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Abstract

In this thesis two types of smart materials are investigated: piezoelectric materials
and hydrogels. These materials have the property of transforming a specific energy
into another.

In particular, piezoelectric materials are capable of generating an electric poten-
tial, hence an electrical power, when strained, while hydrogels are capable of large
deformations after the absorption of a solvent. In the case of piezoelectric mate-
rials the electrical power can be harvested through a resistive load which has to
be accurately chosen to maximize the efficiency of the device. A specific applica-
tion of such materials is the energy harvesting in a fluid-solid interaction. Indeed,
wind and water currents provide free kinetic energy which can be converted using
piezoelectric sheets immersed in fluid flows through. This problem involves several
physics which are strongly coupled. In this thesis, a specific configuration of a bi-
layer structure composed of a piezoelectric sheet is investigated both experimentally
and numerically. Moreover, some modeling issues of piezoelectric materials and the
optimal load resistance are also discussed.

On the other hand, hydrogels are material able to transform a chemical energy
into an elastic energy. For this reason, they can be used as actuators which au-
tonomously respond to environment changes. In this thesis, the shape control of
hydrogel materials is investigated numerically and analytically. Moreover, since in
general the response of hydrogel is slow, two high power mechanisms are described
with an experiment and through some numerical simulations. Finally, the problem
of residual strains due to the change of chemical conditions in the environment are
tackled by means of a theoretical model. A list of submitted and published papers
and proceedings included in this thesis are listed in the final chapter.
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Chapter 1

Introduction

Smart materials are artificial materials that are able to passively and actively respond
to external stimuli such as temperature, humidity, stress and much more. For this
reason, they are optimized to work as energy transducers which convert one form
of energy into another. The transformation of energy is a relevant issue for tech-
nological advance. Nowadays, there exist several types of transducers: photoelec-
tric, electromagnetic, electromechanical, chemomechanical and much more. Here,
we will focus on two transducers which may be regarded as electromechanical and
chemomechanical transducers.

In this thesis, the electromechanical transducer is assumed to be made of piezo-
electric material which is a material that develops an electrical potential if strained
or develops a strain when an electrical potential is imposed [1]. The applications of
such material can be different from simple actuators to sensors. In particular, we will
focus on a more novel application of such material which is the energy harvesting
on an electrical passive load resistance. Indeed, energy harvesting using piezoelec-
tric materials has been deeply studied over the last decade [1–3]. This technology
provides extra sources of electric power which can be used to recharge electronic
devices with a limited battery duration or to power other devices. The concept has
ecological implications in reducing the chemical waste produced by replacing batter-
ies and monetary gains by reducing maintenance costs. For this reason and not only,
in the last years the area of energy harvesting has attracted academic and industry.
A piezoelectric sheet generates very low power due to external actions; the main
idea is to use such materials in arrays on 2D or 3D arrangements depending on the
application [4–6] (see Fig. 1.1). A field of application for piezoelectric materials is the
energy harvesting through fluid-solid interactions [6–8]. Indeed, water currents or
flows in channels generally induce immersed piezoelectric thin structures to vibrate
and generate an electrical power which can be harvested through a load resistance.
This is a problem which involves the physics of fluids, solids and electrostatics. In
this thesis, a particular configuration of a energy harvester in a fluid flow by means
of experiments. The problem is then modeled and implemented in a software with
finite element methods. Several modeling problems are analyzed such as the choice
of the plane state assumptions in piezoelectric solids and the optimal load resistance
to harvest the electrical power.

On the other hand, the chemomechanical transducer in this thesis is assumed to
be made of hydrogel like materials. In general hydrogels are composed of a poly-
mer matrix which has an elasticity given by physical, chemical or topological bonds.
These materials are permeable and they have the capability of large swelling and
deformation due to a solvent absorption [9]. An example of hydrogel materials are
wood-like materials which are often considered as heterogeneous anisotropic hydro-
gels [10]. Recently, these hydrogels were employed as actuators for example in soft
robotics [11], in microfluidics [12] and also in an autonomous shading system [13]
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which autonomously responds to the change of humidity in the environment (see
Fig. 1.2). Often, such systems are realized using bilayer structures which are able to
bend significantly due to the change of stimuli.

comparable to existing renewable-energy technologies. For example, Photo-Voltaic (PV) technology was recently stated to
cost as low as 2.2¢/cm2 (USD) for a commercial silicon module with an efficiency of 16 percent [95].

There are other advantages to a piezoelectric flutter harvester system, in that such a system would potentially be quieter
and possibly safer than a small-scale wind turbine. While a flutter system is likely to be much more susceptible to fatigue
than a wind turbine, structural failure is less likely to cause any significant property damage or harm to bystanders.

In general, conventional wind turbines are not placed in tandem due to adverse wake effects, which cause problems in
trailing turbines (loss of power, turbulence-induced vibration, gearbox resonance, etc.), see [64]. However, flutter harvesters
under certain conditions appear to perform beneficially when placed in tandem. The ability to potentially extract more
power from a trailing harvester in the wake of another harvester is attractive; however, the benefit decays after three or four
harvester-lengths downstream [47]. This phenomenon could allow for more space-efficient designs compared with existing
wind farm layouts. This is especially useful in highly urban environments, where space is considered a commodity. The
matrix-like flutter harvester design initially proposed by [54], shown in Fig. 31, could become a reality now that harvester
proximity effects are more fully understood e.g. [50,96]. However such an embodiment would need the harvester system to
be aligned with the flow direction, which will not be the case for fixed systems in the ABL.

Acknowledgements

This work was funded by the Australian Research Council (ARC) Grant no. LP100200034. The Partner Organisation for
this project is FCST Pty Ltd. The author would also like to thank the Platform Technologies Research Institute at RMIT
University for providing the necessary facilities for the review conducted here.

References

[1] WWEA, World Wind Energy Report 2010, Technical Report, World Wind Energy Association, Bonn Germany, 2011.
[2] P. Gipe, Noise from small wind turbines: an unaddressed issue, 2003, 〈http://www.wind-works.org/articles/noiseswt.html〉 viewed (2.1.12).
[3] Encraft, Microair—a catalyst for change in UK energy culture? 2007, 〈http://www.warwickwindtrials.org.uk/index.html〉, viewed (28.12.11).
[4] Encraft, Warwick Microwind Trial Project-final Report, Technical Report, Encraft, 2009, 〈http://www.warwickwindtrials.org.uk/2.html〉, viewed

(28.12.11).
[5] A. Collar, The expanding domain of aeroelasticity, Journal of the Royal Aeronautical Society, L (August) (1946) 613–636.
[6] R. Bisplinghoff, H. Ashley, R. Halfman, Aeroelasticity, Dover Publications, Mineola, New York, 1955.
[7] J.J. Allen, A.J. Smits, Energy harvesting eel, Journal of Fluids and Structures 15 (3–4) (2001) 629–640.
[8] E. Naudascher, D. Rockwell, Oscillator-model approach to the identification and assessment of flow-induced vibrations in the system, Journal of

Hydraulic Research 18 (1980) 59–82.
[9] E. Naudascher, D. Rockwell, Flow-Induced Vibrations: An Engineering Guide, A.A. Balkema, Rotterdam, 1994.
[10] T. Theodorsen, General Theory of Aerodynamic Instability and the Mechanism of Flutter, Technical Report No. 496, National Advisory Committee for

Aeronautics, 1935.
[11] A. Kornecki, E.H. Dowell, J. O'Brien, On the aerodynamic instability of two-dimensional panels in uniform incompressible flow, Journal of Sound and

Vibration 47 (2) (1976) 163–178.
[12] L. Huang, Flutter of cantilevered plates in axial flow, Journal of Fluids and Structures 9 (1995) 127–147.
[13] M. Argentina, L. Mahadevan, Fluid-flow-induced flutter of a flag, Proceedings of the National Academy of Sciences of the United States of America, Vol. 102,

No. 6, 2005, pp. 1829–1834.
[14] A. Deivasigamani, J. McCarthy, S. Watkins, S. John, F. Coman, Flow-induced flutter of slender cantilever high-compliance plates, in 28th International

Congress Of The Aeronautical Sciences (Paper No. 863), ICAS 2012, September 23–28, Brisbane, Australia, 2012.
[15] Z. Jun, S. Childress, A. Libchaber, M. Shelley, Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind,

Nature 408 (2000) 835–839.
[16] M. Hariri, S. John, P. Trivailo, Modelling piezoelectric actuation during structural flutter, in: ASME Conference on Smart Materials, Adaptive Structures and

Intelligent Systems, SMASIS2009 , September 21–23, Vol. 1, American Society of Mechanical Engineers, Oxnard, CA, United states, 2009, pp. 33–43.
[17] N. Yamaguchi, K. Yokota, Y. Tsujimoto, Flutter limits and behaviors of a flexible thin sheet in high-speed flow-I: analytical method for prediction of the

sheet behavior, ASME Journal of Fluids Engineering 122 (2000) 65–73.
[18] B.S.H. Connell, D.K.P. Yue, Flapping dynamics of a flag in a uniform stream, Journal of Fluid Mechanics 581 (2007) 33–67.
[19] S. Alben, M.J. Shelley, “Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos, Physical Review Letters 100 (7) . 074301-1–4.

Fig. 31. A matrix-like flutter harvesting device proposed by [54].

Please cite this article as: J.M. McCarthy, et al., Fluttering energy harvesters in the wind: A review, Journal of Sound and
Vibration (2015), http://dx.doi.org/10.1016/j.jsv.2015.09.043 i

J.M. McCarthy et al. / Journal of Sound and Vibration ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 21

FIGURE 1.1: Energy harvesting through stacks of piezoelectric gener-
ator modules in a hydro power plant [5]. Image taken by [5].

In this thesis, we will focus on an alternative method to achieve a bending of a
homogeneous hydrogel structure which is realized through different external envi-
ronmental conditions. Moreover, it is investigated a mechanism to overcome one of
the limitations of hydrogels which is the slowness in the response and it is studied
another problem of hydrogels which is the presence of residual strains during the
change of environmental conditions.
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Fig. 7. Digital renders and drawings of the cross section of the proposed horizontal shading system based on coupled bilayers fixed onto a building faç ade a) flat state at high
relative humidity; b) bent state at low relative humidity, insets show the setup of one coupled element.

ilar bending angles and rate of angular changes compared to those
recorded during reference measurements in non-coupled configu-
ration. Hence, the external load is presumably low enough to avoid
creep and plastic deformation of the active bilayer. For more heavy
passive elements or in cases of external load by attached perma-
nent loads, e.g. solar modules, creep or plastic deformation could
occur in the active bilayer. By shifting the center of mass of the
sample towards the axis of rotation (second to fifth typology), the
loading of the active bilayer can be kept to the minimum. In fact, a
lever typology, which has the resistance in between the effort and
the fulcrum is always more advantageous than the one where the
effort is in between the fulcrum and the resistance.

The implementation of the coupled wood bilayers into a shad-
ing system has reached the demonstrator phase. At current state, it
is rather difficult to evaluate and compare the performance of the
present system, in terms of efficient and precise aperture opening
and closing, with other autonomous shading systems. No quantita-
tive data on opening rates or precision are available so far. The other
wood-based systems previously mentioned [24,26] show faster
opening and closing due to the use of thinner layers. Yet, multi-
ple small elements require a lot of structural support, which leads
to considerable shading even in open state.

Prior to a technical realization, further investigations on the
reversibility, reliability and long-term shading performance under
outdoor conditions need to be done. We  have already started a
monitored outdoor demonstrator experiment to collect informa-

tion about the durability of the coupled system and the actuation of
the coupled configuration during the different seasons (Video S6).
In a previous long-term field test over nearly one year wood bilay-
ers were exposed to full weathering outside Zürich, Switzerland
with temperatures in the range of −10 ◦C (freezing occurring) to
well over 30 ◦C and relative humidity from 20% to 100%. A reduc-
tion by 25% in the magnitude of shape change could be observed by
the end of the experiment with discoloration and cracks becoming
visible. Holstov et al. report about a one-year field test under full
weathering condition with wood-composite hybrid bilayers with
the magnitude of curvature having been reduced by around 10%
[26]. As it is intended to add a transparent cover of the shading sys-
tem for protection from rain and snow, this was also added to the
currently running field experiment of the coupled system. Such a
protection willl lead to a considerable increase in service life of the
wood bilayers compared to that of bilayers exposed to full weath-
ering. Reichert et al. [24] report about a long-term field test on
wood-hybrid bilayers on an outside faç ade with protection from
rain over a period of three years without any visible decrease in the
performance of the bilayers. These previous investigations are very
promising for a further development and practical application of
the shading system based on large-scale coupled wood bilayers.

As the drawings of the cross section in Fig. 7-a and b show, the
shading device is planned to be mounted horizontally, which has
higher impact on the energy saving of the building compared to a
vertical (parallel) shading system [30] and better respects the phys-

FIGURE 1.2: Autonomous shading system through bilayer wood
structures proposed by [13]. The image was taken by [13].

The thesis is composed of two main chapters: a first one where it is described the
behavior of piezoelectric materials, their modeling and some applications; a second
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one where hydrogels materials are described together with some applications and
actual limits or issues.





5

Chapter 2

Smart materials converting

mechanical to electrical energy

2.1 Piezoelectric materials

In this section we briefly describe piezoelectric materials and their modelling frame-
work which is used in the next sections.

Piezoelectric materials are solids composed of particular crystals in which the
mechanical and electrical behavior are coupled as described in [1]. These materials
exhibit the piezoelectric effect, which is historically divided into two phenomena:
the direct and the converse piezoelectric effects. When a piezoelectric material is
mechanically deformed, an electric polarization that is proportional to the applied
strain is produced. This is called the direct piezoelectric effect and it was discovered
by the Curie brothers in 1880. When the same material is subjected to an electric
polarization, it deforms and the amount of strain is proportional to the polarizing
field. This is called the converse piezoelectric effect and it was deduced math-
ematically from the fundamental principles of thermodynamics in [14] and then
confirmed experimentally by the Curie brothers in the same year. These two ef-
fects usually coexist in a piezoelectric material. Therefore in an application where
the direct piezoelectric effect is of particular interest (which is the case in vibration-
based energy harvesting), ignoring the presence of the converse piezoelectric effect
would be thermodynamically inconsistent and generally leads to wrong predictions.
The most commonly used piezoelectrics are the piezoelectric ceramics which exhibit
much larger coupling compared to natural crystals. The most popular of engineering
piezoceramics, PZT (lead zirconate titanate), was developed at the Tokyo Institute
of Technology in the 1950s. Nowadays, applications of these materials range from
simple actuators to sophisticated energy harvesting devices and cover a wide range
of spatial scales [3, 7, 15–19]. In particular, sensors are used in different fields for
example in medical implants [20, 21], in chemistry [4] and for structural damage
identification [22]. Piezoelectric actuators are used as valves in micropumps [23, 24],
for active structural control [25] and in ink jet printers for actuating the ejector [26].
Energy harvesting through piezoelectric materials is applied in broadband random
vibrations [27], in vortex-induced vibrations [28] and in vibrations induced by traf-
fic on bridges [29]. The harvested energy is usually used for wireless remote power
supply [30] and for recharging batteries [31]. The great influence of electrical scheme
and mechanical properties in the dynamical behavior of piezoelectric materials have
been studied with theoretical, computational and experimental approaches [32–34].
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2.1.1 Modelling of piezoelectric materials

From a modeling point of view, the vast majority of the classical piezoelectric ma-
terials are well described by a Kirkhhoff Saint-Venant constitutive relation for the
elastic contribute to the free energy and a linear coupling with the electric field [35,
36]. The two-way coupling between electricity and elasticity has been proved to
be in accordance with experimental results and optimal values for electrical resis-
tance loads. It is worth noting that some particular electro-mechanical materials, not
taken in consideration in this thesis, may need to be modeled within a more general
multiphysics framework [37, 38].

Kinematics

The generic problem is set in a 3D space, using the theory of nonlinear elasticity
with large displacements. As standard in mechanics, descriptors are defined in a
reference configuration of the body B. The motion of the object f (X, t) is described
by the displacement u(X, t), a material field defined on B; X 2 B is a material point,
(X, Y, Z) its coordinates and t 2 T an instant of the time interval T . The deformation
F of the body is given by the gradient of motion:

F = r f = I + ru. (2.1)

Elastic constitutive law

The whole body is assumed to be non-linear elastic; the reference stress S of a piezo-
electric solid B is given by the Kirchhoff-Saint Venant relation between stress and
strain (general form), with a coupling piezoelectric term that describes the backward
feedback of an electric vector field Eel on stress:

S = F Se, Se = C E � e
T

Eel ; (2.2)

where C and e
T are respectively the stiffness of the solid and the transpose of the

piezoelectric coupling tensor, E = 1/2(F
T

F � I) is the nonlinear strain measure
(Green-Lagrange strain) with F

T indicating the transpose of F.

Electric constitutive law

In the case of ordinary ferroelectric ceramics the reference electric displacement D is
assumed to be related linearly with the electric field Eel and the strain E:

D = e E + ko k Eel (2.3)

where ko is the vacuum permittivity and k is the second-order tensor of dielectric
relative permittivity measured at constant applied stress. Under quasi-static con-
ditions, the electric field Eel can be written as the gradient of a potential, V, such
that:

Eel = �rV. (2.4)

It is worth noting that in general, all piezoelectric materials are anisotropic both from
a mechanics and electrical point of view. Indeed, the matrix representation of C, e, k

in a global cartesian base for a classic piezoceramic material generally is:
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C =

0

BBBBBBBBBBBBBBBBB@

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55

1

CCCCCCCCCCCCCCCCCA

, (2.5)

e =

0

BBBB@

0 0 0 0 0 e16

e21 e22 e23 0 0 0

0 0 0 e34 0 0

1

CCCCA
, (2.6)

k =

0

BBBB@

k11 0 0

0 k11 0

0 0 k33

1

CCCCA
. (2.7)

The most important anisotropy is in the piezoelectric coupling tensor. Indeed, when
compressed in one direction, the piezoelectric generates an electric potential along
one specific direction determined by the coupling coefficients in the matrix e. In the
following sections of the chapter we always consider such tensors with the values
indicated in Table 2.1.

TABLE 2.1: Piezoelectric parameters in the global cartesian base.

Symbol Value Parameter
C11 = C33 1.20 ⇤ 1011[Pa] stiffness comp. 11
C12 = C23 7.51 ⇤ 1010[Pa] stiffness comp. 12

C13 7.52 ⇤ 1010[Pa] stiffness comp. 13
C22 1.11 ⇤ 1011[Pa] stiffness comp. 11

C44 = C66 2.10 ⇤ 1010[Pa] stiffness comp. 44
C55 2.25 ⇤ 1010[Pa] stiffness comp. 55

e16 = e34 12.29[C/m] coupling comp. 16
e21 = e23 �5.35[C/m] coupling comp. 21

e22 15.78[C/m] coupling comp. 22
k11 = k33 919.1 perm. comp. 11

k22 826.6 perm. comp. 22
rp 7750

⇥
kg ⇤ m�3⇤ piezoelectric mass density
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Balance laws

State variables of a piezoelectric material are the material vector field u = (u, v, w),
describing the displacement, and the scalar material field V, representing the electric
potential on the piezoelectric. The equations of the problem, defined on B ⇥ T ,
consist of:
i) the balance of forces for the solid,

div S = r ü ; (2.8)

where the upper dot stays for derivative in time, and r is the mass density in the
solid which in this section is r = rp the piezoelectric mass density.
ii) the Gauss law’s for the electric field:

div D = rv , (2.9)

where rv is the free electric charge density, assumed to be null. The balance laws 2.8,
2.9 are solved with appropriate initial and boundary conditions.

2.1.2 Modeling of energy harvesting using a piezoelectric solid

We model energy harvesting for a piezoelectric plate-like 3D body B clamped at one
end, see Fig. 2.1. With reference to Fig. 2.1 let (o; g1, g2, g3) be an orthonormal ref-
erence frame, with the origin o at the position of the fixed constraint, and g3 leaning
on the out of plane direction. The body is subjected to a periodic external force Fe
in horizontal direction g1 (see Fig. 2.1) within a time interval T and connected to
an external electrical load resistance R. The piezoelectric body has length L, width
W and thickness hp. In this problem, the boundary conditions are assigned on the

ċd = �divhd

Jd = 1 + � cd

cd

ud

Figure 1: Reference shape of bimorph cantilever composed by two piezoeletric layers and one
substructure with a tip mass. The geometrical parameters are listed in Table ??. Fig:ref

R
Fe

g1

g2

+

�

Figure 2: Reference shape of bimorph cantilever composed by two piezoeletric layers and one
substructure with a tip mass. The geometrical parameters are listed in Table ??. Fig:ref

� = �

� = 0

R

Figure 3: Reference shape of bimorph cantilever composed by two piezoeletric layers and one
substructure with a tip mass. The geometrical parameters are listed in Table ??. Fig:ref

� = 0

� = 0

R

Figure 4: Reference shape of bimorph cantilever composed by two piezoeletric layers and one
substructure with a tip mass. The geometrical parameters are listed in Table ??. Fig:ref

U

Figure 5: Reference shape of bimorph cantilever composed by two piezoeletric layers and one
substructure with a tip mass. The geometrical parameters are listed in Table ??. Fig:ref

1

FIGURE 2.1: Plane view of a piezoelectric solid under periodic force
oscillations connected to an external electrical load. The vertical black

arrow indicates the direction of polarization in the material.

boundaries in the plane showed in Fig. 2.1: top, left, right, bottom, respectively ∂Bt,
∂Bl , ∂Br, ∂Bb and on the other boundaries ∂Bo. In particular, the left boundary is
assumed insulated from an electrical point of view:

D · n = 0 on ∂Bl ⇥ T (2.10)

and with a fixed constraint:

u = 0 on ∂Bl ⇥ T , (2.11)
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where n the outward reference unit normal at the boundary. The right boundary is
also assumed to be electrical insulated:

D · n = 0 on ∂Br ⇥ T (2.12)

and with the external reference force applied:

S n = Fe = A sin(w t) g1 on ∂Br ⇥ T , (2.13)

where A is the force amplitude and w its pulsation. The bottom boundary has a
reference ground electrical potential:

V = 0 on ∂Bb ⇥ T . (2.14)

and it is free to deform:
S n = 0 on ∂Bb ⇥ T . (2.15)

On the top boundary we impose a voltage V = Ṽ satisfying the relation:

Z

∂Bt

Ḋ · n dA =
Ṽ
R

on ∂Bt ⇥ T , (2.16)

and at the same time we impose the condition that it is free to deform:

S n = 0 on ∂Bt ⇥ T , (2.17)

where R is the value of electrical external load resistance. Finally, the other bound-
aries are electrical insulated and free to deform:

S n = 0 and D · n = 0 on ∂Bo ⇥ T . (2.18)

Conditions (2.14) and (2.16) deserve some additional comments. First of all, they en-
sure uniform charge distributions along upper and lower surfaces of both piezoelec-
tric layers, in compliance with the adoption of planar electrodes to collect charges.
The effectiveness of such design reveals to be optimal for a "single signed curvature"
[34] deformation (excitation of cantilever first mode). Secondly, conditions (2.14)
and (2.16) on boundaries do not force uniform potential along g1 (i.e. rV · g1 = 0)
in the bulk of the piezoelectric layers. Using these conditions, we do not explic-
itly impose uniform electric field along Y as commonly done in other studies [39,
40] and the non-linearity of the system (2.14, 2.16) is enhanced with respect to the
width. Moreover, in the current case it is worth noting that the strain tensor E has
components: E11, representing the normal strain in horizontal direction g1 and E22,
E33, representing the normal strains due to the Poisson effect in the directions g2 and
g3 respectively. The strain component E11 during a compression generates a positive
electrical polarization in the vertical direction g2 due to the piezoelectric coefficient
e21 in Table 2.1. The strains E22 and E33 generate an electrical polarization in vertical
direction g2 due to the piezoelectric coefficients e22 and e23 respectively. In particu-
lar given values in Table 2.1, during a compression in g1 direction the polarization
induced by E22 is positive while the polarization induced by E33 is negative and
smaller in absolute value to the other contributes.

Balance equations are solved with boundary conditions and null initial condi-
tions. The electrical power harvested on the external electrical load resistance is
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oscillating in time (see Fig. 2.2) and measured as:

P =
Ṽ2

R
. (2.19)

The average harvested power is given by:

1

R

P̄

hig
her

freq
uen

cy

low
er

fre
que

ncy

�R

·10�2
t

P

P̄

10�1 100 101 102 103 104 105 106
10�9

10�7

10�5

10�3

10�1

W/H

P̄/W
(W/m)

R = 103 �

R = 104 �

R = 106 �

FIGURE 2.2: The piezoelectric generates an oscillatory electrical
power which is harvested with an external electrical resistance load.

P̄ =
1

t f � to

Z t f

to

P dt, (2.20)

where t f is the final time of simulation and to is the initial transient time interval. In
particular, P̄ can be evaluated for different values of electrical load resistance, force
amplitude and pulsation (or frequency). As showed in Fig. 2.3 the average har-
vested power has an optimum peak at which corresponds an optimal external load
resistance. The latter depends on geometry and characteristics of force application.
In the case of a sinusoidal axial force. The optimal external load resistance does not
depend on the amplitude of the force but only on its frequency as can be seen in
Fig. 2.3 and Fig. 2.4. The numerical trends are confirmed by neglecting shear and
electrical contributions in the reference stress S, assuming homogeneous solutions
of balance equation and using eq. (2.13):

E11 =
A

C11
sin(w t). (2.21)

In this case, the electrical boundary condition (2.16) reads as:

Z

∂Bt

e21Ė11 + ko k22 Ėel2 dA =
Ṽ
R

. (2.22)

which can be rewritten assuming a linear variation of the electric potential in the
piezoelectric thickness which gives:

(At cos(w t) � kt
˙̃V) � Ṽ

R
= 0 (2.23)
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FIGURE 2.3: There is an optimal external electrical load which corre-
spond to the maximum average electrical power harvested. Higher
force amplitude induce a higher electrical power harvested; never-
theless the optimal electrical load does not depend on the force mag-

nitude.
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FIGURE 2.4: The optimal external electrical load which absorbs more
electrical power is greater at lower force frequencies.

where the parameter At depends essentially on the force amplitude and the piezo-
electric coefficent and kt depends on geometric parameters and permittivity:

At =
W L A w e21

C11
, kt =

W L k22 ko

hp
. (2.24)

Eq. (2.23) is an ordinary differential equation (ODE) which is solved with respect to
the electrical potential Ṽ:

Ṽ =
At R

1 + k2
t w2 R2

✓
cos(w t) + kt wR sin(w t) � exp

✓
� t

kt R

◆◆
. (2.25)

From eq. (2.25) it is possible to evaluate the average electrical power harvested on
the external load resistance using equations (2.19) and (2.20). The value of the opti-
mal load resistance Ropt is given by setting the derivative of the average harvested
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power P̄ with respect to R equal to zero:

∂P̄
∂R

=
A2

t
4 w(1 + kt2 w2 R2)3 exp

✓
�

2 t f

kt R

◆
P̄f (kt, w) = 0,

with P̄f (kt, w) = P̄f 1 + P̄f 2 + P̄f 3,

(2.26)

where to in (2.20) was assumed to be 0 and:

P̄f 1 = 4 w (kt R(w2 kt R(kt R � t f ) � 1) � t f ),

P̄f 2 = �8 w cos(w t f ) exp
✓ t f

kt R

◆
, (kt R(w2 kt R(2 kt R � t f ) � 2) � t f )

P̄f 3 = exp
✓ 2 t f

kt R

◆ 
� 2 w (k2

t w2 R2 � 1)(t f + kt R(w2 kt R t f � 4) � 2 kt R cos(2 w t f ))

+(k4
t w4 R4 � 6 k2

t w2 R2 + 1) sin(2 w t f )

!
.

(2.27)
The term in front of P̄f (kt, w):

A2
t

4 w(1 + kt2 w2 R2)3 exp
✓

�
2 t f

kt R

◆
, (2.28)

is the unique term which depends on the force amplitude and cannot be zero if
A 6= 0. This implies that Ropt does not depend on the force amplitude but only on
geometry parameters, permittivity and force frequency due to P̄f (kt, w).

2.2 Validity of plane states assumptions in a cantilever piezo-

electric bimorph for energy harvesting applications

In this section, we assess the accuracy of plane state assumptions in modelling the
bending of bimorph piezoelectric cantilevers since these assumptions are often used
to reduce computational costs especially in fluid-structure interaction problems. Ref-
erence solutions are obtained by means of fully 3D simulations. We solve a model,
compliant with the standard theoretical background, able to deal with large deflec-
tions and aimed at estimating the electrical energy harvesting potential. We show
that the two assumptions of plane stress and plane strain yield very different results
in terms of strain and therefore lead to substantially different estimates of electrical
power. The plane stress state is the best approximation of narrow cantilevers, while
the plane strain is suited for wide ones. The validity ranges are defined for each of
the two, in terms of the generated electrical power. Other aspects are affected by
the modelling approach, such as the estimation of maximum deformation and, to a
minor extent, of resonance frequencies.

In particular, we focus on a bimorph solid cantilever composed by a brass sub-
structure placed between two piezoelectric layers. Simplified mechanical models
have been proposed to study the behavior of these devices subject to external forces.
A simplification, with respect to 3D models is represented by 2D models [41] which
exploit the pronounced two-dimensionality of the devices motion, induced by their
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slender and flat shape. The resort to simplified 2D models is often necessary to
reduce the computational time of simulations in large parametric studies or in com-
plex phenomena but it can lead to incorrect predictions due to wrong physical as-
sumptions [39]. The 2D models can be formulated assuming either plane stress [42–
44] or plane strain behavior [45, 46]. In [34], the results of numerical simulations
of a bimorph beam employing the plane stress hypothesis are compared with ex-
perimental results obtaining good agreement in the estimation of electrical power
generated by the device. Other models proposed by [42–44] and [46] use either of
the two approaches and are not compared with experimental results. As shown in
the case of composites structures by [47] the two modelling strategies need to be
thoroughly assessed before being used in predictive models. Moreover, the research
community working on piezoelectric has a very broad expertise, ranging from elec-
trical to mechanical engineers. This yields possible modeling errors as reported in
[39]. Despite the difference between a plane stress and plane strain hypothesis is
very well known in classic structural problems [48, 49], to the best of our knowl-
edge, this is the first comparison between these two plane state approaches in the
field of piezoelectric materials and we feel that such analysis can be beneficial to re-
searchers and professionals in the field aiming at correctly modeling and designing
such devices. Here, we describe an electro-mechanical model capable of catching the
key features of piezoelectric devices. The model is able to describe the piezoelectric
effect for a wide range of geometries. In our simulations, the single piezoelectric
device is modeled as a heterogeneous solid with different constitutive relations for
the piezoelectric and the substructure layer. The piezoelectric materials chosen for
the simulation are piezo-ceramic PZT-5A, whose features are reported in Table 2.1.
The performances of bimorph piezoelectric beams depend on their mechanical char-
acteristics, the features of the applied electrical load, and the external forcing. Due
to strong two-way-feedback between the mechanical and the electrical aspects, fully
coupled models are mandatory to accurately assess their performance. The opti-
mum operating conditions are comprehensively described by a set of mixed load
and forcing characteristics. Performance assessments in this regard have been car-
ried out in [50] and [51].

Here, we highlight the difference between the plane stress and the plane strain
hypothesis in terms of harvested electrical power and we compare these results with
those from fully three-dimensional simulations. The plane stress state reveals to
match reference results for the case of narrow devices, while the plane strain is ap-
propriate for large widths. As we will see, the plane state assumptions unveil the
pivotal role of the Poisson ratio in anisotropic and inhomogeneous material and the
effect of the fixed constraint. Finally, we also show the existence of an optimal width
in terms of harvested electrical power per unit width which can be exploited in the
design of efficient piezoelectric devices feeding an electrical resistive load. The paper
is organized as follows: in the second section the 3D model and the plane state as-
sumptions are described; in the third one the carried out simulations are introduced
and results discussed; conclusions are then drawn.

2.2.1 Modelling of a bimorph solid

We simulate energy harvesting from a vibrating cantilever by solving an electro-
mechanical problem with the Finite Element Method.

Our simulated body is a bimorph cantilever of length L, width W and thickness
H = hs + 2hp, with hs and hp respectively the brass substructure and the piezoelectric
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layer thickness. The whole body is modeled as a non-linear elastic solid, whose flex-
ural motion is generated by a time-varying distributed load. Such loading scheme
resembles the typical situation of flow induced vibrations. With reference to Fig. 2.5
let (o; g1, g2, g3) be an orthonormal reference frame, with the origin o at the position
of the fixed constraint, and g3 leaning on the out of plane direction. The generation
of electric power is mainly induced by the compression and extension along g1. It is
worth highlighting that, given the properties in Table 2.1, there are also minor contri-
butions given by deformation along g2 and g3, the latter being negative. The piezo-
electric layers are connected to a passive electrical resistance load per unit width. A
tip mass is added to reduce the resonance frequencies as usually done in experimen-
tal tests [34]. We set our problem in 3D, using the theory of nonlinear elasticity with

On the Role of Plane State Assumption in modelling Bimorph Piezoelectric Beams 3

been carried out in [22, 23].42

In our paper, we highlight the di�erence between the plane stress and the plane strain43

hypothesis. The resonance frequencies obtained in the plane stress case are lower than44

in the plane strain case. Indeed, these conditions yield very di�erent results both on45

electrical power and on strain. Furthermore, they unveil the pivotal role of the Poisson46

ratio in anisotropic and inhomogeneous material. This e�ect changes dramatically the47

final result and it implies that neglecting the normal component of strain may lead to48

completely distorted results. Finally, we also show the di�erence between a parallel and49

a series connection to validate the reliability of our model.50

2. Model51

We simulate energy harvesting from beam vibrations by solving a 2D electro-mechanical52

problem with the Finite Elements Method (FEM), by using the COMSOL Multiphysics53

software.54

Our simulated body is a bimorph cantilever of length L, width W (necessary to55

apply some boundary conditions) and thickness H = hs+2hp, with hs and hp respectively56

the substructure and the piezoelectric layer thickness. The beam is modeled as a57

non-linear elastic solid, whose flexural motion is generated by a time-varying vertical58

load. The generation of electric power is obtained by the compression and extension of59

piezoelectric layers connected to a passive resistance load.
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Figure 1. Reference shape of bimorph cantilever composed by two piezoeletric layers
and one substructure with a tip mass. The geometrical parameters are listed in Table
1.

60

2.1. Kinematics61

We set our problem in 2D, using the theory of nonlinear elasticity with large62

displacements, and the plane state hypothesis. As standard in mechanics, we define63

descriptors either in a reference configuration B or in the actual configuration of the64

body Bt. With reference to Fig.(1) Let (o; g1, g2) be an orthonormal reference frame,65

with the origin o at the position of the fixed constraint, and g1 leaning on the axis of66

FIGURE 2.5: Reference shape of bimorph cantilever composed by two
piezoeletric layers and one substructure with a tip mass m. The geo-

metrical parameters are listed in Table 2.2.

large displacements. As standard in mechanics, we define descriptors in a reference
configuration B. Then, let X 2 B be a material point, (X, Y, Z) its coordinates and
t 2 T an instant of the time interval T . The reference computational domain in our
model is the union of a piezoelectric and a substructure domain B = Bs [ Bp. The
motion of the object f (X, t) is described by the displacement u(X, t), a material field
defined on B.

Elastic constitutive law

The whole body is assumed to be non-linear elastic; the substructure is isotropic and
the piezoelectric layers Bp are anisotropic with response given by the Kirchhoff-Saint
Venant constitutive relation showed in eq. (2.2); both are homogeneous. The refer-
ence stress S(X, t) in the substructure layer Bs is given by a Kirchhoff-Saint Venant
constitutive relation (isotropic form):

S = F Se, Se =
Ys

1 + ns
E +

Ys ns

(1 + ns)(1 � 2 ns)
tr(E) I , (2.29)

where Ys, ns are respectively the Young and Poisson moduli of the material and tr(E)
the trace of the strain tensor. Moreover, here the solid mass density of balance law
(2.8) is r = rs for the substructure layer and r = rp for the piezoelectric layer

Boundary and initial conditions

We solve the system of equations (2.8, 2.9) in the unknowns u and V that satisfy
given boundary and initial conditions.

In this case, from a mechanics point of view, we apply these boundary conditions:
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u(X, t) = 0 at X = 0 ,
S(X, t)n = Fe ⌘ A sin(2pt) ts g2 at Y = H/2 ,

S(X, t)n = Fm ⌘
rtip

H
I ü|x=L at X = L ,

(2.30)

with n the outward normal to the boundary of the body in the reference configura-
tion.

The first condition in eq. (2.30) mimics the fixed constraint, while the second is
the external force applied to the top boundary. The parameter A is the amplitude of
the harmonic load, t = t f is the non dimensional time, with f the force frequency
and ts is a smooth ramp for the initial application of the load ts = (1 � exp(�t)).
Finally, the third condition in eq. (2.30) represents the effect of an added mass as in
Fig. (2.5), where rtip is the added mass for unit width placed at the tip of the can-
tilever.
For what regards the electrical boundary conditions, they depend on the chosen
electrical scheme (i.e. either series or parallel connection). In this work we enforce
parallel connection between the piezoelectric layers. We don’t expect different con-
clusions if a series connection is instead applied. The parallel condition is realized
assigning a reference electrical potential Vre f on piezoelectric boundaries in contact
with the substructure:

V(X, t) = Vre f = 0 8X at Y =
hs

2
and Y = �hs

2
. (2.31)

This condition assumes the metallic substructure to be much more conductive than
the piezoelectric. On top and bottom boundary surfaces (Y = ±H/2) we impose a
voltage Ṽ satisfying the relation:

Z

∂BY=±H/2

Ḋ · n dA =
Ṽ
R

(2.32)

where R = rel W is the external electrical load resistance and rel is the electrical
resistance per unit width as shown in Fig.(2.6).

It is worth highlighting that the coupling coefficient e21 (see Table 2.1), due to the
Poisson normal strain along g3 (see Fig. 2.6) induces a polarization opposed to the
ones generated by normal strains in the other directions, and thus is decremental to
the power harvesting. Optimization of geometrical configurations will be the object
of a future research.

We assign vanishing initial conditions in terms of displacement and electric po-
tential. Physical model parameters and non-vanishing components in the global
cartesian base of C, e and k are listed in Tables (2.1,2.2).

Plane stress and plane strain hypothesis

Under plane state hypothesis, the third component of displacement is assumed to be
uniform along g3 direction. The plane stress hypothesis, employed in [34, 42–44] for
bimorph piezoelectric beams, is obtained by imposing Se13 = Se31 = Se23 = Se32 =
Se33 = 0. Using eq. (2.29), we obtain the condition for the substructure:

E13 = E23 = 0, E33 =
E11 + E22

vs � 1
vs (2.33)
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FIGURE 2.6: Poisson effect; during downward bending the top layer
is stretched in the X direction (red arrows) while it is compressed in
Y direction (blue arrows). The bottom layer behaves conversely. It is
important to account for this effect also in the plane out of the paper.
The figure also shows the parallel connection of the two piezoelectric
layers to an electrical resistive load per unit width rel . Black arrows
indicate polarization direction in response to deformation of top and

bottom layer, respectively.

while using eq. (2.2) we obtain for the piezoelectric layers:

E23 = 0, E13 =
e16Eel1

C55
,

E33 =
e21Eel2 � C13E11 � C23E22

C33
.

(2.34)

On the contrary, the plane strain condition, used in [46] for beams with W >> H,
assumes

E13 = E23 = E33 = 0. (2.35)

Solid Eigenfrequencies

The eigenfrequencies of the system, important to understand the dynamical behav-
ior of the solid, can be estimated considering only the contribute of elastic terms as
in [34] and assuming:

u = û(X) exp(�j w t) and Fe = 0 , (2.36)

where w is the set of natural pulsations of the beam. The influence of the ratio be-
tween the tip mass and the total mass is investigated using the plane state assump-
tions. The total mass of the beam mb is evaluated as:

mb = rs L W hs + 2rp L W hp. (2.37)

Post-processing

The electrical power absorbed by the load resistance is estimated by evaluating using
equations (2.19,2.20).
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The volume average in the 3D model of the axial strain component along g3 is
evaluated by:

Ē33 =
1

Lp (hs + 2hp) W

Z

B
E33 dV. (2.38)

Finally, the electrical current density in the piezoelectric material is given by J =
Ḋ. This relation implies that the main contribution to the electrical current density
comes from the coupling with the deformation term in the electrical displacement.

2.2.2 Simulations and results

The reference solution for the problem at hand is provided by the numerical in-
tegration of the system of equations (2.8, 2.9), together with boundary and initial
conditions, on a 3D domain, by means of a Finite Element Method. The simplified
2D models are obtained by solving the same balance laws on a 2D (XY) space, and
by enforcing conditions (2.33) and (2.34) for the plane stress, and (2.35) for the plane
strain case. In this section we compare results of these two 2D models against the
reference 3D solution, in terms of harvested electrical power. Moreover, we investi-
gate some further differences in terms of eigenfrequencies and frequency behavior
between the two plane state assumptions.

Validity of modeling plane state assumptions

The validity of each plane state assumption depends on the width W of the solid
body. Generally, the plane strain condition is best suited to large bodies, i.e. W/H >>
1, while a thin one, W/H << 1 is better approximated by a plane stress condition.
In Fig. 2.7a we observe the deformation e33, for two different widths in a 3D simula-
tion, along direction g3 at position X = L/2 and Y = hs/2 + hp/2, i.e. in the upper
piezoelectric layer. 7

5

70 72 74 76 78 80
�4

�2

0

2

4
·10�6

�
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a) b)FIGURE 2.7: Results from the 3D model for two different widths
W/H = 0.5 and W/H = 1.5 · 103. a) Distribution of strain e33 along
direction g3 at position X = L/2 and Y = hs/2 + hp/2 at two dif-
ferent instants. The large beam (W/H = 1.5 · 103, blue dashed trace)
yields e33 = 0 almost everywhere, except at the boundaries; on the
contrary, the narrow one (W/H = 0.5, red solid trace) shows a quasi
uniform distribution for e33. b) Volume averaged strain ē33 vs a time
interval t. ē33 of wide beams attains much smaller values than for the

narrow ones.
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The narrow cantilever, namely W/H = 0.5, undergoes a quasi-uniform strain E33
(which conforms to the plane stress hypothesis); on the contrary, the large cantilever,
namely W/H = 1.5 · 103, has E33 ⇡ 0 for the vast majority of the section (which con-
forms to the plane strain hypothesis), except at the borders, where the body is free
to deform and therefore the stress vanishes. With reference to Fig. 2.7b, the time
history of the volume average strain Ē33 confirms that the larger body is indeed un-
der plane strain conditions. However it is still not clear what the effectiveness of5
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FIGURE 2.8: Top panels: time averaged electrical power P̄ of each 2D
model, normalized by the reference value provided by the 3D model,
plotted against non-dimensional width W/H. Bottom panels: aver-
age electrical power per unit width plotted against non-dimensional
width W/H for different models; forcing frequency is f = 30 Hz
a) and c), and f = 60 Hz b) and d. External load resistance per unit
width is fixed at rel = 3.15 · 105 Ohm/m; For both forcing frequencies,
the plane strain 2D model is in accordance with 3D results for the ra-
tio W/H > 103; on the contrary, plane stress is closer to 3D results for
W/H < 10. The bottom panels show that there exists a width produc-
ing a maximum electrical power: such condition corresponds to the
match between internal and external electrical resistance. Both plane
state assumptions fail consistently in the range 10 < W/H < 103,

where the power peak is located.

the plane state assumptions is. With this purpose, we performed some simulations
using different widths W and a fixed height H and length L for the 3D model. The
time averaged electrical power generated by the piezoelectric layers is compared be-
tween the two different models with two forcing frequencies, namely f = 30 Hz and
f = 60 Hz, plot a and plot b of Fig. 2.8, respectively. For ratios W/H > 103 the aver-
age electrical power given by the plane strain assumption P̄strain better approximates
the 3D one P̄3D, still with an error that can go up to 30% for the higher frequency.
On the other hand, for W/H < 10 the plane stress hypothesis yields better results
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with a maximum error around 30% as well. It is worth recalling that the non-linear
dependance of the average electrical power on the width stems from the boundary
condition 2.31; hence, the width of the device determines the inner resistance of the
generator. This is confirmed by the plots c) and d) of Fig. 2.8 where it is shown that
the maximum power is located at the width corresponding to the external electrical
resistance load rel . We also observe that the peak power estimate provided by the
3D model is not matched by any of the two 2D models.

Further differences between plane state assumptions

The plane state assumptions also yield different results in terms of frequency re-
sponse at fixed ratio W/H = 50. The comparison between the first and second res-
onance frequencies with the ratio m/mb is shown in Fig. 2.9. In the analyzed setup,
according to modal analysis of eq. (2.36), we change the added mass value that mod-
ifies consistently the resonance frequencies for m < 0.5 mb. Moreover, plane stress
hypothesis yields a lower resonance frequency, and this effect becomes more rele-
vant for the second mode. Particularly, for our simulations employing m/mb ⇡ 1.4
and parameters values listed in Table (2.1, 2.2) we obtain for the first mode the reso-
nance frequencies fr ⇡ 44 (Hz) and fr ⇡ 47 (Hz), respectively using the plane stress
and the plane strain hypothesis. For what regards plane stress and plain strain hy-
pothesis we carried out two further types of analysis: firstly we varied the electrical
load resistance from R = 103 Ohm to R = 106 Ohm at fixed external force frequency
f = 30 Hz (Fig. 2.10a); then we vary the frequency from f = 30 Hz to f = 60 Hz
with rel = 3.15 · 105 Ohm/m (Fig. 2.10b). The variation of frequency highlights a de-
pendence of the first resonant frequency of the device on the modelling assumption:
fr ⇡ 45 Hz for the plane stress model and fr ⇡ 50 in the case of plane strain.
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FIGURE 2.9: Effect of added mass on first and second resonance fre-
quencies, with both plane state hypotheses. The resonance frequen-
cies are lower in the plane stress case. The two black stars in the
close-up frame indicate the resonance frequencies of the first mode
for the device modeled in the following with parameters listed in Ta-

bles (2.1,2.2).

The variation of load resistance shows that the maximum power also depends
on such assumption, with the plane stress yielding a larger value. Apart from such
vertical shift, shape of the power-load curve does not seem to depend on the under-
lying assumption. The optimum value for the load resistance is slightly different;
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this suggests that the mechanical hypothesis on the plane state influences also the
electrical counterpart of the result, as stated in the previous section.
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Figure 18: Results of head-clamped fish (small displacements) and free fish (large displace-
ments) with frequency f and wavelength � and equal maximum amplitude of distorsion Eo. A
linear interpolation is used between data results represented by the black dots. (A) Thrust VS
frequency and wavelength for head-clamped fish and (B) fish velocity vswim VS frequency and
wavelength for free fish. (C) Tail amplitude VS frequency and wavelength for head-clamped
fish. (D) Tail amplitude VS frequency and wavelength for free fish. Fig:ref
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Figure 6: Plane stress VS plane strain with parallel connection. a) We show average

electrical power P̄ and maximum strain �m with fixed external force frequency f = 30

Hz, varying the load resistance from 103 to 106 �. The maximum average power is

developed with R ⇡ 3 · 104 �, while the maximum strain is reached with small value of

load resistance. b) We show same features with fixed load resistance R = 104 �, varying

the frequency fro 30 to 60 Hz. The plane stress and the plane strain conditions yield

di�erent resonance frequencies and this implies di�erent results in terms of both electrical

power and maximum strain of the device.

18

FIGURE 2.10: Plane stress VS plane strain with parallel connection.
a) We show average electrical power P̄ and maximum strain Em with
fixed external force frequency f = 30 Hz, varying the load resistance
from 103 to 106 Ohm. The maximum average power is developed
with R ⇡ 3 · 104 Ohm, while the maximum strain is reached with
small value of load resistance. b) We show same features with fixed
load resistance R = 104 Ohm, varying the frequency fro 30 to 60 Hz.
The plane stress and the plane strain conditions yield different reso-
nance frequencies and this implies different results in terms of both

electrical power and maximum strain of the device.

Finally, the analysis in terms of maximum strain em for all the time interval of
the simulation and the generated power is of paramount importance to accurately
predict the range of operativeness of the system. The maximum strain, see Fig. 2.10,
has a non-linear dependence on electrical resistance load R. This behavior is the re-
sult of the feedback on mechanical properties induced by the external resistive load.
This opens up the possibility to design a device with tunable mechanical properties.
Moreover, the plane state assumption yields very different results in terms of maxi-
mum strain. With reference to Fig. 2.11, employing the plane stress modelling, with
f = 60 Hz and A = 7.5 kPa, leads to a substantial underestimation of the maximum
deformation, thus exposing the device to the possibility of structural failure. By con-
trast, in this case, the fracture threshold given by [52] is exceeded by the 3D model
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and also by the 2D model with the plane strain assumption.
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FIGURE 2.11: Comparison between maximum strain over time for
different models. Results at fixed external force frequency f = 60 Hz,
rel = 3.15 · 105 Ohm/m and force amplitude A = 7.5 kPa. The frac-
ture threshold is exceeded by the 3D and plane strain model for this
case while the plane stress assumption underestimate the maximum

deformation.

TABLE 2.2: Key model and material parameters of the bimorph solid.

Symbol Value Parameter
L 5.08 [cm] solid length
W 3.18 [cm] solid width
hp 0.026 [cm] piezoelectric layer
hs 0.014 [cm] substructure layer
Ys 1.05 ⇤ 1011[Pa] Young’s modulus
ns 0.3 Poisson number
rs 9000

⇥
kg ⇤ m�3⇤ substructure mass density

rtip 571.8 [kg/m2] tip mass
A 50.0 [N/m2] load amplitude

mb 0.085 [kg] beam total mass
rel 3.15 ⇤ 105 [Ohm/m] electrical resistance
rp 7750

⇥
kg ⇤ m�3⇤ piezoelectric mass density

In this work we assess the validity of two alternative plane state assumptions
for the modelling of piezoelectric cantilevers often employed for energy harvesting.
While there are modelling scenarios which require the resort to such simplified 2D
models, extreme attention must be paid to the underlying assumptions, especially
when the models are employed to predict power performance. Indeed the two hy-
pothesis are here demonstrated to be good approximations of the real 3D system
only in specific ranges of width-to-height shape ratio of the piezoelectric device.
More specifically, the plane stress assumption better approximates the reference so-
lution in the range W/H < 10. By contrast, the plane strain condition yields results
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closer to 3D solution for ratios W/H > 103. Between these two thresholds both as-
sumptions fail, and such disagreement is relevant in view of the fact that the power
peak of the analyzed device falls in this range. Such power peak, here estimated as-
suming a simple resistive load, results by the match between the external load and
the internal resistance of the piezoelectric device, the latter being largely over (or un-
der) estimated in broad ranges of the above mentioned shape ratio. Marginal differ-
ences are also reported in the estimation of resonance frequencies which, however,
could represent a misleading datum for an optimized design of energy harvesting
devices. Finally, employing the plane stress modelling would lead to a substantial
underestimation of the maximum allowable deformation, thus exposing the device
to possibility of structural failure.

2.3 Fluid flow induced vibrations of a piezoelectric cantilever

unimorph and energy harvesting

One of the most studied areas in piezoelectric materials is the use of the piezoelec-
tric effect to convert ambient vibration into useful electrical energy. An example of
such application is the energy harvesting through piezoelectric materials in a flow-
ing fluid [7, 8]. Fluid flow has the potential to provide significant mechanical energy
input for piezoelectric harvesters. However, the efficient conversion of the bulk ki-
netic energy of a steady and uniform flow into time-dependent elastic energy in
the piezoelectric structure remains a significant challenge. Moreover, the model-
ing of such multiphysics problem has still to be fully investigated and requires ad-
vanced numerical tools which can be tackled with COMSOL Multiphysics. In this
section, we focus on the generation of electrical power through a piezoelectric solid
immersed in a channel using an inverted configuration of the solid with respect to
the flow, similarly to [8]. The solid is a non-homogeneous bilayer solid, clamped
at one end on a fixed circular constraint. The solid is composed of two layers; one
is piezoelectric (PZT 5-A) while the other has a structural function and enables the
generation of electrical power by the piezoelectric layer. Experiments were carried
out in the Hydraulics Lab at University of Roma Tre with the help of Ing. Mario La
Rosa for what regards the engineering of the electrical setup. Experimental results,
which are later described together with the experimental setup, are compared with
numerical simulations.

2.3.1 Experimental setup and results

Energy harvesting through a piezoelectric sheet immersed in a fluid flow in a chan-
nel is investigated by means of an experimental setup (see cartoon of Fig. 2.12 and
actual setup in Fig. 2.13). The fluid flow has inlet velocity U, which is reached using
two electrical water pumps and measured indirectly with an electronic rate of flow
gauge. The device measures a rate of flow Q which is related to the inlet velocity by:

U =
Q

Wc Tc
, (2.39)

where Wc = 0.81 m is the fixed channel width and Tc is the water height level just
before the position of the experimental setup.

The experimental setup consists of a fixed aluminum cylinder of diameter 2.6
cm where it is clamped one end of a structural steel sheet with size 11 cm ⇥5 cm
⇥0.01 cm attached (using a biphasic glue) to a piezoelectric sheet. The steel sheet has
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Young’s modulus 210 GPa measured through a load test and by the first frequency
of the transversal vibration.

6

Lateral view

a)

b)

a) b)

Piezoelectric sheet

Underwater led

Laser

Cylinder
Structural layer

FIGURE 2.12: Cartoon of the experimental setup for energy harvest-
ing. a) Top view of the setup which consists of a channel with a fluid
inlet velocity U and a fixed cylinder with a clamped bilayer structure
composed of a structural and a piezoelectric layer. b) Lateral view
of the setup; the bilayer structure has a half cylinder which increases

vibrations.

The piezoelectric sheet is the DuraAct Patch P-876-A12 made by Physik Instru-
mente which is a laminated structure consisting of a piezoceramic PZT-5A plate,
electrodes and polymer materials. The elastic and electric properties of such solid
are listed in Table 2.1. Moreover, the piezoelectric sheet is manufactured with a
bubble-free injection method and the polymer coating simultaneously serves as a
mechanical preload as well as an electrical insulation since the piezoceramic and the
electrodes have to be immersed in water. The piezoelectric sheet has an operating
voltage between �100 V and 400 V and size: 6.1 cm ⇥3.5 cm ⇥0.02 cm. Two twisted
insulated electrical wires connected to the piezoelectric sheet transmit the generated
electrical potential to a variable external load resistance (from 1 kOhm to approxi-
mately 5 MOhm) which is put outside the channel and not in contact with water. It
is worth noting that, a double constraint was inserted in the experimental setup to
avoid a too huge deformation of the bilayer structure which over a critical velocity



24 Chapter 2. Smart materials converting mechanical to electrical energy

6

Lateral view

a)

b)

a) b)

Piezoelectric sheet

Underwater led

Laser

Cylinder
Structural layer

FIGURE 2.13: Actual experimental setup for energy harvesting. a)
View of the experimental setup in the channel: a bilayer structure,
a cylinder, an underwater led and a laser. b) The mixed signal os-
cilloscope used to measure the electrical potential generated by the

piezoelectric sheet.

may induces a steady bent shape as observed in [8]. Experiments were analyzed
through the following devices:

• A mixed signal oscilloscope Yokogawa DLM2024 2.5 GS/s 200 MHz

• A differential probe Yogogawa 700924

• A laser

• A high speed camera

• An underwater led

In particular, the mixed oscilloscope (see Fig. 2.13b) was powered by a DC power
supply and the differential probe was connected on one end to the oscilloscope itself
and on the other end to the external variable load resistance extremities. Due to the
fluid flow and the presence of the half cylinder the bilayer oscillates (see Fig. 2.14)
and generates an electrical potential which is measured with the differential probe
(see Fig. 2.14 bottom). Images of the bilayer structure are obtained through a high
speed camera which has a time resolution of 2000 frames per second. Using expres-
sion in eq. (2.19) it is possible to evaluate the harvested electrical power over time
which is showed in Fig. 2.15 for the inlet fluid velocity U = 0.8 m/s. Then, shifting
the electrical load resistance from 1 kOhm to 4 MOhm it is possible to evaluate the
average harvested electrical power for two different inlet velocities U = 0.8 m/s (red
dots) and U = 1.1 m/s (orange dots), see Fig. 2.16. The average harvested power has
a maximum similarly to figures Fig. (2.3, 2.4). The optimal load resistance changes
with the inlet fluid velocity; in particular it is found Ropt = 45 kOhm for U = 0.8
m/s and Ropt = 200 kOhm for U = 1.1 m/s. The transversal vibration frequency of
the bilayer structure is evaluated through image analysis and through a fast Fourier
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FIGURE 2.14: Video frames of the experiment with the inlet fluid ve-
locity U = 0.8 m/s. The bilayer structure oscillates periodically due
to the fluid flow. The deformation of the piezoelectric sheet generates
an electrical potential on the external load resistance which is mea-

sured with the mixed signal oscilloscope.

transform of the electrical potential signal on the external load resistance. The fast
Fourier transform allows to find the main frequency of the bilayer vibration which
for the inlet fluid velocity U = 0.8 m/s is 2.6 Hz and for U = 1.1 m/s is 1.4 Hz.
Indeed, at U = 1.1 m/s the bilayer vibrates at lower frequencies since the critical
inlet fluid velocity is exceeded but the solid still oscillates due to the presence of the
constraints showed in Fig. 2.13. The lower frequency induces a large optimal load
resistance as shown in Fig. 2.16. Since, the optimal load resistance changes with the
inlet fluid velocity a resistive matching circuit is required to maximize the harvested
electrical power. This, may be object of further investigations as well as the analysis
of the fluid field with the laser and the particle image velocimetry (PIV).
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2.3.2 Modelling of a piezoelectric cantilever immersed in a fluid flow

The problem is investigated using a numerical model which gives as result the elec-
trical power harvested on the external electrical load resistance. In the model, we
use the fluid-structure interaction (FSI) package of COMSOL together with the elec-
trostatics and electric circuit packages. In particular, large deformations of the solid
are effectively described through the moving mesh and the remeshing features of
COMSOL as in [53, 54]. The advantage of numerical simulations easily allows para-
metric studies for different sizes of the half cylinder and for different inlet velocities
to optimize the energy harvesting device. It is worth noting that in this case the
multiphysics approach is necessary as some relevant informations about the energy
harvesting just arise by the coupling between different physics.

The model is solved in a bi-dimensional (2D) space using a orthonormal refer-
ence frame (o, e1, e2) and coordinates (X,Y), with o the origin and e1 leaning on
the horizontal axis of symmetry of the channel. The computational domain W is the
union of a solid domain Ws, assumed as reference configuration, and a mesh domain
Wm, (see, Fig. 2.17) which represents the domain occupied by the fluid at any instant
t of the time interval T . In particular, the solid domain is composed of a piezoelectric
solid Wsp which, when deformed, develops an electrical field and a structural solid
Wss which has a half cylinder shape to improve vibrations and does not generate
any electrical field. The piezoelectric solid is the PZT-5A which was already used in
the previous simulations and in the performed experiments. The elastic effect of the
polymer material which insulates the piezoceramic in the experiments is neglected
in the model. Moreover, the Young’s modulus of the half cylinder at the end of the
structure in the simulations is assumed the same of the steel since it is thick and its
deformation could be neglected.

The balance equations for the solid are written with respect to Ws (material, or
Lagrangian formulation), while those for the fluid are written with respect to Wm
(Arbitrary Eulerian-Lagrangian (ALE) formulation [55]). The channel has height Hf
and length L f , the piezoelectric solid has a length Lp and thickness hp, and the struc-
tural solid has length Ls and thickness hs. Both solids are clamped to a circular fixed
constraint of diameter D (the white colored circle in Fig. 2.16). State variables of
the model are the material vector field us, describing the displacement of the solid,
the vector field v f , representing the velocity of the fluid, the material scalar field
V, describing the electric potential in the piezoelectric solid and the vector field um,
describing the mesh displacement with respect to the mesh domain Wmo which is re-
generated at each remeshing. The equations of the problem consist of two equations
for the fluid, the balance of forces and the conservation of mass, one for the solid, the
balance of forces, one additional for the piezoelectric solid, the Gauss’s Law and a
last one for the mesh displacement in the mesh domain usually taken as a Poisson’s
like equation [56]:

r f v̇ f + r f (rv f )(v f � u̇m) = div G in Wm ⇥ T ,

div v f = 0 in Wm ⇥ T ,

rsüs = div S in Ws ⇥ T ,

div D = 0 in Wsp ⇥ T ,

div(Arum) = 0 in Wmo ⇥ T .

(2.40)
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The upper dot indicates the time derivative, r the nabla operator, div the divergence
operator, r f the fluid mass density, G the fluid stress, rs the solid mass density, S the
solid reference stress, D the electric displacement of the piezoelectric solid and A

the Winslow operator [56]:

(Arum)ij = Aijhk(um)h,k. (2.41)

The fluid is assumed incompressible and linearly viscous with dynamics viscosity
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FIGURE 2.17: a) Initial geometry of the model with the boundaries of
the channel where some boundary conditions are applied. The gray
colored domain represents the fluid. b) Zoom of the initial geome-
try close to the solid. The green domain is the structural solid and
the orange domain is the piezoelectric solid which is connected to an

external electrical load resistance not shown in the figure.

µ f ; its stress G is given by:

G = �p f I + µ f (rv f + (rv f )
T), (2.42)

where p f is the fluid pressure and I is the identity matrix. Both structural and piezo-
electric solid are assumed to be linear elastic:

S = F S
e, (2.43)

with F = I + rus the deformation gradient and with stress response S
e given by

eq. (2.29) for the structural solid Wss and by eq. (2.2) for the piezoelectric solid
Wsp. In the structural solid, Ys and ns are respectively the Young’s modulus and the
Poisson ratio of the material. In the piezoelectric solid C is the stiffness tensor, e is
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the piezoelectric coupling tensor and Eel = �rV is the electric field. Parameters
of the geometry and the fluid are indicated in Table (2.3), while parameters of the
solids and the non-zero components of C and e are indicated in Table (2.1). Finally,
the electric displacement in the piezoelectric solid is given by eq.(2.3). System of
equations (2.40) is supplemented with boundary and initial conditions; ∂Wsm is the
interface between the solid body and the fluid, where FSI boundary conditions are
posed:

T n = �G n , v f = u̇m = u̇s on ∂Wsm ⇥ T , (2.44)

with n normal to the solid boundary and T = S(F
⇤)�1 the Cauchy stress in the

solid; on the boundaries of the channel ∂Wm we assign a no-moving condition for
the mesh:

um = 0 on ∂Wm ⇥ T , (2.45)

Nevertheless, on the channel boundaries we assign additional conditions. In partic-
ular, on the top and bottom boundaries of the channel ∂Wmtb we assign a no slip wall
condition:

v f = 0 on ∂Wmtb ⇥ T (2.46)

and on the left boundary of the channel ∂Wml we assign a horizontal inlet fluid ve-
locity condition:

v f = (1 � exp(�t/tc))Ug(Y) e1 on ∂Wml ⇥ T , (2.47)

with t a characteristic time, U the steady inlet velocity and g(Y) the vertical profile
of the inlet flow:

g(Y) =
(Y � H/2)(Y + H/2)

(�H2/4)
. (2.48)

Finally, on the right boundary of the channel ∂Wmr we assign a outlet condition:

p f = 0 on ∂Wmr ⇥ T . (2.49)

At the interface between the piezoelectric solid and the structural solid ∂Wspb we
assign a null reference electrical potential V = 0, while on the top boundary of the
piezoelectric solid ∂Wspt we assign a potential V = Ṽ such that it holds:

Z

∂Wspt

Ḋ · n ds =
Ṽ
R

(2.50)

where R is the external electrical load resistance. The left and right boundaries of
the piezoelectric solid ∂Wspl are assumed to be insulated from an electrical point of
view:

D · n = 0 on ∂Wspl ⇥ T . (2.51)

On the interface between the solid and the fixed circular constraint ∂Wsc the dis-
placement of the solid is null:

us = 0 on ∂Wsc ⇥ T . (2.52)

Finally, we assign homogeneous initial conditions. All parameters of the model are
listed in Tables (2.1, 2.3). Reynolds number of simulations is approximately 105.



30 Chapter 2. Smart materials converting mechanical to electrical energy

2.3.3 Simulations and results

By solving system eq. (2.40) together with boundary and initial conditions, using
data of Tables (2.1, 2.3), we obtain large deformations of the solid due to the fluid
kinetics energy which is converted into elastic energy of the solid. In Fig. 2.18, fluid
pressure and vorticity fields over a region of the domain are observed at different
instants. The vorticity field is evaluated by taking the third component of the curl of

pf (Pa)

�1500 500

�3 (1/s)

�500 500

t = 4.4 s

t = 4.5 s

t = 4.6 s

t = 4.7 s

Figure 4: Fig:refFIGURE 2.18: Pressure and vorticity fields at different instants. The
solid exhibits large deformations which are described by the moving

mesh and the remeshing features.

the fluid velocity:
w f = (r ⇥ v f ) · e3. (2.53)

In particular, a large circular vortex (see Fig. 2.19) is created by the presence
of the half cylinder. The latter is essential to increase vibrations of the solid and
harvest more electrical power in such configuration. The pressure profile over a
horizontal cut line below the solid shows a traveling wave which is not compensated
by the pressure above the solid itself. This pressure difference induces a deformation
which can be measured through the vertical displacement at the tip of the solid (see
Fig. 2.20a). The displacement, after a transient state due to the evolution of the
inlet profile over time, reaches a stationary oscillatory behavior. The frequency of
oscillations is evaluated through a frequency spectrum based on the fast Fourier
transform algorithm and showed in Fig. 2.20b for different inlet fluid velocities. The
vibration amplitude increases with the inlet fluid velocity as showed in experimental
results [8]. Moreover, also the vibration frequency reasonably increases with the inlet
fluid velocity; in particular, we obtain f = 1.4 [Hz] and f = 1.6 [Hz], respectively
for U = 0.5 [m/s] blue curve and U = 1.0 [m/s] red curve. It is worth noting, that
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FIGURE 2.19: Top: Zoom of vorticity field and cut line where the
pressure is evaluated at different instants. Bottom: Pressure is evalu-
ated at different instants on the cut line showed in the top image. The
pressure moves forward like a wave and induces large deformations

of the solid.

these latter results may go against the experimental results which showed a lower
frequency of the solid vibration at a higher velocity. However, the lower frequency
observed in the experiments is due to the fact that the critical fluid velocity was
reached and the double geometric constraint (which was not inserted in the model)
had a primary role in the origin of a low frequency vibration mode.

The elastic energy of the piezoelectric solid is transformed into electrical energy
and harvested through an external electrical load resistance. The harvested electrical
power over time is showed in Fig. 2.20 and evaluated by expression in eq (2.19).
The average harvested electrical power is approximately 0.5 [mW/m] which is in
agreement with classical experimental results [3, 34] and with results of experiments
carried out. It is worth noting, that the optimal electrical resistance load, which
maximize the harvested electrical power, was not investigated through numerical
means. Indeed, in this case, the optimal electrical resistance load depends on the
vibration frequency of the solid and therefore changes with the inlet fluid velocity
as demonstrated in Fig. 2.19. This is quite important in order to design a resistive
matching circuit which optimize the energy harvesting [57].

A further improvement of the model may be represented by the use of RANS-
based turbulence models which could describe more effectively the fluid flow and
its interaction with the solid.
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FIGURE 2.20: Vertical displacement of the solid evaluated at the free
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is obtained after a transient state. b) The frequency spectrum of the
vertical displacement for two different inlet fluid velocities U = 0.5
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the frequencies of solid vibration.
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FIGURE 2.21: Harvested electrical power on load resistance over
time. After the transient state, the harvested average electrical power

is steady and not null.
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TABLE 2.3: Geometry of the model and fluid physical parameters

Symbol Value Parameter
L f 2 [m] channel length
Hf 0.65 [m] channel height
Ls 0.11 [m] length of structural solid
Lp 0.061 [m] length of piezoelectric solid
hs 1 · 10�4 [m] structural layer thickness
hp 2 · 10�4 [m] piezoelectric layer thickness
D 0.05 [m] fixed constraint diameter
r f 1000

⇥
kg ⇤ m�3⇤ fluid mass density

µ f 10�3 [Pa ⇤ s] dynamic fluid viscosity
U 1

⇥
m ⇤ s�1⇤ fluid inlet velocity

tc 1 [s] characteristic time
rs 7800

⇥
kg ⇤ m�3⇤ solid mass density

Ys 1011 [Pa] Young’s modulus
ns 0.3 Poisson ratio
R 104 [Ohm] electrical load resistance
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Chapter 3

Smart materials converting

chemical to mechanical energy

3.1 Hydrogel materials

Hydrogels are materials made of polymer chains linked with bonds called also cross-
links which give an elasticity to the material. The main feature of hydrogels is the
capability of large swelling and deformation due to the solvent absorption. The
latter process generally ends with a final steady state characterized by a chemical
equilibrium between hydrogels and environment that yields an increase of the hy-
drogel initial volume depending mainly on the elastic stiffness, temperature and
dis-affinity between polymer and solvent. Indeed, the polymer chains are able to
absorb other type of molecules from the external environment by literally "stretch-
ing" themselves. In these materials, physics, chemistry and mechanics are coupled
in one single problem. This strong interaction between different fields lets arise also
peculiar phenomena such as collapses, instabilities, unexpected volume transitions
and phase coexistences that have been intensively studied for decades by the scien-
tific community [9, 58–62]. These materials can be designed to be responsive with
respect to different kind of stimuli such as chemical, electrical or thermal stimuli.
In the common case, during swelling and de-swelling chemical energy is converted
into mechanical energy which can be used to realize: soft machines [11] muscles-
like actuators [63], microfluidic actuators [12], valves [64] and micropumps [65]. In
particular, the focus of this thesis will be on the conversion of chemical energy in-
tended as the absorption or release of a liquid by a solid body due to a change of the
environment humidity or of the content of solvent.

3.1.1 Modelling of hydrogels

The starting point is the multiphysics model presented and discussed in Ref. [66]
and successively refined in Ref. [67], where the buckling dynamics of a solvent–
stimulated and stretched elastomeric sheet are investigated. The physical processes
associated with swelling and de–swelling are described within the limits of a nonlin-
ear field theory which views water–polymer mixture as a homogenized continuum
body, allowing for a mass flux of the solvent [68–71]. The mathematical modelling
is derived from first principles: the principle of null working and the conservation
of the water mass deliver the balance equations of forces and solvent concentration,
respectively; the dissipation principles select the admissible constitutive processes.
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Kinematics

We introduce a dry-reference state Bd of the gel, and denote with Xd 2 Bd a material
point and with t 2 T an instant of the time interval T . Our multiphysics model of
gel has two state variables: the displacement field ud(Xd, t) ([ud]=m), which gives
the actual position x, at time t, of the point Xd as x = Xd + ud(Xd, t)1, and the molar
water-concentration per unit dry volume cd(Xd, t) ([cd] =mol/m3). One of keys of
the general model is the volumetric constraint coupling the two state variables:

Jd = det Fd = Ĵd(cd) = 1 + Wcd , (3.1.1)

where Fd = I + rud is the deformation gradient and W is the molar volume of the
solvent ([W] = m3/mol). The constraint (3.1.1) implies that any change in volume
of the gel is accompanied by uptake or release of solvent. This in turn entails that
the actual volume-element dv of the body is related to its dry volume-element dVd
through the water concentration cd, by the formula

dv
dVd

= Jd = Ĵd(cd) = 1 + Wcd . (3.1.2)

Stress and chemical potential

The constitutive equation for the stress Sd ([Sd]=Pa = J/m3) at the dry configura-
tion Bd, henceforth termed dry–reference stress, and for the chemical potential µ
([µ]=J/mol) are derived from a relaxed version of the Flory–Rehner thermodynamic
model [72, 73]. It is based on a free energy y per unit dry volume which depends
on Fd through an elastic component ye, and on cd through a polymer–water mix-
ing energy ym: y = ye + ym. The relaxed free–energy yr includes the volumetric
constraint:

yr(Fd, cd, p) = ye(Fd) + ym(cd) � p(Jd � Ĵ(cd)) . (3.1.3)

The pressure p represents the reaction to the volumetric constraint, which maintains
the volume change Jd due to the displacement equal to the one due to solvent ab-
sorption or release Ĵ(cd). Key features of y (or yr) are the following: (i) y is a density
per unit volume of the dry polymer; (ii) the elastic contribution ye hampers swelling;
(iii) the mixing contribution ym favors swelling. The constitutive equations for the
stress Sd and the chemical potential µ come from dissipation issues and prescribe
that

Sd = Ŝd(Fd) � p F
?
d and µ = µ̂(cd) + p W , (3.1.4)

with
Ŝd(Fd) =

∂ye

∂Fd
, µ̂(cd) =

∂ym

∂cd
, and F

?
d = Jd F

�T
d . (3.1.5)

Typically, the Flory–Rehner thermodynamic model prescribes a neo-Hookean elastic
energy ye and a polymer–water mixing energy ym:

ye(Fd) =
Gd
2

(Fd · Fd � 3) , ym(cd) =
RT
W

h(cd) , (3.1.6)

with
h(cd) = W cd log

W cd
1 + W cd

+ c
W cd

1 + W cd
, [h] = 1 , (3.1.7)

1Or, equivalently, through the corresponding position vectors: x = Xd + ud(Xd, t).
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G being the shear modulus of the dry polymer, R the universal gas constant, T
the temperature, and c the Flory parameter. Their physical units are [Gd]=J/m3,
[R] =J/(K mol), [T] = K. The non dimensional Flory parameter c, called dis-affinity,
is specific of each water–polymer pair. The parameter c may possibly depend on
temperature and deformation; these dependence are important when temperature–
driven volume transition in hydrogels is studied, as in Refs. [62, 74, 75].

From (3.1.4 , 3.1.5) and (3.1.6, 3.1.7) we obtain the constitutive equations for the
dry-reference stress Ŝd(Fd) and for chemical potential µ̂(cd); this latter can be rewrit-
ten in terms of Jd by exploiting the volumetric constraint (3.1.1):

Ŝd(Fd) = Gd Fd ,

µ̂(cd) = µ̂(Jd) = R T
⇣

log
Jd � 1

Jd
+

1
Jd

+
c

J2
d

⌘
.

(3.1.8)

The actual stress (Cauchy) T is then given by the constitutive term T̂(Fd) minus the
pressure term

T = J�1
d Sd F

T
d = T̂(Fd) � p I , (3.1.9)

with T̂(Fd) = Gd/Jd B, and B = Fd F
T
d .

Solvent flux

A key element in the transient swelling and de–swelling processes is the solvent
flux; here, we assume the following prescription for the reference solvent flux hd,
[hd]=mol/(m2 s),

hd = hd(Fd, cd, p) = �M(Fd, cd)r(µ̂(cd) + p W) . (3.1.10)

which is consistent with the dissipation principle, provided that the mobility tensor
M(Fd, cd) is positive definite; [M]=mol2/(s m J). Among the many admissible repre-
sentations for the mobility, here we assume M to be isotropic, and diffusion always
to remain isotropic during any process. This is a largely shared assumptions (see
Refs. [68, 70, 71], and Ref. [66] for a full discussion on the representations of M

different from the isotropic one), and linearly dependent on cd. We have:

M(Fd, cd) =
D

RT
cdC

�1
d , Cd = F

T
d Fd , (3.1.11)

with D ([D]=m2/s) the diffusivity. Using m to denote the outward unit normal,
qs = �hd · m > 0 is a positive boundary source, that is, an inward flux.

The Initial-Boundary Value problem

The model is based on a system of bulk equations, describing the balance of forces
and the balance of water concentration, coupled through the volumetric constraint
(3.1.1), and the constitutive equations (3.1.8): on Bd ⇥ T

0 = divSd and ċd = �divhd , (3.1.12)

with a dot denoting the time derivative and div the divergence operator. Equations
(3.1.12) must be complemented with mechanical boundary conditions on the traction



38 Chapter 3. Smart materials converting chemical to mechanical energy

t and/or displacement ūd:

Sd m = t , on ∂tBd ⇥ T ,

ud = ūd , on ∂uBd ⇥ T ;
(3.1.13)

and with chemical boundary conditions on solvent source qs and/or concentration
cs:

�hd · m = qs , on ∂qBd ⇥ T ,

cd = cs , on ∂cBd ⇥ T .
(3.1.14)

Notation ∂sBd with s = t, u, q or c in the above equations denotes the portion of
the boundary of Bd where traction t, displacement ūd, solve source qs, and concen-
tration cs are prescribed, respectively. Finally, the model is completed by the initial
conditions for the state variables ud and cd:

ud = udo , cd = cdo , on Bd ⇥ {0} (3.1.15)

Free swollen states

Hydrogel theory is able to predict free swollen states of hydrogels which are im-
mersed into a bath of assigned chemical potential µext = µe. In particular, these
states are assumed to be stress-free Sd = 0 and isotropic: Fd = lo I. Under these
conditions, equations in (3.1.4) prescribe:

RT
✓

log
l3

o � 1
l3

o
+

1
l3

o
+

c

l3
o

◆
+

Gd
lo

W = µext, (3.1.16)

where lo identifies the uniform swelling ratio corresponding to a given shear modu-
lus Gd once the external chemical potential µext and the Flory parameter c have been
fixed. When lo >> 1 (that is, 1/lo << 1), Eq. (3.1.16) can be approximated, by
estimating the leading order term in the asymptotic expansion up to O(1/l8

o), as

lo =

✓
1/2 � c

Gd

◆1/5
, (3.1.17)

corresponding to µext = 0

3.2 Shape control of hydrogels and osmotic pumps

The shape of hydrogels can be controlled through the composition of the hydrogel
material or through not homogeneous boundary conditions. In particular, in the
first case, expansion and bending can be obtained using materials composed of two
layers with different stiffness. In this section we focus on the second case and we
realize steady curved shapes from homogeneous hydrogel flat structure which are
in contact with two environments at different chemical conditions. We numerically
investigate the behavior of beam-like and plate-like structures during the transient
state, which realize osmotic pumps. Through numerical experiments, we determine
the relationship between the difference in the chemical potentials at the top and bot-
tom of a beam and the curvature of the bent beam as well as the Gaussian curvature
of a spherical cap morphed from a flat plate. We also propose an approximate mod-
elling of both the beam and the plate, to evaluate explicitly that relationship and
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show the good agreement between those formulas and the outcomes of the numeri-
cal simulations.

Hydrogels swell and contract in response to a wide range of environmental stim-
uli and, due to their properties, have been intensively studied as one of the most
promising materials for multifunctional devices. On one side, there is a great choice
both in the type of stimuli to employ and in the arrangements of material and geo-
metric properties [76]. On the other side, the ability of hydrogels to elastically un-
dergo large deformations and bifurcations widens the spectrum of attainable config-
urations and effects.

Bending strategy is one of the programming strategies that can be used for plan-
ning the morphing based on out-of-plane bending of hydrogel–based slender struc-
tures.

In thin hydrogel structures arranged in the form of composites which combine
constituents with physical or chemical properties different one from each other, shape
changes are triggered by the differential swelling of the constituents, combined with
an interplay between geometry and mechanics, which may also involve stability
issues. As for the bi-metal thermostats studied by Timoshenko, the curvature of a
hydrogel–based bilayer strip can be programmed; in the latter case, through the con-
trol of the swelling ratios, which originate from different polymer composition [77–
79]. Moreover, also complex shape transformations can be programmed by includ-
ing additional control parameters into the programming strategy, such as oriented
fiber fields which make anisotropic the material response of the hydrogels [80].

An alternative strategy to realize bending in hydrogel structures is based on a
non–homogenous exposure of a homogeneous structure to an activation stimulus,
as experienced in Ref.[81, 82]. This strategy allows to realize a transient gradient in
swelling as the diffusion of the solvent inside the material takes time. As the dif-
fusion is completed, a uniform swelling is attained through the material thickness,
and bending is inhibited.

We implemented a different strategy, considering a homogeneous hydrogel struc-
ture which is in contact at its top and bottom faces with two environments at differ-
ent chemical conditions, and is not permeable at its edges. Water diffuses into the
hydrogel according to the opposite of the gradient of the chemical potential, so real-
izing an osmotic pump. Assuming that the chemical conditions of the two environ-
ments stay unchanged, diffusion never stops; at the steady state, a uniform water
flux is attained through the material thickness, and a bent shape with uniform cur-
vature is got. Homogeneous hydrogel beam–like structures realize curved shapes,
whereas plate–like structures morph into spherical caps.

We numerically investigate the behavior of the beam-like and plate-like pumps
during the transient state by means of a finite element implementation of the math-
ematical model. Through a series of numerical experiments, we determine the rela-
tionship between the difference in the chemical potentials at the top and bottom of
the structure and the curvature of the bent beam as well as the Gaussian curvature of
the spherical cap. We also propose an extension of the beam-like model presented by
one of the Authors in Ref.[77], to evaluate explicitly that relationship and show the
good agreement between those formulas and the outcomes of the numerical simula-
tions. Finally, inspired by the geometrical issues presented in Ref.[83], and following
the idea proposed in Ref.[84], we also evaluate the elastic energy corresponding to
the spherical configuration attained by the plate and evaluate explicitly the Gaussian
curvature of the spherical cap as the minimum of that energy. The comparison with
the numerical outcomes shows that, when the difference in the chemical potentials
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at the top and bottom of the structure is not too high, the explicit and the numerical
solutions are in good agreement.

3.2.1 Swelling and de-swelling cycles

We are interested in steady solutions of the problem (3.1.12), that is, such that divhd =
0, corresponding to constraints and load free boundaries, that is, t = 0 on ∂Bd ⇥ T ,
and induced by swelling paths. The goal is to investigate the relationship between
the curving of an initially flat and dry hydrogel structure and the change in the en-
vironmental conditions around it.

We start considering a thin hydrogel structure Bd, represented as a beam in its
stress-free and dry state embedded into a dry environment in the cartoon in Fig. 3.1
(Fig. 3.1, top left). We change the chemical conditions of the environment by control-
ling the chemical potential on the bottom and top of the structure whereas assuming
impermeable edges. So, the hydrogel may go from its flat dry to a flat fully wet
state (Fig. 3.1, bottom right), when it is assumed as completely embedded in a ho-
mogeneously hydrated environment. Likewise, we can identify two curved steady
states when the hydration conditions of the environment at the top and bottom of
the beam are different (Fig. 3.1, top right and bottom left). In the last cases, the beam
works as a pump draining water from the wet to the dry face of the beam.
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FIGURE 3.1: Cycle of hydration and de–hydration of a gel: a homo-
geneous straight beam is embedded in a dry environment (top left
panel); due a change in the bath in contact with the top of the beam, it
swells and attains a steady bent state (top left panel); a further change
in the bath induces further swelling and a steady straight state is got
(bottom right panel); a last change in the bath determines a swelling
which brings the beam at a steady bent state with curvature oppo-
site (bottom left panel). Colour code refers to Jd values. We assumed:

Gd = 108Pa and µ̄ = 0.
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The modelling of the experiment is based on the theoretical background illus-
trated in the previous section. Key elements of the computational implementation
are the tackling of the chemical boundary conditions (3.1.14), which also involve the
assignment of an external chemical potential µe. Firstly, as it is not possible to con-
trol either the solvent source qs at the surface or the surface concentration cs, as is
done in real experiments, we control the chemical potential µe of the bath. Equation
(3.1.4), when evaluated at the boundary ∂Bc, relates cs to µe. It is a highly non–linear
equation which cannot be solved explicitly for cs. On the other hand, the control of
the state variable cs, through the equation (3.1.14)2, forces the surface flux source qs
to be viewed as a unknown a priori reaction. The a posteriori evaluation of qs yields
poor approximations and suggested to us the following integral implementation of
the boundary conditions ((3.1.14)):

0 =
Z

∂cBd

[ µ̂(cs) + p W � µe ] · c̃s , (3.2.18)

0 =
Z

∂cBd

[ (cd � cs) q̃s + qs (c̃d � c̃s) ] , (3.2.19)

which enforce the constraint cd = cs by considering qs as an additional state variable,
having the role of a Lagrange multiplier, and provides a better numerical evaluation
of the boundary source qs.

In the following analysis, some of the physical quantities are fixed and get the
values shown in Table 3.1:

TABLE 3.1: Numerical values of the parameters

Parameter Symbol and value
Dis-affinity c = 0.4
Molar volume W = 1.8 ⇥ 10�5 m3/mol
Diffusivity D = 10�9 m2/s
Temperature T = 293K
length l = 1cm

3.2.2 Beam-like pumps

We consider a beam–like body whose aspect ratio is h/l = 0.1, being h its thick-
ness and width and l its length. The surface boundary ∂B is composed by a top ∂Bt
and a bottom ∂Bb permeable surfaces and by the edges which are not permeable:
qs = 0. We start from a dry state which is also stress-free and induce a swelling
process through a change in the external conditions on the top surface. The corre-
sponding steady state is a curved beam with constant curvature which works as a
pump draining water from the top to the bottom surface. We assume to have infi-
nite reservoirs in contact with the top and bottom surfaces; hence, we do not deal
with any problems induced by the pump effect on a confined volume of water (see
Ref.[85] for a detailed analysis of this kind of effects).
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FIGURE 3.2: Pattern of the chemical potential µ across the thickness
of the beam for different values of Dµext: higher Dµext steeper the
pattern and more bent the beam (see the insets). Colour code refers

to values of Jd. We assumed: Gd = 105Pa.

Anyway, the analysis of the steady curved state shows a few interesting charac-
teristics. As first, the driving force of the process is the mismatch Dµe = Dµext =
µt

ext � µb
ext between the chemical potential’s values at the top and bottom surfaces.

We observe as increasing the mismatch makes the pattern of the chemical potential
µ across the beam thickness steeper and steeper (Fig. 3.2). Moreover, due to the
non uniformity of the deformation field across the thickness and to the constitutive
equations (3.1.10) and (3.1.11), the pattern of µ across the thickness of the beam is
never linear, as it is sometimes assumed in Literature [86].
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FIGURE 3.3: Amount of water crossing the top (V̇st) and bottom (V̇sb)
surface per unit of time (solid red and orange lines) and absorbed
into the beam (grey area) along the process. After a time t < 0.6tc
the process is steady: the ingoing and outgoing fluxes are equal. We

assumed: Gd = 105Pa.
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Secondly, the intensity of the pump, which can be measured by the amount of
water crossing the top or the bottom surface per unit of time

V̇s =
Z

∂Bt

qsdAd , [V̇s] = m3/s , (3.2.20)

varies along the process. Fig. 3.4 shows as along the transient the two quantities are
not the same: the ingoing (solid red line) and outgoing (solid orange line) fluxes are
always opposite in sign at the top and bottom surfaces, respectively and, at any time
t, the difference between the two quantities delivers the amount of water absorbed
by the beam (grey area). At the steady state, the two fluxes are equal and the amount
of absorbed water is zero; hence, the beam works just as an osmotic pump draining
water from the top to the bottom. In representing the transient process (Fig. 3.4),
it has been introduced a characteristic time tc as tc = ((l + 2h)/3)2/D to evidence
the duration of the transient part of the process with respect to the full time interval
t = tc.
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FIGURE 3.4: Beam curvature k versus the mismatch Dµext are rep-
resented as red and blue circle, depending on the value of the shear
modulus. Red and blue solid lines represent the beam curvature cor-
responding to the same shear moduli as delivered by the explicit anal-

ysis presented in Section 3.2.4.

Finally, the steady configuration attained by the beam is characterized by a con-
stant curvature which can be measured in terms of the mismatch Dµe. Fig. 3.4 shows
as higher is the mismatch, higher is the beam curvature (red and blue circles). More-
over, it also shows as softer beam (red circles) realizes higher curvature than stiffer
beam (blue circles). Red and blue solid lines in Fig. 3.4 represent the beam curvature
corresponding to the same shear moduli corresponding to red and blue circles, as
delivered by the explicit analysis presented in Section 3.2.4. As the chemical poten-
tial in the numerical results is not strictly quadratic for a large mismatch Dµe, a small
discrepancy is observed the explicit expression.

3.2.3 Plate-like pumps

We consider a plate–like body whose aspect ratio is h/l = 0.1, being l the length of
plate’s sides, having the edges which are not permeable and the top ∂Bt and bottom
∂Bb faces which are permeable surfaces. We start from a dry state which is also
stress-free and induce a process like the one described for the beam-like body. At
the steady state, the flat sheet is dome-shaped, characterized by an almost constant
Gaussian curvature K, and drains water from the top to the bottom surface.
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The Gaussian curvature of the curved surface is represented in Fig. 3.5 (top
panel) in terms of the mismatch Dµext through the mean value K̄ on the middle
surface of the plate (blue circles) and the value K? at the middle point of the middle
plane (red diamonds). The two values are very close up to certain values of Dµext;
then, they start going far one from each other and the difference between K̄ and K?

increases with Dµext. Indeed, for large Dµext we have a large stretching of the middle
plane and the Gaussian curvature takes extremely high values on the boundary of
the dome-like shape, which also loses its spherical symmetry, as Fig. 3.5 (bottom
panel) shows through a colour code corresponding to the local value of K. The solid
line in Fig. 3.5 (top panel) corresponds to the explicit solution presented in Section
3.2.4. At the steady state, the plate realizes shows a gradient of chemical potential
µ across the thickness going from the bottom value (µb

ext, red) to the top value (µt
ext,

blue) (Fig. 3.5 (middle panel)).
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FIGURE 3.5: Steady curved shape of a square plate. We assumed:
Gd = 105Pa.

3.2.4 Steady bending in homogeneous hydrogel beams and plates

We propose an approximate analysis of the steady solutions of the stress–diffusion
problem of the homogeneous hydrogel beam borrowed from the study proposed
for bilayered beams embedded in a homogeneous bath in Ref. [77] (see also Refs.
[78, 79, 87]). Therein, bending was induced by embedding into a bath of assigned
chemical potential µe = 0 a bilayer beam made by two layers of different materials:
the ratio b = ht/h between the thickness of the top layer and the beam thickness
and the ratio a = Gt/Gb between the shear moduli of the two layers played a key
role in the analysis. Only the longitudinal deformation l of the beam was taken into
account in the description of the bent state. It was multiplicatively decomposed in
an uniform free–swelling ratio that would take place if the part were free from the
rest of the beam and a further elastic component. In particular, the uniform free–
swelling components of each part were determined from the appropriate mechano–
chemical equilibrium equations as if the beam was made of two independent layers
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free to swell as much as they like, according to the shear modulus. On its side, the
elastic deformations resulted from the multiplicative decomposition once the global
compatibility of the bending deformation has been ensured. These latter determined
internal stresses corresponding, in the absence of external forces, to null forces and
torques on each cross section of the beam. The analysis delivered a Timoshenko–like
formula for the swelling-induced curvature k of the beam axis, as well as a formula
for the swelling-induced stretch Lo of the beam axis.

In the present problem, we have a homogeneous beam whose steady state is
curved and characterized by a hydration level which isn’t uniform across the thick-
ness. As it is expected, the chemical potential is not homogeneous neither linear
along the thickness (see Fig. 3.2), going from the value µb

ext at the bottom to the
value µt

ext at the top. As described by the cartoon in Fig. 3.6, we identify two layers
of thickness ht = bh (top layer) and hb = (1 � b)h (bottom layer) where the chem-
ical potential is constant and equal to the top and bottom values, respectively, by
introducing the piecewise constant function

µcst(x3) =

(
µt

e for h/2 � bh < x3 < h/2
µb

e for � h/2 < x3 < h/2 � bh

being x3 = 0 the geometrical beam axis. The value of the parameter b which deter-
mine the two layers’s thicknesses comes from the following identity

Z

Bd

µ

W
dV =

µt
e

W
Vt +

µb
e

W
Vb , (3.2.21)

being Vt = bhLw and Vb = (1 � b)hLw the volumes of the top and bottom layer,
respectively. Identity (3.2.21) says that the amount of work required to move all the
volume of solvent from the top to the bottom face in the actual beam (left hand-side
of identity (3.2.21)) is equal to the work done in the beam once assumed the chemical
potential separately homogeneous in the two layers identified by the parameter b
(right hand-side of identity (3.2.21))2.
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FIGURE 3.6: Chemical potential µ changes across the thickness from
the bottom value µb

ext (red) to the top value µt
ext (blue) (left side of

the cartoon). This distribution is replaced by one that is piecewise
constant (right side of the cartoon).

2It is identified with the corresponding volume of the beam occupied by the solvent.
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It can be written as
Z h/2

�h/2
µ(x3)dx3 = µt

eb h + µb
e (1 � b) h . (3.2.22)

Inspired by the numerical results, we explicitly represent µ(x3) by a quadratic func-
tion of x3 as

µ(x3) = µ0 + x3µ1 + x2
3µ2 , (3.2.23)

in terms of the three scalars µ0, µ1, and µ2 to be determined in such a way that

µ(h/2) = µt
e and µ(�h/2) = µb

e . (3.2.24)

Moreover, being the solvent flux hd = qe3 constant, with e3 the unit vector indicating
the vertical direction, we also set

q(h/2) = q(�h/2) = q̄ . (3.2.25)

From equations (3.1.10) and (3.1.11), we get

q(x3) = � D
RT

cd(x3)

l2
3(x3)

µ0(x3) , (3.2.26)

with l3 the stretch in direction e3. Equation (3.2.25) delivers
✓

cd

l2
3

µ0
◆

h/2
=

✓
cd

l2
3

µ0
◆

�h/2
. (3.2.27)

We assume that l3(h/2) = lot and l3(�h/2) = lob, with lot = lot(G, µt
e) and

lob = lob(G, µb
e ) the swelling ratios which satisfy the equations:

GW
loi

+ RT
✓

log
✓

1 � 1
(loi)3

◆
+

1
(loi)3 +

c

(loi)6

◆
= µi

e , (3.2.28)

with i = t, b. Moreover, it also holds: 1 + Wcd(h/2) = (lot)3, and 1 + Wcd(�h/2) =
(lob)3. With this, equation (3.2.27) prescribes the following further condition

µ0(h/2) = Co µ0(�h/2) , (3.2.29)

being

Co =
(lot)2((lob)3 � 1)
(lob)2((lot)3 � 1)

. (3.2.30)

this last condition is added to the first two conditions given by Eq. (3.2.24) allows to
determine the unknown coefficients µi with i = 0, 1, 2. With this, Eq. (3.2.21) allows
to determine b as

b =
2 + Co

3(1 + Co)
. (3.2.31)

From now on, we view the homogeneous beam as a bilayer beam whose layers of
thickness ht = bh and hb are swollen up to a level determined by the chemical po-
tential µe at the top and bottom face, as equation (3.1.16) prescribes: precisely, we
have µ = µt

e and µ = µb
e in the top and bottom layer, respectively (see Fig. 3.6). As in

Ref.[77], we assume that the longitudinal deformation l(x3) = L0(1 + x3L0k) of the
beam can be viewed as the product of the free-swelling ratio due to the hydration



3.2. Shape control of hydrogels and osmotic pumps 47

level and an elastic component which deliver internal stresses. So, given the free-
swelling ratios lot and lob above introduced, the corresponding elastic deformations
let = ll�1

ot and leb = ll�1
ob are determined from the multiplicative decomposition

in terms of Lo and k.
Then, assuming zero out–of–plane stresses, the corresponding longitudinal stresses

st and sb on the cross–sections of the top and bottom layers, respectively, are evalu-
ated as

st(x1, x3) = 3Gd(l(x1, x3)l�1
ot � 1) , (3.2.32)

for (h/2 � b h) < x3 < h/2; and

sb(x1, x3) = 3Gd(l(x1, x3)l�1
ob � 1) , (3.2.33)

for �h/2 < x3 < (h/2 � b h), where, due to the material incompressibility, 3Gd
identifies the corresponding Young modulus.

We looked for free–swelling solutions of the gel beam problem: under no exter-
nal loads, the resultant F(lob, lot) of the stresses and the resultant moment M(lob, lot)
of the stresses on the gel beam have to be identically null, that is, it holds

F(lob, lot) = 0 and M(lob, lot) = 0 . (3.2.34)

Equations (3.2.34) deliver a linear systems of two equations in L0 and L1 = kL2
0

where, differently from the situation studied in Ref.[77], the parameter b is not ge-
ometrically but thermodynamically determined. Moreover, being the two layers of
the beam made of the same material, the ratio a between the shear moduli of the two
layers is 1 and the bending is driven by the mismatch Dµext. The solution delivers
the beam stretching L0 and curvature k as the following functions

L0 = L0(lot, lob, b) and k = k(lot, lob, b) , (3.2.35)

explicitly represented:

L0(lot, lob, b) = (b4l3
ot + (b � 1)4l3

ob + b(1 � b)a(b)l2
oblot + b(1 � b3)lobl2

ot)D(lot, lob, b)�1

L1(lot, lob, b) = �6b(b � 1)loblot(lob � lot)(hD(lot, lob, b))�1

k(lot, lob, b) =
L1(lot, lob, b)
L0(lot, lob, b)

,

(3.2.36)
and

D(lot, lob, b) = b4l2
ot + (b � 1)4l2

ob + b(1 � b)d(b)loblot, (3.2.37)

where we set a(b) = 3 + b(b � 3) and d(b) = 2b2 � 2b + 4. Given the relations
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om

⌘
+

GdW
lom

= µm
ext , (3.2.38)

(m = b, t), between the free-swelling stretches lot and lob and the top and bot-
tom chemical potential µt

ext and µb
ext, and fixed µb

ext, equations (3.2.35, 3.2.36, 3.2.39 ,
3.2.40) deliver L0(Gd, Dµext) and k(Gd, Dµext). Fixed the value µb

ext = �11000 J/mol,
the beam curvature is so evaluated starting from the value Dµext = 0 corresponding
to µt

ext = �11000 J/mol. It is represented by the solid lines in Fig. 3.4 for Gd = 105

Pa (red) and Gd = 108 Pa (blue); it can be appreciated the good agreement between
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the explicit and the numerical solution which is excellent for values of Dµext not too
much high.

3.2.5 Cutting a beam out of the plate

As last step, we propose an explicit formula delivering the Gaussian curvature of the
plate-like pump at the steady state. In this case, the body is modeled within the set-
ting of non-Euclidean plates as a shell with its first and second natural fundamental
forms. The first and second fundamental forms a and b contain all the information
about lateral distances between points and local curvature, respectively; the natural
forms ā and b̄ represent the lateral distances and curvatures that would make the
sheet locally stress-free, and they are determined by the specific stimulus which in
this case is the mismatch Dµext. Due to the differential isotropic expansion of the
two layers due to the swelling, the lateral distances would like to stretch by ao while
the midplane would like to bend with a curvature bo in every direction, and ā and b̄

have the following form:

ā = a2
o

 
1 0
0 1

!
and b̄ = bo

 
1 0
0 1

!
. (3.2.39)

It is not usually possible for a sheet to realize both natural forms, due to the Gauss-
Codazzi-Mainardi equations, and this is the case of our plate which has to match dif-
ferent planes across the thickness which would like to swell according to a different
value of the chemical potential. However, as a beam is able to adopt its natural shape
with longitudinal axis stretch and curvature equal to L0 and k, respectively, without
any need of satisfying additional constraints, we proceed by cutting a beam from the
plate disk and by measuring its deformed shape. This will provide a straightforward
way to evaluate the natural stretch and curvature of the disk [83, 84]:

ao = L0(Gd, µb
ext, Dµext) , bo = k(Gd, µb

ext, Dµext) . (3.2.40)

Assuming as usual for non-Euclidean plates, a Kirchhoff-Love energy density, the
energy of the plate can be written as

Ū =
Z

(tr(a � ā)2 + tr2(a � ā))
p

ā dA

+h2
Z

(tr(b � b̄)2 + tr2(b � b̄))
p

ā dA ,

being Ū = 8U (1 � n2)/Eh, E and µ the Young and Poisson moduli, and a and b the
first and second fundamental forms of the midsurface of the deformed plate, respec-
tively. We follow Ref.[84] and assume a metric with constant Gaussian curvature in
Gaussian normal coordinates (see also Ref.[88]); we also assume that n ' 1/2 and
E ' 3Gd. So, the total dimensionless energy for the square disk of side l is

Ū =
1
9

L4L�2
0

Z
r4dA + h2AL�2

0 (L � k)2 , (3.2.41)

being L0 and k given by the equation (3.2.35), and L the principal curvature of the
sphere. Following Ref.[84], we also assumed that the Gaussian curvature can be
approximated as

K = det b/ det a ' L2

L4
o

. (3.2.42)
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Minimization of the total energy Ū with respect to L yields

L̄3 + g4(L̄ � k̄) = 0 , (3.2.43)

being L̄ = Lh, k̄ = kh, and

g4 =
h4

S4 , S4 =
2
9

1
A

Z
r4dA . (3.2.44)

Moreover, it holds:

A = l2 , S4 =
56
405

l4 , g4 =
405
56

h4

l4 . (3.2.45)

Equation (3.2.43) can be solved explicitly and delivers L̄ = L̄(k). From there, using
the equation (3.2.42), we get

K = K(L0, k) , (3.2.46)

which can be ultimately expressed in terms of the mismatch Dµext using the equa-
tions (3.2.35, 3.2.36, 3.2.39 , 3.2.40). In Fig. 3.5, we represented the function K(Dµext),
corresponding to a fixed value of Gd = 108 Pa. The agreement with the mean val-
ues of K as well as with the Gaussian curvature at the middle of the plate is good
if the mismatch Dµext does not grow too much. Indeed, for large Dµext we have: (1)
K̄ and K? differs a lot due to the large values attained by the Gaussian curvature
on the corner of the plate; (2) the stretching of the mid-surface increases and the
approximation (3.2.42) does not hold any more.
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3.3 High power mechanisms and hydrogels

One of the main limits of hydrogels is the slowness of the diffusion process which
depends on hydrogel size and often results in a low power mechanism [89]. In order
to overcome such limitation which confines the applications of hydrogels, in this sec-
tion we describe two power leverages which transform the low power mechanism
into a a high power mechanism. The key to build a power leverage is the presence
of a breaking factor which rapidly releases the energy stored in a system with a low
power mechanism. The breaking factor can be realized using physics, chemistry or
mechanics.

3.3.1 A high power mechanism through swelling and adhesion

In this subsection, it is briefly described a high power mechanism of a polyvinyl
siloxane (PVS) solid, see Fig. 3.7, obtained through the competition between swelling
and adhesion. The experiment was performed by myself at Boston University at the
Mechanics of Slender Structures Lab under the supervision of Prof. D. P. Holmes;
the solid is obtained by pouring into an acrylic mold the mixed Zhermack polyvinyl
siloxane (PVS) elite double 32 base and catalyst. The liquid mixture solidifies in ap-
proximately 10 minutes and then it is removed from the acrylic mold. The PVS solid
has a Young’s modulus of approximately 1 MPa measured through a Instron Ma-
chine with a tensile test of a dog bone like shape. The shape of the solid is a beam of
size 5 ⇥ 1 ⇥ 0.1 cm, which is clamped at the right end with a glue on an acrylic sub-
strate. A syringe filled with solvent Sigma Aldrich Hexane is used to wet the body
from below on the acrylic substrate. The solvent diffuses into the solid and allows
the storage of elastic energy in the beam in a slow dynamics which lasts for approx-
imately 4 minutes. The produced bending works against the adhesion forces which
take the beam in contact with the substrate. The breaking factor, which suddenly re-
leases the stored elastic energy, is the rapid fracture of a thin layer of adhesive at the
left of the beam. The compensation between the two effects, adhesion and swelling,
realizes a self actuated catapult which throws a small weight of about 20 g more than
20 cm away from the object. The high acceleration of the beam is a fast dynamics and
lasts for less than 1 seconds. Later on, due to the evaporation of the solvent, the solid
turns back flat and ready to be reused after approximately 20 minutes. This latter
phase is also often called relaxation and depends on the velocity of solvent evapora-
tion which is in general more slow than the absorption velocity. The experiment was
really hard to consistently reproduce due to the very complex interaction between
the different physics of swelling and adhesion. Moreover, a further complication to
the understanding of such mechanism is represented by the fast evaporation of the
solvent which cannot be controlled quantitivaly. For this reason, an alternative high
power mechanism is investigated in the next subsection.
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The sporangium catapult mechanism is illustrated in
figure 2. Upon reaching maturity, the sporangium is exposed
to air allowing water to evaporate through the thin outer
walls of the annulus cells. The geometry of the cells is such
that the decrease in cell volume forces the thick radial walls
to rotate towards each other. It is this rotation of radial
walls that drives the opening of the sporangium. The force
required to bend the annulus walls during opening is
balanced by the negative pressure or water tension that
develops inside the cells. When the water tension is too
large, cavitation occurs, and bubbles are formed within
several cells. Without a continuous column of water to sus-
tain the elastic forces in the annulus walls, the elastic
energy is quickly released, leading to fast closure and ejection
of the spores as in a catapult (figure 2).

Although the ejection mechanism has been broadly
understood for over 100 years [7], many of the design
features of the leptosporangium have remained unrecognized
or misinterpreted to this day. Some of the first quantitative
studies focused on measuring the cavitation pressure of the
annulus cells. Renner [8] and Ursprung [9], using the same
experimental approach, predicted very large negative
pressure (2200 to 2300 bars), but, as we will show, the
value they reported overestimates by a factor of two the
true value when all physical factors are taken into account.
The first theoretical study of the ejection mechanism focused
on an estimate of the ejection speed for the spores based

on energy conservation [10]. Later, ultrasound methods
confirmed the role of cavitation in triggering the fast
closure of the annulus [11]. Noblin and co-workers [4]
focused on the closing dynamics, which presents two time
scales: a fast initial displacement completed in a few tens of
ms and a slower relaxation completed over a period of a
few ms. These distinct time scales allow the sporangium to
‘brake’ abruptly midway in the closing motion, increasing
considerably the ejection efficiency.

A direct comparison with medieval catapults can help us
highlight the design requirements for the sporangium. The
leptosporangium is closest in its mode of action to the
onager catapult (figure 3a). In essence, the leptosporangium
and the onager are mechanisms whereby a tension is used
to store elastic energy in rotating elements. However, in con-
trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
rotation. This leads to our first design question: how do the geo-
metrical and mechanical properties of the annulus cells promote a
catapult motion over all other possible modes of deformation?

The action of the leptosporangium as a catapult is depen-
dent on three other design requirements (figure 3b–d). First,
the material properties of the torsion spring must be com-
mensurate with the force or work available to load it. For
the onager, this requirement means that the so-called skein
(i.e. the elastic bundle used to actuate the catapult arm)
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Figure 1. (a) A fern leaf shows multiple sporangial clusters (sori) on its underside. Two close-ups show an individual sorus and the sporangia within it. (b) Scanning
electron micrograph of a partially opened sporangium of Polypodium aureum. The annulus and spores are highlighted in blue and yellow, respectively. (Online
version in colour.)
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Figure 2. Schematics of the sporangium action as a cavitation catapult. (a) Closed sporangium with its annular cells filled with water. (b) Opening of the
sporangium in response to evaporation at the surface of the annulus. (c) Cavitation within the annular cells. The spores are released in approximately 30 ms.
(d ) The sporangium after closing. Insets: deformation of the annulus cells during the movement. (Online version in colour.)
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The sporangium catapult mechanism is illustrated in
figure 2. Upon reaching maturity, the sporangium is exposed
to air allowing water to evaporate through the thin outer
walls of the annulus cells. The geometry of the cells is such
that the decrease in cell volume forces the thick radial walls
to rotate towards each other. It is this rotation of radial
walls that drives the opening of the sporangium. The force
required to bend the annulus walls during opening is
balanced by the negative pressure or water tension that
develops inside the cells. When the water tension is too
large, cavitation occurs, and bubbles are formed within
several cells. Without a continuous column of water to sus-
tain the elastic forces in the annulus walls, the elastic
energy is quickly released, leading to fast closure and ejection
of the spores as in a catapult (figure 2).

Although the ejection mechanism has been broadly
understood for over 100 years [7], many of the design
features of the leptosporangium have remained unrecognized
or misinterpreted to this day. Some of the first quantitative
studies focused on measuring the cavitation pressure of the
annulus cells. Renner [8] and Ursprung [9], using the same
experimental approach, predicted very large negative
pressure (2200 to 2300 bars), but, as we will show, the
value they reported overestimates by a factor of two the
true value when all physical factors are taken into account.
The first theoretical study of the ejection mechanism focused
on an estimate of the ejection speed for the spores based

on energy conservation [10]. Later, ultrasound methods
confirmed the role of cavitation in triggering the fast
closure of the annulus [11]. Noblin and co-workers [4]
focused on the closing dynamics, which presents two time
scales: a fast initial displacement completed in a few tens of
ms and a slower relaxation completed over a period of a
few ms. These distinct time scales allow the sporangium to
‘brake’ abruptly midway in the closing motion, increasing
considerably the ejection efficiency.

A direct comparison with medieval catapults can help us
highlight the design requirements for the sporangium. The
leptosporangium is closest in its mode of action to the
onager catapult (figure 3a). In essence, the leptosporangium
and the onager are mechanisms whereby a tension is used
to store elastic energy in rotating elements. However, in con-
trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
rotation. This leads to our first design question: how do the geo-
metrical and mechanical properties of the annulus cells promote a
catapult motion over all other possible modes of deformation?

The action of the leptosporangium as a catapult is depen-
dent on three other design requirements (figure 3b–d). First,
the material properties of the torsion spring must be com-
mensurate with the force or work available to load it. For
the onager, this requirement means that the so-called skein
(i.e. the elastic bundle used to actuate the catapult arm)
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The sporangium catapult mechanism is illustrated in
figure 2. Upon reaching maturity, the sporangium is exposed
to air allowing water to evaporate through the thin outer
walls of the annulus cells. The geometry of the cells is such
that the decrease in cell volume forces the thick radial walls
to rotate towards each other. It is this rotation of radial
walls that drives the opening of the sporangium. The force
required to bend the annulus walls during opening is
balanced by the negative pressure or water tension that
develops inside the cells. When the water tension is too
large, cavitation occurs, and bubbles are formed within
several cells. Without a continuous column of water to sus-
tain the elastic forces in the annulus walls, the elastic
energy is quickly released, leading to fast closure and ejection
of the spores as in a catapult (figure 2).

Although the ejection mechanism has been broadly
understood for over 100 years [7], many of the design
features of the leptosporangium have remained unrecognized
or misinterpreted to this day. Some of the first quantitative
studies focused on measuring the cavitation pressure of the
annulus cells. Renner [8] and Ursprung [9], using the same
experimental approach, predicted very large negative
pressure (2200 to 2300 bars), but, as we will show, the
value they reported overestimates by a factor of two the
true value when all physical factors are taken into account.
The first theoretical study of the ejection mechanism focused
on an estimate of the ejection speed for the spores based

on energy conservation [10]. Later, ultrasound methods
confirmed the role of cavitation in triggering the fast
closure of the annulus [11]. Noblin and co-workers [4]
focused on the closing dynamics, which presents two time
scales: a fast initial displacement completed in a few tens of
ms and a slower relaxation completed over a period of a
few ms. These distinct time scales allow the sporangium to
‘brake’ abruptly midway in the closing motion, increasing
considerably the ejection efficiency.

A direct comparison with medieval catapults can help us
highlight the design requirements for the sporangium. The
leptosporangium is closest in its mode of action to the
onager catapult (figure 3a). In essence, the leptosporangium
and the onager are mechanisms whereby a tension is used
to store elastic energy in rotating elements. However, in con-
trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
rotation. This leads to our first design question: how do the geo-
metrical and mechanical properties of the annulus cells promote a
catapult motion over all other possible modes of deformation?

The action of the leptosporangium as a catapult is depen-
dent on three other design requirements (figure 3b–d). First,
the material properties of the torsion spring must be com-
mensurate with the force or work available to load it. For
the onager, this requirement means that the so-called skein
(i.e. the elastic bundle used to actuate the catapult arm)
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The sporangium catapult mechanism is illustrated in
figure 2. Upon reaching maturity, the sporangium is exposed
to air allowing water to evaporate through the thin outer
walls of the annulus cells. The geometry of the cells is such
that the decrease in cell volume forces the thick radial walls
to rotate towards each other. It is this rotation of radial
walls that drives the opening of the sporangium. The force
required to bend the annulus walls during opening is
balanced by the negative pressure or water tension that
develops inside the cells. When the water tension is too
large, cavitation occurs, and bubbles are formed within
several cells. Without a continuous column of water to sus-
tain the elastic forces in the annulus walls, the elastic
energy is quickly released, leading to fast closure and ejection
of the spores as in a catapult (figure 2).

Although the ejection mechanism has been broadly
understood for over 100 years [7], many of the design
features of the leptosporangium have remained unrecognized
or misinterpreted to this day. Some of the first quantitative
studies focused on measuring the cavitation pressure of the
annulus cells. Renner [8] and Ursprung [9], using the same
experimental approach, predicted very large negative
pressure (2200 to 2300 bars), but, as we will show, the
value they reported overestimates by a factor of two the
true value when all physical factors are taken into account.
The first theoretical study of the ejection mechanism focused
on an estimate of the ejection speed for the spores based

on energy conservation [10]. Later, ultrasound methods
confirmed the role of cavitation in triggering the fast
closure of the annulus [11]. Noblin and co-workers [4]
focused on the closing dynamics, which presents two time
scales: a fast initial displacement completed in a few tens of
ms and a slower relaxation completed over a period of a
few ms. These distinct time scales allow the sporangium to
‘brake’ abruptly midway in the closing motion, increasing
considerably the ejection efficiency.

A direct comparison with medieval catapults can help us
highlight the design requirements for the sporangium. The
leptosporangium is closest in its mode of action to the
onager catapult (figure 3a). In essence, the leptosporangium
and the onager are mechanisms whereby a tension is used
to store elastic energy in rotating elements. However, in con-
trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
rotation. This leads to our first design question: how do the geo-
metrical and mechanical properties of the annulus cells promote a
catapult motion over all other possible modes of deformation?

The action of the leptosporangium as a catapult is depen-
dent on three other design requirements (figure 3b–d). First,
the material properties of the torsion spring must be com-
mensurate with the force or work available to load it. For
the onager, this requirement means that the so-called skein
(i.e. the elastic bundle used to actuate the catapult arm)
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FIGURE 3.7: High power mechanism in a PVS beam clamped at right
end. A syringe is used to wet the body on the acrylic substrate. The
breaking factor is due to the compensation between the two effects:

swelling and adhesion.
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3.3.2 A high power mechanism through water cavitation

In this subsection, it is described and investigated a high power mechanism ob-
served in small plants and obtained through water cavitation. Cavitation is the
phase transition liquid-to-vapor which happens in water under negative pressure,
that is, under tension, and at constant ambient temperature. It has been firstly stud-
ied, as of great interest, in some industrial contexts such as marine propellers [90],
and petroleum industry [91]. Then, cavitation rheology has been studied with the
aim to both determining the elastic modulus within a soft material through the quan-
tification of the pressure dynamics of a growing cavity within the soft solid [92] and
investigating the elasticity and fracture behavior of swollen polymer networks in-
duced by cavitation [93].

In the last years, cavitation occurring in microscopic confinements has received
great attention, being one of the processes exploited in nature to realize shooting
mechanisms as prey capture, defense, and reproduction tools [94, 95]. Understand-
ing the working principles of biological shooting mechanisms can drive the design of
artificial shooting mechanisms realizing fast acceleration mechanisms. In medicine,
high–speed shooting mechanisms can be implemented in endovascular treatments
of calcified occlusions, the realization of pick-and-place applications as well as of
high accuracy tools for biopsies [96].

FIGURE 3.8: Fern sporangium is a small plant composed of cubic unit
cells filled with water. The fern sporangium uses a high power mech-

anism to disperse the spores. Image taken by [97].
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The sporangium catapult mechanism is illustrated in
figure 2. Upon reaching maturity, the sporangium is exposed
to air allowing water to evaporate through the thin outer
walls of the annulus cells. The geometry of the cells is such
that the decrease in cell volume forces the thick radial walls
to rotate towards each other. It is this rotation of radial
walls that drives the opening of the sporangium. The force
required to bend the annulus walls during opening is
balanced by the negative pressure or water tension that
develops inside the cells. When the water tension is too
large, cavitation occurs, and bubbles are formed within
several cells. Without a continuous column of water to sus-
tain the elastic forces in the annulus walls, the elastic
energy is quickly released, leading to fast closure and ejection
of the spores as in a catapult (figure 2).

Although the ejection mechanism has been broadly
understood for over 100 years [7], many of the design
features of the leptosporangium have remained unrecognized
or misinterpreted to this day. Some of the first quantitative
studies focused on measuring the cavitation pressure of the
annulus cells. Renner [8] and Ursprung [9], using the same
experimental approach, predicted very large negative
pressure (2200 to 2300 bars), but, as we will show, the
value they reported overestimates by a factor of two the
true value when all physical factors are taken into account.
The first theoretical study of the ejection mechanism focused
on an estimate of the ejection speed for the spores based

on energy conservation [10]. Later, ultrasound methods
confirmed the role of cavitation in triggering the fast
closure of the annulus [11]. Noblin and co-workers [4]
focused on the closing dynamics, which presents two time
scales: a fast initial displacement completed in a few tens of
ms and a slower relaxation completed over a period of a
few ms. These distinct time scales allow the sporangium to
‘brake’ abruptly midway in the closing motion, increasing
considerably the ejection efficiency.

A direct comparison with medieval catapults can help us
highlight the design requirements for the sporangium. The
leptosporangium is closest in its mode of action to the
onager catapult (figure 3a). In essence, the leptosporangium
and the onager are mechanisms whereby a tension is used
to store elastic energy in rotating elements. However, in con-
trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
rotation. This leads to our first design question: how do the geo-
metrical and mechanical properties of the annulus cells promote a
catapult motion over all other possible modes of deformation?

The action of the leptosporangium as a catapult is depen-
dent on three other design requirements (figure 3b–d). First,
the material properties of the torsion spring must be com-
mensurate with the force or work available to load it. For
the onager, this requirement means that the so-called skein
(i.e. the elastic bundle used to actuate the catapult arm)
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The sporangium catapult mechanism is illustrated in
figure 2. Upon reaching maturity, the sporangium is exposed
to air allowing water to evaporate through the thin outer
walls of the annulus cells. The geometry of the cells is such
that the decrease in cell volume forces the thick radial walls
to rotate towards each other. It is this rotation of radial
walls that drives the opening of the sporangium. The force
required to bend the annulus walls during opening is
balanced by the negative pressure or water tension that
develops inside the cells. When the water tension is too
large, cavitation occurs, and bubbles are formed within
several cells. Without a continuous column of water to sus-
tain the elastic forces in the annulus walls, the elastic
energy is quickly released, leading to fast closure and ejection
of the spores as in a catapult (figure 2).

Although the ejection mechanism has been broadly
understood for over 100 years [7], many of the design
features of the leptosporangium have remained unrecognized
or misinterpreted to this day. Some of the first quantitative
studies focused on measuring the cavitation pressure of the
annulus cells. Renner [8] and Ursprung [9], using the same
experimental approach, predicted very large negative
pressure (2200 to 2300 bars), but, as we will show, the
value they reported overestimates by a factor of two the
true value when all physical factors are taken into account.
The first theoretical study of the ejection mechanism focused
on an estimate of the ejection speed for the spores based

on energy conservation [10]. Later, ultrasound methods
confirmed the role of cavitation in triggering the fast
closure of the annulus [11]. Noblin and co-workers [4]
focused on the closing dynamics, which presents two time
scales: a fast initial displacement completed in a few tens of
ms and a slower relaxation completed over a period of a
few ms. These distinct time scales allow the sporangium to
‘brake’ abruptly midway in the closing motion, increasing
considerably the ejection efficiency.

A direct comparison with medieval catapults can help us
highlight the design requirements for the sporangium. The
leptosporangium is closest in its mode of action to the
onager catapult (figure 3a). In essence, the leptosporangium
and the onager are mechanisms whereby a tension is used
to store elastic energy in rotating elements. However, in con-
trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
rotation. This leads to our first design question: how do the geo-
metrical and mechanical properties of the annulus cells promote a
catapult motion over all other possible modes of deformation?

The action of the leptosporangium as a catapult is depen-
dent on three other design requirements (figure 3b–d). First,
the material properties of the torsion spring must be com-
mensurate with the force or work available to load it. For
the onager, this requirement means that the so-called skein
(i.e. the elastic bundle used to actuate the catapult arm)
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and the onager are mechanisms whereby a tension is used
to store elastic energy in rotating elements. However, in con-
trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
rotation. This leads to our first design question: how do the geo-
metrical and mechanical properties of the annulus cells promote a
catapult motion over all other possible modes of deformation?

The action of the leptosporangium as a catapult is depen-
dent on three other design requirements (figure 3b–d). First,
the material properties of the torsion spring must be com-
mensurate with the force or work available to load it. For
the onager, this requirement means that the so-called skein
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balanced by the negative pressure or water tension that
develops inside the cells. When the water tension is too
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trast to the onager, which possesses a rigid arm rotating
about a single point, the leptosporangium possesses many
flexible cells, each making a small contribution to the total
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metrical and mechanical properties of the annulus cells promote a
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mensurate with the force or work available to load it. For
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FIGURE 3.9: Due to the dehydration process, a slow mechanism
starts: the water within the cavities is put in tension and the walls of
the cavities undergo a not-homogeneous deformation process. When
a threshold value of the water pressure is attained, water cavita-
tion breaks the coupled mechanism and the elastic energy stored is

rapidly released. Adapted image taken by [97].
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In Ref. [94], the dynamics of spontaneous or triggered cavitation inside water–
filled micro–cavities of a hydrogel have been studied through the analysis of the
stability of water under tension in experiments at constant tension and controlled
humidity (see also references therein). Water-filled micro-cavities are the elemen-
tary units of fern sporangium which uses the cavitation induced by evaporation of
the water to realize the shooting mechanism allowing for seeds dispersal, see Fig.
3.8. This shooting mechanism, described and discussed in Ref. [95], is composed of
two phases: a slow opening phase driven by water evaporation which ends when
cavitation pressure is attained within the micro-cavities; a fast closing phase trig-
gered by water cavitation, see Fig. 3.9. The dynamics of the fern sporangium has
been deeply studied, following optically the opening and closing of sporangia, com-
puting the deformations of the annulus during the two phases, and interpreting the
dynamics in terms of a one-dimensional beam model which is shown to finely cap-
ture the characteristics of the motion.

Results in Ref. [97] highlight the importance of the precise tuning of the pa-
rameters which allow the lepto sporangium to work as a catapult. Likewise, it is
important to discuss and investigate through appropriate models the role of the key
geometrical and material parameters allowing for the attainment of cavitation pres-
sure in water-filled micro-cavities of a hydrogel. To do it, the de-hydration process
of a hydrogel cavity, initially filled with water, exposed to air has to be modeled. The
model has to take into account the pumping induced by the difference in chemical
potential inside and outside the cavity, as well as the suction effect realized by the
cavity walls during the evaporation phase.

Actually, few studies are available which combine the fully nonlinear and tran-
sient mechanics of hydration and de-hydration processes with the extreme defor-
mations which characterize hydrogels behavior. The problem has been addressed in
Ref. [98], with reference to a hydrogel sphere which swell once embedded in a water
bath and shrink once taken out of the bath. Some of the Authors have been involved
in the investigation of hydration and dehydration processes in hydrogels for many
years, and have elaborated a multiphysics model to describe such phenomena from
a dynamics point of view which has been successfully tested in different situations
[66, 67, 99].

Here, we deal with the following model experiment: a free-swollen hydrogel,
having a cavity filled with water, is pulled out from the bath and exposed to air. The
difference in chemical potential drains the water out of both cavity and gel walls,
and a drying process begins. We study the dynamics of the dehydration process,
identifying a transient phase dominated by an inflatable-balloon deformation mode,
followed by a phase dominated by a suction effect, which determines highly not ho-
mogeneous deformation modes of the hydrogel. This phase triggers negative pres-
sures into the cavity up to the typical values of water cavitation. This latter strongly
depends on the geometry of the cavity, as well as on the shear modulus of the hydro-
gel. An analysis of the factors allowing to get cavitation pressure inside the cavity
is proposed, to allow for precise tuning of the key geometrical and material param-
eters.

The time–dependent stress–diffusion problem described above allows to inves-
tigate both hydration and dehydration, which cause swelling and de–swelling, re-
spectively. The latter process has received little attention in the Literature, even if
it can induce noteworthy phenomena as the one we are studying here. Let us start
by considering an ideal experiment. A dry hydrogel Bd, with an inner cavity Cd, is
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immersed into a water bath in absence of constraints and loads, and kept there un-
til both the hydrogel walls and the cavity are completely filled with water3 At this
point, the hydrogel is in a steady, stress-free state Bo, with cavity Co; it is then taken
out of the bath and exposed to air: dehydration begins, and water is expelled from
both the cavity and the gel walls (Fig. 3.10).
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FIGURE 3.10: Top: A hydrogel cube with a cavity sits into a bath, in
a free-swollen, steady state; the cavity is completely filled with water
(left). The same hydrogel is pulled out and exposed to air: dehydra-
tion begins and water is pumped out of the cavity by the difference in
chemical potential. As water content of the cavity reduces, the walls
experience a suction pressure which yields an inward bending (right).
Bottom: Free-swelling volume Jo versus shear modulus Gd for an ex-
ternal chemical potential µext = 0 J/mol (see Table 3.2 for parameters

value).

3.3.3 Modelling dehydration

Here, we are interested in the dynamics of the dehydration process, that is, in de-
scribing the actual configuration of the gel Bt, and of its cavity Ct, during the time
evolution:

Bd , Cd| {z }
dry-reference state

! Bo , Co| {z }
free-swollen state

! Bt , Ct| {z }
dehydration dynamics

(3.3.47)

3We can imagine cube, with a cubic cavity, and a cut open face; the cube is immersed into a bath
until it is fully swollen. Then, the cut is sealed, and the swollen cube, with its cavity filled with water
is put in open air and let dehydrate.
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As well described in Literature (see Refs. [95–97]), the volume of the cavity has to
match the volume of the water it contains: as water is pumped out, the volume
of the cavity reduces, a suction pressure develops, and the hydrogel walls slowly
bend inward. Correspondingly, elastic energy is stored into the walls. The suction
effect, due to the water incompressibility, yields a negative pressure in the water,
that is, a tension; eventually, if water tension reaches a critical value (in the range
minus 9 ⇠ 20 MPa) relative to the ambient pressure, cavitation can occurs: the for-
mation of vapor bubbles in the cavity suddenly increases the volume occupied by
water, yielding a jump of the suction pressure: hydrogel walls quickly release all
the elastic energy previously stored. This whole process can be viewed as a power
amplifier: chemical energy is used to slowly increase the elastic energy of the gel, a
low-power process; then, this elastic energy is rapidly converted in kinetic energy
and dissipated, a high-power process. This point of view has been illustrated in
Ref.[95] and largely reviewed in Ref.[96]; water cavitation is the breaking factor that
switches the slow process to the fast one. Being interested in dehydration, we con-
sider as initial configuration the swollen, stress-free, steady state Bo: with zero loads,
no constraints, and an external chemical potential µext = µext, the mechanical and
chemical balance laws prescribe Sd = 0, µ = µext, and yield a uniform deformation
Fd = Fo = loI. The stretch lo is characterized by the value µext of the bath’s chemical
potential and yields relation showed in equation (3.1.16). The relationship between
lo (or Jo = l3

o) and Gd given by the equation (3.1.16) is represented for µext = 0 in
Fig. 3.10 (bottom); it shows as the initial conditions change, depending on the shear
modulus of the hydrogel, once all the other parameters have held fixed. Equation
(3.1.16) is also used to set the initial conditions (3.1.15) specific to our problem4:

uo = (lo � 1) x , cd = cdo =
Jo � 1

W
, on Bd ⇥ {0} . (3.3.48)

The deformation from Bo to the actual state Bt is then described by the deforma-
tion gradient F = Fd F

�1
o .

As regards mechanical boundary conditions, we consider a steady uniform pres-
sure pe on the external boundary ∂eBd, and a time-varying pressure pi on the inter-
nal boundary ∂iBd = ∂Cd, with ∂Cd the boundary of the cavity; in terms of reference
stress, we have

Sd m = �pe F
?
d m , on ∂eBd ⇥ T ,

Sd m = �pi F
?
d m , on ∂Cd ⇥ T .

(3.3.49)

The external pressure pe describes the effect of the atmospheric pressure, and we
assume as base value pe = 0 Pa. The internal pressure pi = pi(t) is a key element
in our problem, and arises as reaction to the volumetric coupling between the water
volume vw = vw(t), and the cavity volume vc = vc(t). As water flows out of the
cavity it must hold

vc(t) = vw(t) (3.3.50)

at each instant t 2 T , until cavitation. The global constraint (3.3.50) is enforced by
adding a term to the total relaxed free-energy yr:

Potential Energy =
Z

Bd

yr dV � pi (vc � vw) ; (3.3.51)

thus, pi can be viewed as the Lagrange multiplier enforcing the constraint (3.3.50).

4The initial condition for ud assumes that the cubic region Bd is centered at the origin.
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The cavity volume vc depends on the actual configuration of the gel, described by
the displacement ud, and can be evaluated as

vc(t) =
Z

Ct

dv =
1
3

Z

∂Ct

x · n da =
1
3

Z

∂Cd

(Xd + ud) · F
?
d m dAd . (3.3.52)

On the other hand, the water volume vw equals the initial water content vwo, minus
the volume vi

w(t) of water outflown through the inner boundary, that is, that has left
the cavity during the time interval (0, t):

vw(t) = vwo � vi
w(t) . (3.3.53)

The initial water content equals the initial cavity volume vco = vc(0), and is given
by (3.3.52), evaluated at time t = 0:

vwo = vco = vc(0) =
1
3

Z

∂Cd

(Xd + uo) · F
?
o m dAd . (3.3.54)

To evaluate the volume vi
w of the water that has left the cavity, we have at our dis-

posal its time-rate v̇i
w as qs = �hd · m measures the water flux entering the gel

through the boundary. It follows

v̇i
w(t) =

Z

∂Cd

qs dAd = �
Z

∂Cd

hd · m dAd . (3.3.55)

Eventually, by time-integrating v̇i
w(t), with initial condition vi

w(0) = 0, yields the
function vi

w(t). It is worth noting that both vc and vw depend on the state of the gel,
that is, on the two state variables ud, cd, which were coupled as a consequence of
(3.1.1). Hence, the new global constraint (3.3.50) adds a further coupling, through
the inner pressure pi.

As regards the chemical boundary conditions, we use different values for the
external chemical potential µext, at the inner and the outer boundary of the gel:

µext = µw on ∂Cd , and µext = µa on ∂eBd , (3.3.56)

being µw = 0 J/mol a constant value at the surface in contact with water, and µa =
µa(t) a time varying value at the surface being exposed to air (see Fig. 3.7, top). The
hypothesis of a constant µext on ∂Cd holds until the inner pressure can be considered
low. Indeed, µext = piW ⇡ 0 on ∂Cd for 107 < Gd < 108. To model the transient time
interval during which the outer boundary condition changes from water to air, we
assume the following time law for µa:

µa(t) = µo + (µ• � µo)(1 � exp[�log 2 (t/Tc)]) , (3.3.57)

with µo = 0 J/mol, corresponding to Relative Humidity (RH) equal to 1, and µ• ⌧
µo, corresponding to RH ⌧ 1; Tc is the time needed to go from µo to (µo + µ•)/2. In
our numerical experiments we use the following values of the materials parameters:
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TABLE 3.2: Numerical values of the parameters

Parameter value IS Units Description
W = 1.8 · 10�5 m3/mol water molar volume;
c = 0.2 1 dis-affinity;
D = 10�9 m2/s diffusivity;
µ• = �2000 J/mol chemical potential for air (J• ' 1);
Tc = 500 s time to switch wet-to-dry;
T = 293 K ambient temperature.

3.3.4 Dehydration dynamics

We consider as dry-reference Bd a cube with side length l, having a cubic cavity Cd
at its center with side length l � h, so that the gel walls have thickness h/2.

To discuss dehydration dynamics we introduce the following volume ratios, whose
time behavior is shown in Fig. 3.11:

• vi
w(t)/vco water through the inner boundary;

• ve
w(t)/vco water through the external boundary;

• vg(t)/vco gel volume: vg =
R

Bd
Jd dV;

• vw(t)/vco water content of the cavity.

We also remember that water flux is measured with respect to the gel, that is, positive
values of vi

w and ve
w represent water entering the gel.

Let tc = h2/4D be the characteristic time of the diffusion problem. At early
times, that is for t/tc << 1, when hydrogel begins to release water from the ex-
ternal walls towards the environment, we have the highest gradients of chemical
potential. The small, steep, ramp at the beginning of the curve ve

w(t)/vco (yellow
line) corresponds to a large negative flux (water exits from the walls); during the
same time interval, the water entering the gel from the cavity is much smaller,
kvi

w(t)/vcok ⌧ kve
w(t)/vcok, the water content in the gel decreases very fast, and

so does the gel volume, vg(t)/vco < 1 (steep initial ramp of the green line); mean-
while, the cavity volume remains almost unchanged, vw(t)/vco ' 1 (red line).

As a consequence, the inner pressure pi increases up to a maximum positive
value (Fig. 3.11, top panel), and we observe a sort of inflatable–balloon effect of the
cavity which is especially visible under certain conditions, as we are discussing in
the next subsection.

The pink region in Fig. 3.11 and 3.12, labeled I, identifies this phase of the de-
hydration, characterized by a positive inner pressure pi and the inflatable–balloon
deformation mode. This mode is represented with a cartoon in Fig. 3.12 (bottom
panel, left), where coloring corresponds to the value of J = Jd/Jo, the ratio between
the current and the free-swollen volume of the hydrogel.

After this initial transient, when t/tc > 1, the gel volume vg(t)/vco remains al-
most constant, see green line in Fig. 3.11, as the water entering into the gel from the
cavity (blue line) is equal to water exiting the gel from the external boundary (yellow
line).

The gray region in Fig. 3.11 and 3.12, labeled II, identifies the second phase of the
dehydration, during which the inner pressure pi has negative values, thus yielding
the suction effect. During this phase, the hydrogel walls bend inwards, and the
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FIGURE 3.11: Top: Volume ratios of different quantities versus the
dimensionless cavity volume vc/vco: volume of water crossing the
internal boundary, vi

w/vco (blue); volume of water crossing external
boundary ve

w/vco (yellow); gel volume vg/vco (green); water content
of the cavity vw/vco (red). We set: Gd = 108Pa, h = 0.0025m, l =

0.02m; at t = 0, cavity volume is twice the gel volume.

water inside the cavity undergoes tension; this effect is represented with a cartoon
in Fig. 3.12 (bottom panel, right).

3.3.5 Flow rates

A better view of the dehydration process can be obtained through the analysis of the
fluxes and the pressure versus the cavity volume, as shown in Fig. 3.13; here phase
I is larger than phase II, due to the smaller value of the shear modulus that has been
used (Gd = 107 Pa) with respect to the one used for Fig. 3.12 to better discuss the
process.

It can be noticed that the external flow rate v̇e
w (yellow line) begins with a very

high negative value: a lot of water exits from the gel towards the external; at the
same time, the internal flow rate v̇i

w (blue line) has a much smaller negative value:
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FIGURE 3.12: Top: Dimensionless inner pressure pi/Gd versus cavity
volume vc/vco; cavity pressure changes sign from positive in phase
I to negative in phase II. At point 2, the pressure has its maximum,
denoted as pm

i . Middle: Gel configurations under positive (left) and
negative (right) inner pressure. Bottom: Gel configurations at the four
points 1 � 2 � 3 � 4 highlighted in the top plot; coloring according to
the gel-volume variation J. We set: Gd = 108 Pa, h = 0.0025 m,

l = 0.02 m.

few water exits from the gel towards the cavity. Pressure (green dashed line) is pos-
itive and the inflatable–balloon effect takes place; when the two flow rates approach
the same absolute value, kv̇e

wk/kv̇i
wk ! 1, the inner pressure crosses the zero value

and becomes negative: the suction effect begins.
The cartoon at the bottom of Fig. 3.13 shows four different configurations corre-

sponding to the points reported in the above plot. Configuration 1: very early times;
v̇e

w < v̇i
w < 0; hydrogel walls are releasing water towards both the external environ-

ment and the inner cavity; pressure is positive and inflation begins. Configuration 2:
early times; v̇e

w < 0 < v̇i
w; water exits from the cavity and from the external bound-

ary, while pi > 0; inflation persists. Configuration 3: flow rate are almost equal, but
opposite in sign: kv̇e

wk/kv̇i
wk ! 1; pressure is almost zero. Configuration 4: inward

flow rate from the cavity remains slightly higher than the outward flow rate to the
external environment; |v̇i

w| > |v̇e
w|; pressure becomes negative; suction begins.

All in all, the flow rate from the cavity v̇i
w depends on the geometrical charac-

teristic of the cubic sample. In particular, our cube with edge length = l and walls
thickness = h/2, has external faces with area Ae = l2, and cavity faces with area
Ac = (l � h)2; the ratio ab = Ae/Ac has a key role. Given the slenderness ratio
b = h/l, it holds ab = 1/(1 � b)2. We tested values for b 2 (1/8, 1/2, that is, from
thin wall and large cavity (b ⇠ 1/8), to thick wall and small cavity (b ⇠ 1/2), yield-
ing ab in the range (1.3, 4). As expected, see Fig. 3.14, v̇i

w is a decreasing function of
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FIGURE 3.13: Top: Flow rates v̇i
w (blue, solid) and v̇e

w (yellow, solid)
of water crossing the cavity boundary, and the external boundary, re-
spectively; values are reported on the left vertical axis. Dimensionless
pressure pi/Gd (green, dashed) inside the cavity; values are reported
on the right vertical axis. Bottom: Gel configurations corresponding
to the four points highlighted on the above plot. The arrows show
flow rates; coloring according to the gel-volume variation J. We set:

Gd = 107 Pa, h = 0.0025 m, l = 0.005 m.

ab and is lower for stiffer hydrogels (green lines) than for softer hydrogels (orange
and blue lines); these values correspond to the instant t̄ when, for each different
sample, the cavity volume is half the initial size: vc(t̄)/vco = 1/2.

FIGURE 3.14: Semi-log plot of the flow rate through the boundary of
the cavity v̇i

w, evaluated when vc/vco = 1/2, versus the surface ratio
ab. The three curves refer to different shear moduli, ranging from

Gd = 107 Pa to Gd = 109 Pa (semi–logarithmic scale).
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3.3.6 Elastic energy and stress

Finally, we discuss the evolution of two mechanical quantities, the elastic energy
and the stress state, by comparing the behavior of gels having different shear mod-
uli. During dehydration, a large part of elastic energy should be stored as a conse-

FIGURE 3.15: Dimensionless elastic energy ye/yeo versus vc/vco for
different shear moduli spanning three orders of magnitude. We set:

h = 0.0025 m, l = 0.02 m.

quence of the suction–effect deformation mode, that eventually yields a cavitation
pressure inside the cavity5. In Fig. 3.15 we plot the evolution of the dimensionless
elastic energy ye/yeo, with yeo the elastic energy stored at the free-swollen state. We
observe that, for a stiff material (green lines), the function ye/yeo is non–monotonic:
at early times elastic energy decreases; then, at later times, it increases much more
with respect to the previous loss. For softer hydrogels, the elastic energy behaves
differently (orange and blue lines): most of its change happens at early times, with
the consequence that the change of elastic energy during the process is much smaller
with respect to the one seen for stiff gels.

To analyze the stress state, we focus on a beam-like portion of the gel’s wall, that
is, we consider a region at the center of a cube face, having length (l � h) and cross
section h/2 ⇥ h/2 (see cartoon at bottom of Fig. 3.16). Denoted with e the direction
of the longitudinal axis of the beam, we are interested in the longitudinal component
s = T e · e of the Cauchy stress

T = J�1
d Sd F

T
d =

Gd
Jd

Fd F
T
d � p I , (3.3.58)

which is the stress component important for the bending. In Fig. 3.16, we plot the
evolution of the dimensionless stress s/Gd evaluated at a point of the external wall
(solid lines), and of the internal wall (dashed lines). The stress analysis is interesting
for two reasons. Firstly, it shows as stiff hydrogels (green) have a stress distribution
in accordance with the suction–effect mode (stress is negative at outside, and posi-
tive at inside), whereas soft gels (orange lines) presents an inversion of the bending

5In Ref.[95], it has been noted as an array of cells, each undergoing a suction–effect deformation
mode, exhibits a global bending deformation.
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couple when deformation mode switches from the inflation–balloon (positive at out-
side, and negative at inside) to the suction–effect (negative at outside and positive at
inside). Even softer hydrogels (blue lines) only presents bending stresses compatible
with the inflation–balloon mode. Moreover, in these latter softer hydrogels, bending
stress attains a very high values at early times.

FIGURE 3.16: Top: Dimensionless bending stresses s/Gd versus
vc/vco for different shear moduli. Values taken at the external side
(solid lines), and the internal side (dashed lines) of the cross section.
Bottom: cartoon of the cubic sample with the beam-like region high-
lighted in blue (left), and the points used to evaluate the stress in red

(right). We set: h = 0.0025 m, l = 0.02 m.

3.3.7 The inflation–balloon effect

At the best of our knowledge, the inflatable–balloon mode observed at early times
has never been noted in the Literature. This phenomenon strongly depends on Gd,
c, µ•, b and the ratio Tc/tc; in particular, by controlling Tc, the inflation effect can
be enhanced or diminished. To quantify the effect of Tc/tc and Gd, we fixed the
aspect ratio b = 0.125 of the cubic sample, the external chemical potential µ• =
�2000 J/mol, and we studied the dependence of the maximum inner pressure pm

i ,
made dimensionless by Gd (see point 2 in Fig. 3.8), on Tc/tc and on Gd. It is worth
noting that, being µext fixed, from equation (3.1.16) Jo = Jo(Gd); thus, in the plot
we report the values of Jo instead of Gd. Fig. 3.17a shows pm

i /Gd versus Jo. The
inflatable–balloon mode increases with Jo, and becomes appreciable when Jo > 2;
moreover, the same effect is hampered for Tc > tc (yellow). Indeed, only when Tc <
tc (blue), the water begins to outflow from the external boundary faster with respect
to the water entering in the gel from the cavity: thus, the shrinking walls have to
be stretched in order to wrap the water volume in the cavity which is still large.
Fig. 3.17b shows pm

i /Gd versus Tc/tc. The curves show two regimes: for Tc/tc <
2 · 10�1, pressure remains constant; for Tc/tc > 2 · 101 pressure decreases linearly
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FIGURE 3.17: Inflatable–balloon mode. Top: Maximum dimension-
less pressure pm

i /Gd versus Jo at different ratios Tc/tc (panel a). Bot-
tom: Log-log plot of maximum dimensionless pressure pm

i /Gd versus
Tc/tc at different Jo (panel b). We remember that Jo = Jo(Gd); thus to
each value of Jo there correspond a unique value of Gd; see Fig. 3.10,

bottom.

(in a log-log plot). When Tc/tc > 102, the maximum inner pressure is too low, and
it is almost impossible to observe the inflatable-balloon mode. The dimensionless
pressure pm

i /Gd is higher for the softer gel (blue) than for stiffer ones (yellow); the
same holds for the dimensional pressure pm

i : at early times, pm
i ⇠ 6 · 105 Pa for the

soft gel, and pm
i ⇠ 1.6 · 105 Pa for the stiff one.

3.3.8 Determinants for cavitation

We investigate how geometrical and material factors may trigger water cavitation,
assuming pi = �10 MPa as threshold for the phenomenon to happen. Through
our numerical experiments, we discovered that shear modulus Gd, and slenderness
parameter b are the main determinants in attaining cavitation.
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FIGURE 3.18: Dimensionless inner pressure pi/Gd versus vc/vco, for
different values of b and fixed Gd = 108 Pa. Solid lines are ob-
tained with h = 0.0025 m and l = (0.02 m, 0.01 m, 0.005 m), corre-
sponding to b = (0.125, 0.25, 0.50), respectively (blue, orange and
green solid lines). Dashed lines are obtained with l = 0.02 m and
h = (0.005 m, 0.01 m), corresponding to b = (0.25, 0.50), respectively
(orange and green dashed lines). The black dashed line represents
the dimensionless pressure of water cavitation pc/Gd = �0.1, with

Gd = 108 Pa.

At first, we investigate the dependence on b with a constant Gd = 108 Pa. Fig.
3.18 shows dimensionless inner pressure pi/Gd versus volume ratio vc/vco, for dif-
ferent values of b. We note that only the green curves, corresponding to b = 0.5
attain values below the dimensionless cavitation pressure (black, dashed). Cavita-
tion should occur when the volume of the cavity has been reduced to about 70%.
We also verified that more slender sample, with shear modulus Gd = 107 Pa cannot
achieve cavitation pressure, as it is shown in Fig. 3.19 for b = 0.125 (the blue solid
line always stays above the dashed blue line which marks the cavitation pressure
threshold. Then, we investigate the dependence on Gd with a constant b = 0.125.
Fig. 3.19 shows dimensionless inner pressure pi/Gd versus volume ratio vc/vco, for
different values of Gd, from Gd = 107 Pa to Gd = 109 Pa. The solid blue line represent
the same case as the solid blue line of Fig. 3.18 (with a different scale of the vertical
axis); this curve does not intersect the dashed blue line corresponding to the dimen-
sionless cavitation pressure. On the contrary, both the green and orange solid lines,
corresponding to higher Gd, intersect the cavitation pressure lines (orange and green
dashed lines); for Gd = 109 Pa, cavitation pressure is achieved very soon, for vc/vco
slightly less than 1. Finally, in Fig. 3.20, we present the result of our analyses with
a contour plot of the inner pressure in the plane Gd, b; in Fig. 3.20 the iso-contour
pi = �10 MPa is highlighted by the arrow; such a contour plot may be interpreted
as a phase diagram for cavitation to occur. We ran many numerical experiments to
explore the space (b, Gd), and for each experiment we evaluated the inner pressure
at vc/vco = 0.3, that is, at the maximum achievable value without self contact of
hydrogels walls. Based on these pressure values, we interpolated iso–pressure lines;
the contour at pi = �10 MPa discriminate between a region where cavitation may
occur and a region where it cannot.
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FIGURE 3.19: Dimensionless inner pressure pi/Gd versus vc/vco for
different values of Gd (solid lines). Dashed lines correspond to the
dimensionless cavitation pressure for Gd = 107 Pa (blue), Gd = 108

Pa (green), Gd = 109 Pa (orange). We set: h = 0.0025 m, l = 0.02 m.
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FIGURE 3.20: Phase diagram of cavity pressure. In the plane Gd,
b, we highlight the isolines for the inner pressure pi. The isoline
pi = �10 Mpa corresponds to the cavitation threshold: above this
line, cavitation may occur. All the values of pi have been evaluated at

vc/vco = 0.3.

3.3.9 Dehydration under spherical symmetry

We discuss our ideal experiment, dehydration of a gel with a cavity filled with wa-
ter, by considering a spherical sample. For a spherical geometry, this problem also
allows for an analytical approximation based on the analysis developed in Ref.[100].
Therein, the phenomenon of hole formation in the interior of an elastic body in a
state of tension has been studied and referred as cavitation, as it was common since
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the 080 after the seminal paper by J.M. Ball cited as Ref.[101]6.
When dehydration preserves the condition of spherical symmetry, no inflatable–

balloon mode is visible. Nevertheless, at early times, as already observed for the cu-
bic sample, the inner pressure pi increases, meanwhile the wall thickness decreases.
Then, after achieving a maximum positive value, the pressure decreases to negative
values, while the walls thicken.

It follows that, also for the spherical geometry, dehydration exhibits two phases,
see Fig. 3.21. In particular, compare the top panels of Fig. s 3.12 and 3.21. These two
phases, wall-thinning and wall-thickening, determine the so-called breathing mode,
a non–monotonic deformation mode characteristic of cavities filled with water. In
this case, the cavity reduces its size but retains the spherical shape [105]. We remark
that the same phenomenon, a non–monotonic change of the wall thickness during
dehydration, has been observed in our numerical experiments with cubic samples.

We propose an explicit solution of the dehydration problem by following the
solution proposed in Ref.[100]. We consider a dry sphere having radius Re, with a
spherical cavity at its center of radius Rc. Under spherical symmetry conditions, the
deformation of the sphere is described by the map r(R) which delivers the actual
radius r corresponding to the dry one R.

Our numerical experiments show that, both for the cubic and the spherical sam-
ples, the gel volume vg(t) remains constant during dehydration when t � Tc; we
can write:

vg(t)|t�Tc ' J̄d vgd , with vgd = gel volume at dry state. (3.3.59)

Moreover, the value of J̄d can be approximated by averaging the values of Jd imposed
by the chemical boundary conditions: at ∂Bc we have µ = 0 J/mol, and Jd = Jo; at
∂eBd we have µ = µ•, and Jd = 1; it holds

J̄d =
1 + Jo

2
, (3.3.60)

with the value of Jo controlled by the chemical potential through the equation (3.1.16).
Equation (3.3.60) is the key to solve our problem; introducing the radial stretch lR
and the hoop stretch lJ: we can write

J̄d = lR l2
J , with lR(R) = r0(R) , lJ(R) =

r(R)
R

. (3.3.61)

Equations (3.3.61) yield an ODE that can be integrated explicitly:

r0(R)

✓
r(R)

R

◆2

= J̄d ; boundary condition r(Rc) = rc . (3.3.62)

The solution of (3.3.62) is the function

r(R) = ( r3
c + J̄d (R3 � R3

c) )1/3 . (3.3.63)

The hoop stretches at cavity and at the external boundary are

lc = lJ(Rc) =
rc

Rc
; le = lJ(Re) =

r(Re)
Re

. (3.3.64)

6Successively, within the context of solid mechanics, cavitation has also been used as a synonymous
for discontinuous change of size of an existing cavity in a solid, as in Refs. [102–104] which focus on a
hydrogel sphere with a cavity.
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FIGURE 3.21: The breathing mode of a spherical cavity is represented
in terms of the dimensionless pressure pi/Gd (top), and of the dimen-
sionless walls thickness ho (central panel) versus vc/vco. Results from
an approximate explicit analysis (dashed orange lines) and from nu-
merical solutions (solid blue lines) are compared. The change in vol-
ume of the sphere walls is represented through a colour code related
to Jd (bottom panel). The geometry of the dry sphere is fixed by the
external Re and internal radius Rc: Re = 0.01m, and Rc = 0.00875m.

Then, given the elastic energy density per unit reference volume Ŵ = Ŵ(lR, lJ),
the total potential energy of the sphere can be written as:

E =
Z Re

Rc

4 p R2Ŵ(lR, lJ) dR � pi 4pR3
c(lc � 1) , (3.3.65)

Following Ref.[100], we assume a change of variable, r/R = h, and consider the
elastic energy as a function of t:

Ŵ(lR, lJ) = Ŵ
✓

J̄d

l2
J

, lJ

◆
= W(h) . (3.3.66)

Moreover, from the change of variable, and from (3.3.62), we have

dt =
J̄d � h3

t2
dR
R

, R3 =
r3

c � J̄d R3
c

h3 � J̄d
, (3.3.67)
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and we can use these relations to rewrite the first summand of (3.3.65) as an integral
over h

Z Re

Rc

4 p R2Ŵ(lR, lJ) dR = 4 p (r3
c � J̄d R3

c)
Z lc

le

h2

(h3 � Jd)2 W(h) dh . (3.3.68)

Then, integrating by parts, we obtain:

E =
4 p

3
(r3

c � J̄d R3
c)
Z lc

le

W 0

(h3 � J̄d)
dh

+
4 p

3
�

R3
e W(le) � R3

c W(lc)
�
� pi 4 p R3

c (lc � 1) . (3.3.69)

Finally, from the stationary condition we obtain a formula for pi

dE
drc

= 0 ) pi = l2
c

Z lc

le

W 0

(h3 � J̄d)
dh . (3.3.70)

For a Neo–Hookean elastic energy, we have

W(t) =
Gd
2

( J̄ 2
d h�4 + 2 h2 � 3) . (3.3.71)

Inserting (3.3.71) in (3.3.70) yields the inner pressure as a function of Gd, J̄d (that is,
the chemical boundary conditions), and the two hoop stretches lc , le:

pi
Gd

=
lc

2

✓
J̄d + 4 l3

e
l4

e
� J̄d + 4 l3

c
l4

c

◆
. (3.3.72)

Actually, J̄d, le, and lc are not independent; as example, by using (3.3.63), we can
write le as a function of J̄d and lc

le = J̄d +

✓
Rc

Re

◆3
(l3

c � J̄d) . (3.3.73)

It is worth introducing the cavity hoop-stretch l̃c, as measured with respect to the
hoop stretch at the free-swollen state lco; it is given by

l̃c =
rc

Rco
=

lc

lco
=

✓
vc

vco

◆1/3
. (3.3.74)

Thus, using (3.3.73) and (3.3.74), it is possible to rewrite (3.3.72) as a function of the
free-swollen stretch of the cavity lco, and the volume ratio vc/vco:

pi
Gd

= �1
2

✓
vc

vco

◆1/3 J̄d + 4 l3
co (vc/vco)

l3
co(vc/vco)

lco (3.3.75)

+
1
2

5 J̄d � 4 ( J̄d � l3
co (vc/vco)) (Rc/Re)3

( J̄d � ( J̄d � l3
co (vc/vco)) (Rc/Re)3)4/3 l2

co (vc/vco)
2/3 .

Fig. 3.21, top panel, shows the dimensionless pressure pi/Gd as evaluated by the ex-
plicit formula (3.3.75) (orange, dashed), and by numerical simulations (blue, solid),
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for lco = 1.077 and J̄d = 1.124. The dimensionless thickness

ho =
r(Re) � rc

(Re � Rc)lco
, (3.3.76)

is an important determinant of the breathing mode: Fig. 3.21 (middle) shows the
non–monotonic behavior of ho versus (vc/vco).

3.4 Growth and swelling of hydrogels

A further complication in hydrogels and generally in wood-like material is the pres-
ence of residual strains after hydration-dehydration cycles which are usually not
taken in account in the modelling and which can significantly change the behavior
of such material. For this reason, in this section, we aim at coupling the theory of
swelling, describing the effects of solvent uptake in polymeric solids, with that of
growing, describing the change of the relaxed state in a continuum body [106]. Bas-
ing on the hypotheses underlying the two theories, and using some key principles
of continuum mechanics, we develop a chemo-mechanical model which describes
the combined effects of swelling and growing in solids.

As swelling is often taken as synonymous with growth, we begin by framing
our meaning of swelling and growth: for us, the two words relate to quite different
physical phenomena. The swelling theory is the one put forth by Flory and Rehner
[72] to describe the change in volume due to solvent uptake which is observed in
many cross-linked polymer networks when they are immersed in a solvent bath;
thus, swelling (or de-swelling) is always accompanied by an exchange of mass, the
mass of solvent entering (or exiting from) the polymer. This theory has a long tra-
dition, started with the seminal papers [107, 108], and later developed in [109]; it
describes effectively volume transitions, see [110] for an informative review, and is
based on the coupling of the mixing energy typical of polymer solutions, with the
elastic energy for cross-linked polymers: the coupling is constitutive and relates the
volume change of the polymer with the volume of solvent uptake or release. The
state of the system can be controlled by the chemical potential of the solvent bath
and the applied loads; it is important to note that any change of volume is accom-
panied by a change in both the mixing and the elastic part of the free energy [66,
68].

The theory can describe both steady states and time-evolutive processes; impor-
tant examples of the former class are the homogeneous, stress-free, swollen states;
for the latter, we cite the phenomena of differential swelling that appears during the
solvent exchange, or the morphing exhibited by non-homogeneous gels, as studied
in [111–114]; also non-isotropic swelling can be described within the same frame-
work [115, 116]. We note that swelling theory cannot describe the emergence of
residual stress (meant as permanent stress), as any possible stress state generated by
swelling, vanishes upon de-swelling.

For growth we mean a quite different phenomenon, conceived beforehand any
assumption on the exchange of mass: local changes of the ground state. The simplest
example of such a growth is the thermal expansion in solids: a metal increases its
volume upon heating, while no mass is exchanged; moreover, for a body which
is homogeneous, unconstrained, and uniformly heated, no elastic energy is stored
during the volume change. In this sense, heating does not change the ground state
of the solid.
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The aforementioned phenomena are best described as local changes of the zero-
stress reference state, as presented in [117]; the theory of bulk growth is based on
the multiplicative decomposition of the deformation gradient, [118, 119], and has
been more recently augmented by a balance law for the remodelling actions, [120],
a contribution we consider noteworthy. The theory of growth has also been used to
describe remodelling of living tissues as in [121–123].

Growth endows the body manifold with a target metric, whose consequences on
both compatibility, embedding, and morphing have been investigated [83, 124–126].

Contrary to the swelling theory, growth can describe quite well the emergence
of residual stress; nevertheless, growth theory is still in its infancy, especially with
regards to the role played by the remodelling actions, the Eshelby-like tensor and
the time evolutive processes; an attempt in this direction may be found in [127].

Here, we aim at coupling the theory of swelling with that of growth on the basis
of some key principles of continuum mechanics. The model herein presented can
describe large deformations of solids where the volume variation is different from
the volume of solvent which is exchanged, a phenomenon very common in complex
polymers. An important class of materials exhibiting this phenomenon is wood;
as example, uptake of solution with water and a low molecular weight polymer
as polyethylene glycol induces bulking, a permanent swelling where wood retains
part of its swollen state upon drying [10]. Bulking is caused by the deposition of
extractives within wood cell walls when water evaporates, thus changing the relaxed
state of cells.

We conclude our introduction by mentioning the theory of biphasic mixtures,
which describes the interactions between a porous-permeable solid, and an inter-
stitial fluid [128]. The model herein presented, describing a growing solid which is
swollen by a fluid, may appear similar to the theory of biphasic mixtures; indeed, the
model is quite different: a main difference is that the mixture theory describes the
motion of all constituents, while our model describes only the motion of the solid,
apart from the concentration of the fluid; another key difference is the augmented
kinematics used to describe growth, which is not present in the mixture theory.

3.4.1 State variables for growth and swelling

Let E be the 3D Euclidean space, VE the associated translation space, Lin the space
of double tensors on VE , and T the time line. We assume the dry configuration
of the body Bd, an open set of E , as reference configuration, and we denote with
Xd 2 Bd a material point of Bd; in our model, the chemo-mechanical state of the
body is described by a position-valued field fd, a tensor-valued field Fg, and a scalar
field cd

fd : Bd ⇥ T ! E , motion;

Fg : Bd ⇥ T ! Lin , relaxed stance;

cd : Bd ⇥ T ! R , solvent concentration.

(3.4.77)

The motion fd is standard in mechanics: it gives the actual position x = fd(Xd, t) of
a material point Xd at time t; given a motion, we can define the displacement vector
as ud(Xd, t) = fd(Xd, t) � Xd.

Given any complete motion ( fd, Fg), we define the velocity pair (v, V), with v =
u̇d, V = Ḟg F

�1
g , and the associated test velocities (ṽ, Ṽ).
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We denote with Fd = r fd the gradient of the motion; the set Bt = fd(Bd, t)
describes the actual configuration of Bd at time t. A field defined on Bd ⇥ T is
called a material field; conversely, a field defined on Bt is called a spatial field.

The relaxed stance Fg, or distortion, is meant to describe the volumetric growth,
and deserves careful comments: following the idea from [117], growth is defined as
a change in the zero-stress reference state. Thus, Fg defines, at each material point
Xd, a stress-free distorted volume-element: to envision the notion of distortions, you
may want to consider some volume elements attached to neighboring body points;
after the action of a smooth field Fg, the distorted volume elements are in a relaxed
state, but in general, they are not compatible. To glue together the new volume
elements, that is, to realize any actual configuration Bt, a further deformation Fe is
necessary, defined by:

Fe = Fd F
�1
g , elastic deformation. (3.4.78)

Equation (3.4.78) represents the Kröner-Lee decomposition of the deformation gradi-
ent Fd originally introduced in [118, 119] to describe viscoplastic strains.

It follows the paramount difference between Fd and Fg: the first tensor field is
the gradient of a motion, that is, it implies the existence of a displacement field that
realizes the configuration Bt; the second one is not the gradient of any field, and in
general a relaxed configuration cannot be conceived, not even locally; a review on
compatibility issues can be found in [126].

Moreover, it is worth saying that distortions have a two-fold nature: a kinemati-
cal one, as they add 9 further degrees of freedom, independent from the motion fd;
a dynamical one, as they describe a zero-stress state of the body elements. We quote
verbatim from [120] “Fg cannot even be conceived without the standard notion of
stress and some constitutive information on it.” Thus, the use of the term ground
state, that here anticipates the specification of a free energy, calls attention to the fact
the distortions do not change the value of the free-energy density of body elements.

The key volume measures are the reference volume element dVd(Xd), the relaxed
element dVg(Xd, t) and the actual element dv(x, t); given the Jacobians

Jd = detFd , Jg = detFg , Je = detFe = Jd J�1
g , (3.4.79)

the three volume elements are related by:

dVg = Jg dVd , dv = Jd dVd = Je dVg ; (3.4.80)

we note that the second formula involves a change of variable

dv( fd(Xd, t)| {z }
x

, t) = Jd(Xd, t) dVd(Xd) . (3.4.81)

Finally, we describe cd: it represents the chemical state variable, and measures the
solvent content per unit of dry volume: [cd] =mol/m3. We can alternatively consider
different solvent concentrations: introduced the elementary amount of solvent dc,
we may write

dc = cd dVd = cg dVg = c dv . (3.4.82)

with
c(x, t) concentration per unit of actual volume;

cg(Xd, t) concentration per unit of relaxed volume;
(3.4.83)
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All these concentrations are related by standard pull back formulas for scalar densi-
ties: from (3.4.80) it follows

cd(Xd, t) = cg(Xd, t) Jg(Xd, t) ,

cd(Xd, t) = c( fd(Xd, t)| {z }
x

, t) Jd(Xd, t) ; (3.4.84)

as in (3.4.81), the second formula contains a change of variables, which is usually
written in short as cd = cm Jd, with cm = c � fd, the material description of the spatial
field c.

Introduced the molar volume of the solvent W, that is, the parameter describing
the volume occupied by one mole of solvent, [W] =m3/mol, it follows that we can
gauge the elementary solvent volume by using the different densities cd, cg, or c, as
follows

dVsol = W cd dVd = W cg dVg , dvsol = W c dv . (3.4.85)

Thus, the total volume of solvent contained in our body can be evaluated by an
integral on Bd or Bt:

Z

Bd

W cd dVd =
Z

Bd

W cg dVg =
Z

Bt

W c dv . (3.4.86)

The cartoon in Fig. 3.22 shows the action of the three tensor maps Fd, Fg, and Fe
on the volume elements. Our key constitutive assumption, to be discussed later, is
that the volume change Je is only due to solvent uptake or release, that is, the actual
volume element dv is the sum of the relaxed one dVg, plus the solvent contribution
dVsol ; this hypothesis implies an important chemo-mechanical coupling.

3 Balance laws

Our model has three state variables: two of them
concern mechanics, the motion fd, and the growth Fg,

while the third one, the solvent concentration cd, is a

chemical variable. Thus, the model has three balance
laws: the balances of working for both motion and

growth, and the balance of solvent mass. It is of the

essence to remark that the assumption of Fg as state

variable demands for a proper balance law, an

important point that is often missed, and that is clearly
stated in [17].

3.1 Balance of solvent mass

Introduced the molar mass of the solvent M, that is,

the mass of one mole of solvent, ½M" ¼Kg/mol, we
may gauge the mass of the solvent contained in Bd by

the integrals:

SolventMass ¼
Z

Bd

M cd dVd ¼
Z

Bs

M c dv : ð11Þ

Being M constant, the time-rate of the solvent mass
involves only the concentration cd; thus, the balance of

solvent can be stated as follows: for any part Ps & Bs

of the body, the time-rate of solvent moles equals the
solvent source q ¼ qðx; sÞ at the boundary oPs, with

q a molar source per unit surface, ½q" ¼ mol/(m2 s):

o
os

Z

Ps

c dv ¼
Z

oPs

q da ; 8Ps & Bs ; ð12Þ

with da the surface element on oBs. The boundary

source q can be represented in terms of a molar flux

h ¼ hðx; sÞ, (½h" ¼ mol/(m2 s)), a vector-valued

quantity such that q ¼ ' h ( n, with n the normal at

oPs; being n the outward normal, ' h ( n[ 0 implies
an inward flux. Both left and right terms of (12) can be

pulled back on the dry-reference part Pd:

o
ot

Z

Ps

c dv ¼
Z

Ps

ð _c þ div ðc vÞÞ dv ¼
Z

Pd

_cd dVd ;

Z

oPs

h ( n da ¼
Z

oPd

hd (m dAd ¼
Z

Pd

divhd dVd ;

ð13Þ

with dAd the surface element on oBd, m its outward
normal, and hd ¼ hdðXd; sÞ the molar flux gauged on

the dry-reference state (the pull back of h), defined by

hd ¼ Jd F
' 1
d hm ; with hm ¼ h * f : ð14Þ

It follows that h ( n da and hd (m dAd represent the

same elementary flux rate, measured in mol/s, see
Fig. 2. To the flux hd it is associated a boundary source
qd per unit dry-reference area, given by qd ¼ ' hd (m.

Xd Xd

x

Fe = Fd F−1
gFd

Fg

ψg = ψge + ψgm

cg

Sge =
∂ψge

∂Fe

ψ = Jg ψg

Sd = TF∗
d = Sge F∗

g − pF∗
d

cd = Jg cg

T = Sd (F∗
d)

−1

Fig. 1 Schematic diagram of the different densities involved in
the model. The free energies are given as densities per unit
relaxed volume. The reference stress Sd and the stress T are
densities per unit of reference and actual volume, respectively;
they are related by the adjugate F+

d . The energetic part of the
stress Sge, defined as the derivative of the energy wge with

respect to Fe, is a density per unit relaxed volume

m

hd ·m = Jd F−1
d h ·m

dAd

n=
F∗

d m
|F∗

d m|

h ·n=
1
Jd

Fd hd ·n

da = |F∗
d m| dAd

Fig. 2 Geometrical interpretation of dry-reference and actual
fluxes. The top and bottom parallelepipeds share the same
elementary volume: hd (m dAd ¼ h ( n da; such volume mea-
sures the moles per second crossing the surfaces dAd (top) or da
(bottom)

Meccanica

123

Author's personal copy

FIGURE 3.22: The free energies are given as densities per unit relaxed
volume. The reference stress Sd and the stress T are densities per
unit of reference and actual volume, respectively; they are related by
the adjugate F

⇤
d . The energetic part of the stress Sge, defined as the

derivative of the energy yge with respect to Fe, is a density per unit
relaxed volume.
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3 Balance laws

Our model has three state variables: two of them
concern mechanics, the motion fd, and the growth Fg,

while the third one, the solvent concentration cd, is a

chemical variable. Thus, the model has three balance
laws: the balances of working for both motion and

growth, and the balance of solvent mass. It is of the

essence to remark that the assumption of Fg as state

variable demands for a proper balance law, an

important point that is often missed, and that is clearly
stated in [17].

3.1 Balance of solvent mass

Introduced the molar mass of the solvent M, that is,

the mass of one mole of solvent, ½M" ¼Kg/mol, we
may gauge the mass of the solvent contained in Bd by

the integrals:

SolventMass ¼
Z

Bd

M cd dVd ¼
Z

Bs

M c dv : ð11Þ

Being M constant, the time-rate of the solvent mass
involves only the concentration cd; thus, the balance of

solvent can be stated as follows: for any part Ps & Bs

of the body, the time-rate of solvent moles equals the
solvent source q ¼ qðx; sÞ at the boundary oPs, with

q a molar source per unit surface, ½q" ¼ mol/(m2 s):

o
os

Z

Ps

c dv ¼
Z

oPs

q da ; 8Ps & Bs ; ð12Þ

with da the surface element on oBs. The boundary

source q can be represented in terms of a molar flux

h ¼ hðx; sÞ, (½h" ¼ mol/(m2 s)), a vector-valued

quantity such that q ¼ ' h ( n, with n the normal at

oPs; being n the outward normal, ' h ( n[ 0 implies
an inward flux. Both left and right terms of (12) can be

pulled back on the dry-reference part Pd:

o
ot

Z

Ps

c dv ¼
Z

Ps

ð _c þ div ðc vÞÞ dv ¼
Z

Pd

_cd dVd ;

Z

oPs

h ( n da ¼
Z

oPd

hd (m dAd ¼
Z

Pd

divhd dVd ;

ð13Þ

with dAd the surface element on oBd, m its outward
normal, and hd ¼ hdðXd; sÞ the molar flux gauged on

the dry-reference state (the pull back of h), defined by

hd ¼ Jd F
' 1
d hm ; with hm ¼ h * f : ð14Þ

It follows that h ( n da and hd (m dAd represent the

same elementary flux rate, measured in mol/s, see
Fig. 2. To the flux hd it is associated a boundary source
qd per unit dry-reference area, given by qd ¼ ' hd (m.

Xd Xd

x

Fe = Fd F−1
gFd

Fg

ψg = ψge + ψgm

cg

Sge =
∂ψge

∂Fe

ψ = Jg ψg

Sd = TF∗
d = Sge F∗

g − pF∗
d

cd = Jg cg

T = Sd (F∗
d)

−1

Fig. 1 Schematic diagram of the different densities involved in
the model. The free energies are given as densities per unit
relaxed volume. The reference stress Sd and the stress T are
densities per unit of reference and actual volume, respectively;
they are related by the adjugate F+

d . The energetic part of the
stress Sge, defined as the derivative of the energy wge with

respect to Fe, is a density per unit relaxed volume

m

hd ·m = Jd F−1
d h ·m

dAd

n=
F∗

d m
|F∗

d m|

h ·n=
1
Jd

Fd hd ·n

da = |F∗
d m| dAd

Fig. 2 Geometrical interpretation of dry-reference and actual
fluxes. The top and bottom parallelepipeds share the same
elementary volume: hd (m dAd ¼ h ( n da; such volume mea-
sures the moles per second crossing the surfaces dAd (top) or da
(bottom)
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FIGURE 3.23: Geometrical interpretation of dry-reference and actual
fluxes. The top and bottom parallelepipeds share the same elemen-
tary volume: hd · m dAd = h · n da; such volume measures the moles

per second crossing the surfaces dAd (top) or da (bottom).

3.4.2 Balance laws

Our model has three state variables: two of them concern mechanics, the motion fd,
and the growth Fg, while the third one, the solvent concentration cd, is a chemical
variable. Thus, the model has three balance laws: the balances of working for both
motion and growth, and the balance of solvent mass. It is of the essence to remark
that the assumption of Fg as state variable demands for a proper balance law, an
important point that is often missed, and that is clearly stated in [120].

Balance of solvent mass

Introduced the molar mass of the solvent M, that is, the mass of one mole of sol-
vent, [M] =Kg/mol, we may gauge the mass of the solvent contained in Md by the
integrals:

Solvent Mass =
Z

Bd

M cd dVd =
Z

Bt

M c dv . (3.4.87)

Being M constant, the time-rate of the solvent mass involves only the concentration
cd; thus, the balance of solvent can be stated as follows: for any part Pt ⇢ Bt of
the body, the time-rate of solvent moles equals the solvent source q = q(x, t) at the
boundary ∂Pt, with q a molar source per unit surface, [q] = mol/(m2 s):

∂

∂t

Z

Pt

c dv =
Z

∂Pt

q da , 8 Pt ⇢ Bt , (3.4.88)
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with da the surface element on ∂Bt. The boundary source q can be represented in
terms of a molar flux h = h(x, t), ([h] = mol/(m2 s)), a vector-valued quantity such
that q = �h · n, with n the normal at ∂Pt; being n the outward normal, �h · n > 0
implies an inward flux. Both left and right terms of (3.4.88) can be pulled back on
the dry-reference part Pd:

∂

∂t

Z

Pt

c dv =
Z

Pt

(ċ + c divv) dv =
Z

Pd

ċd dVd , (3.4.89)

Z

∂Pt

h · n da =
Z

∂Pd

hd · m dAd =
Z

Pd

divhd dVd ,

with dAd the surface element on ∂Bd, m its outward normal, and hd = hd(Xd, t) the
molar flux gauged on the dry-reference state (the pull back of h), defined by

hd = Jd F
�1
d hm , with hm = h � f . (3.4.90)

It follows that h · n da and hd · m dAd represent the same elementary flux rate, mea-
sured in mol/s, see Fig. (3.23). To the flux hd it is associated a boundary source qd
per unit dry-reference area, given by qd = �hd · m.

It follows from (3.4.88, 3.4.90) the balance law of solvent mass in strong, or dif-
ferential form, written on the dry-reference configuration, which has to be supple-
mented by initial and boundary conditions:

ċd = �divhd, on Bd ⇥ T , balance of solvent mass;

�hd · m = qd, on ∂hBd ⇥ T , flux at boundary ∂hBd;

cd = c̄d, on ∂cBd ⇥ T , solvent at boundary ∂cBd;

cd = cdo, on Bd ⇥ {0} , initial conditions;

(3.4.91)

here ∂hBd and ∂cBd represent the portions of the boundary where it is controlled the
flux, or the solvent concentration, respectively.

Some remarks

• It is worth introducing here the chemical potential µ, a scalar-valued quantity
measuring the molar energy, that is, the energy-density per mole: [µ]=J/mol;
its proper definition will be given in the next section devoted to the Constitu-
tive Prescriptions. The product µ q is a power-density per unit area:

[µ q] =
J

mol
mol
s m2 =

W
m2 . (3.4.92)

It represents the chemical power-density associated to the boundary source q,
and can be equivalently gauged by the product µ qd, a power-density per unit
dry-reference area:

µ q da = µ qd dAd . (3.4.93)

• It is quite difficult, if not impossible, to control the solvent concentration c̄d at
the boundary; usually, we can control the external chemical potential µe, and
the pressure pe of the environment. It follows that the boundary condition
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(3.4.91)3 is superseded by an implicit equation relating cd to µe. This equation
will be soon derived from an appropriate representation formula for the free
energy, see (3.4.116)2.

Balance of working

In mechanics, power is the fundamental integral quantity, and balance equations
are naturally expressed in integral form in terms of virtual power, or working. The
working is a continuous, linear, real-valued functional on the space of test velocities
(ṽ, Ṽ); it is usually splitted additively into an inner working Pi, an outer working Pe,
and the working done by inertia forces P ine. Following [120], we assume

Pi(ṽ, Ṽ) :=
Z

Bd

( �S ·rṽ + C · Ṽ ) dVd , (3.4.94)

Pe(ṽ, Ṽ) :=
Z

Bd

( b · ṽ + B · Ṽ ) dVd +
Z

∂Bt

t · ṽ da .

The inner working involves the reference stress tensor S (aka, first Piola-Kirchhoff
stress), and the tensor C representing the inner remodelling action; the outer work-
ing involves the bulk force vector b, the boundary load t, and the outer remodelling
action B. It holds [S] = [C] = [B] = [t] =J/m3=Pa, [b] =N/m3. Neglecting the in-
ertial working, the balance principle states that, at each time, and for any test velocity,
the total working must be null, that is:

0 = Pi(ṽ, Ṽ) + Pe(ṽ, Ṽ) , 8 ṽ , Ṽ . (3.4.95)

It is worth noting that the two principles previously mentioned, the Balance of Mass
and the Balance of Working are very different from each other; in particular, the
second one involves the power, a notion which is not present in the first one. Me-
chanical and chemical power will be confronted within the Dissipation Principle, to
be presented in the next section.

Standard localization arguments applied on (3.4.95), yield the following balance
of forces

0 = divS + b , on Bd ; S m = t , on ∂Bd , (3.4.96)

and balance of remodelling actions

0 = C + B , on Bd , (3.4.97)

which have to be supplemented by initial conditions on ud, Fg, and kinematics
boundary conditions on ud.

The stress T (aka, Cauchy stress) is related to the reference stress S by the stan-
dard relation S = Tm F

⇤
d, with Tm = T � fd, where with the notation A

⇤ we mean the
adjugate of A 2 Lin: A

⇤ = (det A) A
�T.

Some remarks

• The inner working does not contain actions dual to ṽ: these kind of inner ac-
tions are ruled out by the principle of frame indifference; this is not true for the
inner remodelling actions.
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• To keep our growth theory as simple as possible, yet not trivial, the inner
working does not contain actions dual to rṼ; for this reason, there are nei-
ther boundary remodelling actions, nor boundary conditions on such kind of
actions.

• To keep our growth theory as simple as possible,

yet not trivial, the inner working does not contain

actions dual to r eV ; for this reason, there are
neither boundary remodeling actions, nor bound-

ary conditions on such kind of actions.

4 Constitutive prescriptions

We shall pose the following constitutive assumptions

and derive their consequences:

• Volume change from relaxed volume dVg to the

actual one dv is only due to solvent uptake or
release;

• The free energy is the sum of an elastic term plus a
chemical one;

• The elastic energy has to be a function of the

elastic strain Fe;
• The chemical energy is a function of the ratio

dVg= dv;
• Dissipation is only related to the solvent flux and to

the remodeling actions.

We note that the three balance laws (15, 20, 21) are not

coupled; two important couplings shall arise as

consequence of the constitutive recipes: the chemo-

mechanical coupling between cd and Jd, and the

Eshelbian coupling between C and S.

4.1 Volumetric constraint

A key assumption in the classical theory of swelling

says that the volume change from the dry state to the

wet one is entirely due to solvent uptake [4]; using our
notation: dv ¼ Jd dVd ¼ dVd þ dVsol.

The previous assumption must be rephrased to

account for growth, as now the solvent volume-
element dVsol must be considered as a volume that is

added to the relaxed volume-element dVg, see Fig. 3.

Thus, the volumetric constraint has the following

form: the actual volume-element dv is the sum of the

relaxed volume-element dVg, plus the solvent volume-

element dVsol:

dv ¼ Je dVg ¼ dVgþ dVsol ¼ ð1þ X cgÞ dVg : ð22Þ

It is worth noting that this assumption does not

supersede the multiplicative composition Je ¼ Jd= Jg,
but has to be paired with it: this implies

Je ¼1þ X cg ¼ 1þ X
cd
Jg

¼ Ĵeðcd; JgÞ ;

Jd ¼Je Jg ¼ Jgþ X cd ¼ Ĵdðcd; JgÞ :
ð23Þ

Thus, the volumetric constraint relates the Jacobian Jd,
a mechanical quantity, to the solvent concentration cd
and to the growth Jacobian Jg; more important, it

implies a coupling between our balance laws. It is

worth noting that, being the relaxed volume a dry

volume, Je % 1, and thus Jd % Jg; the case Je ¼ 1

corresponds to the growth of an (elastically) incom-

pressible material, with no solvent uptake. Moreover,
from (23), it follows that we can measure the solvent

volume-element with the difference between Jd and

Jg:

dVsol ¼ X cd dVd ¼ ðJd & JgÞ dVd : ð24Þ

We now define the solid volume fraction/, a scalar-
valued function measuring point-wise the ratio

between the elementary relaxed-volume dVg occupied

by the body, and the actual elementary volume dv:

/ ¼ dVg

dv
¼ 1

Je
¼ Jg

Jd
) / ¼ Jg

Jgþ X cd
; ð25Þ

Fg

Fd Fe = Fd F−1
g

dVd dVg = Jg dVd

dv = Jd dVd dVg dVsol

= +

Xd Xd

x

Fig. 3 Consider a dry volume-element dVd at Xd; the growth Fg

defines the relaxed volume-element dVg at Xd , while the solvent
uptake swells dVg to the actual volume dv ¼ Je dVg ¼ Jd dVd ,
sitting at x. The change in volume from dVg to dv is entirely due
to the added volume of solvent: dv ¼ dVgþ dVsol
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FIGURE 3.24: Consider a dry volume-element dVd at Xd; the growth
Fg defines the relaxed volume-element dVg at Xd, while the solvent
uptake swells dVg to the actual volume dv = Je dVg = Jd dVd, sitting
at x. The change in volume from dVg to dv is entirely due to the added

volume of solvent: dv = dVg + dVsol .

3.4.3 Constitutive prescriptions

We shall pose the following constitutive assumptions and derive their consequences:

• Volume change from relaxed volume dVg to the actual one dv is only due to
solvent uptake or release;

• The free energy is the sum of an elastic term plus a chemical one;

• The elastic energy has to be a function of the elastic strain Fe;

• The chemical energy is a function of the ratio dVg/dv;

• Dissipation is only related to the solvent flux and to the remodelling actions.

We note that the three balance laws (3.4.91, 3.4.96, 3.4.97) are not coupled; two im-
portant couplings shall arise as consequence of the constitutive recipes: the chemo-
mechanical coupling between cd and Jd, and the Eshelbian

¯
coupling between C and

S.

Volumetric constraint

A key assumption in the classical theory of swelling says that the volume change
from the dry state to the wet one is entirely due to solvent uptake [109]; using our
notation: dv = Jd dVd = dVd + dVsol .

The previous assumption must be rephrased to account for growth, as now the
solvent volume-element dVsol must be considered as a volume that is added to the re-
laxed volume-element dVg. Thus, the volumetric constraint has the following form:
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the actual volume-element dv is the sum of the relaxed volume-element dVg, plus
the solvent volume-element dVsol :

dv = Je dVg = dVg + dVsol = (1 + W cg) dVg . (3.4.98)

It is worth noting that this assumption does not supersede the multiplicative com-
position Je = Jd/Jg, but has to be paired with it: this implies

Je = 1 + W cg = 1 + W
cd
Jg

= Ĵe(cd, Jg) ,

Jd = Je Jg = Jg + W cd = Ĵd(cd, Jg) .
(3.4.99)

Thus, the volumetric constraint relates the Jacobian Jd, a mechanical quantity, to the
solvent concentration cd and to the growth Jacobian Jg; more important, it implies a
coupling between our balance laws. It is worth noting that, being the relaxed vol-
ume a dry volume, Je � 1, and thus Jd � Jg; the case Je = 1 corresponds to the
growth of an (elastically) incompressible material, with no solvent uptake. More-
over, from (3.4.99), it follows that we can measure the solvent volume-element with
the difference between Jd and Jg:

dVsol = W cd dVd = (Jd � Jg) dVd . (3.4.100)

We now define the solid volume fraction f, a scalar-valued function measuring point-
wise the ratio between the elementary relaxed-volume dVg occupied by the body,
and the actual elementary volume dv:

f =
dVg

dv
=

1
Je

=
Jg

Jd
) f =

Jg

Jg + W cd
, (3.4.101)

that is, f = f(Je) = f(cd, Jg) may be considered as a function of Je, or of the state
variables cd, Fg. Let us note that f ranges in (0, 1), according to:

no solvent , Je = 1 , f = 1 ;

solvent
solid

! • , Je ! • , f ! 0 .
(3.4.102)

Free energy

We assume the free-energy density per unit of relaxed-volume yg, [yg] =J/m3, to
be the sum of the elastic energy yge, and of the solid–solvent mixing energy ygm;
moreover, we assume the elastic energy to be a function of the right Cauchy-Green
strain Ce = F

T
e Fe, and the mixing energy to depend on the volume fraction f, that

can be represented in terms of the state variables through (3.4.101); we have:

yg(Ce, cd, Jg) = yge(Ce) + ygm(cd, Jg) , Je = Ĵe(cd, Jg) . (3.4.103)

The free-energy density y per unit of reference-volume is then given by

y(Ce, cd, Jg) = Jg yg(Ce, cd, Jg) , Je = Ĵe(cd, Jg) . (3.4.104)

It is important to remark that the volumetric constraint must be included in the def-
inition of the energy; to account for it, we relax (3.4.104) by adding a term which
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enforces equation (3.4.99)2:

yr(Ce, cd, Jg, p) = y(Ce, cd, Jg) � p [Jd � Ĵd(cd, Jg)] . (3.4.105)

The pressure p represents the reaction to the volumetric constraint: it maintains the
volume change due to displacement, Jd = det Fd, equals to Jd = Ĵd(cd, Jg), which is
due to both growth and solvent uptake.

The function yr is called the Lagrangian function associated to the energy y,
while p is the Lagrangian multiplier which measures the sensitivity of the minimum
energy to a change in the constraint. The key features of y, or yr, are the followings:

1. y is a density per unit volume of the dry polymer;

2. the elastic contribution hampers swelling;

3. the mixing contribution favors swelling;

4. the volumetric constraint (3.4.98) implies that any elastic change of volume Je
is due to uptake or release of solvent.

Dissipation principle

The dissipation principle that we enforce, based on [129] and the successive develop-
ments for the growth theory [120], and the swelling theory [66], deals with the actual
external power, that is, the outer power expended along actual velocities (v, V, ċd);
in our model the outer power is the sum of a mechanical power Pemech and a chemi-
cal one Pechem . Let dPe denote the elementary working; the working balance (3.4.95)
yields a relation between the outer and the inner mechanical power, that is

dPemech(v, V) = �dPimech(v, V) (3.4.106)

= (S · Ḟd � C · V) dVd .

Analogously, the balance of solvent mass (3.4.91) yields a relation between the flux
hd and the concentration rate ċd, thus

dPechem(ċd) = µ qd dAd = �µ hd · m dAd (3.4.107)

= �div(µ hd) dVd

= �(µ divhd + hd · rµ ) dVd

= (µ ċd � hd · rµ ) dVd .

Let us note that both Pemech and Pechem may contain, by definition, boundary densi-
ties; our goal is to represent them as volume densities, so that they can be added
to the energy density. To do so, we must consider elementary quantities, and use
the divergence theorem to transform surface densities into volume ones, as done in
equating (3.4.107)1 to (3.4.107)2.

The dissipation principle states that, along any realizable process t 7! ( fd, Fbg, cd),
the time rates of the elementary free energy y dVd must be less or equal than the ele-
mentary outer-working expended along the same process:

∂

∂t
(y(Ce, Fg, cd) dVd)  dPe(v, V, ċd) (3.4.108)

= dPemech(v, V) + dPechem(ċd) .
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We can now write the local form of the dissipation principle by inserting (3.4.106)
and (3.4.107) into (3.4.108), and dropping the volume element dVd; by using the re-
laxed energy (3.4.105), we have

ẏr(Ce, Fg, cd, p)  S · Ḟd � C · V + µ ċd � hd · rµ , (3.4.109)

From (3.4.104), it follows

ẏr = J̇g yg + Jg ẏg � p ( J̇d � ˙̂Jd) � ṗ (Jd � Ĵd) . (3.4.110)

To ease the evaluation of the energy rate ẏr, we list some useful formulas

ẏge =
∂yge

∂Ce
· Ċe , ẏgm =

∂ygm

∂cd
ċd +

∂ygm

∂Jg
J̇g ,

J̇d = F
⇤
d · Ḟd , J̇g = F

⇤
g · Ḟg = Jg I · V ,

Ċe = 2 sym F
T
e Ḟe = 2 sym F

T
e (Ḟd F

�1
g � Fe V) ,

(3.4.111)

By collecting homologous terms, there follows three different contributions to the
power expenditure, plus the volumetric constraint

ẏr =

✓
2 Fe

∂yge

∂Ce
F

⇤
g � p F

⇤
d

◆

| {z }
Sd (reference stress)

·Ḟd

+

✓
Jg

∂ygm

∂cd
+ pW

◆

| {z }
µd (chemical potential)

ċd

+ Jg

✓
yg + Jg

∂ygm

∂Jg
+ p

◆
I � 2 Ce

∂yge

∂Ce

�

| {z }
E (Eshelbian coupling)

·V

� (Jd � Ĵd)| {z }
constraint

ṗ .

(3.4.112)

The previous representation of the energy rate prompts us with three constitutive re-
lations involving all the three state variables, plus the pressure: one for the reference
stress Sd = Sd(Fe, Fg, p), with:

Sd = 2 Fe
∂yge

∂Ce
F

⇤
g � p F

⇤
d ; (3.4.113)

a second one for the chemical potential µd = µd(Fg, cd, p):

µd = Jg
∂ygm

∂cd
+ pW ; (3.4.114)

and a last one for the Eshelby tensor E = E(Fd, Fg, cd, p):

E = Jg

 ✓
yg + Jg

∂ygm

∂Jg
+ p

◆
I � 2 Ce

∂yge

∂Ce

�
. (3.4.115)
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It is worth defining the energetic part of both Sd and µb: we write

Sd = Se(Ce, Fg) � p F
⇤
d , µd = µc(cd, Jg) + p W , (3.4.116)

with
Se(Ce, Fg) = 2 Fe

∂ yge

∂Ce
F

⇤
g , [S] =

J
m3 = Pa ;

µc(cd, Jg) = Jg
∂ ygm

∂cd
, [µ] =

J
mol

=
Pa m3

mol
.

(3.4.117)

By assuming the volumetric constraint to be identically satisfied, we can rewrite the
inequality (3.4.109) as

(Sd � S) · Ḟd + (µd � µ) ċd + (E + C) · V + hd · rµ  0 . (3.4.118)

This last representation of the dissipation principle reveals that power can be dissi-
pated in four different ways; by assuming that no dissipation is involved with the
first two summands, we have S = Sd, and µ = µd.

We can now give to the Eshelby tensor (3.4.115) a more useful representation;
being

ygm = ygm(f) = ygm(f(Je)) = ygm(f(cd, Jg)) , (3.4.119)

we can compute time rates as follows

ẏgm =
∂ygm

∂Je
J̇e =

∂ygm

∂cd
ċd +

∂ygm

∂Jg
J̇g . (3.4.120)

From (3.4.99), we have

∂ygm

∂Je
J̇e =

∂ygm

∂Je

W
Jg

 
ċd � cd

J̇g

Jg

!
; (3.4.121)

eventually, a comparison with (3.4.120) yields

∂ygm

∂cd
=

W
Jg

∂ygm

∂Je
,

∂ygm

∂Jg
= �W cd

J2
g

∂ygm

∂Je
. (3.4.122)

Inserting this last result into (3.4.115), we can split E into the sum of a mechanical
and a chemical contribution

E = Emech + Echem , (3.4.123)

with

Emech = ye I � F
T
e Sd F

T
g , ye = Jg yge ; (3.4.124)

Echem = (ym � cd µd) I , ym = Jg ygm .

The two summands are coupled through the pressure p which is present in both Sd
and µd. The dissipation inequality (3.4.118) reduces to

(E + C) · V + hd · rµ  0 , (3.4.125)

to be satisfied for any realizable process t 7! (Fg, cd). The (reduced) dissipation in-
equality (3.4.125) has to be interpreted as a rule dictating the admissible constitutive
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assumptions for the dissipation, that is, for the sum E + C and for the flux hd. To
satisfy this inequality, we assume two simple constitutive rules

E + C = �M V ,

hd = �Dd r ( µc(cd) + p W ) ,
(3.4.126)

with the mobility M and the diffusivity Dd = Dd(Fd, cd), two positive-definite ten-
sors; dimensional analysis implies

[M] =
J s
m3 , [Dd] =

mol
s

mol
J

1
m

=
mol2 s
kg m3 . (3.4.127)

Growth and swelling processes have their own characteristic times tg and ts, respec-
tively, which can be estimated by the following ratios

tg =
kMk
kEk , ts =

l2

kDk
cd

R T
, (3.4.128)

with l a characteristic length, and k · k a suitable norm on Lin; the estimate for
ts is based on the hypothesis that diffusion of solvent is proportion to the solvent
concentration, that is, the more the solvent, the larger the diffusion.

3.4.4 Growth & swelling dynamics

We summarize our findings by writing the equations which govern the evolutive
process of a growing and swelling body. Our problem consists in finding the process
t ! ( fd, Fg, cd) that satisfies on Bd ⇥ T the following balance equations

0 = div(Se(Ce, Fg) � p F
⇤
g) + b ,

M V = Bo � Eo( fd, Fg, cd) ,

ċd = div[D r(µ(cd, Jg) + W p)] ,

(3.4.129)

plus the boundary conditions on ∂Bd ⇥ T

(Se(Ce, Fg) � p F
⇤
d)m = t load control;

fd = f̄d, position control;

D r(µ(cd, Jg) + W p) · m = qd flux control;

µc(cd, Jg) + W p = µext concentration control;

(3.4.130)

and the initial conditions on Bd ⇥ {0}

fd = fdo initial position;

Fg = Fgo initial relaxed stance;

cd = cdo, initial solvent concentration.

(3.4.131)
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Some remarks

• As regards balance equations (3.4.129), time derivatives appear only in (3.4.129)2,3;
thus, for the first equation time is just a scalar parameter, and what is solved
is a sequence of stationary problems parametrized by time. Nonetheless, the
whole system of three equation describes the time evolving phenomenon of
growth and swelling, when inertia forces are neglected.

• The characteristic times of growth and swelling may be very different from
each other; for ts << tg the evolutive phenomenon which is described is very
close to the standard swelling. Conversely, for ts >> tg, growth is prevailing.

• As far as the boundary conditions (3.4.130), loads and displacements cannot be
assigned simultaneously on the same portion of ∂Bd; the same holds for fluxes
and solvent concentration.

• As previously noticed, the control of the solvent concentration is done by con-
trolling both the external chemical potential µext, and the boundary load t,
whose value influences the osmotic pressure p. A simple and common case
is when the boundary load is a pressure, t = �pext F

⇤
dm; it follows that we may

interpret the boundary condition (3.4.130)4 as an implicit control of cd through
µext and pext.

• Both M and B have to be identified with experiments. For M, the only con-
stitutive restriction is that it has to be positive definite; for B there are not
constitutive restrictions.

• Our final, and important, remark is that this theory can describe phenomena
where actual volume change are larger or smaller than the volume of sol-
vent uptaken; this behavior is typical of many complex polymers (as example,
wood, just to cite one).

Flory-Rehner energy

We assume the Flory-Rehenr free energy, proposed to describe the interaction be-
tween a solvent and a polymer matrix [109]. The elastic energy is Neo-hookean, a
common and simple choice for soft materials:

yge(Ce) =
1
2

Gd (Ce · I � 3) , [Gd] = J/m3 . (3.4.132)

From (3.4.132, 3.4.113), it follows the representation for Sd

2 Fe
∂yge

∂Ce
= G Fe ) Sd = G Fe F

⇤
g � p F

⇤
d . (3.4.133)

or, defined the strain Cg = F
T
g Fg,

Sd = G Jg Fd C
�1
g � p F

⇤
d . (3.4.134)

We note the Cg represents a target metric [124–126], that is, if the body realizes a
motion such that Fd = Fg, then Ce = I, and yge = 0.

What is peculiar of gel models is the representation formula for the mixing en-
ergy ygm; here we assume the Flory-Huggins mixing energy [107, 108], defined as the
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sum of an entropic plus an enthalpic term, both depending on f. Being f = 1/Je,
we may represent the mixing energy in terms of Je as follows:

ygm(Je) =
R T
W

h(Je) , [h] = 1 , (3.4.135)

with
h(Je) = (Je � 1) ln

⇣ Je � 1
Je

⌘

| {z }
entropic

+ c(T)
Je � 1

Je| {z }
enthalpic

. (3.4.136)

Here R is the universal gas constant, T the absolute temperature; the mixing energy
has only two chemical parameters; apart form W, already introduced, we have the
polymer-solvent disaffinity c, a non dimensional quantity, [c]=1, possibly depend-
ing on the temperature. The parameter c is specific of each solvent-polymer pair,
and represents the dis-affinity between polymer and solvent:

high c ) solvent is expelled (de-swelling);

low c ) solvent is attracted (swelling). (3.4.137)

Being [RT] =J/mol, we have [RT/W] =J/m3, that is, the ratio R T/W has the same
role for the chemical energy as that of the shear modulus G for the elastic energy. We
also note that (3.4.135) implies:

f = 1/Je high (more polymer) ) low enthalpy;

f = 1/Je low (more solvent) ) low entropy. (3.4.138)

The energy ygm(Je) is monotone decreasing for c 2 (0, 1/2): for such a range, sol-
vent uptake is always favorable; for c > 1/2, ygm(Je) has a minimum in between
(1, +•), that is, for f 2 (0, 1). From (3.4.117, 3.4.135), we have

µc = R T


log
✓

cd W
Jg + cd W

◆
+

Jg (Jg + cd W + c Jg)

(Jg + cd W)2

�
. (3.4.139)

Once the constitutive prescription for µc has been obtained by (3.4.117), that is,
through the derivative of ygm with respect to cd, we can use (3.4.99) to represent
it as function of Je as follows

µc = µc(Je) = R T


log
✓

Je � 1
Je

◆
+

c + Je

J2
e

�
. (3.4.140)

Growth or swelling

The classical swelling model as in [66] is recovered by assuming Fg ⌘ I, thus nul-
lifying equation (3.4.129)2. The growth model as in [120] is recovered with Je ⌘ 1,
an assumption that describes an elastically incompressible material: it yields cd ⌘ 0,
and equation (??)3 is void; moreover, both the chemical energy and the chemical part
of the Eshelby tensor are null. The following scheme summarizes the two cases; see
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also Fig. 3.25:

Swelling: Fg ⌘ I )

8
>>><

>>>:

Fe = Fd ;

Je = Jd = 1 + W cd ;

V = 0 , no remodelling actions;

Growth: Je ⌘ 1 )

8
>>><

>>>:

Jd = Jg ;

cd = 0 ) ygm = Echem = 0 ;

ċd = 0 , no solvent diffusion.

(3.4.141)

growth model as in [17] is recovered with Je ! 1, an
assumption that describes an elastically incompress-

ible material: it yields cd ! 0, and Eq. (53)3 is void;

moreover, both the chemical energy and the chemical
part of the Eshelby tensor are null. The following

scheme summarizes the two cases; see also Fig. 4:

Swelling :Fg ! I )
Fe ¼ Fd ;

Je ¼ Jd ¼ 1þ X cd ;

V ¼ 0 ; noremodelingactions;

8
><

>:

Growth :Je ! 1 )
Jd ¼ Jg ;

cd ¼ 0 ) wgm ¼ Echem ¼ 0 ;

_cd ¼ 0 ; nosolventdiffusion:

8
><

>:

ð65Þ

7 Steady states

A solid may growth and swell; within our model, the
final state is regulated by the external chemical

potential, the applied loads, and the remodelling actions.

The system (53), under the request _cd ¼ V ¼ 0,
describes steady states, that is constant in time. To

discuss a simple instance of a steady state, we assume

no bulk forces, b ¼ 0, and ðFd;Fg; pÞ to be homoge-

neous; thus, we have to solve the following system

Sd ¼ GFe F
&
g ' p F&

d ¼ TF&
d ;

ld ¼ lcðJeÞ þ X p ¼ lext ;

E ¼ EðFd;Fg; pÞ ¼ B ;

ð66Þ

with T the homogeneous stress state induced by the

boundary loads, lext the chemical potential of the

environment, and B the outer remodeling action. It is
worth noting that, thanks to the volumetric constraint

(23), instead of the state variable cd, it appears in the
system the pressure p.

7.1 Free swelling and growing

We consider a solid Bd with no loads, and with an

external chemical potential equal to lext. Homoge-
neous states, with isotropic growth and swelling, are

characterized by the following hypotheses:

nullstress : T ¼ 0 ;

homogeneouschemicalpotential : lcðJeÞ þ p X ¼ lext ;

sphericaldeformation : Fd ¼ kd I ¼ J
1= 3
d I ;

sphericalgrowth : Fg ¼ kg I ¼ J1= 3g I ;

ð67Þ

and the state of the system can be represented in the
ðJd; JgÞ plane. Using (67), we can solve (66)1 for p

Sd ¼ kd ðGkg ' kd pÞ I ¼ 0 ) p ¼ GJ' 1= 3
e ;

ð68Þ

and use this result to rewrite (66)2;3 as a system of two

scalar equations for Jd and Jg (being Je ¼ Jd J
' 1
g )

lcðJeÞ þ XGJ' 1= 3
e ¼ lext ;

EchemðJd; JgÞ þ EmechðJd; JgÞ ¼ B ;
ð69Þ

Jg = 1/2

Jd = 3/4

Je = 3/2

Jg = 2

Jd = 1

Je = 1/2

Jg = 1

Jd = Je

Je = 2

Jg = 2

Jd = Jg

Je = 1

(C)

(D)

(A)

(B)

Xd

Xd

Xd

Xd

Fig. 4 Different cases of swelling and growth with a cartoon of
the different volume-elements: dry volume is light blue, relaxed
volume is dark blue, and actual volume is red. (A)With Fg ! I,
we have the standard Flory-Rehner model of swelling: the actual
change in volume Jd is entirely due to solvent uptake. (B) With
Je ! 1, we have the growth model for incompressible materials:
the actual change in volume Jd is entirely due to growth. (C)
Growth yields a reduction of relaxed volume which is not
compensated by swelling: the actual volume is smaller than the
volume of absorbed solvent. (D) This case is ruled out of our
theory as Je\1; in fact, also the relaxed volume is dry, and no
solvent can be expelled from it. (Color figure online)
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FIGURE 3.25: Different cases of swelling and growth with a cartoon
of the different volume-elements: dry volume is light blue, relaxed
volume is dark blue, and actual volume is red. A) With Fg ⌘ I

¯
, we

have the standard Flory-Rehner model of swelling: the actual change
in volume Jd is entirely due to solvent uptake. B) With Je ⌘ 1, we have
the growth model for incompressible materials: the actual change in
volume Jd is entirely due to growth. C) Growth yields a reduction
of relaxed volume which is not compensated by swelling: the actual
volume is smaller than the volume of absorbed solvent. D) This case
is ruled out of our theory as Je < 1; in fact, also the relaxed volume is

dry, and no solvent can be expelled from it.

3.4.5 Steady states

A solid may growth and swell; within our model, the final state is regulated by the
external chemical potential, the applied loads, and the remodelling actions.

The system (3.4.129), under the request ċd = V = 0, describes steady states, that
is constant in time. To discuss a simple instance of a steady state, we assume no
bulk forces, b = 0, and (Fd, Fg, p) to be homogeneous; thus, we have to solve the
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following system
Sd = Gd Fe F

⇤
g � p F

⇤
d = T F

⇤
d ,

µd = µc(Je) + W p = µext ,

E = E(Fd, Fg, p) = B ,

(3.4.142)

with T the homogeneous stress state induced by the boundary loads, µext the chem-
ical potential of the environment, and B the outer remodelling action. It is worth
noting that, thanks to the volumetric constraint (3.4.99), instead of the state variable
cd, it appears in the system the pressure p.

Free swelling and growing

We consider a solid Bd with no loads, and with an external chemical potential equal
to µext. Homogeneous states, with isotropic growth and swelling, are characterized
by the following hypotheses:

null stress: T = 0 ,

homogeneous chemical potential: µc(Je) + p W = µext ,

spherical deformation: Fd = ld I = J1/3
d I ,

spherical growth: Fg = lg I = J1/3
g I ,

(3.4.143)

and the state of the system can be represented in the (Jd, Jg) plane. Using (3.4.143),
we can solve (3.4.142)1 for p

Sd = ld (Gd lg � ld p) I = 0 ) p = Gd J�1/3
e , (3.4.144)

and use this result to rewrite (3.4.142)2,3 as a system of two scalar equations for Jd
and Jg (being Je = Jd J�1

g )

µc(Je) + W Gd J�1/3
e = µext , (3.4.145)

Echem(Jd, Jg) + Emech(Jd, Jg) = B ,

where, given (3.4.143), it holds

Echem = Gd (Jd � Jg)


ecm

c (Je � 1) � Je

J2
e

� J�1/3
e

�
I ;

Emech = Gd
3
2

Jg (J2/3
e � 1) I , with ecm =

R T
W Gd

. (3.4.146)

The parameter ecm in Echem represents the ratio between the chemical energy and
the elastic one; being R = 8.314 J/(mol K), for a typical solvent such as alcohol
(W ' 6 ⇥ 10�5 m3/mol) at T = 293 K, we have R T/W ' 4.06 ⇥ 107 J/m3. If follows
that for soft materials ecm >> 1, while for hard materials ecm << 1.

We can use system (3.4.145) to find the steady state (Jd, Jg) corresponding to the
pair (µext, B): at first, given the external chemical potential µext, we solve equation
(3.4.145)1 for Je; then, given the remodelling force B, and using the previous result,
we solve equation (3.4.145)2 for Jg, or Jd. We note that steady growth, V ⌘ 0, can be
realized also also with B ⌘ 0 and Emech = �Echem.
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Fig.3.26A shows the isolines µext (red) and B (blue), while Fig.3.26B shows the
isolines Jg (red) and Jd (blue) in the plane (µext, B); as already noticed, the states
above the line Jd = Jg are unattainable: this line denotes relaxed and dry states,
corresponding to µext = �• and B = 0.

Both panels of Fig.3.26 contains five states labelled from 1 (dry-reference) to 5,
representing two noteworthy behaviors: the horizontal path 1 ! 2 ! 3 is a swelling
without growth, and volume change is entirely due to solvent uptake; the verti-
cal path 1 ! 4 ! 5 represents a solvent uptake which is compensated exactly by
growth, thus producing a null change of the actual volume. Another interesting fea-

where, given (67), it holds

Echem ¼G ðJd # JgÞ !cm
vðJe # 1Þ # Je

J2e
# J# 1= 3

e

! "
I ;

Emech ¼G
3

2
Jg ðJ2= 3e # 1Þ I ; with !cm ¼ RT

XG
:

ð70Þ

The parameter !cm ¼ RT
XG in Echem represents the ratio

between the chemical energy and the elastic one;

being R ¼ 8:314 J/(mol K), for a typical solvent such

as alcohol (X ’6 % 10# 5 m3/mol) at T ¼ 293 K, we

have RT= X ’4:06 % 107 J/m3. If follows that for soft
materials !cm&1, while for hard materials !cm'1.

We can use system (69) to find the steady state

ðJd; JgÞ corresponding to the pair ðlext;BÞ: at first,
given the external chemical potential lext, we solve

Eq. (69)1 for Je; then, given the remodeling force B,
and using the previous result, we solve Eq. (69)2 for

Jg, or Jd. We note that steady growth, V (0, can be

realized also also with B (0 and Emech ¼ # Echem.

Figure 5A shows the isolines lext (red) and B

(blue), while Fig. 5B shows the isolines Jg (red) and Jd
(blue) in the plane ðlext;BÞ; as already noticed, the

states above the line Jd ¼ Jg are unattainable: this line

denotes relaxed and dry states, corresponding to lext ¼
# 1 and B ¼ 0.

Both panels of Fig. 5 contains five states labelled
from 1 (dry-reference) to 5, representing two note-

worthy behaviors: the horizontal path 1 ! 2 ! 3 is a

swelling without growth, and volume change is
entirely due to solvent uptake; the vertical path 1 !
4 ! 5 represents a solvent uptake which is

(A)

(B)

Fig. 5 (A) Isolines lext and B in the ðJd; JgÞ plane; points 1)5
represent different states: 1 corresponds to the dry-reference; 2
and 3 to swelling without growth, that is, to a volume change
entirely due to solvent uptake; 4 and 5 to a growth (in this case, a
volume reduction) which compensates exactly the solvent
uptake. As already noticed, the states above the line Jd ¼ Jg
are unattainable: this line denotes relaxed and dry states,
corresponding to lext ¼ # 1. (B) Paths of iso-swelling and iso-
growing processes in the plane ðlext;BÞ; the same states 1)5 of
panel (A) are also reported here. Results are obtained with R ¼
8:314 J/(mol K), T ¼ 293 K, X ¼ 6 % 10# 5 m3/mol, G ¼ 104

Pa. (Color figure online)

Fig. 6 Nine different states on the ðJd ; JgÞ plane.We assume the
swollen state Jd ¼ 2; Jg ¼ 1 as reference, and we evaluate the
change in solvent content for the other eight states with respect
to this reference. You may notice that states having the same
volume (those aligned along vertical columns) may have
different values of Vs. Formula (72) is represented by the circle
at top left; arrows length denotes the magnitude of Vs, while red
and blue colors indicate solvent expulsion, and absorption,
respectively. (Color figure online)
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FIGURE 3.26: (A) Isolines µext (red) and B (blue) in the (Jd, Jg) plane;
points 1 ⇠ 5 represent different states: 1 corresponds to the dry-
reference; 2 and 3 to swelling without growth, that is, to a volume
change entirely due to solvent uptake; 4 and 5 to a growth (in this
case, a volume reduction) which compensates exactly the solvent
uptake. As already noticed, the states above the line Jd = Jg are
unattainable: this line denotes relaxed and dry states, corresponding
to µext = �•. (B) Paths of iso-swelling and iso-growing processes

¯in the plane (µext, B); the same states 1 ⇠ 5 of panel (A) are also re-
ported here. Results are obtained with R = 8.314 J/(mol K), T = 293

K, W = 6 ⇥ 10�5 m3/mol, Gd = 104 Pa.

ture is shown in Fig.3.27; from (3.4.100), it follows that Jd � Jg measures the solvent
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volume per unit of dry-reference volume. Thus, by comparing states in the plane
(Jd, Jg), it is quite easy to compute the volume of solvent which enter or exit the
body: any state change along a line parallel to the line Jd = Je yields no solvent vari-
ation; any state change along a line orthogonal to the line Jd = Je yields maximum
solvent variation, with uptake in the direction of decreasing Jg, and release in the
opposite direction. Let (Jd, Jg)i, i = 1, 2, be two different states, and let q be the angle
between the vector a = (Jd, Jg)2 � (Jd, Jg)1 and the horizontal direction; we have

Jd2 � Jd1 = kak cos q , Jg2 � Jg1 = kak sin q ; (3.4.147)

it follows
Vs =

dVsol2 � dVsol1
dVd

= kak (cos q � sin q) , (3.4.148)

where dVsoli is the elementary solvent volume of state (Jd, Jg)i, and Vs the solvent-
volume difference between the two states. For q = p/4 = p/4 + p we do not have
exchange of solvent; maximum expulsion and absorption of solvent are obtained
on q = 3/4 p and q = 7/4 p, respectively. Fig.3.27 shows the amount of solvent
volume which is involved when considering as initial state a swollen state Jd = 2,
Jg = 1. Fig.3.28 contains a zoom of the bottom-right quadrant of Fig.3.27, and shows

where, given (67), it holds

Echem ¼G ðJd # JgÞ !cm
vðJe # 1Þ # Je

J2e
# J# 1= 3

e

! "
I ;

Emech ¼G
3

2
Jg ðJ2= 3e # 1Þ I ; with !cm ¼ RT

XG
:

ð70Þ

The parameter !cm ¼ RT
XG in Echem represents the ratio

between the chemical energy and the elastic one;

being R ¼ 8:314 J/(mol K), for a typical solvent such

as alcohol (X ’6 % 10# 5 m3/mol) at T ¼ 293 K, we

have RT= X ’4:06 % 107 J/m3. If follows that for soft
materials !cm&1, while for hard materials !cm'1.

We can use system (69) to find the steady state

ðJd; JgÞ corresponding to the pair ðlext;BÞ: at first,
given the external chemical potential lext, we solve

Eq. (69)1 for Je; then, given the remodeling force B,
and using the previous result, we solve Eq. (69)2 for

Jg, or Jd. We note that steady growth, V (0, can be

realized also also with B (0 and Emech ¼ # Echem.

Figure 5A shows the isolines lext (red) and B

(blue), while Fig. 5B shows the isolines Jg (red) and Jd
(blue) in the plane ðlext;BÞ; as already noticed, the

states above the line Jd ¼ Jg are unattainable: this line

denotes relaxed and dry states, corresponding to lext ¼
# 1 and B ¼ 0.

Both panels of Fig. 5 contains five states labelled
from 1 (dry-reference) to 5, representing two note-

worthy behaviors: the horizontal path 1 ! 2 ! 3 is a

swelling without growth, and volume change is
entirely due to solvent uptake; the vertical path 1 !
4 ! 5 represents a solvent uptake which is

(A)

(B)

Fig. 5 (A) Isolines lext and B in the ðJd; JgÞ plane; points 1)5
represent different states: 1 corresponds to the dry-reference; 2
and 3 to swelling without growth, that is, to a volume change
entirely due to solvent uptake; 4 and 5 to a growth (in this case, a
volume reduction) which compensates exactly the solvent
uptake. As already noticed, the states above the line Jd ¼ Jg
are unattainable: this line denotes relaxed and dry states,
corresponding to lext ¼ # 1. (B) Paths of iso-swelling and iso-
growing processes in the plane ðlext;BÞ; the same states 1)5 of
panel (A) are also reported here. Results are obtained with R ¼
8:314 J/(mol K), T ¼ 293 K, X ¼ 6 % 10# 5 m3/mol, G ¼ 104

Pa. (Color figure online)

Fig. 6 Nine different states on the ðJd ; JgÞ plane.We assume the
swollen state Jd ¼ 2; Jg ¼ 1 as reference, and we evaluate the
change in solvent content for the other eight states with respect
to this reference. You may notice that states having the same
volume (those aligned along vertical columns) may have
different values of Vs. Formula (72) is represented by the circle
at top left; arrows length denotes the magnitude of Vs, while red
and blue colors indicate solvent expulsion, and absorption,
respectively. (Color figure online)
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FIGURE 3.27: Nine different states on the (Jd, Jg)
¯

plane. We assume
the swollen state Jd = 2, Jg = 1 as reference, and we evaluate the
change in solvent content for the other eight states with respect to
this reference. You may notice that states having the same volume
(those aligned along vertical columns) may have different values of
Vs. Formula (3.4.148) is represented by the circle at top left; arrows
length denotes the magnitude of Vs, while red and blue colors indi-

cate solvent expulsion, and absorption, respectively.

an example of bulking, that is, a permanent volume growth: a solid, after a process
of swelling and drying, retains some of its swollen volume. Given a reference state
(1), we may consider solvent uptake with swelling up to state (2); then, upon drying,
the process ends at state

¯
(3), when the same amount of solvent which has been ab-

sorbed leaves the solids. The increase of Jd, that is, of actual volume, from (1) to (3)
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is due to growth. Any state along the line Vs = 0 contains the same amount of sol-
vent contained in the reference; thus, any state along this line may represent a final
stage of bulking, with different degrees of permanent growth. Bulking is a typical
phenomenon observed in wood [10]. Our model represents a proposal to merge the

compensated exactly by growth, thus producing a null

change of the actual volume.

Another interesting feature is shown in Fig. 6; from
(24), it follows that Jd ! Jg measures the solvent

volume per unit of dry-reference volume. Thus, by
comparing states in the plane ðJd; JgÞ, it is quite easy to
compute the volume of solvent which enter or exit the
body: any state change along a line parallel to the line

Jd ¼ Je yields no solvent variation; any state change

along a line orthogonal to the line Jd ¼ Je yields
maximum solvent variation, with uptake in the

direction of decreasing Jg, and release in the opposite

direction. Let ðJd; JgÞi, i ¼ 1; 2, be two different states,
and let h be the angle between the vector a ¼
ðJd; JgÞ2 ! ðJd; JgÞ1 and the horizontal direction; we

have

Jd2 ! Jd1 ¼ kak cos h ; Jg2 ! Jg1 ¼ kak sin h ;

ð71Þ

it follows

Vs ¼
dVsol2 ! dVsol1

dVd
¼ kak ðcos h! sin hÞ ; ð72Þ

where dVsoli is the elementary solvent volume of state
ðJd; JgÞi, and Vs the solvent-volume difference

between the two states. For h ¼ p= 4 ¼ p= 4 þ p we
do not have exchange of solvent; maximum expulsion

and absorption of solvent are obtained on h ¼ 3= 4 p
and h ¼ 7= 4 p, respectively. Figure 6 shows the
amount of solvent volume which is involved when

considering as initial state a swollen state Jd ¼ 2,

Jg ¼ 1.

Figure 7 contains a zoom of the bottom-right

quadrant of Fig. 6, and shows an example of bulking,
that is, a permanent volume growth: a solid, after a

process of swelling and drying, retains some of its

swollen volume. Given a reference state (1), we may
consider solvent uptake with swelling up to state (2);

then, upon drying, the process ends at state (3), when

the same amount of solvent which has been absorbed
leaves the solids. The increase of Jd, that is, of actual

volume, from (1) to (3) is due to growth. Any state

along the line Vs ¼ 0 contains the same amount of
solvent contained in the reference; thus, any state

along this line may represent a final stage of bulking,

with different degrees of permanent growth. Bulking
is a typical phenomenon observed in wood [26].

8 Conclusions

Ourmodel represents a proposal to merge the theory of
swelling, related to solvent uptake, with the notion of

growth as change in the zero-stress reference state.

The remodeling actions, the associated balance law,
and the chemo-mechanical coupling which governs

the evolution of the system have a primary role in this

model. A key feature of this model is the ability to
describe some interesting aspects of volume deforma-

tions; as example, the actual volume change of solids

can be greater or smaller than volume of the solvent
which is exchanged, an important class of phenomena

that is observed very often. As example, such

phenomena are typical of cellulosic materials: here,
the change of moisture content yields noticeable

change of volume, which in general, is not equal to

the mass of the solvent exchanged. Another important
phenomenon for wood is bulking, mentioned in the

introduction; in such a case there is the need to

describe the permanent change of volume that arises
upon cycles of wetting and drying. Our proposal is to

model bulking as a change of the ground state of

woods cells, a change that is driven by the chemo-

Jd

Jg

line Vs = 0line Vs = max

1
reference

2
Vs = 1

2

3

3’

3”

Vs = 0Vs = −1
2

Fig. 7 Any path from the swollen reference (1) to a state along
the line Vs ¼ 0 (3, 3’, 3’’) represents a bulking, that is, the final
volume upon drying is larger than than the initial volume prior to
swelling. As example, solvent uptake from 1 to 2 is equal to the
solvent release from 2 to 3 (or 2 to 3’, or 2 to 3’’)
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FIGURE 3.28: Any path from the swollen reference (1) to a state along
the line Vs = 0 (3, 3’, 3”) represents a bulking, that is, the final volume
upon drying is larger than than the initial volume prior to swelling.
As example, solvent uptake from 1 to 2 is equal to the solvent release

from 2 to 3 (or 2 to 3’, or 2 to 3”).

theory of swelling, related to solvent uptake, with the notion of growth as change in
the zero-stress reference state. The remodelling actions, the associated balance law,
and the chemo-mechanical coupling which governs the evolution of the system have
a primary role in this model. A key feature of this model is the ability to describe
some interesting aspects of volume deformations; as example, the actual volume
change of solids can be greater or smaller than volume of the solvent which is ex-
changed, an important class of phenomena that is observed very often. As example,
such phenomena are typical of cellulosic materials: here, the change of moisture con-
tent yields noticeable change of volume, which in general, is not equal to the mass of
the solvent exchanged. Another important phenomenon for wood is bulking, men-
tioned in the introduction; in such a case there is the need to describe the permanent
change of volume that arises upon cycles of wetting and drying. Our proposal is to
model bulking as a change of the ground state of woods cells, a change that is driven
by the chemo-mechanical coupling between solvent uptake and growth.

Future directions are the identification of ad-hoc remodelling actions capable of
describing some selected experimental results; in particular, we seek for constitutive
prescriptions for both the mobility M and the outer action B, relating the chemistry
of the pair solvent-solid, to the dynamics of growth and swelling. Other interesting
issues which are worth investigating are the anisotropic growth, and the compati-
bility of growth.
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Chapter 4

Conclusions

Smart materials and the transformation of energy are central topics in many scien-
tific fields. A complete understanding of such materials and the efficiency of the
energy conversion will play a primary role in the future development of the society.
In this context, the present work contributes for a more complete understanding of
such materials, theoretically, numerically and experimentally. Some issues of theo-
retical models of smart materials are investigated in detail, such as the role of plane
state assumptions in not homogeneous piezoelectric solids. Moreover, the perfor-
mances of a piezoelectric sheet immersed in a fluid flow are studied. An optimal
load resistance is found and it depends on the inlet fluid velocity. Experimental re-
sults were compared with a complex numerical model which involves the physics
of fluids, solids and electrostatics.

Hydrogels and the control of their shape, which may be used to realize innova-
tive actuators, are investigated through a numerical model and verified with some
analytical formula. Moreover, in this thesis, two high power mechanisms are pre-
sented: a first high power mechanism which is realized through the competition
between an adhesion energy and an elastic energy, and a second high power mecha-
nism which was observed in nature and uses a change of phase to realize the power
leverage. Finally, it is presented a model which couples the theory of swelling, de-
scribing the effects of solvent uptake in polymeric solids, with that of growing, de-
scribing the change of the relaxed state in a continuum body. This phenomenon
often occurs in wood-like materials which today are used for different applications
in engineering such an autonomous shading system.
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