. A fundamental idea of our
contribution is that an additional authenticator can conditionally authenticate
a root-hash ri even if the signature of the previous root-hash ri−1 is not known
yet. This is not a real authentication of ri but it is still something that can
be used together with an authentication of the of ri−1, when it will be avail-
able. The simplified pipeline-integrity protocol allows the server to start a new
authentication round when the previous one is not finished yet. Actually, the
server may create a pipeline of authentication rounds which can be arbitrarily
deep. By pipelining authentication rounds, we get three important advantages.

• We make better use of resources, since server, network and authenticators
all work in parallel.

• We can achieve a much better trade-off between throughput and latency,
since the authentication of a sequence of updates is split into several short
rounds that are processed concurrently.

• We can have several authenticators working in parallel, each addressing
a different set of updates.

As we will see, the cost to pay for this approach is that additional root-
hash signatures have to be enclosed in the messages sent form server to trusted
entities. However, this cost turns out to be quite small compared with the large
advantages obtained (see Sections 7.6 and 7.10).

We denote by q the number of ongoing authentication rounds at steady
operational pace. For the sake of simplicity, we assume the q ongoing authen-
tications are performed with q different authenticators denoted by a1, . . . , aq,
where each authenticator can be in charge of only one authentication request
at a time.

In the following, we deal with root-hash authentications in three forms:
plain, conditional and chained. The plain authentication was introduced in
Section 7.4 and it consists of just a signature of a root-hash. We call conditional
authentication a signed pair [ri, ri+j] (j ≥ 1), whose semantics is the following:
ri+j is authenticated on the basis of data that are supposed to be genuine
against ri, hence, if an authentication for ri is provided, also ri+j can be
considered authentic. The first root-hash of the pair is said to be conditioning
while the second is said to be conditioned.

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 139

Two conditional authentications form a chain if the conditioning root-hash
of the second is equal to the conditioned root-hash of the first. The chain of
two conditional authentication is written [ri, rj] [rj , rl] with i < j < l.

Property 2. The chain of two conditional authentications [ri, rj] [rj , rl] is
semantically equivalent to the conditional authentication [ri, rl].

Proof. Consider an authenticator a generating [ri, rj]a. When a assumes that
ri is a valid root-hash, it is equivalent to assume that its associated dataset Di

complies to a number of consistency rules. We can summarise this saying that
a certain logic predicate pi about Di is true. Equivalently, stating that rj is
a valid, is equivalent to stating that predicate pj is true. Hence, when a signs
the pair (ri, rj), it states that the logic formula pi → pj holds. Analogously,
[rj , rl] and [ri, rl] are equivalent to stating that pj → pl and pi → pl holds,
respectively. By the rules of predicate logic, (pi → pj) ∧ (pj → pl) entails
pi → pl.

Property 3. A plain authentication [ri] with the conditional authentication
[ri, rj] is semantically equivalent to the plain authentication [rj].

Proof. Consider an authenticator a generating [rj] ([ri]). Before signing it, a
checks that [rj] ([ri]) complies to a number of consistency rules, which can by
summarised by logic predicate pi (pj) about dataset Di (Dj). Also, signing
[ri, rj], is equivalent to state pi → pj (see proof of Property 2). By the rules of
predicate logic, pi ∧ (pi → pj) entails pj .

Properties 2 and 3 justify the extension of the definition of chained au-
thentication to a sequence starting with one plain authentication followed by
several chained conditional authentications. For example, from the above defi-
nitions, the sequence [r0] [r0, r5] [r5, r9] is a chained authentication, which, by
Properties 2 and 3, is semantically equivalent to [r9].

Authentication chains can be arbitrarily long. Before trusting a chained
authentication, we should check its coherency according to the above properties
and verify its signatures. This procedure is formalised by Algorithm 1. We
call compaction the process of reducing an authentication chain into a plain
authentication, like [r9]. This process is formalised by Algorithm 2.

Compaction should be performed by a trusted entity, since the final result
requires a signature. In the simplified pipeline-integrity protocol, compaction
is performed by authenticators.

140
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Algorithm 1 Verification of a chained authentication.

Require: a chained authentication A = [r0][r0, r1] . . . [rn−1, rn] and the se-
quence of root-hashes Ā = r0, r1, . . . , rn. In the algorithm, we refer to
elements of A as the 0-th, 1-st,. . . , n-th.

1: Check the signature [r0] of r0

2: for i in 1 . . . n do
3: Check the signature [ri−1, ri] of the pair (ri−1, ri)
4: if i = 1 then
5: Let the initial elements of A be [y][x, r1]
6: Check that x = y
7: else
8: Let the (i− 1)-th and the i-th elements of A be [ri−2, y][x, ri]
9: Check that x = y

10: end if
11: end for
12: A and Ā are verified if all the above checks are successful.

Algorithm 2 Compaction of a chained authentication.

Require: a chained authentication A = [r0][r0, r1] . . . [rn−1, rn] and the se-
quence of root-hashes Ā = r0, r1, . . . , rn.

1: Perform Algorithm 1 on A and Ā.
2: if A and Ā are successfully verified then
3: return [rn]
4: else
5: fail
6: end if

Pipelined Execution of Authentication Requests

The adoption of chained authentication allows us to pipeline authentication re-
quests. In Section 7.4, a commit starts when an authentication request is sent
and ends at the reception of the corresponding reply. While waiting for the
reply, the server cannot do anything. According to definitions in Section 7.3,
the server cannot even reply to read operations. However, nothing prevents
to think about commits as if they were limited to the processing of the au-
thentication reply only. In this way, the server can, at least, reply to read
requests on the basis of the previous state of the dataset, while waiting for the

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 141

authentication reply. We now go further showing how it is possible to start an
authentication request before receiving the response to the previous one.

To simplify the explanation, in the following, we assume all processing time
on server and authenticators to be negligible as well as transmission time, but
we assume the one-way transmission delay to be non negligible and denoted by
d. These hypotheses are relaxed at the end of this section when we evaluate
the scalability of the protocol. A commit χi encompasses all the operations
needed (on server or authenticator) to authenticate version i of the dataset,
which we denote Di. We denote D0 the initial state of the dataset. An ADS
on Di is denoted by ∆i and its root-hash ri. The reader should consider all
these symbols as abstract mathematical values. The state of the server will be
introduced later. We call ti the instant when the commit request ρi related to χi
is sent, which contains all information needed by the authenticator to compute
authentication for Di. We associate with χi all updates whose requests are
received in the interval (ti−1, ti).

142
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

S
er
ve
r
S
id
e

l
1

2
3

4
5

6
7

8
9

10
11

D
R

D
0

D
0

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
U

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
1
0

D
1
1

A

[r
0
]

[r
0
]

[r
0
]

[r
0
]

[r
0
]

[r
0
]

[r
1
]

[r
2
]

[r
3
]

[r
4
]

[r
5
]

[r
0
,r

1
]

[r
0
,r

1
]

[r
0
,r

1
]

[r
1
,r

2
]

[r
2
,r

3
]

[r
3
,r

4
]

[r
4
,r

5
]

[r
5
,r

6
]

[r
1
,r

2
]

[r
1
,r

2
]

[r
2
,r

3
]

[r
3
,r

4
]

[r
4
,r

5
]

[r
5
,r

6
]

[r
6
,r

7
]

[r
2
,r

3
]

[r
3
,r

4
]

[r
4
,r

5
]

[r
5
,r

6
]

[r
6
,r

7
]

[r
7
,r

8
]

A
u
th
en
ti
ca
to
rs

a
0

a
1

a
2

a
0

a
1

a
2

a
0

a
1

a
2

a
0

ρ
co
n
ta
in
s

C
h
a
in
:

[r
0
]

[r
0
]

[r
0
]

[r
1
]

[r
2
]

[r
3
]

[r
4
]

[r
0
,r

1
]

[r
0
,r

1
]

[r
0
,r

1
]

[r
1
,r

2
]

[r
2
,r

3
]

[r
3
,r

4
]

[r
4
,r

5
]

[r
1
,r

2
]

[r
1
,r

2
]

[r
2
,r

3
]

[r
3
,r

4
]

[r
4
,r

5
]

[r
5
,r

6
]

[r
2
,r

3
]

[r
3
,r

4
]

[r
4
,r

5
]

[r
5
,r

6
]

[r
6
,r

7
]

ρ
rp

l
co
n
ta
in
s

C
o
m
p
a
ct
ed

[r
1
]

[r
2
]

[r
3
]

[r
4
]

[r
5
]

[r
6
]

[r
7
]

C
o
n
d
it
io
n
a
l

[r
0
,r

1
]

[r
1
,r

2
]

[r
2
,r

3
]

[r
3
,r

4
]

[r
4
,r

5
]

[r
5
,r

6
]

[r
6
,r

7
]

[r
7
,r

8
]

[r
8
,r

9
]

[r
9
,r

1
0
]

A
u
th
en
ti
ca
to
rs

S
id
e

t 0
t 1

t 2
t 3

t 4
t 5

t 6
t 7

t 8
t 9

t 1
0

t 1
1

ti
m
e

t 1
2

−→ρ1

−→ρ2

−→
ρrp

l 1

−→
ρrp

l 2

F
ig

u
re

7
.7

:
A

n
ex

am
p

le
of

ex
ec

u
ti

o
n

o
f

th
e

si
m

p
li

fi
ed

p
ip

el
in

e-
in

te
g
ri

ty
p

ro
to

co
l
w

it
h

th
re

e
a
u

th
en

ti
ca

to
rs

.

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 143

l-1 l
content of DR Dl−q−1 Dl−q

content of DU Dl−1 Dl

content of A

[rl−2q−1] [rl−2q]
.
.
.

[rl−q−2, rl−q−1] [rl−q−1, rl−q]
tl

[rl−q−1, rl−q]
[rl−2q]

[rl−2q], . . . , [rl−q−1, rl−q]

ρrpll−q ρl

Figure 7.8: The general scheme that links authentication requests/replies
to the changes of the state of the server in the simplified pipeline-integrity
protocol.

We assume synchronous and reliable operation (these hypotheses are re-
laxed in Section 7.9). Figure 7.7 depicts the communication between the server
and q authenticators (where q = 3 in the figure) for the simplified pipeline-
integrity protocol. To have a pipeline with q stages (one for each authenticator),
the server must send an authentication request every ∆t = ti− ti−1 = 2d/q for

all i > 2. Let ρrpl
i be the reply to authentication request ρi. From the above

assumptions, starting from tq+1, ρrpl
i is received at ti+q. As detailed below,

ρrpl
i contains conditional authentication [ri−1, ri] to be used to conditionally

authenticate Di. This is computed on the basis of values taken from Di−1,
of proofs derived from ∆i−1, and of all updates arrived at the server between
(ti−1, ti). We assume that D0 is empty and the corresponding r0 is authenti-

cated by A = [r0] know by the server. When ρrpl
i is received, the conditional

authentication [ri−1, ri] is appended by the server to A to obtain the chained
authentication of Di. To avoid that A grows indefinitely, the server includes
into ρi the current content of A. The authenticator performs its compaction,
obtaining [ri−q], and includes it into ρrpl

i . The server uses [ri−q] to shorten A.
This is done starting from t2q+1. In this way, A turns out to be bounded in
length.

An authentication request is outstanding if no corresponding reply was re-
ceived for them yet. In our setting, at most q authentication requests can be

144
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

outstanding.

Server Data Structures

To realize the simplified pipeline-integrity protocol, the server keeps two no-
table categories of data structures. They are R-data-structures and U-data-
structures. They are distinguished by superscript R and U respectively. The
first category is dedicated to serving read invocations, the second is dedicated
to the processing of update invocations. For the simple pipeline-integrity pro-
tocol, the following are parts of the status of the server: dataset DR with its
ADS ∆R and dataset DU with its ADS ∆U , which are stored by the server.

These data structures change value only at instants ti. The values assumed
by each data structure between instants ti and ti+1 is denoted by the same
symbol, with subscript i, like DR

i and ∆R
i . We denote by l the index of the

last time instant tl in which an update request was sent, which is also the last
instant in which the status was updated. In the absence of subscript, current
value is assumed, for example, DR = DR

l and DU = DU
l .

For the hypothesis of synchronous operation with ∆t = 2d/q, ρrpl
i is always

received at ti+q. At tl (see Figure 7.8), an authentication reply ρrpl
l−q is received

and R-data-structures are updated to version DR
l and ∆R

l on the basis of the
updates contained in ρl−q, i.e., contained in the corresponding request. Further
authentication request ρl is sent containing proofs based on DU

l−1 and ∆U
l−1.

Each R-data-structure tracks the corresponding U-data-structure with a delay
of q∆t and the following hold: DU = Dl, the root-hash of ∆U

i is ri, D
R = DU

l−q,

∆R = ∆U
l−q, the root-hash of ∆R

i is ri−q.

Even if theoretically we say that the server keeps DR (∆R) and DU (∆U),
since the first is a delayed version of the second, they only differ for the updates
arrived after tl−q. Efficient storage solutions can be devised to do that without
doubling space occupation.

Additionally, the server keeps

• a chained authentication A for DR
l with the following structure [rl−2q]

[rl−2q, rl−2q+1] [rl−q−2, rl−q−1] . . . [rl−q−1, rl−q] and the corresponding
sequence of root-hashes Ā = rl−2q, rl−2q+1, . . . , rl−q,

• a queue Ω of all outstanding authentication requests, which, after tq+1,
is ρl−q, . . . , ρl, and

• for each client c, a queue Qc containing all the update operations in-
voked by client c and received by the server (in the invocation order)

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 145

Variable Description
DR Dataset used to serve read invocations.
∆R ADS related to DR.
DU Dataset used to record updates and send authentication

request.
∆U ADS related to DU .
l Index of the dataset version contained in DU = Dl.
A Authentication of DR and ∆R in the form [rl−2q]

[rl−2q, rl−2q+1] [rl−q−2, rl−q−1] . . . [rl−q−1, rl−q].

A Sequence of the root-hashes rl−2q, rl−2q+1, . . . , rl−q on
which A is based.

Ω Queue of outstanding authentication requests ρl−q, . . . , ρl
Qc A queue for each client c containing update invocations of

c for which no authentication request was sent yet.

Table 7.1: State of the server for the simplified pipeline-integrity protocol.

that are not associated with a commit, i.e. that have not been sent in an
authentication request, yet.

Table 7.1 summarises the content of the state of the server for the simplified
pipeline-integrity protocol.

Authentication: Messages and Processing

In the simplified pipeline-integrity protocol, authenticators do not keep any
state. The server sends an authentication request ρl at time tl with the purpose
of

1. getting what is missed in A to get a chained authentication of Dl (con-
taining updates invocation arrived up to tl), which will be the content of

DR after the reception of ρrpl
l , and

2. getting a compacted version of the current A, which will be equal to
[rl−2q] after the reception of ρrpl

l .

Authentication request ρl sent at time tl contains

• a sequence of all update operations received by the server between tl−1

and tl (currently stored in the queues Qc), preserving the order that they

146
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

have in Qc, where the interlacing of the sequences of updates of distinct
clients is arbitrarily chosen by the server,

• the proofs for all 〈k, v〉 involved in the above updates, computed according
to ∆l−1, where v is the value as in Dl−1,

• the current authentication chain A, with the corresponding root-hashes
A, to be compacted.

Algorithm 3 Simplified pipeline-integrity protocol – Authenticator. Oper-
ations performed by an authenticator a upon reception of an authentication
request ρ.

Require: An authentication request ρ that was sent by the server at time tl,
containing:

• a sequence B of updates in the form uc = 〈k, v′〉, where c is the client
that invoked the update and v′ is the new value of k,

• for all keys k involved in B, proof(〈k, v〉) where v is the previous value
of k,

• chained authentication A = [ri−q] [ri−q, ri−q+1] . . . [ri−1, ri] and cor-
responding sequences of root-hashes A (see the status of the server in
Table 7.1).

1: Arbitrarily select one of the proofs and compute the root-hash r̄.
. r̄ is supposed to match rl−1 on the server when ρ is sent.

2: Check all other proofs against r to verify that they all comes from the same
dataset version.

3: Computes from the proofs and from new values, the new root-hash r̃.
. r̃ is supposed to match rl−q on the server when ρrpl is received.

4: Sign the conditional authentication [r̄, r̃]a.
5: Based on A and A, compute a compact version [ri]a of A.

. i turns out to be l − 2q when ρrpl is received.
6: Sends the authentication reply ρrpl containing [r̄, r̃]a and [ri]a.

Upon reception of an authentication request, the authenticator a performs
the actions described in Algorithm 3. Since the server does not provide authen-
tication for r̄, the authenticator only provides a conditional authentication of
the subsequent root-hash r̃ on the basis of the assumption of authenticity of r̄.

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 147

Proving the authenticity of r̄ is up to the trusted entity that will use that con-
ditional authentication. In our approach, this is essentially done considering
the conditional authentication within the context of an authentication chain.

Supposing synchronous operation, ρrpl reaches the server after q∆t with
respect to the instant ρ was sent. This means that at each tl the server gets
[rl−2q] and [rl−q−1, rl−q]. These values are used by the server to update A so
that current value of DR can be authenticated with a chain of q conditional
authentications plus one plain authentication.

When the server receives ρrpl, it executes Algorithm 4 to update its state
and to send the new authentication request. The algorithm starts its execution
at tl by incrementing the variable l. Lines 2-4 are related to the processing
of ρrpl

l−q. After them, the following read invocations are served on the basis

of DR = Dl−q. Lines 5-11 are related to the creation of ρl on the basis of
DU = Dl−1 and to the update of DU to be ready for tl+1.

Scalability

With the intent to evaluate the scalability of the pipeline-integrity protocol,
we relax the hypothesis of negligible computation and transmission time, but
we keep operations synchronous. Essentially, we put ourselves in a setting
comparable with the setting shown in Section 7.4. As stated in Section 7.3,
ideally we would like to achieve high throughput while keeping response time
bounded.

More formally, let λ be the arrival rate of the updates and d be the one-
way network delay between server and authenticators. Our ideal scalability
objective is to have response time O(d), that is, independent from how λ is
large.

We now show that with the above described protocol we can get very close
to the ideal goal.

Let tS , tN , and tA be the time taken to process or transmit one update
operation during one authentication round by the server, the network and the
authenticator, respectively. Let tS , tN , and tA the time taken for processing
or transmitting one conditional authentication of the authentication chain by
the server, the network and the authenticator, respectively. Let t̃S , t̃N , and t̃A
a constant amount of time spent in a round by the server, the network and the
authenticator, respectively.

148
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Algorithm 4 Simplified pipeline-integrity protocol – Server. Operations per-
formed by the server upon reception of an authentication reply.

Require: An authentication reply ρrpl from authenticator a containing
[rl−q−1, rl−q] and [rl−2q].

1: l← l + 1
2: Pull from Ω the authentication request ρ corresponding to ρrpl.

. ρ should be the first in Ω, due the timing hypothesis.
3: Update DR and ∆R according to the update operations specified in ρ.
4: Update A using authentications of ρrpl, namely, [rl−q−1, rl−q] is added to

the right of A and [rl−2q−1][rl−2q−1, rl−2q] is substituted by [rl−2q].
. A should turns out to be the authentication of current DR.

5: Let Y be an empty sequence of updates.
6: for each client c do
7: Pull from Qc all updates and append them to Y in the same order.

. The interlacing of updates of different clients may be arbitrarily
chosen

8: end for
9: Prepare a new authentication request ρ′ for a, containing all updates in Y

with their signatures, proofs computed according to the current value of
DU and ∆U , new values, and the current value of A to be compacted.

10: Push ρ′ as last element of Ω.
11: Send ρ′ to a.
12: Update DU and ∆U according to the updates of Y .

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 149

se
rv

er ti
m

e

a
u

th
en

ti
ca

to
r(

s)

T

d
d

∆
t

2©

2©

2©

3©

3©

3©

4©

4©

4©

5©
6©

7©

5©

5©

6©

6©

7©

7©

q
=

T ∆
t

=
6

cl
ie

n
t(

s)

λ

E
ac

h
au

th
en

ti
ca

ti
o
n

ro
u

n
d

h
a
n

d
le

s
m

=
λ

∆
t

u
p

d
at

es
.

m

m
t
S

+
q
t
S

+
t̃
S

m
t
A

+
q
t
A

+
t̃
A

m
t
N

+
q
t
N

+
t̃
N

1©

1©

1©

F
ig

u
re

7
.9

:
In

te
ra

ct
io

n
an

d
ti

m
in

g
s

b
et

w
ee

n
cl

ie
n
t(

s)
,

se
rv

er
,

a
n

d
a
u
th

en
ti

ca
to

r(
s)

fo
r

th
e

si
m

p
li

fi
ed

p
ip

el
in

e-
in

te
gr

it
y

p
ro

to
co

l,
w

h
en

n
o
n

-n
eg

li
g
ib

le
co

m
p

u
ta

ti
o
n

a
n

d
tr

a
n

sm
is

si
o
n

ti
m

e
a
re

co
n

si
d

er
ed

.

150
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Figure 7.9 depicts this new setting, where T is the time taken by each au-
thentication round, λ is the arrival frequency of the updates, d is the one-way
network delay between server and authenticators, q is the number of authenti-
cators (which equals the length of the authentication chain), ∆t = T/q is the
interval of time between the start of two consecutive authentication rounds,
and m = λ∆t is the number of updates to be processed by one round.

We denote by α = tS + tN + tA the total processing/transmission time for
one update, by β = tS + tN + tA the total processing/transmission time for one
conditional authentication, and by γ = t̃S + t̃N + t̃A + 2d the constant terms.

Now, suppose to keep α, β, γ and λ constant and to increase q, while
correspondingly decreasing ∆t and m, and to observe how the duration of a
round varies. The duration of a round is

T = mα+ qβ + γ. (7.3)

Substituting m = λT/q and solving by T , we have

T =
qβ + γ

1− αλ
q

. (7.4)

We consider T as a function of q, defined for q ∈ (αλ,+∞), and find the value
of q for which T (q) is minimum. By regular calculus, the minimum is reached
at

qmin = αλ+

√
(αλ)2 +

γαλ

β
. (7.5)

For q ∈ (αλ, qmin), T (q) is decreasing. For q > qmin, T (q) is above the
asymptote T = βq + γ. By simple substitution, it is easy to see that T (qmin)
is not bounded by a constant when λ increases. However, by monotonicity of
square root, 2αλ < qmin and T (qmin) < T (2αλ) = 4βαλ + 2γ, which is a line
with a very small slope, since α and β are usually quite small compared to γ (see
below). One may object that qmin is fractional, in general, and we are forced
to choose either bqminc or dqmine. It is easy to show that qmin − 2αλ > 1 when
λ > 1

α(γ/β−2) . Hence, for λ large enough, we have 2αλ ≤ bqminc ≤ qmin. In

this case, since T (q) is decreasing up to qmin, we obtain T (bqminc) ≤ T (2αλ) =
4βαλ+ 2γ.

The above arguments support the following theorem.

7.6. THE SIMPLIFIED PIPELINE-INTEGRITY PROTOCOL 151

Theorem 1 (Scalability). In the simplified pipeline-integrity protocol, there
exists a value of the number of authenticators q for which the response time
for each authentication request is bounded by 4βαλ + 2γ for λ large enough,
where α is the total processing/transmission time for one update, β is the total
processing/transmission time for one conditional authentication, and γ is the
remaining processing/transmission time and network delay in a round that does
not depend on the number of updates in the request or q.

We point out that the results stated by Theorem 1 is very close to our
ideal objective. In fact, from measurements performed contextually to the
experiments of Section 7.10, we observed that the product αβ is in the order of
10−6 and γ is in the order of 10−1 seconds. For the two terms to be comparable
λ should be in the order of 105 updates per seconds. If we consider negligible
the first term, T is O(γ), where γ is largely dominated by d.

The scalability of the simple-pipeline integrity protocol is further supported
by the following analyses.

The presence of the authentication chain introduce some overhead. Every
authentication request carries an authentication chain of length q. We have q
rounds every T , hence, the overhead introduced on the work of authenticator,
network, and server is q2tA/T , q2tN/T , and q2tS/T , respectively. In practice,
we expect q to be small (it is less than 8 in the experiments of Section 7.10).
Further, tA, tN , and tS , depend on the choice of cryptographic primitives, but
we do not expect them to be much larger than tA, tN , and tS , respectively.
Hence, we expect the overhead to be quite small in practice.

The bottleneck of the system is either the authenticator or the network
or the server. Supposing βq, t̃S ,t̃N , and t̃A to be small, the throughput

of the system is approximatively given by min
(

1
tS
, 1
tA
, 1
tN

)
. Supposing the

resources to be perfectly balanced, we can state t = tA = tN = tS . Under
this assumption, when the system is computing at its maximum speed, all
resources are fully busy. This is much better than what we noted for the
blocking approach (Section 7.4), which heavily underutilises resources.

Now, we aim to understand how much this solution costs in terms of ad-
ditional throughput to be provisioned to resources in order to increase the
maximum throughput of the system while keeping T constant. We addition-
ally assume the time spent to perform distinct activities on the same resource to
be proportional with the same factor. This allows us to state α = 3t, β = 3at,
and γ = 3bt, where a and b are constants. In this way, 1/t is proportional
to both the throughput of each resource and to the cost of the whole system.

152
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Blocking Pipelining

Maximum throughput

1
tS+tN+tA

theoretical since

T →∞

min
(

1
tS
, 1
tN
, 1
tA

)
approximated

Round duration
(proportional to
response time)
α = tS + tN + tA

2d
1−αλ

α = tS + tN + tA

qβ+γ
1−αλq

α = tS + tN + tA
see text for definitions of

β, γ, and q

Unused fraction of
each resource

1− λt
where t = tS = tN = tA

for t→ 0, 1− λt→ 1
and T → 2d

0

for tS = tN = tA
at maximum
throughput

Overhead 0 q2tS
T , q

2tN
T , q

2tA
T

Cost vs. throughput
i.e., the throughput required

for each resource (1/t) to

make the system have a given

throughput (λ).

1
t =

3λT
T−2d

for t = tS = tN = tA

1
t =

3λT/q+aq+b
T−2d

for t = tS = tN = tA, see text
for the definition of a and b

Table 7.2: Summary of scalability analysis results for the pipelining approach
compared against the same results for the blocking approach.

7.7. AN ADS-BASED QUASI-FORK-LINEARISABILE PROTOCOL 153

From Equation 7.3 we obtain

1

t
=

3λT/q + aq + b

T − 2d
.

Essentially, supposing aq + b to be small, the simplified pipeline-integrity pro-
tocol cuts by q the cost to increase the throughput of the system by a given
amount, with respect to the same cost for the blocking approach.

Table 7.2 summarises the above results and compares them with those ob-
tained in Section 7.4 for the blocking approach.

7.7 An ADS-Based Quasi-Fork-Linearisabile Protocol

In this section, we show a protocol named history-integrity protocol that pro-
vides quasi-fork-linearisability and allows clients to detect deviation from it. In
more formal terms, it emulates a key-value store with quasi-fork-linearisability
on a Byzantine server. We recall that quasi-fork-linearisability is a consistency
model in which the server can fork the history of the updates showing distinct
branches to distinct clients. Intersection among branches is ruled out, except
for a limited number of updates right after the fork (see Section 7.3).

This protocol does not have the scalability of the simplified pipeline-integrity
protocol shown in Section 7.6, but its construction turns out to be compatible
with that approach and it is a fundamental part of the main result of this
chapter shown in Section 7.8.

In the rest of this section, we refer to the requrements introduced in Sec-
tion 7.5. We recall that Requirement R1 is about ensuring that the server does
not reorder the updates of each client, Requirement R2 is about ensuring that
the server cannot go back in time with the version of the dataset, and R3 is
about ensuring quasi-fork-linearisability.

Server Status

The status of the server for the history-integrity protocol is fully summarised
in Table 7.3. It contains a key-value store D and an ADS ∆ over D. Values of
D and ∆ change at each commit. We denote by Dj and ∆j their value after
the j-th commit, where j is the version index of the dataset. The root-hash
of ∆j is denoted rj . The index l of the version that was produced in the last
commit is also part of the state of the server. In principle one may expect the
authentication [rl] of the current version of D (and ∆) to be also stored by the

154
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Variable Description

D The dataset

∆ ADS related to D.

l Index of the version stored in D.

Qc A queue for each client c containing update invocations of c still
not associated with a commit.

Π History ADS, for the authentication of the sequence of
history-pairs 〈j,Hj〉 (see text).

P A mapping from each client c to a queue of history-pairs,
ordered from head to tail by increasing version index.

A Authentication of D, ∆ and Π in the form [Rl] where Rl is the
root-hash of the current value of Π.

Table 7.3: State of the server for the history-integrity protocol.

server. However, as will be clear in the following, this is not necessary. The
other elements of the server state are introduced in the rest of the description.

Following the client-server interaction described in Section 7.3, the server
replies to read requests immediately, if no commit is ongoing. As in the blocking
approach (see Section 7.4), it accumulates the update requests received by client
c in a queue Qc. The authentication request for the j-th commit contains a
sequence of updates in the order they are supposed to be applied to Dj−1 to
obtain Dj . The next root-hash rj is computed by an authenticator on the basis
of this sequence and of the proofs of the modified keys, which are preventively
checked against [rj−1].

Consistency Enforcement

To fulfil Requirement R1, we introduce the following construction. Each update
operation invoked by client c is represented as a tuple u(i) = 〈ki, vi,hash(u(i− 1)), i〉

7.7. AN ADS-BASED QUASI-FORK-LINEARISABILE PROTOCOL 155

(this is enriched below to satisfy further requirements). When useful, we spec-
ify also the client as superscript writing uc(i). We assume each client specifies
a sequence number i for each update, independently from other clients, start-
ing from i = 0. In the update invocation, the client sends u(i) along with
its signature [u(i)]c. Each client keeps hash(u(i)) to be used in the construc-
tion of u(i + 1). The only exception is the first update invocation which is
u(0) = 〈k0, v0, η

c
0, 0〉, where ηc0 is a constant that is different for each client (e.g.,

a random number locally generated by c) and play the role of hash(u(−1)).
Clearly, it is possible to check the integrity of a sub-sequence of update invoca-
tions u(i), u(i+ 1), . . . provided that hash(u(i− 1)) is known. Suppose that an
authentication round commits, for a certain client c, updates up to uc(i). At the
next authentication round, we call past-hash for c the value ηc = hash(uc(i)),
that is the hash of the last update that was committed. To check the correct-
ness of the sequence of the updates specified in an authentication request for
each client c, an authenticator needs ηc and a way to authenticate it. We in-
troduce special client-keys, one for each client, denoted κc. We store the pairs
〈κc, ηc〉, for each c, in D so that they can be authenticated, as if they were
regular data. The initial state of the dataset D = D0 stored by the server does
not contain any regular key but contains all 〈κc, ηc0〉 for each client c. Pairs
〈κc, ηc〉 are sent with proof(∆, 〈κc, ηc〉) and are used by authenticators to ver-
ify the sequence of uc(i) specified in the authentication request. During each
commit, authenticators also consider the update of ηc when computing rj . The
effective update of 〈κc, ηc〉 in Dj (and in ∆j) is performed by the server, as for
regular keys.

To fulfil Requirement R2, we introduce the concept of history-hash. After
the j-th commit, the history-hash Hj is defined as Hj = hash(Hj−1|rj) (we as-
sume H−1 to be an arbitrary constant value to initialise the chain). Clearly, Hj

uniquely identifies a sequence of root-hashes and hence a sequence of datasets,
up to Dj . We also consider pairs 〈j,Hj〉, that we call history-pairs. These are
stored in an ADS on the server that we call Π, ordered according to increasing
j. See Figure 7.10 for a picture representing this construction. The state of this
ADS also changes at each commit, hence the state of Π after the j-th commit
is denoted Πj . Its root-hash is called history root-hash and denoted Rj . The
current history root-hash, between two commits, is Rl. Its authentication [Rl]
is stored by the server in A. Note that, to authenticate a key-value pair in the
current D = Dl by a proof obtained from ∆ = ∆l, we do not need to store [rl].
In fact, [Rl] is enough: to authenticate a key-value pair p in Dl, we need p, l,
proof(∆l, p), Hl−1, proof(Πl, 〈l,Hl〉), and A = [Rl]. Each time the server sends

156
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Πl

Rl

D0 D1 D2 DlDl−1

r0 r1 r2 rl−1 rl

〈0, H0〉

History ADS

〈1, H1〉 〈2, H2〉 〈l − 1, Hl−1〉 〈l,Hl〉

∆0 ∆1 ∆2 ∆l−1 ∆l

H−1

Figure 7.10: Conceptual construction to fulfil Requirement R2.

a response to a client, it includes this information. The verification procedure
is a naive variation of the procedure described in Section 7.2.

Each client c stores a queue Γ of history-pairs, ordered from head to tail
in increasing value of version index. We call them local history-pairs for c and
are history-pairs that c received from the server. In other words, if c receives a
response based on p = 〈l,Hl〉, where l is the last committed version, c should
push p into Γ, at some point. The server always equips each response with
an additional history-pair 〈V c, Hc〉 which should be a local history-pair of c.
The server also includes proof(Πl, 〈V c, Hc〉) in the response messages. When
receiving a message from the server, c always checks that 〈V c, Hc〉 ∈ Γ, both
p and 〈V c, Hc〉 are authenticated by [Rl], and V c ≤ l. Finally, c pushes 〈l,Hl〉
into Γ. Further details are given in Section 7.7.

The server sends to authenticator a an authentication request containing
l − 1, Hl−2, proof(Πl−1, 〈l − 1, Hl−1〉), and A = [Rl−1]. Authenticator a
computes Rl and sends [Rl]a to the server. In computing Rl, besides regu-
lar key-value updates and updates of past-hashes for client-keys, a consider
also Πl deriving from Πl−1 by adding 〈l,Hl〉, where Hl = hash(Hl−1|rl),
as by Figure 7.10. To enable monotonicity checks by authenticators and to
fulfil Requirement R3, we slightly modify the format of updates as follows:
uc(i) = 〈ki, vi,hash(u(i− 1)), i, 〈V c, Hc〉〉. With respect to the definition of
uc(i) given above, we add the tuple 〈V c, Hc〉, that is, the latest history-pair
pushed into Γ by c. Each uc(i) is put into an authentication request by the
server along with the corresponding proof(Π, 〈V c, Hc〉). With this informa-
tion, a can perform an additional check to verify that 〈V c, Hc〉 is authentic
with respect to the history root-hash that A is authenticating and V c ≤ l− 1.

7.7. AN ADS-BASED QUASI-FORK-LINEARISABILE PROTOCOL 157

This is enough to detect violations of the quasi-disjoint-forking rule of Defini-
tion 5 (see the proof of Theorem 2) and of monotonicity. In Section 7.7, we
provide further details about management of Γ and Π so that storage is kept
bounded and both server and clients always store the needed information to
perform the above operations.

We now formally prove some fundamental properties of the history-integrity
protocol.

Property 4 (Monotonicity). In an execution of the history-integrity protocol in
which no trusted entity detects any tampering, the sequence of update operations
seen by each client c monotonically grows.

Proof. Note that, by construction and by security of the cryptographic hash,
Rl is uniquely associated with a sequence of history-pairs and, in turn, to a
sequence of updates. When a client c receives, from the server, a response based
on the history-pair 〈l,Hl〉, it checks its authenticity against authentication
A = [Rl]. Let 〈V c, Hc〉 be the local history-pair of c that the server associated
with the above response. The client checks that 〈V c, Hc〉 is authentic with
respect to A and hence is on the same history of 〈l,Hl〉. If V c ≤ l, than the
server declared a version of D which is equal or after that identified by V c,
respecting monotonicity. Analogous reasoning can be done for authenticators.
They additionally authenticate a new version of Π with the new history-pair,
but only if the monotonicity checks were successful.

Lemma 2 (Commit-Correctness). In an execution of the history-integrity pro-
tocol in which no trusted entity detects any tampering, the sequence of events
seen by each client c is commit-correct.

Proof. Let σ be the sequence of the events of an execution of the history in-
tegrity protocol in which no trusted entity detects any tampering. Let πc be
the complete sequential permutation of the subsequence of σ seen by c. In
the history-integrity protocol the evolution of data occurs at each commit.
Each commit monotonically grows the history of root-hashes (see Property 4)
currently seen by authenticators. We denote by χi the commits seen by c.

We note that the alternating structure of πc mandated by Definition 1 is
implied by the fact that commits deal only with updates and are atomic. Then,
to prove that πc is commit-correct, we have to prove that the three conditions
of Definition 1 holds for the sequence χi.

Conditions 1 and 2 are verified since, each read has in its response the
indication of the associated version of the history-hash. Further, c performs

158
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

verification, by checking proofs, that the returned value of the read is indeed
associated with the current version declared by the server in the response or it
is initial.

Concerning Condition 3, at each commit, the server proposes to the au-
thenticator a sequence of updates. The authenticator checks that their order
conforms to that specified by each client (by hash chaining) and that the server
does not propose already processed updates (by checking past-hashes). Since
in each authentication round the authenticator deals only with updates that
have to be associated with the current commit, Condition 3 is verified.

Theorem 2 (Quasi-fork-linearisability for the history-integrity protocol). The
history-integrity protocol emulates a key-value store on a Byzantine server with
quasi-fork-linearisability in monotonic sense.

Proof. We consider a generic execution of the history-integrity protocol, in
which no trusted entity detects any tampering. The execution is represented
by a real-time ordered sequence of events σ.

Recalling Definition 5, we should proof that, for all client ci, the correspond-
ing σi and πi, chosen by the server, satisfy the four conditions of quasi-fork-
linearisability and that each πi grows monotonically over time. Monotonicity
is stated by Property 4.

About Condition 1, client ci receives [Rl], signed by an authenticator, which
also authenticates Hl. Hash Hl is uniquely associated with the sequence of
updates seen by ci which is πi. The protocol mandates that the authenticator,
which receives from the server proofs based on [Rj], creates [Rj+1] by adding,
among all the others, all updates of ci communicated by the server. The server
can not skip or reorder any of them since they are hash-chained, and can not go
back in time since past-hashes are checked. Hence, the authenticator provide a
proof that they are contained in πi. This is true for all authentication rounds.
Since no trusted entity detects any tampering, all completed updates of ci
are contained in the last version of the dataset Dl seen by ci. This proves
Condition 1.

About Condition 2, by Lemma 2, all πi are commit-correct. By Lemma 1,
they preserve the real-time order of all non commuting operations in σ.

About Condition 3, for the updates this condition is enforced by an au-
thenticator when it checks proofs and computes the new [Rl] for the new Dl.
For the read operations, this condition is enforced by the checks performed by

7.7. AN ADS-BASED QUASI-FORK-LINEARISABILE PROTOCOL 159

each client ci. Clients check that the read result comes from Dl and that Dl is
an updated version of the last version seen by ci.

About Condition 4, if the server does not introduce any fork, this condition
is trivially verified by σ = σ1 = σ2, π1 = π2. Let assume that the server does
fork, and π1 = αβ1 and π2 = αβ2 be the sequential sequences seen by clients
c1 and c2 as in Definition 4.

Without loss of generality, we consider the point of view of c1. We now
prove that all update invocations of c1 in β1 ∩ β2 are before the first response
to c1 in β1 ∪ β2, in σ. By contradiction, we suppose that this is not true and
prove that a tampering must be detected by a trusted entity. Let u be an
update whose invocation is in β1 ∩ β2 and, against Condition 4, let o be the
last operation whose response is in β1 ∪ β2 and res(o) < inv(u). When c1
receives res(o), the history-pair associated with the version of the dataset on
which res(o) is based is pushed into local history-pairs Γ of c1. By the way
history-pairs are built, the last inserted element of Γ of c1 uniquely identify
one of the two branches, since β1 6= β2 by definition. The server is showing to
c1 operations according to π1, hence, at this point, the tail p of Γ is associated
with αβ1. Client c1 prepares inv(u) specifying p as history-pair and signing
it with the whole u. When the server prepares the authentication request
containing u, it cannot change p embedded in u. Since u is in both branches
of the fork, two authentication requests containing u, one for each branch, are
sent by the server to (possibly distinct) authenticators. The processing of the
authentication request associated with αβ1 completes successfully since p is
proven to be authentic with respect to the history root-hash provided by the
server. The processing of the authentication request associated with αβ2 fails
when trying to authenticate p in u against the history root-hash associated with
αβ2 which is not the one seen by c1. Hence, the tampering is detected.

Note that in the above description authenticators are not linked to a branch.
In fact, since they are stateless, they have no mean to detect they are used by
the server to authenticate commits for distinct branches. This does not have
any impact on quasi-fork-linearisability from the point of view of the clients.
However, nothing prevents to equip authenticator with a state similar to that
of the clients to allow them to perform similar checks. In this way, the number
of branches that the server could possibly create would be bounded by the
number of available authenticators.

Corollary 1 (No False Negatives for the history-integrity protocol). In the
history-integrity protocol, whenever a trusted entity detect a tampering, the

160
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

server deviated from the quasi-fork-linearisability behaviour.

Corollary 1 directly derives from Theorem 2.

Theorem 3 (No false positives for the history-integrity protocol). In the
history-integrity protocol, whenever the server behaves according to quasi-fork-
linearisability, trusted entities do not detect any tampering.

Proof. We assume correct implementation of ADSs and cryptographic primi-
tives. Tampering is detected by trusted entities when one of the checks they
perform fails. All trusted entities checks that the version declared in each mes-
sage form the server is in the same history of their locally stored history-pair
(monotonicity). Clients check correctness of replies against last root-hash au-
thentication (correct operation execution). Authenticators check that for each
client c each uc(i) is correctly hash-chained to the one before or with current
past-hash ηc and check the authenticity of ηc for all c (server does not reorder
updates). Authenticators check the authenticity of previous values v of k (cor-
rect operation execution). Authenticators check the history-pair pc contained
in the last uc(i) specified in the sequence for c is in the history of the current
history root-hash (Condition 4 of Definition 5). All these checks are successful
if server and all authenticators behaved correctly till that moment, which is
true by hypotheses.

Limiting the storage needed by server and clients

According to the above description, the server should store Π, each client
should store its Γ and these data structures grow over time. For datasets that
last long and change frequently, this is an overwhelming burden. We now show
how to bound the storage taken by Π and Γ.

The server keeps a mapping P from each client c to a queue of history-
pairs. We denote P (c) the queue associated with c. An history-pair p = 〈l,Hl〉
is pushed into P (c) when a response to c is sent with the version l, unless
P (c).tail is already equal to p. Hence, in queues P (c), history-pairs are stored,
from head to tail, in ascending order of version. A client c that receives a
response containing p pushes it into Γ, unless Γ.tail is already equal to p.
Hence, also Γ stores history-pairs in ascending order of version. When c sends
an update invocation, it uses p = Γ.tail as history-pair in the construction of
the update. When c sends a read invocation, it additionally specifies p in the
message. When the server receives a read invocation with p, or puts an update
containing p into an authentication request, it pulls from P (c) all history-pairs

7.7. AN ADS-BASED QUASI-FORK-LINEARISABILE PROTOCOL 161

P (c)

Γ

heads tails

Push 〈l, Hl〉
Read/Update response

based on 〈l,Hl〉
Pull < version of p

Any response
acknowledging p

Any invoke
containing p

{ Γ.tail = p

Commit creates
〈l,Hl〉

C
li

en
t

si
d

e
S

er
ve

r
si

d
e

{Pull < version of p
Push 〈l, Hl〉

Figure 7.11: Relationship between messages and changes applied to P (c) and
Γ.

with a version less then that of p, so that P (c).head = p. When the server
sends a response to c, it adds P (c).head as acknowledgement of its reception,
piggybacked. When c receives a response that acknowledges p, it pulls from Γ
all history-pairs with a version less then that of p, so that Γ.head = p. The
way messages affect P (c) and Γ is summarised in Figure 7.11.

The server exploits the pruning feature of ADSs (see Section 7.2), keeping
in Π only history-pairs that are mentioned at least once in any queue P (c) for
any c (see Figure 7.12). Note that, pruning does not change the current history
root-hash, it just reduces the memory occupation.

This scheme ensures that (i) each time a client c uses p as history-pair in
an update, the server can provide proof(Π, p) since p is not pruned, (ii) each
time c receives a response with acknowledge p, c has p in Γ (if the server has
not forked) hence checks for monotonicity and quasi-fork-linearisability work,
(iii) the size of each queue P (c) is bounded by the number of commits involving
updates from c that are sent in the time of serving one update, and (iv) the
same bound holds for Γ.

Pruning does not make proofs shorter, this means that their length is
O(log l), for a typical ADS, which might be not acceptable for datasets that are
updated regularly and must last long. For simplicity of explanation, we sup-
pose Π is realised with a binary MHT. If a client c regularly performs queries,
the version V c of P (c).head is close to l. If this is true for all clients, the left
subtree of the root in Π is completely pruned and we can substitute its current

162
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Π = Πl

Rl

Dl

rl

〈l,Hl〉

∆ = ∆l

P (c1)

P (c2)

P (c3)

Version indexes increase
in this direction.

Figure 7.12: An example of pruning. Dots represent unpruned versions, while
crosses represents pruned ones. Pruning of a history-pair from Π occurs when
no P (c) contains it.

root with its right child shortening the length of the proofs. While this makes
the implementation of server and authenticators a bit more complicated, it
allows us to have the proofs derived from Π of size O(log(l −minc V

c)). Size
of the proofs can be kept bounded if we “detach” clients that are stale for a
number of commits greater than a fixed threshold.

7.8 The Pipeline-Integrity Protocol

This section presents a protocol, which we call pipeline-integrity protocol, that
is scalable and achieves quasi-fork-linearisability. Essentially, we prove that
results shown in Section 7.6 and those shown in Section 7.7 can be combined.
We just describe the specificities of the use of the two approaches together. The
complete pseudocode for the resulting pipeline-integrity protocol is provided in
the Appendix.

In the following description of the protocol, we reuse many concepts and
assumptions introduced in the simplified version (Section 7.6). Namely, we
assume

• to have q authenticators,

• to have negligible execution time on server and authenticators,

• to have reliable and synchronous communications,

7.8. THE PIPELINE-INTEGRITY PROTOCOL 163

• to send an authentication request to authenticator a when an authenti-
cation reply is received from a, and by synchronous operation this occur
every ∆t = 2d/q,

• to have a pipeline-like interaction scheme between server and authenti-
cators, and

• to have a server with U/R-data-structures, where an R-data-structure
tracks the corresponding U-data-structure with a delay of q∆t.

We also reuse the same notation introduced in Section 7.6 to distinguish
U/R-data-structures, with superscripts R and U , and for denoting instances of
server variables between instants tj and tj+1, like DU

j .
From the history-integrity protocol (Section 7.7), we reuse

• the concepts of history-hashHj = hash(Hj−1|rj) and history-pairs 〈j,Hj〉,

• the fact that each client c keeps a queue Γ of local history-pairs that it
is aware of.

• the content of the update operations and their notation: uc(i) =
〈ki, vi,hash(u(i− 1)), i, 〈V c, Hc〉〉

• the use of the mapping P (c) to track, on the server, the last history-pairs
sent by the server to each client c,

• the use of pruned authenticated data structures on the sequence of history-
pairs that, for the pipeline-integrity protocol, are two: ΠR and ΠU , and

• the notation for history root-hash Rj , that we use to denote the root-hash
of ΠU between instants tj and tj+1.

While we refer the reader to the proper section for an explanation of the
above concepts, we now explicitly describe the parts that need specific expla-
nation.

164
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

ΠR ΠU

Rl
Rl−q

〈l − q,Hl−q〉 〈l,Hl〉

rl−q rl

∆R ∆U

DR DU

Figure 7.13: A scheme showing the data structures involved in the (complete)
pipeline-integrity protocol.

7.8. THE PIPELINE-INTEGRITY PROTOCOL 165
V

ar
ia

b
le

D
es

cr
ip

ti
o
n

D
R

,D
U

,∆
R

,
∆
U

,
l,
Q
c
,
Ω

S
ee

T
a
b

le
7
.1

.

Π
U

A
D

S
on

th
e

se
q
u

en
ce

o
f

h
is

to
ry

-p
a
ir

s
u

p
to
〈l
,H

l〉
,

u
se

d
in

co
n

ju
n

ct
io

n
w

it
h

D
U

a
n

d
∆
U

.
T

h
e

ro
o
t-

h
a
sh

o
f
Π
U j

is
d

en
o
te

d
R
j
.

Π
R

A
D

S
on

th
e

se
q
u

en
ce

o
f

h
is

to
ry

-p
a
ir

s
u

p
to
〈l
−
q,
H
l−
q
〉

u
se

d
in

co
n

ju
n

ct
io

n
w

it
h
D
R

a
n

d
∆
R

.
It

s
ro

o
t-

h
a
sh

is
R
l−
q
.

P
A

m
a
p

p
in

g
fr

o
m

ea
ch

cl
ie

n
t
c

to
a

q
u

eu
e

o
f

h
is

to
ry

-p
a
ir

s.
T

h
e

q
u

eu
e

a
ss

o
ci

a
te

d
to
c

is
d

en
o
te

d
P

(c
).

A
A

u
th

en
ti

ca
ti

o
n

fo
r
D
R

,
∆
R

a
n

d
Π
R

in
th

e
fo

rm
[R
l−

2
q
]

[R
l−

2
q
,R

l−
2
q
+

1
]

[R
l−
q
−

2
,R

l−
q
−

1
].
..

[R
l−
q
−

1
,R

l−
q
].

A
S

eq
u

en
ce

o
f

th
e

ro
o
t-

h
a
sh

es
R
l−

2
q
,
R
l−

2
q
+

1
,.
..
,
R
l−
q

th
a
t

a
re

th
e

b
a
si

s
o
f
A

.

T
a
b

le
7
.4

:
S

ta
tu

s
o
f

th
e

se
rv

er
fo

r
th

e
(c

o
m

p
le

te
)

p
ip

el
in

e-
in

te
g
ri

ty
p

ro
to

co
l.

166
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

Status Table 7.4 summarises the variables that form the status of the server.
Many variables are the same as in the simplified version, in particular l is
the index of the last instant in which the server received an authentication
reply (and sent an authentication request). Consider the sequence of history
pairs 〈0, H0〉, . . . , 〈l,Hl〉. The server keeps two history ADS, denoted ΠR

and ΠU , on this sequence. Structure ΠU is over the whole sequence and its
history root-hash is denoted by Rl. Structure ΠU is used with DU and ∆U

to compute proofs for a new authentication request ρl to be sent at instant tl.
Structure ΠR is limited up to index l − q and its history root-hash is Rl−q,
since ΠR

l = ΠU
l−q. Structure ΠR is used with DR and ∆R to reply to read

requests. Figure 7.13, pictorially shows the relationships among all the data
structures. Structures ΠR and ΠU are kept pruned by using the mapping P
as explained in Section 7.7.

The server keeps a chained authentication A for the history root-hash Rl−q
in this form: [Rl−2q] [Rl−2q, Rl−2q+1] [Rl−2q+1, Rl−2q+2] . . . [Rl−q−1, Rl−q].
The sequence A of the history root-hash involved in A is kept as well.

Messages The messages follow the scheme of the simple pipeline-integrity
protocol with the following changes.

• Whenever a (signature of a) root-hash is specified for the simplified ver-
sion, a corresponding (signature of a) history root-hash is specified for
the complete version.

• In responses from server to clients, proofs of the kind proof(∆R, ·) in a
message for the simplified version are substituted with quadruple contain-
ing proof(∆R

l , ·), Hl−q−1, l − q, proof(ΠR
l , 〈l − q,Hl−q〉). Additionally,

each message sent to client c contains the head of P (c), stored by the
server, denoted by 〈V c, Hc〉, and its proof(ΠR

l , 〈V c, Hc〉).

• For authentication requests, updates are represented as uc(i) = 〈ki, vi,
hash(u(i− 1)), i, 〈V c, Hc〉〉 (see Section 7.7). In each request to authenti-
cator a, Hl−2, l and proof(ΠU

l−1, 〈l− 1, Hl−1〉) are additionally sent. For
each client c involved in the updates in the request, the following are
included: 〈κc, ηc〉, proof(∆U

l−1, 〈κc, ηc〉), pc, proof(ΠU
l−1, p

c) where pc is
the history-pair 〈V c, Hc〉 in the last update of c included in the request.

Behaviour Clients behave the same as in the history-integrity protocol.
The server executes both the behaviour specified for the history-integrity

protocol and for the simplified pipeline-integrity protocol as follows. When

7.8. THE PIPELINE-INTEGRITY PROTOCOL 167

handling the authentication reply ρrpl, to a request ρ, from a, P (a) is updated,
DR, ∆R and ΠR are updated according to the updates specified in ρ, as in
the history-integrity protocol, and A and A are updated, as in the simplified
pipeline-integrity protocol. When creating the new authentication request ρ′

to be sent to a, the sequence of updates is created as in the history-integrity
protocol, and proofs needed to create ρ′ are collected. Then, DU , ∆U and ΠU

are updated to be ready for the next authentication request. Finally, pruning
is done on both ΠR and ΠU based on the content of P .

Concerning authenticators, when authentication request ρ is received, com-
paction of chained authentication A contained in ρ is executed as in Algo-
rithm 2, but substituting regular root-hashes with history root-hashes. About
the authentication of update operations, the performed checks are the same as
in the history-integrity protocol, but executed in a conditional manner. That
is, no verification is performed against the authentication A communicated by
the server, since this is late of q instants with respect to proofs. Instead, first
the conditioning history root-hash R is computed from an arbitrarily chosen
proof in ρ. Then, all checks are performed against R to verify coherency of ρ. If
all checks are successful, the new conditioned history root-hash R̃ is computed
on the basis of update operations in ρ and new past-hashes for each client.
Then, [R, R̃] is put into ρrpl along with the compacted version of A.

Theorem 4 (Quasi-fork-linearisability for the pipeline-integrity protocol). The
pipeline-integrity protocol emulates a key-value store on a Byzantine server with
quasi-fork-linearisability in monotonic sense.

Proof. The proof of this theorem is a consequence of Theorem 2, of Properties 2
and 3, and of the following considerations.

Consider a generic execution of the pipeline-integrity protocol, in which
no trusted entity detects any tampering. We call it P. The execution is
represented by a real-time ordered sequence of events σ. The server may decide
to arbitrarily fork, hence, each client ci sees a subsequence of events σi, executed
according to a sequential permutation πi of σi and a sequence χij of commits
seen by ci. Consider σ as an execution of the history-integrity protocol (see
Section 7.7), that we call H and use Theorem 2 with the same choices of σi, and
πi to prove quasi-fork-linearisability. In H, commits χij are instantaneous and
are in one-to-one correspondence with the commits of P. Association between
operations and commits in H also mimic what happen in P. In H, all update
operations are executed not before q commits. This might sound weird for a
real non-pipelined system, but it conforms to the interaction scheme introduced

168
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

in Section 7.3 and it is compatible with the history-integrity protocol. Hence,
Theorem 2 applies. Note that, the checks performed by trusted entities in H
and P are the same, with the only difference that in P proofs are verified against
chained authentications. The second notable difference is that authenticators
in P provide a conditional authentication not a plain one. However, in our
synchronous and reliable execution, after q instants, the chain is complete and,
by Properties 2 and 3, what was conditionally verified q instants before is
verified unconditionally at current instant.

Corollary 2 directly derives from Theorem 4.

Corollary 2 (No false negatives for the pipeline-integrity protocol). In the
pipeline-integrity protocol, whenever a trusted entity detect a tampering, the
server deviated from the quasi-fork-linearisability behaviour.

Theorem 5 (No false positives for the pipeline-integrity protocol). In the
pipeline-integrity protocol, whenever the server behaves according to quasi-fork-
linearisability, trusted entities do not detect any tampering.

Proof. The proof of this theorem is a consequence of Theorem 3, of Properties 2
and 3, and of the following considerations.

We assume correct implementation of ADSs and cryptographic primitives.
Tampering is detected by trusted entities when one of their checks fails. Each
check that is performed by trusted entities in the pipeline-integrity protocol
matches one in the history integrity protocol, with the exception of the checks
introduced by the verification of the coherency of the chained authentication.
The following differences should be considered. In the pipeline-integrity proto-
col, clients perform their checks against a chained authentication of the history
root-hash instead of against a plain authentication. The semantics equivalence
of the two approaches is stated by Properties 2 and 3 and, for clients, the
statement holds by Theorem 3. Authenticators do not perform real checks,
but assume that a certain history root-hash R̄ is authenticated and perform
their checks against it. Then, they state the authenticity of the new history
root-hash R̃, after updates application, conditioned to the authenticity of R̄.
These conditioned authentication will form a chained authentication whose co-
herency is checked by trusted entities (see Algorithm 1) when they are received
from the server. All these checks are successful if server and all authenticators
behaved correctly till that moment, which is true by hypotheses.

7.9. DEALING WITH NON-IDEAL RESOURCES 169

Concerning scalability, we can follow the same reasoning of the scalabil-
ity analysis shown in Section 7.6, considering non-negligible computation and
transmission time. The following holds.

Theorem 6 (Scalability). In the pipeline-integrity protocol, there exists a value
of the number of authenticators q for which the response time for each au-
thentication request is bounded by 4βαλ + 2γ for λ large enough, where α is
the total processing/transmission time for one update, β is the total process-
ing/transmission time for one conditional authentication, and γ is the remain-
ing processing/transmission time and network delay in a round that does not
depend on the number of updates in the request or q.

Proof. The statement is a direct consequence of Theorem 1 and of the fact
that the pipeline-integrity protocol follows the same interaction scheme of the
simplified pipeline-integrity protocol.

7.9 Dealing with Non-Ideal Resources

In practice, assuming that the pipeline-integrity protocol can run synchronously
is unrealistic for most applications, because real networks may suffer packet
losses and congestion. Further, performances of machines may vary depending
on other processes. First, we observe that we can adopt a reliable transport
protocol, like TCP, that implements acknowledgements and retransmissions.
It allows the two parties to send an amount of non-acknowledged data that is
enough to saturate the (estimated) bandwidth of the channel. This permits us
to deal only with uncertainty about network delays or with the (un)availability
of an authenticator. For a practical realization of the pipeline-integrity proto-
col, we suggest to decouple sending of authentication requests from the recep-
tion of authentication replies. The easiest approach is to send authentication
requests at scheduled instants or when the number of accumulated updates
reaches a certain threshold, but other policies might be adopted to reduce re-
sponse time. At the receiving of an authentication reply, if this was the first
outstanding request in the Ω queue, the regular processing is performed. If
this is not the case, an intermediate authentication response was missed. This
might be late or the corresponding authenticator might be unavailable or un-
reachable. We can wait a timeout and possibly re-send the same request to
another authenticator. During the handling of a missing request, the read oper-
ations are served against the last DR and processing of updates goes ahead, but
authentication requests and replies should be buffered till the missing piece will

170
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

arrive. Application specific considerations should lead the decision on which
architecture elements should play the role of authenticators. This choice should
depend not only on their computational power but also on the probability to
become unreachable and on the fact that this is not a problem if at the same
time also clients get disconnected. To reduce the probability of missing an
authentication reply, more than one authenticator might be involved for each
authentication round. A flow control should also be realised so that the server
could communicate to clients that it cannot go ahead with updates (or can only
at a slow pace) due to non responding authenticators. In this way, the clients
can limit or stop updates and possibly informing the user of the problem.

In a real environment, clients may be abruptly disconnected or switched
off. In this case, some response messages may be lost, even when a reliable
transport protocol like TCP is used. In general, when the client reconnects,
the server does not know which is the last version it is aware of since it does
not know which is the last response messages the client processed. However,
the protocol described in Section 7.7 is tolerant with respect to this problem,
provided that client can keep content of Γ across reconnection, for example, by
persisting it.

7.10 Experimental Study

We developed a prototype with the intent to provide experimental evidence
of the feasibility of our approach in a realistic setting. Since our contribution
provides means to scale the trusted side, we designed our experiments so that
the bottleneck of the whole system is always the computing power dedicated
to authenticators. We note that the average latency (i.e., the time taken for an
update request to be authenticated) is proportional to the duration of one au-
thentication round. We measured the duration of one authentication round and
other parameters at increasing update invocation rate. We measured the maxi-
mum update invocation rate of that the system can sustain (i.e., its throughput)
with different numbers of CPUs dedicated to run authenticators.

We note that authenticators may be implemented, as processes, threads or
actors (see for example the Akka actors [Gup12]) which essentially allow us to
increase their number without substantial additional cost. Clearly, their overall
speed is bounded by the number of available physical processors. We denote
by q the number of physical processors dedicated to execute authenticators,
by tA the time each of them takes to process one update (ignoring all other
contributions for simplicity), and by λ the update arrival frequency. For a well

7.10. EXPERIMENTAL STUDY 171

m · tA

∆t

∆t

∆t

∆t

this is served reusing
the processor from 1©

1©

these all run on
distinct processors
since q̄ = 4

q ·∆t where
q = dmtA/∆te

Figure 7.14: Construction to prove that q̄ ≥ dmtA/∆te = dλtAe is enough to
ensure that each request has a free processor for it. In the example q̄ = 4.

dimensioned system it should be q̄ ≥ dmtA/∆te = dλtAe (see Figure 7.14).
In this way, when a new authentication request arrives, there is always a free
processor for it. Hence we expect a linear relationship between throughput and
number of CPUs. The objectives of our experiments are the following.

O1. We intend to show that our approach supports update frequencies, up to
the saturation of the CPUs of the authenticators, keeping the response
time practically constant.

O2. We intend to show that it is possible to increase the throughput of the
system by increasing the number of processors dedicated to execute au-
thenticators.

O3. We intend to show that it is possible to obtain a minimum response time,
as described in Section 7.6, by tuning the number of updates contained
in each authentication request.

Our experiments focus on update operations, since read operations are only
marginally affected by the introduction of the pipeline-integrity protocol. Our
prototype is explicitly targeted to this experimentation. Providing a fully
fledged implementation was not among our objectives. We implemented the
simplified pipeline-integrity protocol described in Section 7.6, supporting read
operations and update operations only for keys already existing in the dataset.
We note that the scheme of client-server interaction and server-authenticator

172
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

interaction in the simplified and in the complete versions of the protocol is the
same. The most notable difference between the two versions of the protocol is
that in the simplified version no history ADS is kept, so proofs do not encom-
pass the integrity of the history. This means that the number of cryptographic
hashes that all machines have to compute is less than in the case of the com-
plete version (see Section 7.7) and the length of messages is correspondingly
shorter. However, regarding the management, transmission and check of the
chained authentication, which is the core of our approach, there is no relevant
difference.

We performed our tests with three machines: S running our server, C run-
ning a number of clients that perform update requests to S and A running
authenticators to serve authentication requests sent by S. All machines are
Linux-based. Machines A and C were located at the Computer Network Re-
search Laboratory at Roma Tre University. Machine A was an old machine
with 4 CPUs at 2.4GHz. Machine S was a large server (64 CPUs) located in
a cloud that is operated by Consortium GARR, which is also the connectivity
provider of the Roma Tre University. Round-trip delay between S and A was
about 20ms. The bandwidth between the laboratory and S is large enough
to rule out any congestion, however, due to an old 100Mbit ethernet switch
near to A, the bandwidth between S and A turned out to be 10.5Mbyte/sec2.
Since this bandwidth is quite small, to avoid the risk for the network to be
the bottleneck of our experiments, we artificially increased the CPU con-
sumption on A of each authentication round by performing additional dummy
cryptographic operations. In all tests, we also checked that the server was not
a bottleneck3. Section 7.9 deals with a number of non ideal aspects of real sys-
tems. Most of them turned out to be irrelevant in the controlled environment
of our experiments. Our software is based on the Akka library realizing the
actor model [Gup12]. The communication among machines takes advantage of
the Akka proprietary protocol (TCP-based). Since this protocol is designed to
work in LAN, we set up a tunnel between our laboratory and S4. Our software
runs on the Java Virtual Machine. Since the JVM incrementally compiles the
code according to the “HotSpot” approach [PVC01], for each run we took care
to let the system run long enough before performing the measurements, to
be sure that compilation activity was over. Concerning the ADS, we realized

2The measurement was performed by the standard iperf tool (https://iperf.fr/).
3The measurement of the consumption of system resources was performed by the standard

dstat tool (http://dag.wiee.rs/home-made/dstat/).
4The tunnel was realized by the socat tool (http://www.dest-unreach.org/socat/).

7.10. EXPERIMENTAL STUDY 173

680

700

720

740

760

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

200 250 300 310 320 325
Frequency (updates/sec)

0

50

100

150

200

250

300

350

400

0.55

0.60

0.65

0.70

0.75

0.80

Da
ta

 re
ce

iv
ed

 b
y

th
e

Au
th

en
tic

at
or

s (
M

By
te

/s
ec

)

0

2

4

6

8

10

680

700

720

740

760

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

200 250 300 310 320 325
Frequency (updates/sec)

%
C

P
U

 u
sa

ge
 o

n
m

ac
hi

ne
 A

 (a
ut

he
nt

ic
at

or
s)

q:
 a

vg
. n

um
be

r o
f o

ut
st

an
di

ng
 a

ut
h.

 re
qu

es
ts

Figure 7.15: Performance of the blocking approach described in Section 7.4.
Four CPUs are dedicated to authentication on machine A, but at most one
authentication request can be outstanding.

an Authenticated Skip list containing 100000 keys [GTS01]. This structure is
created and randomly initialised at the start up of the system.

We first measured the performances of the blocking approach (see Sec-
tion 7.4),

which we realised using the same software imposing q = 1, where q is the
number of outstanding authentication requests. Due to this constraint, in this
case, we always wait for the arrival of the authentication reply and send, in the
next request, all updates arrived in the meantime, which is larger than 200,
much like in the description given in Section 7.4. Figure 7.15 shows how several
parameters changes (y-axes) when the frequency of updates arrivals (x-axis)
increases. We observe that near 325 upd/sec the round duration increases
steeply, and above that frequency, the messages grow so big that they can
hardly be handled without errors. Hence, the throughput of this setting is
about 325 upd/sec.

To meet Objectives O1 and O2, we measured the performance of the sim-
plified pipeline-integrity protocol described in Section 7.6 with an increasing

174
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

150 200 250 300 350 400
Frequency (updates/sec)

2000

4000

6000

8000

10000

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

0

20

40

60

80

100

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Da
ta

 re
ce

iv
ed

 b
y

th
e

Au
th

en
tic

at
or

s (
M

By
te

/s
ec

)

0

2

4

6

8

10

150 200 250 300 350 400
Frequency (updates/sec)

2000

4000

6000

8000

10000

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

%
C

P
U

 u
sa

ge
 o

n
m

ac
hi

ne
 A

 (a
ut

he
nt

ic
at

or
s)

q:
 a

vg
. n

um
be

r o
f o

ut
st

an
di

ng
 a

ut
h.

 re
qu

es
ts

Figure 7.16: Performance of the simplified pipeline-integrity protocol when
authenticators are limited to use 1 CPU. Throughput is between 350 and 400
upd/sec. Latency is 622–662msec.

number of CPUs on the authenticator side5. We let q to increase freely when
some authentication requests were still outstanding. We increase the frequency
of the updates until the allocated CPUs of A reach saturation. We decided to
send authentication requests containing m = 200 updates. That is, we send
an authentication request at each 200-th update invocation received. The re-
sults are shown in Figures 7.16, 7.17, 7.18 and 7.19. The x-axis shows the
update invocation rate. The y-axes show the authentication round duration,
the percentage of the CPU used by Machine A (400% means that all 4 CPUs
are fully used), the data received by Machine A, and the average value for the
outstanding authentication requests q. The tests show that the round duration
is largely constant until the allocated CPUs are close to saturation (see Objec-
tive O1) and when q increases, as in Figure 7.19, even slightly decreases. We
note that, adding CPUs increases the throughput but has no detri-
mental effect on latency, which was the scalability objective that was stated

5The limit on the number of CPUs used is imposed by using the CPU affinity setting
provided by Linux.

7.10. EXPERIMENTAL STUDY 175

600

700

800

900

1000

1100

1200

1300

1400

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

600 650 700 750 800 850 900
Frequency (updates/sec)

0

25

50

75

100

125

150

175

200

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

Da
ta

 re
ce

iv
ed

 b
y

th
e

Au
th

en
tic

at
or

s (
M

By
te

/s
ec

)

0

2

4

6

8

10

600

700

800

900

1000

1100

1200

1300

1400

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

600 650 700 750 800 850 900
Frequency (updates/sec)

%
C

P
U

 u
sa

ge
 o

n
m

ac
hi

ne
 A

 (a
ut

he
nt

ic
at

or
s)

q:
 a

vg
. n

um
be

r o
f o

ut
st

an
di

ng
 a

ut
h.

 re
qu

es
ts

Figure 7.17: Performance of the simplified pipeline-integrity protocol when
authenticators are limited to use 2 CPUs. Throughput is between 850 and
900 upd/sec. Latency is 580–631msec.

in Section 7.3. We also note that, for one CPU, the throughput is similar to the
one for the blocking approach. In addition, we obtain the advantage that, for
update rate close to the throughput, adopting the pipelining approach allows
the (average) value of q to increase making the system much more stable than
for the blocking approach. For each experiment, we visually identified the con-
secutive frequencies close to the frequency where CPUs of machine A saturate.
We considered this pair of frequencies an approximation of the throughput of
the system. Figure 7.20 summarises the measurements of the throughput of
all four experiments. The x-axis shows the number of CPUs of Machine A
that authenticators are allowed to use. The y-axis shows the throughput of the
system deduced from the inspection of Figures 7.16, 7.17, 7.18 and 7.19. The
chart shows that the throughput linearly increases with the number of CPUs
used by the authenticator, as expected (see Objective O2).

To meet Objective O3, we performed an experiment to show the relationship
between m, q and the round duration T . Since in our software q is automat-
ically adjusted, to increase q we decreased m and computed an average value
of q as (λT)/m. In this experiment, we removed all additional dummy crypto-

176
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

600

700

800

900

1000

1100

1200

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

900 950 1000 1050 1100 1150 1200
Frequency (updates/sec)

0

50

100

150

200

250

300

2.4

2.6

2.8

3.0

3.2

Da
ta

 re
ce

iv
ed

 b
y

th
e

Au
th

en
tic

at
or

s (
M

By
te

/s
ec

)

0

2

4

6

8

10

600

700

800

900

1000

1100

1200

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

900 950 1000 1050 1100 1150 1200
Frequency (updates/sec)

%
C

P
U

 u
sa

ge
 o

n
m

ac
hi

ne
 A

 (a
ut

he
nt

ic
at

or
s)

q:
 a

vg
. n

um
be

r o
f o

ut
st

an
di

ng
 a

ut
h.

 re
qu

es
ts

Figure 7.18: Performance of the simplified pipeline-integrity protocol when
authenticators are limited to use 3 CPUs. Throughput is between 1150 and
1200 upd/sec. Latency is 602–621msec.

graphic operations introduced for the previous experiments and fixed λ = 500.
This value ensured that we never reached any bottleneck of the system during
the test. In this experiment, we allowed all four CPUs to work. The result is
depicted in Figure 7.21. The x-axis shows the average number of outstanding
requests q. The y-axis shows the duration of the authentication round. Each
point is labelled with the average value of updates in one authentication re-
quest. The chart shows that the round duration decrease until m = 35, where
qmin

∼= 2.21 and Tmin
∼= 154.97. After qmin, T rises with small slope as predicted

by the theory (see Section 7.6).

7.10. EXPERIMENTAL STUDY 177

600

700

800

900

1000

1100

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

1400 1450 1500 1550 1600 1650 1700 1750
Frequency (updates/sec)

0

50

100

150

200

250

300

350

400

3.8

4.0

4.2

4.4

4.6

Da
ta

 re
ce

iv
ed

 b
y

th
e

Au
th

en
tic

at
or

s (
M

By
te

/s
ec

)

0

2

4

6

8

10

600

700

800

900

1000

1100

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

1400 1450 1500 1550 1600 1650 1700 1750
Frequency (updates/sec)

%
C

P
U

 u
sa

ge
 o

n
m

ac
hi

ne
 A

 (a
ut

he
nt

ic
at

or
s)

q:
 a

vg
. n

um
be

r o
f o

ut
st

an
di

ng
 a

ut
h.

 re
qu

es
ts

Figure 7.19: Performance of the simplified pipeline-integrity protocol when
authenticators are limited to use 4 CPUs. Throughput is between 1700 and
1750 upd/sec. Latency is 588–616msec.

1 2 3 4
Number of CPUs

400

600

800

1000

1200

1400

1600

1800

Th
ro

ug
hp

ut

350
400

850
900

1150
1200

1700
1750

Figure 7.20: Relationship between the number of CPUs available for the
authenticators and throughput of the system.

178
CHAPTER 7. A SCALABLE WAY TO USE AUTHENTICATED DATA

STRUCTURES IN INDUSTRIAL CONTROL SYSTEMS

1 2 3 4 5 6 7
155

160

165

170

175

180

185

190

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

1 2 3 4 5 6 7
155

160

165

170

175

180

185

190

Au
th

en
tic

at
io

n
Ro

un
d

Du
ra

tio
n

(m
illi

se
c)

m =11m =13m =20m =28
m =35m =40

m =42
m =45

m =50

m =60

m =70

m =80

m =85m =90
m =95

q: avg. number of outstanding auth. requests

Figure 7.21: Relationship between authentication round duration, number
of update in an authentication request (m), and outstanding authentication
requests (q).

Chapter 8

Conclusions

Industrial control systems integrate hardware, software, and connectivities to
support critical infrastructure like energy production and distribution, water
distribution, and transportation. The architecture of these systems has been
changing in the last years to increase flexibility and efficiency. A growth of the
interconnectivity and integration of IT-typical components within the ICSs has
been observed. This introduces new risks that can be challenging to mitigate in
ICSs which are built to provide high levels of availability, safety, and reliability
but without cybersecurity in mind.

Industrial Control Systems are sensible targets for high profile attacks,
which are able to circumvent traditional protection methods like antiviruses.
Nowadays, the main attackers are criminal organizations and countries, like for-
eign intelligence, with a lot of capital to invest in this activities. Cyber-attacks
against ICSs represent a serious risk for the society and can be considered a
new weapon for opposite countries and terrorists.

In this research work, we addressed the issue of security of industrial con-
trol systems proposing techniques that provide an effective way to deal with
sophisticated attacks, which would mostly go unnoticed by conventional secu-
rity countermeasures.

In the Chapter 2, we have introduced a model for protecting critical ma-
chines in an ICS context from attacks that use removable storage devices like
USB thumb drives. Our architecture realises the proposed security model and
fulfils a certain number of requirements that arise in the ICS context. The pro-

179

180 CHAPTER 8. CONCLUSIONS

posed approach makes very limited assumptions on the nature of the attack, it
proactively blocks attacks before they reach the target, and does not need any
special support by already deployed products.

In the Chapter 3, we presented USBCheckIn, a hardware that realises a new
approach to protect hosts from BadUSB attacks in which generic USB devices
maliciously mimic the behaviour of HID devices. Our proposal does not relies
on decisions of the users and it is compatible with any host or device. Our first
experiments with our prototypical implementation show that the presence of
USBCheckIn has no impact on HID devices responsiveness (e.g., mouse polling
frequency is the same) and CPU consumption is unnoticeable. Future plans
encompass performing deep performance tests and a formal user study for as-
sessing the usability in real environments.

In the Chapter 4, we presented an architecture based on a dedicated hard-
ware for protecting critical machines in a ICS against malware spread by means
of USB devices. USBCaptchaIn realises a new approach to protect hosts, both
against BadUSB attacks, in which generic USB devices maliciously mimic the
behaviour of HID devices, and against malware embedded in data stored in
RSDs. The proposed approach proactively blocks attacks before they reach the
target and does not rely on decision of the users. It is highly compatible with
already deployed products, comprising embedded devices, like Programmable
Logic Controllers, Remote Terminal Units, etc., on which is often not feasi-
ble to install new software. The user experience is only slightly altered by
the protection offered by our solution and the presence of USBCaptchaIn does
not impact USB devices responsiveness. Our informal contacts with experts,
to whom we have shown our prototypes, have reported that a solution like
the one we described might be accepted in a real ICS environment. Further
research work may encompass the study of supporting a Biba security model
with more than two security levels. This may be useful, for example, to support
a split of the critical realm in a production realm (highly critical) and a test-
ing realm (less critical). Further classes of HIDs may also be supported (e.g.,
touch tablet, track-ball, joystick, etc). The integration in USBCaptchaIn of a
solution like the one described in [MW18] may add a form of protection against
real keyboards with malicious firmware without affecting security and usability.

In the Chapter 5, we proposed a methodology and an architecture that
enable flexible adoption of one IDS (or a few of them), while keeping the
possibility to mirror any stream in the network and forward it toward the IDS

181

independently from its deployment location. While we think that our approach
can be useful in many contexts, we tailored it for the usage within ICS net-
works, where most of the traffic flows are critical and known in advance, and
occasional usage can be handled with a best effort approach. We base our work
on SDN technology, which allowed us to keep a simple centrally managed net-
work configuration. We presented several small-effort extensions to the basic
description in Section 5.8. However, the integration of a distributed approach
for the SDN-controller, like the one presented in [TG10], in our architecture,
may be the subject of additional research. Further, in our solution, we stat-
ically assigned bandwidth to all critical streams, disregarding cases in which
traffic is not stable over time. Better usage of the bandwidth could be achieved
by taking this into account.

In the Chapter 6, we presented an overview of the results attained in
the framework of the Preemptive European project, which provides innova-
tive methods and tools to detect and protect ICSs from cyber-intrusion. We
illustrated the Preemptive architecture and the tools functionalities, which per-
form detection at host, network, and process levels. The Context Aware Event
Analysis tool correlates events raised by the different tools and sends them
to the Humane-Machine Interface that make operators aware about the sta-
tus of the system in terms of security. Thereby, the peculiarity of Preemptive
is the capability of the proposed solution to correlate several events, which
individually would appear to be irrelevant, allowing the detection of skilled
attacks that otherwise may be hidden. The tools have been tested using real
data provided by the End Users Advisory Board that supported the project
over time. Our experimental results have shown the feasibility of an integrated
approach to cyber-attacks detection and prevention that can greatly improve
cyber-security awareness in the current ICS context. Concerning future re-
search directions, we think that the needs in terms of cyber-security awareness
will be shaped by the adoption of ICS models tailored to support Industry 4.0.
In particular, technologies like cloud computing, Internet of Things, and arti-
ficial intelligence, along with the trend to distribute decisions and control, will
provide formidable opportunities for malicious agents that are likely to require
specific detection and prevention strategies.

In the Chapter 7, we presented the pipeline-integrity protocol, which en-
ables the use of authenticated data structures to check integrity of outsourced
key-value stores at untrusted servers in a setting in which many clients con-
currently perform updates. We think that the pipeline-integrity protocol may

182 CHAPTER 8. CONCLUSIONS

help the adoption of authenticated data structures in industrial systems where
a large number of small devices may need to access and update integrity-critical
data. The main features of our methodology are its scalability and its ability to
detect server misbehaviour in the quasi-fork-linearisability consistency model.
This consistency model is almost as strong as the one which was theoretically
proven to be the strongest possible in that setting (fork-linearisability). Our
approach is scalable in the sense that, it is possible to saturate the system
bottleneck without substantial increase of the response time. We also support
concurrent authentications, which makes much easier to solve bottlenecks on
the trusted side. One notable aspect of our result is that scalability holds
even when the round-trip delay between server and authenticators is large
and update rates are high, which were commonly regarded as bad situations
for adopting authenticated data structures. We proved practical performance
with an experimental evaluation. There are several future research directions
suggested by our work. On the theoretical side, one can ask if the quasi-fork-
linearisability is the strongest feasible consistency model that scales, in the
sense adopted in this chapter. Regarding the adoption in cloud facilities, we
note that many of the technologies that underlie the cloud favour availability
vs. consistency, according to the CAP/PACELC theorem [Aba12]. Since our
approach detects consistency violations, it does not fit well with these tech-
nologies. This essentially limits the use of the pipelining-integrity protocol to
situations where partitioning is ruled out by proper network configurations.
On this side, one may ask if the detection of a fork may be recovered gracefully
by authenticators. They may recognise the join as not harmful in many non
malicious cases and resort to a human-based fix when there is no safe auto-
matic merge approach. Further, one can ask if the techniques described in
this chapter can be adopted in conjunction with a decentralised P2P network
(like, for example, that described in [HNKÖ18]), where the P2P network is
considered an untrusted storage. In this context, all nodes have to agree on
the same sequence of updates in order to consistently reply to read invocations.
Finally, it should be nice to have a publicly available library implementing the
pipelining-integrity protocol to smooth its adoption into real applications.

Chapter 9

Acknowledgments

Let me write the acknowledgements in my mother tongue.

Scrivere i ringraziamenti è sempre una cosa difficile. L’ho lasciati voluta-
mente alla fine di questo lavoro di tesi perchè, a mio avviso, dopo la testa è
giusto lasciare lo spazio al cuore.

Prima di tutto vorrei ringraziare il mio advisor Maurizio Pizzonia per la
fiducia e il sostegno che ha sempre dimostrato nei miei confronti ma soprattutto
per la sua onestà intellettuale. Un grazie speciale a Diego per la preziosa
collaborazione. Un grazie di cuore a tutto il gruppo di ricerca, per avermi
dimostrato la loro vicinanza durante il mio percorso di dottorato.

A Federico, amico lontano ma sempre vicino. Le sua parole sono state
immensamente preziose, mi hanno aiutato a stringere i denti ed andare avanti,
sempre. Mi hanno aiutato a trovare il lato leggero delle cose.

A zio Tano e zia Emma, per avermi fatto sentire sempre a casa. Le chiac-
chierate estive con zio Tano sono state calde compagne negli inverni freddi.

A Kostis, Raffaele e Mimmo per le risate, le giornate spensierate e i discorsi
profondi. Anche se sparsi nel mondo saranno sempre cari amici da portare nel
cuore.

Grazie a tutte le persone che la vita mi ha fatto incontrare, buoni e cattivi
perchè grazie a tutti loro ho avuto la possibilità di mettermi in gioco e crescere.

Provo una profonda gratitudine per i miei genitori che mi hanno donato la
vita e a tutta la mia famiglia d’origine. In particolare per mio padre che con
l’esempio e la sua umiltà mi ha insegnato il vero significato della dedizione,
della passione e dell’onestà. Il suo insegnamento è sempre stato che in ogni

183

184 CHAPTER 9. ACKNOWLEDGMENTS

lavoro l’essere umano è la vera ricchezza.
Ho sempre creduto che senza radici forti non si può volare. Grazie papà

per avermi permesso di essere figlio e, come tale, padre di mio figlio. Grazie
per permettermi di volare.

Un grazie particolare ad Aniceto, che mi ha presentato me stesso, insegnato
ad accogliere le mie ferite ed averne cura a tal punto che, quelle ferite, sono oggi
la mia più grande forza. Grazie per avermi insegnato la legge del paradosso e
a guardare la vita da una prospettiva tutta nuova.

Un caldo ringraziamento a mio figlio Samuele, alla sua vivacità e ai suoi
occhi lucenti. È bello tornare bambini accanto a lui e lasciarsi contaggiare
dal suo amore per la vita. Spero che tu possa trovare tutto quello di cui hai
realmente bisogno. Ti auguro di non perderti mai.

Vorrei in realtà dedicare questo lavoro di tesi ad Ilaria, mia moglie, che
mi ha permesso di specchiarmi nei suoi occhi profondi, porte di un mondo
incredibile. Grazie per avermi compreso oltre le parole e avermi fatto sentire
accolto nelle mie imperfezioni e stranezze. Dovunque ci porterà la vita, quello
che provo con te e per te sarà sempre uno dei miei più grandi tesori. Grazie
Ilaria per esserti fatta trovare da me.

Chapter 10

Appendix

185

186 CHAPTER 10. APPENDIX

Formal Description of the Pipeline-Integrity Protocol

Notation

For a detailed description, please refer to Sections 7.7 and 7.8.
Symbol Description

k A key in a dataset.
v Value associated with a certain key in a dataset.
〈k, v〉 Key-value pair in a dataset.
κc A client-key for client c.
ηc The past-hash associated with κc.
q Number of authenticators and depth of the pipeline.
ti Instants at which the server receive authentication reply and sends

authentication requests.

ρi, ρ
rpl
i Authentication request (sent at instant ti) and the corresponding reply

(recevied at instant ti+q).
l Index of the last instant of time just executed by the server, which is denoted

tl.

DR, DU ,
∆R, ∆U ,
ΠR, ΠU

Variables of the server containing readable and updated datasets, their ADS,
and their history ADS. Their value changes at instants ti. A subscritpt, like

in DR
i , denotes the value of that variable between ti and ti+1.

l, Qc, Ω, P ,
A, A

Other variables of the server.

ri Root-hash of ∆U
i . The root-hash of ∆R

i is ri−q .

Ri History root-hash at instant i, that is, root-hash of ΠU
i . The history

root-hash for ΠR
i is Ri−q

[x]e, [x] Signature of data x performed by trusted entity e. If x is a root-hash, it is a
plain authentication of x. The indication of e can be omittied if irrelevant.

l, Qc, Ω, P ,
A, A

Variables on the server.

Hi History hash associated with DU
i and ∆U

i .
〈i,Hi〉 History-pair related to version i.
pc =
〈V c, Hc〉

A history-pair known by client c

proof(y, x) Proof of x against an instance of an authenticated data structure y (see
Section 7.2).

uc(i) i− th update invoked by client c, it is a shorthand
for

〈
ic, kci , v

c
i , hash (uc(i− 1)) , pc

〉
Operations
on queues

Standard semantic of queues is adopted with the following terminology. After
pushing x into a queue Γ, Γ.tail = x. If Γ.head = x, pulling from Γ returns x.

187

State and Behaviour of the Server

Algorithm 5 Variables kept by the server to store its state.

l: Index of the last instant in which the server performed a pro-
cessing of authentication reply and sent an authentication re-
quest. That instant is denoted tl.

DR: The current readable dataset. This dataset is authenticated by
A. It holds that DR = DR

l = DU
l−q.

DU : The dataset that is up-to-date with respect to update invo-
cations for which an updated request was already sent. This
dataset is not authenticated. It holds that DU = DU

l = DR
l+q.

Qc: For each client c, a queue of updates with their sig-
natures, that is, of pairs 〈uc(i), [uc(i)]c〉 where uc(i) =
〈i, kci , vci ,hash (uc(i− 1)) , pc〉. It contains updates that are
waiting to be put into an authentication request.

Ω: A queue, of length at most q, of outstanding authentication
requests: ρl−1, . . . , ρl−q (from last to first).

P : A mapping from each client c to a queue of history-pairs. The
queue associated to c is denoted P (c).

∆R: The ADS related to DR. It holds that ∆R = ∆R
l = ∆U

l−q.

∆U : The ADS related to DU . It hods that ∆U = ∆U
l = ∆R

l+q.

ΠU : History ADS that contains history-pairs 〈i,Hi〉, with i ≤ l,
ordered by i. It holds that ΠU = ΠU

l = ΠR
l+q. Its root-hash is

denoted Rl. It is stored pruned as described in Section 7.8.
ΠR: History ADS that contains history-pairs 〈i,Hi〉, where i ≤ l−q,

ordered by i. It holds that ΠR = ΠR
l = ΠU

l−q. Its root-hash is
denoted Rl−q. It is stored pruned as described in Section 7.8.

A: The chained authentication for the current version of ΠR in
the form [Rl−2q] [Rl−2q, Rl−2q+1] . . . [Rl−q−1, Rl−q].

A: The sequence of history root-hashes on which A is based:
Rl−2q, Rl−2q+1, Rl−2q+2, . . . , Rl−q−1, Rl−q.

188 CHAPTER 10. APPENDIX

Algorithm 6 Server behaviour. Pruning.

Require: A version index V and the identifier c of a client.
1: while p = P (c).head has a version less than V do
2: Pull p from P (c).
3: if version of p is not referred in P (for any client) then
4: Prune from ΠRand ΠU the entry for p and all unneeded parts.
5: end if
6: end while

Algorithm 7 Server behaviour. Processing of read and update invocations.

1: upon receiving an update invocation from client c containing
2: uc(i) and its signature [uc(i)]c
3:

4: do
5: Push 〈uc(i), [uc(i)]c〉 into Qc

6:

7: upon receiving a read invocation from client c containing
8: the key k to be read and 〈V c, Hc〉.
9:

10: do
11: Execute Algorithm 6 on V c and c to update P (c), ΠR and ΠU .
12: send read response to c containing
13: the value v for k according to DR

l − q as the version index for this response
proof

(
∆R, 〈k, v〉

)
, Hl−q−1, proof

(
ΠR, 〈l − q,Hl−q〉

)
proof

(
ΠR, 〈V c, Hc〉

)
〈V c, Hc〉
A and A, which authenticate all the above data

14: if P (c).tail 6= 〈l − q,Hl−q〉 then
15: Push 〈l − q,Hl−q〉 into P (c)
16: end if
17:

189

Algorithm 8 Server behaviour. Reception of an authentication reply and
update of R-data-structures.

1: . The variable l, part of the state of the server, is incremented in the
algorithm below in the first step. Below, the use of the symbol l always
conforms to the use of l throughout the whole algorithm (i.e. after the
increment).

2: upon receiving authentication reply ρrpl = ρrpl
l−q from a containing

3: the identifier of the associated authentication request ρ = ρl−q
4: [Rl−2q]a
5: [Rl−q−1, Rl−q]a
6:

7: do
8: l← l + 1
9: Get ρ = ρl−q from Ω deleting it from the queue.

10: Let ρ.B the sequence of updates contained in ρ.
11: For each client c involved in ρ.B, update value for 〈κc, ηc〉 in DR and

∆R, so that ηc = hash (uc(imax)) where imax is the index of the last update
of c in ρ.B.

12: Apply all updates of ρ.B, in the specified order, to DR and ∆R.
13: . Now, it holds DR = DR

l , ∆R = ∆R
l and its root-hash is rl−q.

14: Let Hl−q = hash (Hl−q−1|rl−q)
15: Add 〈l − q,Hl−q〉 to ΠR.
16: . Now, it holds ΠR = ΠR

l and its root-hash is Rl−q.
17: Update A by substituting the two leftmost elements with [Rl−2q]a and

appending [Rl−q−1, Rl−q]a to its right. Update Ā accordingly.
18: For each c involved in ρ.B send an update response to c containing

A, A, proof(ΠR, P (c).head), P (c).head, l − q, proof(ΠR, 〈l − q,Hl−q〉).
19: For each c involved in ρ.B, if P (c).tail 6= 〈l− q,Hl−q〉 push 〈l− q,Hl−q〉

into P (c).
20: Execute Algorithm 9 to send the authentication request ρl.
21:

190 CHAPTER 10. APPENDIX

Algorithm 9 Server behaviour. Preparation and sending of an authentication
request ρl to authenticator a, and update of U-data-structures.

1: C ← all clients c for which Qc is not empty.
2: ρ← an empty authentication request
3: . It holds that ρ = ρl. See Algorithm 10 for meaning of the fields of ρ.
4: ρ.l← l
5: ρ.A← A
6: ρ.A← A
7: ρ.B ← an empty sequence
8: for all c in C do
9: For all tuples in Qc, add them to ρ.B keeping their order.

10: make Qc empty
11: end for
12: ρ.H ← Hl−2

13: ρ.mainproof ← proof
(
ΠU , 〈l − 1, Hl−1〉

)
. Note that ΠU has not been

updated yet, while l was, hence it holds ΠU = ΠU
l−1. The same is true for

∆U and DU .
14: for all c involved in ρ.B do
15: ρ.pc ← pc as specified in the last update of c in ρ.B.
16: ρ.histproof(c)← proof

(
ΠU , pc

)
, where pc is as above.

17: ρ.pasthash(c)← 〈κc, ηc〉 obtained from DU

18: ρ.pasthashproof(c)← proof
(
∆U , 〈κc, ηc〉

)
19: Execute Algorithm 6 on the version of pc and c to update P (c), ΠR

and ΠU .
20: end for
21: for all k involved in ρ.B do
22: Let v be the value of k in DU

23: ρ.oldval(k)← v
24: ρ.proof(k)← proof

(
∆U
l−1, 〈k, v〉

)
.

25: end for
26: send authentication request ρ to a.
27: Push ρ as last element of Ω.
28: Apply all updates of ρ.B to DU and ∆U respecting their order in ρ.B.
29: For each c with an update in ρ.B, update 〈κc, ηc〉 in DU and ∆U , where

ηc = hash (uc(imax)) and imax the index of the last update of c in ρ.B.
30: Let rl be the root-hash of ∆U and Hl = hash (Hl−1|rl).
31: Add 〈l,Hl〉 to ΠU .

191

State and Behaviour of an Authenticator

Algorithm 10 Authenticator. Processing of an authentication request.

1: Let a be this authenticator, and ρ = ρl an authentication request sent by
the server at instant tl.

2: state
3: Stateless
4:

5: upon receiving authentication request ρ = ρl containing
6: identifier of ρ
7: ρ.l = l
8: ρ.A = chained authentication [Rl−2q][Rl−2q, Rl−2q+1] . . . [Rl−q−1, Rl−q]
9: ρ.A = a sequence Rl−2q, Rl−2q+1, . . . , Rl−q−1, Rl−q

10: ρ.B = a sequence b1, b2, . . . , bz of signed updates bj =
〈
u
c(j)
j , [uj]c(j)

〉
,

where c(j) is the client that invoked uj .

11: ρ. ¯̄H = Hl−2

12: ρ.mainproof= proof
(
ΠU
l−1, 〈l − 1, Hl−1〉

)
13: for each client c involved in ρ.B
14: ρ.pc is the history-pair specified in the last update of c in ρ.B
15: ρ.histproof(c) = proof

(
ΠU
l−1, p

c
)

16: ρ.pasthash(c) = 〈κc, ηc〉
17: ρ.pasthashproof(c) = proof

(
∆U
l−1, 〈κc, ηc〉

)
.

18:

19: for each key k involved in ρ.B
20: Let v be the value of k in DU

l−1

21: ρ.oldval(k) = v
22: ρ.proof(k) = proof

(
∆U
l−1, 〈k, v〉

)
.

23:

24: do
25: Compact ρ.A and ρ.A into [Rl−q]a by executing Algorithm 2.
26: Compute [Rl−1, Rl]a by executing Algorithm 11.

27: send authentication reply ρrpl
l containing

28: identifier of ρ
29: [Rl−q]a
30: [Rl−1, Rl]a
31:

192 CHAPTER 10. APPENDIX

Algorithm 11 Authenticator. Compute conditional authentication perform-
ing all related checks. In the comments, we write “should” when a certain
condition is supposed to hold for executions with correctly behaving servers.

1: For each bj =
〈
u
c(j)
j , [uj]c(j)

〉
in B = ρ.B, verify the signature of uj in bj .

2: R ← the root-hash computed using ρ.histproof(c) and ρ.pc, where c is an
arbitrarily chosen client among those involved in B.

. It should hold that R = Rl−1

3: r ← the root-hash computed using ρ.pasthashproof(c) and ρ.pasthash(c),
where c is an arbitrarily chosen client. . It should hold that r = rl−1

4: For each key k involved in B, compute the root-hash using ρ.proof(k) and
ρ.oldval(k) and verify it is equal to r̄.

5: for all c involved in B do
6: Verify that the updates of c in B are correctly hash-chained.
7: Verify that the hash in the first update of client c in B is equal to ηc.
8: Verify that the root-hash computed using ρ.pasthashproof(c) and

ρ.pasthash(c) is equal to r.
9: Verify that the history root-hash computed using ρ.histproof(c) and

ρ.pc is equal to R.
10: Verify that version of ρ.pc is less than or equal to ρ.l − 1.
11: end for
12: H̄ ← hash(ρ. ¯̄H|r). . It should holds that H̄ = Hl−1.
13: Verify that the history root-hash computed using ρ.mainproof and〈

ρ.l − 1, H̄
〉

is equal to R.
14: r̃ ←the root-hash computed by applying all the updates uc =
〈i, k, v,hash(uc(i− 1)), pc〉 in B respecting their sequence in B:

15: for each key k involved in B, consider ρ.proof(k) and the new
value v for k in the last update involving k

16: for each client-key κc for client c involved in B, consider
ρ.pasthashproof(c) and the new value ηc for κc with
ηc = hash (uc(imax)) and imax as in Algorithm 9.

. It should hold that r̃ = rl.
17: H̃ ← hash(H̄|r̃) . It should hold that H̃ = Hl.

18: R̃← the history root-hash computed using ρ.mainproof and
〈
ρ.l, H̃

〉
.

. It should hold that R̃ = Rl.

19: return
[
R, R̃

]
a

. This should turn out to be [Rl−1, Rl]a

193

State and Behaviour of a Client

Algorithm 12 Client. Reception of a read response.

1: Let l, ∆R, ΠR, A, and A denote the values of the corresponding variables
of the server when the response is sent.

2: Let c be this client.
3: state
4: Γ: queue of history-pairs.
5:

6: upon receiving read response for key k containing
7: v: the value read.
8: l − q: the version index of the dataset this response is based on.
9: Hl−q−1: the history-hash of the previous version index.

10: A and Ā: authentication of Rl−q
11: proof(∆R, 〈k, v〉)
12: proof(ΠR, 〈l − q,Hl−q〉)
13: proof(ΠR, 〈V c, Hc〉)
14: 〈V c, Hc〉
15:

16: do
17: Verify A and Ā by Algorithm 1.
18: Compute rl−q from proof(∆R, 〈k, v〉) and 〈k, v〉.
19: Hl−q ← hash(Hl−q−1|rl−q).
20: Compute Rl−q from proof(ΠR, 〈l − q,Hl−q〉) and 〈l − q,Hl−q〉.
21: Verify that Rl−q is equal to the last hash in Ā.
22: Verify that 〈V c, Hc〉 is in Γ.
23: Pull from Γ all 〈V,H〉 ∈ Γ with V < V c.
24: Compute R̄ as root-hash from proof(ΠR, 〈V c, Hc〉) and 〈V c, Hc〉.
25: Verify that R̄ = Rl−q.
26: Verify that V c ≤ l − q.
27: Push 〈l − q,Hl−q〉 into Γ.
28:

194 CHAPTER 10. APPENDIX

Algorithm 13 Client. Reception of an update response.

1: . The behaviour of the client when the response to an update u(i) =
〈i, ki, vi,hash(u(i− 1)), p〉 is received is the same as in Algorithm 12. Note
that, the value returned by the server can differ from vi. This occurs when,
in the same commit, a distinct update ū for the same key ki and value
different from vi is after u(i) in B and overwrite ki with a different value.

Nomenclature

ICS Industrial Control System
IDS Intrusion Detection System
RSD Removable Storage Device
PLC Programmable Logic Device
APT Advanced Persistent Threat
DoS Denial of Service Attack
HMI Human-Machine Interface
ADS Authenticated Data Structure
MHT Merkle Hash Tree
HID Human Interface Device
SDN Software Defined Network

195

List of Publications

• Federico Griscioli, Maurizio Pizzonia, and Marco Sacchetti.
”USBCheckIn: Preventing BadUSB attacks by forcing human-device interaction.”
2016 14th Annual Conference on Privacy, Security and Trust (PST). IEEE, 2016.

• Federico Griscioli and Maurizio Pizzonia.
”Securing promiscuous use of untrusted usb thumb drives in industrial control sys-
tems.”
2016 14th Annual Conference on Privacy, Security and Trust (PST). IEEE, 2016.

• Miciolino EE, Di Noto D, Griscioli F, Pizzonia M, Kippe J, Pfrang S, Clotet X, León
G, Kassim FB, Lund D, Costante E.
”Preemptive: an integrated approach to intrusion detection and prevention in indus-
trial control systems.”
IJCIS 13.2/3 (2017): 206-237.

• di Lallo, R., Griscioli, F., Lospoto, G., Mostafaei, H., Pizzonia, M. and Rimondini,
M.
”Leveraging sdn to monitor critical infrastructure networks in a smarter way.”
2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM).
IEEE, 2017.

• Federico Griscioli, and Maurizio Pizzonia. ”USBCaptchaIn: Preventing (Un) Con-
ventional Attacks from Promiscuously Used USB Devices in Industrial Control Sys-
tems.”// arXiv preprint arXiv:1810.05005 (2018).

Submitted

• Federico Griscioli, Diego Pennino, and Maurizio Pizzonia
”Toward a Cloud-Compatible Use of Authenticated Data Structures for Scalable On-
the-fly Integrity Checks of Outsourced Data Storag”
Future Generation Computer Systems Journal, Elsevier

• Federico Griscioli and Maurizio Pizzonia
”USBCaptchaIn: Preventing (Un)Conventional Attacks from Promiscuously Used
USB Devices in Industrial Control Systems”
Computer and Security Journal, Elsevier

197

Bibliography

[Aba12] Daniel Abadi. Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story. Computer, 45(2):37–42, 2012.

[ABC+07] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kiss-
ner, Zachary Peterson, and Dawn Song. Provable data possession at untrusted
stores. In Proceedings of the 14th ACM conference on Computer and commu-
nications security, pages 598–609. Acm, 2007.

[ABGS18] Khandakar Ahmed, Jan Blech, Mark Gregory, and Heinz Schmidt. Software
defined networks in industrial automation. Journal of Sensor and Actuator
Networks, 7(3):33, 2018.

[ADCE10] Lanzi Andrea, Balzarotti Davide, Kruegel Christopher, and Christodor-
escu Kidra Engin. AccessMiner: Using System-Centric Models for Malware
Protection. In Proceedings of the 17th Annual Computer Security Applications
Conference, Chicago, Illinois, USA, 2010. ACM.

[ADPMT08] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik.
Scalable and efficient provable data possession. In Proceedings of the 4th
international conference on Security and privacy in communication netowrks,
page 9. ACM, 2008.

[AEK+17] Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan
Meng, Vineet Pandey, and Ravi Ramamurthy. Concerto: A high concurrency
key-value store with integrity. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 251–266. ACM, 2017.

[AGH14] Carlos Aguayo Gonzalez and Alan Hinton. Detecting malicious software execu-
tion in programmable logic controllers using power fingerprinting. In Jonathan
Butts and Sujeet Shenoi, editors, Critical Infrastructure Protection VIII, vol-
ume 441 of IFIP Advances in Information and Communication Technology,
pages 15–27. Springer Berlin Heidelberg, 2014.

[AIS] AISWeb: The Online Home of Artificial Immune Systems.
http://www.artificial-immune-systems.org/.

[AJGS83] Stanley R Ames Jr, Morrie Gasser, and Roger R Schell. Security kernel design
and implementation: An introduction. IEEE computer, 16(7):14–22, 1983.

199

200 BIBLIOGRAPHY

[AKL13] Sankalp Agarwal, Murali Kodialam, and TV Lakshman. Traffic engineering
in software defined networks. In INFOCOM, 2013 Proceedings IEEE, pages
2211–2219. IEEE, 2013.

[ALW+14] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. A roadmap
for traffic engineering in sdn-openflow networks. Computer Networks, 71:1 –
30, 2014.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1993.

[Apa18] Apache Cassandra. Apache cassandra documentation v4.0, 2018.

[AvdWL+13] F.A.T. Abad, J. van der Woude, Yi Lu, S. Bak, M. Caccamo, Lui Sha, R. Man-
cuso, and S. Mohan. On-chip control flow integrity check for real time embed-
ded systems. In Cyber-Physical Systems, Networks, and Applications (CP-
SNA), 2013 IEEE 1st International Conference on, pages 26–31, Aug 2013.

[B+14] Sebastian Burckhardt et al. Principles of eventual consistency. Foundations
and Trends R© in Programming Languages, 1(1-2):1–150, 2014.

[B1́5] Genge Béla. Networked Critical Infrastructures: Secure and resilient by de-
sign. In The Proceedings of the EUROPEAN INTEGRATION BETWEEN
TRADITION AND MODERNITY Congress, volume 6, pages 753–760, 2015.

[BCK17] Marcus Brandenburger, Christian Cachin, and Nikola Knežević. Don’t trust
the cloud, verify: Integrity and consistency for cloud object stores. ACM
Transactions on Privacy and Security (TOPS), 20(3):8, 2017.

[bea16] beagleboard.org. BeagleBone Black. https://beagleboard.org/black, [On-
line; accessed 27-July-2016].

[Bib77] K. J. Biba. Integrity considerations for secure computer systems. Technical
report, DTIC Document, 1977.

[bit] Bitlocker drive encryption overview. On-line http://windows.microsoft.com/
en-US/windows-vista/BitLocker-Drive-Encryption-Overview.

[BJO09] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory
and implementation. In Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, CCSW ’09, pages 43–54, New York, NY, USA, 2009.
ACM.

[BPBF11] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, and Márk Félegyházi.
Duqu: A stuxnet-like malware found in the wild. CrySyS Lab Technical Re-
port, 14:1–60, 2011.

[BS] Zhu B. and Sastry S. Scada-specific intrusion/prevention systems: A survey
and taxonomy. Department of Electrical Engineering and Computer Science.

[CBK12] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete
sequences: A survey. Knowledge and Data Engineering, IEEE Transactions
on, 24(5):823–839, May 2012.

BIBLIOGRAPHY 201

[CH14] Gideon Creech and Jiankun Hu. A Semantic Approach to Host-Based In-
trusion Detection Systems Using Contiguousand Discontiguous System Call
Patterns. IEEE Transactions on Computers, 63(4):807–819, 2014.

[CKS11] Christian Cachin, Idit Keidar, and Alexander Shraer. Fail-aware untrusted
storage. SIAM J. Comput., 40(2):493–533, April 2011.

[CO14] Christian Cachin and Olga Ohrimenko. Verifying the consistency of remote
untrusted services with commutative operations. In International Conference
on Principles of Distributed Systems, pages 1–16. Springer, 2014.

[Col13] Eric Cole. Advanced Persistent Threats. Elsevier, 2013.

[CS11] Ang Cui and Salvatore J Stolfo. Defending embedded systems with soft-
ware symbiotes. In Recent Advances in Intrusion Detection, pages 358–377.
Springer, 2011.

[CSS07] Christian Cachin, Abhi Shelat, and Alexander Shraer. Efficient fork-
linearizable access to untrusted shared memory. In Proceedings of the twenty-
sixth annual ACM symposium on Principles of distributed computing, pages
129–138. ACM, 2007.

[CW09] Scott A Crosby and Dan S Wallach. Efficient data structures for tamper-
evident logging. In USENIX Security Symposium, pages 317–334, 2009.

[DBP07] G. Di Battista and B. Palazzi. Authenticated relational tables and authenti-
cated skip lists. In Data and Applications Security XXI, pages 31–46. Springer,
2007.

[DC11] Jonathan J. Davis and Andrew J. Clark. Data preprocessing for anomaly based
network intrusion detection: A review. Computers & Security, 30(6–7):353 –
375, 2011.

[DGMS03] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G Stub-
blebine. Authentic data publication over the internet. Journal of Computer
Security, 11(3):291–314, 2003.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value
store. In ACM SIGOPS operating systems review, volume 41, pages 205–220.
ACM, 2007.

[DKS14] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation. In Proceedings of the 51st Annual De-
sign Automation Conference, DAC ’14, pages 133:1–133:6, New York, NY,
USA, 2014. ACM.

[Dok] Dokany. Dokan - user mode filesystem for windows os. On-line http://fuse.

sourceforge.net/ [Accessed 24-November-2015].

[DR08] Tim Dierks and Eric Rescorla. The transport layer security (tls) protocol
version 1.2. Technical report, 2008.

202 BIBLIOGRAPHY

[EBM+17] Faryed Eltayesh, Jamal Bentahar, Rabeb Mizouni, Hadi Otrok, and Elhadi
Shakshuki. Refined game-theoretic approach to improve authenticity of out-
sourced databases. Journal of Ambient Intelligence and Humanized Comput-
ing, 8(3):329–344, 2017.

[EKPT15] C Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto
Tamassia. Dynamic provable data possession. ACM Transactions on Infor-
mation and System Security (TISSEC), 17(4):15, 2015.

[FLY+17] Anmin Fu, Yuhan Li, Shui Yu, Yan Yu, and Gongxuan Zhang. Dipor: An
ida-based dynamic proof of retrievability scheme for cloud storage systems.
Journal of Network and Computer Applications, 2017.

[FMC11a] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response, 5(6):29, 2011.

[FMC11b] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response, 5, 2011.

[FPAC94] Stephanie Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. Self-nonself
discrimination in a computer. Proceedings of 1994 IEEE Computer Society
Symposium on Research in Security and Privacy, 1994.

[FPC09] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending em-
bedded systems against control flow attacks. In Proceedings of the First ACM
Workshop on Secure Execution of Untrusted Code, SecuCode ’09, pages 19–26,
New York, NY, USA, 2009. ACM.

[Fun12] Open Networking Fundation. Software-defined networking: The new norm for
networks. ONF White Paper, 2:2–6, 2012.

[Fus] Fuse. Fuse - filesystem in userspace. On-line http://fuse.sourceforge.net/.

[FZFF10] Ariel J Feldman, William P Zeller, Michael J Freedman, and Edward W Fel-
ten. Sporc: Group collaboration using untrusted cloud resources. In OSDI,
volume 10, pages 337–350, 2010.

[GFG+17] E Goldin, D Feldman, Georgios Georgoulas, Miguel Castaño Arranz, and
George Nikolakopoulos. Cloud computing for big data analytics in the process
control industry. In 25th Mediterranean Conference on Control and Automa-
tion, MED 2017, University of Malta, Valletta, Malta, 3-6 July 2017, pages
1373–1378. Institute of Electrical and Electronics Engineers (IEEE), 2017.

[GM17] Foschiano Ghosh and Mehta. Cisco systems’ encapsulated remote switch port
analyzer (erspan) draft-foschiano-erspan-03.txt. On-line https://tools.ietf.
org/html/draft-foschiano-erspan-03 [Accessed March-2015], 2017.

[GP16] Federico Griscioli and Maurizio Pizzonia. Securing promiscuous use of un-
trusted usb thumb drives in industrial control systems. In Privacy, Security
and Trust (PST), 2016 14th Annual Conference on, pages 477–484. IEEE,
2016.

[GT00] Michael T Goodrich and Roberto Tamassia. Efficient authenticated dictio-
naries with skip lists and commutative hashing. US Patent App, 10(416,015),
2000.

BIBLIOGRAPHY 203

[GTS01] Michael T Goodrich, Roberto Tamassia, and Andrew Schwerin. Implementa-
tion of an authenticated dictionary with skip lists and commutative hashing.
In DARPA Information Survivability Conference & Exposition II, 2001. DIS-
CEX’01. Proceedings, volume 2, pages 68–82. IEEE, 2001.

[Gup12] Munish Gupta. Akka essentials. Packt Publishing Ltd, 2012.

[HCLP15] Miguel Herrero Collantes and Antonio López Padilla. Protocols and network
security in ics infrustructures. Technical report, INCIBE, 2015.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
Zookeeper: Wait-free coordination for internet-scale systems. In USENIX
annual technical conference, volume 8. Boston, MA, USA, 2010.

[HNKÖ18] Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, and Öznur Özkasap. De-
centralized and locality aware replication method for dht-based p2p storage
systems. Future Generation Computer Systems, 84:32–46, 2018.

[HW90] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[HYQC09] Jiankun Hu, Xinghuo Yu, Dong Qiu, and Hsiao-Hwa Chen. A simple and
efficient hidden Markov model scheme for host-based anomaly intrusion de-
tection. Network, IEEE, 23(1):42–47, 2009.

[ICS11] ICS-CERT. Incident response summary report 2009-2011. Technical report,
ICS-CERT, 2011.

[Int15] International Electrotechnical Commission (IEC). IEC 62443 Industrial com-
munication networks - Network and system security, 2015.

[IRO16] IRONKEYTM. Secure USB Devices: Protect Against BadUSB Mal-
ware. http://www.ironkey.com/en-US/solutions/protect-against-badusb.
html, [Online; accessed 27-July-2016].

[JHN+14] Chiwook Jeong, Taejin Ha, Jargalsaikhan Narantuya, Hyuk Lim, and Jong-
Won Kim. Scalable network intrusion detection on virtual sdn environment.
In Cloud Networking (CloudNet), 2014 IEEE 3rd International Conference
on, pages 264–265. IEEE, 2014.

[JK07] Ari Juels and Burton S. Kaliski. Pors: proofs of retrievability for large files.
In In CCS ’07: Proceedings of the 14th ACM conference on Computer and
communications security, pages 584–597. ACM, 2007.

[JP11] V. Jyothsna and V.V. Rama Prasad. A Review of Anomaly based Intru-
sion Detection Systems. International Journal of Computer Applications,
28(7):26–35, August 2011.

[JW13] Ruofan Jin and Bing Wang. Malware detection for mobile devices using
software-defined networking. In Proceedings of the 2013 Second GENI Re-
search and Educational Experiment Workshop, GREE ’13, pages 81–88, Wash-
ington, DC, USA, 2013. IEEE Computer Society.

204 BIBLIOGRAPHY

[Kál16] György Kálmán. Prospects of software-defined networking in industrial oper-
ations. International Journal on Advances in Security Volume 9, Number 3
& 4, 2016, 2016.

[KF13] H. Kim and N. Feamster. Improving network management with software de-
fined networking. IEEE Communications Magazine, 51(2):114–119, February
2013.

[KMP+15a] J. Kippe, D. Meier, S. Pfrang, R. Barbosa, A. Skene, T. Kassim, M. Pizzonia,
F. Griscioli, E. Zambon, and A. Ursini. Security frameworks: State of the
art evaluation. Technical report, The Preemptive project, 2015. http://

preemptive.eu/wp-content/uploads/2016/05/preemptive_d4.1.pdf.

[KMP+15b] J. Kippe, D. Meier, S. Pfrang, X. Clotet Fons, G. Eliana Leon, M. Wrightson,
, A. Skene, T. Kassim, M. Pizzonia, F. Griscioli, E. Zambon, E. Etchevés
Miciolino, and A. Ursini. Preemptive methodology reference. Technical report,
The Preemptive project, 2015. http://preemptive.eu/wp-content/uploads/

2016/05/preemptive_d4.2.pdf.

[KS17] Myung Kang and Hossein Saiedian. Usbwall: A novel security mechanism to
protect against maliciously reprogrammed usb devices. Information Security
Journal: A Global Perspective, 26(4):166–185, 2017.

[Lew14] Ted G Lewis. Critical infrastructure protection in homeland security: defend-
ing a networked nation. John Wiley & Sons, 2014.

[LHK+16] Edwin Lupito Loe, Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Shao-Chuan Lee,
and Shin-Ming Cheng. Sandusb: An installation-free sandbox for usb periph-
erals. In Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on,
pages 621–626. IEEE, 2016.

[LHKR06] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dy-
namic authenticated index structures for outsourced databases. In Proceedings
of the 2006 ACM SIGMOD international conference on Management of data,
pages 121–132. ACM, 2006.

[LHKR08] Feifei Li, Marios Hadjileftheriou, George Kollios, and Leonid Reyzin. Authen-
ticated index structures for outsourced databases. In Handbook of Database
Security, pages 115–136. Springer, 2008.

[lib16] libusb: A cross-platform user library to access USB devices. http://libusb.

info/, [Online; accessed 28-July-2016].

[LKMS04] Jinyuan Li, Maxwell N Krohn, David Mazières, and Dennis Shasha. Secure
untrusted data repository (sundr). In OSDI, volume 4, pages 9–9, 2004.

[LTC+15] Jin Li, Xiao Tan, Xiaofeng Chen, Duncan S Wong, and Fatos Xhafa. Opor:
enabling proof of retrievability in cloud computing with resource-constrained
devices. IEEE Transactions on cloud computing, 3(2):195–205, 2015.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer Com-
munication Review, 38(2):69–74, 2008.

BIBLIOGRAPHY 205

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions
and software model for isolated execution. HASP@ ISCA, 10, 2013.

[Mer87] Ralph C Merkle. A digital signature based on a conventional encryption func-
tion. In Conference on the Theory and Application of Cryptographic Tech-
niques, pages 369–378. Springer, 1987.

[Mer88] Ralph C Merkle. A digital signature based on a conventional encryption
function. In Advances in Cryptology—CRYPTO’87, pages 369–378. Springer,
1988.

[MG+11] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

[MND+04] Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April
Kwong, and Stuart G Stubblebine. A general model for authenticated data
structures. Algorithmica, 39(1):21–41, 2004.

[MNG+17] Estefańıa Etchevés Miciolino, Dario Di Noto, Federico Griscioli, Maurizio Piz-
zonia, Jörg Kippe, Steffen Pfrang, Xavier Clotet, Gladys León, Fatai Ba-
batunde Kassim, David Lund, et al. Preemptive: an integrated approach to
intrusion detection and prevention in industrial control systems. International
Journal of Critical Infrastructures, 13(2-3):206–237, 2017.

[MOD96] Industrial Automation Systems MODICON, Inc. Modbus protocol – reference
guide. Technical report, 1996.

[MS02] David Mazieres and Dennis Shasha. Building secure file systems out of byzan-
tine storage. In Proceedings of the twenty-first annual symposium on Princi-
ples of distributed computing, pages 108–117. ACM, 2002.

[MS05] Gerome Miklau and Dan Suciu. Implementing a tamper-evident database
system. In Advances in Computer Science–ASIAN 2005. Data Management
on the Web, pages 28–48. Springer, 2005.

[MSL+11] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michael Walfish. Depot: Cloud storage with minimal trust.
ACM Transactions on Computer Systems (TOCS), 29(4):12, 2011.

[MW18] Collin Mulliner and Edgar R Weippl. Usblock: Blocking usb-based keypress
injection attacks. In Data and Applications Security and Privacy XXXII:
32nd Annual IFIP WG 11.3 Conference, DBSec 2018, Bergamo, Italy, July
16–18, 2018, Proceedings, volume 10980, page 278. Springer, 2018.

[nex11] Cisco nexus 7000 series nx-os system management configuration guide. Tech-
nical report, Cisco Systems Inc., 2011.

[NK16] Lell J Nohl K. BadUSB - On Accessories that Turn Evil. https://www.

blackhat.com/us-14/briefings.html#Nohl, [Online; accessed 27-July-2016].

[NL14] Karsten Nohl and Jakob Lehl. Badusb–on accessories that turn evil. Black
Hat USA, 2014.

206 BIBLIOGRAPHY

[Nor13] North American Electric Reliability Corporation (NERC). Critical Infras-
tructure Protection (NERC CIP). http://www.nerc.com/pa/Stand/Pages/

CIPStandards.aspx, 2013.

[ODV] Inc. ODVA. The common industrial protocol (cip).
https://www.odva.org/Technology-Standards/Common-Industrial-Protocol-
CIP/.

[Par] Preemptive Project Partners. Preemptive: Preventive methodology and tools
to protect utilities. March 2014 – February 2017. Funded by the European
Commission under FP7, G.A. 607093. On-line. http://preemptive.eu.

[Per] Etienne Perot. Fuse-jna - no-nonsense, actually-working java bindings to fuse
using jna. On-line https://github.com/EtiennePerot/fuse-jna [Accessed
26-July-2016].

[PGG+18] Andrés F Murillo Piedrahita, Vikram Gaur, Jairo Giraldo, Alvaro A Cardenas,
and Sandra Julieta Rueda. Leveraging software-defined networking for incident
response in industrial control systems. IEEE Software, 35(1):44–50, 2018.

[Pol60] Maurice Pollack. Letter to the editor—the maximum capacity through a net-
work. Operations Research, 8(5):733–736, 1960.

[PPP10a] B. Palazzi, M. Pizzonia, and S. Pucacco. Query racing: Fast completeness
certification of query results. In Proc. Working Conference on Data and Ap-
plications Security and Privacy (DBSEC’10), volume 6166 of Lecture Notes
in Computer Science, pages 177–192, 2010.

[PPP10b] Bernardo Palazzi, Maurizio Pizzonia, and Stefano Pucacco. Query racing: fast
completeness certification of query results. In Data and Applications Security
and Privacy XXIV, pages 177–192. Springer, 2010.

[PT07] Charalampos Papamanthou and Roberto Tamassia. Time and space efficient
algorithms for two-party authenticated data structures. In International con-
ference on information and communications security, pages 1–15. Springer,
2007.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The java hotspot tm
server compiler. In Proceedings of the 2001 Symposium on Java TM Virtual
Machine Research and Technology Symposium, volume 1, 2001.

[PZM09] HweeHwa Pang, Jilian Zhang, and Kyriakos Mouratidis. Scalable verification
for outsourced dynamic databases. Proceedings of the VLDB Endowment,
2(1):802–813, 2009.

[Rau11] Suhas Rautmare. Scada system security: Challenges and recommendations.
In India Conference (INDICON), 2011 Annual IEEE, pages 1–4. IEEE, 2011.

[RB07] Bozidar Radunović and Jean-Yves Le Boudec. A unified framework for max-
min and min-max fairness with applications. IEEE/ACM Transactions on
Networking (TON), 15(5):1073–1083, 2007.

BIBLIOGRAPHY 207

[RRL+12] Jason Reeves, Ashwin Ramaswamy, Michael Locasto, Sergey Bratus, and Sean
Smith. Intrusion detection for resource-constrained embedded control systems
in the power grid. International Journal of Critical Infrastructure Protection,
5(2):74–83, 2012.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In Fast Software Encryption,
pages 371–388. Springer, 2004.

[RS09] M. Russinovich and D. A Solomon. Windows Internals: Including Windows
Server 2008 and Windows Vista. Microsoft press, 2009.

[RTZ03] Matthew Roughan, Mikkel Thorup, and Yin Zhang. Traffic engineering with
estimated traffic matrices. In Proceedings of the 3rd ACM SIGCOMM con-
ference on Internet measurement, pages 248–258. ACM, 2003.

[SBB13] Richard Skowyra, Sanaz Bahargam, and Azer Bestavros. Software-defined
ids for securing embedded mobile devices. In High Performance Extreme
Computing Conference (HPEC), 2013 IEEE, pages 1–7. IEEE, 2013.

[sdn] Companion Website with code.
https://bitbucket.org/sdnci/sdn-ci/.

[SFS11] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to industrial control
systems (ics) security. NIST special publication, pages 800–82, 2011.

[SFS13] Keith Stouffer, Joe Falco, and Karen Scarfone. Nist special publication 800-82
- guide to industrial control systems (ics) security, may 2013.

[SLP+15] Keith Stouffer, Suzanne Lightman, Victoria Pillitteri, Marshall Abrams, and
Adam Hahn. Guide to industrial control systems (ics) security – nist special
publication (sp) 800-82 revision 2. Technical report, NIST, 2015.

[SM08] F. Sabahi and A. Movaghar. Intrusion detection: A survey. In Systems and
Networks Communications, 2008. ICSNC ’08. 3rd International Conference
on, pages 23–26, Oct 2008.

[SN16] SALVATORE Sanfilippo and P Noordhuis. The redis documentation, 2016.

[SP08] Sarvjeet Singh and Sunil Prabhakar. Ensuring correctness over untrusted
private database. In Proceedings of the 11th international conference on Ex-
tending database technology: Advances in database technology, pages 476–486.
ACM, 2008.

[Spe13] OpenFlow Switch Specification. Version 1.3.3 (wire protocol 0x04), Sept 2013.

[Spi16] Dominic Spill. USBProxy. https://github.com/dominicgs/USBProxy, [On-
line; accessed 27-July-2016].

[SPL+11] Keith Stouffer, Victoria Pillitter, Suzanne Lightman, Marshall Abrams, and
Adam Hahn. Sp 800-82r2. guide to industrial control systems (ics) security:
Supervisory control and data acquisition (scada) systems, distributed control
systems (dcs), and other control system configurations such as programmable
logic controllers (plc). 2011.

208 BIBLIOGRAPHY

[SS75] Jerome H Saltzer and Michael D Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[SSB+14] Praveen Kumar Shanmugam, Naveen Dasa Subramanyam, Joe Breen, Corey
Roach, and Jacobus Van der Merwe. Deidtect: towards distributed elastic
intrusion detection. In Proceedings of the 2014 ACM SIGCOMM workshop
on Distributed cloud computing, pages 17–24. ACM, 2014.

[SSS+10] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller.
An overview of ip flow-based intrusion detection. Communications Surveys
Tutorials, IEEE, 12(3):343–356, 2010.

[SvDJO12] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: A scalable
cloud file system with efficient integrity checks. In Proceedings of the 28th
Annual Computer Security Applications Conference, pages 229–238. ACM,
2012.

[SW13] Hovav Shacham and Brent Waters. Compact proofs of retrievability. Journal
of cryptology, 26(3):442–483, 2013.

[Tam03] Roberto Tamassia. Authenticated data structures. In ESA, volume 2832,
pages 2–5. Springer, 2003.

[TBB15a] Dave Jing Tian, Adam Bates, and Kevin Butler. Defending against malicious
usb firmware with goodusb. In Proceedings of the 31st Annual Computer
Security Applications Conference, pages 261–270. ACM, 2015.

[TBB15b] Dave Jing Tian, Adam Bates, and Kevin Butler. Defending against malicious
usb firmware with goodusb. In Proceedings of the 31st Annual Computer
Security Applications Conference, pages 261–270. ACM, 2015.

[TCB08] Steven Tom, Dale Christiansen, and Dan Berrett. Recommended practice for
patch management of control systems. DHS control system security program
(CSSP) Recommended Practice, 2008.

[TDF+16] Matthew Tischer, Zakir Durumeric, Sam Foster, Sunny Duan, Alec Mori, Elie
Bursztein, and Michael Bailey. Users really do plug in usb drives they find. In
Security and Privacy (SP), 2016 IEEE Symposium on, pages 306–319. IEEE,
2016.

[TG10] Amin Tootoonchian and Yashar Ganjali. Hyperflow: a distributed control
plane for openflow. In Proceedings of the 2010 internet network management
conference on Research on enterprise networking, INM/WREN’10, pages 3–3,
Berkeley, CA, USA, 2010. USENIX Association.

[top] Secure usb drive review. On-line http://secure-usb-drive-review.

toptenreviews.com/.

[Typ] Typesafe. Akka. On-line https://www.typesafe.com/community/

core-projects/akka.

[TZ94] Jean-Pierre Tillich and Gilles Zémor. Hashing with sl 2. In Annual Interna-
tional Cryptology Conference, pages 40–49. Springer, 1994.

BIBLIOGRAPHY 209

[VGA13] Nikos Virvilis, Dimitris Gritzalis, and Theodoros Apostolopoulos. Trusted
computing vs. advanced persistent threats: Can a defender win this game?
In Ubiquitous Intelligence and Computing, 2013 IEEE UIC/ATC, pages 396–
403. IEEE, 2013.

[vid] USBCheckIn companion video.
http://www.dia.uniroma3.it/~pizzonia/pst/

username: “pst2016” password: “pst2016”.

[VS16] A. Valentini and G. Sinibaldi. PREEMPTIVE - PREventivE Methodology
and Tools to protect utilitIEs. In Fast abstracts at International Conference
on Computer Safety, Reliability, and Security (SAFECOMP), Trondheim,
Norway, September 2016.

[VV16] Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed
storage systems. ACM Computing Surveys (CSUR), 49(1):19, 2016.

[WD01] David Wagner and Drew Dean. Intrusion Detection via Static Analysis. Tech-
nical report, U.C. Berkeley, 2001.

[WFP99] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In Proc. of the 1999
IEEE Symposium on Security and Privacy, pages 133–145. IEEE, 1999.

[Wil98] Timothy Williams. The purdue enterprise reference architecture and method-
ology (pera). Handbook of life cycle engineering: concepts, models, and tech-
nologies, 289, 1998.

[WSJ17] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. The future of
industrial communication: Automation networks in the era of the internet of
things and industry 4.0. IEEE Industrial Electronics Magazine, 11(1):17–27,
2017.

[WSS09] Peter Williams, Radu Sion, and Dennis E Shasha. The blind stone tablet:
Outsourcing durability to untrusted parties. In NDSS, 2009.

[WV01] Gerhard Weikum and Gottfried Vossen. Transactional information systems:
theory, algorithms, and the practice of concurrency control and recovery. El-
sevier, 2001.

[WWL+09] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public
verifiability and data dynamics for storage security in cloud computing. In Eu-
ropean symposium on research in computer security, pages 355–370. Springer,
2009.

[WZY06] Miao Wang, Cheng Zhang, and Jingjing Yu. Native API based windows
anomaly intrusion detection method using SVM. In Proc. of the IEEE Inter-
national Conference on Sensor Networks, Ubiquitous, and Trustworthy Com-
puting, volume 11. IEEE, 2006.

[YPPK09] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. Au-
thenticated join processing in outsourced databases. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data, pages 5–
18. ACM, 2009.

210 BIBLIOGRAPHY

[YUH06] Dayu Yang, Alexander Usynin, and J Wesley Hines. Anomaly-based intrusion
detection for SCADA systems. In Proc. of the 5th international topical meet-
ing on nuclear plant instrumentation, control and human machine interface
technologies, pages 12–16, 2006.

[ZAH+13] Yan Zhu, Gail-Joon Ahn, Hongxin Hu, Stephen S Yau, Ho G An, and Chang-
Jun Hu. Dynamic audit services for outsourced storages in clouds. IEEE
Transactions on Services Computing, 6(2):227–238, 2013.

[ZKM+17] Faheem Zafar, Abid Khan, Saif Ur Rehman Malik, Mansoor Ahmed, Adeel
Anjum, Majid Iqbal Khan, Nadeem Javed, Masoom Alam, and Fuzel Jamil.
A survey of cloud computing data integrity schemes: Design challenges, tax-
onomy and future trends. Computers & Security, 65:29–49, 2017.

[ZKP15] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. Integridb:
Verifiable sql for outsourced databases. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages
1480–1491. ACM, 2015.

