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Abstract

Currently, the A15 type compound Nb3Sn represents the most appropriate super-
conductor for applications requiring magnetic fields well above 10 T, such as the fu-
ture particle accelerators and fusion reactors. The stress-strain dependence of Nb3Sn
properties is a research topic long since. It is known in particular that an applied
uniaxial and/or transverse load remarkably affects Nb3Sn superconducting properties
by degrading both its critical current density and critical temperature: consequently
such strain sensitivity is a key factor to be considered when dealing with the above
mentioned high-field applications. The response of Nb3Sn to mechanical stresses is
then a topic of strong interest. In order to shed light onto the degradation of the
superconducting properties as function of stress and strain, a first approach concerns
the investigation of the structural and superconducting properties when a high hy-
drostatic pressure is applied.

Recently, X-ray diffraction (XRD) experiments on the two A15 compounds -
Nb3Al and Nb3Ga - as a function of an applied hydrostatic pressure, revealed a
pressure-induced isostructural phase transition which has been subsequently sug-
gested to be an Electronic Topological Transition (ETT) by means of first-principle
calculations. In this thesis work the structural and superconducting properties of
Nb3Sn as a function of the hydrostatic pressure have been studied by means of XRD,
XAFS (X-ray absorption spectroscopy), Density Functional Theory (DFT) and Den-
sity Functional Perturbation Theory (DFPT) calculations, revealing that also Nb3Sn
could exhibit an anomaly as a function of the hydrostatic pressure below 10 GPa.
XRD at high pressure suggested that Nb3Sn has an anomaly in the compressibil-
ity at around 5-6 GPa. XAFS measurements confirm the presence of a structural
anomaly, that can be related to dimerization effect of the Nb chains that charac-
terizes the Nb3Sn structure. Based on first-principle calculations, the phonon and
electronic contributions to this anomaly have been investigated: in particular, from
the simulations it can be inferred that the observed anomaly presumably originates
from phonons and thus from lattice contributions.

This work, with the goal to shed light on the nature of the recently observed
pressure-induced structural anomaly on A15 compounds, represents an effort toward
the general understanding of the behaviour of A15 Nb-based superconductors as a
function of pressure.
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Introduction

The A15 Nb3Sn superconductor is currently the protagonist material for high

magnetic field applications like dipole and quadrupole magnets for particles accel-

erators such as the High-Luminosity Large Hadron Collider (HL-LHC) [1], central

solenoid and toroidal field coils in tokamak fusion devices such as in the Interna-

tional Thermonuclear Experimental Reactor (ITER) [2, 3], nuclear magnetic reso-

nance (NMR) [4], and laboratory hybrid magnets [5]. Although this material has

been known for more than sixty years, its use and development have been heavily

hampered due to its intrinsic brittleness and strain sensitive superconducting proper-

ties, while technologies based on the use of the most ductile and less expensive NbTi

represented the first workhorse among the superconducting materials in the field of

high magnetic fields applications. However NbTi, with its upper critical magnetic

field of 9 T, is no longer sufficient for the above listed modern and future high mag-

netic fields applications for which Nb3Sn has become the mandatory choice, being

the Nb3Sn today the only commercially available superconductor that can generate

magnetic fields well over 10 T. Indeed, alternative conductors based, for example, on

the more tolerant to the strain Nb3Al (of the same structural family of Nb3Sn and

with similar superconducting properties) are in development stage while technologies

based on the High Temperature Superconductors (HTS), which in principle have su-

perconducting properties that better meet the requirements of high field applications

allowing to reach higher magnetic field at higher operational temperature, are ham-

pered by their poor mechanical properties (HTS are in general very brittle materials)

and high cost.

In the high fields applications above listed Nb3Sn is subject to strong mechanical

21



stresses due to the thermal contraction differences during cooldown and the high

Lorentz forces that develop during charging of the magnet [6]. The combining of

these large forces and brittle material, like Nb3Sn, make the design and assembly of

the magnets a real challenge. In this context, having a good knowledge of the effects

of stress acting on the material is of paramount importance in order to understand

the performance of the material in these very powerful applications. However, inves-

tigations of the fundamental properties of Nb3Sn stopped at the eighties, when the

focus shifted and still remains on technological applications.

The request for ever more performing superconductors, the foreseen new application

areas such as the superconducting radio frequency (SRF) cavities and the current

availability of more accurate theoretical and experimental investigation techniques

(compared to those of fifty years ago) have revamped the interest on Nb3Sn and the

other A15 superconducting compounds. Several works recently appeared in litera-

ture, mostly concerning the study of the effect of a high hydrostatic pressure on the

structural and superconducting properties of A15 compounds. High pressure X-ray

diffraction experiments on Nb3Al and Nb3Ga have recently pointed out that these

two A15 materials show a pressure induced isostructural transition [7,8], that the first

principles calculations of Rajagopalan [9] and Reddy et al. [10] show is related to an

electronic topological transition. Finally, dates back only to the last year the work of

Ren et al. [11] in which the critical temperature behaviour as function of pressure (up

to ∼ 10 GPa) of Nb3Sn has been studied, pointing out a degradation of the critical

temperature as pressure increases, originating in the decrease with pressure of the

electronic density of states at the Fermi level.

In this context, this thesis work combines cutting-edge investigation techniques

(X-ray diffraction and X-ray absorption spectroscopy experiments at high pressure,

using membrane diamond anvil cells) and advanced ab-initio techniques (based on

density functional theory and density functional perturbation theory, DFT and DFPT)

to explore the material structure down to the atomic scale and its response to me-

chanical (hydrostatic pressure) and thermal (cooling) stresses. In particular X-ray
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absorption spectroscopy (XAFS) and X-ray diffraction (XRD) are complementary

structure determination techniques: XRD allowed us to determine the crystal struc-

ture of Nb3Sn up to ∼50 GPa showing a compressibility anomaly in the first few

GPa, while XAFS, a local probe technique, showed how the anomaly is related to

the dimerization of Nb atoms along the characteristic perpendicular Nb chain in the

structure of Nb3Sn. DFT and DFPT based calculations have been carried out to

explore the structure, the electronic and phonon dispersion curves and the critical

temperature of the material up to 50 GPa. Instabilities in the critical temperature

originating from a phonon anomalous behaviour and a discontinuity in the shear

moduli of the material are predicted to occur in the first few GPa. The results of the

calculations and of the experiments have often been compared to evaluate the quality

of the constructed theoretical model. Moreover, XRD investigations at temperature

down to liquid nitrogen and ambient pressure have pointed out the possible presence

of precursors of the tetragonal transition, that in Nb3Sn takes place at ∼40 K, already

at 120 K and a discontinuity of the thermal compression that likely has to be related

to the previously observed and not investigated discontinuity of the shear modulus

𝐶44 [12].

This thesis is organized in seven chapters.

In the first chapter the properties of the superconductors and the current applica-

tions based on low critical temperature superconductors are described in general, and

especially as regards Nb3Sn. Then follows a review of the Bardeen-Cooper-Schrieffer

theory and its extension proposed by Eliashberg, and the more phenomenological

Ginzburg-Landau theory, within which the superconducting properties of Nb3Sn can

be understood.

The second chapter is dedicated to the description of Nb3Sn properties, with some

reference to the other A15 superconductors. Particular emphasis is placed on re-

viewing the results of literature concerning structural properties, in particular the

tetragonal transition, and how these are related to the superconducting properties

of the material. Moreover, the effect of a hydrostatic pressure on superconducting
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materials is discussed in general and in more detail for Nb3Sn.

In the third chapter the studied samples are described, together with further mi-

crowave characterizations carried out during this thesis work by means of which the

critical temperature as function of an applied magnetic field has been investigated

and the upper critical magnetic field has been determined.

In the fourth chapter the experiments of diffraction under pressure (0-50 GPa) and

low temperature (80-300 K) and their results are described, highlighting the new in-

formation they reveal. The long range structural characterizations of this chapter are

then followed with the fifth chapter where the short range XAFS characterizations at

high pressures (0-26 GPa) are described. Here the local structure around a Nb atom

in the Nb3Sn cell is delineated.

The sixth chapter is devoted to the description of the first-principles calculations on

Nb3Sn. Here the results are discussed by comparing them to those of the previous

chapter and those of literature.

In the last chapter, the summary of this work was drawn. In particular the new

experimental results of this thesis work on the structural properties of Nb3Sn as func-

tion of an applied hydrostatic pressure and of temperature are discussed highlighting

the importance of exploiting the now available advanced experimental techniques in

order to unveil and understand them. A discussion of the results of the first-principles

calculations follows, with an inspection of the strengths and limits of the proposed

model. Finally, future prospects opened by these studies are discussed.
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Chapter 1

Superconductivity

Superconductivity is a phenomenon such that certain materials show zero elec-

trical resistance (observed for the first time in 1911 by H. Kamerlingh Omnes1 on

mercury [13]) and expulsion of magnetic field (the “Meissner effect” [14]) when cooled

below a characteristic critical or transition temperature 𝑇𝑐.

This was a very remarkable discovery at the time, being the first evidence of real

materials with zero resistance and thus able to carry electric current without dissipa-

tions. Moreover, right from the discovery, it has been envisioned that superconductors

might be used to generate strong magnetic fields. However, an issue arose: their tran-

sition temperature approached absolute zero and cooling to such low temperatures is

expensive and often not cost efficient.

During the first 60 years after the discovery of superconductivity the search for new

superconducting materials led only to a slow increase in the highest known transition

temperature 𝑇𝑐, reaching a plateau at 23 K with the discovery in 1973 of the super-

conductivity in Nb3Ge [15], leading scientists to think that superconductivity only

occurs in elemental metals and intermetallic compounds at low temperature.

Thirteen years later, the revolutionary discovery by J. G. Bednorz and K. A. Müller2

[16] of superconductivity at ∼35 K in the ceramic material La5−𝑥Ba𝑥Cu5O5(3−𝑦)

opened the way to radically higher transition temperatures. This was followed a few

1Nobel Prize in physics 1913
2Nobel Prize in physics 1987
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Figure 1-1: Flux penetration behaviour of type I and type II superconductors.

months later by the discovery of superconductivity at 90 K in a structurally related

material, YBa2Cu3O7−𝛿 [17]. Cuprate superconductors showed 𝑇𝑐 up to 135 K at non

and ambient pressure. Then, the phenomenon of superconductivity is not restricted

any more to very low temperature. During the last 30 years many other superconduct-

ing compunds have been found, and this development is by no means closed. Among

all the last superconducting materials discovered, it is worth to mention the two band

superconductor magnesium diboride (MgB2) [18] in which two electronic bands cross

the Fermi level giving rise to two distinct superconducting gaps; fullerenes which have

nanosuperconducting characteristics [19]; the heavy fermion compounds [20], where

magnetic interactions are essential for superconductivity; the iron pnictides [21] and

the hydrogen sulfide H2S that with a 𝑇𝑐 of 203 K (but at the very high pressure of

150 GPa) holds the record for the highest transition temperature since 2015 [22].

Based on the differences in their behaviour in presence of a magnetic field, all su-

perconductors are classified as type I or type II superconductors (see fig. 1-1). Indeed,

the critical temperature 𝑇𝑐 in addition to taking material-dependent values, also de-

pends on the intensity of an applied magnetic field (see fig: 1-2). This means that

above a characteristic magnetic field 𝐻𝑐, superconductivity disappears, whatever the

temperature is. Type-I superconductors are materials in which an externally applied

magnetic field is completely excluded up to a critical field 𝐻𝑐 and superconductivity is
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Figure 1-2: 𝜌 (𝑇 ) curves of a sample of Nb3Al under different magnetic field values in
T (shown in blue) [23]. It is possible to see how 𝑇𝑐 decreases as the the applied field
increases.

completely suppressed above this field value. In contrast, in type-II superconductors

the application of a magnetic field above a lower critical magnetic field 𝐻𝑐1 results

in the presence of cylindric normal cores in the superconducting bulk [24], until at

the upper critical magnetic field 𝐻𝑐2 superconductivity is completely suppressed. In

particular, between 𝐻𝑐1 and 𝐻𝑐2 there is a continuous increase in the flux penetration

and this condition is called “mixed state” or “Schubnikov phase”. In the mixed state,

the field penetrates in a regular array of flux tubes (called “fluxons”), each carring a

quantum of flux Φ0 = ℎ

2𝑒 , where ℎ is the Planck constant and 𝑒 the electronic charge.

The magnetic flux within each core is generated by a vortex of supercurrents that

circulates around the core (fig. 1-3).

In all the different classes of superconductors the electrons form pairs in order

to superconduct. However, the fundamental physical mechanisms that provide this

coupling may differ and not all the mechanisms have been fully understood yet. Only

for the so called “conventional” superconductors a detailed quantitative theory is

available since a long time. According to the BCS (Bardeen-Cooper-Schrieffer) the-

ory, that will be summarized in sec. 1.1, electrons interact with each other via the

vibrations of the crystal lattice. All superconducting elements and many other Low
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Figure 1-3: Schematic diagram of vortex in the Shubnikov phase.

Temperature Superconductors (LTS) are conventional superconductors. Instead, un-

derstanding the origin of superconductivity of the High Temperature Superconductors

(HTS) is a premier challenge of the recent research.

Despite the advent of the HTSs, a lot of attention still remains also on the LTSs.

This thesis work is devoted to the study of an LTS superconductor, the binary com-

pound Nb3Sn, a relative of the aforementioned Nb3Ge, discovered in 1954 and with a

critical temperature of about 18 K [25]. This material is supposed to be well known

and is still the most widely used superconductor for high field magnets. However,

there are many reasons for the revived interest in this material.

Nb3Sn is a particularly promising material for replacing Nb in superconducting ra-

diofrequency (SRF) cavities [26] for future particle accelerators that require higher

magnetic fields to achieve higher luminosities than those reachable with Nb, material

of choice by far, that is operating almost to its limits. Indeed, SRF Nb cavities suffer

a decreasing quality factor, 𝑄, with the increasing RF accelerating voltage. The need

to eliminate this 𝑄 degradation led to the consideration of other superconducting

materials for coating of the Nb cavities, characterized by lower surface resistance in

RF fields. Nb3Sn, with its higher critical temperature 𝑇𝑐 and lower surface resistance
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at 4.2 K, allows to increase the 𝑄 values (inversely proportional to the surface resis-

tance) by a factor ∼ 102 with respect to Nb cavities.

Moreover, in the field of modern particle accelerators, Nb3Sn is also considered for

the superconducting magnets necessary to steer the high energy particle beams. An

important example of this application is the High-Luminosity Large Hadron Collider

(HL-LHC) accelerator project at CERN, where high-field magnets based on Nb3Sn

with a usable magnetic field of around 12 T are the choice for the beam focusing and

bending [1, 27, 28].

Another example is the Future Circular Collider (FCC), also at CERN. The goal

of the FCC is to greatly push the energy and intensity frontiers of particle colliders

to extend the research currently being conducted at LHC, with the aim of reaching

collision energies of 100 TeV. In this case, a field of 16 T, necessary to steer a 50 TeV

beam over a 100 km long tunnel, is the final goal to be reached [29].

Nb3Sn is also the superconductor of choice for high field magnets to be used for plasma

confinement in fusion reactors. The International Thermonuclear Experimental Reac-

tor (ITER) project envisages the central solenoid (which reaches magnetic field values

up to 13.5 T) and toroidal field superconducting magnets based on Nb3Sn [2] [3].

Another important application of Nb3Sn is in the Nuclear Magnetic Resonance (NMR)

spectrometers, very important analysis tools in medicine, chemistry and material sci-

ence, which use fields up to 23.5 T [4].

Using Nb3Sn to make high field magnets is not trivial because it is very brittle and

then susceptible to mechanical damage. In high field applications the magnets need

to withstand large mechanical forces, with overwhelming difficulties in the magnet

engineering. However, for very-high fields applications other superconductors, such

as NbTi, are not sufficient, while Nb3Sn remains superconducting up to magnetic

fields above 20 T and then it represents a unique technology (no alternatives exist

yet) for the listed high magnetic field applications. Indeed, also if HTSs could reach

magnetic fields even larger than 20 T, the technology based on these materials is

significantly more expensive than that based on Nb3Sn and moreover, a lot of work

to optimize the stress management, quench protection and fabrication methods has
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to be done yet. This fact revamped the interest in Nb3Sn leading to new researches

particularly addressed to the relationship between superconducting properties and

mechanical stress.

In addition to the large scale applications that are already current or planned for the

future, a more fundamental reason for studying of Nb3Sn is that, in spite of previous

scientific research spanning several decades, there are still features that are not yet

fully understood. For example, recent investigations on Nb3Sn revealed that it could

be a new example of two-gap superconductivity [30]. Also the effect of strain and

compositional disorder on its superconducting properties are vaguely understood till

now [31].

Superconductivity is framed in different theories, of different complexity, and pro-

viding an exhaustive discussion overcomes the purpose of this thesis. In this first

chapter a general discussion on superconductivity will be given, focusing only on

some aspects of the theories of superconductivity relevant to this thesis.

1.1 The Bardeen-Cooper-Schrieffer theory

The first microscopic theory of superconductivity, still valid for describing the

physics of low 𝑇𝑐 superconductors, was developed in 1957 by the American physicists

John Bardeen, Leon N. Cooper and J. Robert Schrieffer 3. In this theory, since then

referred to as the BCS theory, the energy of the normal state can be lowered by hav-

ing the electrons at the top of the Fermi sea condense into a superconducting state

where the electrons form pairs in momentum space.

The idea of paired electrons dates back to 1950/51, when an interaction between the

electrons mediated by the vibrations of the lattice was for the first time proposed

simultaneously and independently by Fröhlich [32] and Bardeen [33]. At the same

time, the experimental discovery of the dependence of the critical temperature on

the isotopic mass of the lattice 𝑀 in mercury [34,35], the “isotope effect”, for which

3Nobel Prizes in physics 1972
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𝑇𝑐 ∼ 𝑀1/2, came to support the Fröhlich’s suggestion that superconductivity involves

lattice vibrations. Following the idea that the interaction between the electrons can

be mediated by phonons, in 1956 Leon Cooper demonstrated that an arbitrarily

small attraction between electrons in a metal could cause a paired state of electrons

(“Cooper pairs”) to have a lower energy than the Fermi energy, which implies that

the pair is bound [36]. In BCS theory this attraction is due to the electron-phonon

interaction proposed by Fröhlich and Bardeen.

The attractive interaction between electrons, mediated through the lattice vibrations,

can be described by the following picture. Conduction electrons propagate through

the lattice of the atomic ions of a material. For simplicity, let’s look at only two elec-

trons within this lattice of atomic ions and ignore all other electrons. The negative

charge of both electrons will slightly distort the lattice by attracting the surrounding

positive charges. This polarization of the lattice leads to an accumulation of positive

charge near the polarizing negative charge. This leads to an effective attractive in-

teraction between the two electrons causing them to “pair up” into a Cooper pair. A

Cooper pair consists of two electrons with opposite momentum of equal magnitude

and with opposite spins. The spacing between the two electrons in the pair is typ-

ically several hundred or a thousand times the interatomic spacing and in the BCS

theory it is represented by the coherence length 𝜉0. The interaction is retarded since

the attractive interaction occurs via phonons which travel with finite speed while,

on this time scale, the Coulomb repulsion between the electrons can be considered

nearly instantaneous. The strength of the polarization, and hence of the interaction,

depends on the characteristic frequency of the lattice and, therefore, also on the mass

of the atomic ions. This results because the polarization takes place along the way

of the electrons and sensitively depends on how quickly the lattice can follow the

polarizing action of them. By thinking at the time during which the lattice of atomic

ions can respond to any displacements, one qualitatively explains also the ’isotope

effect’: heavier isotopes oscillate more slowly and then follow the polarizing action

more slowly compared to lighter isotopes. This results in a smaller 𝑇𝑐.

In the BCS theory, the attractive potential introduced to describe the pairing of
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electrons takes the form:

⟨𝑘, 𝜎 |𝑉 (𝑞)| 𝑘′, 𝜎′⟩ = −𝑉 𝛿𝑘,−𝑘′𝛿𝜎,−𝜎′ , (1.1)

where 𝑘 and 𝑘′ are the momenta and 𝜎 and 𝜎′ are the spin indices of the elctrons.

The potential 𝑉 is assumed to be constant and it applies for electrons in an energy

range ±~𝜔𝐷 centered about the Fermi surface, where 𝜔𝐷 is the Debye frequency.

Everywhere else the interaction is assumed to be zero. The electrons involved in

the pairing mechanism are described by a free electron type wave function. The

Hamiltonian that describes the system in the BCS theory is the so-called “reduced”

or “pairing” Hamiltonian, which may be expressed in the form:

𝐻𝑟𝑒𝑑 =
∑︁
k𝜎

𝜀k𝑛k𝜎 +
∑︁
kl
𝑉kl𝑐

*
k↑𝑐

*
−k↓𝑐−l↓𝑐l↑ (1.2)

where 𝜀k is the energy of one free electron, and the 𝑐* and c are the electron creation

and annihilation operators. The term 𝑉kl scatters from a state with (−l ↓, l ↑) to one

with (−k ↓,k ↑).

The BCS ground state wave function has the form:

|𝜓𝐺 ⟩ =
∏︁
k

(︁
𝑢k + 𝑣k𝑐

*
k↑𝑐

*
−k↓

)︁
|𝜑0 ⟩. (1.3)

Here, |𝜑0 ⟩ refers to the vacuum state and the factors 𝑢k and 𝑣k are related to prob-

abilities of occupation. In particular, if the probability of the pair (k ↑,−k ↓) being

occupied is |𝑣k↑|2, from the normalization of |𝜓𝐺 ⟩, the probability that it is unoccu-

pied is |𝑢k↑|2 = 1 − |𝑣k↑|2. BCS obtained the two factors 𝑢k and 𝑣k starting from the

Hamiltonian (1.2) and applying the variational method, as described in [37]. The re-

sult is that these factors depend on the energy gap Δ, that is predicted by the theory

to exist between the superconducting ground state and the excited states, according

to the following formulas:

|𝑣k|2 = 1
2

[︃
1 − 𝜀k − 𝐸𝐹

(𝜀k − 𝐸𝐹 )2 + |Δ|2

]︃
, (1.4)
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|𝑢k|2 = 1 − |𝑣k|2 = 1
2

[︃
1 + 𝜀k − 𝐸𝐹

(𝜀k − 𝐸𝐹 )2 + |Δ|2

]︃
. (1.5)

By assuming that the system is isotropic and that the electronic density of states is

constant in the narrow region where the potential acts, the energy gap and the energy

of the superconducting state at zero temperature are determined by the following

formulas:

Δ0 = ~𝜔𝐷

sinh [1/𝑁𝐸𝐹
𝑉 ] ≈ 2~𝜔𝐷 exp

(︃
− 1
𝑉 𝑁𝐸𝐹

)︃
(1.6)

and

𝑈𝑠𝑐 (0) = 𝑈𝑛 (0) − 1
2𝑁𝐸𝐹

Δ2 (0) , (1.7)

where 𝑈𝑠𝑐 (0) and 𝑈𝑛 (0) are the internal energy of the system in the superconducting

and normal state, respectively. The last step in (1.6) holds in the so-called weak-

coupling limit 𝑁𝐸𝐹
𝑉 ≪ 1. The quantity 𝑈𝑠𝑐 (0) − 𝑈𝑛 (0) is the condensation energy

and it represents the energy gain when Cooper pairs form.

The excited states of the system are formed by broken Cooper pairs, where each

electron is a quasiparticle. Indeed, by means of a Bogoliubov-Valatin canonical trans-

formation (see [37] for the details of calculations) on the terms of 𝐻𝑟𝑒𝑑, it has been

demonstrated also that the energy of the excited states 𝐸k with respect to the Fermi

level is given by:

𝐸k =
√︁

(𝜀k − 𝐸𝐹 )2 + |Δ|2. (1.8)

Since the energy of a quasiparticle is 𝐸k, the minimum energy required to create a

new excitation is Δ, and since quasiparticles are created in pairs, the minimum energy

required to break a Cooper pair and then to create an excitation from the ground

state is 2Δ.

For conventional superconductivity the pair wave function has an isotropic s-wave

symmetry. This is because the two electrons of the Cooper pair form a state in which

the value 𝑆 and 𝐿 (that are the total spin and the total angular momentum) of the

pair vanishes. The energy gap then results to be approximately independent on the

wave vector k of the electrons, that is that the generation of a quasiparticle with wave

vector k costs an energy Δ approximately equal for all directions of k.
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The dependence of the energy gap on the temperature is determined by the following

equation [37]:
1
𝑉

= 1
2
∑︁

k

tanh (𝑘𝐵𝑇𝐸k/2)
𝐸k

, (1.9)

where 𝑘𝐵 is the Boltzmann constant.

The critical temperature 𝑇𝑐 is determined by the condition that, at 𝑇𝑐, Δ (𝑇 ) → 0.

It results that:

𝑘𝐵𝑇𝑐 = 1.13~𝜔𝐷 exp
(︃

− 1
𝑁 (𝐸𝐹 )𝑉

)︃
. (1.10)

Then, the transition temperature is proportional to ~𝜔𝐷, which is consistent with the

isotope effect, and is also a strong function of the electron concentration since the

density of states at the Fermi level enters exponentially.

The equations (1.6) and (1.10) combined give the ratio:

2Δ0

𝑘𝐵𝑇𝑐

= 3.53, (1.11)

which is independent from material dependent quantities other then Δ0 and 𝑇𝑐. This

ratio holds in the weak-coupling limit, that is, as said above, when 𝑁𝐸𝐹
𝑉 ≪ 1. Most

materials deviate from this BCS relation and, in most cases, the failure derives from

the choice of a constant interaction potential between the paired electrons, in which

the details, such as the retarded nature of the phonon-induced interaction are ignored.

For this thesis work, partly devoted to the study of the effect of an applied pressure

on the properties of Nb3Sn, it is interesting to understand the effect of pressure

on the superconducting properties of a BCS material. From Eq. (1.10) also the

pressure dependence of the critical temperature can be understood. The parameters

𝜔𝐷 and 𝑁𝐸𝐹
depend on the lattice parameter and hence will change with pressure.

Since pressure reduces the interatomic distances, 𝜔𝐷 increases with pressure (phonon

hardening) and then 𝑇𝑐 is expected to increase too. On the other hand, reducing the

average distance between the atoms leads to a band broadening that, in a metal means
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a lowering of 𝑁𝐸𝐹
, and then of 𝑇𝑐. However, the pressure dependence of 𝑁𝐸𝐹

can

be different, depending on the details of the Fermi surface of a particular compound.

Nonlinearities in the pressure dependence of 𝑇𝑐 have been observed in correspondence

to changes in the topology of the Fermi surface (and this is also related to changes in

𝑁𝐸𝐹
). What results is therefore a competition between different mechanisms that are

difficult to identify uniquely and that, to be understood, require the combination of

investigation techniques and complementary models. This discussion will be resumed

later, in sec. 2.2.1.

1.2 The Eliashberg Theory

Nb3Sn is a strong coupling superconductor so that it deviates from the ratio given

by (1.11). This means that the approximation that led to 𝑇𝑐 (Eq. (1.10)) is not ap-

propriate for obtaining the critical temperature of Nb3Sn and it is necessary to extend

the theory including adequate corrections. This can be done using the Eliashbergh

model whose salient features will be described in this section.

The original BCS theory, valid in the weak-coupling regime, had little to do with the

details of the attractive mechanism, but rather succeeded in establishing the pairing

formalism which lead to a superconducting state once some attractive interaction

is established. In particular the BCS equation (1.10) turned out to be inadequate

for superconductors in which the electron-phonon interaction is strong. A primary

reason for this is the instantaneous nature of the BCS interaction which does not

incorporate enough of the physics of the electron-phonon interaction. For example,

the electron-phonon interaction causes a mass enhancement of electron states near

the Fermi level and a finite lifetime of electron quasiparticle states. In many materials

these effects are strong and well-defined quasiparticles no longer exist.

The Eliashberg theory [38] extended the original BCS theory emphasizing the electron-

ion interaction (the mechanism by which Cooper pairs form) in which the details of

the lattice and of the phonon dispersion curves play a crucial role. In this theory,

proposed in 1960, Eliashberg used a Green’s function approach to incorporate the
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details of the electron-phonon interaction into the theory of superconductivity. The

result was a theory that could explain the deviations from the universal BCS rela-

tion (1.11) for most materials.

The important parameters introduced by the Eliashberg theory are the spectral func-

tion 𝛼2𝐹 (𝜔) and the Coulomb pseudopotential 𝜇*. The spectral function contains

the electron-phonon coupling, 𝛼2 (𝜔), and the phonon density of states 𝐹 (𝜔). The

parameter 𝜇* represents a “renormalized” Coulomb repulsion between the coupled

electrons. This is reduced in value from the Coulomb repulsion 𝜇 to:

𝜇* = 𝜇[︁
1 + ln

(︁
𝜔𝑃

𝜔𝐷

)︁]︁ . (1.12)

This suppression of the Coulomb repulsion results from the fact that the electron-

phonon attraction is retarded in time by an amount Δ𝑡 ≈ 1
𝜔𝐷

, whereas the repulsive

screened Coulomb interaction between electrons is retarded by a much smaller time,

Δ𝑡 ≈ 1
𝜔𝑃

, where 𝜔𝑃 is the electronic plasma frequency.

The equilibrium superconducting properties, namely the critical temperature 𝑇𝑐 and

the energy gap Δ, can be derived from the knowledge of the spectral function 𝛼2𝐹 (𝜔),

that is expressed as:

𝛼2𝐹 (𝜔) = 1
𝑁𝐸𝐹

∑︁
𝑗

𝛿 (𝜔 − 𝜔q𝑗)
∑︁
𝑘,𝑘′

|𝑔 (k,k′; q𝑗)|2 × 𝛿 (𝐸𝑘 − 𝐸𝐹 ) 𝛿 (𝐸 ′
𝑘 − 𝐸𝐹 ), (1.13)

where 𝑔 (k,k′; q𝑗) are the electron-phonon coupling matrix elements. The spectral

function measures the contribution of phonons with frequency 𝜔 to the scattering

processes of electrons at the Fermi level and is related to the dimensionless electron-

phonon coupling parameter 𝜆 through the formula:

𝜆 = 2
∫︁ ∞

0

𝛼2𝐹 (𝜔)
𝜔

𝑑𝜔 (1.14)

which corresponds roughly to the product 𝑁𝐸𝐹
𝑉 of the original BCS formula.

Within the Eliashberg theory, McMillan obtained the following analytical formula for
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𝑇𝑐 [39]:

𝑇𝑐 = Θ𝐷

1.45 exp
[︃
− 1.04 (1 + 𝜆)
𝜆− 𝜇* (1 + 0.62𝜆)

]︃
(1.15)

where Θ𝐷 is the Debye temperature and 𝜇* is the reduced Coulomb repulsion ex-

perienced by a Cooper pair described above. This formula is highly accurate for

materials with 𝜆 < 1.5, but by predicting an upper limit for 𝑇𝑐, it underestimates 𝑇𝑐

for large values of the coupling parameter 𝜆, which occur in lattices with relatively

soft phonons (e.g. Nb3Sn). It can be shown that the reason of such failure resides in

the fact that (1.15) was not derived analitically but obtained by numerical solutions

in a fixed range of the coupling parameter.

The formula (1.15) was improved by Allen and Dynes [40], who substituted the factor
Θ𝐷

1.45 with 𝜔𝑙𝑜𝑔

1.20 , where the frequency:

𝜔𝑙𝑜𝑔 = exp
[︃

2
𝜆

∫︁
𝑑𝜔 log𝜔𝛼

2𝐹 (𝜔)
𝜔

]︃
, (1.16)

is a weighted average of the phonon frequencies. The new expression of 𝑇𝑐, although

not obtained analitically, allows to correctly estimate 𝑇𝑐 for all conventional supercon-

ductors that exhibit strong coupling and “high” 𝑇𝑐 (here “high” means a 𝑇𝑐 greater

than ∼5 % of Θ𝐷 or 𝜆 ≥ 1.2). Table 1.1 reports the critical temperature 𝑇𝑐, the

ratio 2Δ (0)
𝑘𝐵𝑇𝑐

, the upper critical magnetic field at 0 K 𝐻𝑐2 (0), the Debye temperature

Θ𝐷 and the experimental and theoretical electron-phonon coupling parameter 𝜆 for

selected strong coupling superconductors that are well described in the context of the

Eliashberg theory.

1.3 Notes on the Ginzburg-Landau theory

Many material parameters can be introduced by referring to a simpler theoretical

framework than the BCS and Eliashberg theories. Moreover, the BCS theory works

well when some quantities related to the superconducting state, such as the density

of superconducting electrons 𝑛𝑠 or the superconducting gap Δ, are spatially homoge-
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Table 1.1: Critical temperature 𝑇𝑐, energy gap to 𝑇𝑐 ratio 2Δ (0)
𝑘𝐵𝑇𝑐

, upper critical
magnetic field at 0 K𝐻𝑐2 (0), Debye temperature Θ𝐷 and experimental and theoretical
electron-phonon coupling parameter 𝜆 for selected strong coupling superconductors
[41–48].

𝑇𝑐 (K) 2Δ (0)
𝑘𝐵𝑇𝑐

𝐻𝑐2 (0) (T) Θ𝐷 (K)
(𝑇 → 0/𝑇 > 𝑇𝑐)

𝜆𝑒𝑥𝑝 𝜆𝑡ℎ

Nb 9.2 3.8 0.82 277 1.22 1.33
Pb 7.2 4.4 0.08 105 1.55 1.68
Al 1.19 3.35 0.01 428 0.42 0.45

Nb3Sn 18.3 4.2 24.5 208 1.80 1.78
Nb3Al 18.7 4.4 32.4 283 1.7 1.59
Nb3Ge 23.2 3.9 38 302 1.7 1.80
V3Si 16.9 3.8 2.35 324 1.29 1.18

neous. However there are situations in which these quantities are not homogeneous,

for example in the mixed state of type II superconductors, such as Nb3Sn. This

deficiency of the BCS theory was overcome in 1950 by Vitaly Lazarevich Ginzburg

and Lev Landau who proposed a theory (the G-L theory) that accounts for spatial

variations in 𝑛𝑠 due to the presence of a magnetic field [37,49].

The G-L theory introduces a complex order parameter, 𝜓 (r), whose square mod-

ulus represents the density of superconducting electrons, i. e. |𝜓 (𝑟)|2 = 𝑛𝑠. This

order parameter is defined so as to be zero for 𝑇 > 𝑇𝑐 and unity at 𝑇 = 0.

Near 𝑇𝑐, where 𝜓 approaches to zero, the free energy of the superconducting phase

𝑔𝑠 is expanded in a Taylor series of |𝜓 (𝑟)|2 as follows:

𝑔𝑠 = 𝑔𝑛 + 𝛼 (𝑇 ) |𝜓 (r) |2 + 𝛽 (𝑇 )
2 |𝜓 (r)|4 +

+ ~2

2𝑚

⃒⃒⃒⃒(︂
∇ − 𝑖𝑒

~
A (r)

)︂
𝜓 (r)

⃒⃒⃒⃒2
+
(︃
𝐵2 (r)
2𝜇0

− 𝜇0M (r) · H0

)︃
(1.17)

where 𝑔𝑛 is the free energy in the normal phase, 𝑚 and 𝑒 are the charge carrier mass

and charge, A is the magnetic vector potential, B = ∇×A is the magnetic induction
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and M is the magnetization in presence of an applied magnetic field H0. The last

two terms in Eq. (1.17) are the kinetic energy in the Coulomb gauge form and the

energy that the system pays to expel the magnetic field from its interior. 𝛼 and 𝛽

are two phenomenological parameters expressed by the relations:

𝛼 (𝑇 ) = 𝛼0 (𝑇 − 𝑇𝑐) with 𝛼0 > 0 and (1.18)

𝛽 (𝑇 ) = 𝛽0 with 𝛽0 > 0. (1.19)

If 𝜓 = 0 in Eq. (1.17), the free energy reduces to that of the normal state in presence

of a magnetic field.

By minimizing the free energy with respect to variations in the order parameter

and the vector potential, the following Ginzburg-Landau differential equations are

obtained:

𝜓 (r)
(︁
𝛼 + 𝛽|𝜓 (r) |2

)︁
+ ~2

2𝑚

⃒⃒⃒⃒(︂
∇ − 𝑖𝑒

~
A
)︂
𝜓 (r)

⃒⃒⃒⃒2
= 0 (1.20)

Js (r) = 𝑒

𝑚
[~∇𝜑 (r) − 𝑒A (r)] |𝜓 (r)|2 , (1.21)

where j𝑠, the dissipationless supercurrent density, has been introduced by virtue of

the Maxwell equation ∇ × B = 𝜇0j.

In absence of magnetic fields and gradients there is no superconducting current j𝑠

and Eq. (1.20) simplifies to:

𝛼𝜓 + 𝛽 |𝜓|2 𝜓 = 0. (1.22)

This equation has two solutions depending on the sign of 𝛼. Above 𝑇𝑐, 𝛼 > 0, and

the minimum free energy occurs at |𝜓|2 = 0, that corresponds to the normal state.

Below 𝑇𝑐, 𝛼 < 0, and the free energy has its minimum at:

|𝜓|2 = |𝜓∞|2 = −𝛼

𝛽
= −𝛼0 (𝑇 − 𝑇𝑐)

𝛽0
, (1.23)

where 𝜓∞ is the equilibrium value of 𝜓 at the interior of the superconductor, far

away from any interface, and it approaches zero as 𝑇 gets closer to 𝑇𝑐 from below, as

39



expected.

The Ginzburg-Landau equations predicted two characteristic lengths in a supercon-

ductor. One is the coherence length, 𝜉:

𝜉 =

⎯⎸⎸⎷ ~2

2𝑚 |𝛼 (𝑇 )| , (1.24)

and the other is the penetration depth, 𝜆:

𝜆 =
√︃

𝑚

4𝜇0𝑒2 |𝜓∞|2
. (1.25)

𝜉 and 𝜆 represent the distance over which 𝜓 (r) and𝐵 (r) decay when non-homogeneities

are introduced (for example at an interface or in presence of fluxons). The coherence

length and the penetration depth define the dimensionless G-L parameter 𝜅:

𝜅 = 𝜆

𝜉
, (1.26)

that is independent on the temperature and on the magnetic field. This parameter

allows to distinguish from a type I and a type II superconductor. Indeed, 𝜅 is related

to the critical magnetic fields of a superconductor by the relation:

𝐻𝑐2 =
√

2𝜅𝐻𝑐. (1.27)

Eq. (1.27) means that type I superconductors are those with 0 < 𝜅 < 1/
√

2, and type

II superconductors are those with 𝜅 > 1/
√

2. Nb3Sn, with its high values of 𝜅, that

range from ∼20 to ∼ 40 based on the composition [50], is a type II superconductor.

In the next chapter some of the properties of Nb3Sn, and of other superconducting

compounds belonging to the same structural family (all named “A15” compounds)

will be reviewed. Particular attention will be given to the results concerning the

structural properties of these materials, and how these relate to the superconducting

ones. Furthermore, the effects of pressure on superconductors in general, and more
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specifically on A15 materials, will be discussed.
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Chapter 2

A15 materials

The superconductors with the 𝛽-tungsten structure (also known as A15 or Cs3Si

structure) are technologically high-relevant materials. Among them is Nb3Sn, the

workhorse for the high field magnets (see chap. 1). Superconductivity in A15 materi-

als was observed for the first time by Hardy and Hulm in 1953 [51] [52] on silicides and

germanides: among them, V3Si, with the highest critical temperature known at that

time for any binary compound (𝑇𝑐=17.1 K), Mo3Si (𝑇𝑐=1.30 K), V3Ge (𝑇𝑐=6.01 K)

and Mo3Ge (𝑇𝑐=1.43 K). This discovery led researchers to test several intermetallic

compounds of this structure. Among these, Matthias et al. [25] discovered Nb3Sn in

1954, reporting for their samples an onset of superconductivity at 18.05 K. Another

representative of this group, namely Nb3Ge with 𝑇𝑐 = 23.2 K [53] [15], held the record

of the highest transition temperature for a long time, until the discovery of the high-

temperature superconductors [16].

Among the A15 materials, Nb3Sn is currently the most used in the construction of

high field magnets because it has 𝐻𝑐2 which is twice that of NbTi (the only material

used for superconducting magnets until recently) allowing to reach values of higher

magnetic field necessary for example, as already seen in chapter 1, in particle acceler-

ators, in nuclear fusion reactors and in NMR spectrometers. Despite having superior

superconducting properties and the fact that Nb3Sn has been discovered eight years

before NbTi, it has not been considered for high field applications until recently. The

reason lies entirely in the mechanical properties of Nb3Sn that, unlike NbTi which
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Figure 2-1: (Top) The unit cell of A3B compounds. A atoms are dark red coloured, B
atoms are pink. (Bottom left) The coordination environment of B atoms and (Bottom
right) A atoms.

is a ductile alloy, is a very brittle material. This feature is an inherent source of

stress-strain dependence of its superconducting properties and required a deep effort

to optimize the fabrication method of Nb3Sn wires.

A15 materials have chemical formula A3B (where A is a transition metal and B is

often a non-transition metal atom). Figure 2-1-top shows the crystal structure of the

A15 compounds (A3B). It has a cubic unit cell of eight atoms and belongs to the space

group 𝑃𝑚3𝑛 (𝑂3
ℎ in the Schoenflies notation). Lattice parameters of A15 supercon-

ductors range from 4.72 Å for V3Si to 5.29 Å for Nb3Sn. The A-type and B-type

atoms occupy the 6c and 2a Wyckoff positions of the space group, respectively. In
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Figure 2-2: Niobium-Tin phase diagram after Charlesworth et al. [54].

particular, the B atoms form a body-centered cubic (bcc) lattice, while the A atoms

occur on the cube faces and are arranged along chains parallel to the x, y, and z axes,

at the positions 01
4

1
2 , 03

4
1
2 , 1

201
4 , 1

203
4 , 1

4
1
20 and 3

4
1
20 . On each chain the A-type

atoms distribute equidistantly and the orthogonal chains do not intersect. The A

atoms have a coordination number of 2 and the B atoms of 12. In fig. 2-1 (bottom

left and right), the coordination environment of the B and A atoms are represented.

The Wigner-Seitz cells are a 12-hedron for B atoms and a 14-hedron for A atoms.

2.1 Physical properties of Nb3Sn

2.1.1 Phase Diagram

In this section the phase diagram of the compound of interest for this thesis,

Nb3Sn, will be described.

In fig. 2-2 the binary phase diagram of Nb1−𝛽Sn𝛽 is depicted [54]. In thermodynamic

equilibrium, three different intermetallic phases can form, depending on the value of
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𝛽, namely Nb3Sn, NbSn2 and Nb6Sn5. The A15 phase can exist in the wide compo-

sition range 0.18 ≤ 𝛽 ≤ 0.25 at. % Sn (green-coloured in fig. 2-2). In the insert of

fig. 2-2, a zoom of the diagram is shown in the composition range from 0.18 to 0.25

at. % Sn, where it can be seen that Nb3Sn with almost stoichiometric composition

shows a tetragonal structure for temperatures lower than 40 K. The highest transition

temperature is found in this compound at the edge of the stability range (temperature

and composition) of the A15 phase. A deviation from stoichiometry reduces the su-

perconducting transition temperature due to the resulting compositional disorder. In

fig. 2-2 there are two other superconducting phases of the binary compound Nb-Sn,

Nb6Sn5 and Nb6Sn2. However, their 𝑇𝑐 is below 3 K, and thus they are of negligible

interest for pratical applications.

2.1.2 The Batterman-Barrett Transformation

Upon cooling, many A15 superconductors exhibit a lattice transformation below a

temperature 𝑇𝐿 > 𝑇𝑐. This transition, also known as Batterman-Barrett transforma-

tion [55], is of first order and consists of a weak tetragonal distortion of the originally

cubic unit cell (a shear strain distortion) accompanied by a dimerization of the atoms

along the transition metal chains. The new phase belongs to the 𝑃42/𝑚𝑚𝑐 (𝐷9
4ℎ in

the Schoenflies notation) space group. Generally the structural transformation occurs

at a temperature 𝑇𝐿 which is higher than 𝑇𝑐 but not more than a factor two. However,

the tetragonal transition does not occur suddenly at 𝑇𝐿, but precursor effects start

even at higher temperatures.

The first evidence of such transition in A15 compounds was found in V3Si [55], then

it has been detected on V3Ga and Nb3Al by means of heat capacity measurements

by Viswanathan et al. in 1974 [56], at 13 K and 15 K, respectively.

Nb3Sn undergoes the cubic to tetragonal structural transition at about 40 K as shown

for the first time by Keller and Hanak [57]. Mailfert et al. with their diffraction ex-

periment determined a ratio 𝑎/𝑐 =1.0062, while 𝑎 = 𝑏 [58] (see fig. 2-3).

Shirane and Axe [59], by means of neutron scattering experiments on Nb3Sn have
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Figure 2-3: Lattice parameter versus temperature for Nb3Sn single crystal determined
by Mailfert et al. [58].

established the existence of a sublattice displacement below 𝑇𝐿. They observed that

the Nb sublattices shift and that the sublattice displacement in the tetragonal struc-

ture is of symmetry type Γ12 (+), as in fig. 2-4, where the Nb atoms of the chains in

the 𝑦-direction in a cell move toward each other, those in the 𝑥 direction move away

the same amount and those in the 𝑧 direction remain uniformly spaced. The redistri-

bution of the Nb atoms along two chains is called dimerization and can be described

as a Peierls instabilty [60–63]. In a Peierls instability charge density waves (CDWs)

develop and a gap (“Peierls gap”) opens up at the Fermi level as a consequence of the

dimerization of linear chains of atoms (see appendix A for a description of the Peierls

mechanism in 1D). In the case of Nb3Sn 𝑁𝐸𝐹
is reduced, because of the opening of

the Peierls gap, and then also the number of electrons available for BCS pairing: the

immediate consequence of this fact is the reduction of 𝑇𝑐.

The cause of the structural instability is assumed to lie in the electron system of the

transition metal atom chains. Labbé and Friedel [64] proposed a linear chain model to

explain the relatively high 𝑇𝑐 of the A15 compounds and their structural instability.

The model emphasises the importance of the 𝑑-electrons of the transition metal ions

forming the characteristic orthogonal chains. All the interactions between chains, or

between A and B atoms, are neglected. Since the three chains along three different
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Figure 2-4: Model of the Nb atom sublattice shift due to the Batterman-Barrett
transformation in Nb3Sn (full circles Nb; empty circles Sn) [59].

directions lead to an identical DoS, the system carries a threefold degeneracy. There-

fore, the Fermi energy is close to a singularity of the electronic density of states, due to

the cubic symmetry. This leads to the increase in 𝑇𝑐, but simultaneously favours the

lowering of the energy of the system through a tetragonal structural change (sym-

metry reduction) in which the degeneracy of the 𝑑-band structure is partly lifted.

The structural distortion with suppression of degeneracy of the 𝑑-bands constitutes

a Jahn-Teller transformation [65].

The tetragonal transition negatively affects the critical temperature because of the

Peierls distortion. The superconducting transition, in turn, also affects the tetrago-

nal transition. It has been observed that the developing tetragonality upon cooling

is interrupted at the transition to superconductivity and that if the superconducting

transition occurs already in the cubic phase, the martensitic transition is completely

suppressed [66]. To understand the relation between tetragonality and superconduc-

tivity in Nb3Sn, we consider the formula (1.14) again. It can be re-expressed as:

𝜆 = 𝑁𝐸𝐹
⟨𝐼2⟩

𝑀⟨𝜔2⟩
, (2.1)
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where 𝑀 is the average atomic mass and ⟨𝐼2⟩ and ⟨𝜔2⟩ are, respectively, averages

of the electron-phonon matrix element and squared phonon frequency. One effect,

already mentioned in this section, is that through the Peierls gap formation, the

tetragonal transition reduces 𝑁𝐸𝐹
, thus lowering 𝜆 and hence 𝑇𝐶 , which depends

on 𝜆 exponentially (Eq. (1.15)). Another effect, is that phonon softening in the

vicinity of the transition reduces ⟨𝜔2⟩, thus raising 𝜆 and hence 𝑇𝑐. The relation

between tetragonality and superconductivity arises from a competition between the

BCS and Peierls gaps for a common portion of the Fermi surface. If the electron-

phonon coupling for the Peierls gap 𝜆𝐿, defined analogously to (2.1), exceeds that for

superconductivity 𝜆, 𝑇𝐿 occurs above 𝑇𝑐 and is given by:

𝑇𝐿 ∝ 𝑒
− 1

𝜆𝐿 . (2.2)

Because of the formation of the Peierls gap, less of the Fermi surface is available for

the formation of the BCS gap, thus depressing 𝑇𝑐, as described by:

𝑇 1−𝑓
𝑐 𝑇 𝑓

𝐿 = 𝑇𝑐, (2.3)

where 𝑓 is the fraction of the states contributing to 𝑁𝐸𝐹
that is associated with the

Peierls gap. By comparing (2.2) to (1.10), if 𝜆𝐿 is less than 𝜆, superconductivity arises

preferentially to the tetragonal phase and the martensitic transition is suppressed.

When the characteristic parameters of an A15 compound are varied, for example by

alloy additions or deviations from stoichiometry, both 𝜆𝐿 and 𝜆 vary. These vari-

ations are schematically represented in fig. 2-5: on cooling, when 𝜆𝐿 is large, the

transformation takes place before the superconducting transition, thus leading to a

transition from the normal tetragonal phase (NT) to the superconducting phase of

the tetragonal structure (ST); conversely, the superconducting transition takes place

before the tetragonal one and suppresses it, thus leaving the cubic structure unaltered

(superconducting cubic phase, SC) [66].

Moreover, the tetragonal transition adversely affects the upper critical magnetic field

𝐻𝑐2 , with a difference in 𝐻𝑐2 (0) between the tetragonal and the cubic phase by ∼4 T
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Figure 2-5: Schematic phase diagram for the superconducting and martensitic phase
transitions as function of 𝜆𝐿. NT, SC, ST and NC means normal tetragonal, supercon-
ducting cubic, superconducting tetragonal and normal cubic phases respectively [66].

in single crystal Nb3Sn samples [67]. This can be best discussed in the context of the

Ginzburg-Landau theory (see sec. 1.3) according to which 𝐻𝑐2 ∝ 𝜅, where 𝜅 is the

Ginzburg-Landau parameter. Raising structural or compositional disorder (adding

solutes or changing compositions) increases 𝜅 because of electron scattering hence

improving 𝐻𝑐2 . Then, retaining the cubic phase results in an increased 𝐻𝑐2 (0), while

𝑇𝑐 (0) remains unchanged. At this point, how to keep the highest 𝑇𝑐 and have the

highest 𝐻𝑐2 possible with this material is a matter of inhibiting the tetragonal transi-

tion. For this reason for technological applications, additions of Ta or Ti are applied

to the pure phase to obtain the stabilization of the cubic phase [31].

The tetragonal transition takes place at the characteristic temperature 𝑇𝐿, but pre-

cursor effects of the transformation have been observed at temperatures well above 𝑇𝐿.

Precursors to the tetragonal transformation, such as the existence of a large elastic

softening starting from room temperature, has been shown by means of ultrasonic

experiments on V3Si [68] and Nb3Sn [69]. In the two systems, V3Si and Nb3Sn, the
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Figure 2-6: Elastic moduli versus temperature of Nb3Sn obtained from measured
sound velocities in the (100) and (110) directions [12]. The straight red line and an
arrow in the 𝑐44 shear modulus has been sketched in order to better evidence the
change of slope below 200 K.

(110) transverse acoustic (TA) and (001) longitudinal acoustic (LA) phonons were

found to soften on cooling from room temperature leading to the cubic-to-tetragonal

transition at 𝑇𝐿. This effect is reflected on the elastic properties of the material that
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can be described by the elastic moduli (see appendix B).

In particular for Nb3Sn the phonon softening implies that the shear moduli 𝐶44 and

𝐶𝑠 = 𝐶11 − 𝐶12

2 softens, already at room temperature, and this softening increases on

cooling until the transition, which corresponds to the vanishinig of the shear modulus

𝐶𝑠 (see fig. 2-6). As temperature is lowered from room temperature, the phonon

spectrum changes. This produces the relatively large reductions of the elastic con-

stants 𝐶11 and 𝐶44 and, as already mentioned, a value of 𝐶𝑠 approaching zero at 𝑇𝐿.

Interestingly, a change of slope is observed in the behaviour of the shear modulus 𝐶44

(see fig. B-1-right in appendix B for a schematic picture of the type of deformation

to which it is related) on cooling below 200 K, as shown by the red straight line in

fig. 2-6. This effect has not been commented by the authors but it could represent

an indication of some change in the elastic properties of Nb3Sn that may be further

investigated. This point will be further discussed in sec. 4.2.3.

Also in the case of V3Si the softening of the (001) LA and (110) TA mode leads to

the decrease of the two shear moduli 𝐶𝑠 and 𝐶44 on cooling. The larger instability oc-

curs for the shear waves propagating along the (110) direction coupled with the shear

modulus 𝐶𝑠. In fig. 2-7 the temperature dependence of the ratio of 𝐶𝑠 to 𝐶44, which

is relatively temperature independent, is plotted. This stiffness parameter reduces

on cooling between room temperature and 14 K. Around 22 K, however, the slope is

reduced and some, but not complete, stabilization occurs: this partial stabilization

marks the onset of the cubic to tetragonal transformation. In the superconducting

state, i.e. below 𝑇𝑐, there is a further reduction until the growing lattice instability

stops below 14 K.

Thus, these materials are characterized by a softening of the shear moduli on cooling

that, sometimes, terminates in the martensitic trasformation above 𝑇𝑐. 𝐶𝑠 is coupled

to the Raman active mode 𝐸𝑔. Therefore Raman spectroscopy has been exploited

to observe how this vibrational mode varies on cooling and to better understand the

nature of the observed precursor effects.

With Raman spectroscopy a change of slope in the temperature dependence of the

𝐸𝑔 mode frequency of Nb3Sn has been observed at 𝑇 < 100 K [70]. The 𝐸𝑔 mode
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versus temperature [68].

is related to the sublattice displacement of symmetry type Γ12 (see fig. 2-4) and

thus to the motion of the atoms along the Nb chains. The temperature dependence

of the position of the 𝐸𝑔 peak is presented in fig. 2-8. With decreasing tempera-

ture the 𝐸𝑔 mode frequency progressively softens on cooling, reaching a minimum

at around 80 K, and then hardens on further cooling. The softening was explained

by comparison to the results on the elastic constants. The softening of the 𝐸𝑔 mode

is consistent with the behaviour of the shear modulus 𝐶𝑠) (for which a shear wave

produces a movement of Nb sublattices against each other (see fig. B-1-center in

appendix B)) whose softening, already starting from room temperature, is considered

as a precursor to the structural transition. Thus, in this picture, also the soften-

ing of the 𝐸𝑔 mode can be considered a precursor to the tetragonal transition. The

change of slope, with the hardening below ∼ 80 K, was explained with the existence of

tetragonal “microdomains” forming at temperatures above the tetragonal transition.

Indeed, if tetragonal domains forms, a second peak relative to the tetragonal phase

arises, and it superimposes to that of the cubic phase giving it an asymmetric shape,

moving the peak at higher frequencies [70]. The same effect is less pronounced in
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Figure 2-8: Temperature dependence of the frequency of the 𝐸𝑔 Raman peak of
Nb3Sn [70].

non-transforming samples, where smaller portions of tetragonal domains appear to

be present [70].

The Nb3Sn properties described in this section, such as the occurrence of the

martensitic transformation, the differences in the behaviour of the Raman active 𝐸𝑔

mode between transforming and non transforming samples and the transformation

temperatures 𝑇𝐿, that occurs between 45 K and 52 K, change from sample to sample,

depending on the compositional differences and on the preparation conditions. The

reason for this is in a disturbance of the periodic lattice structure. In case of disordered

specimens, for example when impurities are added or out of the perfect stoichiometry

(namely, for 𝛽 < 0.245 [31]), one only sees the precursors of the transformation

(softening of elastic moduli and 𝐸𝑔 Raman peak), without the sample itself being

transformed [70].
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2.2 High pressure effects on superconductivity

Pressure (𝑃 ) is a fundamental state variable: squeezing the lattice alters the

atomic distances and this affects the atomic interactions by modifying the structural,

vibrational and electronic properties of a material. This can be especially relevant

in superconducting systems where critical parameters result from a delicate balance

between structural, electronic and phonon degrees of freedom.

Among the elemental superconductors, Li, with 𝑇𝑐 at ambient pressure of 4 mK

(measured for the first time ten years ago), has a critical temperature up to 20 K

at pressures above 20 GPa [71–73]. The interest in the superconductivity in dense

lithium is also motivated by the fact that it is the “simplest” metal with only one

valence electron and it is the superconducting element closest to hydrogen: this opens

new hopes in the search for superconductivity in metallic hydrogen that has been pre-

dicted to become superconducting at high pressure with an extraordinary high 𝑇𝑐 [74].

In this context, sulfur hydryde H2S has been discovered to be a superconductor with

a 𝑇𝑐 of 203 K above 200 GPa [75].

The first study of pressure effects on superconductors dates back to 1925, with the

work of Sizoo and Onnes [76] who took Sn and In to a hydrostatic pressure of roughly

300 bars and observed a suppression of 𝑇𝑐 of a few mK. Since then almost all of the

superconducting metallic elements have shown a decrease of 𝑇𝑐 with pressure that has

been attributed to the weakening of the electron-phonon coupling 𝜆 due to the shift of

the phonon spectrum to higher frequencies [77]. However there are a few exceptions.

For example, it has been observed in thallium and rhenium that a hydrostatic pres-

sure induces a nonlinear variation of 𝑇𝑐 with pressure [78–80]. Overall, high pressure

investigations on elements have pointed out that, besides the 29 superconducting ele-

ments at ambient pressure (the highest 𝑇𝑐 being that of Nb, that is 9.2 K), under the

application of sufficiently high pressures other 24 elements become superconducting,

with the maximum 𝑇𝑐 value around 30 K for Ca (see fig. 2-9). Among these some

elements are magnetic at ambient pressure some others are insulating and as pressure

increases, they become metallic and then superconducting. This happens because the
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Figure 2-9: Periodic table indicating the superconducting and magnetic properties of
the bulk elemental solids at ambient and high pressure, from [81].

application of a pressure, causing a reduction in the atomic distances in the lattice,

broadens the electronic bands making the system more metallic.

High pressure experiments also had a great importance in the search for new super-

conducting compounds with higher 𝑇𝑐 values. The 𝑇𝑐 value of the La2−𝑥Ba𝑥CuO4

(LBCO) cuprate compound discovered by Bednorz and Müller in 1986 [16] was found

to increase with pressure from 32 K at ambient pressure to 40 K at 13 kbar [82].

This suggested that the tuning of material parameters, for example the interatomic

distances, by physical and “chemical” pressures could lead to higher transition tem-

peratures. In fact, this idea brought to the “high-𝑇𝑐 revolution”: simulating the

effects of external pressure (variation of the lattice constants) by replacing the La

atoms with the smaller isovalent Y ion (chemical pressure) led to the raising of 𝑇𝑐

above the temperature of liquid nitrogen [17].
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Summarizing, the application of high pressures has led to the discovery of many

new superconductors, including 24 elemental solids, has guided the efforts to enhance

the transition temperature 𝑇𝑐 by chemical means and has yielded the dependence of 𝑇𝑐

on structural parameters (such as the lattice parameter) which could help identifying

the pairing mechanism and testing theoretical models. These results give the idea of

the beneficial impact that the study of the effects of pressure on superconductors may

have: high-pressure investigations together with “ab-initio material design” approach

have been found extremely useful for a deeper understanding of the superconducting

state.

2.2.1 The High pressure effect on A15 superconductors

To understand the pressure dependence of 𝑇𝑐 of Nb3Sn one has to look at the

microscopic theories of phonon-mediated superconductivity, namely the BCS and the

Eliashberg theory described in chapter 1. The BCS model is a rough approximation in

case of strong coupling but still useful to understand the role of the main parameters

involved. Eq. (1.10) allows to evaluate 𝑇𝑐 as a function of the average phonon fre-

quency, 𝜔𝐷 and of the electronic density of states, 𝑁𝐸𝐹
. 𝜔𝐷 commonly increases with

pressure (phonon hardening), while 𝑁𝐸𝐹
generally decreases. Moreover, the trend of

𝑁𝐸𝐹
can be different from case to case, depending on the shape of Fermi surfaces,

that can change when raising the applied pressure. The variation of 𝑇𝑐 with the pres-

sure, then, results from a balance of electronic and phonon contributions: indeed, if

the density of states decreases with pressure, thus lowering 𝑇𝑐, pressure leads to an

increase in phonon stiffness, and therefore to an increase of 𝑇𝑐.

A15 superconductors exhibit a strong electron-phonon coupling and their supercon-

ductivity is well described by the Eliashberg theory. Within this theory the McMillan

equation for the transition temperature of Eq. (1.15) shows that the pressure depen-

dence of 𝑇𝑐 is very complex and depends on various parameters of the electron and

phonon systems. The pressure effect on 𝜇* (the Coulomb pseudopotential) and on

⟨𝐼2⟩ (the squared average over the Fermi surface of the electron-phonon matrix ele-

ment) are very small and then they are frequently neglected [39]. Thus the pressure
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dependence of 𝑇𝑐 reduces to two parameters, the density of states 𝑁𝐸𝐹
and the aver-

age phonon energy ⟨𝜔⟩ , like the BCS theory.

However, it is possible to capture more information from the strong coupling 𝑇𝑐

(Eq. (1.15)) by taking its logarithmic volume derivative. The following relation is

obtained:
𝑑 ln𝑇𝑐

𝑑 ln 𝑉 = −𝐵𝑑 ln𝑇𝑐

𝑑𝑃
= −𝛾 + 𝑓 (𝜆, 𝜇*)

[︃
𝑑 ln 𝜂
𝑑 ln 𝑉 + 2𝛾

]︃
, (2.4)

where 𝐵 is the bulk modulus, 𝛾 = 𝑑 ln < 𝜔𝑙𝑜𝑔 >

𝑑 ln 𝑉 , 𝜂 = 𝑁𝐸𝐹
< 𝐼2 > is the Hopfield

parameter, and 𝑓 (𝜆, 𝜇*) = 1.04𝜆 [1 + 0.38𝜇*] [𝜆− 𝜇* (1 + 0.62𝜆)]−2. The first term

on the right, which comes from the prefactor to the exponent in the expression for

𝑇𝑐 (Eq. (1.15)), is usually very small as compared to the second term. The sign of

the pressure derivative 𝑑𝑇𝑐

𝑑𝑃
, therefore, is determined by the relative magnitude of the

two terms in the square brackets. The first “electronic” term involves the derivative

of the Hopfield parameter. McMillan [39] pointed out that whereas individually 𝑁𝐸𝐹

and < 𝐼2 > may fluctuate appreciably, their product remains nearly constant and the

coupling constant 𝜆 is governed mainly by the phonon factor 𝑀 < 𝜔2 >. However,

on elastically soft materials, such as Nb3Sn, 𝜂 reflects the behaviour of 𝑁𝐸𝐹
. An

examination of high-pressure data on metal superconductors reveals that Eq. (2.4)

is obeyed if 𝜂 increases under pressure at the approximate rate 𝑑 ln 𝜂
𝑑 ln 𝑉 ≈ 1. The

expression in the curly brackets is positive since the lattice term is positive (2𝛾 ≈ +3

to +5) and dominates over the negative electronic term 𝑑 ln 𝜂
𝑑 ln 𝑉 ≈ 1. Since Δ is always

positive and the first term is relatively small, the sign of 𝑑𝑇𝑐

𝑑𝑃
must be negative. This

accounts for the almost universal decrease of 𝑇𝑐 with pressure in simple metals due

to lattice stiffening.

In general, it is known that an applied stress affects the superconducting proper-

ties of Nb3Sn in a detrimental way [83]. Relevant for applications is the degradation

of the critical current density and of the critical temperature 𝑇𝑐 due to an applied

axial stress on technological wires (of different manufacture) ( [84] and references

therein).
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Figure 2-10: The pressure dependence of 𝑇𝐿 and 𝑇𝑐 in (left) V3Si and (right) Nb3Sn.

If, on the one hand, the effects of a non hydrostatic applied stress have been widely

explored, on the other hand a detailed characterization of Nb3Sn P-V structural phase

diagram is still lacking. Below, the known results about the behaviour of the tetrag-

onal and superconducting transitions in presence of an applied hydrostatic pressure

are discussed.

In 1971, Smith [85] determined and reviewed the superconducting transition tem-

peratures of different A15 compunds up to 25 kbar. A 𝑇𝑐 (25 kbar) = 17.83 K has

been measured on Nb3Sn with a linear variation with pressure at a rate 𝜕𝑇𝑐

𝜕𝑃
of

− 1.4 × 10−5 K bar−1. For all the samples no irreversibilities have been found, i.e.

the trend of 𝑇𝑐 was the same when increasing or decreasing the applied pressure. Fur-

ther experiments by Chu and Vieland were consistent with this previous result [86].

In particular Chu [87] also reported 𝑇𝐿 and 𝑇𝑐 as a function of pressure, plotted in

fig. 2-10. An enhancement of the lattice transformation temperature 𝑇𝐿 is clear, at

a rate of +(2.8±0.1) × 10−4 K bar−1 (fig. 2-10-right). The increase of 𝑇𝐿 when

the applied hydrostatic pressure increases is not a general feature of A15 materials,

indeed, for example for V3Si the suppression at a rate of - (1.5±0.1)× 10−4 K bar−1

has been observed (fig. 2-10-left).

The effects of a hydrostatic pressure on the Batterman-Barrett transformation and on

the superconducting transition were theoretically described within the Labbé-Friedel
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Figure 2-11: Electronic density of states of Nb3Sn from ab-initio calculations.

linear chain model (see sec. 2.1.2). In this model 𝑇𝐿 and 𝑇𝑐 are functions of the

number of the 𝑑-electrons entering 𝑁𝐸𝐹
, 𝑄. An applied pressure redistributes the

charges between different bands and then changes 𝑄 (by transferring electrons from

𝑠 to 𝑑 bands) and the position of the Fermi level. At ambient pressure 𝐸𝐹 is near to

a peak of the density of states (see fig. 2-11) and the application of a pressure can

result in an enhancement or suppression of 𝑇𝐿 if 𝐸𝐹 is moved either towards such

peak or away from it, respectively.

Recently, new room temperature experiments at high pressure on A15 compounds

have revived the interest on the pressure effect in this materials. In particular, high

pressure diffraction experiments on Nb3Ga and Nb3Al in the GPa range, pointed out

a compressibility anomaly in the P-V plot at around 16 GPa and 18 GPa, respec-

tively [7, 8] (see fig. 2-12). These anomalies do not involve structural transitions,

for example the Batterman-Barrett. Rajagopalan [9] suggested by means of ab-initio

calculations that this anomaly is to be related to an electronic topological transition .

He calculated the electronic structure at different pressures by means of the all elec-

tron full potential linear augmented plane wave method demonstrating that around
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Figure 2-12: The P-V plot of (left) Nb3Ga [8] and (right) Nb3Al [7].

the Fermi level the bands are flat at the zone center and they are “d” like bands of Nb

atoms. A “d” like band of Nb at the zone center is below the Fermi level at 12 GPa,

then moves above and touches the Fermi level at about 17 GPa and under further

compression the band moves down below the Fermi level around 22 GPa. The move-

ment of this particular band causes a marked change in the Fermi surface topology.

If the variation of an external parameter like pressure causes changes in the Fermi

surface topology, it is likely to influence the otherwise monotonic variation of density

of states. This is pointed out by Lifshitz [88] who has demonstrated large change

in the density of states and consequently a change in the associated thermodynamic

properties if a closed Fermi surface transforms into a an open surface.

The past year Ren et al. [11] reported their studies of 𝑇𝑐 as a function of pressure of

single-crystal and polycrystalline Nb3Sn up to ∼10 GPa. In the whole pressure range

investigated, they obtained that the normal state resistivity near the superconducting

transition is described by the relation 𝜌 (𝑇 ) = 𝜌0 +𝐴𝑇 2, where 𝜌0 is the residual resis-

tivity and 𝐴 is a prefactor proportional to 𝑁𝐸𝐹
. This relation has been demonstrated

by Rice [89] and shows that electron-electron scattering contributes a characteristic

𝑇 2 term to the resistivity. However, above a certain temperature (∼25-35 K) 𝜌 (𝑇 )

exhibits a downward deviation below 4 GPa from the 𝑇 2 dependence, fingerprint of

the structural transition, and an upward deviation at higher pressure that suggests

the presence of additional contributions from the structural transition and the con-

ventional electron-phonon scattering to the resistivity. From the measurements of the
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Figure 2-13: 𝑇𝑐 plotted as a function of 𝐴 for Nb3Sn (S=single cristal) and
(P=policrystalline sample) under pressure. The solid lines are guide to the eyes. [11]

resistivity as function of both temperature and pressure, they obtained a reduction

of 𝑇𝑐 with pressure, at a rate in agreement with the previously reported values, that

is well described by a linear function of
√
𝐴 (see fig. 2-13). These results highlight

the importance of the electronic states at the Fermi level in determining 𝑇𝑐 in Nb3Sn

under pressure as suggested in the Labbé-Friedel model.

Given the interesting results of the last years, obtained thanks to the availability

of increasingly sophisticated high pressure systems with which very high pressure

values can be achieved, this work is in part devoted to the study of the effect of an

applied pressure on the structural and superconducting properties of Nb3Sn. In the

following chapters the results of the new diffraction experiments on Nb3Sn conducted

during this thesis work will be presented and discussed in comparison to the results

reviewed in this chapter. In particular, the presence of features not previously known

in the pressure range from 0 to 10 GPa and in the temperature range from room

temperature to that of liquid nitrogen will be highlighted.

Before discussing these works, the samples under consideration will be described in
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the next chapter.
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Chapter 3

The Nb3Sn samples

In this chapter the Nb3Sn samples that have been studied during this thesis work

will be described. The studied samples are of two types: filaments taken from a wire

of Nb3Sn and pure Nb3Sn polycrystalline samples.

3.1 Nb3Sn wire

The Nb3Sn filaments have been taken from an internal-tin wire that has been sup-

plied by Outokumpu Copper Superconductors Italy (OCSI, now Luvata) [90]. The

wire was a prototype product for ITER, the International Thermonuclear Experimen-

tal Reactor.

The wires used in this thesis work are internal tin wire.

The internal tin process starts with elemental niobium filaments and a tin core (with

tantalum as ternary addition used to facilitate wire drawing and to increase 𝐻𝑐2) in

a copper matrix surrounded by a tantalum-niobium diffusion barrier, forming “bun-

dles”. A number of bundles distributed in concentric rings in a pure copper matrix

makes up the wire. When the necessary shape and size have been achieved by means

of extrusion processes, the wires undergo a multi-stage heat treatment, in which tin

diffuses through copper, forming Cu-Sn alloys, which then react with Nb to form the

Nb3Sn phase. The described process is complex, but now well established and allows

the production of excellent quality wires in terms of critical temperature and upper
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critical magnetic field.

The wires, here, were designed with a diameter of 0.81 mm, a Cu/nonCu ratio of

about 1, a filament diameter around 5 𝜇m, and a distributed Ta-Nb diffusion barrier

that prevents the reaction between the Cu matrix and Sn during the high tempera-

ture processing (see the SEM cross sections of the strand and one of its sub-elements

in fig. 3-1). The Energy Dispersive X-ray (EDX) analysis of fig. 3-2 shows the dis-

tribution of the different elements within the strand cross-section: in each image the

white regions correspond to one of the element (Nb, Sn, Ta, Cu). The Heat Treat-

ments (HT), necessary to react Nb with Sn to obtain the A15-Nb3Sn phase, have been

performed at ENEA1, following the HT recommended by the supplier. The thermal

stabilizing Cu matrix has been etched away chemically to extract the filaments.

Nb3Sn wires have been the first samples available to us for measurements. Then

the first experiment of this thesis work, namely the XRD measurements at high

pressure and room temperature (see sec. 4.2.2), has been made on wires. A good

knowledge of the wires is important for understanding their behaviour under operating

conditions, and the first experiment of this thesis was addressed to this aim. However,

for a good representative characterization of pure Nb3Sn, non-technological samples

are much more suited, in particular if a structural characterization of the material

is desired. Indeed, wires, can exhibit different behaviors because of impurities. For

example here the tantalum inclusions (with a content of Ta > 2.8 at. % ) in the

strands lead to the disorder necessary to avoid the tetragonal transition, allowing

higher values of 𝐻𝑐2 with respect to the pure material. Therefore, the study of

the properties of the material devoted to a better understanding of its structural

characteristics in different conditions needs the use of pure samples. Thus, for these

reasons, pure Nb3Sn polycrystalline samples described in the section below have been

studied in all the other experiments.

1Italian National Agency for New Technologies, Energy and Sustainable Economic Development-
Italy

66



Cu matrix

strand

strand sub-element

filament

Ta-Nb diffusion barrier
Figure 3-1: SEM cross section of the OCSI internal-tin strand (outer diameter
0.81 mm), after heat treatment (left). One of the strand sub-elements(right). [90].

Figure 3-2: EDX analysis of the OCSI strand, after the heat treatment. The white
area represents the spatial distribution of each element. Upper left: Cu; upper right:
Nb; lower left: Sn; lower right:Ta [90].

3.2 Nb3Sn polycrystalline samples

The Nb3Sn polycrystalline samples [91] studied in this thesis have been provided

by dr. Tiziana Spina and prof. René Flükiger of CERN and University of Geneva,

respectively. These samples has been produced at the facility of the Applied Physics

Dept. of the University of Geneva.

The samples were obtained starting from a mixture of Nb powder (99.9 % purity,
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desoxydized, 25÷45 𝜇m particle size) and Sn powder (99.5 % purity, 40 𝜇m particle

size), with a ratio of Nb : Sn = 3 : 1. The masses of Nb and Sn powders have been

chosen to get a Sn composition of 24.8 at. % Sn, i.e. slightly below the stoichiomet-

ric composition of 25 at. % Sn. This choice was motivated by the necessity to get

single phase samples: indeed at 1250 ℃, that is the temperature at which Nb and Sn

reacted, the Nb rich limit of the two-phase region A15+Nb6Sn5 starts very close to

25 at. % Sn, and even a small composition gradient would cause the presence of a

second phase (see the Nb3Sn phase diagram in fig. 2-2) [91].

As a first step, the powders are mixed for almost 1 hour in a mixing machine, enclosed

in a Nb jacket and loaded into a stainless steel billet. Then they were reacted in a HIP

(Hot Isostatic Pressure) furnace at 1250 ℃ for 24 h (with a cooling rate of 3 ℃/h)

under 2 kbar Ar pressure. As shown by the phase diagram of Nb3Sn (fig. 2-2), the

choice of the sintering temperature allows to get Sn contents at compositions very

close to stoichiometry.

After the HIP process, the steel jacket was mechanically removed from the Nb3Sn

block. Then sample platelets were cut by means of spark erosion and then were pol-

ished. The polishing procedure was performed with silicon carbide grinding papers to

remove the cutting part containing mainly carbon and oxygen impurities arising from

the spark erosion dielectric oil. The Nb3Sn platelets obtained are then submitted to a

final Flash-Anneal of 20 minutes at 900 ℃ under a pressure of 10−7 mbar for releasing

the surface stresses induced by the polishing procedure.

Preliminary analysis on Nb3Sn samples to define their initial characteristics (homo-

geneity and composition) have been performed at the University of Geneva by means

of SEM, laboratory X-ray diffraction and magnetization measurements.

The samples are found to contain a small amount of oxygen and carbon coming from

the synthesis procedure. By means of Hot Extraction [91] the total amount of oxygen

was determined to 0.14 wt. % (approximately 1 at. %) and the total amount of

carbon to 0.01 wt. %.

SEM analysis on a broken piece, obtained from the Nb3Sn bulk samples, reveals that

the maximum grain size is 20 𝜇m (see fig.3-3).
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Figure 3-3: SEM of Nb3Sn policrystalline samples.

By means of X-ray diffraction, the lattice constant was found to be 𝑎 = 5.291±0.003 Å.

The critical temperature of the Nb3Sn platelets was measured with a SQUID magne-

tometer in zero field and was found to be 17.9 K.

The values obtained for the lattice parameter and the critical temperature are in good

agreement with the reported values for an almost stoichiometric composition as can

be seen in fig. 3-4.

In the next section further characterization of these laboratory polycrystalline

samples by means of microwave measurements will be presented.

3.3 Microwave measurements

This section is devoted to the electrical characterization of the polycrystalline

samples by means of the microwave technique performed at the University Roma Tre.

This technique can be applied only on samples of thin film shape, such as the Nb3Sn

platelets described in sec. 3.2
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Figure 3-4: Literature results of the lattice parameter 𝑎 and the critical temperature
𝑇𝑐 as a function of the atomic Sn content (adapted from [31]). The red points are
the value of 𝑎 and 𝑇𝑐 of the laboratory polycrystalline Nb3Sn samples studied in this
thesis.

The behaviours of the surface resistance as a function of temperature and of an ap-

plied magnetic field have been studied in order to obtain the critical temperature 𝑇𝑐

and the upper critical magnetic field 𝐻𝑐2 .

The basic device for this characterization is a dielectric-loaded resonator, where a

dielectric is placed in a metallic cavity within which it is possible to confine elec-

tromagnetic fields. Under ideal conditions, that is, in the absence of dissipations,

oscillations of the electromagnetic field will remain indefinitely in the resonator for

particular field configurations.

In real resonators energy losses for internal dissipation and external losses must be

taken into account.

The quality factor, 𝑄𝑈 , of a resonator expresses the ratio of the stored energy 𝑊 in

the resonator volume to the energy dissipated in a unit time, 𝑃 , at the resonance

frequency 𝜈0 [92]:

𝑄𝑈 = 2𝜋𝜈0𝑊

𝑃
(3.1)

This is the so-called unloaded quality factor: it is calculated by considering only the

intrinsic resonator losses, and not any other losses due to the coupling of the system

with external devices.
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In presence of the diectric 𝑄𝑈 can be re-expressed as:

1
𝑄𝑈

= 1
𝑄Ω

+ 1
𝑄𝑑

where 𝑄Ω is the ohmic quality factor and 𝑄𝑑 is the dielectric one.

Excitation and detection of the signal is obtained by loops or antennas, which intro-

duce additional losses. Thus, the whole assembly efficiency is characterized by the

loaded quality factor 𝑄𝐿:

𝑄𝐿 = 2𝜋𝜈0𝑊

𝑃 + 𝑃𝑒

,

where 𝑃𝑒 accounts for the energy losses due to the coupling of the resonator to external

devices for the excitation of the system or the detection of the response signal. In

general it is preferable to work with a system where 𝑄𝐿 ≃ 𝑄𝑈 , so that it can be

assumed that the answer from the resonator is exclusively dependent on its intrinsic

properties.

The resonator used for this thesis is constituted by a cylindrical structure with metallic

walls enclosing a coaxial dielectric cylinder of complex relative dielectric constant

𝜀𝑟 = 𝜀′
𝑟(1+𝑖 tan 𝛿𝜀), where tan 𝛿𝜀 is the loss tangent, as in the so-called Hakki-Coleman

geometry [93] ( see fig. 3-5-up). The resonator operates in the transverse electric

TE011 mode, with circular, planar currents induced on the conducting bases (see

fig. 3-5-down-left) and the resonance frequency is 𝜈0 ∼ 15 GHz. The presence of the

high permittivity dielectric causes the electromagnetic field to be mostly contained

in the dielectric and its immediate vicinity so that the losses due to the interaction

between the electromagnetic field and the metal walls of the resonator can be ignored

(see fig. 3-5-down-right). The resonator is placed inside a cryostat and is connected

to a vector network analyzer, VNA (Anritsu), via coaxial cables: the transmission

line, part inside the cryostat, is made up of cryogenic coaxial cables, in order to reduce

thermal disturbances. The coaxial cables terminate in the resonator with coupling

loops. A temperature sensor is placed in the metallic walls of the resonator in order

to measure the temperature of the sample, and two heaters are arranged so as to

uniformly heat the resonator.
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dielectric
metallic

walls

Figure 3-5: Sketch of a typical dielectric resonator. The circular geometry of the
current on the sample is shown.

The quantity that is directly measured is the transmission coefficient, 𝑆21(𝜈), that

is expressed as:

𝑆21(𝜈) = 𝑆21(𝜈0)
1 + 2𝑖𝑄𝐿

𝜈−𝜈0
𝜈0

. (3.2)

The coefficient |𝑆21(𝜈)|2 describes a lorentzian curve as a function of 𝜈. By fitting

|𝑆21(𝜈)|2 the quality factor 𝑄 can be obtained.

The physical quantity which is experimentally accessible with this method is the

surface impedance, defined as:

𝑍𝑠 = 𝐸‖

𝐻‖
= 𝑅𝑠 + 𝑖𝑋𝑠 =

√︃
𝑖𝜔𝜇0

𝜎
(3.3)

where 𝐸‖ and 𝐻‖ are the fields components at the surface of the (super)conductor [92]

and 𝜌 is the complex conducibility of the (super)conductor. The real part of the

surface impedance, 𝑅𝑠, is the quantity of interest for the desired characterization of

the samples and can be obtained from the quality factor 𝑄 by means of the relation:

1
𝑄𝑈

= 𝑅𝑠

𝐺𝑠

+ 𝑅𝑚

𝐺𝑚

+ 𝜂 tan 𝛿𝜀 (3.4)
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Figure 3-6: Experimental setup.

where 𝐺𝑠 and 𝐺𝑚 are the geometric factors of the surface covered by the supercon-

ductor and the metallic walls, respectively, 𝑅𝑚 is the surface resistance of the metallic

walls and 𝜂 is another geometrical factor that accounts for the energy stored in the

dielectric with respect to the total energy in the resonator [92]. In order to obtain

the surface resistance of the superconductor, 𝑅𝑠, it is sufficient to know the measured

quality factor, the geometric factors, which can be obtained by numerical simulations

of the electromagnetic structure of the resonator, and 𝑅𝑚 that can be determined

with an appropriate calibration.

Measurements have been made at temperature down to 6 K and magnetic field up to

12 T.

Figure 3-7 shows the surface resistance 𝑅𝑠 of a Nb3Sn platelet in absence of a mag-

netic field. The critical temperature 𝑇𝑐, evaluated at the onset of the transition, is

of 17.9 K, in agreement with that reported by the supplier of the samples [91]. In

fig. 3-8 the obtained surface resistance 𝑅𝑠 as a function of the temperature is plotted

at different values of an applied magnetic field.

In fig. 3-9 the surface resistance at 15 K as function of the applied field is shown. It

is clear how the sample reaches the normal state for field values of ∼ 6 T, thus being
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Figure 3-7: The surface resistance 𝑅𝑠 of a Nb3Sn platelet at 0 T.
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Figure 3-8: The surface resistance, 𝑅𝑠(𝑇,𝐵), as function of temperature at different
values of an applied magnetic field on the polycrystalline Nb3Sn sample.
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Figure 3-9: The surface resistance 𝑅𝑠 at 15 K as function of the applied magnetic
field 𝐵 on the polycrystalline Nb3Sn sample.

this value the upper critical magnetic field at 15 K.

In fig. 3-10, the fit of the 𝜇0𝐻𝑐2 values obtained from data of figs. 3-8 and 3-9

is reported. 𝜇0𝐻𝑐2 at 0 K is expected to be > 20 T, but the cryomagnet used for

these experiments cannot reach this field values. In spite of this, from the data of

fig. 3-10, its value can be obtained by fitting these data to the empirical relation

𝐻𝑐2(𝑇 ) = 𝐻𝑐2 (0) [1 − (𝑇/𝑇𝑐)2] [37]. The value of 21 T for 𝐻𝑐2(0K) is obtained. This

value is compared to those reported in literature in fig. 3-11, where, if we assume

that this sample undergoes the tetragonal transition, because its composition is in

the range where it happens, this result is in fair agreement with those reported in

literature.

In the following chapter the high pressure and low temperature X-ray diffraction

experiments on the Nb3Sn samples here described are discussed in comparison to the

known results.

75



0 5 10 15 20
0

5

10

15

20

25

fit: 𝐵𝑐2 (𝑇 ) = 𝐵𝑐2 (0)
[︃

1 −
(︂

𝑇

𝑇𝑐

)︂2
]︃

𝐵𝑐2 (0) = 21 T

Temperature (K)

𝐵
𝑐 2

(T
)

𝐵𝑐2 (T)
𝐵𝑐2sweeps

fit

Figure 3-10: Temperature dependence of the critical field of the polycrystalline Nb3Sn
sample.
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Figure 3-11: Literature results of the upper critical magnetic field as a function of
the atomic Sn content (adapted from [31]). The dashed line separates the region in
which the phase is cubic (C) from that in which it is tetragonal (T). The red point is
the value of 𝐵𝑐2 of the polycrystalline Nb3Sn samples studied in this thesis.
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Chapter 4

X-ray diffraction characterization

X-ray diffraction (XRD) is a non-destructive technique for quantitative and quali-

tative analysis of crystalline materials, allowing the determination of crystal structure

of solids.

The first X-ray 1 diffraction experiment dates back to 1912 and was performed by

Friedrich, Knipping and Max von Laue on single crystals of copper sulfate and zinc

sulfite. Four years later (1916), Debye and Scherrer published the first powder diffrac-

tion experiments [94].

Today XRD is one of the most powerful techniques to probe atomic structure of mat-

ter down to the atomic scale resolution. The advent of sychrotron radiation X-ray

sources, characterized by high brilliance and continuum spectrum extending from soft

to very hard X-ray (0.1 < 𝜆 < 1 Å), brought the X-ray diffraction based techniques

to an accuracy without precedent. Furthermore the new generation X-ray diffraction

beamlines offer the unique possibility to explore the matter under extreme condi-

tions, such as extremely high pressures (above 102 GPa) and temperatures (up to

5000 K) [95,96], high magnetic fields (up to 25 T) and also low temperature down to

that of the liquid helium [97].

In this work the attention is concentrated in the high pressure and low temperature

regions.

Understanding the evolution of the crystal structure when subjected to an applied
1X-rays have been discovered in 1895 by the German physicist Wilhelm Röntgen
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pressure is of particular importance and represents an excellent test for the theoretical

models based on first-principles calculations (e. g. density functional theory based

models).

This chapter summarizes the information that can be obtained from the analysis

of a powder diffraction pattern exploiting, in particular, the method of the Rietveld

analysis. Later, the experimental setup, the data reduction and analysis procedures

will be briefly described. Finally, the analysis of the diffraction patterns as a function

of an applied hydrostatic pressure (up to ∼50 GPa) and of temperature (from room

temperature to ∼80 K) will be discussed and the results will be compared to the

literature data.

4.1 Notes on X-Ray Powder Diffraction and Ri-

etveld Refinement

Diffraction is the result of the interference among X-ray waves scattered by atoms

arranged on a periodic crystalline lattice.

The first successful and simplest explanation of diffraction from solids is given by

Bragg’s law 2. This describes the X-ray diffraction in terms of a reflection of X-rays by

set of lattice planes by establishing a relationship among diffraction angle, wavelength

of the incoming radiation and interplanar spacing. It is expressed by the famous

formula:

2𝑑ℎ𝑘𝑙 sin 𝜃ℎ𝑘𝑙 = 𝑛𝜆, (4.1)

where ℎ𝑘𝑙 are the Miller indices, 𝑑ℎ𝑘𝑙 is the interplanar distance between ℎ𝑘𝑙 planes,

𝜃ℎ𝑘𝑙 is the angle between the propagation vector of the incoming wave and the normal

to the ℎ𝑘𝑙 planes, 𝑛 is the order of reflection and 𝜆 the wavelength of the incoming

radiation. Knowing the wavelength of the incoming radiation and measuring 𝜃ℎ𝑘𝑙 it
2William Henry Bragg and his son William Lawrence Bragg founded X-ray diffraction science

in 1913-1914 were awarded the Nobel Prize in Physics in 1915 “for their services in the analysis of
crystal structure by means of X-rays.”
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is possible to calculate the interplanar distance that is directly related to the lattice

parameters of the crystal.

The intensity of a diffraction peak in a powder diffraction pattern is expressed by

the formula:

𝐼ℎ𝑘𝑙 = 𝐾 ×𝑀ℎ𝑘𝑙 × 𝐿𝑃 (𝜃) × 𝑇ℎ𝑘𝑙 × |𝐹ℎ𝑘𝑙|2 × 𝐼𝑡ℎ, (4.2)

where:

• 𝐾 is a scale factor required to normalize experimentally observed integrated

intensities with absolute calculated intensities;

• 𝑀ℎ𝑘𝑙 is the multiplicity factor and it accounts for the presence of multiple sym-

metrically equivalent reflections;

• 𝐿𝑃 (𝜃) is the Lorentz-polarization factor that depends on the polarization of

the incoming beam and the geometry of the experimental setup;

• 𝑇ℎ𝑘𝑙 accounts for possible deviations from a complete randomness in the distri-

bution of grain orientations;

• |𝐹ℎ𝑘𝑙|2 is the structure factor, that depends on the details of the crystal structure

of the material: coordinates and types of atoms and their distribution among

different lattice sites.

• 𝐼𝑡ℎ accounts for the atomic thermal displacement and depends on the so-called

Debye-Waller factor 𝐵 = 8𝜋⟨𝑢2
𝑖 ⟩ where ⟨𝑢2

𝑖 ⟩ are the mean square displacements

of the 𝑖th-atom from its equilibrium position, d𝑖.

Although, the powder method was developed as early as 1916 by Debye and Scherrer,

for more than 50 years its use was often limited to qualitative and semi-quantitative

phase analysis and macroscopic stress measurements. The major breakthrough in

the value of the powder method as a quantitative tool was the development of the

Rietveld method.
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The Rietveld method (also known as the full pattern or the full profile refine-

ment) is now the most commonly employed structure refinement procedure of powder

diffraction data. It has been devised by the Dutch crystallographer Hugo Rietveld in

1966 [98] for the structure determination from a neutron powder-diffraction diagram

and has been extended to X-ray powder diffraction data in 1977 with the work of

Young, Mackie and Von Dreele [99].

This method is a technique for crystal structure refinement which uses the entire

powder pattern instead of analyzing individual Bragg reflections separately. This

approach minimizes the impact of overlapped and degenerate peaks by calculating

the entire powder pattern of a crystalline model by means of Eq. (4.2), including

various experimental and sample dependent peak-broadening effects. Parameters in

the model such as atomic positions, lattice parameters, and experimental factors that

affect peak-shape and background are varied, using a least-squares approach, until

the agreement between the calculated and measured diffraction profiles are optimized.

This is a refinement method: once the crystal structure has been chosen the Rietveld

procedure refines the positions of the atoms and the lattice parameters keeping the

structure unchanged.

Rietveld refinement employs the nonlinear least squares method where the function

which has to be minimized by least squares is the residual 𝑀 :

𝑀 =
𝑛∑︁

𝑖=1
w𝑖

(︁
𝑌 𝑜𝑏𝑠

𝑖 − 𝑌 𝑐𝑎𝑙𝑐
𝑖

)︁2
, (4.3)

where w𝑖 is the weight assigned to the ith data point and the sum is over all data

points.

The quality of the refinement using the Rietveld method is indicated by some figures

of merit. These are:

• the profile residual factor, 𝑅𝑝:

𝑅𝑝 =
∑︀𝑛

𝑖=1

⃒⃒⃒
𝑌 𝑜𝑏𝑠

𝑖 − 𝑌 𝑐𝑎𝑙𝑐
𝑖

⃒⃒⃒
∑︀𝑛

𝑖=1 𝑌
𝑜𝑏𝑠

𝑖

; (4.4)
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• the weighted profile residual factor, 𝑅𝑤𝑝:

𝑅𝑤𝑝 =
⎯⎸⎸⎸⎷ 𝑀∑︀𝑛

𝑖=1 𝑤𝑖

(︁
𝑌 𝑜𝑏𝑠

𝑖

)︁2 ; (4.5)

• the reduced 𝜒2 or goodness of fit:

𝜒2 = 𝑀

𝑁𝑜𝑏𝑠 −𝑁𝑣𝑎𝑟

, (4.6)

where 𝑁𝑜𝑏𝑠 is the number of point in the histogram and 𝑁𝑣𝑎𝑟 is the number of

free least square parameters;

• the expected weighted profile residual, 𝑅𝑤𝑝(𝑒𝑥𝑝):

𝑅𝑤𝑝(𝑒𝑥𝑝) = 𝑅𝑤𝑝√
𝜒2 . (4.7)

A simple analysis of the figures of merit listed above indicates that a better fit results

in lower values of all residuals.

4.2 XRD experiments on Nb3Sn

In this section the XRD measurements on the samples described in chap. 3 are

discussed. Two experiments have been made: one, at high pressure and room tem-

perature and another in the temperature range 77-300 K and ambient pressure.

4.2.1 Data reduction

The powder diffraction pattern have been collected by means of area detectors,

for which the patterns consist of a set of concentric rings (see fig. 4-1-left).

One of the advantage of using such a type of detector is that they accumulate the

whole diffraction patterns in reduced (seconds) times. Moreover, area detectors record

part or even whole powder diffraction rings, enabling effects such as texture, granu-
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Figure 4-1: (left) Debye rings and (right) powder diffraction pattern from a fine
grained sample of Nb3Sn.

larity, and preferred orientation to be observed directly.

The 2D images obtained have been reduced to Intensity-2𝜃 plot (see for exam-

ple fig. 4-1-right). Because of their considerable weight, large area detector are not

easy to handle or to align exactly. Moreover, detector spatial distortion due to the

manufactoring can lead to inaccurate measurements. For this reason, first of all, the

instrumental geometry requires a proper calibration that is obtained measuring and

refining the diffraction pattern of a reference compound. Typically LaB6 certified

from NIST laboratories is used. By centering the Bragg rings of the standard on

the primary beam position, and overlapping them to the known circular rings of the

standard it is possible to obtain all the calibration parameter. They are in general six

independent parameters: the distance between the sample and detector, two orthog-

onal tilt angles of the detector, two orthogonal detector coordinates for the position

of the beam centre, and the wavelength of the X-rays. The calibration procedure, as

well as the data reduction from 2D patterns to 1D plots, i. e. intensity versus the

diffraction angle 2𝜃, has been done using the DAWN software [100]. An example of

the calibration with the LaB6 standard is shown in fig. 4-2, where the results of the

parameters calculated by the DAWN software are also present, except for the beam
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Figure 4-2: Example of LaB6 calibration for the diffraction patterns.

energy that has been fixed from the beamline monochromator calibration. After cal-

ibration the diffraction pattern has been masked to remove overexposed spots and

portions of the area detector that were hidden from obstacles (like the beamstop).

The next step was the conversion of the 2D images into 1D data by azimuthal integra-

tion (see the result of this operation in fig. 4-3). The diagram on the left shows the

raw data after integration of a 2D imaging plate pattern. After background correc-

tion, using a 13 degree polynomial, the diffraction pattern results as in fig. 4-3-right.

This background is mainly attributed to the Compton scattering of the diamonds [95].

The data so obtained are ready for the analysis.

4.2.2 HP-XRD diffraction at room temperature

This X-ray diffraction experiment was performed on the I15 beamline at Dia-

mond Light Source [101] using an incident monochromatic beam with a wavelength

𝜆 = 0.4133 Å (E ≈ 30 KeV). The X-ray signal diffracted by the sample has been

collected on a MAR345 imaging plate system, located at a distance of 350 mm from

the sample. Several Nb3Sn grains and a ruby crystal were loaded in the high pressure

chamber of two membrane DAC (described in app. C) (fig. 4-4) with 200 𝜇m and

500 𝜇m culet size, respectively. The DAC with the larger culet size allowed measure-
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Figure 4-3: (Left) Diffraction pattern of the data at 2.56 GPa (run2) after 2D image
integration and (right) after a 13 degree polynomial background subtraction.

Figure 4-4: Picture of a sample completely embedded in the pressurized He transmit-
ting medium, with the ruby pressure gauge near the sample.

ments up to ∼ 10 GPa, while with the other, with a smaller culet size, measurements

up to 45 GPa have been possible. A 200 𝜇m-thick Re sheet was used as a gasket,

drilled by spark erosion. The samples were obtained by grinding Nb3Sn filaments of

the Nb3Sn wire described in sec. 3.1. The samples were embedded in pressurized

He transmitting medium to ensure hydrostatic conditions. During the experiment

the pressure was measured from the fluorescence of the ruby gauge, according to the

calibration [102], as explained in appendix C. All measurements were made at room

temperature. The exposure time for each XRD pattern was between 100 s and 120 s.

The diffraction geometry was determined using a LaB6 reference sample [103] [104].

The diffraction patterns were integrated using the DAWN [100] software.

In Fig. 4-5 the measured powder diffraction pattern at the lowest and the high-
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Figure 4-5: Integrated powder X-ray diffraction patterns of the samples (powdered fil-
aments of Nb3Sn) at lowest (upper panel) and highest (lower panel) pressure reached.
Diffraction peaks of Nb3Sn (black), Cu (red) and Ta (green) are labeled by colors.
The insets show a part of the recorded raw diffraction images.
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est pressures reached in the experiment are plotted together with the corresponding

integrated signals. No intensity variation around the rings can be appreciated in

the whole pressure range investigated, as shown in the two representative diffraction

images of fig. 4-5, meaning that the samples do not have any preferred orientation

of the crystallites or texture. In both panels the presence of Ta and Cu is detected,

coming from the Cu matrix and the Ta-Nb diffusion barrier (see sec. 3.1). The index-

ing of the peak, also shown in fig. 4-5 has been obtained with the GSAS/EXPGUI

software [105], taking as model the CIF files of Nb3Sn, Ta and Cu from the Crystallog-

raphy Open Database (COD) [106] and verified using the Bragg law (4.1) combined

to the relation:
1
𝑑2 = ℎ2 + 𝑘2 + 𝑙2

𝑎2 (4.8)

The quantitative analysis of the diffractograms has been carried out by two meth-

ods.

A preliminary analysis (peak position analysis) has been performed by fitting some

representative peaks of the patterns in order to obtain their position, amplitude and

width. The fits were made with the Gnuplot software. In particular a macro has

been written in order to have a quick preliminary analysis tool before moving on to

the more sophisticated Rietveld refinement. Gnuplot contains routines for non-linear

least square analysis that can be quickly and efficiently used for preliminary purposes.

From the position of the Bragg peaks, the lattice parameters and then the volumes

have been computed. Three representative Nb3Sn peaks, (400), (321) and (222) were

fitted each to a pseudo-Voight function being a linear combination of a Gaussian curve

𝐺(𝑥) and a Lorentzian curve 𝐿(𝑥):

𝑓 (𝑥) = 𝐴 (𝜂𝐿 (𝑥) + (1 − 𝜂)𝐺 (𝑥)) + 𝑏𝑘𝑔, (4.9)

where 𝜂 and 1 − 𝜂 are the measure of the lorentzian and gaussian contribution to the

shape of the peaks, respectively, and 𝑏𝑘𝑔 is a linear background. The free parameters

of the fit are the position, amplitude and width of the peaks, and the coefficient of

the linear background.
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Figure 4-6: The 200 diffraction peak of Nb3Sn at all the pressures of run2.

The more accurate analysis is based on the Rietveld method (described in sec. 4.1).

Rietveld refinements of the diffraction patterns have been carried out using the

GSAS/EXPGUI software [105]. Since the Rietveld refinement refines the entire spec-

trum, the three phases (Nb3Sn, Ta and Cu) have been analyzed together. A constant

wavelength (CW) profile function number 2, as described in the GSAS manual [107],

has been used for the peak profile: this is a modified pseudo-Voight function, the

so-called Thompson modified pseudo-Voight [108]. A 13 coefficients Chebyshev poly-

nomial function is used to model the full profile background. For each of the three

phases the free parameters for the Rietveld refinements are the lattice constant, the

scale factors for each phase, the isotropic temperature factors (Uiso), the Gaussian

coefficients, GU, GV, GW and GP and the Lorentzian coefficients, LX and LY. The

lattice constant is related to the peaks position while the scale factor and Uiso con-

tribute to the intensity of the peaks. The peaks shape is determined by the Gaussian

and Lorentzian coefficients that are related to properties of the samples, such as mi-

crostrain and particle size.

In fig. 4-6 a single peak (the 200 of Nb3Sn) is plotted at all the pressures of the run2.

The peak position moves to higher 2𝜃 values as pressure increases because lattice
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constant gets smaller with compression. As far as it can be appreciated by eye there

is no peaks broadening. However the peaks broadening will be discussed more in

detail later in this section.

Looking at the diffraction patterns in fig. 4-5, no peak splitting or merging is observed

in the Nb3Sn signal as pressure increases: hence, no structural phase transition is ex-

pected. This also holds for Cu and Ta that, as already known, do not show structural

phase transitions in the explored range of pressures.

The volumes of the Nb3Sn cell obtained were plotted as function of pressure in

fig. 4-7. In the P-V plot of fig. 4-7-upper panel there are no evidences that could be

attributed to a structural phase transition. P-V data were fitted to the Rydberg-Vinet

equation of state (EoS) [109] for isotropic compression:

𝑃 (𝑉 ) = 3𝐾0𝑥
(︀

− 2
3

)︀ (︁
1 − 𝑥

1
3
)︁

× exp
[︂3
2 (𝐾 ′

0 − 1)
(︁
1 − 𝑥

1
3
)︁]︂

(4.10)

where 𝑥 = 𝑉/𝑉0, 𝑉0 is the volume at the atmospheric pressure and 𝐾0 and 𝐾 ′
0 are

the bulk modulus and its pressure derivative respectively. The small systematic shift

between the data sets in fig. 4-7 is charateristic of the angular dispersive detector

used, due to the highly correlated geometrical parameters that describe such a type

of detection method. However, this does not affect the relative shifts of lattice pa-

rameters and volumes obtained at different pressures in this work, as the sample has

not been moved during each run after the initially calibration and alignement.

The normalized difference between experimental 𝑉 (𝑃 ) and the fit curves, namely
𝑉𝑒𝑥𝑝 − 𝑉𝑓𝑖𝑡

𝑉𝑒𝑥𝑝

%, is plotted in the lower panel: a deviation from isotropic compression is

evident below ∼10 GPa. This hints the possibility of an anomalous behaviour of the

Table 4.1: The 𝑉0, 𝐾0 and 𝐾 ′
0 values from the fits of 𝑃 − 𝑉 data.

run1 run2
𝑉0 (Å3) 𝐾0 (GPa) 𝐾 ′

0 𝑉0 (Å3) 𝐾0 (GPa) 𝐾 ′
0

147.80 ± 0.03 171 ± 4 4 ± 1 148.7 ± 0.1 169 ± 4 3.4 ± 0.2
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Figure 4-7: (top): measured volume of Nb3Sn as a function of the pressure. (bottom):
difference between measured and fitted volume, with the anomaly below 10 GPa.

compressibilty of Nb3Sn when a pressure in the range 0-10 GPa is applied.

The results from the two runs are in agreement, except for a weak change of 𝑉0 that

is influenced by the small shift between the two sets of data (see table 4.1). Moreover,

the values are in agreement with those reported in literature, where a 𝑉0 of 148 Å3

and a bulk modulus of 160 GPa have been reported [110].

The anomaly is more evident if one focuses on the difference between the positions of

the peaks corresponding to different crystal directions, 2𝜃(ℎ𝑘𝑙)−2𝜃(ℎ′𝑘′𝑙′) = Δℎ𝑘𝑙,ℎ′𝑘′𝑙′ .

In particular, we focus on the relative positions of three peaks: (400), (222) and (321).
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Figure 4-8: Peak position differences, Δ400,321 and Δ400,222, as function of pressure:
an anisotropy of the elastic properties around 6 GPa can be seen.
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Figure 4-9: The specimen-broadening parameters 𝐿𝑋 and 𝐿𝑌 relative to run1.

Δ400,321 and Δ400,222 are plotted in fig. 4-8: they increase as a function of pressure but

a plateau around 5-6 GPa can be seen in both cases. Even if no structural phase tran-

sition occurs, this finding (fig. 4-8) suggests an anomalous behaviour as a function

of pressure: the compressibility along the direction (400) seems to vary in a different

way with respect to the (321) and (222) directions, suggesting some anisotropy of the

elastic properties. This type of information cannot be obtained from the Rietveld re-

finement where the positions of the peaks are constrained to the structure, so, despite

the simplicity of the method, an additional information otherwise unobservable has

been obtained and can be related to the anomalous behaviour of the residues (EoS

fit in fig. 4-7) found by Rietveld analysis.

90



0 2 4 6 8 10
23

24

25

26

27

28

Pressure (GPa)

FW
H

M
(c

en
tid

eg
.)

Figure 4-10: FWHM at 𝜃 = 𝜋/6 relative to run1.

The Rietveld analysis also gave information about the broadening of the peaks due

to properties of the samples, such as the crystallite size, inversely proportional to 𝐿𝑋 ,

and the microstrain, proportional to 𝐿𝑌 . 𝐿𝑋 and 𝐿𝑌 of run1 are reported in fig. 4-9.

In particular, 𝐿𝑌 shows an interesting behaviour: it increases with a slope gradually

lower up to 6 GPa and then continue to increase with the same slope after having

abruptly moved to higher values. In the present work the behaviour observed for 𝐿𝑌

means that microstrain, that is proportional to 𝐿𝑌 , increases in the whole pressure

range considered, but in correspondence of the anomaly above described its trend

changes. This is another evidence for the compressibility anomaly at about 5-6 GPa.

The FWHM of the peaks at each angle is a function of 𝐿𝑋 and 𝐿𝑌 , as expressed in

the following formula:

𝐹𝑊𝐻𝑀(𝜃) = 𝐿𝑋

cos 𝜃 + 𝐿𝑌 tan 𝜃. (4.11)

The FWHM of the peak at different scattering angles has been calculated by means

of Eq. (4.11) and is reported in fig. 4-10. It increases with pressure, unlike as roughly

observed in fig. 4-6. In general the FWHM of XRD peaks increases with external
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Table 4.2: Rydberg-Vinet fit parameter for Cu and Ta relative to run1.

Cu Ta
from [111] this work from [112] this work

𝑉0 47.1 ± 1 47.28 ± 0.02 36.01 35.92 ± 0.01
𝐾0 140 ± 4 132 ± 4 193 ± 3 166 ± 5
𝐾 ′

0 5.52 5 ± 1 3.58 ± 0.11 3 ± 1

pressure because of the strain (micro or macro) created in the lattice due to the ap-

plied pressure and it varies in a systematic way in the hydrostatic limit. Indeed, here,

the increasing behaviour is mainly dictated by the 𝐿𝑌 parameter, as can be observed

by comparing fig. 4-10 and fig. 4.11. It can be seen in fig. 4.11 how the anomaly

of the 𝐿𝑌 parameter also reflects in the FWHM. Thus the peaks broadening increase

with pressure and and above the anomaly is greater than below it.

Finally, the Rietveld analysis gave additional information that has been used to ev-

idence the above observed anomaly. Indeed, the presence of Cu and Ta allowed to

have internal reference standards with which to compare the results. Then to better

understand the anomaly observed the results of the Rietveld analysis on Cu and Ta

have been considered. The Rydberg-Vinet fit results of Cu and Ta are reported in

table 4.2, resulting in good agreement with reference values except for the bulk mod-

ulus of Ta which is smaller than that reported in literature. This difference results

from the error on 𝑉0 that originate in the systematic shift of the volumes, as discussed

in describing the figure 4.7. The Cu and Ta data are useful because, knowing that

for them there is no phase transition in the explored pressure range, they allow to

evidence the presence of the deviation from the isotropic compression for which the

Rydberg-Vinet equation is valid. In particular, the compressibility of the three phases

were compared.

The compressibility of a system at constant temperature is given by 𝛽 = − 1
𝑉

(︃
𝜕𝑉

𝜕𝑃

)︃
.

The ratio between the compressibility of the different phases, 𝛽Nb3Sn

𝛽Cu
, 𝛽Nb3Sn

𝛽Ta
and 𝛽Cu

𝛽Ta

has been calculated where 𝛽 = 𝑉 − 𝑉0

𝑃 − 𝑃0
and 𝑉0 is the volume at the lowest value of
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Figure 4-11: Ratio of the normalized volumes of the different phases.

pressure 𝑃0 = 0.57 GPa. The 𝛽Nb3Sn

𝛽Cu
, 𝛽Nb3Sn

𝛽Ta
and 𝛽Cu

𝛽Ta
are reported in fig. 4-11 in

order to evidence different trends between the different phases. From literature the

compressibility of Cu and Ta are 0.0073 GPa−1 and 0.0050 GPa−1, then their ratio

results to be 1.46. The ratio 𝛽Cu

𝛽Ta
obtained in this work is constant with pressure

increase and is ∼1.51, in agreement with the literature results. Instead, the ratios
𝛽Nb3Sn

𝛽Ta
and 𝛽Nb3Sn

𝛽Cu
increase for pressures up to about 4 GPa and then remain constant.

This finding strongly supports the hypothesis that an anomaly in the compressibility

is present in Nb3Sn under hydrostatic compression in the few GPa region.

Anomalies in the P-V plane were observed also in Nb3Al around 18 GPa [7] and

in Nb3Ga around 15 GPa [8], but still we are not able to establish if the nature of

the anomalies observed is the same. In particular, these materials show a pressure

induced isostructural phase transition where no significant volume collapse has been

observed (see fig. 2-12). Since the crystal structure type does not change, it is the

volume compressibility of the two materials that show an anomalous behaviour as

pressure increases. It is known that most of the isostructural phase transitions are

correlated with variations of the electronic structure. The case of Nb3Al has been
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further studied by means of first-principles calculations [8] which suggested that a

“d” like band of Nb at the Brillouin zone center is just below the Fermi level and

moves above touching the Fermi level at a pressure of ∼17 GPa. Then, under further

compression the band moves down below the Fermi level. The movement of this par-

ticular band, causing a change in the Fermi surface topology (electronic topological

transition, ETT), has been proposed to explain the isostructural phase transition seen

in Nb3Al. Moreover, Reddy et al. [10] calculated also the band structure of different

A15 compounds, showing that Nb3Al, Nb3Ga, Nb3In, Nb3Ge and Nb3Sn are likely

to show Fermi surface topology variations when a hydrostatic pressure is applied. In

particular Nb3Sn has been shown to exhibit the ETT at a pressure of 25 GPa, while it

occurs at 21.5 GPa and 17.5 GPa in Nb3Al and Nb3Ga, respectively. While this work

estimates a pressure for the ETT close to that of the anomaly in the compressibility,

the value of pressure at which the ETT could occur in Nb3Sn is very far from that

where we observed the compressibility anomaly and then the two results could repre-

sent different findings. However, we cannot exclude that the compressibility anomaly

of Nb3Sn has some relation to changes in the electronic properties of the material

under pressure (see chap. 6).

It is worth to remember here that we have studied Nb3Sn samples taken from wires,

where the presence of Ta affects the structural behaviour of the material, avoiding

the tetragonal transition, for istance. This Ta addition could also affect the anomaly

described above, that to be understood need a comparison with high pressure XRD

studies on pure Nb3Sn, not available to us at the time of this experiment.

In summary, this diffraction experiment shows a compression anomaly of Nb3Sn

below 10 GPa, without any structural phase transition. As a result of this work,

Nb3Sn with Ta and Cu additions seems to preserve its cubic structure up to ∼ 50 GPa.

Neverthless, the anomaly detected suggests some deviation from isotropic compres-

sion, that to be better understood needs further studies.
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Figure 4-12: The three spectra collected 88 K. In the inset a zoom in the 34-37 degrees
interval is shown.

4.2.3 XRD diffraction at low temperature

This X-ray diffraction experiment was performed on the MCX beamline at the

ELETTRA synchrotron light source using an incident monochromatic beam with

a wavelength of 0.7 Å (E ≈ 17.712 keV). The samples were powders taken from

the polycrystalline laboratory samples described in sec. 3.2 contained in a 0.1 mm

diameter glass capillary. The diffraction patterns were collected at ambient pressure

and in the temperature range 300-80 K, at steps of around 10 K. Three scans were

measured at each temperature for sake of comparison. Overall the spectra have been

measured at forty-four temperature values, of which 22 on cooling and 22 on heating

(measurements named from now on ’DOWN’ and ’UP’, respectively). The 2D images

were integrated as described before and Intensity vs 2𝜃 diffractograms were analyzed.

For each temperature the three spectra have been compared in order to evaluate

the quality of the data: no significant differences between the three spectra at every

temperature have been observed, showing also the stability of the temperature during

measurements (see for example fig. 4-12).

In fig. 4-13 a single peak (the 321) is plotted at all the temperature values of the

DOWN run. The peak position moves to higher 2𝜃 values as temperature decreases

meaning that the lattice parameter gets smaller upon decreasing the temperature, as
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Figure 4-13: The Nb3Sn 321 diffraction peak as function of temperature on cooling
(DOWN run). The peak intensity has been normalized to the peak maximum. The
very good statistical quality achieved by 2D setup can be appreciated.

expected, due to thermal contraction.

It is known, as already discussed in sec. 2.1.2, that Nb3Sn has a simple cubic structure

at room temperature and transforms into the tetragonal one at around 40 K. Then

we expect that the structure of the studied sample is cubic in all the temperature

range accessible for the present experiment. For this reason the spectra were analized

taking as model a cubic lattice as explained in section 4.2.2.

The indexing of the peak has been obtained with the GSAS software, taking as model

the CIF file from the COD [106] [113] and verified using the Bragg law combined to

the relation 4.8, where the lattice parameter used has been taken from the room

temperature value of 5.291 Å reported in [91]. For example, the location of Bragg

peaks for a pattern at 88.08 K is shown in fig. 4-14.

In analogy with what has been done for the XRD experiment at high pressure, the

analysis of the data has been conducted by means of the Rietveld method, in the same

way as described in sec. 4.2.2. For example the fit obtained is reported in fig. 4-14.

The profile function used for the refinement is the number 2 (described in the previous

section) in the GSAS software. The free parameters during Rietveld refinement are
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Figure 4-14: The diffraction pattern at 88.08 K (DOWN run): all the peaks are
indicated. Superimposed the Rietveld refinement of the full spectrum obtained with
the software GSAS/EXPGUI (red curve). The difference between the observed (cross
symbols) and the fitted pattern is shown with a line at the bottom of the graph.

the lattice constant, the scale factor, the isotropic temperature factors (Uiso) for

the Nb and Sn atoms, the Gaussian coefficients, GV and GW, and the Lorentzian

coefficients, LX and LY. At each temperature value the three spectra were analized

independently: this allowed an accurate evaluation of statistical uncertainty on the

refined parameters. The results obtained from the fits of each triplet of spectra are

in agreement, then for each temperature the results reported are the average of the

three spectra and the uncertainty is calculated as 𝜎√
3

.

The room temperature volume and lattice parameter obtained from the Rietveld

analysis are summarized in the table 4.3.

The lattice parameter and volume as function of the temperature are presented below,

with particular attention to the presence of nonlinearities. The results presented come
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Table 4.3: The volume and lattice parameter values from Rietveld analysis at room
temperature.

Volume (Å3) Lattice parameter (Å)
DOWN UP DOWN UP

148.464 ± 0.001 148.161 ± 0.001 5.29510 ± 10−5 5.29505 ± 10−5
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Figure 4-15: Top graphs: The volume and lattice parameter obtained with the Ri-
etveld refinement of the data. Bottom graphs: the difference between the linear fit
in the two regions, LT and HT, showing better the change of the lattice parameter
slope.

from the Rietveld analysis. The volume, 𝑉 , and the lattice parameter, 𝑎, are plotted

against temperature in fig. 4-15 (upper graphs). A change in linearity around 180 K

is present. The region above 180 K and that below this temperature (named HT and

LT region, respectively) are well described by two different linear functions, where

the slope in the LT region is around 20% smaller than that in the HT region showing
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Table 4.4: Table of the thermal expansion coefficient.

Results of Rietveld refinement
DOWN HT UP HT DOWN LT UP LT

𝑉0 (Å3) 148.061 ± 0.001 148.076 ± 0.001 147.813 ± 0.001 147.812 ± 0.002
K (10−5) 2.25 ± 0.02 2.23 ± 0.02 1.80 ± 0.01 1.85 ± 0.04

that at lower temperature the compressibility of the system is lower. Comparing UP

and DOWN curves it is evident that this discontinuity is reversible and without any

hysteresis.

The volume against temperature in the HT and LT region has been fitted to the

thermal expansion law to evaluate the variation of the compressibility. The thermal

expansion law is expressed as:

𝑉 (𝑇 ) = 𝑉0 +𝐾𝑉0Δ𝑇, (4.12)

where 𝑉0 is the volume at the lowest temperature value of the considered range and

𝐾 is the thermal expansion coefficient. The fit curves are plotted in fig. 4-15. The

obtained thermal expansion coefficients are reported in table 4.4. The thermal ex-

pansion coefficient in the HT region is about 20% greater than in the LT region.

The UP and DOWN data give results in agreement with each other, hence from now

on the discussion will refer only to the DOWN data set for easily reading.

The anomaly observed as a function of temperature is a novelty, not reported in

literature (to our knowledge). In the following we try to understand the origin of

such anomaly, in particular if there is some relationship with the known tetragonal

transition expected around 40-50 K. For this purpose the lattice parameter at 40 K

was calculated by using the thermal expansion law with 𝑉0 and 𝐾 obtained from

the fit in the LT region and then it was compared to the value reported in literature

(fig. 4-16). The lattice parameter obtained at 40 K is 5.286 ± 0.003 Å. We compared

this value with that reported by Mailfert et al. [58], that is 5.281 Å, in order to see if

the slope variation of the lattice parameter at 180 K leads to the value of the reticular
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Figure 4-16: The lattice parameter has been extrapolated at 43 K to be compared
with that reported in [58] (see fig. 2-4).

parameter that should have occurred immediately before the tetragonal transition.

In the work of Mailfert the difference of the lattice parameter between room tem-

perature and the tetragonal transition temperature (43 K) Δ𝑎 is 0.014 Å, while we

obtain a Δ𝑎 of 0.009 Å: the order of magnitude of Δ𝑎 is the same, signalling that

with the slope of the lattice parameter found in the LT region the amount of thermal

contraction between room temperature and ∼40 K is very similar to that obtained by

Mailfert. This could mean that the slope variation up to 180 K could be considered

as a precursor effect of the transition. However, this is only an hypothesis that could

hold (if confirmed) if the lattice parameter evolves linearly as temperature decreases

down to 40 K.

To deepen the meaning of the anomaly observed in the compressibility, the results of

the Rietveld analysis were analyzed in greater detail. The refined parameters (Uiso

and peak shape parameters) do not show significant effects at 180 K, except for the

specimen-broadening parameters 𝐿𝑋 and 𝐿𝑌 , reported in fig. 4-17. 𝐿𝑋 has the same

dependence on the scattering angle as the peak broadening due to crystallite size ef-

fects expressed as: 𝛽𝜏 = 𝜆

𝜏 cos 𝜃 , where 𝛽𝜏 is the peak broadening and 𝜏 is the average
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Figure 4-17: The specimen-broadening parameters 𝐿𝑋 and 𝐿𝑌 : again the anomaly
at 175 K can be appreciated, here as an inversion of slope of the two parameters.
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Figure 4-18: The FWHM at different values of the angle 𝜃 as function of temperature
(from the DOWN set).

crystal size, while 𝐿𝑌 is proportional to the microstrain 𝜖 (expressed as: 𝛽𝜖 ∝ 𝜖 tan 𝜃,

where 𝛽𝜖 is the contribution to the peak broadening of the microstrain). 𝐿𝑋 and 𝐿𝑌

contribute to lorentzian FWHM as expressed in (4.11). In fig. 4-18 the FWHM at

different values of the scattering angle as function of temperature, normalized to the

value of the FWHM at room temperature, is reported for the DOWN set of data.

By comparing fig. 4-17 and fig. 4-18 it can be seen that the contribution of 𝐿𝑌 to
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the FWHM is larger than that of 𝐿𝑋 at all considered angles and temperatures, and

then 𝐿𝑌 determines the overall behaviour of the FWHM as function of temperature.

𝐿𝑋 and 𝐿𝑌 seem to have particular behaviour with temperature, with change of

slope around 150 K. However, these variations as function of temperature cannot be

considered as anomalies because of the large error bars with respect to the variations

themselves, that result in the large error bars of the FWHM in fig. 4-18.

As some authors have suggested precursor effects of the tetragonal transition at

temperatures higher than 40-50 K (see chap. 1), the next step was to try to un-

derstand if the observed anomaly could be related to the tetragonal transition. For

this reason the analysis of the data with the method of Rietveld refinement using as

model the tetragonal phase (𝑃42/𝑚𝑚𝑐 space group) has been performed along the

same lines described for the cubic phase. The results of the refinements obtained us-

ing the tetragonal structure are not better than those obtained using the cubic model,

therefore we cannot establish that there is actually a tetragonal phase. However, in

fig. 4-19 the ratio 𝑐

𝑎
−1 (differences between the ratio 𝑐

𝑎
of the tetragonal phase and its

expected value for the cubic phase, that is 1) as function of the temperature is plotted.

The ratio 𝑐

𝑎
− 1 increases lowering the temperature, with an abrupt rise below about

120 K. By extrapolating the 𝑐

𝑎
− 1 we obtain 9.4 × 10−4: this value is far from those

reported by Godeke that are between 26 to 42 × 10−4 [31]. However we cannot state

here if the behaviour of 𝑐
𝑎

− 1 is linear in the temperature range from 120 K down to

the tetragonal transition, but we cannot discard the hypothesis that the anomaly we

saw at 120 K is not related to the tetragonal transition at around 40 K. Rather, we

are confident that this anomaly is a precursor of the tetragonal transition. Support

for this interpretation comes from past Raman studies, summarized in chapter 2, that

pointed out a precursor effect for temperatures near our anomaly (around 100 K).

This was observed as an inversion in the trend of the 𝐸𝑔 mode that is related to

the motion of the Nb atoms along the orthogonal chains (see fig. 2-8). The authors

of [70] interpreted their results as deriving from small tetragonal domains forming

even at temperatures also above 100 K. In analogy with [70] our finding suggests that
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Figure 4-19: The ratio 𝑐

𝑎
− 1 as function of the temperature: an abrupt change of

slope at around 120 K is present.

precursor effects may start already at 120 K.

In summary, the diffraction experiment as function of temperature gave us the

following results:

• a compressibility anomaly around 180 K never observed before is present. It

has been observed as a change of slope of the linear dependence of the lattice

parameter (volume) as temperature decreases: in particular the slope decreases

when crossing the temperature of ∼ 180 K, meaning that the compressibility of

the material decreases below this temperature. In particular if the slope of the

lattice parameter found in the LT region remains unchanged on further cooling,

the resulting thermal contraction between room temperature and tetragonal

transition temperature ∼40 K is very similar to that reported in literature by

Mailfert [58]. This could mean that the slope variation up to 180 K could be

considered as a precursor effect of the tetragonal transition. This hypothesis

could hold if the lattice parameter evolves linearly as temperature decreases
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down to 40 K.

• an anomaly in the 𝑐

𝑎
− 1 is observed at 120 K, where a change of slope occurs.

This results in an enhancement of the tetragonal deformation below 120 K, even

if no tetragonal transition is here observed. This could be considered as a pre-

cursor effect of the tetragonal transition: it is observed here at 120 K, whereas

past Raman studies suggest it starts from around 100 K [70].

The results obtained from XRD at high pressure and low temperatures described in

this chapter contain previously unobserved information on the structural properties of

Nb3Sn. However, XRD studies give us average information about the samples, being

based on a technique that detects only the long range order of a material. From

this XRD characterization some anomalies are highlighted that need futher studies.

In particular for a better understanding of what are the mechanisms underlying the

observed anomalies a closer look at the short-range arrangement of the atoms is

appropriate. For this reason, after this XRD characterization, we studied our samples

by means of X-ray absorption spectroscopy, a local probe technique.
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Chapter 5

High pressure EXAFS

characterization

XAFS (acronym of X-ray Absorption Fine Structure) spectroscopy is a powerful

non-destructive technique for local atomic structure and electronic characterization of

matter. Owing its chemical selectivity and short range order sensitivity XAFS allows

to investigate the short-range environment around a selected element in materials in

any aggregation state (solid, liquid, gases) and morphology (thin films, rods, dots),

in extremely variable situations (wide temperature, pressure, magnetic and electric

field ranges) [114].

The phenomenon at the basis of the XAFS spectroscopy is the X-ray absorption (XA):

in a very simple (toy) model (see fig. 5-1) an X-ray is absorbed by a core level of

an atom and a photoelectron, promoted to the continuum states, interacts with the

potentials of surrounding atoms and is scattered back to the absorbing atom. The in-

terference between primary and backscattered photoelectron waves weakly modulate

the X-ray absoption coefficient: such weak modulation (fine structure, FS) contains

detailed structural information about the atomic structure just around the absorber.

In this chapter the theory allowing to describe the XAFS signal in terms of struc-

tural parameters will be described. Then, the high pressure experiment on Nb3Sn,

the data analysis and the obtained results will be discussed.
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Figure 5-1: EXFAS phenomenon scheme: (a) the photon impinges the atom A (the
black circle indicates the orbital of the core electron); (b) a core electron of the atom
A absorbs the energy of the photon and is photoemitted. It is represented by its
outgoing wave function (the white circle indicates the hole in the core state); (c) the
outgoing and the backward diffused wave functions from the atom B interfere.

5.1 The X-ray absorption spectra

When an X-ray beam is trasmitted through a sample of thickness 𝑥, its intensity

Φ0 is attenuated according to the Beer-Lambert’s law:

Φ = Φ0𝑒𝑥𝑝[−𝜇(𝐸)𝑥], (5.1)

where 𝜇(𝐸) is the linear absorption coefficient, that depends on the energy 𝐸 of

the incoming photon and on the composition and the density of the sample. The

absorption coefficient is the quantity that is measured in a XAFS experiment.

Fig. 5-2 shows the typical trend of the absorption coefficient as function of energy 𝐸.

Three general characteristics of the absorption coefficient 𝜇(𝐸) can be observed:

Figure 5-2: Absorption coefficient as function of the incoming radiation.
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1. it decreases as the energy of the incident radiation increases, roughly as 𝐸−3;

2. it shows discontinuities (absorption edges) whenever the energy of the incoming

photon is sufficient to excite an electron from a more inner shell. The absorption

edges of different atoms correspond to different energies. Thanks to this, an

important feature of XAFS spectroscopy derives: XAFS allows to selectively

study the local structure of the different atoms present in a material;

3. when the absorber atom is embedded in a material (or polyatomic molecular

gas) it is possible to see weak oscillations above the edge otherwise absent

for isolated (monoatomic gas) atoms. These “fine structure” oscillations are

typically weak, 1-10% of the jump edge discontinuity and represent the XAFS

signal.

The XAFS signal is usually divided into two regions: XANES (X-ray Absorption

Near Edge Structure) which indicates the threshold region and typically extends up

to a few tens eV (50-100 eV) after the edge, and EXAFS extending several hundred

eV over the XANES region to over 1.5 keV. The XANES region contains structural

(coordination symmetry of the absorbing site) and electronic (oxidation state, density

of empty states close to the Fermi level) information. Despite the potentially valu-

able information, the quantitative analysis of XANES features could be a difficult

task owing the complex physics involved (full multiple scattering effect) and lacking

of an analytical model for the data fitting [115]. On the contrary, the structural signal

in the EXAFS region is easier to simulate as a combination of partial contributions

allowing to describe the local structure around the absorber in terms of “neighbour

coordination shells”. The Gaussian model is generally valid for these shells, allowing

a relatively simple analytical curve for data refinement (standard EXAFS formula,

Eq. (5.14)) that provides the structural information in terms of the average coor-

dination distance, multiplicity (coordination number) and disorder (variance of the

distribution) [114].
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Although the presence of a fine structure has been found since 1920 [116], XAFS

was poorly considered until the 1970s, when the availability of the intense and contin-

uous synchrotron radiation sources, the development of a more accurate theoretical

model [117] [118] [119] [120] and the availability of powerful computers and advanced

computational methods , have allowed XAFS to reach the front-line of science.

Several books and various review articles have been published on the different aspects

of XAFS since then.

The first review on XAFS applications dates back to 1988 with the book of Konins-

berger and Prins [121] where they described the spectroscopic techniques EXAFS and

its surface extension SEXAFS, and XANES together with many examples of appli-

cations in several research fields.

Then, an important contribution to the EXAFS theory came with the work of Filip-

poni et al. [122], where the contribution of multiple scattering (MS) to the EXAFS

region are developed in terms of 𝑛-body correlation functions and one of the software

codes for EXAFS data analysis, GNXAS, is presented.

Finally, it is worth to mention the review of Rehr and Albers [123], where the the-

oretical advances that contribute to the understanding of EXAFS spectroscopy are

discussed, focusing mainly on those occured in the nineties.

5.2 Origin of the EXAFS structure signal

In the extended region the structural EXAFS signal 𝜒(𝑘) is represented by the

normalized difference:

𝜒(𝑘) = 𝜇− 𝜇0

𝜇0
, (5.2)

between the embedded (𝜇) and isolated 𝜇0 atom linear absorption coefficients. Here

𝑘 is the wave vector of the photoelectron given by 𝑘 =
√︃(︂2𝑚

~2

)︂
(𝐸 − 𝐸𝑏), where 𝐸𝑏

is the energy of the electron in the core-orbital and 𝐸 the photon energy.

In the following it will be shown how to interpret the structural information contained

in the expression (5.2).
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The absorption coefficient is defined as 𝜇(𝐸) = 𝑛𝜎(𝐸) where 𝑛 is the number of

atoms per volume unit and 𝜎(𝐸) is the absorption cross section, that is proportional to

the probability 𝑤𝑓𝑖 that an electron in the initial atomic bound state |Ψ𝑖⟩ goes into the

continuum state |Ψ𝑓⟩, due to the interaction with the electromagnetic field of X-rays.

In the framework of the time-dependent perturbation theory to the first order, the

probability 𝑤𝑓𝑖 is given by the Fermi-golden rule and the absorption coefficient results:

𝜇(𝜔) ∝ |⟨Ψ𝑓 |𝐻 ′|Ψ𝑖⟩|2𝜌(𝐸𝑓 − 𝐸𝑖 − ~𝜔) = |⟨Ψ𝑓 |
∑︁

𝑗

𝑒𝑖k·r𝑗 p𝑗 · 𝜂|Ψ𝑖⟩|2𝜌(𝐸𝑓 − 𝐸𝑖 − ~𝜔)

𝑑𝑖𝑝𝑜𝑙𝑒
≈ |⟨Ψ𝑓 |

∑︁
𝑗

p𝑗 · 𝜂|Ψ𝑖⟩|2𝜌(𝐸𝑓 − 𝐸𝑖 − ~𝜔). (5.3)

where the sum is over all the electron of the atom, 𝜌(𝐸𝑓 −𝐸𝑖 − ~𝜔) is the continuum

density of states, with 𝐸𝑓 = 𝐸𝑖 + ~𝜔, p𝑗 is the momentum of the 𝑗-th electron and

𝐻 ′ is the interaction term of the hamiltonian.

In the presence of an electromagnetic field the hamiltonian of a single electron system

is expressed as:

𝐻 = p2

2𝑚 + 𝑉 (r) + 𝑒

𝑚𝑐
A(r, 𝑡) · p = 𝐻0 +𝐻 ′. (5.4)

where 𝐻0 is the hamiltonian of the isolated electron and A is the potential vector

of the electromagnetic field, which is described by a sinusoidal time dependence, a

polarization vector 𝜂, a wave vector k and a frequency 𝜔.

In the last step in formula (5.3) the dipole approximation has been applied, for which

𝑒𝑖k·r ≈ 1 when |k · r|2 ≪ 1. The approximation is suitable because the electromag-

netic field interacts only with a core orbital, whose extension is smaller than the X-ray

wavelength. The transitions that contribute to the absorption coefficient, thus, are

the allowed transitions in the dipole approximation. They are given by the following

selection rules: Δ𝑙 = ±1, Δ𝑠 = 0, Δ𝑗 = ±1, 0, Δ𝑚 = 0. The wave functions Ψ𝑖 and

Ψ𝑓 can be factorized in the contributions 𝜓𝑖 and 𝜓𝑓 of the active electron (the photo-

electron) and Ψ𝑁−1
𝑖 and Ψ𝑁−1

𝑓 of the passive electrons: this is called the one-electron

approximation.

109



In the EXAFS region the energy of the photoelectron is high enough to allow the

interaction between the photoelectron and passive electrons to be neglected and the

contribution of the passive electrons will be taken into account by the superposition

integral of the passive electrons wave functions 𝑆2
0 = |⟨Ψ𝑁−1

𝑓 |Ψ𝑁−1
𝑖 ⟩|2 (sudden approx-

imation). If these wave functions in the final state remain equal to the initial state,

i.e., there is no relaxation, then 𝑆2
0 = 1. 𝑆2

0 represents an empirical parameter that in

the analysis is fixed after the analysis of the EXAFS signal of a reference compound

(same absorber). Typical values are in between 0.7 and 0.9.

A last approximation is to ignore the density of states 𝜌(𝐸𝑓 − 𝐸𝑖 − ~𝜔) that in the

EXAFS region varies in a negligible manner with energy.

As a result of the approximations made, the absorption coefficient becomes:

𝜇(𝜔) ≈ 𝑆2
0 |⟨𝜓𝑓 |

∑︁
𝑗

p𝑗 · 𝜂|𝜓𝑖⟩|2. (5.5)

Since the initial state of the photoelectron is that of its core-level, the calculation

of 𝜇(𝐸) reduces to the calculation of the wave function of the final state of the

photoelectron. The final state varies because of interference with the backscatterd

waves from the neighboring atoms and produces the fine structure in the absorption

coefficient.

The absorption coefficient in the case of an isolated atom is:

𝜇0(𝜔) ∝
⃒⃒⃒
⟨𝜓0

𝑓 |p · 𝜂|𝜓𝑖⟩
⃒⃒⃒2

(5.6)

where |𝜓0
𝑓⟩ is an outgoing wave function.

When the atom is in matter, the wave function of the final state in the position of

the absorbing atom can be written as:

|𝜓𝑓⟩ = |𝜓0
𝑓 + 𝛿𝜓𝑓⟩ (5.7)
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and the absorption coefficient becomes:

𝜇(𝜔) ∝
∫︁
𝑑r
⃒⃒⃒
𝜓0

𝑓 + 𝛿𝜓𝑓r · 𝜂𝜓*
𝑖

⃒⃒⃒2
≈∫︁

𝑑r
⃒⃒⃒
𝜓0

𝑓r · 𝜂𝜓*
𝑖

⃒⃒⃒2
+ 2𝑅𝑒

∫︁ [︁
𝜓𝑖r · 𝜂𝜓0*

𝑓

]︁
[𝜓*

𝑖 r · 𝜂𝛿𝜓𝑓 ] 𝑑r, (5.8)

where the first term is just the absorption coefficient of an isolated atom, 𝜇0. By

substituting (5.8) in (5.2) one obtains:

𝜒(𝑘) =
2𝑅𝑒

∫︀ [︁
𝜓𝑖r · 𝜂𝜓0*

𝑓

]︁
[𝜓*

𝑖 r · 𝜂𝛿𝜓𝑓 ] 𝑑r∫︀
|𝜓*

𝑖 r · 𝜂𝜓0
𝑓 |2𝑑r

. (5.9)

The numerator of (5.9) contains the product between two terms: the first represents

the outgoing wave function of the photoelectron, while the second contains the 𝛿𝜓𝑓 ,

the modulation of the final state due to the backscattering effect. The product gives

the interference at the origin of the EXAFS signal. The integral in the equation (5.9)

is evaluated where 𝜓𝑖 ̸= 0, i. e. at the absorber atom position. The core state wave

function is localized at the position of the absorber atom , in that way it acts as

source and detector for the photoelectron making the XAFS technique a local probe.

In order to obtain the EXAFS function the final wave function has to be calculated.

With reference to fig. 5-3, where the potential energy of the electron is approximated

by a muffin-tin potential that consists of a spherical scattering potential centered on

each atom (regions I and III) and a constant value in the interstitial region (II), the

final wave function can be written as:

𝜓𝑓 ≈ 𝜓0
𝑓𝑒

𝑖𝛿1

(︃
𝑒2𝑖𝑘𝑅

𝑅

)︃
𝑓𝐵(𝑘, 𝜋)

(︃
𝑒2𝑖𝑘𝑅

𝑅

)︃
𝑒𝑖𝛿1 (5.10)

where 𝜓0
𝑓 is the outgoing wave in the region I that is the same as for an isolated

atom, the first 𝑒𝑖𝛿1 term is the phase-shift of the outgoing electron at the border of

region I due to the interaction with the potential of region I, 𝑓𝐵 is the backscattering

factor that represents the interaction of the photoelectron with the B atom in the
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Figure 5-3: Scheme of the two atoms system: 𝐴 is the absorber atom and 𝐵 the
backscatterer. The grey regions represent the muffin-tin potential spheres [115].

plane wave approximation where considering the high energy of the photoelectron,

the scattering is considered on a spatial region very small with respect to the atomic

distance 𝑅, the second 𝑒𝑖𝛿1 term is the phase-shift of the backscattered photoelectron

due to the interaction with the potential of region I and the two equal factors 𝑒
2𝑖𝑘𝑅

𝑅
are the propagation of the spherical wave arriving on B in region II and the ones

backscattered from B evaluated in region I. By substituting (5.10) into the EXAFS

function (5.9), with 𝑓𝐵(𝑘, 𝜋)𝑒2𝑖𝛿1 = |𝑓𝐵(𝑘, 𝜋)|𝑒𝑖𝜑 one obtains:

𝜒(𝑘) = 𝑆2
0
∑︁

𝑗

𝑁𝑗

𝑓𝐵𝑗(𝑘, 𝜋)
𝑘𝑅2

𝑗

𝑠𝑖𝑛[2𝑘𝑅𝑗 + 𝜑𝑗(𝑘)], (5.11)

where the index 𝑗 identifies the 𝑗-th neighbour,𝑅𝑗 away from the absorber. Ideal

crystallographic structures may have several neighbours strictly at the same distance

(coordination shell), the 𝑁𝑗 terms takes into account for such multiplicity (coordina-

tion number).

The transitions that contribute to 𝜇(𝐸) can be elastic or inelastic. In elastic tran-

sitions the passive electrons, simply relax their orbitals in presence of the core-hole

left by the photoelectron. Instead in inelastic transitions after the absorption of the

photon by the core electron, there are other excitations, the shake-up and shake-off

processes, that involve the external electrons. So the absorption coefficient can be

calculated as the sum of an elastic and an inelastic contribution.

Then, at this point, the inelastic term has to be included. This accounts for inelas-

tic scattering events in which the photoelectron loses energy and cannot anymore go

back to the absorber. These losses result in a damping of the final wave function

that depends on the electron mean-free path 𝜆(𝑘), leading to the decay factor 𝑒−2𝑅/𝜆𝑘
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on the EXAFS amplitude. In the EXAFS region the electron mean-free path takes

values 𝜆 ∼ 10 − 20 Å, contributing to make EXAFS a local probe.

Finally, in real systems at finite temperature the thermal vibrations must be taken

into account along with possible static disorder (impurities, lattice local distortions):

these introduce a configurational disorder giving rise to a distribution of neighbour

in the coordination shells corresponding to a distribution of the neighbour distances.

The sampling time of the photoelectron (∼ 10−16 s) is much shorter than the atomic

vibrational periods (∼ 10−13 s). This means that in an EXAFS experiment one sam-

ples a distribution of istantaneous interatomic distances, 𝜌(𝑟), for each coordination

shell [124]. Thus, the EXAFS formula for one coordination shell can be more generally

expressed as:

𝜒𝑗(𝑘) = (𝑆2
0/𝑘)𝑁𝑗𝐼𝑚

⎧⎨⎩𝑓𝐵𝑗(𝑘, 𝜋)
𝑘

𝑒2𝑖𝛿1
∫︁ ∞

0
𝜌(𝑟𝑗)

𝑒−
2𝑟𝑗
𝜆

𝑟2
𝑗

𝑒2𝑖𝑘𝑟𝑑𝑟

⎫⎬⎭ , (5.12)

where all the 𝑟-dependent factors represent the effective distribution of distances:

𝑃 (𝑟, 𝜆) = 𝜌(𝑟𝑗)
𝑒−

2𝑟𝑗
𝜆

𝑟2
𝑗

𝑒2𝑖𝑘𝑟𝑑𝑟. (5.13)

A simple model (generally valid) assume a Gaussian shaped 𝜌(𝑟𝑗) with average dis-

tance 𝑟𝑗 and variance 𝜎2
𝑗 . For small degrees of disorder (𝜎2

𝑗 ≪ 1), the 𝑒𝑥𝑝(−2𝑟𝑗/𝜆)

term can be considered constant [123], and the integral becomes the Fourier transform

of a Gaussian shell giving rise to a 𝑒𝑥𝑝(−2𝑘2𝜎2
𝑗 ) in the EXAFS formula:

𝜒(𝑘) = 𝑆2
0
∑︁

𝑗

𝑁𝑗

𝑓𝐵𝑗(𝑘, 𝜋)
𝑘

𝑒−
2𝑅𝑗
𝜆(𝑘)

𝑅2
𝑗

𝑒−2𝑘2𝜎2
𝑗 𝑠𝑖𝑛[2𝑘𝑅𝑗 + 𝜑𝑗(𝑘)], (5.14)

where:

𝜎2 = ⟨(𝑟 − ⟨𝑟⟩)2⟩ (5.15)

is the variance of the Gaussian distribution that represents the Mean Square Relative

Displacement (MRSD) of the absorber-neighbour pair and enters the Debye-Waller

factor of the EXAFS formula, 𝑒−2𝑘2𝜎2 .
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We notice that the Gaussian approximation is definitely valid in most of the EXAFS

analysis, moreover it allows to take into account multiple scattering terms. The more

sophisticated models (cumulant expansion) may apply for sophisticated analysis but

require deep knowledge and great experience to avoid artifacts coming from the strong

correlation among the cumulant terms.

5.3 EXAFS measurements on Nb3Sn

Nb 𝐾-edge XAFS measurements on the laboratory polycrystalline samples have

been carried out at the beamline BM23 of the European Synchrotron Radiation Fa-

cility (ESRF) [125]. The BM23 optical scheme is presented in fig. 5-4: it is located

on a ESRF bending magnet with 𝐵 = 0.85 T. The beamline has the maximum flux

Figure 5-4: BM23 beamline: optical layout [125].

of 1.6 × 1012 photons s−1 (0.1 % bandwith−1) at the ESRF critical energy of 21 keV,

close to the Nb 𝐾-edge (about 19 keV). The first element in the optics hutch is a

double-crystal monochromator fixed-exit double-cam-type monochromator. The two

crystals are in (+,-) geometry and diffract in the vertical plane. The crystals are

mounted on a single rotating plate. The first crystal is mounted on a double-cam sys-

tem which maintains a constant height for the exit beam during a scan by changing

the perpendicular separation of the crystals.

For the experiment the micro-XAS station has been used. It has a set of Pt-coated
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mirrors in a Kirkpatrick-Baez (KB) geometry in which the incident angle can be var-

ied between 2 and 8 mrad allowing XAS experiments between 5 and 40 keV. The

mirrors produce a focal spot of less than 4 𝜇m × 4 𝜇m FWHM. The stability of

the beam is better than 1 𝜇m keV−1 in both transverse directions. The micro-XAS

station is also equipped with two mini ionization chambers for detecting the incoming

and transmitted radiations and an optical microscope to inspect and align the sample

on the X-ray spot.

The Nb 𝐾-edge XAS spectra were collected in transmission mode, at room tem-

perature and pressures up to ∼ 30 GPa, using a DAC (see appendix C) equipped

with nanocrystalline diamonds, Re gasket and silicone oil as pressure transmitting

medium. Nanocrystalline diamonds are mandatory for collecting XAS at such high

energy (19-20 keV), because single crystal diamond produces a large number of Bragg

peaks giving rise to spikes and noise in the spectra. The finely grained samples are

embedded in the silicone oil together with a small ruby allowing for pressure calibra-

tion using the ruby fluorescence technique (app. C).

The signal 𝜇, proportional to the total absorption of sample and diamonds, is

calculated as 𝜇 = ln 𝐼0

𝐼
, where 𝐼0 and 𝐼 are the incident and transmitted intensities

measured by the mini ionization chambers. As example, the measured absorption

coefficient at the pressure of 7 GPa is plotted in figure 5-5. The fine structure oscilla-

tions are clearly visible above the Nb 𝐾-edge (18986 eV) extending more than 800 eV

above the edge.

The analysis of XAFS data is performed in two main steps: the data reduction

and the quantitative refinement of the EXAFS structural signal.

For the data reduction is used the ATHENA software [126]. This data treatment

include various step, explained below.

• pre-edge subtraction: the pre-edge, 𝜇𝑝𝑟𝑒, is evaluated by a linear fit of the data

before the edge and the 𝜇′ = 𝜇 − 𝜇𝑝𝑟𝑒 is then calculated. 𝜇𝑝𝑟𝑒 represents the
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Figure 5-5: 𝑥𝜇(𝐸) at 7 GPa.

absorption of diamonds, windows and any edge except the𝐾-edge in the sample.

• post-edge evaluation: The post-edge 𝜇0, proportional to the bare atomic back-

ground is evaluated in ATHENA by means of a polynomial that approximates

the trend of the region above the threshold. The pre-edge and post-edge func-

tions have been calculated excluding the energy range near the threshold, which

has a strong dependence on the local structure, dependence that the normal-

ization constant must not have. The two functions, obtained with ATHENA,

are plotted in figure 5-6.

• normalization: the EXAFS structural signal is calculated as 𝜒 = 𝜇′ − 𝜇0

𝜇0
.

• energy scale: the photoelecron wavenumber 𝑘 is calculated choosing the thresh-

old energy, 𝐸0 = 18986 eV at 7 GPa. In ATHENA this is determined automat-

ically with the first large peak in the first derivative of 𝜇, but however it can be

also selected manually, as it has been done here.

• background subtraction: it consists in removing from the spectra the low fre-

quency components, while retaining the high frequency components. In order to

eliminate the background contribution, ATHENA uses an algorithm (Autobk)
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Figure 5-6: Pre-edge and post-edge subtraction and normalization at 7 GPa.

that is based on the Fourier theory: it subtracts from the absorption coefficient

above the threshold a spline function thus going to minimize the Fourier com-

ponents below a cutoff frequency. In Athena this frequency is defined through

the parameter 𝑅𝑏𝑘𝑔; an acceptable value of this parameter is about half path

from the first neighbor (𝑅𝑏𝑘𝑔 = 1.3 for this data reduction). In fig. 5-7 is shown

the plot of the normalized absorption coefficient and the background calculated

with ATHENA.

• the last step is to calculate the Fourier transform of the EXAFS function 𝜒(𝑘),

i. e. the complex function 𝜒(𝑅).

In fig. 5-8 and 5-9 the obtained 𝑘2-weighted 𝜒(𝑘) and the modulus of the FT at

the different values of pressure are presented. 𝑘2 weighting helped to compensate

for the decay with 𝑘 of 𝜒(𝑘), allowing to better highlight the features of the spectra

at high 𝑘-values. From fig. 5-8 it can be seen that the amplitude of the EXAFS

oscillations increases with pressure, meaning that the disorder decreases as pressure

increases, as expected. Moreover, the EXAFS oscillations shift to higher 𝑘-values as

the pressure increases, as it is usually expected due to the shortening of bond lengths.

This is reflected in the peaks shift of |𝜒(𝑅)| towards lower 𝑅-values (fig. 5-9). Indeed,
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Figure 5-7: Background subtraction at 7 GPa.
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Figure 5-8: The extracted 𝑘2𝜒(𝑘) EXAFS signals as a function of pressure.

the positions of the peaks of |𝜒(𝑅)| correspond to the interatomic distances, except

for a systematic shift to lower 𝑅-values due to the scattering phase-shift 𝜑(𝑘) (see

Eq. (5.14)). For most systems a crude approximation to the phase shift is 𝜑(𝑘) ∼ −𝑘,

which gives a peaks shift in |𝜒(𝑅)| of −0.5 Å relative to the interatomic distances [127].

The preliminary analysis of the reduced data has been done using the ARTEMIS
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Figure 5-9: The magnitude of the complex 𝜒(𝑅) as function of pressure.

software [126]. Artemis works within the framework of the FEFF’s multiple-scattering

path expansion. Artemis models the data as a summation of contributions from one

or more scattering paths. The fitting procedure included the following steps:

1. a cluster of atoms has been defined starting from the crystallographic structure

described in a CIF file downloaded from the COD;

2. the ATOMS program, included in ARTEMIS, allows to read the crystallographic

data of a selected material and convert it to a format suitable for FEFF, that

starting from this theoretical crystal structure computes the list of possible

scattering paths together with the amplitude and phase functions for each con-

tribution, 𝑓𝐵(𝑘) and 𝛿 respectively, to construct the theoretical signals;

3. the first three paths corresponding to the first three neighbors have been selected

for the analysis;

4. the fits were carried out by varying the following parameters: the displacement

with respect to the theoretical distance 𝑑𝑒𝑙𝑟 that defines the interatomic dis-

tance and the MSRD factor 𝜎2. The coordination N of each shell is fixed to

nominal values 𝑁𝐼 = 2, 𝑁𝐼𝐼 = 4 and 𝑁𝐼𝐼𝐼 = 8, for the first (Nb-Nb), second
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(Nb-Sn) and third (Nb-Nb) shell respectively. The amplitude 𝑆2
0 is fixed to 0.8

for all the spectra, while the edge energy 𝐸0 has been fixed to 18986 eV.

Figure 5-10: The list of the first ten scattering paths produced after running FEFF
on the ATHENA software. The following information about each path are given in
the columns: (I col.) order of the path, (II col.) multiplicity, (III col.) half-length
of the scattering path, (IV col.) relative amplitude and (V col.) path, where the
backscatterer atoms are listed and the absorbing atom is indicated with [+].

Figure 5-11: Scattering paths of the first three shells.

In fig. 5-10, the list of some of the first paths as has been obtained after running

FEFF is shown. One can distinguish single- and multiple- scattering path. For exam-

ple, the path number 1 in the list is a single-scattering path from the Nb atom to the

first neighbor Nb atoms at a theoretical distance (𝑅𝑒𝑓𝑓 ) of 2.646 Å, with coordination

𝑁 = 2 that gives a strong contribution to the EXAFS spectrum. The path number

5, instead, is a multiple-scattering path, where the photoelectron is diffused by two

other Nb atoms before reaching the absorber atom. Here the coordination of the shell
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Figure 5-12: Result of the fit to the |𝜒(𝑅)| function obtained with ARTEMIS at
2 GPa. The gray region is the fitting region.

is 16 and the theoretical path length is 4.563 Å.

For the analysis only the first three paths of the list have been taken into account.

In fig. 5-11 the scheme of the Nb3Sn cell is shown together with the paths that have

been considered for the fit. The result of the fit at 2 GPa and 26 GPa is plotted in

fig. 5-12 and 5-13. Visually they are good fit, but the values of the reduced chi square

increase with pressure, from ∼7 at 0.3 GPa to ∼34 at 26 GPa, indicating that the

model used for the fit does not describe the system as well as it does at low pressure.

In fig. 5-14 and 5-15 the deviations from the theoretical bond length of each shell

normalized to the theoretical lengths and the disorder as function of pressure are

reported. From fig. 5-14 it is possible to see that the interatomic distances decreased

in the same way along the directions of the considered three scattering paths, thus

showing that compressibility throughout the range of pressures considered is always

relative to a cubic system. The term of disorder of figure 5-15 decreases with increas-

ing pressure, as expected, but is bigger in the case of Nb-Nb bonds with respect to

the Nb-Sn bond. This means that disorder in the Nb chains is greater. More, the

behavior is different for the different shells involved. The first and the third shell,

involving only Nb atoms, show a discontinuity in the slope around 9 GPa. Above
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Figure 5-13: Result of the fit to the |𝜒(𝑅)| function obtained with ARTEMIS at
26 GPa. The gray region is the fitting region.
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Figure 5-14: 𝑑𝑒𝑙𝑟 as function of pressure.

this pressure value the decreasing behaviour is very small in the case of the third

shell, while the MSRD of the first shell remains constant. The second shell (Nb-Sn),

instead, decreases linearly.

The observed discontinuities in the MSRD of the first and third shell could be related
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Figure 5-15: The MSRD factor 𝜎2 as function of pressure.

to distortion of the Nb chains that should be better investigated with a non-gaussian

model. Indeed, it is known from literature that Nb3Sn is characterized by a dimer-

ization of Nb chains on cooling. If this is the case also when a pressure is applied,

one has to take into account deviations to the Gaussian distribution, in particular

deviation that results in an asymmetric shape of the distribution. This can be the

reason why the fits with the Gaussian model lose in goodness with increasing the

pressure.

Our preliminary analysis has been used as the starting point for a more sophisti-

cated analysis carried out applying the Evolutionary-Algorithm Reverse Monte Carlo

(RMC) method as implemented in the EvAX algorithm [128]. The RMS analysis has

been carried out by I. Schiesaro in her degree thesis [129]. In the following the main

results of this analysis are discussed.
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5.4 Results from EA-RMC analysis

The EA-RMC analysis starts from an atomic cluster representative of the atomic

structure in the sample. A cubic supercell made by 27 (3×3×3) unit cells (216 atoms)

has been used, with periodic boudary conditions. The RMC process consists in mov-

ing randomly the atoms in the cluster. At each move a new EXAFS function is

calculated and compared with the experimental spectrum. If the agreement improves

the move is accepted, otherwise it’s accepted with a defined probability. This allows

to avoid local minima. An evolutionary algorithm is applied by EVAX in order to im-

prove the convergence. The RMC model allows to generate a "model atomic cluster"

for which the calculated EXAFS reproduces the experimental EXAFS. The EXAFS

model is calculated including single and multiple scattering signals up to 5 scattering

legs and 6.5 Å half length. Looking at the model cluster very precise details about

the local structure in the supercell can be obtained. Data analysis procedure is better

described in the master thesis [129]. Here we look at the main results, in particular

concerning the Nb-Nb nearest neighbour distribution.

We focus here on the distances of the first three coordination shells (the ones before

analyzed), the distributions of which are reported in fig. 5-16. From the histograms

it is clear that the disorder of the three considered shells decreases with increasing

pressure: in fact the distributions narrow with pressure. Interestingly, the first shell

shows a higly asymmetric distribution at low pressure, with a long tail at low value

of the path length, that changes into a bimodal distribution above 5 GPa.

To have a further indication on the possible motion of the atoms with the increasing

pressure the correlation between the distances of the first shell have been studied.

For each atom present in the Nb chain we calculated the distances of a Nb atom with

the atom to its left and with the atom to its right. The distance of a Nb atom with

the atom to its left was plotted as function of the distance with the atom to its right

for all the pressure values in figure 5-17.

Observing the image starting from the lowest pressure it is possible to notice the simul-

taneous presence of two different behaviors. Some distances appear anti-correlated:
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Figure 5-16: Distance distributions of the first (a), second (b) and third shell (c) at
different pressures.

indeed, the data enclosed in the red ellipse in fig. 5-17 represent the situations where

a long distance on one side of the central Nb atom is associated with a short distance

on the other side (see the schematic representation of this motion at the bottom right

of the figure, red circle). Instead, the data enclosed in the green circle take values

between 2.4 Å and 2.7 Å and they are distributed in a compact and homogeneous

way where long distances are associated with long distances and short distances with

short distances (see the schematic representation of this motion at the bottom right

of the figure, green circle).

When long and short distances alternates along a chain, there is a shift along the di-

rection of the chain. while in the second case (green), in which the two distances vary

by the same amount, it is possible observe a movement of the atom in the center in a

perpendicular direction to the chain with a consequent variation of the angle between

the three atoms. Comparing the graph at 0.3 GPa with that at higher pressures it is

possible to notice how at the lowest pressure the distribution of the red distances is

uniform. As the pressure increases, from 9 GPa onwards, the anti-correlated motion

becomes increasingly weak until it disappears totally at 23 GPa. The increase in pres-
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Figure 5-17: Correlation between first shell Nb atoms.

sure may be associated with one decrease in the degrees of freedom, and therefore to a

limitation of the possible movements of atoms. The motion that associates a greater

distance with a smaller one costs a lot in energy. In contrast, when the two distances

vary by the same amount, it is possible observe a movement of the Nb atom in the

center in a perpendicular direction. The behavior described here is in agreement with

the results about the distribution of the distances described in fig. 5-16 where it has

been seen how the distributions narrow as the pressure increases due to the reducing

disorder. The same thing is observed in fig. 5-17, where distances tend to occupy

one progressively smaller area. Finally, at 26 GPa, there is an interesting effect: the

distribution of distances, now restricted to a limited interval, now arrange according

to the vertices of a square: the atoms corresponding to the top-left and bottom-right

vertices are paired showing an alternation between long distance and short distance,

while those along the other two vertices correspond to the succession of two long dis-

tances or two short distances. This particular distribution of the distances in fig. 5-17

at 26 GPa point out a local structure like those observed in Peierls’ instabilities (see

app. A) characterized by a dimerization of atoms chains. However, XRD experiments

do not show any phase transition: this means that this instability is limited to a few

unit cells, leaving the cubic structure of the system unchanged.
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In summary, this XAFS experiment on Nb3Sn revealed a greater disorder of the

Nb-Nb distances of the first and third shells, with a discontinuity around 7 GPa. This

result, product of a preliminary analysis in which the distribution of the distances

was assumed to be Gaussian, suggested to study in more detail the characteristics of

the Nb-Nb bonds. The analysis with the RMC method, made it possible to clarify

the results of the preliminary analysis. In particular this analysis method allowed to

find that a Peierls instability is induced on Nb3Sn by appling a pressure and that the

pressure anomaly observed with the high pressure XRD experiment of the previous

chapter has to be likely related to the Peierls-like dimerization of Nb chains.
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Chapter 6

DFT based first-principles

calculations

Density Functional Theory (DFT) is a theory of correlated many-body systems.

Over the past few decades, DFT has been the most successful, widely used method in

condensed-matter physics, computational physics and quantum chemistry to describe

properties of condensed matter systems, which include not only standard bulk mate-

rials but also complex materials such as molecules, proteins, interfaces and nanopar-

ticles [130].

DFT is a way of studying a system of interacting particles by mapping it to a much

easier to solve non interacting problem. In doing this, the main idea of DFT is to

describe a many-body interacting system via its particle density and not via its many-

body wave function. This means that the computational cost of a DFT calculation is

relatively low when compared to traditional methods, such as the Hartree-Fock the-

ory, that deal directly with the many-body wave function. This difference is based on

the fact that a many-body wave function is a function of 3𝑁 variables (the coordinates

of all 𝑁 atoms in the system) while the electron density, used in DFT, is a function

of only the three spatial variables. The result of this is that traditional multiparticle

wave function methods when applied to systems of many particles encounter the so-

called exponential wall when the number of atoms 𝑁 exceeds a critical value which

currently is in the neighborhood of 𝑁0 ≈ 10. On the other hand, the current state of
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the art of applied DFT can handle systems with up to 𝑁0 = 102-103 atoms [130].

To understand the exponential wall above cited, imagine the wave function of a N2

molecule, having two nuclei and fourteen electrons. For 𝑁 particles, the Schrödinger

equation is a partial differential equation in 3𝑁 dimensions. If one wishes to express

the wave function on a grid with about 100 points along each spatial direction, and

considering two spin states for each electron, the resulting wave function is represented

by 2141003×16 ≈ 10100 complex numbers.

The Nb3Sn system is described by 2 Sn atoms and 6 Nb atoms per unit cell, with

13 valence electrons for each Nb atom and 14 for each Sn atom. Given the above

considerations, it’s clear that DFT is necessary if one wants to calculate the properties

of Nb3Sn from first-principles.

In this thesis some methods based on DFT have been exploited to investigate the

properties of Nb3Sn as a function of a high hydrostatic pressure. In particular, the

ab-initio calculated lattice parameter of cubic Nb3Sn as a function of pressure has

been used as input for the calculations of the phonon dispersion curves and the elec-

tronic band structures along different high symmetry directions in the Brillouin zone.

The critical temperature, then, has been calculated as a function of an hydrostatic

pressure by means of the Allen-Dynes modification of the McMillan formula defined

by equations (1.15) and (1.16).

In the next section an overview of the principles of DFT and its perturbative

extension Density Functional Perturbation Theory (DFPT) will be given. Then the

calculations made during this thesis work will be described together with the re-

sults obtained, first focusing the attention on the ambient pressure results and then

extending the discussion to the high pressure results.
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6.1 Notes on Density Functional Theory

The entire field of modern DFT rests on two fundamental mathematical theorems

proved by W. Kohn and P. Hohenberg in 1964 [130–132]. These theorems are stated

as follows:

• Theorem I : The ground state density 𝑛(r) of a bound system of interacting

electrons in some external potential 𝑉 (r) determines this potential uniquely,

except for an additive constant.

Hence 𝑛(r) fully determines the hamiltonian of the system and it determines

implicitly the many-body wave function for all states through the solution of

the appropriate Schrödinger equation. This means that all the properties of

a system are completely determined once the ground state density 𝑛(r) is de-

fined. This result is important because it means that it is possible to solve the

Schrödinger equation by finding a function of three spatial variables, i. e. the

electron density, rather than a function of 3𝑁 variables (where 𝑁 is the number

of electrons), i. e. the wave function.

• Theorem II : A functional for the energy 𝐸[𝑛] in terms of the electron density

𝑛(r) can be defined, valid for any external potential 𝑉 (r). For any 𝑉 (r), the

ground state energy of the system is the global minimum value of this functional,

and the density 𝑛(r) that minimizes the functional is the ground state density

𝑛0(r).

The functional for the total energy can be written as [132]:

𝐸𝐻𝐾 [𝑛] =𝑇 [𝑛] + 𝐸𝑒𝑒 [𝑛] +
∫︁
𝑑3𝑟𝑉 (r)𝑛 (r) + 𝐸𝑁𝑁 =

𝐹𝐻𝐾 [𝑛] +
∫︁
𝑑3𝑟𝑉 (r)𝑛 (r) + 𝐸𝑁𝑁 (6.1)

where the terms on the center are, in order, the electron kinetic energies, the interac-

tion between electrons, the interactions between electrons and the external potential

(included that due to the presence of the nuclei) and the interaction between the
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positive nuclei. 𝐹𝐻𝐾 [𝑛] contains the functional for the kinetic energy, 𝑇 [𝑛], and that

for the electron-electron interaction, 𝐸𝑒𝑒 [𝑛]. The latter can be written as follows:

𝐸𝑒𝑒 [𝑛] = 1
2

∫︁
𝑑3𝑟𝑑3𝑟′𝑛 (r)𝑛 (r′)

|r − r′|
+ 𝐸𝑋𝐶 [𝑛] = 𝐸𝐻 [𝑛] + 𝐸𝑋𝐶 [𝑛] , (6.2)

where 𝐸𝐻 [𝑛] is the Hartree functional, that describe the Coulomb interaction between

electrons, and 𝐸𝑋𝐶 [𝑛] is the exchange-correlation energy, that include all the quantum

mechanical effect of the electron-electron interaction.

The main problem of DFT, as stated by Hohenberg and Kohn, is to provide an

expression for the functionals 𝑇 [𝑛] and 𝐸𝑋𝐶 [𝑛].

A solution to the lack of accurate approximations for the kinetic energy functional

𝑇 [𝑛] is given in the work of W. Kohn and L. J. Sham, appeared in 1965 [133]. In

the Kohn and Sham approach one assumes that the ground state electron density

of the interacting system is equal to that of some chosen non-interacting reference

system. This means that the task of finding the right electron density for a system

can be expressed in a way that involves solving a set of equations in which each

equation only involves a single electron. Following the Kohn and Sham assumption,

the Hohenberg-Kohn ground state energy functional can be rewritten as:

𝐸𝐾𝑆 [𝑛] = 𝑇𝑠 [𝑛] +
∫︁
𝑑3𝑟𝑉 (r)𝑛 (r) + 𝐸𝐻 [𝑛] + 𝐸𝑋𝐶 [𝑛] + 𝐸𝑁𝑁 , (6.3)

where 𝑇𝑠 [𝑛] is the independent-particle kinetic energy expressed as a function of the

single electron wave functions. In this expression of the energy functional the only

term for which no explicit form can be given is 𝐸𝑋𝐶 [𝑛]. In order to minimize 𝐸𝐾𝑆 [𝑛],

the variational principle together with the ortonormality condition for the orbitals are

applied. The resulting equations are the self-consistent Kohn-Sham equations:

[︃
~2

2𝑚∇2 + 𝑉 (r) + 𝑉𝐻 (r) + 𝑉𝑋𝐶 (r)
]︃
𝜓𝑖 (r) = 𝜀𝑖𝜓𝑖 (r) , (6.4)

where 𝑉 (r) is potential that defines the interaction between an electron and the col-

lection of atomic nuclei, 𝑉𝐻 (r) describes the Coulomb repulsion between the electron
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being considered in one of the Kohn-Sham equations and the total electron density

defined by all electrons in the problem and 𝑉𝑋𝐶 (r) defines exchange and correlation

contributions to the single-electron equations. The resulting elctron density is given

by:

𝑛 (r) =
𝑁∑︁

𝑖=1
|𝜓𝑖 (r)|2 . (6.5)

The results of Kohn, Hohenberg, and Sham showed that the ground state of a

system of interacting electrons can be found by minimizing the energy functional,

and that this can be achieved by finding a self-consistent solution to a set of single-

particle equations. However, there is still an issue: to solve the Kohn-Sham equations

the exchange-correlation function, 𝐸𝑋𝐶 [𝑛], has to be determined. In fact, the true

form of the exchange-correlation functional whose existence is guaranteed by the

Hohenberg-Kohn theorem is not known, except for the case of a uniform electron gas

in which the electron density is constant at all points in space. This situation is very

different from that of any real material since it is variations in electron density that

define chemical bonds and generally make materials interesting for their properties.

However, it is possible to obtain approximate forms for 𝐸𝑋𝐶 [𝑛] from the model of

the uniform electron gas.

The simplest approximation for 𝐸𝑋𝐶 [𝑛] is the so-called Local-Density Approxima-

tion (LDA) [132], in which the exchange-correlation potential at each position is the

known exchange-correlation potential for a uniform electron gas at the electron den-

sity observed at that position.

The best known class of functional after the LDA uses information about the local

electron density and the local gradient in the electron density; this approach defines

a Generalized Gradient Approximation (GGA) [132]. Because there are many ways

in which information from the gradient of the electron density can be included in

a GGA functional, there are a large number of distinct GGA functionals. One of

the most widely used functionals in calculations involving solids is the Perdew-Wang

functional (PW91) [134], that is also used for the calculations of this thesis work.
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Formally DFT only provides the ground state density and total energy, and there

are well known failures in the representation of electronic excited states [135]. If

however the ground state is perturbed very lightly, so leaving the system close to

its electronic ground state, one can easily apply the traditional quantum formal-

ism for perturbation theory, giving density functional perturbation theory (DFPT).

The first development of DFPT came from Baroni, Giannozzi, and Testa in Tri-

este [136]. A large number of electronic structure simulation packages now imple-

ment and use DFPT. The most commonly used are Quantum ESPRESSO [137]

and ABINIT [138], but also VASP [139], octopus [140], CASTEP [141] and many

others. DFPT has become one of the most popular methods of ab-initio calculation

of lattice dynamics [142]. However, the applicability of the method extends beyond

the study of vibrational properties. Many interesting physical properties (response

functions) are the result of the application of an external perturbation to a system

under investigation. Response functions are second, third, or higher order derivatives

of the total energy with respect to applied perturbation(s). Typical perturbations can

be atomic displacements, homogeneous external electric or magnetic fields, strain or

chemical change. Linear response provides an analytical way of computing the second

derivative of the total energy with respect to a given perturbation. Depending on the

nature of this perturbation, a number of properties can be calculated. A perturba-

tion in ionic positions gives the dynamical matrix and phonons; in magnetic field -

NMR response; in unit cell vectors - elastic constants; in an electric field - dielectric

response, etc.

DFPT starts from the assumption of the adiabatic approximation of Born and

Oppenheimer [142] according to which the kinetic energy of the nuclei is supposed

to be constant. The Born-Oppenheimer Hamiltonian 𝐻𝐵𝑂 depends parametrically

upon the nuclear positions R and describes the problem of the interacting electrons

moving in the electrostatic field of nuclei at fixed positions:

𝐻𝐵𝑂 = − ~2

2𝑚
∑︁

𝑖

𝜕2

𝜕r2
𝑖

+ 𝑒2

2
∑︁
𝑖 ̸=𝑗

1
|r𝑖 − r𝑗|

−
∑︁
𝑖,𝐼

𝑍𝐼𝑒
2

|r𝑖 − R𝐼 |
+ 𝑒2

2
∑︁
𝐼 ̸=𝐽

𝑍𝐼𝑍𝐽

|R𝐼 − R𝐽 |
(6.6)
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where r are the electronic coordinates, (𝑖, 𝑗) and (𝐼, 𝐽) letters respectively label elec-

tron and nuclei, and 𝑍 is the nuclear charge. In 𝐻𝐵𝑂 the first term is the kinetic

energy of the electrons and the other terms are the various electrostatic interaction

terms (the repulsive electron-electron, the attactive electron-nucleus, and the repul-

sive nucleus-nucleus). The ground state Born-Oppenheimer energy of the system

described by 𝐻𝐵𝑂 is 𝐸𝐵𝑂(R). It determines the Potential Energy Surface and the

equilibrium geometry of the system. By adding to 𝐻𝐵𝑂 the kinetic energy of the nu-

clei, the Schrödinger equation for the nuclear motion, which determines the dynamics

of the lattice of the system, is obtained:

(︃
−
∑︁

𝐼

~2

2𝑀𝐼

𝜕2

𝜕R2
𝐼

+ 𝐸𝐵𝑂(R)
)︃

= 𝜀Φ(R) (6.7)

where 𝜀 is the total energy and 𝑀𝐼 are the masses of the atoms.

Consider a three-dimensional crystal, with N unit cells, translational vectors l𝑛 (that

identify the position of a unit cell with respect to an origin) and a basis of atoms in the

positions b𝜈 . Atoms are labeled by the two indices (𝑛𝜈), where the index 𝑛 denotes

the unit cell of the crystal and the index 𝜈 the atoms inside the unit cell. The

nuclei are not fixed to their classical zero-temperature ideal positions but perform

small displacements u𝑛𝜈 around their equilibrium positions 𝑅𝑛𝜈 , such that u𝑛𝜈 =

𝑅𝑛𝜈 − (l𝑛 + b𝜈). If all the u𝑛𝜈 are small, then the Born-Oppenheimer energy of the

crystal can be expanded in a Taylor series as a function of the nuclear displacements

in the harmonic approximation:

𝐸𝐵𝑂({u𝑛𝜈}) = 𝐸𝐵𝑂(0) +
∑︁
𝑛𝜈𝛼

∑︁
𝑛′𝜈′𝛼′

(︃
𝜕2𝐸𝐵𝑂

𝜕u𝑛𝜈𝛼𝜕u𝑛′𝜈′𝛼′

)︃
0

u𝑛𝜈𝛼u𝑛′𝜈′𝛼′ (6.8)

where 𝐸𝐵𝑂(0) is the minimum of the energy in the static approximation, when all the

displacements are zero, 𝛼, 𝛼′ = 𝑥, 𝑦, 𝑧, 𝜈, 𝜈 ′ = 1, 2, ...𝑛𝑏 and 𝑛 = 1, 2, ..𝑁 . The first

order term in the series represents the forces acting on each nucleus, which vanish

at the equilibrium when 𝐸𝐵𝑂 reaches a minimum. Hence the linear contribution in

the expansion disappears. Anharmonic effects are described by higher order terms
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in Eq. (6.8). The matrix of the second derivatives of 𝐸𝐵𝑂({u𝑛𝜈}) evaluated at the

equilibrium configuration:

𝐷𝑛𝜈𝛼,𝑛′𝜈′𝛼′ =
(︃

𝜕2𝐸𝐵𝑂

𝜕u𝑛𝜈𝛼𝜕u𝑛′𝜈′𝛼′

)︃
0

(6.9)

is called the matrix of the interatomic force constants (IFC) and from the definition

in Eq. (6.9) is real and symmetric.

The classical equations of motion for the nuclei are:

𝑀𝜈
𝑑2u𝑛𝜈𝛼

𝑑𝑡2
= −

∑︁
𝑛′𝜈′𝛼′

𝐷𝑛𝜈𝛼,𝑛′𝜈′𝛼′u𝑛′𝜈′𝛼′ . (6.10)

Assuming that the u𝑛𝜈𝛼 undergo a time evolution in the form of a plane wave:

u𝑛𝜈(𝑡) = A𝜈(q, 𝜔)𝑒𝑖(q·l𝑛−𝜔𝑡) (6.11)

and replacing (6.11) in (6.10) it results:

−𝑀𝜈𝜔
2𝐴𝜈𝛼 = −

∑︁
𝑛′𝜈′𝛼′

𝐷𝑛𝜈𝛼,𝑛′𝜈′𝛼′𝑒−𝑖q·(l𝑛−l𝑛′ )𝐴𝜈′𝛼′ (6.12)

The solutions of (6.12) are the vibrational frequencies 𝜔 that are determined by the

eigenvalues of the Hessian of 𝐸𝐵𝑂:

det
⃒⃒⃒
𝐷𝜈𝛼,𝜈′𝛼′(q) −𝑀𝜈𝜔

2𝛿𝛼𝛼′𝛿𝜈𝜈′

⃒⃒⃒
= 0 (6.13)

where

𝐷𝜈𝛼,𝜈′𝛼′(q) =
∑︁
𝑛′
𝐷𝑛𝜈𝛼,𝑛′𝜈′𝛼′𝑒−𝑖q·(l𝑛−l𝑛′ ). (6.14)

The matrix 𝐷(q), with elements 𝐷𝜈𝛼,𝜈′𝛼′(q) is the dynamical matrix of the crystal in

reciprocal space.

So, the calculation of the equilibrium geometry and of the vibrational properties

of a system amounts to computing the first and second derivatives of its Born-

Oppenheimer energy surface.
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There are two approaches that allow to get these energy derivatives: one based on the

finite differences and another based on the Hellmann-Feynman theorem [143,144] (or

“force theorem”). The Hellmann-Feynman theorem states that the first derivative of

the eigenvalues of a Hamiltonian, 𝐻𝜆 , that depends on a parameter 𝜆 is given by the

expectation value of the derivative of the Hamiltonian:

𝜕𝐸𝜆

𝜕𝜆
=
⟨

Ψ𝜆

⃒⃒⃒⃒
⃒𝜕𝐻𝜆

𝜕𝜆

⃒⃒⃒⃒
⃒Ψ𝜆

⟩
, (6.15)

where Ψ𝜆 is the eigenfunction of𝐻𝜆 corresponding to the eigenvalue 𝐸𝜆. In the context

here, nuclear coordinates act as parameters in the electronic Hamiltonian (6.6). By

applying the Hellmann-Feynman theorem, the force acting on the 𝜈th nucleus in the

electronic ground state is thus:

F𝜈 = −𝜕𝐸𝐵𝑂(R)
𝜕R𝜈

= −
⟨

Ψ(r,R)
⃒⃒⃒⃒
⃒𝜕𝐻𝐵𝑂(R)

𝜕R𝜈

⃒⃒⃒⃒
⃒Ψ(r,R)

⟩
, (6.16)

where Ψ(r,R) is the electronic ground state wave function of the Born-Oppenheimer

Hamiltonian. 𝐻𝐵𝑂 depends on R via the electron-ion and ion-ion interaction. The

Hellmann-Feynman theorem states in this case that:

F𝜈 = −
∫︁
𝑛R(r)𝜕𝑉R(r)

𝜕R𝜈

𝑑r − 𝜕𝑉𝑁(R)
𝜕R𝜈

(6.17)

where 𝑉R(r) is the electron-nucleus interaction (third term in (6.6)), 𝑉𝑁(R) is the

electrostatic interaction between different nuclei (fourth term in Eq. (6.6)) and 𝑛R(r)

is the ground state electron charge density corresponding to the nuclear configura-

tion R. The Hessian of the Born-Oppenheimer energy surface appearing in Eq. (6.9)

obtained by differentiating the Hellmann-Feynman forces with respect to nuclear co-

ordinates,

𝜕2𝐸𝐵𝑂(R)
𝜕R𝜈𝜕R𝜈′

= − 𝜕F𝜈

𝜕R𝜈′
=∫︁ 𝜕𝑛R(r)

𝜕R 𝜈′

𝜕𝑉R(r)
𝜕R 𝜈

𝑑r +
∫︁
𝑛R(r) 𝜕

2𝑉R(r)
𝜕R𝜈𝜕R𝜈′

𝑑r + 𝜕2𝑉𝑁(R)
𝜕R𝜈𝜕R𝜈′

. (6.18)
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Equation (6.18) states that the calculation of the Hessian of the Born-Oppenheimer

energy surfaces requires the calculation of the ground state electron charge density

𝑛R(r) as well as of its linear response to a distortion of the nuclear geometry, 𝜕𝑛R(r)
𝜕R𝜈

.

This fundamental result was first stated in the late 1960s by De Cicco and Johnson

(1969) and by Pick, Cohen, and Martin (1970).

This result makes it possible to derive the vibrational properties of the materials

within the DFT framework and it is the fouding ground for part of the results reported

in the following.

6.2 Details of Calculations on Nb3Sn

DFT and DFPT as implemented in the Quantum ESPRESSO (QE) software

distribution [137] have been used to perform the band structure and phonon dispersion

relations calculations on Nb3Sn. The DFT scheme employed adopts a Generalized

Gradient Approximation (GGA) of the electron exchange and correlation energy us-

ing the Perdew-Wang formula (PW91) [134]. Electron-ion interactions have been

modelled with ultrasoft pseudopotentials (US-PP) in the context of a plane wave

expansion basis set. Pseudopotentials replace the strong Coulomb potential of the

nucleus and the effect of the tightly bound core electrons by an effective ionic potential

acting on the valence electrons. The ultrasoft pseudopotentials in particular allow to

create pseudofunctions that are as smooth as possible, remaining accurate and trans-

ferable (a pseudopotential generated in an atomic calculation should be adequate for

non atomic calculations, i.e. molecules or solids). With the word “smooth”, here one

refers to the fact that they are accurate and transferable without extending too far

in the Fourier space. In this thesis work the pseudopotentials Nb.pw91-nsp-van.UPF

and Sn.pw91-n- van.UPF from the Quantum ESPRESSO pseudopotential data

base: http://www.quantum-espresso.org/pseudopotentials have been used.

All the calculations presented in this thesis have been performed on the CRESCO

cluster (ENEA, Frascati, Italy).
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6.2.1 Convergence tests

The ground state electron density of the system in the DFT framework is defined

by the solution to the Kohn-Sham equations. To solve this problem on a computer

a series of numerical approximations must be done: for example, integrals in multi-

dimensional space must be evaluated by examining the function to be integrated at

a finite collection of points or solutions that formally are expressed as infinite sums

must be truncated to finite sums, and so on. In each numerical approximation, it

is possible to find a solution that is closer and closer to the exact solution by using

more and more computational resources. A calculation is said to “converge” when

the computed solution accurately approximates the true solution of the mathematical

problem posed by DFT with a specific exchange-correlation functional. For this rea-

son, before starting any ab-initio study it is necessary to calculate some parameters

that guarantee the convergence of the calculations that must be made to determine

the desired properties of the material.

In the following the different convergence tests carried out in the work phase dedi-

cated to setting up the calculations are discussed.

The first convergence test done is devoted to examine the calculations convergence

with respect to the Brillouin zone (BZ) sampling. In order to do this, Self Consistent

Field (SCF) calculations of the system total energy with different quantities of 𝑘-point

grids in the reciprocal space were carried out. The method used for the generation of

the 𝑘 points in the BZ follows the convention of Monkhorst and Pack [145], where the

𝑘 points are distributed in a rectangular grid of dimensions 𝑀𝑥 × 𝑀𝑦 × 𝑀𝑧, evenly

spaced throughout the BZ. The calculation has been done for a 4×4×4, 8×8×8,

12×12×12 and 16×16×16 𝑘-point grids (𝑀𝑥 = 𝑀𝑦 = 𝑀𝑧 = 𝑀 because the system is

cubic). The computed total energy as function of 𝑀 , is shown in fig. 6-1-left, where

it is clear that when 𝑀 ≥ 8 the total energy is fairly independent of the number of 𝑘

points. For this reason a 8×8×8 Monkhorst-Pack 𝑘-point grid for the BZ sampling

has been employed for the simple cubic cell of Nb3Sn. This means that for this sys-

tem the integrals in reciprocal space were evaluated at least in 8×8×8=516 points of
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Figure 6-1: Total energies for Nb3Sn calculated as a function of the 𝑘-point grid (left)
and of the cut-off energy (right).

the BZ in order to obtain well convergent computation. However, when the crystal

symmetries are taken into account the integrals in reciprocal space do not need to be

evaluated using the entire BZ, but they can just be evaluated in a reduced portion

of the BZ, the irreducible Brillouin zone (IBZ), that can then be extended without

approximation to fill the entire BZ using symmetry. In the present case using the IBZ

greatly reduces the computational effort required to perform integrals in 𝑘-space: in-

deed, for the 8×8×8 sampling of the BZ, only 126 distinct points in 𝑘 space lie within

the IBZ. Within the Monkhorst-Pack method the 𝑘 points are determined by means

of the relation:

k𝑚1,𝑚2,𝑚3 =
3∑︁

𝑖=1

2𝑚𝑖 −𝑀𝑖 − 1
2𝑀𝑖

b𝑖, (6.19)

where 𝑀𝑖 is the number of 𝑘 points in each direction, 𝑚𝑖 = 1, ...,𝑀𝑖 and b𝑖 are the

primitive vectors of the reciprocal lattice.

The second convergence test done is devoted to examine the calculations convergence

with respect to the kinetic energy. Nb3Sn has a periodical structure, then the solution

of the Kohn-Sham equations must satisfy the Bloch’s theorem, which states that the

solution can be expressed as (plane wave expansion basis set) [146]:

𝜑k(r) = 𝑒𝑖k·r𝑢k(r), (6.20)
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where 𝑢k(r) is periodic with the same periodicity of the lattice. This means that it

can be expanded in terms of a special set of plane waves:

𝑢k(r) =
∑︁
G
𝑐G𝑒

𝑖G·r, (6.21)

where the summation is over all reciprocal lattice vectors G. According to this ex-

pression, evaluating the solution of the Kohn and Sham equations in 𝑘-space involves

a summation over an infinite number of possible values of G. Solutions of the form

of Eq. (6.20) correspond to states with kinetic energy:

𝐸𝑐 = ~2

2𝑚 |k + G|2. (6.22)

In 𝑘-space the coefficient 𝑢k(r), are obtained by the Fourier tranform of (6.21): these

decrease exponentially with the kinetic energy of Eq. (6.22). As a result, the infinite

sum above is approximated by including only solutions with kinetic energies below a

cut-off energy 𝐸𝑐𝑢𝑡. In order to obtain the appropriate value of 𝐸𝑐𝑢𝑡 for calculations

on Nb3Sn, Self Consistent Field (SCF) calculations of the system total energy with

different values of 𝐸𝑐𝑢𝑡 were carried out. The computed total energy as function of

𝐸𝑐𝑢𝑡, is shown in fig. 6-1-right, where it is clear that an energy cut-off of 40 Ry is

sufficient in order to obtain well convergent calculations.

Next, being Nb3Sn a metallic system, the electronic occupation at the Fermi level is a

step, which makes integration and the use of plane-waves very difficult. By allowing 𝑘

points to be partially occupied through smearing, a smaller number of 𝑘 points yields

an accurate band structure. The smearing method used for this thesis work is the

Marzari-Vanderbilt smearing [147]. The smearing width 𝑑𝑒𝑔𝑎𝑢𝑠𝑠 has been calculated

by means of SCF calculations at different values of the variable 𝑑𝑒𝑔𝑎𝑢𝑠𝑠. It resulted

that convergence is achieved for 𝑑𝑒𝑔𝑎𝑢𝑠𝑠 = 0.065 Ry.
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6.2.2 Computation scheme

The ground state configurations of a Nb3Sn unit cell at different values of pressure,

starting from ambient pressure to 50 GPa, have been obtained via the quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [148]. With this algorithm,

the ground state configuration is obtained by searching the minimum of the poten-

tial energy surface that is closest to the starting configuration given as input. The

searched configuration corresponds to that for which the forces as defined by the

Hellmann-Feynman theorem (see Eq. (6.16)) are zero. The algorithm begins at an

initial estimate for the optimal configuration and proceeds iteratively to get a better

estimate at each stage, as described in [148].

This variable-cell calculation has been done with the variable cell_dofree=𝑥, 𝑦, 𝑧, that

allows only variations on the length of the lattice parameter along the three axes.

The lattice parameter obtained from the BFGS variable-cell relaxation at each value

of pressure has been given as input for the SCF calculations, from which the ground

state energy and Kohn-Sham eigenfunctions are computed. The band structure cal-

culation at each pressure is then calculated using the QE executable band.x along the

high- symmetry directions of the simple-cubic BZ of Nb3Sn, represented in fig. 6-2.

The coordinates of the symmetry points are (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1), for

Γ, X, M, and R, respectively.

Then, a non-SCF calculation has been made and its results have been processed for

the electronic density of states (e-DoS) calculation at each pressure by means of the

dos.x executable.

For the determination of phonon curves and phonon-related quantities as the electron-

phonon coupling introduced with the Eliashberg theory, the PHonon package, part

of the QE distribution, has been used. In particular the dynamical matrices in re-

ciprocal space have been calculated by means of the ph.x executable where a 2×2×2

q-point uniform grid, previously tested to be sufficient for convergence, has been em-

ployed. After the interatomic force constants (IFC) in real space have been calculated

with the q2r.x executable that takes as input the dynamical matrices produced by
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Figure 6-2: The first Brillouin zone for A15 structures.

ph.x. The next step, perfomed with the matdyn.x executable, was the calculation

of the phonon frequencies, the phonon DoS and the electron-phonon coupling, using

the IFC files calculated by q2r.x. A denser 𝑘-mesh of 24×24×24 was used in order

to obtain accurate estimations of the electron-phonon (el-ph) coupling constant 𝜆

at each given pressure. Finally, the critical temperature 𝑇𝑐 at each pressure value

has been determined by means of the lambda.x executable that uses the Allen-Dynes

modification of the McMillan formula (see chap. 1). Here, the Coulomb coefficient

𝜇* has been calculated at each pressure with the formula (1.12) and given as input

for the calculations.

6.3 Results of the calculations

6.3.1 Ambient pressure

The BFGS structural optimization of the Nb3Sn cell provides a value for the lattice

parameter 𝑎 = 5.309 Å at ambient pressure, in agreement with the previous result of

5.31 Å obtained by calculation based on the same method [110]. Also this value is in

fair agreement with the experimental value of 5.291 Å [91].
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Figure 6-3: Total energy of Nb3Sn in the simple cubic crystal structure as a function
of the volume, 𝑉 . The curve shows the fit of the DFT data.

Also, in order to obtain the bulk modulus and its derivative at ambient pressure,

SCF calculations at many values of the lattice parameter have been done. The total

energy as function of the volume is shown in fig. 6-3. The obtained points were fitted

to a the Murnaghan equation of state:

𝐸(𝑉 ) = 𝐸0 + 𝑉

(︃
𝐾0

𝐾 ′
0

)︃⎡⎢⎣
⎛⎜⎝𝑉0

𝑉

𝐾′
0

𝐾′
0−1

⎞⎟⎠+ 1

⎤⎥⎦− 𝐾0𝑉0

𝐾 ′
0 − 1 , (6.23)

where 𝐸0 is the minimum energy, 𝑉0 is the volume at the atmospheric pressure and 𝐾0

and 𝐾 ′
0 are the bulk modulus and its pressure derivative respectively. The obtained

values of the ground state lattice parameter (corresponding to the minimum of the

parabola in fig. 6-3), the bulk modulus and its pressure derivative are reported in

table 6.1 together with literature results.

The calculated electronic band structure and density of states of Nb3Sn at atmo-

spheric pressure are shown in fig. 6-4. In figure 6-4, the Fermi level is marked by

a dashed horizontal line and is set to 0 eV. 𝐸𝐹 falls close to a sharp peak in the

electronic DoS, with a value for the density of states of about 20 states eV−1 . This
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Table 6.1: The lattice parameter, bulk modulus and its derivative and the critical
temperature 𝑇𝑐 calculated at ambient pressure. Also literature values are reported,
from ref. [110,149,150]

𝑎 (Å) 𝐾0 (GPa) 𝐾 ′
0 𝑇𝑐 (K)

this work
BFGS vc-relax 5.308
Murnaghan fit 5.316 161.6 GPa 4.11
Allen-Dynes 𝑇𝑐 17.992

literature
experimental 5.29 154; 160 18.3
DFT-DFPT 5.31 161 4.15 20.7
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Figure 6-4: The electronic band structure and density of states of Nb3Sn calculated
at atmospheric pressure. The Fermi level is set to 0 eV (dashed orizontal line).

peak is generated by several nearly dispersionless bands crossing the Fermi level in

the Γ-M, Γ-R and M-R directions and deriving from the 4d states of Nb atoms. The

computed band structure and density of state is in agreement with those previously

reported [110].

The calculated phonon dispersion curves at ambient pressure are presented in

fig. 6-5. The calculated transverse acoustic (TA) branches show good agreement with

literature experimental measurements [59].
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Figure 6-5: Phonon dispersion and density of states for Nb3Sn at ambient pressure.

The critical temperature, calculated with the Allen-Dynes modification to the McMil-

lan formula is reported also in table 6.1, where it is possible to observe the good

agreement with experimental literature values. Instead greater values of 𝑇𝑐 were re-

ported from previous DFT-DFPT calculations, with a value of 20.3 K for a degauss

smearing width of 0.1 Ry. The result of this work is closer to the experimental value

for the reported 𝑇𝑐=18.3 K of the stoichiometric Nb3Sn, and is calculated using a

very small Fermi level smearing (degauss=0.005).

6.3.2 High pressure

Fig. 6-6 shows the calculated volumes up to 50 GPa together with the XRD results

(run 1). The calculated P-V curve has been fitted to the Rydberg-Vinet Equation of

State (EoS) [109] for isotropic compression:

𝑃 (𝑉 ) = 3𝐾0𝑥
(︀

− 2
3

)︀ (︁
1 − 𝑥

1
3
)︁

× exp
[︂3
2 (𝐾 ′

0 − 1)
(︁
1 − 𝑥

1
3
)︁]︂

(6.24)

where 𝑥 = 𝑉/𝑉0, 𝑉0 is the volume at the atmospheric pressure and 𝐾0 and 𝐾 ′
0 are

the bulk modulus and its pressure derivative respectively. The values obtained from
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Figure 6-6: Calculated volume of Nb3Sn as a function of pressure, compared with
XRD data.

Table 6.2: The values of the volume, bulk modulus and its first derivative at am-
bient pressure obtained from the Rydberg-Vinet fit of volumes computed by BFGS
variable-cell relaxation at different pressure.

𝑉0 (Å3) 𝐾0 (GPa) 𝐾 ′
0

ab-initio 149.65 167.92 4.23
run 1 XRD 147.80 ± 0.03 171 ± 4 4 ± 1
run 2 XRD 148.7 ± 0.1 169 ± 4 3.4 ± 2

the fit are reported in table 6.2, along with the values determined with the XRD

experiments of this thesis. The calculations slightly overestimate the volume values

(Δ 𝑉 ∼ 1.5 Å3). These discrepancies might originate from the pseudopotential used

for the calculations: several authors observed that GGA may overestimate the volume

for 4d and 5d metals [151]. However, the difference between calculated and experi-

mental 𝑉0 falls into the uncertainty of measurement: indeed, by comparing the two

runs results it is clear that 𝑉0 varies about 1 Å3. Moreover, the other parameters, 𝐾0

and 𝐾 ′
0 are consistent within the reported measurement errors.

The obtained lattice parameters have been used as inputs for the calculations of

both the phonon dispersion curves and electronic band structures along several high-
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Figure 6-7: Electronic density of states of Nb3Sn near the Fermi level at different
values of pressure.

symmetry directions in the Brillouin zone. Also the Electron Density of States (e-DoS)

for different values of pressure has been computed: this is plotted in fig. 6-7. It is

clear that the e-DoS at the Fermi level 𝑁𝐸𝐹
decreases as pressure increases. Thus,

squeezing the cell negatively affects 𝑁𝐸𝐹
. This quantity has particular relevance to

evaluate 𝑇𝑐: indeed it is proportional to the electron-phonon coupling parameter 𝜆

which appears in the Allen-Dynes modification of the McMillan formula for 𝑇𝑐 (see

formulas (1.15) (1.16)).

In fig. 6-8, the 𝜔𝑙𝑛 quantity that appers in the definition of the e-p coupling parameter

of Eq. (1.16) is reported as a function of pressure: The plot shows the commonly

expected lattice hardening with increasing pressure. However, some instabilities are

present at low pressures. Here it is worth to stress that the structure of the sys-

tem at all the pressure values has been determined by keeping the system cubic and

the atoms fixed in their positions in the cell. This means that the relaxation of the

structure has only affected the length of the lattice parameter, without change in the

relative position of the atoms. As EXAFS experiments pointed out, at low pressure

a dimerization of the Nb chains is present, and this has been also detected with XRD

experiments as a compressibility anomaly. So the calculated instabilities can origi-
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Figure 6-8: 𝜔𝑙𝑛 as a function of hydrostatic pressure. In the inset a zoom at low
pressure is shown.

nate from neglecting the possibility of atomic displacements in the model. However,

they are a clear sign that at low pressures these computations are able to capture the

presence of an anomalous structural behavior.

In fig. 6-9, a plot of 𝑇𝑐 as a function of pressure is reported. Above 10 GPa, calcu-

lations show that 𝑇𝑐 decreases linearly with pressure at a rate of -1.5 K GPa−1, in

agreement with the value of -1.4 K GPa−1 reported in literature for a single crystal

of Nb3Sn in the tetragonal phase [86].

Several oscillations are present in 𝑇𝑐 at low pressure, in the range 0-6 GPa. The plot

contains also 𝑇𝑐 calculated by fixing 𝜔𝑙𝑛 and < 𝐼2 > or 𝑁𝐸𝐹
at their atmospheric

pressure values. When the 𝜔𝑙𝑛 is fixed, it is evident that the overall behavior of 𝑇𝑐 is

mainly dictated by electronic contribution, whereas the low pressure instabilities are

related to the above described phonon anomalies, therefore must be closely related

to lattice stresses and squeezing.

Finally, since HP-XRD experiments have pointed out anomalies in the compress-

ibility of the system, the pressure effects on the elastic constants have been studied.

Indeed, from the phonon dispersion curves, one can infer information about the elastic
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Figure 6-9: The critical temperature 𝑇𝑐 calculated as a function of hydrostatic pres-
sure (black line). The electronic and vibrational contributions have been separated
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constants. In fact, in a perfect crystal the elastic constants can be directly obtained

from the slopes of the acoustic branches in the long wavelength limit (|q| → 0). The

relation between the sound velocity 𝜈𝑠 along a given direction and the corresponding

elastic constant 𝐶𝑖𝑗 is 𝐶𝑖𝑗 = 𝜌𝜈2
𝑠 , where 𝜌 is the density of the crystal. In particular,

for a cubic system, 𝐶11 and the shear moduli 𝐶44 and 1
2(𝐶11 −𝐶12) (see appendix B),

the following relations hold:

𝐶11 = 𝜌

(︃
lim
𝜉→0

𝜕𝜈|𝜉00|𝐿(𝑞)
𝜕|𝜉|

𝑎0

)︃2

= 𝜌𝜈2
𝑠,|𝜉00|𝐿, (6.25)

𝐶44 = 𝜌

(︃
lim
𝜉→0

𝜕𝜈|𝜉00|𝑇 (𝑞)
𝜕|𝜉|

𝑎0

)︃2

= 𝜌𝜈2
𝑠,|𝜉00|𝑇 , (6.26)

1
2 (𝐶11 − 𝐶12) = 𝜌

(︃
lim
𝜉→0

𝜕𝜈|𝜉𝜉0|𝑇 (𝑞)
𝜕|𝜉|

𝑎0

)︃2

= 𝜌𝜈2
𝑠,|𝜉𝜉0|𝑇 , (6.27)

where 𝜈𝑠,|𝜉00|𝐿, 𝜈𝑠,|𝜉00|𝑇 and 𝜈𝑠,|𝜉𝜉0|𝑇 are the longitudinal and the transverse velocity of

sound in the [𝜉00] direction and the transverse velocity of sound in the [𝜉𝜉0] direction,

𝜉 is the phonon wave vector coordinate renormalized by a factor 𝑎0

2𝜋 , 𝑎0 is the lattice
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Figure 6-10: The behaviour of the elastic constants in cubic Nb3Sn as a function of
hydrostatic pressure.

parameter of the cubic cell, and 𝜌 is the mass density of the material. The calculated

elastic moduli at different pressures are shown in fig. 6-10.

The traditional mechanical stability conditions in cubic crystals on the elastic con-

stants are known as: 𝐶11 > 0, 𝐶12 > 0, 𝐶11 − 𝐶12 > 0, and 𝐶11 + 2𝐶12 > 0 [152]. It

is obvious from the plot that all the elastic constants of Nb3Sn in the pressure range

(0-50 GPa) satisfy these traditional stability conditions, meaning that the cubic phase

of Nb3Sn is mechanically stable under pressure up to 50 GPa.

From the plot it is evident that all elastic constants of Nb3Sn increase almost mono-

tonically with an increase of pressure. The effect of pressure is more pronounced in

𝐶11 than in 𝐶44, as recently pointed out by Reddy et al. [10]. Generally, elastic con-

stants 𝐶11 reflect the stiffness to uniaxial strains along the three spatial directions.

So, it can be concluded that Nb3Sn becomes more and more incompressible with

increasing pressure. However, the effect of pressure on shear modulus 𝐶44 is lighter,

which indicates that the resistance to shear deformation of Nb3Sn increases slower

than that to an axial compression with the increase of pressure.
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Figure 6-11: The difference between a linear fit at pressure below 6 GPa and the
calculated elastic constants.

Moreover, it is possible to observe that all the computed elastic constant at low pres-

sure show a non linear behaviour. To evidence this very small effect linear fits of the

different elastic constant curves in the low pressure region (0-6 GPa) have been done.

The difference between the fit and the calculated data are reported in fig. 6-11. In

particular a change of slope of all the elastic constant is found above 6 GPa.

The behaviour of the elastic constants as function of the pressure obtained in this

work is in agreement with that reported by [10], in the fact that both works show

an anomalous behaviour of the elastic constants below 10 GPa, also if the change of

slope is opposite (see fig. 6-12).

The anomalous behaviour of elastic constants at low pressure is experimentally sup-

ported by the HP-XRD experiments of this thesis, where a change in the compress-

ibility of the material has been observed in the same pressure range (see chap. 4).

In this computational work a model for the calculation of the electronic and

phonon structure as a function of an applied pressure has been proposed. To our

knowledge, this calculation represents the first attempt to compute phonon disper-

sion curves of Nb3Sn as a function of pressure. From phonon dispersion curves it
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Figure 6-12: The elastic constants calculated by Reddy et al. [10]

has been possible to obtain the evolution of the elastic constants with pressure. The

behaviour of the elastic constants is in agreement with previous computations by

Reddy [10]. Also the evolution of calculated volume versus pressure is consistent

with the experimental trend, obtained by HP-XRD measurements in chapter 4.2.2.

Finally the 𝑇𝑐 versus pressure evolution has the same trend as that obtained experi-

mentally and reported in literature. Except for some oscillations at very low pressures,

very likely resulting from computational problems not yet fully understood, a small

jump towards lower 𝑇𝑐 has been obtained between 5 and 6 GPa, originating from a

slight softening of phonon modes at these pressures. The jump on 𝑇𝑐 and the elastic

constants non linearities occur in the same pressure range here and also in the same

region where an anomaly in the compressibility has been observed with HP-XRD

experiments.

From the above discussion, with the support of the experimental results of this

thesis and so far available in the literature, the results of these computations give

confidence on the model proposed as a starting point for further deeper studies.
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Chapter 7

Conclusions

Nb3Sn is the most widely used superconductor for high magnetic field applica-

tions. Although it has been known since long time, the effect of an applied stress

on its superconducting and structural properties are still not fully understood. The

main results obtained in the past have been discussed in chap. 2 and here can be

recalled with the following few points: (i) Nb3Sn is a LTS superconductor with a

maximum 𝑇𝑐 = 18.3 K and high upper critical magnetic field, above 20 T at 4.2 K;

(ii) the high critical temperature with respect to the other LTS has been explained to

originate from the peculiar arrangement of the Nb atoms that, forming non intersect-

ing and orthogonal chains along the faces of the cubic cell of the material, produces a

peak in the electronic density of states at the Fermi level, (iii) this material exhibits

a structural phase transformation when cooled below ∼40 K that affects negatively

the superconducting properties, (iv) the cubic-tetragonal and superconducting tran-

sitions are correlated and, when the latter comes before the former, the material

does not change its structure; (v) the structural transition has been observed only

on quasi-stoichiometric samples without additional impurities, (vi) above the struc-

tural transition precursor effects have been observed in all samples independently of

its composition and purity, that can lead to the transition or not depending on the

material; (vii) an hydrostatic pressure (up to 20 kbar) negatively affects 𝑇𝑐.

Many efforts have been addressed to study the effect of applied axial or trans-
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verse stresses on technological wires, but the effects of an hydrostatic load on the

material properties have been poorly studied and the few results date back to the

seventies [86, 87].

Now available diamond anvil cells which allow to reach pressures of hundreds

GPa, the nowadays high resolution synchrotron powder diffraction and the XAFS

capabilities as a local probe technique, that at the time of most part of investigations

reported in literature was only at its first applications and was not applied to this

material, have been exploited in this thesis work to study the structural properties

of Nb3Sn as a function of an applied pressure (up to ∼ 50 GPa) and as a function of

temperature (down to ∼ 80 K).

In particular, the PV curve up to ∼ 50 GPa has been for the first time determined

from diffraction measurements of technological samples. XRD results show a com-

pressibility anomaly at 5-6 GPa, while the crystal structure remains cubic in the entire

range of pressures investigated. The anomaly has been evidenced by means of a peak

position analysis on only three diffraction peaks as a plateau in the pressure evolution

of the position difference between pairs of peaks (fig. 4-8). The more sophisticated

analysis based on the Rietveld method allowed also to compare the compressibility

of Nb3Sn to those of Cu and Ta (present in the samples because they have been

extracted from technological wires), that are known to not show any structural par-

ticular behavior as a function of pressure in the investigated pressure range except

for the obviously isotropic compression. The compressibility of Nb3Sn is seen, from

this comparison, to have an anomaly at low pressures (fig. 4-11).

More investigation on the structural properties has been done by means of XAFS

spectroscopy, that allowed us to observe the local structure around a Nb atom as a

function of pressure. This study has evidenced a pressure induced deviation from a

gaussian distribution of the Nb-Nb distances of first shell. The analysis carried out

by assuming the commonly used gaussian distribution of distances showed us that

Nb-Nb bonds (I and III shells) are characterized by a higher disorder when compared

to that of Nb-Sn bond (II shell). Moreover, the pressure evolution of the MSRD of
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the I and the III shells showed a discontinuity at about ∼ 9 GPa. The more sophis-

ticated analysis based on the Evolutionary-Algorithm Reverse Monte Carlo method

showed a bimodal distribution of the first shell distances (fig. 5-16). It has been

demonstrated [129] that this effect results from a dimerization of the Nb-Nb chain

(fig. 5-17).

Therefore the nature of the anomaly in the compressibility observed with the XRD

technique, which allows to study only the average structure of the material, is ex-

plained as an anticorrelated displacement of Nb atoms along the chains.

The aim of this thesis has been also to obtain the pressure dependence of the prop-

erties of the material by means of first principle calculations. The results at ambient

pressure match with the previously obtained results for the electronic band structure

and phonon dispersion relations [110]. Instead, the obtained results at high pressure

cannot be fully compared with existing works, in particular for the phonon structure

that has never been calculated as a function of pressure, as far as we know. However,

the results obtained are consistent with the few ones reported in literature [86, 87]

and with the experimental data obtained in this thesis work. The P-V plot obtained

and the overall trend of 𝑇𝑐 are in agreement with the experimental results (fig. 6-6).

Instabilities in the phonon dispersion curves result in instabilities of the critical tem-

perature 𝑇𝑐. They could be the signature of some structural effect, and in particular

the dimerization of Nb chains that within the proposed model cannot be taken into

account. Releasing the constraint of fixed Nb positions could lead to a more accu-

rate model, and eventually to a deeper understanding of the origin of the instabilities

and of the observed chain dimerization. This work motivates future calculations that

start from the proposed model and allow Nb atomic displacements from their nominal

position in the cell.

The presented results at high pressure have been obtained at a time in which the

interest towards the high pressure properties of A15 superconductors has turned on,

given the recent results on Nb3Al and Nb3Ga [7, 8]. These two materials showed a

plateau in the 𝑃 − 𝑉 curves and this behaviour has been interpreted by means of
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ab-initio calculations to be the effect of an electronic topological transition. At this

stage of the study it cannot be affirmed if there is such a transition on Nb3Sn from

our calculations, because they were carried out with the Nb atoms fixed in the cell. In

particular with our model we do not obtain such a transition. However, the proposed

model is a starting point. The initial choices of keeping the atoms fixed in the cell and

leaving only the lattice parameter to vary have been suggested by the computational

cost: more parameters to be evaluated correspond to more time consuming computa-

tions. The model proposed, however, is successful in the fact that it gives the overall

trend of the properties of Nb3Sn and hints phonon related instabilities in the same

pressure range of the detected dimerization chains and compressibility anomaly. The

XAFS experiment results, the last work of this thesis, suggested that to address the

presence of the phonon instabilities at low pressures could be a matter of allowing

the dimerization of Nb chains by adding some free parameters and justifies the need

for more time consuming computations.

Part of the results reported in this thesis about the high pressure XRD experi-

ments and first-principles calculations have been published [153] and two posters have

been presented at the Applied Superconductivity Conference 2016 (Denver, US) and

at the European Conference on Applied Superconductivity 2017 (Geneva, CH).

Finally, low temperature XRD investigations have pointed out new features, not

previously observed. In particular, a compressibility variation at ∼ 180 K (fig. 4-15),

likely to be related to the non-linear behaviour of the elastic modulus 𝐶44 [12], and a

change of slope of the 𝑐/𝑎 ratio at around 120 K as precursor effect of the tetragonal

transition (fig. 4-19), have been detected.

In conclusion, a great effort has been done to understand the structural phase

diagram of Nb3Sn as function of temperature and pressure separately. Going for-

ward, in addition to better understand what has already been seen, to complete the

picture it will be appropriate to study what happens when varying simultaneously
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the temperature and pressure so as to complete the phase-diagram of Nb3Sn on the

T-P plane.
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Appendix A

The Peierls distortion in 1D chain

A Peierls instability has been predicted by Rudolf Peierls in 1930 [154, 155] with

a theorem that states that a one-dimensional equally spaced chain with one electron

per ion is unstable as a regular array and can distort under certain conditions, such

as low temperatures. This distortion is manifested as alternating bond distances, an

effect called dimerization. Peierls predicted that this rearrangement of the ion cores

would produce a change of the periodicity of the chain, the opening of a band gap

at the Fermi surface of the new unit cell and a redistribution of the charge density,

that results having a periodical spatial variation. This periodic fluctuations in the

electron density is commonly called charge density wave (CDW).

The mechanism of the Peierls instability can be understood with the following

simple model.

Consider an electron system in a potential 𝑉 (𝑞). The effect of such a potential is to

introduce a density modulation 𝜌(𝑞) = −𝜒(𝑞)𝑉 (𝑞) [156], where 𝜒(𝑞) is the polarization

function:

𝜒(𝑞) = 1
𝑁

∑︁
𝑘

𝑓(𝐸𝑘+𝑞) − 𝑓(𝐸𝑘)
𝐸𝑘 − 𝐸𝑘+𝑞

. (A.1)

Here 𝐸𝑘 and 𝑓(𝐸𝑘) are the band energy and the Fermi distribution function of an

electron with wave number 𝑘. At temperature 𝑘𝐵𝑇 ≪ 𝐸𝐹 it can be demonstred that,
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Figure A-1: Up: a linear chain of identical atoms equally spaced; Down: the chain of
atoms after the Peierls distortion.

if 𝑞 ≃ ±2𝑘𝐹 , 𝜒(2𝑘𝐹 ) has a logaritmic divergence [154]:

𝜒(2𝑘𝐹 ) = ln
(︂
𝐸𝐹

𝑘𝐵𝑇

)︂
, (A.2)

while it has been expected to descrease with increasing the temperature. Thus a

1D electron system becomes unstable at low temperatures in presence of a potential

𝑉 (2𝑘𝐹 ). Then, if the electronic system considered is that of a crystal lattice, also

a lattice distortion with period 2𝑘𝐹 provides the electron system with the potential

𝑉 (2𝑘𝐹 ).

For simplicity from now on a linear chain of atoms with a regular spacing 𝑎 (fig. A-1-up)

is considered. In the case of one orbital per cell, i.e. if there exist an electronic band

partly filled, the band energy obtained by the tight-binding method is expressed by

the dispersion relation:

𝐸(𝑘) = 𝐸0 + 2𝛾 cos(𝑘𝑎), (A.3)

where 𝐸0 and 𝛾 are the energy of the isolated atom and the overlap integral that

accounts for the interaction between nearest neighbors. The energy curve of Eq. (A.3)

is plotted in fig. A-2-left, where also the Fermi wavevector kF = 𝜋/2𝑎 of the sytem
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is shown.

Peierls supposed that in this ideal 1D chain of atoms a lattice distortion can occur,

such that every ion moves closer to one neighbor and further away from the other of

the some amount u, as in fig. A-1-down. This means that the symmetry of the chain

is reduced to that of a chain with spacing 2𝑎. This distortion provides the electron

system the potential 𝑉 (2𝑘𝐹 ) which make the system unstable at low temperatures.

This rearrangement of the atoms in the chain produce a density modulation with

wave number 2𝑘𝐹 , the so-called CDW.

The doubling of the lattice constant causes a halving of the vectors in reciprocal space,

k, resulting in a decrease of the size of the Brillouin zone, and hence to a backfolding

of bands at the new Brillouin zone boundaries, as depicted in fig. A-2-centre.

At the point where the backfolded bands intersect a band gap opens up. Indeed, by

applying the tight-binding method to the dimerized chain the following dispersion

curves for the bands are obtained:

𝐸(𝑘) = 𝛼±
√︁
𝛾2

1 + 𝛾2
2 + 2𝛾1𝛾2 cos(𝑘2𝑎), (A.4)

where 𝛾1 and 𝛾2 are the new overlap integrals dependent upon the magnitude of u.

0                                                                                                     π/2a

E(
k)  

-π/a     -π/2a      0        π/2a     π/a
α+2γ

α-2γ

α

  0                    π/2a    0                π/2a
α+(γ1+γ2)

α+(γ1-γ2)

α-(γ1-γ2)

α-(γ1+γ2)

α Δ  

0                                                                                                     π/2a
Figure A-2: Electron energy in linear chain. Left: uniform spacing 𝑎. Center: uniform
spacing 2𝑎 with two atoms per cell. Right: Dimerized chain.
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From (A.4) it results that:

𝐸 = 𝛼± (𝛾1 + 𝛾2) at k = 0 and (A.5)

𝐸 = 𝛼± (𝛾1 − 𝛾2) at k = 𝜋

2a
. (A.6)

At the Fermi level of the original lattice a gap Δ = 2(𝛾2 −𝛾1) opens up as can be seen

in fig A-2-right. In this case all states raised by the dimerization are empty, and all

states lowered are occupied, so there is evidently a net reduction in electron energy

with respect to the original system.

A necessary condition for a Peierls transition to be observed is that the gain in

energy produced by the dimerization is greater than the elastic energy of the lattice

that opposes to the distortion. In particular the kinetic energy 𝐾 of the electrons

filling the lower band can be expressed as [154]:

𝐾 ∼ −Δ𝜒(2𝑘𝐹 ) (A.7)

This is proportional to the displacement 𝑢, that enters in the overlap integrals 𝛾1 and

𝛾2. On the other hand, the lattice energy 𝑈 should increase due to the distortion 𝑢

by the amount:

𝑈 ∼ 𝐶𝑢2, (A.8)

where 𝐶 is the elastic constant of the lattice. When the total energy of the system

becomes negative the Peierls transition takes place: this happens at a certain critical

temperature 𝑇𝑃 corresponding to the logaritmic divergence of 𝜒(2𝑘𝐹 ).

The Peierls distortion due to the opening of a gap on the Fermi surface can cause

various phenomena, among which the most common is the metal-insulator transi-

tion.When other mechanisms are produced at the Fermi surface there is a competition

between the different mechanisms that can give different effects. In the case of the

Nb3Sn, the opening of the Peierls gap subtracts electrons from the Cooper coupling,

thus lowering the critical temperature.
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Appendix B

Elastic constants

The property of solid materials to deform under the application of an external

force and to regain their original shape after the force is removed is referred to as its

“elasticity”. The external force applied on a specified area is known as stress, while

the amount of elastic deformation produced is called the strain. In this appendix,

the mathematics of elastic constants, the quantities that relates stress and strain, is

briefly discussed.

Stress, 𝜎, is defined as a force per unit area of a material and then it is measured

in Pa. In general there may be unequally applied stresses in all directions, and there-

fore the stress is a second order tensor with components 𝜎𝑖𝑗, where 𝑖, 𝑗 = 1, 2, 3. 𝜎𝑖𝑗

is stress acting in the 𝑖 direction on the plane perpendicular to the 𝑗 direction. An

example is illustrated in fig. B-1. Components of the stress tensor with repeating

indices, for example 𝜎11, are denoted as “normal” or “axial” stress while a stress com-

ponent with different indices is called a “shear” stress.

Strain, 𝜀, is defined as the ratio between the amount of the deformation in one direc-

tion and the original length in that direction and then it is a dimensionless quantity.

Also 𝜀 is a second order tensor with components 𝜀𝑖𝑗.

The stress tensor 𝜎 is expressed by the generalized Hooke’s law (also called “consti-

tutive relation”):

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 with 𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3. (B.1)
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Figure B-1: Stress components acting on the 1,2,3-planes.

The 𝑐𝑖𝑗𝑘𝑙 are the 81 components of the stiffness tensor 𝐶 (a fourth order tensor) and

are called elastic constants. An elastic constant measures the resistance of an object

to being elastically strained when a stress is applied to it. As a consequence of the

definition of stress and strain an elastic modulus is measured in Pa.

The tensor 𝐶 has three symmetry properties:

1. from the symmetry of the strain tensor 𝜀𝑘𝑙 = 𝜀𝑙𝑘, it is symmetrical with respect

to the last two indices:

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 (B.2)

2. from the symmetry of the stress tensor 𝜎𝑖𝑗 = 𝜎𝑗𝑖, it is symmetrical with respect

to the first two indices:

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 (B.3)

3. if the thermodynamic internal energy of the system 𝑈 is identified with the

strain energy, then the elementary strain energy per volume 𝜎𝑖𝑗𝑑𝜀𝑖𝑗 has to be

an exact derivative:
𝜕𝜎𝑖𝑗

𝜕𝜀𝑘𝑙

= 𝜕𝜎𝑘𝑙

𝜕𝜀𝑖𝑗

. (B.4)
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By substituting in (B.4) the definition (B.1) one obtain the third symmetry

property:

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗. (B.5)

Given the two first symmetry properties one has that:

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘. (B.6)

This means that the order of the first two indices (𝑖, 𝑗) and the next two indices (𝑘, 𝑙)

does not affect the elastic constants values. As there are six distinct values for the

group (𝑖, 𝑗) and six distinct values for the group (𝑘, 𝑙), there remain 36 independent

elastic constants.

Finally, by applying the third symmetry properties one has also that:

𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑘𝑙𝑖𝑗. (B.7)

This means that the permutation of the (𝑖, 𝑗) and (𝑘, 𝑙) groups of indices does not

modify the elastic constants values. This reduces the number of the independent

elastic constants values to 21. Then, a general anisotropic elastic material has 21

elastic constants. This number can be further reduced of an amount that depends on

the symmetry of the considered crystal.

In the tensorial equations above written the four indices components of the stiffness

tensor appear. To simplify the notation is introduced the so-called Voigt notation

which replaces the four indices 𝑖, 𝑗, 𝑘, 𝑙 with the two indices 𝐼, 𝐽 , according to the

rules:

𝐼 = 𝑖 for 𝑖 = 𝑗, 𝐼 = 9 − (𝑖+ 𝑗) for 𝑖 ̸= 𝑗 and (B.8)

𝐽 = 𝑘 for 𝑘 = 𝑙, 𝐽 = 9 − (𝑘 + 𝑙) for 𝑘 ̸= 𝑙 (B.9)
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Elastic moduli of a cubic system

In a cubic system the number of the independent elastic constants is reduced to

3 due the symmetry of the system since in this case the three spatial directions are

equivalent. They are:

• 𝑐11(=𝑐22=𝑐33): constant for axial compression, that is when one pushes on one

face and the displacement is in the same direction as the force. For a cubic

crystal this mudulus is clearly the same in all the three spatial directions. In

these cases, for example, a stress 𝜎11 results in a strain 𝜀11 along the same axis,

as depicted in fig. B-2-left;

• 𝑐12(=𝑐13=𝑐23): constant for dilatation on compression, that is when one push/pull

the cube in the 𝑖 direction and the cube bulges/contacts in the 𝑗 and 𝑘 direc-

tion. Clearly, the amount of bulging will be the same in both 𝑗 and 𝑘 direction

(because it is a cube), and when an identical force is applied along the 𝑗 or

𝑘 direction, the other two dimensions will bulge or contract in the same way.

One example, depicted in fig. B-2-centre, is when a axial stress 𝜎11 results in a

strain 𝜀22 along the pependicular axis;

• 𝑐44(=𝑐55=𝑐66): shear constant. They are the same because sheering one plane in

a cube is equivalent to sheering an orthogonal plane. In these cases, for exam-

ple, a stress 𝜎23 results in a strain 𝜀23 across a face, as depicted in fig. B-2-right.

For single crystals the elastic constants can be related to the three commonly known

elastic moduli: the bulk modulus 𝐵 and the shear moduli 𝜇1 and 𝜇2.

The bulk modulus 𝐵 represents the resistance of an object to be compressed or

dilatated of the same amount in the three spatial directions and is given by:

𝐵 = 𝑐11 + 2𝑐12

3 . (B.10)

In this case the deformation that results is a change in volume with the same com-

pression or dilatation as in fig. B-2-left in the three spatial directions.
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Figure B-2: The scheme of the types of deformation of a cube seen from a face: (left)
compression, (center) dilatation on compression, (right)shear deformation. Below
each scheme: the constitutive relation written with the four indices notation and
with the Voigt notation.

The shear moduli 𝜇1 and 𝜇2 are given by:

𝜇1 = 𝑐11 − 𝑐12

2 (B.11)

𝜇2 = 𝑐44. (B.12)

They account for the shear deformations, which does not change the volumes. They

refer to the deformations as in fig. B-2-center and right, respectively.
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Appendix C

Diamond anvil cell

This appendix surveys the apparatus and methods that have been used to carry

out the investigations at high pressure of this thesis work.

High pressure conditions have been generated using the “diamond anvil cell” (DAC).

The DAC was invented in 1959 in the USA [157,158] and it is at present the device

that allows to generate the highest static pressure reachable.

The basic principle of a Diamond Anvil Cell (DAC) is very simple. A sample, placed

between the flat parallel faces of two opposed gem-quality single crystal diamond

anvils, is subjected to a pressure when a force pushes the anvils together (fig. C-1).

Since pressure is roughly defined by 𝑃 = 𝐹/𝐴, the smaller the area 𝐴 of the anvil

faces, the higher is the pressure 𝑃 reached by the sample in the DAC for an equivalent

value of applied force F. One of the diamond anvils is mounted on the end of a sliding

piston, while the other is stationary on a cylinder (see fig. C-2). The pressure in the

sample chamber is made hydrostatic, or close to it, by surrounding it with a pressure

transmitting medium confined by a gasket. A small pressure gauge is also embedded

in the pressure trasmitting medium to allow the measurement of the pressure inside

the chamber. As pressure is exerted the gasket deforms plastically and the volume

of the cavity becomes smaller increasing in this way the pressure in the experimental

chamber. The pressure limit is controlled by the ability of the diamonds, gasket and

diamond-backing plates to withstand the applied stresses.
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metallic gasket

experimental chamber
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diamond anvils

sample

pressure gauge

pressure transmitting medium

Figure C-1: Opposed diamond anvil configuration, with a metallic gasket for sample
confinement in a pressure medium; the basic part of the DAC.

From the above description it is clear that the elements that play the principal

roles in experiment performed in a DAC are the diamonds, the gasket and the pres-

sure transmitting media.

Diamond

Diamond anvils are particularly indicated for experiments at high pressures be-

cause diamond is the hardest substance known, and transparent to electromagnetic

radiation over a wide energy range (infrared, visible, near-ultraviolet (energy 6 5 eV

and hard X-rays with energy > 10 keV).

Great care must be taken in centering and aligning the two anvils to avoid premature

failure of the diamonds at high pressure. The adjustment procedure is made under a

microscope: the concentricity is achieved moving the support of the piston diamond

slightly to superimpose the two polygons corresponding to the face of the anvils; the

parallelism is checked by observing the interference fringes that appear when the two

anvils are not parallel. The probe radiation passes through a conical hole drilled in

the backing plate. During the pressure increase, the diamond undergoes a very strong

elastic deformation (cupping) near the sample region. Due to this deformation, the
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force transmitted to the sample through the diamond is attenuated and continuing

to increase the pressure can lead to the breaking of the diamonds.

Gasket

The use of a gasket for the containment of the pressure transmitting medium

was first demonstrated by Van Valkenburg [159]. The gasket, apart from providing

containment for the pressure medium, extrudes around the diamonds and acts as a

supporting ring, preventing failure of the anvils due to the concentration of stresses

at the edge of the anvils faces.

The preparation of the gasket is a key factor for the success of an high pressure ex-

periment.

The gasket is a metallic foil. First of all the selection of the material gasket has to

be done. The better choice is a material with a high bulk modulus.

Then, the gasket is pre-indented to a thickness slightly greater than the final thick-

ness, which depends on the maximum pressure that is planned to be applied. The

pre-indentation is important to avoid large deformation and instability of the hole,

by the matching the gasket to the shape of the anvils culets.

A cavity, the experimental chamber, is then drilled in the center of the gasket and

filled with the sample, the pressure gauge and the pressure-transmitting medium. The

diameter of the gasket’s hole depends on the chosen pressure medium. In case of a

solid pressure medium (e.g. NaCl, KCl, KBr), the ideal size is a little bit smaller than

half of the diamond culet size. In the case of a very compressible pressure medium

(e.g. He, Ne, N2 , H2 ), the hole’s diameter should be 3/4 of the total culet’s size

because the size of the hole dramatically decreases with the pressure rise. In this

work, the gasket’s holes have been drilled by spark erosion.

Pressure transmitting media

Pressure transmitting media can be liquids (alcohol, alcohol mixture (Methanol -

Ethanol 4:1), silicone oil), soft solids (alkali halides), hard solids (MgO, Al2O3 , etc)
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and condensed gases (He, Ne, N2 , Ar, etc). The adopted transmitting medium must

not chemically react with the sample and must not interfere with the measurement of

the sample. A fluid pressure transmitting medium supports no shear and transmits

an hydrostatic pressure to the sample. With the increasing pressure the transmitting

medium solidifies. Beyond this point, shear stresses appear and the pressure across

the experimental volume becomes inhomogeneous. Gases, are the best pressure media

for room and low temperature experiments. In particular He is considered to be the

best pressure-transmitting medium. He is the element with the highest freezing pres-

sure (11.6 GPa at 300 K [160]) and even in its solid phase, it releases stress through

recrystallization [161]. In 2001 Takemura [162] reported that good hydrostatic con-

ditions are maintained in solid helium to at least 50 GPa.

There are different ways in which the force-generating and the anvil-alignment

mechanisms can be designed. Accordingly, there are different type of DAC. For this

thesis work the DAC used are membrane Diamond Anvil Cells.

C.1 Membrane Diamond Anvil Cell

In a membrane DAC the force is transmitted to the piston through a pressure ex-

erted by a gas (see fig. C-2). The idea of transmitting the force by hydraulic way was

first suggested by Besson and Pinceaux [160] starting from a piston-cylinder system

subsequently replaced by a sealed and deformable membrane filled with He [163].

The thrust mechanism in a membrane DAC is a metallic toroidal membrane that will

be inflated with helium supplied by an external bottle, thus exerting a finely tuned

pressure on the piston. The applied uniaxial compression is then transformed into an

(quasi-) isotropic pressure on the sample via the deformation of the gasket. The ap-

plied force is proportional to the pressure in the membrane (see for example fig. C-3.

Problems with the cell may be detected from the plot of the pressure measured in

the cell as function of the pressure in the membrane. Non-linearities in this plots are

a sign of impending trouble, eventually leading to diamond breakage. For this type
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Figure C-2: Schematic representation of the components of a membrane diamond
anvil cell. The membrane is filled with helium through a capillary and transmits the
force to the piston.
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Figure C-3: Plot of the pressure measured in the cell as a function of the pressure in
the membrane, in the case of the HP-XRD experiment described in sec. 4.2.2, run2.
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of cells, the pressure rise (drop) can be easily tuned by increasing (decreasing) the

pressure of the membrane. Moreover, with this type of cell there is the possibility to

remotely control the pressure by the means of an automatic pressure driver. In this

way, experiments that require the placement of the cell in poorly accessible locations

(e.g. experiment in an experimental hutch of a synchrotron) can be easily performed.

C.2 Pressure calibration

To measure the pressure inside the experimental chamber a pressure gauge is also

embedded in the pressure trasmitting medium together with the sample. A standard

used method is that of the ruby fluorescence method, and it is employed also for this

thesis work.

The ruby fluorescence method has been introduced by Forman et al. [164] in 1972.

In this method a tiny chip of ruby, 5-10 𝜇m in dimension, is placed in the pressure

medium along with the sample, and the fluorescence is excited by a He-Cd laser line.

The fluorescence signal obtained consists of two lines, 𝑅1 and 𝑅2, with wavelengths

694.14 and 692.7 nm, respectively, at atmospheric pressure. Under pressure these shift

to higher wavelengths and the shift is nearly linear with pressure. For the calibration

of pressure different model have been constructed. In this thesis the model proposed

by Dorogokupets and Oganov [102] is followed. Pressure is obtained from the 𝑅1 line

shift of ruby luminescence, in according to the following formula:

𝑃 = 1884
(︃
𝜆− 𝜆0

𝜆0

)︃(︃
1 + 5.5𝜆− 𝜆0

𝜆0

)︃
, (C.1)

where 𝜆0 is the wavelength of the 𝑅1 fluorescence line of the ruby at room temperature

and ambient pressure (694.14 nm). This model represent correctly the 𝑃 (𝜆) curve in

the large pressure range (0-300 GPa) by a single equation and it is consistent with

room-temperature isotherms of Al, Au, Cu, Pt, Ta and W, treated often as reference

substances.
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Figure C-4: Plot of the fluorescence signal obtained at pressure 4.77 GPa.

In the experiments of this thesis, the ruby fluorescence signal has been collected every

time the pressure was changed and then was fitted with two Lorentzian curves (one

for each peak) to obtain the peak position for the two ruby line, 𝑅1 and 𝑅2. An

example is in fig. C-4. From fit, the 𝑅1 peak is at 695.87 nm, then applying the

Eq. (C.1), the pressure of 4.77 GPa is obtained. This is an example of how all the

values of pressure have been evaluated in this thesis.

The determination of the pressure relative to each measurement has been done as

follows. The ruby fluorescence signal has been collected before and after each mea-

surement. The pressure values reported in all the analysis refer to the measurements

made before each measurement. The relative error has been evaluated as the ratio

between half of the difference of the pressure values before and after and is approxi-

mately between 1% and 4%.
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