
 UNIVERSITÀ DEGLI STUDI

PhD's thesis XXX Cycle

On the Renormalization of the Singlet Extension of the Standard Model

A Theoretical Study of High Energy Physics

Gabriele Ria

Supervisor: Davide Meloni
Program Coordinator: Giuseppe Degrassi
Department of Mathematics and Physics
Università degli Studi Roma Tre
Rome, Italy 2017

Contents

Introduction 3
1 Model Setup 5
1.1 The Scalar Lagrangian 5
1.2 The Yukawa Lagrangian 10
1.3 Gauge-Fixing and Ghost Lagrangian 12
1.4 Theoretical and Experimental Constraints 14
1.4.1 Theoretical Constraints 14
1.4.2 Experimental Constraints 15
1.4.3 Global Constraints 17
1.5 Parameter Values 18
2 Singlet Decay Widths at Tree-Level 21
2.1 LO Decay Width to Gauge Bosons 22
2.2 LO Decay Width to Fermions 23
2.3 LO Decay Width to Higgs Bosons 23
2.4 LO Decay Width to massless Gauge Bosons 23
2.5 LO Total Decay Width and Branching Fractions 25
3 Renormalization of the SSM 29
3.1 Renormalization Schemes 33
3.2 Renormalization Conditions and Counterterms 36
3.2.1 Explicit Form of the OS Counterterms 38
3.2.2 Explicit Form of the iOS Counterterms 40
3.2.3 Explicit Form of the MF Counterterms 41
3.2.4 Equivalence of the MF and iOS Schemes 42
4 Singlet Decay Widths at the Next-to-Leading Order 44
4.1 NLO Decay Width to Gauge Bosons 45
4.2 NLO Decay Width to Fermions 50
4.3 NLO Decay Width to Higgs Bosons 55
4.4 NLO Total Decay Width 56
4.5 NLO Application of the MF renormalization scheme 58
5 Numerical Results 60
5.1 Dependence on s_{α} and w 60
5.2 Dependence on m_{S} 63
5.3 A Comment on the Gauge Dependence 71
Conclusions 73
Appendix 75
A - SSM Tadpole Amplitudes 75
Tadpole for the H Field 75
Tadpole for the S Field 76
B - SSM Self-energy Amplitudes 76
Self-Energy for the W Boson 76
Self-Energy for the Z Boson 77
Self-Energy for the $\mathrm{Z} \gamma$ Mixing 78
Self-Energy for the γ Boson 78
Self-Energy for the H Boson 79
Self-Energy for the S Boson 80
Self-Energy for the HS Mixing 81
Self-Energy for the Top Quark 83
C - SSM Three Point Functions 83
One-Loop Corrections to SZZ Vertex 83
One-Loop Corrections to SWW Vertex 88
One-Loop Corrections to SHH Vertex 92
One-Loop Corrections to Stt Vertex 94
D - Loop Integral Expressions: $\mathcal{A}_{0}, \mathcal{B}_{0}, \mathcal{B}_{00}, \mathcal{B}_{1}$ 97

Introduction

In June of 2012, the LHC experiment [1, 2] has finally completed the spectrum of the Standard Model with the discovery of the Higgs boson, predicted in the 60's by Higgs [3, 4], Englert, Brout [5], Guralnik, Hagen and Kibble [6]. However, the structure and the physics behind the Higgs sector are not completely clear and this represents a possible gateway to the manifold conceivable extensions of the Standard Model (SM). One of the simplest renormalizable enlargement of the Higgs sector is constructed by adding to the SM Lagrangian one additional spinless real electroweak singlet, which develops its own vacuum expectation value $[7,8,9,10,11,12,13,14]$.
Beside being easy to implement, the physics of a scalar singlet has received a lot of attention in the recent years for several reasons; among them, it can help in solving the issues related to the metastability of the electroweak vacuum $[15,16]$ if the Higgs potential receives a correction due to new physics which modify it at large field values [17] and it could provide a door to hidden sectors [18] to which it is coupled. The singlet model has the advantage of depending on relatively few parameters and this implies a feasible experimental study at the LHC for the analysis of the new physic effects in the Higgs boson couplings, searches for heavy SM-like Higgs bosons [19, 20] and direct searches for resonant di-Higgs production [21, 22, 23]; in the absence of linear and triple self-interactions, this model possesses a \mathbb{Z}_{2}-symmetry and the singlet can be a viable candidate for dark matter, although for masses somehow larger than $500 \mathrm{GeV}[24,25]$ the couplings of the dark matter to the known particles occur only through the mixing of the singlet field with the SM Higgs boson. Without a \mathbb{Z}_{2}-symmetry a strong first order electroweak phase transition is allowed and additional sources of $\mathcal{C P}$ violation occur in the scalar potential. In this thesis we limit ourselves to a situation where the new singlet s^{0} communicates with the $S U(2)_{L}$ doublet ϕ only via a quartic interaction of the form,

$$
\kappa\left(\phi^{\dagger} \phi\right)\left(s^{0}\right)^{2} .
$$

This implies that the would-be Higgs boson of the SM mixes with the new singlet leading to the existence of two mass eigenstates, the lighter of which (H) is the experimentally observed Higgs boson whereas the heaviest one (S) is a new state not seen so far in any collider experiments. We call this model the Singlet Extension of the SM (SSM). Since only ϕ is coupled to ordinary matter, the main production mechanisms and decay channels of H and S are essentially the same as those of the usual SM Higgs particle, with couplings rescaled by quantities which depend on the scalar mixing angle, called α, whose bounds have been
discussed in details in $[10,11,26,27]$. For masses larger than $\gtrsim 200 \mathrm{GeV}$, the most important decay channels of the heavy state S are those to a pair of vector bosons $S \rightarrow V V$ and, when kinematically allowed $\left(m_{S}>2 m_{H}\right)$, to a pair of lighter scalars and top quarks, $S \rightarrow H H, \bar{t} t$. With the run II at LHC, the exploration of the scalar sector is expected to reveal more details. So, the comparison between theory and data requires precise predictions obtained through higher-order calculations. To this aim, we evaluated the radiative corrections to the main decay rates $\Gamma\left(S \rightarrow Z Z, W^{+} W^{-}, \bar{t} t, H H\right)$ and studied in details their dependence on the singlet mass m_{S} as well as on the mixing angle α and the singlet vev w. Interestingly enough, the SSM scalar sector implies no natural way of defining the renormalized scalar mixed mass (or alternatively, the scalar mixing angle) and the non-diagonal fields through a physically motivated renormalization scheme. As a consequence, it is possible to construct different prescriptions to renormalize the non-diagonal scalar sector; nevertheless, we have to pay attention to their definitions since some of them manifest a gauge dependence in the physical observables. To compute the next-to-leading order (NLO) EW decay rates, we use the "improved on-shell" renormalization scheme which is totally gauge-invariant [29]. To give a comment on the gauge dependence effect on the renormalized decay widths we also consider a second scheme, called " minimal field", which exhibits a gauge dependence [29]. The minimal field scheme is defined by renormalization conditions which need the introduction of a renormalization scale μ_{R}. We prove that it is possible to obtain a gauge independent result by fixing this scale at $\mu_{R}^{2}=\left(m_{H}^{2}+m_{S}^{2}\right) / 2$ since, for this specific value, the improved on-shell and the minimal field schemes are equivalent.
The main result of this thesis is that for the singlet scalar mass range $200 \leq m_{S} \leq 1000$ GeV the gauge independent EW corrections to the decay widths reach a maximum of $\mathcal{O}(6 \%)$ in the $W^{+} W^{-}$channel, $\mathcal{O}(5 \%)$ in the $Z Z$ channel and $\mathcal{O}(4 \%)$ in the $H H, t t$ channels for masses lower than 450 GeV and almost independently on the mixing angle α (the $H H$ channel is the only one to show a more pronounced mixing dependence in the mass region for which its NLO correction is maximal), whereas for larger masses ($m_{S} \gtrsim 700 \mathrm{GeV}$) these corrections take negative values. Besides, we discuss the impact of the QCD corrections on the $S \rightarrow \bar{t} t$ channel which can be directly deduced by the SM QCD one-loop contributions to the Higgs decay into a top quark pair. For the total decay width $\Gamma(S \rightarrow$ all $)$, we obtain a maximum correction of $\mathcal{O}(6 \%)$ for $m_{S} \sim 200 \mathrm{GeV}$. Finally, we have analyzed the impact of the gauge dependence on the decay rates with respect to μ_{R} for two fixed values of $m_{S}=400,1000 \mathrm{GeV}$ and found that it causes a variation on the NLO decay widths which is less than $\lesssim|3| \%$ in all decay channels.
The structure of the thesis is as follows: in Chap. 1 we recall the relevant features of the SSM and its theoretical and experimental constraints; in Chap.2, we describe and analyze the full set of the leading-order (LO) expressions of the scalar singlet decay widths; in Chap. 3 we illustrate the details of our renormalization procedure that we apply in Chap. 4 to discuss the structure of the $\Gamma\left(S \rightarrow Z Z, W^{+} W^{-}, \bar{t} t, H H\right.$, all $)$ renormalized decay widths. The radiative corrections to these decay rates are numerically computed in Chap.5; the last chapter is devoted to our conclusions.

Chapter 1

Model Setup

In this chapter we describe the singlet extension of the Standard Model (we will use the short notation, SM and SSM, to indicate the Standard Model and its singlet extension, respectively). In comparison with the SM, the SSM is characterized by adding one real spinless scalar field which transforms as a singlet under $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$ and affects the same Lagrangians where the SM Higgs field appears. The full SSM Lagrangian is defined as,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{SSM}}=\mathcal{L}_{\text {gauge }}+\mathcal{L}_{\text {fermions }}+\mathcal{L}_{\mathrm{QCD}}+\mathcal{L}_{\text {scalars }}+\mathcal{L}_{\text {Yukawa }}+\mathcal{L}_{\mathrm{GF}}+\mathcal{L}_{\text {ghosts }} . \tag{1.1}
\end{equation*}
$$

The first three terms, which include the gauge and fermionic kinetic parts, the couplings between fermions and gauge bosons and the full quantum chromodynamics (QCD), are given by the respective SM expressions [28]. On the other hand, the remaining terms (the Lagrangians of the scalars, the Yukawa interactions, the gauge-fixing and ghosts terms) contain the new scalar singlet field and need a more detailed discussion which will be the subject of the next sections.

1.1 The Scalar Lagrangian

The scalar sector is defined by

$$
\begin{equation*}
\mathcal{L}_{\text {scalars }}=\left(\mathcal{D}^{\mu} \phi\right)^{\dagger}\left(\mathcal{D}_{\mu} \phi\right)+\left(\partial^{\mu} s^{0}\right)\left(\partial_{\mu} s^{0}\right)-\mathcal{V}_{\mathrm{SSM}}\left(\phi, s^{0}\right), \tag{1.2}
\end{equation*}
$$

where \mathcal{D}^{μ} is the SM covariant derivative and $\mathcal{V}_{\text {SSM }}\left(\phi, s^{0}\right)$ is the scalar potential which is made up of the usual SM Higgs potential, with ϕ representing the SM scalar field, augmented with the new contributions due to quadratic and quartic terms of the new scalar field, represented by s^{0}, and a portal interaction among s^{0} and ϕ as specified below:

$$
\mathcal{V}_{\mathrm{SSM}}\left(\phi, s^{0}\right)=\mu^{2}\left(\phi^{\dagger} \phi\right)+\lambda\left(\phi^{\dagger} \phi\right)^{2}+\mu_{s}^{2}\left(s^{0}\right)^{2}+\rho\left(s^{0}\right)^{4}+\kappa\left(\phi^{\dagger} \phi\right)\left(s^{0}\right)^{2},
$$

where s^{0} is a true isospin singlet (with hypercharge $\left.Y=0\right), \phi=\left[\eta^{+}, \phi^{0}+i \eta_{3} / \sqrt{2}\right]^{T}, \phi^{0}=(v+$ $h) / \sqrt{2}$ (the value of v is obtained as a function of the Fermi constant $G_{F}, v \equiv\left(\sqrt{2} G_{F}\right)^{-1 / 2}=$
246.22 GeV) and $\eta^{ \pm}=\left(\eta_{1} \pm i \eta_{2}\right) / \sqrt{2}$ and η_{3} are the Goldstone bosons. Notice that the potential $\mathcal{V}_{\text {SSM }}\left(\phi, s^{0}\right)$ exhibits a \mathbb{Z}_{2}-symmetry under which $s^{0} \rightarrow-s^{0}$, so that linear and trilinear terms in s^{0} are not allowed.
Beside the vev of the ϕ field, we also consider the possibility that s^{0} acquires a non-zero vacuum expectation value (vev) w, and thus the expansion of the field around its classical minimum is set as $s^{0}=(w+s) / \sqrt{2}$. The full expansion around the vevs of $\mathcal{V}_{\mathrm{SSM}}\left(\phi, s^{0}\right)$ involves the linear terms for the scalar fields, h and s, from which we can define the tadpole relations:

$$
\begin{equation*}
T_{\phi}=\mu v^{2}+v^{3} \lambda+\frac{v w^{2} \kappa}{2} \quad, \quad T_{s^{0}}=\mu_{s} w^{2}+w^{3} \rho+\frac{v^{2} w \kappa}{2} . \tag{1.3}
\end{equation*}
$$

The minimization conditions of the scalar potential are given by: $T_{\phi}, T_{s^{0}}=0^{1}$. The most immediate consequence of the potential $\mathcal{V}_{\mathrm{SSM}}\left(\phi, s^{0}\right)$ is that a non-diagonal mass matrix is generated for the two neutral states h and s that, in the gauge basis, has the following form:

$$
\mathcal{M}_{\text {gauge }}^{2}=\left(\begin{array}{ll}
2 \lambda v^{2} & \kappa v w \tag{1.4}\\
\kappa v w & 2 \rho w^{2}
\end{array}\right) .
$$

Considering all couplings as real parameters, the positivity of the mass matrix is ensured requiring that [17]

$$
\begin{equation*}
\lambda>\frac{\kappa^{2}}{4 \rho}, \quad \lambda, \rho>0 . \tag{1.5}
\end{equation*}
$$

To have physical propagating particles in the SSM, it is necessary to consider eigenstates with specific masses. The physical scalar masses can be achieved through the following orthogonal rotation:

$$
\begin{equation*}
U(\alpha) \cdot \mathcal{M}_{\text {gauge }}^{2} \cdot U(\alpha)^{-1}=\operatorname{diag}\left(m_{H}^{2}, m_{S}^{2}\right), \tag{1.6}
\end{equation*}
$$

where $m_{H, S}$ are the physical masses and $U(\alpha)$ is the rotation matrix whose action on the scalar fields as follows:

$$
\binom{H}{S}=U(\alpha)\binom{h}{s}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \tag{1.7}\\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{h}{s},
$$

with $\alpha \in[-\pi / 2, \pi / 2]$. After the orthogonal transformation, the tree-level masses of the particles in the mass basis are given by [17, 29]:

$$
\begin{equation*}
m_{H, S}^{2}=\lambda v^{2}+\rho w^{2} \mp \frac{\rho w^{2}-\lambda v^{2}}{\cos 2 \alpha} \tag{1.8}
\end{equation*}
$$

[^0]and, in turn, a mapping between the Lagrangian states and the physical fields H and S is realized:
\[

$$
\begin{equation*}
\phi^{0}=\frac{1}{\sqrt{2}}(v+H \cos \alpha+S \sin \alpha) \quad, \quad s^{0}=\frac{1}{\sqrt{2}}(w-H \sin \alpha+S \cos \alpha) . \tag{1.9}
\end{equation*}
$$

\]

In the rest of this thesis we will consider the H field as the lightest mass eigenstate and we identify it with the Higgs boson whose mass of 125 GeV has been already measured at LHC [31], so we always consider $\operatorname{sign}\left(\rho w^{2}-\lambda v^{2}\right) \times \operatorname{sign}(\cos 2 \alpha)>0$. While the mass of the light scalar field is kept fixed, we will limit ourselves to the mass range $200 \leq m_{S} \leq 1000 \mathrm{GeV}$ (which corresponds to the bound $0.018 \leq|\sin \alpha| \leq 0.36[29]$). The mixing angle α can be expressed in terms of the model parameters and vevs so that,

$$
\begin{equation*}
\tan 2 \alpha=\frac{\kappa v w}{\rho w^{2}-\lambda v^{2}} . \tag{1.10}
\end{equation*}
$$

Notice that in the limit $(v / w) \ll 1$, the expressions for the masses and mixing are well approximated by:

$$
\begin{equation*}
m_{H}^{2} \simeq 2 v^{2}\left(\lambda-\frac{\kappa^{2}}{4 \rho}\right)=2 v^{2} \lambda_{\mathrm{sm}} \quad, \quad m_{S}^{2} \simeq 2 \rho w^{2}+\frac{\kappa^{2} v^{2}}{2 \rho} \quad, \quad \sin \alpha \simeq \frac{\kappa v}{2 \rho w}, \tag{1.11}
\end{equation*}
$$

which clearly show that the SM quartic coupling $\lambda_{\text {sm }}$ receives a correction proportional to the ratio among the portal coupling κ and the quartic of the s^{0} field [16].
Now, the couplings of the H and S fields with gauge bosons arising from the covariant derivative in eq.(1.2) are similar to the SM Higgs ones rescaled by an appropriate mixing factor:

$$
\begin{equation*}
\mathcal{D}_{\mu} \phi \rightarrow\left[\partial_{\mu}+i g \frac{\sigma_{i}}{2} W_{\mu}^{i}(x)+i g^{\prime} \frac{Y}{2} B_{\mu}(x)\right]\binom{\eta^{+}}{\frac{1}{\sqrt{2}}\left(v+H \cos \alpha+S \sin \alpha+i \eta_{3}\right)}, \tag{1.12}
\end{equation*}
$$

where g and g^{\prime} are the electroweak constants, $W_{\mu}^{i}(i=1,2,3)$ and B_{μ} are the gauge boson fields in the gauge basis of $S U(2)_{L}$ and $U(1)_{Y}$ respectively, while the Pauli matrices σ_{i} and the hypercharge Y are the generators of the respective groups. In addition, the scalar singlet field insertion gives no contributions to the gauge boson squared masses which get the same SM form:

$$
\begin{align*}
\left(\mathcal{D}^{\mu} \phi\right)^{\dagger}\left(\mathcal{D}_{\mu} \phi\right) & \rightarrow \frac{1}{2}\left(\begin{array}{ll}
0 & v
\end{array}\right)\left(g \frac{\sigma_{i}}{2} W^{\mu i}+g^{\prime} \frac{Y}{2} B^{\mu}\right)^{\dagger}\left(g \frac{\sigma_{j}}{2} W_{\mu}^{j}+g^{\prime} \frac{Y}{2} B_{\mu}\right)\binom{0}{v}= \\
& =\frac{1}{2} \frac{v^{2}}{4}\left[g^{2}\left(W_{\mu}^{1}\right)^{2}+g^{2}\left(W_{\mu}^{2}\right)^{2}+\left(-g W_{\mu}^{3}+g^{\prime} B_{\mu}\right)^{2}\right] \tag{1.13}
\end{align*}
$$

As usual the fields $W_{\mu}^{1,2,3}, B_{\mu}$ can be shifted in the mass basis through the orthogonal transformation defined in terms of the Weinberg mixing angle θ_{W} :

$$
\begin{align*}
\gamma_{\mu} & =\left(\sin \theta_{W} W_{\mu}^{3}+\cos \theta_{W} B_{\mu}\right) & \text { with } m_{\gamma}^{2}=0, \tag{1.14}\\
Z_{\mu} & =\left(\cos \theta_{W} W_{\mu}^{3}-\sin \theta_{W} B_{\mu}\right) & \text { with } m_{Z}^{2}=\frac{\left(g^{2}+g^{\prime 2}\right) v^{2}}{4}, \tag{1.15}\\
W_{\mu}^{ \pm} & =\frac{\left(W_{\mu}^{1} \mp i W_{\mu}^{2}\right)}{\sqrt{2}} & \text { with } m_{W}^{2}=\frac{g^{2} v^{2}}{4} . \tag{1.16}
\end{align*}
$$

The pure scalar interactions are obtained by expanding $\mathcal{V}_{\mathrm{SSM}}\left(\phi, s^{0}\right)$ in terms of the physical scalar fields so that the trilinear and quartic couplings can be schematically written as ${ }^{2}$:

$$
\begin{equation*}
\mathcal{V}_{\mathrm{SSM}}\left(\phi, s^{0}\right) \supset \mathrm{C}_{\mathcal{S}_{1} \mathcal{S}_{2} \mathcal{S}_{3}} \mathcal{S}_{1} \mathcal{S}_{2} \mathcal{S}_{3}+\mathrm{C}_{\mathcal{S}_{1} \mathcal{S}_{2} \mathcal{S}_{3} \mathcal{S}_{4}} \mathcal{S}_{1} \mathcal{S}_{2} \mathcal{S}_{3} \mathcal{S}_{4} \tag{1.17}
\end{equation*}
$$

where \mathcal{S} can be one among H, S, η_{3} and $\eta^{ \pm}$. Below we report a list of the coefficients $\mathrm{C}_{\mathcal{S}_{1} \mathcal{S}_{2} \mathcal{S}_{3}}$ and $\mathrm{C}_{\mathcal{S}_{1} \mathcal{S}_{2} \mathcal{S}_{3} \mathcal{S}_{4}}$:

$$
\begin{align*}
\mathrm{C}_{S S S} & =-3 i c_{\alpha} s_{\alpha}\left(c_{\alpha} v+s_{\alpha} w\right) \kappa-6 i\left(s_{\alpha}^{3} v \lambda+c_{\alpha}^{3} w \rho\right), \tag{1.18}\\
\mathrm{C}_{H H H} & =-3 i c_{\alpha} s_{\alpha}\left(s_{\alpha} v-c_{\alpha} w\right) \kappa-6 i\left(c_{\alpha}^{3} v \lambda-s_{\alpha}^{3} w \rho\right), \tag{1.19}\\
\mathrm{C}_{H S S} & =-i\left[c_{\alpha} v\left(c_{\alpha}^{2}-2 s_{\alpha}^{2}\right)+s_{\alpha} w\left(2 c_{\alpha}^{2}-s_{\alpha}^{2}\right)\right] \kappa-6 i\left(c_{\alpha} s_{\alpha}^{2} v \lambda-c_{\alpha}^{2} s_{\alpha} w \rho\right), \tag{1.20}\\
\mathrm{C}_{H H S} & =-i\left[s_{\alpha} v\left(s_{\alpha}^{2}-2 c_{\alpha}^{2}\right)+c_{\alpha} w\left(c_{\alpha}^{2}-2 s_{\alpha}^{2}\right)\right] \kappa-6 i\left(c_{\alpha}^{2} s_{\alpha} v \lambda-c_{\alpha} s_{\alpha}^{2} w \rho\right), \tag{1.21}\\
\mathrm{C}_{H \eta_{3} \eta_{3}} & =-i\left(2 c_{\alpha} v \lambda-s_{\alpha} w \kappa\right), \tag{1.22}\\
\mathrm{C}_{H \eta^{+} \eta^{-}} & =-i\left(2 c_{\alpha} v \lambda-s_{\alpha} w \kappa\right), \tag{1.23}\\
\mathrm{C}_{S \eta_{3} \eta_{3}} & =-i\left(c_{\alpha} w \kappa+2 s_{\alpha} v \lambda\right), \tag{1.24}\\
\mathrm{C}_{S \eta^{+} \eta^{-}} & =-i\left(c_{\alpha} w \kappa+2 s_{\alpha} v \lambda\right), \tag{1.25}
\end{align*}
$$

$$
\begin{align*}
\mathrm{C}_{H H H H} & =-6 i\left(c_{\alpha}^{4} \lambda+c_{\alpha}^{2} s_{\alpha}^{2} \kappa+s_{\alpha}^{4} \rho\right) \tag{1.26}\\
\mathrm{C}_{S S S S} & =-6 i\left(c_{\alpha}^{4} \rho+c_{\alpha}^{2} s_{\alpha}^{2} \kappa+s_{\alpha}^{4} \lambda\right) \\
\mathrm{C}_{H H S S} & =-i\left(c_{\alpha}^{4}-4 c_{\alpha}^{2} s_{\alpha}^{2}+s_{\alpha}^{4}\right) \kappa-6 i c_{\alpha}^{2} s_{\alpha}^{2}(\lambda+\rho) \\
\mathrm{C}_{H H H S} & =-6 i\left(c_{\alpha}^{3} s_{\alpha} \lambda-c_{\alpha} s_{\alpha}^{3} \rho\right)+3 i c_{\alpha} s_{\alpha} c_{2 \alpha} \kappa \\
\mathrm{C}_{H S S S} & =-3 i c_{\alpha} s_{\alpha} c_{2 \alpha} \kappa-6 i\left(c_{\alpha} s_{\alpha}^{3} \lambda-c_{\alpha}^{3} s_{\alpha} \rho\right) \\
\mathrm{C}_{H H \eta_{3} \eta_{3}} & =-i\left(s_{\alpha}^{2} \kappa+2 c_{\alpha}^{2} \lambda\right) \\
\mathrm{C}_{S S \eta_{3} \eta_{3}} & =-i\left(c_{\alpha}^{2} \kappa+2 s_{\alpha}^{2} \lambda\right) \\
\mathrm{C}_{H S \eta_{3} \eta_{3}} & =-i s_{\alpha} c_{\alpha}(2 \lambda-\kappa) \\
\mathrm{C}_{H H \eta^{+} \eta^{-}} & =-i\left(s_{\alpha}^{2} \kappa+2 c_{\alpha}^{2} \lambda\right) \\
\mathrm{C}_{S S \eta^{+} \eta^{-}} & =-i\left(c_{\alpha}^{2} \kappa+2 s_{\alpha}^{2} \lambda\right) \\
\mathrm{C}_{H S \eta^{+} \eta^{-}} & =-i s_{\alpha} c_{\alpha}(2 \lambda-\kappa),
\end{align*}
$$

[^1]with $s_{\alpha}=\sin \alpha$ and $c_{\alpha}=\cos \alpha$. It is important to observe that, starting from the mass matrix in the gauge basis (see eq.(1.4)), we can define the quartic couplings at tree-level (LO) in terms of the physical scalar masses and the mixing angle and, in the case of higher order calculations, these also become functions of the tadpoles in the mass basis ${ }^{3} T_{H, S}$ and the (symmetric) off-diagonal element of the physical mass matrix, called $\delta m_{H S}^{2}$:
\[

$$
\begin{align*}
& \mathcal{M}_{\text {gauge }}^{2}+\left(\begin{array}{cc}
T_{\phi} / v & 0 \\
0 & T_{s^{0}} / w
\end{array}\right)=U(\alpha)^{-1} \cdot\left(\begin{array}{cc}
m_{H}^{2} & \delta m_{H S}^{2} \\
\delta m_{H S}^{2} & m_{S}^{2}
\end{array}\right) \cdot U(\alpha)= \\
& \quad=\left(\begin{array}{cc}
m_{H}^{2} c_{\alpha}^{2}+m_{S}^{2} s_{\alpha}^{2}+\delta m_{H S}^{2} s_{2 \alpha} & \delta m_{H S}^{2} c_{2 \alpha}+s_{\alpha} c_{\alpha}\left(m_{S}^{2}-m_{H}^{2}\right) \\
\delta m_{H S}^{2} c_{2 \alpha}+s_{\alpha} c_{\alpha}\left(m_{S}^{2}-m_{H}^{2}\right) & m_{H}^{2} s_{\alpha}^{2}+m_{S}^{2} c_{\alpha}^{2}-\delta m_{H S}^{2} s_{2 \alpha}
\end{array}\right) . \tag{1.38}
\end{align*}
$$
\]

Using the definition of $\mathcal{M}_{\text {gauge }}^{2}$ shown in eq.(1.4), the quartic couplings are given by:

$$
\begin{align*}
\lambda & =\frac{m_{H}^{2}}{2 v^{2}} c_{\alpha}^{2}+\frac{m_{S}^{2}}{2 v^{2}} s_{\alpha}^{2}-\frac{c_{\alpha} T_{H}+s_{\alpha} T_{S}}{2 v^{3}}+\frac{\delta m_{H S}^{2}}{2 v^{2}} s_{2 \alpha} \tag{1.39}\\
\rho & =\frac{m_{H}^{2}}{2 w^{2}} s_{\alpha}^{2}+\frac{m_{H}^{2}}{2 w^{2}} c_{\alpha}^{2}-\frac{c_{\alpha} T_{S}-s_{\alpha} T_{H}}{2 w^{3}}-\frac{\delta m_{H S}^{2}}{2 w^{2}} s_{2 \alpha}, \tag{1.40}\\
\kappa & =\frac{m_{S}^{2}-m_{H}^{2}}{2 v w} s_{2 \alpha}+\frac{\delta m_{H S}^{2}}{v w} c_{2 \alpha}, \tag{1.41}
\end{align*}
$$

with $T_{H}, T_{S}, \delta m_{H S}^{2}=0$ at tree-level. A fundamental feature of the SSM potential is that, at large m_{S} values, the portal interaction between the scalar singlet and the $S U(2)_{L}$ doublet leads to a positive tree-level threshold correction for the Higgs quartic coupling, which allows to avoid the potential instability of the Standard Model electroweak vacuum. The renormalization group equations (RGEs) for the portal (κ) and quartic (λ and ρ) couplings above the scale m_{S} are given by $[16,17]$,

$$
\begin{align*}
& (4 \pi)^{2} \frac{\partial \lambda}{d \ln \mu}=\frac{3}{4}\left[g^{4}+\frac{\left(g^{2}+g^{\prime 2}\right)^{2}}{2}\right]-6 y_{t}^{4}+12\left[y_{t}^{2}-\frac{g^{\prime 2}+3 g}{4}\right] \lambda+24 \lambda^{2}+\kappa^{2} \\
& (4 \pi)^{2} \frac{\partial \kappa}{d \ln \mu}=3\left[y_{t}^{2}-\frac{g^{\prime 2}+3 g}{4}\right] \kappa+2 \kappa(3 \lambda+2 \rho)+2 \kappa^{2} \tag{1.42}\\
& (4 \pi)^{2} \frac{\partial \rho}{d \ln \mu}=2 \kappa^{2}+20 \rho^{2}
\end{align*}
$$

where μ is the RGE running scale and y_{t} is the yukawa coupling associated with the top quark (the contributions due to the other fermions is negligible [32]). We observe that λ receives

[^2]a linear and positive contributions in terms of κ^{2}, which prevent it from becoming negative under the following conditions:

- $m_{S}<\Lambda_{\text {inst }} \sim 10^{10} \mathrm{GeV}$ where $\Lambda_{\text {inst }}$ is the SM instability scale [32].
- $(\kappa / 8 \pi)^{2} \ln \left(\Lambda_{\text {inst }} / m_{S}\right)$ has to be quite large.

Figure 1.1: Running of the quartic couplings for representative parameter choice: $m_{S}=10^{8}$ $G e V, \lambda\left(m_{t}\right)=\lambda_{\mathrm{sm}}\left(m_{t}\right)=0.12879, \rho\left(m_{t}\right)=0.04$ and $\kappa\left(m_{t}\right)=0.06$.

We show in Fig.(1.1) an example of running quartic couplings which is obtained for fixed values of $\lambda, \lambda_{\mathrm{sm}}, \kappa, \rho$ at a scale $m_{t}=173.21 \mathrm{GeV}$, namely $\lambda\left(m_{t}\right)=\lambda_{\mathrm{sm}}\left(m_{t}\right)=0.12879, \rho\left(m_{t}\right)=0.04$ and $\kappa\left(m_{t}\right)=0.06$, and $m_{S}=10^{8} \mathrm{GeV}$. We can see that, thanks to the positive threshold at the singlet mass (for large values of m_{S} we have $\lambda \sim \lambda_{\mathrm{sm}}+\kappa^{2} / 4 \rho$), the quartic coupling λ never enters into the instability region ${ }^{4}$.

1.2 The Yukawa Lagrangian

The Yukawa Lagrangian includes the complete set of fermionic mass terms and interactions of the fermions and scalar bosons in the SSM. As discussed above, the kinetic terms of the fermions ($\mathcal{L}_{\text {fermions }}$) are the same of the SM :

$$
\begin{equation*}
\mathcal{L}_{\text {fermions }}=\sum_{\text {fermions }} i \bar{\psi}\left(\mathcal{D}^{\mu} \gamma_{\mu}\right) \psi, \tag{1.43}
\end{equation*}
$$

[^3]where $\bar{\psi}=\psi^{\dagger} \gamma^{0}, \psi$ is the fermionic spinor field and the sum runs over all fermions, which are divided in three generations. In Tab.(1.1), the spinor fields are classified in terms of five representations of $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$.

Spinor Field	ψ^{I} [color, weak iso-spin, hypercharge]
LH leptons	$L_{L}^{i}[1,2,-1]$
RH leptons	$l_{R}^{i}[1,1,2]$
LH quarks	$Q_{L}^{i}[3,2,+1 / 3]$
RH up-type quarks	$u_{R}^{i}[3,1,+4 / 3]$
RH down-type quarks	$d_{R}^{i}[3,1,-2 / 3]$

Table 1.1: Spinor field as representations of $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$. Here, $i=1,2,3$ is the flavor index and LH, RH stand for the left- and right-handed fermions, respectively.

We consider for simplicity the neutrinos to be massless and this implies that these exist in a LH state only. It is well known in the SM that a term like $-m_{f} \bar{\psi} \psi=-m_{f}\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right)$ is not invariant under an $S U(2)_{L} \times U(1)_{Y}$ transformation and the absence of such a term implies massless fermions. Considering the complex Higgs doublet ϕ, which in the notation of Tab.(1.1) is a $[1,2,1]$ state, one can construct an invariant $S U(2)_{L} \times U(1)_{Y}$ interaction term as: $-y_{f} \bar{\psi}_{L} \phi \psi_{R}$, where y_{f} is the Yukawa coupling. When the Higgs field acquires the vev after the spontaneous symmetry breaking, we obtain the fermion masses proportional to the respective Yukawa coupling. However, this mechanism only gives mass to the "down" fermions. It is possible to write a new term in the Lagrangian which is gauge invariant and gives mass to the "up" fermions as follows: $-y_{f} \bar{\psi}_{L} \widetilde{\phi}^{c} \psi_{R}$, where $\widetilde{\phi}^{c}=i \sigma_{2} \phi^{\dagger}$. So, in the most general case, the expression for the Yukawa Lagrangian is written as,

$$
\begin{equation*}
-\mathcal{L}_{\text {Yukawa }}=Y_{i j}^{d} \bar{Q}_{L}^{i} \phi d_{R}^{j}+Y_{i j}^{u} \bar{Q}_{L}^{i} \widetilde{\phi}^{c} u_{R}^{j}+Y_{i j}^{l} \bar{L}_{L}^{i} \phi l_{R}^{j}+h . c, \tag{1.44}
\end{equation*}
$$

where now $Y_{i j}^{d}, Y_{i j}^{u}$ and $Y_{i j}^{l}$ are arbitrary 3×3 complex matrices which include all Yukawa couplings arising from the three fermionic generations of leptons and quarks.
In addition, we can observe that it is not possible to construct a mass terms for the fermions by substituting the Higgs doublet ϕ with the new scalar singlet s^{0} since the Yukawa interactions, written in terms of the singlet field, are not gauge invariant under $S U(2)_{L} \times U(1)_{Y}$ transformations. This implies that the new insertion of the scalar singlet gives no contributions to the fermion masses but appears only in the interaction terms between the Higgs doublet and the fermionic fields, with proportionality to s_{α} :

$$
\begin{equation*}
Y_{i j} \bar{\psi}_{L}^{i}\binom{\eta^{+}}{\frac{1}{\sqrt{2}}\left(v+H c_{\alpha}+S s_{\alpha}+i \eta_{3}\right)} \psi_{R}^{j} . \tag{1.45}
\end{equation*}
$$

1.3 Gauge-Fixing and Ghost Lagrangian

In this section we describe the structure of the remaining Lagrangians, $\mathcal{L}_{\text {GF }}$ and $\mathcal{L}_{\text {ghosts }}$, and their dependence on the scalar singlet field. Generally, $\mathcal{L}_{\mathrm{GF}}$ and $\mathcal{L}_{\text {ghosts }}$ are needed to quantize the Yang-Mills theories which contains the gauge bosons expressed as vector fields [28]. Since the degrees of freedom corresponding to the vector fields exceed those of the physical gauge fields, the quantization of the full SSM Lagrangian requires the choice of a specific gauge in order to remove the additional unphysical degrees of freedom. It is well-known that in this type of model the gauge-invariance plays a fundamental role in the renormalization procedure. This implies that the gauge-fixing becomes useful to check the gauge independence of higher order calculations, as it was discussed for the SSM in [29]. In order to define $\mathcal{L}_{\mathrm{GF}}$, we introduce the F functions defined as:

$$
\begin{align*}
F_{ \pm}= & \left(\partial_{\mu} \mp i e \tilde{\delta}_{1} A_{\mu} \mp i g \cos \theta_{W} \tilde{\delta}_{2} Z_{\mu}\right) W^{ \pm} \\
& \pm i \xi_{\mathrm{W}}^{\prime} \frac{g}{2}\left(v+\tilde{\delta}_{3} H+\tilde{\delta}_{4} S \pm i \tilde{\delta}_{5} \eta_{3}\right) \eta^{ \pm}, \tag{1.46}\\
F_{Z}= & \partial_{\mu} Z^{\mu}+\xi_{\mathrm{z}}^{\prime} \frac{g}{2 \cos \theta_{W}}\left(v+\tilde{\delta}_{6} H+\tilde{\delta}_{7} S\right) \eta_{3}, \tag{1.47}\\
F_{\gamma}= & \partial_{\mu} A^{\mu}, \tag{1.48}
\end{align*}
$$

where e is the electromagnetic coupling constant, $\tilde{\delta}_{i}$ is the non-linear gauge parameters while ξ_{i} and $\xi_{i}^{\prime}(i=\gamma, Z, W)$ are the linear gauge parameter related to the gauge and Goldstone bosons, respectively. Notice that the non-linear case is described by the F functions nonlinearly dependent on the scalar and gauge fields ${ }^{5}$. The gauge-fixing Lagrangian is defined in the following form:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{GF}}=-\frac{1}{2 \xi_{\gamma}}\left|F_{\gamma}\right|^{2}-\frac{1}{2 \xi_{\mathrm{Z}}}\left|F_{Z}\right|^{2}-\frac{1}{\xi_{\mathrm{W}}} F_{+} F_{-} . \tag{1.49}
\end{equation*}
$$

We recover the linear gauge fixing (usually indicated with R_{ξ}) by setting up $\tilde{\delta}_{i}=0$ (with $\xi_{i}=1$ we define the 't Hooft- Feynman gauge). In addition, we can fix $\xi_{\mathrm{W}, \mathrm{Z}}^{\prime}=\xi_{\mathrm{W}, \mathrm{Z}}$ in order to cancel the mixing terms $\eta^{ \pm} W^{ \pm}$and $\eta_{3} Z$ arising from $\mathcal{L}_{\mathrm{GF}}$, thus avoiding the presence of new unnecessary and intricate interaction terms at tree-level. On the other hand, the insertion in $\mathcal{L}_{\mathrm{GF}}$ of the additional non-linear gauge parameters $\tilde{\delta}_{i}(i=1, \ldots, 7)$ modifies the Feynman rules which become more complicated. We could also tune the $\tilde{\delta}_{i}$ values to reduce the number of diagrams and simplify some of the vertices (for instance, with $\tilde{\delta}_{1}=1$, the vertex $W^{ \pm} \eta^{\mp} \gamma$ is canceled out and $W^{ \pm} W^{\mp} \gamma$ assumes a more simple form). In order to fix the gauge in the non-Abelian Yang-Mills theories we have to introduce a new set of anticommuting fields, called ghost (proposed by L. Faddeev and V. Popov [36]). The main feature of the these fields

[^4]is that their quantum excitations have the wrong relation between spin and statistic to be a physical particles. Besides, the ghosts can appear as virtual states described by the following Lagrangian [28]:
\[

$$
\begin{equation*}
\mathcal{L}_{\text {ghosts }}=\bar{u}_{i}^{a}\left(-\partial^{\mu} \mathcal{D}_{\mu}^{a b}\right) u_{i}^{c}=\bar{u}_{i}^{a}\left(-\partial^{2} \delta^{a c}-g \partial^{\mu} f^{a b c} A_{\mu}^{b}\right) u_{i}^{c} \tag{1.50}
\end{equation*}
$$

\]

where $\mathcal{D}_{\mu}^{a b}$ is the covariant derivate, g is the gauge constant, $f^{a b c}$ are the structure constants of the gauge group (which can be $S U(2)$ or $S U(3)$ for the vector boson and gluon fields, respectively), A_{μ} are the gauge fields of the respective gauge groups and $u_{i}\left(\bar{u}_{i}\right)$ (with $i=$ \pm, Z, γ) are the Faddeev-Popov ghosts (anti-ghosts). Thus, we can write for a general nonAbelian gauge theory a complete Lagrangian $\left(\mathcal{L}_{\mathrm{FP}}\right)$ which includes all of the gauge-fixing effect as [28]:

$$
\begin{equation*}
\mathcal{L}_{\mathrm{FP}}=-\frac{1}{4} F^{\mu \nu a} F_{\mu \nu}^{a}+\frac{1}{2 \xi}\left|\partial^{\mu} A_{\mu}^{a}\right|^{2}+\bar{\psi}\left(i \mathcal{D}^{\mu} \gamma_{\mu}-m\right) \psi+\bar{u}_{i}^{a}\left(-\partial^{\mu} \mathcal{D}_{\mu}^{a b}\right) u_{i}^{c} \tag{1.51}
\end{equation*}
$$

where $\left|\partial^{\mu} A_{\mu}^{a}\right|^{2} / 2 \xi$ can get additional terms which are non-linearly dependent on the scalar and gauge fields, as mentioned above. With the insertion of the ghost Lagrangian, $\mathcal{L}_{\mathrm{FP}}$ shows a new symmetry, called BRST symmetry [37], which is defined in terms of an infinitesimal anticommuting parameter ε :

$$
\begin{gathered}
\delta_{\mathrm{BRST}} A_{\mu}^{a}=\varepsilon \mathcal{D}_{\mu}^{a b} u_{b}, \quad \delta_{\mathrm{BRST}} \psi=i g \varepsilon u_{a} t^{a} \psi, \quad \delta_{\mathrm{BRST}} u^{a}=-\frac{1}{2} g \varepsilon f^{a b c} u_{b} u_{c}, \\
\delta_{\mathrm{BRST}} \bar{u}^{a}=\varepsilon B^{a}, \quad \delta_{\mathrm{BRST}} B^{a}=0,
\end{gathered}
$$

where t^{a} are the generators of the gauge group considered and B is an auxiliary field which has to be introduced to get the BRST-invariance of $\mathcal{L}_{\mathrm{FP}}{ }^{6}$. Considering the non-linear gauge fixing, the BRST transformations can be also defined for the scalar fields [29]:

$$
\begin{align*}
\delta_{\mathrm{BRST}} \eta_{3} & =\frac{g}{2}\left[\left(\eta^{-} u^{+}+\eta^{+} u^{-}\right)-\frac{u_{Z}}{\cos \theta_{W}}\left(v+c_{\alpha} H+s_{\alpha} S\right)\right] \tag{1.52}\\
\delta_{\mathrm{BRST}} \eta^{ \pm} & =\mp \frac{i g}{2}\left[u^{ \pm}\left(v+c_{\alpha} H+s_{\alpha} S \mp i \eta_{3}\right)+\frac{\sin 2 \theta_{W} u_{\gamma}+\cos 2 \theta_{W}}{\cos 2 \theta_{W}} \eta^{ \pm}\right] \tag{1.53}\\
\delta_{\mathrm{BRST}} H & =\frac{g c_{\alpha}}{2}\left[i\left(\eta^{-} u^{+}-\eta^{+} u^{-}\right)+\frac{u_{Z}}{\cos \theta_{W}} \eta_{3}\right] \tag{1.54}\\
\delta_{\mathrm{BRST}} S & =\frac{g s_{\alpha}}{2}\left[i\left(\eta^{-} u^{+}-\eta^{+} u^{-}\right)+\frac{u_{Z}}{\cos \theta_{W}} \eta_{3}\right] \tag{1.55}
\end{align*}
$$

Notice that these BRST transformations depend on the S field only with proportionality to s_{α}. The results of this thesis have been obtained in the linear R_{ξ} gauge imposing $\tilde{\delta}_{i}=0, \xi_{i}=1$

[^5]and considering the gauge-dependence analysis in the SSM renormalization procedure (which we will treat in detail in the next sections) performed in [29]. There, the authors work with $\tilde{\delta}_{i} \neq 0$ in order to define a gauge independent renormalization scheme for the mixing scalar sector which must provide equivalent results with both $\tilde{\delta}_{i}=0$ and $\tilde{\delta}_{i} \neq 0$.

1.4 Theoretical and Experimental Constraints

The SSM is subject to many constraints which are of a theoretical or experimental nature. These constraints have been explicitly discussed in the literature and we briefly have summarized them here.

1.4.1 Theoretical Constraints

- Perturbative Unitarity:

The tree-level perturbative unitarity, which emerges purely from theoretical aspects of electroweak symmetry breaking, has to be preserved. To this aim, it is sufficient that the scalar sector fulfills the following sum rules for the couplings between fermion, vector and scalar particles, which we call $g_{n f f}$ and $g_{n V V}$ for scalar-fermion and scalar-vector interactions, respectively [38]:

$$
\begin{equation*}
\sum_{n} g_{n V V}^{2}=g_{H_{\mathrm{sm}} V V}^{2} \quad, \quad \sum_{n} g_{n V V} g_{n f f}=g_{H_{\mathrm{sm}} V V} g_{H_{\mathrm{sm}} f f} \tag{1.56}
\end{equation*}
$$

where $n=H, S$ and H_{sm} is the SM Higgs field. Notice that the SSM exhibits the sum rules given above since $g_{H V V, H f f}=c_{\alpha} g_{H_{\mathrm{sm}} f f, H_{\mathrm{sm} f f}}$ and $g_{S V V, H f f}=s_{\alpha} g_{S_{\mathrm{sm}} f f, H_{\mathrm{sm}} f f}$, thus preserving the unitarity constraints. Besides, we can set a constraint on the SSM scalar masses via a relation on the partial wave amplitudes $a_{J}(s)$, associated with $2 \rightarrow 2$ processes given by [8]:

$$
\begin{equation*}
\left|\operatorname{Re} a_{J}(s)\right| \leq \frac{1}{2} \tag{1.57}
\end{equation*}
$$

This allows us to find a ($m_{S}-m_{H}-\alpha$) subspace where the perturbative unitarity is valid up to any energy scale. We therefore need to calculate the tree-level amplitudes for the $x_{a} x_{b} \rightarrow y_{a} y_{b}$ process, where $x_{a} x_{b}$ and $y_{a} y_{b}$ can be $\left\{Z Z, W^{+} W^{-}, H H, S S, H S\right\}$. Calculating the normalized five dimensional scattering matrix and imposing eq.(1.57) to each eigenvalues, one obtains, for small mixing angle ($s_{\alpha} \sim 0$), the element of the scattering matrix associated with $S S \rightarrow S S$ is decoupled from the other SM matrix elements and an lower limit on w is posed:

$$
\begin{equation*}
w^{2} \gtrsim \frac{3 m_{S}^{2}}{16 \pi} \quad, \quad \text { for } \quad a_{0}(S S \rightarrow S S) \leq \frac{1}{2} \tag{1.58}
\end{equation*}
$$

However, in the case of large s_{α} values, all partial wave contributions needs to be considered to determine a valid prediction of the lower limit on the allowed heavy scalar mass.

- Potential Stability and Perturbativity of the scalar couplings:

Typically, the stability of the scalar potential is described by the conditions in eq.(1.5) while the perturbativity of a general coupling x requires that:

$$
\begin{equation*}
|x(\mu)| \leq 4 \pi \tag{1.59}
\end{equation*}
$$

which, for the SSM, are $x=(\lambda, \kappa, \rho)$. At the electroweak scale, $\mu=v$, we have no additional constraints in the $\left(s_{\alpha}, w\right)$ - parameter space when we test the perturbative unitarity condition. So, it is instructive to understand what are the energy scales for which the perturbativity of the scalar couplings and the potential stability remain valid. To achieve this goal, we have to consider eq.(1.5) and eq.(1.59) valid at an arbitrary scale μ and the renormalization group equations (reported in eq.(1.42)) are needed to evaluate the coupling $\lambda(\mu), \kappa(\mu)$ and $\rho(\mu)$. By fixing a reference value for $\mu_{\text {SSM }}$ larger than μ_{SM} we can study the conditions arising from the perturbativity of the coupling and the stability of the scalar potential up to this benchmark scale so that we can define the $\left(s_{\alpha}, w\right)$-parameter space for which these are verified $[8,10]$. By the perturbativity of κ, we can determine a restriction in the large w and s_{α} regions while, if we analyze the perturbativity of λ and ρ, we obtain an upper limit on s_{α} and w, respectively. For instance, we report the conditions on s_{α} and w (discussed in [10]) obtained for fixed values of m_{S} and μ_{SSM}, namely $m_{S}=600 \mathrm{GeV}$ and $\mu_{S S M}=2.7 \times 10^{10} \mathrm{GeV}$: $\left|s_{\alpha}\right| \lesssim 0.3$ and $w \gtrsim 2 v$.

1.4.2 Experimental Constraints

- The W boson mass:

The experimental value of the W boson mass is given by [39, 40, 41]:

$$
\begin{equation*}
m_{W}^{\exp }=80.385 \pm 0.015 \mathrm{GeV} \tag{1.60}
\end{equation*}
$$

The computation of the electroweak precision parameter Δr^{7} imposes limits on the SSM parameter space when it is confronted with the experimental W boson mass measurement. The introduction of Δr implies that the theoretical expression of the W

[^6]boson mass is shifted as $m_{W} \rightarrow m_{W}\left(1+\Delta m_{W} / m_{W}\right)$ with,
\[

$$
\begin{equation*}
\frac{\Delta m_{W}}{m_{W}} \sim \frac{s_{W}^{2}}{s_{W}^{2}-c_{W}^{2}} \frac{\Delta r}{2} \tag{1.62}
\end{equation*}
$$

\]

with $s_{W}=\sin \theta_{W}$ and $c_{W}=\cos \theta_{W}$. For $\Delta r=0$ one gets the theoretical tree-level value $m_{W}^{\mathrm{th} \mathrm{LO}}=80.94 \mathrm{GeV}$. In the SM case, the best-fit value of Δr is given by $\Delta r_{\mathrm{SM}} \simeq 0.038$, which shifts the value of the W boson mass to $\left(m_{W}^{\mathrm{th}}\right)_{\mathrm{SM}}=80.36 \mathrm{GeV}$, a roughly 20 MeV away from the experimental result in eq.(1.60). The calculation of Δr include new physics effects could be relevant to impose parameter space constraints but also to explain the SM difference $\left|\left(m_{W}^{\text {th }}\right)_{\mathrm{SM}}-m_{W}^{\exp }\right| \simeq 20 \mathrm{MeV}$. For the SSM, this analysis has been performed in [26] and its conclusions are the following:
i) Defining $\Delta r_{\text {SSM }}=\Delta r_{\text {SM }}+\delta r_{\text {SSM }}$, the SSM deviation from SM value ($\delta r_{\text {SSM }}$) is not large and generates a variation amounting to a maximum of $\mathcal{O}(10 \%)$. The tension with the experimental result is reduced by the fact that $\Delta r_{\text {SSM }}>\Delta r_{\text {SM }}$ which implies that $\left(m_{W}^{\mathrm{th}}\right)_{\mathrm{SSM}}<\left(m_{W}^{\mathrm{th}}\right)_{\mathrm{SM}}\left(\right.$ with $\left.\left|\left(m_{W}^{\mathrm{th}}\right)_{\mathrm{SM}}-\left(m_{W}^{\mathrm{th}}\right)_{\mathrm{SSM}}\right| \sim 1-70 \mathrm{MeV}\right)$.
ii) The SSM contributions to Δr and m_{W} are dependent on the scalar mixing angle and it is possible to derive upper bounds on $\left|s_{\alpha}\right|$ (especially for $m_{S} \gtrsim 300 \mathrm{GeV}$) by comparing the $\left(m_{W}^{\mathrm{th}}\right)_{\text {SSM }}$ with $m_{W}^{\exp }$. For example, the upper bound on $\left|s_{\alpha}\right|$ associated with $m_{S}=1000 \mathrm{GeV}$ is $\left|s_{\alpha}\right|_{\max }=0.19$ (more upper bounds associated with different values of the singlet scalar mass are listed in Table.II of [26]).

- Electroweak Parameters S,T and U:

Similarly to the case discussed above, we can obtain other constraints on m_{S} and s_{α} from the electroweak precision observables (EWPO) which are the oblique parameters S, T and U defined as:

$$
\begin{align*}
\frac{\alpha_{\mathrm{em}}}{4 s_{W}^{2} c_{W}^{2}} S & =\frac{\bar{\Sigma}^{Z Z}\left(m_{Z}^{2}\right)-\bar{\Sigma}^{Z Z}(0)}{m_{Z}^{2}} ; \quad \alpha_{\mathrm{em}} T=\frac{\bar{\Sigma}^{W W}(0)}{m_{W}^{2}}-\frac{\bar{\Sigma}^{Z Z}\left(m_{Z}^{2}\right)}{m_{Z}^{2}} \\
\frac{\alpha_{\mathrm{em}}}{4 s_{W}^{2}} U & =\frac{\bar{\Sigma}^{W W}\left(m_{W}^{2}\right)-\bar{\Sigma}^{W W}(0)}{m_{W}^{2}}-c_{W}^{2} \frac{\bar{\Sigma}^{Z Z}\left(m_{Z}^{2}\right)-\bar{\Sigma}^{Z Z}(0)}{m_{Z}^{2}} \tag{1.63}
\end{align*}
$$

where the $\bar{\Sigma}^{V V}\left(k^{2}\right)$ denotes the purely singlet model contributions to the gauge boson self-energy. However, the next-to-leading order (NLO) EWPO corrections generate weaker constraints on the mixing angle than the bounds obtained from the Δr analysis and do not contribute to new limits on w values being independent from it [10, 26].

- Signal Strength of the Higgs Boson:

The Higgs signal strength $|\mu|$ is defined in the general "beyond-SM" case (bSM) as:

$$
\begin{equation*}
\mu \equiv \frac{\sigma_{\mathrm{bSM}}}{\sigma_{\mathrm{SM}}}=\frac{c_{\alpha}^{4} \Gamma_{\mathrm{SM}}\left(m_{H}\right)}{c_{\alpha}^{2} \Gamma_{\mathrm{SM}}\left(m_{H}\right)+s_{\alpha}^{2} \Gamma_{\text {hidden }}\left(m_{H}\right)}, \tag{1.64}
\end{equation*}
$$

where $\Gamma_{\mathrm{SM} \text {, hidden }}$ are the decay widths of the Higgs boson in the SM and in a possible hidden sector. In the SSM we have $\mu_{\mathrm{SSM}}=c_{\alpha}^{2}$. Concerning the Higgs signal strength, we can use the following values [42, 43]:

$$
\begin{equation*}
\mu_{\mathrm{LHC}}=1.30 \pm 0.18 \quad, \quad \mu_{\mathrm{CMS}}=0.80 \pm 0.14 \Rightarrow \bar{\mu}_{\exp }=1.05 \pm 0.11 \tag{1.65}
\end{equation*}
$$

As a consequence of the comparison between $\mu_{\text {SSM }}$ and $\bar{\mu}_{\exp }$ up to 2σ-level deviations, the upper (lower) limits are obtained: $\left|s_{\alpha}\right| \lesssim 0.42\left(\left|s_{\alpha}\right| \gtrsim 0.91\right)$.

1.4.3 Global Constraints

It is interesting to analyze the unification of the full sets of constraints discussed above. In Fig.(1.2) and in Tab.(1.2), which are educed from Figure I and Table I of [29] (in the Figure I, the scalar singlet mass is indicated with m_{H} instead of m_{S}), we report the allowed values of s_{α} and w associated with the mass range of our interest, $200 \leq m_{S} \leq 1000 \mathrm{GeV}$, which will be used in our numerical analysis. From Tab.(1.2), we note that the mixing angle values can be included in the global range $0.018 \leq|\sin \alpha| \leq 0.36$ while the lower bound on the singlet vev is $w_{\min }=0.85 \mathrm{v}$. On the other hand, it is interesting to identify the values of w and $\left|s_{\alpha}\right|$ which are valid for every choice of m_{S}. The minimum value of w increases as m_{S} increases. This automatically implies that $w_{\min }=4.34 v$ is a good choice for the m_{S} values of our interest. In a similar way, the range of $\left|s_{\alpha}\right|$ is restricted to the following interval: $\left|s_{\alpha}\right| \in\left[\left|s_{\alpha}\right|_{\min }^{\mathrm{m}_{\mathrm{S}}=200 \mathrm{GeV}},\left|s_{\alpha}\right|_{\max }^{\mathrm{m}_{\mathrm{S}}=1000 \mathrm{GeV}}\right]=[0.09,0.17]$. As a result, the study of the physical observables as a function of m_{S} requires:

$$
\begin{equation*}
\left|s_{\alpha}\right| \in[0.09,0.17] \text { and } w \geq 4.34 v \tag{1.66}
\end{equation*}
$$

$m_{S}[\mathrm{GeV}]$	$\left\|s_{\alpha}\right\|$	$w_{\text {min }}[\mathrm{GeV}]$
200	$[0.09,0.36]$	$0.85 v$
300	$[0.067,0.31]$	$1.25 v$
400	$[0.055,0.27]$	$1.69 v$
500	$[0.046,0.24]$	$2.13 v$
600	$[0.038,0.23]$	$2.56 v$
700	$[0.031,0.21]$	$3.03 v$
800	$[0.027,0.21]$	$3.45 v$
900	$[0.022,0.19]$	$3.85 v$
1000	$[0.018,0.17]$	$4.34 v$

Table 1.2: Values of m_{S} considered in our numerical analysis, the ranges of $\left|s_{\alpha}\right|$ and the corresponding $w_{\text {min }}$. Table extracted from Table I of [29].

Figure 1.2: Summary of the constraints as a function of $|\sin \alpha|$ and m_{S}. This figure is extracted from [29] and we directly report the original caption in terms of our notation and bibliography: "Maximal allowed values for $|\sin \alpha|$ in the high mass region, for a heavy boson mass in the range $m_{S} \in[130,1000] G e V$, from the following constraints: i) W boson mass measurement (red, solid) [26]; ii) electroweak precision observables tested via the oblique parameters S, T and U (orange, dashed); iii) perturbativity, of the $R G$-evolved coupling λ (blue, dotted), evaluated for an exemplary choice $w=10 \mathrm{v}$, iv) perturbative unitarity (grey, dash-dotted), v) direct LHC searches (green, dashed), and vi) Higgs signal strength measurement (magenta, dash-dotted). For masses $m_{S} \in[300,800]$ the W boson mass measurement yields the strongest constraint [26]. The present plot corresponds to an update of figure 8 from [10], where the latest constraints from the combined signal strength [44] have been taken into account."

1.5 Parameter Values

Here, we give a summary of the input parameter values which will be needed in our analysis. The SM central values are taken from [50]:

- Fine structure constant

The fine structure constant α_{em} is given at $Q^{2}=0$ (Thompson limit):

$$
\alpha_{\mathrm{em}}=\alpha_{\mathrm{em}}(0)=1 / 137.035999139 .
$$

At $Q^{2}=m_{W}^{2}$, it becomes $\alpha_{\mathrm{em}}\left(m_{Z}^{2}\right) \approx 1 / 128$.

- Fermi constant

The experimental value of the Fermi constant is:

$$
G_{F}=1.1663787 \times 10^{-5} \mathrm{GeV}^{-2}
$$

- Weinberg mixing

The experimental value of s_{W} is:

$$
\begin{equation*}
s_{W}=\sqrt{0.23155} . \tag{1.67}
\end{equation*}
$$

- Strong coupling constant

We define the strong coupling constant as α_{s} and its experimental value at $Q^{2}=m_{Z}^{2}$ is:

$$
\alpha_{\mathrm{s}}\left(m_{Z}^{2}\right)=0.1182
$$

- Higgs and Gauge boson masses

The scalar and gauge boson masses are fixed to:

$$
m_{H}=125.09 \mathrm{GeV} \quad, \quad m_{W}=80.385 \mathrm{GeV} \quad, \quad m_{Z}=91.1876 \mathrm{GeV}
$$

- Fermion masses

We have only considered t, b, c and τ since the other fermions have comparably negligible masses:

$$
m_{t}=173.21 \mathrm{GeV} \quad, \quad m_{b}=4.18 \mathrm{GeV} \quad, \quad m_{c}=1.27 \mathrm{GeV} \quad, \quad m_{\tau}=1776.86 \mathrm{MeV}
$$

- CKM matrix element

In the computation of the singlet decay rates no Cabibbo-Kobayashi-Maskawa matrix elements ($V_{\text {CKM }}$) are involved at LO. At the NLO we have verified that it is a good approximation to fix the mixing to the quark sector to be vanishingly small. For completeness, report here the best fit values of the quark mixing:

$$
V_{\mathrm{CKM}}=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \tag{1.68}\\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
0.97417 & 0.2248 & 4.09 \times 10^{-3} \\
0.22 & 0.995 & 40.5 \times 10^{-3} \\
8.2 \times 10^{-3} & 0.04 & 1.009
\end{array}\right)
$$

- Scalar mixing angle, singlet mass and vev

The full set of constraints on the SSM parameters gives us the range of the mixing angle, $\left|s_{\alpha}\right| \in[0.09,0.17]$, and the minimum value of $w, w_{\min }=4.34 v$, which are allowed for every choice of the singlet mass values included in the following range: $200 \leq m_{S} \leq 1000$ GeV .

We have to fix a set of independent variables in the scalar sector needed for the numerical analysis. We choose w, m_{S} and α and express at tree-level λ, ρ and κ according to eqs.(1.39 - 1.41):

$$
\begin{equation*}
\lambda=\frac{m_{H}^{2} c_{\alpha}^{2}+m_{S}^{2} s_{\alpha}^{2}}{2 v^{2}} \quad, \quad \rho=\frac{m_{S}^{2} c_{\alpha}^{2}+m_{H}^{2} s_{\alpha}^{2}}{2 w^{2}} \quad, \quad \kappa=\frac{\left(m_{S}^{2}-m_{H}^{2}\right) s_{2 \alpha}}{2 v w} \tag{1.69}
\end{equation*}
$$

In Tab.(1.3) we give an numerical values of λ, ρ and κ computed for representative parameter choices: $s_{\alpha}=(0.1,0.35), w=(5 v, 10 v)$ and $m_{S}=(300,500,700,1000) \mathrm{GeV}$.

$\mathrm{w}=5 \mathrm{v}$	$\mathrm{s}_{\alpha}=0.1$	$\mathrm{s}_{\alpha}=0.35$					
m_{S}		λ	κ	ρ	λ	κ	ρ
300		0.135	0.024	0.029	0.204	0.08	0.0267
500		0.148	0.077	0.082	0.366	0.253	0.073
700		0.168	0.156	0.16	0.608	0.513	0.142
1000		0.21	0.323	0.327	1.124	1.065	0.29
$\mathrm{w}=10 \mathrm{v}$	$\mathrm{s}_{\alpha}=0.1$						
m_{S}		λ	κ	ρ	λ	κ	ρ
300		0.135	0.012	0.007	0.204	0.04	0.007
500		0.148	0.038	0.02	0.366	0.127	0.018
700		0.168	0.078	0.04	0.608	0.257	0.036
1000		0.21	0.162	0.082	1.124	0.532	0.073

Table 1.3: Example of λ, κ and ρ values for representative parameter choices.

Chapter 2

Singlet Decay Widths at Tree-Level

It is interesting to determine whether and how the new scalar boson can be produced at the LHC experiments and what the process topologies will be. To make predictions of physical observables, we should connect the results of calculations, evaluated through a field theory (e.g decay amplitudes) with experimental data at a collider (e.g decay widths). The main scope of this thesis is the computation of the dominant singlet decay rates at the NLO. First of all, we clearly need the LO formulas for all partial decay widths of the new scalar boson which we consider to be heavier than any other SM particle. In the SSM, since the singlet mixes with the Higgs field, we can parametrize the total decay rate in the following form:

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow \mathrm{All})=\Gamma^{\mathrm{LO}}(S \rightarrow H H)+s_{\alpha}^{2} \Gamma^{\mathrm{LO}}\left(H_{\mathrm{sm}} \rightarrow g g, \gamma \gamma, Z \gamma, Z Z, W W, \bar{f} f\right) \tag{2.1}
\end{equation*}
$$

where $\Gamma^{\mathrm{LO}}\left(H_{\mathrm{sm}} \rightarrow \ldots\right)$ have to be evaluated in terms of m_{S} instead of m_{H}. In the next paragraphs we will list a summary of all partial LO decay widths of the processes $S \rightarrow i j$ which can be evaluated using the general expression for the two body decay rate given by the integration of the squared amplitude over the two-body Lorentz-invariant phase space and defined as [28]:

$$
\begin{equation*}
\Gamma(S \rightarrow i j)=\frac{\sqrt{m_{S}^{4}+m_{i}^{4}+m_{j}^{4}-2 m_{S}^{2} m_{i}^{2}-2 m_{S}^{2} m_{j}^{2}-2 m_{i}^{2} m_{j}^{2}}}{16 \pi m_{S}^{3} n_{i}!n_{j}!} \sum_{\text {d.o.f }}|\mathcal{M}|^{2}, \tag{2.2}
\end{equation*}
$$

where \mathcal{M} is decay amplitude, the summation is performed over all degrees of freedom (d.o.f) corresponding to the physical particles in the process, $n_{i, j}$ is the number of identical particles in the final state and $m_{i, j}$ are the masses of the decay products.

2.1 LO Decay Width to Gauge Bosons

The decay rate of the scalar S into two real gauge bosons gets contributions from longitudinally (L) and transversally $(\pm \pm)$ polarized gauge bosons. The LO amplitude is given by,

$$
\begin{equation*}
\mathcal{M}^{\mathrm{LO}}[S(k) \rightarrow V(p, a) V(q, b)]=e \frac{m_{V}^{2}}{s_{W} m_{W}} s_{\alpha} \times\left[g^{\mu \nu} \epsilon_{\mu}^{a}(p) \epsilon_{\nu}^{b}(q)\right], \tag{2.3}
\end{equation*}
$$

where $V=W^{ \pm}, Z$ and $(p, q),(a, b)$ are the four-momenta of the vector bosons and their polarizations, respectively. A straightforward computation of the decay width gives [45]:

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow V V)=\frac{G_{F}}{16 \sqrt{2} \pi} m_{S}^{3} s_{\alpha}^{2}\left(1+\delta_{V}\right) \sqrt{1-4 x_{V}}\left(1-4 x_{V}+12 x_{V}^{2}\right) \tag{2.4}
\end{equation*}
$$

where $x_{V}=m_{V}^{2} / m_{S}^{2}$ and $\delta_{V}=0,1$ for $V=Z, W^{ \pm}$, respectively. The longitudinally and transversally polarized decay rates to gauge boson pair are given by:

$$
\begin{align*}
\left\{\Gamma^{\mathrm{LO}}(S \rightarrow V V)\right\}^{ \pm L} & =\left(\Gamma^{\mathrm{LO}}(S \rightarrow V V)\right)^{ \pm \pm}=0 \tag{2.5}\\
\left\{\Gamma^{\mathrm{LO}}(S \rightarrow V V)\right\}^{ \pm \pm} & =\frac{G_{F}}{16 \sqrt{2} \pi} m_{S}^{3} s_{\alpha}^{2}\left(1+\delta_{V}\right) \sqrt{1-4 x_{V}} \times\left(4 x_{V}^{2}\right) \tag{2.6}\\
\left\{\Gamma^{\mathrm{LO}}(S \rightarrow V V)\right\}^{L} & =\frac{G_{F}}{16 \sqrt{2} \pi} m_{S}^{3} s_{\alpha}^{2}\left(1+\delta_{V}\right) \sqrt{1-4 x_{V}} \times\left(1-4 x_{V}+4 x_{V}^{2}\right) \tag{2.7}
\end{align*}
$$

We can note the dominance of the longitudinal vector bosons in the decay of a heavy scalar singlet $\left(x_{V} \rightarrow 0\right)$,

$$
\begin{equation*}
\frac{\Gamma^{\mathrm{LO}}\left(S \rightarrow V_{ \pm} V_{\mp}\right)}{\Gamma^{\mathrm{LO}}\left(S \rightarrow V_{L} V_{L}\right)}=\frac{x_{V}^{2} / 2}{\left[1-x_{V}^{2} / 2\right]^{2}}, \tag{2.8}
\end{equation*}
$$

where this implies that, for high m_{S} values (TeV scale), the total contribution due to the sum of vector boson decay rates can be expressed as,

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow V V) \simeq \frac{G_{F}}{16 \sqrt{2} \pi}\left(1+\delta_{V}\right) m_{S}^{3} \tag{2.9}
\end{equation*}
$$

For completeness, we also report the case with a virtual gauge boson in the final state ($m_{V}<$ $m_{S}<2 m_{V}$); summing over all decay channels available of the virtual W^{*} or Z^{*}, the widths are given by [46]:

$$
\begin{align*}
\Gamma^{\mathrm{LO}}\left(S \rightarrow W^{*} W\right) & =\frac{3 g^{4} m_{S}}{512 \pi^{3}} s_{\alpha}^{2} \mathcal{F}\left(m_{W} / m_{S}\right) \tag{2.10}\\
\Gamma^{\mathrm{LO}}\left(S \rightarrow Z^{*} Z\right) & =\frac{g^{4} m_{S}}{2048 \pi^{3}} \frac{7-\frac{40 s_{W}^{2}}{3}+\frac{160 s_{W}^{4}}{9}}{c_{W}^{4}} s_{\alpha}^{2} \mathcal{F}\left(m_{Z} / m_{S}\right) \tag{2.11}
\end{align*}
$$

where,

$$
\begin{align*}
\mathcal{F}(x)= & \frac{3-24 x^{2}+60 x^{4}}{\sqrt{4 x^{2}-1}} \arccos \left(\frac{3 x^{2}-1}{2 x^{3}}\right)+ \\
& +\left(3-18 x^{2}+12 x^{4}\right)|\ln x|-\left|1-x^{2}\right|\left(\frac{47 x^{2}-13}{2}+\frac{1}{x^{2}}\right) \tag{2.12}
\end{align*}
$$

2.2 LO Decay Width to Fermions

Since the coupling of S to fermions is proportional to the fermion mass (m_{f}) and the mixing angle (s_{α}), the fermionic decay width will be proportional to $s_{\alpha}^{2} m_{f}^{2}$ and the matrix element takes the following form:

$$
\begin{equation*}
\mathcal{M}^{\mathrm{LO}}[S(k) \rightarrow \bar{f}(p) f(q)]=i \bar{U}(p) \frac{e m_{f}^{2}}{2 s_{W} m_{W}} s_{\alpha} V(q) \tag{2.13}
\end{equation*}
$$

where U, V are the spinors of the fermions with momenta p and q. Using eq.(2.2) we get [47],

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow \bar{f} f)=s_{\alpha}^{2} N_{c} \frac{m_{S} m_{f}^{2}}{16 \pi v^{2}}\left(1-4 x_{f}\right)^{3 / 2} \tag{2.14}
\end{equation*}
$$

where m_{f} is the mass of the fermion, $x_{f}=m_{f}^{2} / m_{S}^{2}$ and $N_{c}=1,3$ for leptons and quarks, respectively.

2.3 LO Decay Width to Higgs Bosons

When kinematically accessible, the heavy scalar decay to Higgs boson pair is guaranteed by the tree-level interaction $\mathrm{C}_{H H S}$ of eq.(1.21):

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow H H)=\frac{\left(\mathrm{C}_{H H S}\right)^{2}}{32 \pi m_{H}} \sqrt{1-\frac{4 m_{H}^{2}}{m_{S}^{2}}} . \tag{2.15}
\end{equation*}
$$

2.4 LO Decay Width to massless Gauge Bosons

Since neither $S \gamma \gamma$ nor $S g g$ interactions are present at the LO, the decay rates $S \rightarrow \gamma \gamma, Z \gamma, g g$ are defined through loops of gauge bosons and/or fermions. Thus, these decays are suppressed by the loop factor $\alpha_{(\mathrm{em}, \mathrm{s})}^{2} / 16 \pi^{2}$ and this implies that the branching ratios are relatively small, of the order of 10^{-4}. Starting from $S \rightarrow \gamma \gamma$, we have (for the SM Higgs boson, the decay width into two photons was calculated in [48]):

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow \gamma \gamma)=s_{\alpha}^{2} \frac{\alpha_{\mathrm{em}}^{2} g^{2}}{1024 \pi^{3}} \frac{m_{S}^{3}}{m_{W}^{2}}\left|\sum_{i} N_{c i} Q_{i}^{2} A_{i}^{\gamma \gamma}\left(\tau_{i}\right)\right|^{2}, \tag{2.16}
\end{equation*}
$$

where $i=\eta^{ \pm}, f, W^{ \pm}, \tau_{i}=4 m_{i}^{2} / m_{S}^{2}$ and $A_{i}^{\gamma \gamma}\left(\tau_{i}\right)$ is defined as:

$$
\begin{align*}
A_{\eta}^{\gamma \gamma}\left(\tau_{\eta}\right) & =\tau_{\eta}^{2}\left[\tau_{\eta}^{-1}-f\left(\tau_{\eta}\right)\right] \tag{2.17}\\
A_{f}^{\gamma \gamma}\left(\tau_{f}\right) & =-2 \tau_{f}\left[1+\left(1-\tau_{f}\right) f\left(\tau_{f}\right)\right] \tag{2.18}\\
A_{W}^{\gamma \gamma}\left(\tau_{W}\right) & =2+3 \tau_{W}\left[1+\left(2-\tau_{W}\right) f\left(\tau_{W}\right)\right] \tag{2.19}
\end{align*}
$$

with

$$
f(\tau)=\left\{\begin{array}{cl}
\arcsin [\sqrt{1 / \tau}]^{2} & \text { if } \tau \geq 1 \tag{2.20}\\
-\frac{1}{4}\left(\ln \frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}}-i \pi\right)^{2} & \text { if } \tau<1
\end{array}\right.
$$

In the case of $S \rightarrow Z \gamma$, the calculation is similar to the two-photons case and the decay width given by [49]:

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow Z \gamma)=s_{\alpha}^{2} \frac{\alpha_{\mathrm{em}}^{2} g^{2}}{512 \pi^{3}} \frac{m_{S}^{3}}{m_{W}^{2}}\left(1-\frac{m_{Z}^{2}}{m_{S}^{2}}\right)^{3}\left|A^{Z \gamma}\left(\tau_{V}, \tau_{f}, \lambda_{V}, \lambda_{f}\right)\right|^{2} \tag{2.21}
\end{equation*}
$$

where $\lambda_{i}=4 m_{i}^{2} / m_{Z}^{2}$ and,

$$
\begin{gather*}
A^{Z \gamma}\left(\tau_{V}, \tau_{f}, \lambda_{V}, \lambda_{f}\right)=\sum_{f} \frac{2 N_{c f} Q_{f}\left(2 Q_{f} s_{W}-T_{f}^{3}\right)}{s_{W} c_{W}}\left[I_{1}\left(\tau_{f}, \lambda_{f}\right)-I_{2}\left(\tau_{f}, \lambda_{f}\right)\right]- \\
-\frac{c_{W}}{s_{W}}\left\{4\left(3-t_{W}^{2}\right) I_{2}\left(\tau_{W}, \lambda_{W}\right)+\left[\frac{\left(2+\tau_{W}\right) t_{W}^{2}-2}{\tau_{W}}-5\right] I_{1}\left(\tau_{W}, \lambda_{W}\right)\right\} \tag{2.22}
\end{gather*}
$$

with the parametric integrals given by the following expressions:

$$
\begin{align*}
I_{1}(\tau, \lambda) & =\frac{\tau \lambda}{2(\tau-\lambda)}+\frac{\tau^{2} \lambda}{(\tau-\lambda)^{2}}\left[g(\tau)-g(\lambda)+\frac{\lambda(f(\tau)-f(\lambda))}{2}\right] \tag{2.23}\\
I_{2}(\tau, \lambda) & =\frac{\tau \lambda}{2(\tau-\lambda)}[f(\tau)-f(\lambda)] \tag{2.24}\\
g(\tau) & = \begin{cases}\sqrt{\tau-1} \arcsin (\sqrt{1 / \tau}) & \text { if } \tau \geq 1 \\
\frac{1}{2} \sqrt{1-\tau}\left(\ln \frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}}-i \pi\right) & \text { if } \tau<1\end{cases} \tag{2.25}
\end{align*}
$$

Notice that, for $S \rightarrow \gamma \gamma$ and $Z \gamma$, the W-loop contributions is ~ 5 times t-loop contributions. Finally, the $S \rightarrow g g$ can be obtained from eqs. (2.16-2.20) by neglecting the ($W^{ \pm}, \eta^{ \pm}$)-loops and using the substitution, $\alpha_{\mathrm{em}}^{2} N_{c f}^{2} Q^{4} \rightarrow 2 \alpha_{\mathrm{s}}^{2}$, so that:

$$
\begin{equation*}
\Gamma^{\mathrm{LO}}(S \rightarrow g g)=s_{\alpha}^{2} \frac{\alpha_{\mathrm{s}}^{2} g^{2}}{512 \pi^{3}} \frac{m_{S}^{3}}{m_{W}^{2}}\left|\sum_{i} A_{f}^{g g}\left(\tau_{f}\right)\right|^{2} \tag{2.26}
\end{equation*}
$$

with $A_{f}^{g g}\left(\tau_{f}\right)=A_{f}^{\gamma \gamma}\left(\tau_{f}\right)$.

2.5 LO Total Decay Width and Branching Fractions

Disregarding for the moment what we have discussed in the previous section about m_{S}, s_{α} and w we analyze here the behavior of the LO decay rates with respect to s_{α}, w and m_{S}. Calling for simplicity $\Gamma^{\mathrm{LO}}(S \rightarrow$ All $)=\Gamma_{\text {TOт }}$, we report it in the left panel of Fig.(2.1) as a function of m_{S} for different values of $\left(s_{\alpha}, w\right)=(0.1,5 v)$ and $(0.2,10 v)$, while in the right panel Γ_{TOT} is displayed in the $s_{\alpha}-w$ plane for two fixed values of $m_{S}: m_{S}=400,1000 \mathrm{GeV}$.

Figure 2.1: Left plot: $\Gamma^{L O}(S \rightarrow$ All $)$ as a function of the m_{S} for the two fixed sets of parameters: $s_{\alpha}=0.1, w=5 v$ (black line) and $s_{\alpha}=0.2, w=10 v$ (blue line). Right plot: $\Gamma^{L O}(S \rightarrow$ All $)$ in the $s_{\alpha}-w$ plane for two fixed values of m_{S}, namely $m_{S}=400,1000 \mathrm{GeV}$.

We observe that $\Gamma_{\text {Тот }}$ increases as s_{α} and w increase. In particular, the s_{α}-dependence is much stronger than the w-dependence since the full set of partial decay widths within $\Gamma_{\text {TOT }}$ are proportional to s_{α}^{2} (only $\mathrm{C}_{H H S}$ is a non-trivial function of s_{α}) while w only appears in the partial decay width $\Gamma^{\mathrm{LO}}(S \rightarrow H H)$ suppressed by the typical small values characterizing κ and ρ (see Tab.(1.3)). In order to quantify this small dependence on w, we illustrate in Fig.(2.2) an example where the ratios $\Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.2} / \Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.1}$ and $\Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.35} / \Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.1}$ are computed for two different values of w, namely $w=5 v, 10 v$. Neglecting the Higgs boson decay channel, the red lines confirm that Γ_{TOT} is fully proportional to s_{α}^{2} (see eq.(4.45)): $\Gamma_{\mathrm{TOT}}^{s_{\alpha}=s_{1}} / \Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.1}=\left(s_{1} / 0.1\right)^{2}$. In this respect, the difference between the red (solid) and black (solid and dashed) curves is entirely due to the w and s_{α} dependences in eq.(1.21) which produce a variation for the defined ratios with $s_{\alpha}=0.2$ and $s_{\alpha}=0.35$ reaching a maximum of $\mathcal{O}(1 \%)$ and $\mathcal{O}(6 \%)$, respectively. Now, we can analyze the branching fractions of all partial decay channels. Defining $\mathrm{BR}_{\text {Sij }}^{\mathrm{LO}}=$ $\Gamma^{\mathrm{LO}}(S \rightarrow i j) / \Gamma_{\text {TOT }}$, we illustrate in Fig.(2.3) the dominant (right plot) and the rare decays (left plot) computed for the representative values $s_{\alpha}=0.2$ and $w=5 v$. In addition, we have studied in Tab.(2.1), for fixed $m_{S}=400 \mathrm{GeV}$, and in Tab.(2.2), for fixed $m_{S}=1000$ GeV , the $s_{\alpha^{-}}$and the w - dependences of all decay channels choosing three values of s_{α} and $w: s_{\alpha}=0.1,0.2,0.35$ and $w=5 v, 10 v, 15 v$. We also calculate $\mathrm{BR}_{\mathrm{HH}}^{\mathrm{LO}}$ for negative s_{α} values $\left(s_{\alpha}=-0.1,-0.2,-0.35\right)$ since $\Gamma(S \rightarrow H H)$ is the only decay width not symmetric under a

Figure 2.2: $\Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.2} / \Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.1}$ (left plot) and $\Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.35} / \Gamma_{\mathrm{TOT}}^{s_{\alpha}=0.1}$ (right plot) as a function of the m_{S} for two fixed values $w=5 v$ (solid) and $w=10 v$ (dashed). The red line shows the considered ratios without the partial decay width $\Gamma^{\mathrm{LO}}(S \rightarrow H H)$.

Figure 2.3: Dominant (left plot) and rare (right plot) decay channels computed for $s_{\alpha}=0.2$ and $w=5 v$. Notice the different scale on the vertical axes.
sign flip of kind $s_{\alpha} \rightarrow-s_{\alpha}$. In the left plot of Fig.(2.3), we can observe at $m_{S}=2 m_{H} \sim 250$ GeV the decrease of $\mathrm{BR}_{S Z Z, S W W}^{\mathrm{LO}}$ since $\Gamma_{\text {TOT }}$ receives the new contribution related to the decay mode $S \rightarrow H H$ which becomes kinematically accessible at these mass values. Neglecting the behavior of $\mathrm{BR}_{S \gamma \gamma}^{\mathrm{LO}}$ for $m_{S} \gtrsim 600 \mathrm{GeV}$, the $\mathrm{BR}_{S i j}^{\mathrm{LO}}$ depicted in the right plot of Fig.(2.3) show a global decrease for larger m_{S} values. In Tab.(2.1) and Tab.(2.2), we see that $\mathrm{BR}_{S W W}^{\mathrm{LO}}, \mathrm{BR}_{S Z Z}^{\mathrm{LO}}$ and $\mathrm{BR}_{S t t}^{\mathrm{LO}}$ grow almost entirely with s_{α} while $\mathrm{BR}_{S H H}^{\mathrm{LO}}$ decreases as $\left|s_{\alpha}\right|$ increases, especially for negative s_{α}. In addition, $\mathrm{BR}_{S H H}^{\mathrm{LO}}$ grows with w for positive s_{α} values but it decreases as w increases in the negative mixing case.

$\left\|s_{\alpha}\right\|$	w / v	$s_{\alpha}>0$ $\mathrm{BR}_{\mathrm{SHH}}^{\mathrm{LO}}$	$s_{\alpha}<0$ $\mathrm{BR}_{\mathrm{SHH}}^{\mathrm{LO}}$	$s_{\alpha}>0$ $\mathrm{BR}_{\mathrm{SWW}}^{\mathrm{LD}}$	$s_{\alpha}>0$ $\mathrm{BR}_{\mathrm{SZZ}}^{\mathrm{LO}}$	$s_{\alpha}>0$ $\mathrm{BR}_{\text {STt }}$
0.1	5	31.7	30.0	43.8	20.5	3.9
0.2	5	31.3	27.9	44.1	20.6	3.9
0.35	5	28.8	23.1	45.7	21.3	4.0
0.1	10	31.3	30.4	44.1	20.6	3.9
0.2	10	30.4	28.7	44.7	20.9	4.0
0.35	10	27.4	24.5	46.6	21.8	4.1
0.1	15	31.2	30.6	44.2	20.6	3.9
0.2	15	30.1	29.0	44.8	20.9	4.0
0.35	15	26.9	25.0	46.9	21.9	4.2

Table 2.1: Branching fractions of all decay channels computed for fixed values: $\left|s_{\alpha}\right|=$ $0.1,0.2,0.35, w=5 v, 10 v, 15 v$ and $m_{S}=400 \mathrm{GeV}$. The $\mathrm{BR}_{\mathrm{HH}}^{\mathrm{LO}}$ is computed for positive and negative s_{α} values while the other branching fractions are only computed for $s_{\alpha}>0$.

$\left\|s_{\alpha}\right\|$ w / v $s_{\alpha}>0$ $\mathrm{BR}_{\mathrm{SHH}}^{\mathrm{LO}}$ $s_{\alpha}<0$ $\mathrm{BR}_{\mathrm{SHH}}^{\mathrm{LD}}$ $s_{\alpha}>0$ $\mathrm{BR}_{\mathrm{SWW}}^{\mathrm{LD}}$ $s_{\alpha}>0$ $\mathrm{BR}_{\mathrm{SZZ}}^{\mathrm{LO}}$$s_{\alpha}>0$ $\mathrm{BR}_{\mathrm{STt}}^{\mathrm{LO}}$						
0.1	5	25.8	24.3	47.2	23.3	3.7
0.2	5	25.4	22.4	47.5	23.5	3.7
0.35	5	23.2	18.3	48.8	24.1	3.8
0.1	10	25.4	24.6	47.4	23.5	3.7
0.2	10	24.6	23.1	47.9	23.7	3.7
0.35	10	22.0	19.5	49.6	24.5	3.8
0.1	15	25.3	24.8	47.5	23.5	3.7
0.2	15	24.4	23.4	48.1	23.8	3.7
0.35	15	21.6	19.9	49.9	24.7	3.9

Table 2.2: Branching fractions of all decay channels computed for fixed values: $\left|s_{\alpha}\right|=$ $0.1,0.2,0.35, w=5 v, 10 v, 15 v$ and $m_{S}=1000 \mathrm{GeV}$. The $\mathrm{BR}_{\mathrm{HH}}^{\mathrm{LO}}$ is computed for positive and negative s_{α} values while the other branching fractions are only computed for $s_{\alpha}>0$.

Finally, the branching fractions corresponding to the rare decay channels are totally independent from s_{α} and w (considering the s_{α} and w values reported in Tab.(2.1) and Tab.(2.2)) and give:

- For $\mathrm{m}_{\mathrm{S}}=400 \mathrm{GeV}$:
$\mathrm{BR}_{S \bar{b} b}^{\mathrm{LO}}=0.02 \%, \mathrm{BR}_{S \bar{c} c}^{\mathrm{LO}}=0.002 \%, \mathrm{BR}_{S g g}^{\mathrm{LO}}=0.06 \%, \mathrm{BR}_{S \tau^{+} \tau^{-}}^{\mathrm{LO}}=0.001 \%, \mathrm{BR}_{S Z \gamma}^{\mathrm{LO}}=$ 0.002% and $\mathrm{BR}_{S \gamma \gamma}^{\mathrm{LO}}=0.0003 \%$;
- For $\mathrm{m}_{\mathrm{S}}=1000 \mathrm{GeV}$:
$\mathrm{BR}_{S \bar{b} b}^{\mathrm{LO}}=0.003 \%, \mathrm{BR}_{S \bar{c} c}^{\mathrm{LO}}=0.0002 \%, \mathrm{BR}_{S g g}^{\mathrm{LO}}=0.01 \%, \mathrm{BR}_{S \tau^{+} \tau^{-}}^{\mathrm{LO}}=0.0002 \%, \mathrm{BR}_{S Z_{\gamma}}^{\mathrm{LO}}=$ 0.00006% and $\mathrm{BR}_{S \gamma \gamma}^{\mathrm{LO}}=0.00003 \%$.

Chapter 3

Renormalization of the SSM

It is typical of quantum field theories to contain divergent amplitudes (in terms of Ultraviolet "UV" and/or Infrared "IR" divergences) when higher order corrections are taken into account. At the tree-level, the parameters in the Lagrangian (called "bare") are directly connected to the experimental quantities. As a consequence of the higher order corrections, the bare quantities differ from the corresponding physical ones for the UV- and/or IR-divergent factors which arise from the loop integral calculations. However, the so-called regularization procedure ensures that these integrals become convergent and allows us to isolate their divergent terms. We consider an example of UV-divergent loop integral to introduce the regularization concept:

$$
\begin{equation*}
\mathcal{I}(k, m)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}, \tag{3.1}
\end{equation*}
$$

where k is the momentum associated with the internal propagator, m is the mass of the particle which circles in the loop and $+i \varepsilon$ indicates the loop Feynman prescription [28]. Two of the most used regularization processes are: i) the Pauli-Villars regularization [51]; ii) the Dimensional regularization [52]. The first one subtracts the same loop integral with a much larger mass, called Λ (regulator), as follows:

$$
\begin{equation*}
\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}} \stackrel{\text { regularized }}{\longrightarrow} \int \frac{d^{4} k}{(2 \pi)^{2}}\left[\frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}-\frac{1}{\left(k^{2}-\Lambda^{2}+i \varepsilon\right)^{2}}\right], \tag{3.2}
\end{equation*}
$$

where the subtracted piece needed to regulate UV divergence is regarded as a contribution of another massive field (Pauli-Villar field) with the same quantum numbers and opposite statistics as the original field. This method has the benefit of maintaining the Lorentz invariance in the momentum space. As a result, the propagator for large momenta decreases faster, which ensures the convergence of the integrals. After the Wick rotation, the divergences manifest themselves as logs and powers of Λ^{2} and $\mathcal{I}(k, m)$ gives:

$$
\begin{equation*}
\mathcal{I}(k, m) \xrightarrow{\text { regularized }}-\frac{i}{16 \pi^{2}} \ln \left(\frac{m^{2}}{\Lambda^{2}}\right) . \tag{3.3}
\end{equation*}
$$

Even though Pauli-Villar approach works for the photon at one-loop order, it fails in more complicated scenarios like non-Abelian gauge theories (violation of the gauge invariance) or multi-loop calculations (many Pauli-Villar fields have to be introduced).
On the contrary, the dimensional regularization (which will be used throughout the rest of this thesis) avoids these problem. The main feature is the integration over the loop momenta in D dimension, defined as $D=4-2 \epsilon$, where ϵ is a small parameter which works as regulator. In this approach, the usual divergent form is given in terms of ϵ as follows [28]:

$$
\begin{equation*}
\int \frac{d^{D} k}{(2 \pi)^{D}} \frac{1}{\left(k^{2}-m^{2}+i \varepsilon\right)^{2}}=\frac{i}{16 \pi^{2}}\left[\frac{1}{\epsilon}-\ln \left(\frac{m^{2}}{4 \pi}\right)+\gamma_{\mathrm{EM}}\right] \tag{3.4}
\end{equation*}
$$

where γ_{EM} is the Eulero-Mascheroni constant $\gamma_{\mathrm{EM}} \sim 0,5772$ [53].
A regularized quantum field theory is obtained thanks to the renormalization which is the fundamental technique to consistently identify and remove the "infinities". As soon as all divergences are regulated, they have to be canceled against each other in a consistent way in order to obtain a finite result for each physical quantity. In this thesis, we have used for the renormalization procedure the so-called counterterm approach by which the bare Lagrangian parameters X_{0} are expressed as the sum of finite renormalized quantities X and the divergent renormalization constants δX, called counterterms:

$$
\begin{equation*}
X_{0} \rightarrow X+\delta X \tag{3.5}
\end{equation*}
$$

These are fixed by the renormalization conditions which connect the physical and renormalized parameters and can be arbitrarily defined, as we will illustrate in the next section. Notice that the radiative corrections modify the normalization factor of the fields by adding an infinite part. This causes that the Green functions could be divergent, even if we obtain finite Smatrix elements, and implies that the fields also have to be renormalized in order to get finite propagators and vertices. Consistently to the Lagrangian parameters, a bare field ϕ_{0} can be renormalized by a similar procedure:

$$
\begin{equation*}
\phi_{0}=\sqrt{Z_{\phi}} \phi \sim\left(1+\frac{\delta Z_{\phi}}{2}\right) \phi, \tag{3.6}
\end{equation*}
$$

where Z_{ϕ} is called field renormalization constant.
Let us introduce the renormalized quantities and counterterms of our interest:

- Gauge Sector:

The gauge boson masses m_{V} (with $V=Z, W$), the Weinberg angle θ_{W} and the electric charge e counterterms are defined in the following way:

$$
\begin{align*}
\left(m_{V}^{2}\right)_{0} & =m_{V}^{2}+\delta m_{V}^{2}, \tag{3.7}\\
\left(\theta_{W}\right)_{0} & =\theta_{W}+\delta \theta_{W}, \tag{3.8}\\
e_{0} & =\left(1+\delta Z_{e}\right) e . \tag{3.9}
\end{align*}
$$

Obviously, the insertion of $\delta \theta_{W}$ implies that the relations between the mass and gauge basis in eq.(1.14) and eq.(1.15) are not valid to all orders. We also need the field renormalization constants for $W^{ \pm}, Z^{0}$ and γ defined as:

$$
\begin{gather*}
W_{0}^{ \pm}=\left(1+\frac{1}{2} \delta Z_{W}\right) W^{ \pm} \tag{3.10}\\
\binom{Z_{0}}{\gamma_{0}}=\left(\begin{array}{cc}
1+\frac{\delta Z_{Z}}{2} & \frac{\delta Z_{Z_{\gamma}}}{2}-\delta \theta_{W} \\
\frac{\delta Z_{\gamma Z}}{2}+\delta \theta_{W} & 1+\frac{\delta Z_{\gamma}}{2}
\end{array}\right)\binom{Z}{\gamma}, \tag{3.11}
\end{gather*}
$$

where in the last line we explicitly show the counterterms entering in the mixing matrix of the neutral gauge bosons. Notice that we can rewrite $\delta \theta_{W}$ as $\delta s_{W}^{2} /\left(2 s_{W} c_{W}\right)$ using: $\delta \theta_{W}=\delta s_{W} / c_{W}$ and $\delta s_{W}=\delta s_{W}^{2} /\left(2 s_{W}\right)$.
Typically, the gauge-fixing and the ghost Lagrangian, $\mathcal{L}_{\mathrm{GF}}$ and $\mathcal{L}_{\text {ghosts }}$, are considered in terms of already renormalized quantities [29, 35]. In this way, no additional counterterms have to be introduced for the linear $\left(\xi_{i}\right)_{0},\left(\xi_{i}^{\prime}\right)_{0}$ gauge parameters: $\left(\xi_{i}\right)_{0},\left(\xi_{i}^{\prime}\right)_{0} \equiv \xi_{i}, \xi_{i}^{\prime}$.

- Fermion Sector:

The fermion mass counterterms and the left and right -handed fermionic fields are defined through:

$$
\begin{align*}
\left(m_{f}\right)_{0} & =m_{f}+\delta m_{f} \tag{3.12}\\
f_{0 i}^{\mathrm{L}, \mathrm{R}} & =\left(\delta_{i j}+\frac{1}{2} \delta Z_{f i j}^{\mathrm{L}, \mathrm{R}}\right) f_{j}^{\mathrm{L}, \mathrm{R}} \tag{3.13}
\end{align*}
$$

where $f^{\mathrm{L}, \mathrm{R}}=P^{\mathrm{L}, \mathrm{R}} f$ with $P^{\mathrm{L}, \mathrm{R}}=\left(1 \mp \gamma_{5}\right) / 2$.

- Higgs Sector:

Considering $\mathcal{L}_{\text {scalar }}$ of eq.(1.2) expressed in the gauge basis, we have that the bare parameters, the scalar masses and the vevs counterterms are shifted as:

$$
\begin{align*}
\lambda_{0} & =\lambda+\delta \lambda, \tag{3.14}\\
\rho_{0} & =\rho+\delta \rho, \tag{3.15}\\
\kappa_{0} & =\kappa+\delta \kappa \tag{3.16}\\
\mu_{0}^{2} & =\mu^{2}+\delta \mu^{2}, \tag{3.17}\\
\left(\mu_{s}\right)_{0}^{2} & =\mu_{s}^{2}+\delta \mu_{s}^{2}, \tag{3.18}\\
v_{0} & =v+\delta v, \tag{3.19}\\
w_{0} & =w+\delta w, \tag{3.20}
\end{align*}
$$

while the gauge field renormalization constants and the tadpole counterterms are given by:

$$
\begin{gather*}
\phi_{0}=\left(1+\frac{\delta Z_{\phi}}{2}\right) \phi \quad, \quad\left(s^{0}\right)_{0}=\left(1+\frac{\delta Z_{s^{0}}}{2}\right) s^{0}, \tag{3.21}\\
\left(T_{\phi}\right)_{0}=T_{\phi}+\delta t_{\phi}, \quad\left(T_{s^{0}}\right)_{0}=T_{s^{0}}+\delta t_{s^{0}} \tag{3.22}
\end{gather*}
$$

We can also define the counterterms in the mass basis where the mixing angle and the scalar masses arise (after the diagonalization α, m_{S} and m_{H} become functions of the scalar Lagrangian parameters):

$$
\begin{align*}
\alpha_{0} & =\alpha+\delta \alpha, \tag{3.23}\\
\left(m_{H}^{2}\right)_{0} & =m_{H}^{2}+\delta m_{H}^{2}, \tag{3.24}\\
\left(m_{S}^{2}\right)_{0} & =m_{S}^{2}+\delta m_{S}^{2} . \tag{3.25}
\end{align*}
$$

Notice that, differently from the approach of [29], we have introduced the mixing angle counterterm $\delta \alpha$ instead of the mixed mass counterterm $\delta m_{H S}^{2}$. The insertion of $\delta \alpha$ corresponds to shift the rotation matrix as

$$
U(\alpha) \rightarrow U^{\prime}(\alpha+\delta \alpha)=U(\alpha)+U(\delta \alpha),
$$

where the application of $U^{\prime}(\alpha+\delta \alpha)$ now diagonalizes the loop corrected mass matrix. However, the two approaches are related as follows ${ }^{1}$:

$$
\begin{equation*}
\delta m_{H S}^{2}=\left(m_{S}^{2}-m_{H}^{2}\right) \delta \alpha \tag{3.27}
\end{equation*}
$$

As a consequence of such a relation, the full set of counterterms associated with the mixing scalar sector are defined according to the choice of $\delta m_{H S}^{2}$ or $\delta \alpha$.
Promoting eq.(1.7) to be valid to all orders ($\alpha_{0} \equiv \alpha$), we obtain the following field renormalization constants associated with the scalar physical fields,

$$
\binom{H_{0}}{S_{0}}=\left(\begin{array}{cc}
1+\frac{\delta Z_{H}}{2} & \frac{\delta Z_{H S}}{2} \tag{3.28}\\
\frac{\delta Z_{S H}}{2} & 1+\frac{\delta Z_{S}}{2}
\end{array}\right)\binom{H}{S},
$$

and the mixed mass counterterm $\delta m_{H S}^{2}$ has to be used.
On the other hand, we can also avoid to promote the mixing angle to be fixed to all orders, as it was previously stated for $\delta \theta_{W}$, and this implies that the two physical scalar fields are shifted to the renormalized fields and the wave function renormalization constants as

$$
\binom{H_{0}}{S_{0}}=\left(\begin{array}{cc}
1+\frac{\delta Z_{H}}{2} & \frac{\delta Z_{H S}}{2}-\delta \alpha \tag{3.29}\\
\frac{\delta Z_{S H}}{2}+\delta \alpha & 1+\frac{\delta Z_{S}}{2}
\end{array}\right)\binom{H}{S} .
$$

[^7]In this case $\delta m_{H S}^{2}$ has to be replaced by $\delta \alpha$ as described in eq.(3.27).
The tadpoles in the mass basis (T_{H} and T_{S}) are related to those in the gauge basis (T_{ϕ} and $T_{s^{0}}$) by the mixing,

$$
\binom{T_{H}}{T_{S}}_{0}=\left(\begin{array}{cc}
c_{\alpha} & -s_{\alpha} \tag{3.30}\\
s_{\alpha} & c_{\alpha}
\end{array}\right)\binom{T_{\phi}}{T_{s^{0}}}_{0}
$$

where T_{ϕ} and $T_{s^{0}}$ follow the relations in eq.(3.22).

- Three-point Vertex:

We define the vertex counterterms as,

$$
\begin{equation*}
V_{0}=V(1+\delta V) \tag{3.31}
\end{equation*}
$$

where V_{0} is a short-hand notation for a generic coupling.

3.1 Renormalization Schemes

The choice of the renormalization scheme involves the counterterm definitions which are necessary to absorb the UV-divergent contributions from higher order amplitudes. We will fix the renormalization constants for the masses and fields through the so-called on-shell scheme $(\mathbf{O S})^{2}$ which allows us to choose the counterterms such that the physical and the finite renormalized parameters are the same to all orders of perturbation theory. For the counterterms associated with the scalar mixed mass (or alternatively, the scalar mixing angle) and nondiagonal fields, we can construct a set of schemes which are not necessarily bound to the OS conditions since there is no natural way of defining these counterterms through a physically motivated renormalization scheme. In this regard, we have to pay attention to the definitions of these schemes since some of them manifest a gauge dependence in the physical observables. We will introduce the renormalization of the mixing scalar sector through two different schemes, called minimal field (MF) and improved on-shell (iOS), where the first one contains gauge-dependent counterterms while the second one is completely gauge-invariant [29].

Now, we clarify the formulation of the OS renormalization conditions discussing an example where only one spinless self-interacting scalar particle is considered (for example, it can get trilinear or quartic self-couplings as shown in lower panel of Fig.(3.1)), described by the bare field Υ_{0} and bare mass m_{0}, and working on the propagator and two-point correlation function definitions. The bare definitions corresponding to this scalar field are shifted as: $\Upsilon_{0} \rightarrow\left(1+\delta Z_{\Upsilon} / 2\right) \Upsilon$ and $m_{0}^{2} \rightarrow m^{2}+\delta m^{2}$. The treatment concerning the MF and iOS renormalization conditions can be described subsequently.

[^8]The bare propagator of the Υ_{0} field, which we call $\mathcal{G}_{0}\left(p^{2}\right)$, can be defined as [28]:

$$
\begin{align*}
\mathcal{G}_{0}\left(p^{2}\right) & =\int d^{4} x\langle\Omega| T \Upsilon_{0}(x) \Upsilon_{0}^{*}(0)|\Omega\rangle e^{i p \cdot x}= \\
& =\sqrt{Z_{\Upsilon}^{*}}\left[\int d^{4} x\langle\Omega| T \Upsilon(x) \Upsilon^{*}(0)|\Omega\rangle e^{i p \cdot x}\right] \sqrt{Z_{\Upsilon}}= \\
& =\sqrt{Z_{\Upsilon}^{*}} \hat{\mathcal{G}}\left(p^{2}\right) \sqrt{Z_{\Upsilon}}, \tag{3.32}
\end{align*}
$$

where the integral is computed over all space-time configurations $x,|\Omega\rangle$ is the vacuum state of this scalar toy theory, T is the time-ordering operator and $\hat{\mathcal{G}}\left(p^{2}\right)$ is the renormalized propagator (the quantities Q to be renormalized will be denoted through the "hat" symbol, \hat{Q}).
The bare propagator $\mathcal{G}_{0}\left(p^{2}\right)$ can also be defined as the sum of all one-particle irreducible ${ }^{3}$ (1PI) contributions to the self energy of the scalar field Υ_{0}, indicated with $i \Sigma_{1 \text { PI }}\left(p^{2}\right)$ (see Fig.(3.1)) [28]:

$$
\begin{align*}
\mathcal{G}_{0}\left(p^{2}\right) & =\frac{i}{p^{2}-m_{0}^{2}}+\frac{i}{p^{2}-m_{0}^{2}}\left(i \Sigma_{1 \mathrm{PI}}\left(p^{2}\right)\right) \frac{i}{p^{2}-m_{0}^{2}}+\ldots+\frac{i}{p^{2}-m_{0}^{2}}\left(\frac{-\Sigma_{1 \mathrm{PI}}\left(p^{2}\right)}{p^{2}-m_{0}^{2}}\right)^{n}= \\
& =\frac{i}{p^{2}-m_{0}^{2}}\left[1+\left(\frac{-\Sigma_{1 \mathrm{PI}}\left(p^{2}\right)}{p^{2}-m_{0}^{2}}\right)+\ldots+\left(\frac{-\Sigma_{1 \mathrm{PI}}\left(p^{2}\right)}{p^{2}-m_{0}^{2}}\right)^{n}\right]= \\
& =\frac{i}{p^{2}-m_{0}^{2}}\left[\frac{1}{1+\frac{\Sigma_{1 \mathrm{PI}}\left(p^{2}\right)}{p^{2}-m_{0}^{2}}}\right]=\frac{i}{p^{2}-m_{0}^{2}+\Sigma_{1 \mathrm{PI}}\left(p^{2}\right)}, \tag{3.33}
\end{align*}
$$

where n represents the infinite 1PI loop-levels. By comparing eq.(3.32) and eq.(3.33), we

Figure 3.1: Upper plot: 1PI-loop structure of the propagator $\mathcal{G}_{0}\left(p^{2}\right)$; lower plot: examples of loops contained in the 1PI contribution to the self-energy; the "black dots" depict the positions where the external propagators have to be connected.

[^9]obtain the following renormalized propagator in terms of the physical quantities:
\[

$$
\begin{align*}
\hat{\mathcal{G}}\left(p^{2}\right) & =\frac{i}{\sqrt{Z_{\Upsilon}^{*}}\left[p^{2}-m^{2}-\delta m^{2}+\Sigma_{1 \mathrm{PI}}\left(p^{2}\right)\right] \sqrt{Z_{\Upsilon}}} \approx \\
& \approx \frac{i}{p^{2}-m^{2}+\hat{\Sigma}_{1 \mathrm{PI}}\left(p^{2}\right)}, \tag{3.34}
\end{align*}
$$
\]

and this automatically implies that $\hat{\Sigma}_{1 \mathrm{PI}}\left(p^{2}\right)$ is given by,

$$
\begin{equation*}
\hat{\Sigma}_{1 \mathrm{PI}}\left(p^{2}\right)=\Sigma_{1 \mathrm{PI}}\left(p^{2}\right)+\left(p^{2}-m^{2}\right)\left(\frac{\delta Z_{\Upsilon}^{*}+\delta Z_{\Upsilon}}{2}\right)-\delta m^{2} \tag{3.35}
\end{equation*}
$$

with $\sqrt{Z_{\Upsilon}^{*}}, \sqrt{Z_{\Upsilon}}$ expanded as eq.(3.6). Using these compact results, the two-point correlation function (the inverse of the propagator) can be directly defined as:

$$
\begin{align*}
\hat{\Gamma}\left(p^{2}\right) & =i\left[p^{2}-m^{2}+\hat{\Sigma}_{1 \mathrm{PI}}\left(p^{2}\right)\right] \approx \\
& \approx i\left(p^{2}-m^{2}\right)\left(1+\left.\frac{\partial \hat{\Sigma}_{1 \mathrm{PI}}\left(p^{2}\right)}{\partial p^{2}}\right|_{p^{2}=m^{2}}\right)=\left.i\left(p^{2}-m^{2}\right)(-i) \frac{\partial \hat{\Gamma}\left(p^{2}\right)}{\partial p^{2}}\right|_{p^{2}=m^{2}} \tag{3.36}
\end{align*}
$$

where the last row is obtained after an expansion around the pole of the propagator at $p^{2}=m^{2}$.
At this point, the formulation of the OS renormalization conditions, which requires that physical and finite renormalized parameters are equivalent to all orders of perturbation theory, becomes more intuitive by considering two main assumptions:
i) The renormalized mass parameter of the physical particle is fixed by imposing that it is equal to the physical mass and by the fact that the real parts of the pole of the corresponding propagator is equivalent to the zero of the 1PI self energy contributions:

$$
\begin{equation*}
\operatorname{Re}\left\{(-i) \hat{\Gamma}\left(m^{2}\right)\right\}=0 \rightarrow \operatorname{Re}\left\{\hat{\Sigma}_{1 \mathrm{PI}}\left(m^{2}\right)\right\}=0 ; \tag{3.37}
\end{equation*}
$$

ii) The physical field Υ is properly normalized through fixing the residue of the propagator at its pole to i :

$$
\begin{equation*}
\operatorname{Re}\left\{\left.\frac{\partial \hat{\Gamma}\left(p^{2}\right)}{\partial p^{2}}\right|_{p^{2}=m^{2}}\right\}=i \rightarrow \operatorname{Re}\left\{\left.\frac{\partial \hat{\Sigma}_{1 \mathrm{PI}}\left(p^{2}\right)}{\partial p^{2}}\right|_{p^{2}=m^{2}}\right\}=0 ; \tag{3.38}
\end{equation*}
$$

In our toy model these conditions are equivalent to:

$$
\begin{equation*}
\delta m^{2}=\operatorname{Re} \Sigma_{1 \mathrm{PI}}\left(m^{2}\right) \text { and } \delta Z_{\Upsilon}=-\operatorname{Re} \Sigma_{1 \mathrm{PI}}^{\prime}\left(m^{2}\right), \tag{3.39}
\end{equation*}
$$

where Σ^{\prime} is a short-hand notation for $\Sigma^{\prime}\left(p^{2}\right)=\partial \Sigma\left(p^{2}\right) / \partial p^{2}$. It is important to point out that, in the case where the scalar field develops a non-zero vacuum expectation value, the renormalization condition for the tadpole T_{Υ} has to be considered.

3.2 Renormalization Conditions and Counterterms

We will apply the same treatment discussed above to the SSM Lagrangian fields in order to determine the renormalization conditions through their respective propagators or two-point correlation functions ${ }^{4}$. For the two-point correlation functions we have:

$$
\begin{align*}
\hat{\Gamma}_{\mu \nu}^{\mathcal{V} \mathcal{V}^{\prime}}\left(p^{2}\right)= & -i g^{\mu \nu}\left(p^{2}-m_{\mathcal{V}}^{2}\right) \delta^{\mathcal{L} \mathcal{V}^{\prime}}- \\
& -i\left(g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \hat{\Sigma}_{T}^{\mathcal{\nu} \mathcal{V}^{\prime}}\left(p^{2}\right)-i \frac{p^{\mu} p^{\nu}}{p^{2}} \hat{\Sigma}_{L}^{\mathcal{V} \mathcal{V}}\left(p^{2}\right), \tag{3.40}\\
\hat{\Gamma}_{i j}^{f}(p)= & i(\not p-m) \delta_{i j}+ \\
& +i\left[\not p\left(P^{\mathrm{L}} \hat{\Sigma}_{i j}^{f, \mathrm{~L}}+P^{\mathrm{R}} \hat{\Sigma}_{i j}^{f, \mathrm{R}}\right)+\left(m_{f, i} P^{\mathrm{L}}+m_{f, j} P^{\mathrm{R}}\right) \hat{\Sigma}_{i j}^{f, \mathrm{~S}}\right], \tag{3.41}\\
\hat{\Gamma}^{\mathcal{S} \mathcal{S}^{\prime}}\left(p^{2}\right)= & i\left(p^{2}-m_{\mathcal{S}}^{2}\right) \delta^{\mathcal{S} \mathcal{S}^{\prime}}+i \hat{\Sigma}^{\mathcal{S} \mathcal{S}^{\prime}}\left(p^{2}\right) . \tag{3.42}
\end{align*}
$$

Here, the functions corresponding to the gauge bosons are defined in the 't Hooft-Feynman gauge which will be used throughout the rest of this work; furthermore, $\Sigma_{1 \mathrm{PI}}$ is now indicated as $\Sigma, m_{\mathcal{S} / \mathcal{V}}$ is the mass of the incoming particle and $\left(\mathcal{V V}^{\prime}, \mathcal{S S}^{\prime}\right)$ can be one of the combinations $\{W W, Z Z, \gamma \gamma, \gamma Z, Z \gamma\}$ and $\{H H, S S, H S, S H\}$, respectively. $\hat{\Sigma}_{T}^{\mathcal{L} \mathcal{L}^{\prime}}$ and $\hat{\Sigma}_{L}^{\nu \mathcal{V}^{\prime}}$ are the transverse and longitudinal contributions to the self-energies while the superscripts $\hat{\Sigma}_{i j}^{f, \mathrm{~L}}, \hat{\Sigma}_{i j}^{f, \mathrm{R}}$ and $\hat{\Sigma}_{i j}^{f, S}$ stand for the left-handed, right-handed and scalar parts of the renormalized self-energies. The definitions of $\hat{\Sigma}\left(p^{2}\right)$ are given by [29,33]:

$$
\begin{align*}
& \widetilde{\operatorname{Re}} \hat{\Sigma}_{T}^{W W}\left(p^{2}\right)= \widetilde{\operatorname{Re}} \Sigma_{T}^{W W}\left(p^{2}\right)+\delta Z_{W}\left(p^{2}-m_{W}^{2}\right)-\delta m_{W}^{2}, \tag{3.43}\\
& \operatorname{Re} \hat{\Sigma}_{T}^{Z Z}\left(p^{2}\right)= \operatorname{Re} \Sigma_{T}^{Z Z}\left(p^{2}\right)+\delta Z_{Z}\left(p^{2}-m_{Z}^{2}\right)-\delta m_{Z}^{2}, \tag{3.44}\\
& \operatorname{Re} \hat{\Sigma}_{T}^{\gamma \gamma}\left(p^{2}\right)= \operatorname{Re} \Sigma_{T}^{\gamma \gamma}\left(p^{2}\right)+p^{2} \delta Z_{\gamma \gamma}, \tag{3.45}\\
& \operatorname{Re} \hat{\Sigma}_{T}^{\gamma Z}\left(p^{2}\right)= \operatorname{Re} \Sigma_{T}^{\gamma Z}\left(p^{2}\right)+\frac{1}{2} \delta Z_{\gamma Z}\left(2 p^{2}-m_{Z}^{2}\right)+m_{Z}^{2} \delta \theta_{W}, \tag{3.46}\\
& \operatorname{Re} \hat{\Sigma}^{f}\left(p^{2}\right)= \operatorname{Re} \hat{\Sigma}_{\mathrm{V}}^{f}\left(p^{2}\right)+\operatorname{Re} \hat{\Sigma}_{\mathrm{A}}^{f}\left(p^{2}\right), \tag{3.47}\\
& \operatorname{Re} \hat{\Sigma}^{H H}\left(p^{2}\right)= \operatorname{Re} \Sigma^{H H}\left(p^{2}\right)+\delta Z_{H}\left(p^{2}-m_{H}^{2}\right)-\delta m_{H}^{2}, \tag{3.48}\\
& \operatorname{Re} \hat{\Sigma}^{S S}\left(p^{2}\right)= \operatorname{Re} \Sigma^{S S}\left(p^{2}\right)+\delta Z_{S}\left(p^{2}-m_{S}^{2}\right)-\delta m_{S}^{2} \tag{3.49}\\
& \operatorname{Re} \hat{\Sigma}^{H S}\left(p^{2}\right)=\operatorname{Re} \hat{\Sigma}^{S H}\left(p^{2}\right)=\operatorname{Re\Sigma ^{HS}(p^{2})+(m_{H}^{2}-m_{S}^{2})\delta \alpha +} \\
& \quad+\left[\frac{\delta Z_{H S}}{2}\left(p^{2}-m_{H}^{2}\right)+\frac{\delta Z_{S H}}{2}\left(p^{2}-m_{S}^{2}\right)\right], \tag{3.50}
\end{align*}
$$

where $\widetilde{R e}$ takes the real part of the loop integrals only and it does not remove the imaginary parts arising from the various couplings of the theory (e.g. from complex CKM matrix elements; if these coupling are chosen to be real, the replacement $\widetilde{R e} \rightarrow R e$ is valid at the

[^10]one-loop order) while $\hat{\Sigma}_{\mathrm{V}, \mathrm{A}}^{f}\left(p^{2}\right)$ in eq. (3.47) are defined as:
\[

$$
\begin{align*}
& \hat{\Sigma}_{\mathrm{V}}^{f}\left(p^{2}\right)=\not p \Sigma_{\mathrm{V}}^{f}\left(p^{2}\right)+\left(\not p-m_{f}\right) \delta Z_{f \mathrm{~V}}+m_{f} \Sigma_{\mathrm{S}}^{f}\left(p^{2}\right)-\delta m_{f}, \tag{3.51}\\
& \hat{\Sigma}_{\mathrm{A}}^{f}\left(p^{2}\right)=-\not p \gamma_{5}\left(\Sigma_{\mathrm{A}}^{f}\left(p^{2}\right)+\delta Z_{f \mathrm{~A}}\right), \tag{3.52}
\end{align*}
$$
\]

with $\delta Z_{f \mathrm{~V}, \mathrm{~A}}=\left(\delta Z_{f}^{\mathrm{L}} \pm \delta Z_{f}^{\mathrm{R}}\right) / 2$ and $\Sigma_{\mathrm{V}, \mathrm{A}}^{f}=\left(\Sigma^{f \mathrm{~L}} \pm \Sigma^{f \mathrm{R}}\right) / 2$.
We can impose the following conditions on the renormalized self-energy functions in the OS scheme [33, 55]:

$$
\begin{align*}
\operatorname{Re} \hat{\Sigma}^{H H}\left(m_{H}^{2}\right) & =0,\left.\quad \operatorname{Re} \hat{\Sigma}^{\prime H H}\left(p^{2}\right)\right|_{p^{2}=m_{H}^{2}}=0, \tag{3.53}\\
\operatorname{Re} \hat{\Sigma}^{S S}\left(m_{S}^{2}\right) & =0,\left.\quad \operatorname{Re} \hat{\Sigma}^{\prime S S}\left(p^{2}\right)\right|_{p^{2}=m_{S}^{2}}=0, \\
\widetilde{\operatorname{Re}} \hat{\Sigma}_{T}^{W W}\left(m_{W}^{2}\right) & =0,\left.\quad \widetilde{\operatorname{Re}} \hat{\Sigma}_{T}^{\prime W W}\left(p^{2}\right)\right|_{p^{2}=m_{W}^{2}}=0, \\
\operatorname{Re} \hat{\Sigma}_{T}^{Z Z}\left(m_{Z}^{2}\right) & =0,\left.\quad \operatorname{Re} \hat{\Sigma}_{T}^{\prime Z Z}\left(p^{2}\right)\right|_{p^{2}=m_{Z}^{2}}=0, \\
\operatorname{Re} \hat{\Sigma}_{T}^{\gamma \gamma}(0) & =0,\left.\quad \operatorname{Re} \hat{\Sigma}_{T}^{\prime \gamma}\left(p^{2}\right)\right|_{p^{2}=0}=0, \\
\operatorname{Re} \hat{\Sigma}_{T}^{Z \gamma}\left(m_{Z}^{2}\right) & =0, \quad \operatorname{Re} \hat{\Sigma}_{T}^{\gamma Z}(0)=0, \\
\widetilde{\operatorname{Re}} \hat{\Sigma}_{\mathrm{V}}^{f}\left(m_{f}^{2}\right) & =0, \quad \widetilde{\left.\operatorname{Re} \hat{\Sigma}_{\mathrm{V}, \mathrm{~A}}^{\prime f}\left(p^{2}\right)\right|_{p^{2}=m_{f}^{2}}=0 .}
\end{align*}
$$

Notice that no renormalization condition for the mixing scalar sector is fixed. These conditions are set up in the MF and iOS schemes as:

- Improved on-shell (iOS)

This scheme requires that loop-induced $S-H$ or $H-S$ transitions vanish for on-shell external scalar states:

$$
\begin{equation*}
\left.\operatorname{Re} \hat{\Sigma}^{H S}\left(p^{2}\right)\right|_{p^{2}=m_{H}^{2}}=0 \quad,\left.\quad \operatorname{Re} \hat{\Sigma}^{H S}\left(p^{2}\right)\right|_{p^{2}=m_{S}^{2}}=0 \tag{3.54}
\end{equation*}
$$

- Minimal field (MF):

Here, the off-diagonal renormalized self-energies are canceled out at an arbitrary renormalization scale, called μ_{R} :

$$
\begin{equation*}
\left.\operatorname{Re} \hat{\Sigma}^{H S}\left(p^{2}\right)\right|_{p^{2}=\mu_{R}^{2}}=0 \tag{3.55}
\end{equation*}
$$

As a consequence of eq.(3.55), we can note that for $\mu_{R}^{2} \neq m_{H}^{2}, m_{S}^{2}$ the physical H and S states can oscillate when we compute vertices with scalar legs on their mass shell ($p^{2}=m_{H}^{2}, m_{S}^{2}$) since the off-diagonal terms in the propagator matrix, which we call $\Delta_{\text {scalar }}^{-1}$, are different from zero:

$$
\left.\Delta_{\mathrm{scalar}}^{-1}\right|_{\mathrm{MF}}=\left(\begin{array}{cc}
p^{2}-m_{H}^{2}+\hat{\Sigma}^{H H}\left(p^{2}\right) & \left.\hat{\Sigma}^{H S}\left(p^{2}\right)\right|_{p^{2}=\mu_{R}^{2}} \tag{3.56}\\
\left.\hat{\Sigma}^{S H}\left(p^{2}\right)\right|_{p^{2}=\mu_{R}^{2}} & p^{2}-m_{S}^{2}+\hat{\Sigma}^{S S}\left(p^{2}\right)
\end{array}\right) .
$$

Thus, these vertices need the following additional finite terms (for any scalar leg) which compensate the residual $S-H$ or $H-S$ loop contributions [29, 56]:

$$
\begin{equation*}
\hat{Z}_{H S}=-\frac{\operatorname{Re} \hat{\Sigma}^{H S}\left(m_{H}^{2}\right)}{m_{H}^{2}-m_{S}^{2}} \quad, \quad \hat{Z}_{S H}=-\frac{\operatorname{Re} \hat{\Sigma}^{H S}\left(m_{S}^{2}\right)}{m_{S}^{2}-m_{H}^{2}} . \tag{3.57}
\end{equation*}
$$

Obviously, the diagonal fields depend on the OS conditions and this implies that $\hat{Z}_{H}=$ $\hat{Z}_{S}=1$.

3.2.1 Explicit Form of the OS Counterterms

From the full set of OS renormalization conditions in eq.(3.53) and eqs.(3.43-3.49) we can extract the following counterterms:

- Mass Counterterms:

$$
\begin{align*}
\delta m_{f} & =m_{f} \widetilde{\operatorname{Re}}\left[\Sigma_{\mathrm{V}}^{f}\left(m_{f}^{2}\right)+\Sigma_{\mathrm{S}}^{f}\left(m_{f}^{2}\right)\right], \tag{3.58}\\
\delta m_{H}^{2} & =\operatorname{Re} \Sigma^{H H}\left(m_{H}^{2}\right), \tag{3.59}\\
\delta m_{S}^{2} & =\operatorname{Re} \Sigma^{S S}\left(m_{S}^{2}\right), \tag{3.60}\\
\delta m_{W}^{2} & =\widetilde{\operatorname{Re}} \Sigma_{T}^{W W}\left(m_{W}^{2}\right), \tag{3.61}\\
\delta m_{Z}^{2} & =\operatorname{Re} \Sigma_{T}^{Z Z}\left(m_{Z}^{2}\right) . \tag{3.62}
\end{align*}
$$

- Field Renormalization Constants:

$$
\begin{align*}
\delta Z_{f \mathrm{~V}} & =-\widetilde{\operatorname{Re}} \Sigma_{\mathrm{V}}^{f}\left(m_{f}^{2}\right)-\left.2 m_{f}^{2} \widetilde{\operatorname{Re}}\left(\Sigma_{\mathrm{V}}^{\prime f}\left(p^{2}\right)+\Sigma_{\mathrm{S}}^{\prime f}\left(p^{2}\right)\right)\right|_{p^{2}=m_{f}^{2}}, \tag{3.63}\\
\delta Z_{f \mathrm{~A}} & =-\widetilde{\operatorname{Re}} \Sigma_{\mathrm{A}}^{f}\left(m_{f}^{2}\right)-2 m_{f}^{2} \widetilde{\left.\operatorname{Re} \Sigma_{\mathrm{A}}^{\prime f}\left(p^{2}\right)\right|_{p^{2}=m_{f}^{2}},} \tag{3.64}\\
\delta Z_{H} & =-\left.\operatorname{Re} \Sigma^{\prime H H}\left(p^{2}\right)\right|_{p^{2}=m_{H}^{2}}, \tag{3.65}\\
\delta Z_{S} & =-\left.\operatorname{Re} \Sigma^{\prime S S}\left(p^{2}\right)\right|_{p^{2}=m_{S}^{2}}, \tag{3.66}\\
\delta Z_{W} & =-\left.\widetilde{\operatorname{Re}} \Sigma_{T}^{\prime W W}\left(p^{2}\right)\right|_{p^{2}=m_{W}^{2}}, \tag{3.67}\\
\delta Z_{Z} & =-\left.\operatorname{Re} \Sigma_{T}^{\prime Z Z}\left(p^{2}\right)\right|_{p^{2}=m_{Z}^{2}} \tag{3.68}\\
\delta Z_{\gamma \gamma} & =-\left.\operatorname{Re} \Sigma_{T}^{\prime \gamma \gamma}\left(p^{2}\right)\right|_{p^{2}=0} \tag{3.69}\\
\delta Z_{\gamma Z} & =2 \operatorname{Re} \frac{\Sigma_{T}^{\gamma Z}(0)}{m_{Z}^{2}}+\frac{\delta s_{W}^{2}}{s_{W} c_{W}} . \tag{3.70}
\end{align*}
$$

- Tadpoles:

$$
\begin{equation*}
\delta T_{H}=-T_{H} \quad, \quad \delta T_{S}=-T_{S} . \tag{3.71}
\end{equation*}
$$

- Derived Quantities:

$$
\begin{align*}
\delta Z_{W} & =\delta Z_{\gamma \gamma}+\frac{c_{W}}{s_{W}} \delta Z_{\gamma Z} \tag{3.72}\\
\delta s_{W}^{2} & =-\delta c_{W}^{2}=c_{W}^{2}\left(\frac{\delta m_{Z}^{2}}{m_{Z}^{2}}-\frac{\delta m_{W}^{2}}{m_{W}^{2}}\right) \tag{3.73}\\
\delta Z_{e} & =-\frac{1}{2} \delta Z_{\gamma \gamma}+\frac{s_{W}}{c_{W}} \frac{R e \Sigma_{T}^{\gamma Z}(0)}{m_{Z}^{2}} \tag{3.74}
\end{align*}
$$

where the constant δZ_{e} is obtained by requiring the electric charge to be equal to the full $\bar{f} f \gamma$-vertex in the Thompson limit and imposing that all corrections to the $\bar{f} f \gamma$ coupling vanish on-shell and for zero momentum transfer (we use f to be more general since this result is independent on the fermion species) [33] ${ }^{5}$. Concerning the correction to the electric charge (δZ_{e}) we need to clarify the appearance of ambiguities associated with the definition of the mass singularities due to light fermions (quarks and leptons) in $\ln \left(m_{Z}^{2} / m_{f}^{2}\right)$. The first approach is related to the fine structure constant $\alpha_{\mathrm{em}}\left(q^{2}\right)$, at $Q^{2}=m_{Z}^{2}$, which has to be imposed as input parameter. This choice modifies the definition of δZ_{e} as [33]:

$$
\begin{equation*}
\left.\delta Z_{e}\right|_{Q^{2}=m_{Z}^{2}}=\left.\delta Z_{e}\right|_{Q^{2}=0}-\frac{1}{2} \Delta \alpha_{\mathrm{em}}\left(m_{Z}^{2}\right), \tag{3.75}
\end{equation*}
$$

where $\Delta \alpha_{\mathrm{em}}\left(m_{Z}^{2}\right)$ depends on the light-fermion contributions only (denoted with the index "light"):

$$
\begin{equation*}
\Delta \alpha_{\mathrm{em}}\left(m_{Z}^{2}\right)=-\delta Z_{\gamma \gamma}^{\text {light }}+\left(\frac{\operatorname{Re} \Sigma_{T}^{\gamma \gamma}\left(m_{Z}^{2}\right)}{m_{Z}^{2}}\right)^{\text {light }} \tag{3.76}
\end{equation*}
$$

Notice that these light-terms are canceled out when eq.(3.74) and eq.(3.76) are inserted in eq.(3.75).
The second approach is based on the so-called modified on-shell mass scheme (MOMS) [57], in which the electric charge is replaced by the Fermi constant G_{F} via

$$
\begin{equation*}
\frac{G_{F}}{\sqrt{2}}=\frac{e^{2}}{8 s_{W}^{2} m_{W}^{2}} \frac{1}{1-\Delta r} . \tag{3.77}
\end{equation*}
$$

The quantity Δr represents finite corrections to G_{F}; these are well known and up to $\mathcal{O}\left(\alpha_{e m}^{2}\right)$ are given by [57, 58]:

$$
\begin{equation*}
\Delta r=\frac{\widetilde{R e} \hat{\Sigma}_{T}^{W W}(0)}{m_{W}^{2}}+\frac{\alpha_{\mathrm{em}}}{4 \pi s_{W}^{2}}\left[\left(\frac{7}{2 s_{W}^{2}}-2\right) \ln c_{W}^{2}+6\right]+\mathcal{O}\left(\delta r_{\mathrm{SSM}}\right) \tag{3.78}
\end{equation*}
$$

[^11]where $\widetilde{\operatorname{Re}} \hat{\Sigma}_{T}^{W W}\left(p^{2}\right)$ is the renormalized transverse self-energy of the W boson at momentum transfer p defined in eq.(3.43); the second term is due to the vertex-box loop corrections in the muon decay process and $\mathcal{O}\left(\delta r_{\text {SSM }}\right)$ includes the negligible contributions arising from the insertion of the scalar singlet field ${ }^{6}$.
The use of G_{F} instead of the electric charge amounts to shift $\delta Z_{e} \rightarrow \delta Z_{e}^{\prime}=\delta Z_{e}-\Delta r / 2$; if in Δr we use the "derived form" of δZ_{W} of eq.(3.72) then the cancellation of the $\delta Z_{\gamma \gamma}$ in the final counterterm expression is guaranteed and no problem arises from the light fermion loop contributions. This is verified as follows:
\[

$$
\begin{gather*}
\delta Z_{e}^{\prime}=\delta Z_{e}-\frac{\Delta r}{2}=\left(-\frac{1}{2} \delta Z_{\gamma \gamma}+\frac{s_{W}}{c_{W}} \frac{\operatorname{Re} \Sigma_{T}^{\gamma Z}(0)}{m_{Z}^{2}}\right)+\left(-\frac{\widetilde{R e} \hat{\Sigma}_{T}^{W W}(0)}{2 m_{W}^{2}}-\frac{\mathcal{C}_{\text {muon }}}{2}\right)= \\
=\left(-\frac{1}{2} \delta Z_{\gamma \gamma}+\frac{s_{W}}{c_{W}} \frac{\operatorname{Re} \Sigma_{T}^{\gamma Z}(0)}{m_{Z}^{2}}\right)+\left(-\frac{\widetilde{R e} \Sigma_{T}^{W W}(0)}{2 m_{W}^{2}}+\frac{\delta Z_{W}}{2}+\frac{\delta m_{W}^{2}}{2 m_{W}^{2}}-\frac{\mathcal{C}_{\text {muon }}}{2}\right)= \\
=\left(\frac{s_{W}}{c_{W}} \frac{R e \Sigma_{T}^{\gamma Z}(0)}{m_{Z}^{2}}\right)+\left(-\frac{\widetilde{R e} \Sigma_{T}^{W W}(0)}{2 m_{W}^{2}}+\frac{c_{W}}{2 s_{W}} \delta Z_{\gamma Z}+\frac{\delta m_{W}^{2}}{2 m_{W}^{2}}-\frac{\mathcal{C}_{\text {muon }}}{2}\right) \tag{3.79}
\end{gather*}
$$
\]

where $\delta Z_{\gamma Z}$ is defined in eq.(3.70) and $\mathcal{C}_{\text {muon }}$ represents the vertex-box loop corrections described by second term in eq.(3.78) (by substituting the numerical values of its parameters we obtain: $\mathcal{C}_{\text {muon }} \sim 0.0066$). Thus, the full expanded form of δZ_{e}^{\prime} is given by:

$$
\begin{equation*}
\delta Z_{e}^{\prime}=\frac{\delta m_{W}^{2}}{2 m_{W}^{2}}+\frac{\delta s_{W}^{2}}{2 s_{W}^{2}}+\frac{\operatorname{Re} \Sigma_{T}^{\gamma Z}(0)}{s_{W} c_{W} m_{Z}^{2}}-\frac{\widetilde{R e} \Sigma_{T}^{W W}(0)}{2 m_{W}^{2}}-\frac{\mathcal{C}_{\text {muon }}}{2} . \tag{3.80}
\end{equation*}
$$

It is important to observe that, differently from the α_{em}-approach where we have m_{W} and m_{Z} as input values, in the MOMS scheme m_{W} is not an input parameter. It is replaced by G_{F} in the following way:

$$
\begin{equation*}
m_{W}^{2}=\frac{m_{Z}^{2}}{2}\left(1+\sqrt{1-\frac{4 \pi \alpha_{\mathrm{em}}}{\sqrt{2} G_{F} m_{Z}^{2}}\left[\frac{1}{1-\Delta r}\right]}\right) \tag{3.81}
\end{equation*}
$$

with $\Delta r \simeq 0.04$.

3.2.2 Explicit Form of the iOS Counterterms

The iOS definitions of $\delta Z_{H S, S H}^{\text {ios }}$ (we indicate with the superscript "ios" the counterterm of the mixing scalar sector arising from the iOS renormalization conditions) are determined using eq.(3.50) and eq.(3.54). These equations lead to [29],

$$
\begin{equation*}
\frac{\delta Z_{H S}^{\text {ios }}}{2}=\frac{\operatorname{Re} \Sigma^{H S}\left(m_{S}^{2}\right)}{m_{H}^{2}-m_{S}^{2}}+\delta \alpha^{\text {ios }} \quad, \quad \frac{\delta Z_{S H}^{\text {ios }}}{2}=\frac{\operatorname{Re} \Sigma^{H S}\left(m_{H}^{2}\right)}{m_{S}^{2}-m_{H}^{2}}-\delta \alpha^{\text {ios }} . \tag{3.82}
\end{equation*}
$$

[^12]On the other hand, the mixed mass (mixing angle) counterterm is defined in the following way [29]:

$$
\begin{equation*}
\delta m_{H S}^{2 \text { ios }}=\left(m_{S}^{2}-m_{H}^{2}\right) \delta \alpha^{\text {ios }}=\left.\operatorname{Re} \Sigma^{H S}\left(p^{* 2}\right)\right|_{p^{* 2}=\frac{m_{H}^{2}+m_{S}^{2}}{2}}, \tag{3.83}
\end{equation*}
$$

where $p^{* 2}$ is fixed to the average mass. The reason for such a choice of $p^{* 2}$ lies on the fact that the mixed scalar self-energy at $p^{* 2}$ is independent on the gauge-fixing scheme. The gauge independence of the iOS scheme is also discussed in [59] where it is shown how the mixed scalar self energy at $p^{* 2}=\left(m_{H}^{2}+m_{S}^{2}\right) / 2$ coincides with the gauge invariant part of the same quantity obtained through the so-called pinch technique, which generally allows the construction of off-shell Green's functions in non-Abelian gauge [60] or extended scalar [61] theories that are independent of the gauge-fixing parameter. For example, in [61] the authors calculate the NLO corrections to the Higgs boson couplings based on the OS renormalization scheme by using the pinch technique to remove the gauge dependence. The cancellation of the gauge dependence is also directly proven in the Higgs boson two-point functions computed in the linear R_{ξ} gauge by adding "pinch-terms" which are extracted from vertex corrections and box diagrams of a fermionic scattering process of the type $\bar{f} f \rightarrow \bar{f} f$.

3.2.3 Explicit Form of the MF Counterterms

To fix the non-diagonal scalar field renormalization $\delta Z_{H S}^{\mathrm{mf}}$ (the superscript "mf" indicates the counterterm of the mixing scalar sector arising from the MF renormalization conditions) are determined using eq.(3.50) and eq.(3.54), we consider the renormalization factor for the bare scalar doublet $(\phi)_{0}$ and singlet fields $\left(s^{0}\right)_{0}$ in the gauge basis (reported in eq.(3.21)). This prescription is very similar to the renormalization procedure of the Higgs sector used in SM extensions like the 2HDM [62] and the MSSM [56]. Using the same orthogonal transformation introduced for the mass eigenstates, the physical wave functions for the scalar fields can be expressed in terms of the gauge basis ones $\delta Z_{\phi, s^{0}}$ as [29]:

$$
\begin{gather*}
\delta Z_{H}^{\mathrm{mf}}=c_{\alpha}^{2} \delta Z_{\phi}+s_{\alpha}^{2} \delta Z_{s^{0}} \tag{3.84}\\
\delta Z_{S}^{\mathrm{mf}}=c_{\alpha}^{2} \delta Z_{s^{0}}+s_{\alpha}^{2} \delta Z_{\phi} \tag{3.85}\\
\delta Z_{H S, S H}^{\mathrm{mf}}=s_{\alpha} c_{\alpha}\left(\delta Z_{\phi}-\delta Z_{s^{0}}\right)=\frac{1}{2} t_{2 \alpha}\left(\delta Z_{H}^{\mathrm{mf}}-\delta Z_{S}^{\mathrm{mf}}\right), \tag{3.86}
\end{gather*}
$$

with $t_{2 \alpha}=\tan 2 \alpha$. These relations simplify in the so-called " $\overline{\mathrm{MS}}$ scheme" where $\delta Z_{s^{0}}^{\overline{\mathrm{MS}}}=0^{7}$ [29]:

$$
\begin{equation*}
\delta Z_{H}^{\mathrm{mf}}=c_{\alpha}^{2} \delta Z_{\phi}, \delta Z_{S}^{\mathrm{mf}}=s_{\alpha}^{2} \delta Z_{\phi}, \delta Z_{H S, S H}^{\mathrm{mf}}=s_{\alpha} c_{\alpha}\left(\delta Z_{H}^{\mathrm{mf}}-\delta Z_{S}^{\mathrm{mf}}\right) \tag{3.87}
\end{equation*}
$$

[^13]Notice that $\delta Z_{H S}^{\mathrm{mf}}$ is not an independent counterterm; in addition the mixed mass (mixing angle) counterterm is obtained by imposing the renormalization condition in eq.(3.55). In doing so, we have:

$$
\begin{equation*}
\delta m_{H S}^{2 \mathrm{mf}}=\left(m_{S}^{2}-m_{H}^{2}\right) \delta \alpha^{\mathrm{mf}}=\operatorname{Re} \Sigma^{H S}\left(\mu_{R}^{2}\right)+\delta Z_{H S}^{\mathrm{mf}}\left(\mu_{R}^{2}-\frac{m_{H}^{2}+m_{S}^{2}}{2}\right) \tag{3.88}
\end{equation*}
$$

3.2.4 Equivalence of the MF and iOS Schemes

Assuming $p^{* 2}=\mu_{R}^{2}=\left(m_{H}^{2}+m_{S}^{2}\right) / 2$, we can prove the equivalence of the MF and the iOS schemes at this scale ${ }^{8}$. To this aim, it is enough to take into account a three-point interaction where there is at least one of the SSM scalar fields.
Let us consider a generic $S \rightarrow i j$ interaction described by the LO coupling $g_{S i j}$, where i and j can be any possible fields which interact with the S field. For simplicity, we neglect only the $S \rightarrow H H$ channel which implies a more complicated NLO coupling structure (the equivalence which we will discuss below can be easily proven for the $S \rightarrow H H$ case). The counterterms associated with MF and iOS schemes only appear in the renormalized coupling at the NLO ($\left.g_{S i j}^{\mathrm{NLO}}\right)$ which is described by the generic Feynman diagrams reported in Fig.(3.2) and assumes the following form (for simplicity we use the $\delta m_{H S}^{2}$ prescription where no mixing angle counterterm arises):

$$
\begin{equation*}
g_{S i j}^{\mathrm{NLO}}=g_{S i j}\left[1+\frac{\delta Z_{S}+\delta Z_{i}+\delta Z_{j}}{2}+\frac{g_{H i j}}{g_{S i j}}\left(\frac{\delta Z_{H S}}{2}+\hat{Z}_{S H}\right)+\frac{\delta g_{S i j}}{g_{S i j}}+\delta V_{S i j}\right], \tag{3.89}
\end{equation*}
$$

where $\delta Z_{S, i, j}$ are the renormalization constants associated with the three external fields, $g_{H i j}$ represents the general Hij coupling which multiplies the counterterms due to the mixing of $S \rightarrow H, \delta g_{S i j}$ can be expressed in terms of the counterterms which depend on the parameters contained in the $g_{S i j}$ expanded form and $\delta V_{S i j}$ is associated with the vertex correction. The only terms, which have different definitions in the two renormalization schemes, are those in eq.(3.89) inside the parenthesis (...) :

$$
\begin{equation*}
\left(\frac{\delta Z_{H S}}{2}+\hat{Z}_{S H}\right)=\frac{\delta Z_{H S}}{2}+\frac{\operatorname{Re} \hat{\Sigma}^{H S}\left(m_{S}^{2}\right)}{m_{H}^{2}-m_{S}^{2}} \tag{3.90}
\end{equation*}
$$

with $\hat{Z}_{S H}=0$ for the iOS renormalization condition (see eq.(3.54)). Therefore, we can verify the equivalence of these schemes discussing the following relation:

$$
\begin{equation*}
\frac{\delta Z_{H S}^{\mathrm{ios}}}{2} \stackrel{?}{=} \frac{\delta Z_{H S}^{\mathrm{mf}}}{2}+\frac{\operatorname{Re} \hat{\Sigma}^{H S}\left(m_{S}^{2}\right)}{m_{H}^{2}-m_{S}^{2}} \tag{3.91}
\end{equation*}
$$

[^14]

Figure 3.2: Feynman diagrams associated with the NLO corrections to the LO coupling $g_{S i j}$ with ij $\neq H$ H.
where the renormalized mixed scalar self energy, $\operatorname{Re} \hat{\Sigma}^{H S}\left(p^{2}\right)$, is defined in eq.(3.50) and has to be expanded only in terms of the MF counterterms. Now, we must consider the following aspects of MF renormalization scheme: i) the definition of $\delta m_{H S}^{2} \mathrm{mf}$, shown in eq.(3.88); ii) the relation between the mixed field renormalization constants: $\delta Z_{H S}^{\mathrm{mf}}=\delta Z_{S H}^{\mathrm{mf}}$. Using such definitions, eq.(3.50) becomes:

$$
\begin{equation*}
\operatorname{Re} \hat{\Sigma}^{H S}\left(p^{2}\right)=\operatorname{Re} \Sigma^{H S}\left(p^{2}\right)-\operatorname{Re} \Sigma^{H S}\left(\mu_{R}^{2}\right)+\delta Z_{H S}^{\mathrm{mf}}\left(p^{2}-\mu_{R}^{2}\right) . \tag{3.92}
\end{equation*}
$$

Introducing eq.(3.82), eq.(3.83) and eq.(3.92) into eq.(3.91), we get:

$$
\begin{gather*}
\frac{\operatorname{Re} \Sigma^{H S}\left(m_{S}^{2}\right)-\operatorname{Re} \Sigma^{H S}\left(p^{* 2}\right)}{m_{H}^{2}-m_{S}^{2}} \stackrel{?}{=} \frac{\operatorname{Re} \Sigma^{H S}\left(m_{S}^{2}\right)-\operatorname{Re} \Sigma^{H S}\left(\mu_{R}^{2}\right)}{m_{H}^{2}-m_{S}^{2}}+ \\
+\frac{\delta Z_{H S}^{\mathrm{mf}}}{m_{H}^{2}-m_{S}^{2}}\left(\frac{m_{H}^{2}+m_{S}^{2}}{2}-\mu_{R}^{2}\right) . \tag{3.93}
\end{gather*}
$$

This equivalence is confirmed by substituting $p^{* 2}=\mu_{R}^{2}=\left(m_{H}^{2}+m_{S}^{2}\right) / 2$; in fact the last term is cancelled out and the remaining terms become identical.

Hereafter,

we will treat the NLO decay rates of our interest in terms of the iOS counterterms preserving the gauge invariance in the physical observables. On the other hand, we separately give a comment on the gauge-dependent results using the MF prescription for fixed values of $\mu_{R}^{2} \neq p^{* 2}$ in order to roughly analyze the impact of the gauge dependence on the decay rates.

Chapter 4

Singlet Decay Widths at the Next-to-Leading Order

In order to calculate the NLO decay widths, we have to absorb the higher order contributions in the absolute square of the process amplitudes $\left(\left|\mathcal{M}_{S i j}^{\mathrm{NLO}}\right|^{2}\right)$:

$$
\begin{equation*}
\left|\mathcal{M}_{S i j}^{\mathrm{NLO}}\right|^{2}=\left|\mathcal{M}_{S i j}^{\mathrm{LO}}+\mathcal{M}_{S i j}^{1 \mathrm{~L}}\right|^{2} \approx\left|\mathcal{M}_{S i j}^{\mathrm{LO}}\right|^{2}+2 \operatorname{Re}\left[\mathcal{M}_{S i j}^{\mathrm{LO}} \mathcal{M}_{S i j}^{1 \mathrm{~L} *}\right]+\mathcal{O}_{2 \mathrm{~L}}, \tag{4.1}
\end{equation*}
$$

with i, j generic fields entering the process under study (the superindices " 1 L " and "2L" stand for "one-loop" and "two-loops", respectively). Notice that we are neglecting the "2L" - orders (NNLO). We can define the amplitudes $\mathcal{M}_{S i j}^{\mathrm{LO}, 1 \mathrm{~L}}$ in the following way:

$$
\begin{equation*}
\mathcal{M}_{S i j}^{\mathrm{LO}}=g_{S i j} \mathrm{~A}^{\mathrm{LO}} \quad, \quad \mathcal{M}_{S i j}^{1 \mathrm{~L}}=g_{S i j} \mathrm{~A}^{\mathrm{LO}} \delta \mathrm{~A}^{1 \mathrm{~L}} \tag{4.2}
\end{equation*}
$$

where $g_{S i j}$ is the interaction coupling, A^{LO} includes the polarization or spinorial structures (in the scalar case $\mathrm{A}^{\mathrm{LO}}=1$) and $\delta \mathrm{A}^{1 \mathrm{~L}}$ represents all possible NLO correction terms. Following eq.(2.2), Γ^{LO} becomes proportional to $g_{S i j}^{2} \sum_{\text {d.o.f }}\left|\mathrm{A}^{\mathrm{LO}}\right|^{2}$ and the decay rate at NLO assumes the following form:

$$
\begin{equation*}
\Gamma^{\mathrm{NLO}} \approx \Gamma^{\mathrm{LO}}\left[1+2 \delta \mathrm{~A}^{1 \mathrm{~L}}\right] \tag{4.3}
\end{equation*}
$$

The one-loop corrected decay width may also receive a supplementary contribution due to real corrections which occur when some of the external particles are charged. These additional contributions are typically called "brems-strahlung" and "gluons-strahlung" processes (we will discuss in details these contributions for $S \rightarrow W^{+} W^{-}, \bar{f} f$ decay rates) in the case of photon and gluon emissions, respectively. As a consequence of the external charged states, $\delta \mathrm{A}^{1 \mathrm{~L}}$ is affected by infrared (IR) divergences since photon or gluon propagators may appear in the loops. In this case, the role of the brems- and gluons- strahlung processes is to regularize these divergences and we generally have:

$$
\begin{equation*}
\Gamma^{\mathrm{NLO}} \approx \Gamma^{\mathrm{LO}}\left[1+2 \delta \mathrm{~A}^{1 \mathrm{~L}}\right]+\Gamma^{\text {brems }}+\Gamma^{\text {gluon }} \tag{4.4}
\end{equation*}
$$

where the last term represents the photon and the gluon emission contributions to the process. We will determine in the next sections the NLO decay widths for the dominant S decay channels.

4.1 NLO Decay Width to Gauge Bosons

In this section we apply the renormalization procedure described in Sect.3.2 to the vertex of the scalar field S with two gauge bosons. The tree-level amplitude for the $S \rightarrow V V$ decays (with $V=W^{ \pm}, Z$) is given by:

$$
\begin{equation*}
\mathcal{M}^{\mathrm{LO}}[S(k) \rightarrow V(p, a) V(q, b)]=\mathcal{M}_{S V V}^{\mathrm{LO}}=-i \rho_{V} \times\left[g^{\mu \nu} \epsilon_{\mu}^{a}(p) \epsilon_{\nu}^{b}(q)\right] \tag{4.5}
\end{equation*}
$$

where p and q are the four momenta of the vector bosons and a, b their polarizations.

(a)

(e)

Figure 4.1: Fig.(a): S field contributions to the scalar self-energies; Fig.(b): S field contributions to the mixed scalar self-energies; Fig.(c): S field contributions to the W boson self energies; Fig.(d): S field contributions to the Z boson self energies; Fig.(e): S field contribution to the SVV vertex.

Here ρ_{V} is the SSM bare coupling ${ }^{1}$ defined as

$$
\begin{equation*}
\rho_{V}=e \frac{m_{V}^{2}}{s_{W} m_{W}} s_{\alpha} \tag{4.7}
\end{equation*}
$$

The related Feynman diagrams associated with the NLO corrections are reported in Fig.(4.1); we only show the contributions due to the insertion of the S field in the loops since diagrams with external S fields are similar to those of the SM quoted in [57] with the external Higgs replaced by S.
The bare coupling and the one-loop corrections to the $S V V$ vertex can be put in the following form [57]:

$$
\begin{equation*}
\mathcal{V}^{\mu \nu}=\mathcal{V}_{0}^{\mu \nu}+\rho_{V} T_{V}^{\mu \nu} \tag{4.8}
\end{equation*}
$$

where ρ_{V} has been defined in eq.(4.7) and $\mathcal{V}_{0}^{\mu \nu}=\rho_{V} g^{\mu \nu}$. The generic expansion of $T_{V}^{\mu \nu}$ in terms of 2-index tensors is given by [57]:

$$
\begin{equation*}
T_{V}^{\mu \nu}=\mathcal{A}_{V} k^{\mu} k^{\nu}+\mathcal{B}_{V} q^{\mu} q^{\nu}+\mathcal{C}_{V} k^{\mu} q^{\nu}+\mathcal{D}_{V} q^{\mu} k^{\nu}+\mathcal{E}_{V} g^{\mu \nu}+i \mathcal{F}_{V} \epsilon^{\mu \nu \rho \sigma} k_{\rho} q_{\sigma} \tag{4.9}
\end{equation*}
$$

where k and q are the four-vectors of the external gauge bosons. The coefficient $\mathcal{A}_{V}, \ldots, \mathcal{F}_{V}$ have to be ultra-violet (UV) finite whereas the term proportional to the antisymmetric tensor $\epsilon^{\mu \nu \rho \sigma}$ vanishes due to the charge conjugation invariance for external Z bosons and also if the gauge bosons are on the mass-shell. We decide to set the external squared momenta $\left[p^{2}, k^{2}, q^{2}\right]$ in the $S(k) V(k, a) V(q, b)$ vertex as $\left[m_{S}^{2}, m_{V}^{2}, m_{V}^{2}\right]$. We take real gauge bosons, so that only the coefficients \mathcal{D}_{V} and \mathcal{E}_{V} become relevant. Since the counterterms arising from the quantities in eq.(4.7) are included in the coefficient \mathcal{E}_{V}, we put it in the form $\mathcal{E}_{V}=\delta \rho_{V}+\delta V_{V}^{\mathcal{E}}$, where the symbol δV indicates the three point function at the one loop level and $\delta \rho_{V}$'s are:

$$
\begin{align*}
\delta \rho_{W} & =\frac{\delta m_{W}^{2}}{2 m_{W}^{2}}-\frac{\delta s_{W}^{2}}{2 s_{W}^{2}}+\delta Z_{W}+\delta Z_{e}+\frac{\delta Z_{S}}{2}+\frac{c_{\alpha}}{s_{\alpha}}\left(\frac{\delta Z_{H S}^{\mathrm{ios}}}{2}-\delta \alpha^{\mathrm{ios}}\right)+\frac{\delta s_{\alpha}^{\mathrm{ios}}}{s_{\alpha}} \tag{4.10}\\
\delta \rho_{Z} & =\frac{\delta m_{Z}^{2}}{m_{Z}^{2}}-\frac{\delta m_{W}^{2}}{2 m_{W}^{2}}-\frac{\delta s_{W}^{2}}{2 s_{W}^{2}}+\delta Z_{Z}+\delta Z_{e}+\frac{\delta Z_{S}}{2}+\frac{c_{\alpha}}{s_{\alpha}}\left(\frac{\delta Z_{H S}^{\mathrm{ios}}}{2}-\delta \alpha^{\mathrm{ios}}\right)+\frac{\delta s_{\alpha}^{\mathrm{ios}}}{s_{\alpha}} \tag{4.11}
\end{align*}
$$

Notice that we obtain $\delta \rho_{V}$ independent from the mixing angle counterterm using the following substitution: $\delta s_{\alpha}^{\text {ios }}=c_{\alpha} \delta \alpha^{\text {ios }}$. The other counterterms entering the previous expressions have been listed in Subsect.(3.2.1-3.2.2). To avoid the explicit presence of the light fermions contributions to the NLO results, we use the MOMS scheme which means that $\delta Z_{e} \rightarrow \delta Z_{e}^{\prime}$

[^15](discussed below eq.(3.78)). Performing the MOMS shift, we determine a compact form of $\delta \rho_{V}$ which now we call $\delta \rho_{V}{ }^{\prime}$:
\[

$$
\begin{equation*}
\delta \rho_{V}^{\prime}=\delta Z_{V}+\frac{\delta Z_{S}}{2}+\frac{c_{\alpha}}{s_{\alpha}} \frac{\delta Z_{H S}^{\text {ios }}}{2}+\frac{\delta m_{V}^{2}}{m_{V}^{2}}-\frac{\widetilde{R e} \Sigma_{T}^{W W}(0)}{2 m_{W}^{2}}+\frac{R e \Sigma_{T}^{A Z}(0)}{s_{W} c_{W} m_{Z}^{2}}-\mathcal{C}_{\text {muon }} \tag{4.12}
\end{equation*}
$$

\]

The coefficient \mathcal{E}_{V} is UV-finite both for Z and W external boson pairs, as it can be explicitly verified from the expressions of the bosonic and fermionic divergent parts quoted in Tab.(4.1) for all counterterms (which are divided by a common factor $g^{2} /\left(16 \pi^{2} \epsilon\right)$). Regarding the finite

	\mathcal{E}_{W}	\mathcal{E}_{Z}	UV ${ }_{\text {bosonic }}$	$\mathrm{UV}_{\text {fermionic }}$
δZ_{W}	\checkmark	χ	19/6	-4
δZ_{Z}	X	\checkmark	$\frac{-1+2 c c_{V}^{2}+18 c_{W}^{4}}{6 c_{W}^{2}}$	$\frac{-20+40 c_{W}^{2}-32 c_{W}^{4}}{3 c_{W}^{2}}$
$\delta Z_{S} / 2$	\checkmark	\checkmark	$\frac{s_{\alpha}^{2}\left(2 c_{W}^{W}+1\right)}{4 c^{2}}$	$-\frac{s_{\alpha}^{2} \sum_{f} N_{c} m_{f}^{2}}{}$
				${ }_{c_{\alpha}^{2} \sum_{f}^{4 m_{W} N_{c} m_{f}^{2}}}$
$c_{\alpha} \delta Z_{H S}^{\text {ios }} / 2 s_{\alpha}$	\checkmark	\checkmark	$\frac{c_{\alpha}^{2}\left(2 c_{W}^{2}+1\right)}{4 c_{W}^{2}}$	$-\frac{c_{\alpha}^{c_{\alpha}^{2} \sum_{f} N_{c} m_{f}^{2}}}{4 m_{W}^{2}}$
$\delta m_{W}^{2} / m_{W}^{2}$	\checkmark	x	$\frac{6-31 c_{W}^{2}}{6 c_{W}^{2}}$	$4-\frac{\sum_{f} N_{c} m_{f}^{2}}{2 m_{W}^{2}}$
$\delta m_{Z}^{2} / m_{Z}^{2}$	x	\checkmark	$\frac{7+10 c_{V}^{2}-42 c_{W}^{4}}{6 c_{W}^{2}}$	$\frac{20-40 c_{V}^{2}+32 c_{W}^{4}}{3 c_{W}^{2}}-\frac{\sum_{f} N_{c} m_{f}^{2}}{2 m_{W}^{2}}$
$-\widetilde{R e} \Sigma_{T}^{W W}(0) / 2 m_{W}^{2}$	\checkmark	\checkmark	$\frac{2 c_{W}^{W}-1}{2 c_{W}^{2}}$	$\frac{\sum_{f} N_{c} m_{f}^{2}}{4 m_{\text {W }}^{2}}$
$\operatorname{Re} \Sigma_{T}^{A Z}(0) / s_{W} c_{W} m_{Z}^{2}$	\checkmark	\checkmark	-2cw	${ }_{4 m_{W}^{2}}$
$\delta V_{W}^{\mathcal{E}}$	\checkmark	x	$\frac{-3+10 c_{W}^{2}}{4 c_{W}^{2}}$	$\frac{\sum_{f} N_{c} m_{f}^{2}}{2 m_{W}^{2}}$
$\delta V_{Z}^{\mathcal{E}}$	x	\checkmark	$\frac{-3-6 c_{W}^{2}+16 c_{W}^{4}}{4 c^{2}}$	$\underline{\sum_{f} N_{c} m_{f}^{2}}$
$\mathcal{C}_{\text {muon }}$	\checkmark	\checkmark	${ }^{4 c_{W}}$	${ }^{2 m_{W}^{2}}$

Table 4.1: Coefficients of the bosonic and fermionic UV divergent parts of the relevant counterterms (which are divided by the common factor $g^{2} /\left(16 \pi^{2} \epsilon\right)$). The symbol $\boldsymbol{\checkmark}(\boldsymbol{X})$ indicates that the corresponding counterterm is present (absent) in $\mathcal{E}_{W, Z}$.
parts, we know that the S field gives negligible contributions to the corrections of the muon decay and since there is no S field dependence in $\Sigma_{T}^{A Z}(0)$ [26], the new scalar contributions only affect the bosonic parts of $\widetilde{R e} \Sigma_{T}^{W W}(0), \delta m_{Z}^{2}, \delta Z_{Z}, \delta Z_{S}, \delta Z_{H S}^{\text {ios }}$ and $\delta V_{V}^{\mathcal{E}}$. The fermionic contributions of $\widetilde{R e} \Sigma_{T}^{W W}(0), \delta m_{Z}^{2}, \delta Z_{Z}$ and $\delta V_{V}^{\mathcal{E}}$ are identical to those associated to the $H V V$ vertex in the SM; in addition, their contributions to δZ_{S} and $\delta Z_{H S}^{\text {ios }}$ can be determined from the fermion loop terms in the SM δZ_{H} expression but now multiplied by s_{α}^{2} and $c_{\alpha} s_{\alpha}$ and with external momenta fixed to m_{S}^{2} (the definition of $\delta Z_{H S}^{\text {ios }}$ also contains the mixed two-point function with external momenta fixed to $\left.\left(m_{H}^{2}+m_{S}^{2}\right) / 2\right)$.

Notice that the renormalization of the vertex $S W^{+} W^{-}$is more complicated than the $S Z Z$ vertex since contributions due to the photons in the loop integrals, which are plagued by infrared (IR) singularities when the W bosons are on-shell, must be taken into account. The IR-cancellation is obtained considering soft-photon bremsstrahlung contributions [63] which, for the model under discussion, are shown in Fig.(4.2).

Figure 4.2: Feynman diagrams of the photon bremsstrahlung associated to the first-order radiative corrected $S W^{+} W^{-}(\gamma)$ vertex.

We call the external photon momenta as q_{γ} whose maximum value is $q_{\gamma}^{\max }=m_{S}\left(1-4 x_{W}\right) / 2$. In addition, to regularize the IR-divergences it is necessary to assign a virtual mass m_{γ} to the photon which works as an infrared regulator. Typically, a bremsstrahlung photon can be a soft or a hard photon. Differently from hard photons which are detected in the final state, the soft photons have typical energies smaller than the energy threshold of the experiment and they are not detected. To set an ideal boundary between the soft and hard region, we introduce a cutoff Λ_{γ} in such a way that the soft region corresponds to $m_{\gamma} \leq q_{\gamma} \leq \Lambda_{\gamma}$ while the hard region to $\Lambda_{\gamma} \leq q_{\gamma} \leq q_{\gamma}^{\max }$. The total photon-bremsstrahlung decay rate is then given by the sum of the soft and hard contributions:

$$
\begin{equation*}
\Gamma_{W W}^{\text {brem }}=\Gamma_{W W}^{\text {soft }}+\Gamma_{W W}^{\text {hard }}=\Gamma_{W W}^{\mathrm{LO}}\left(\delta_{W}^{\text {soft }}+\delta_{W}^{\text {hard }}\right) \tag{4.13}
\end{equation*}
$$

where we generally have $\Gamma_{i i}=\Gamma(S \rightarrow i i)$ and the correction factors $\delta_{W}^{\text {soft }}$ and $\delta_{W}^{\text {hard }}$ are extracted from [63]:

$$
\begin{align*}
\delta_{W}^{\text {soft }}= & \frac{\alpha_{\mathrm{em}}}{\pi}\left\{\mathcal{N}_{0} \ln \left(\frac{4 \Lambda_{\gamma}^{2}}{m_{\gamma}^{2}}\right)+\left(\mathcal{N}_{0}+1\right)\left[\frac{\mathcal{N}_{1}}{\mathrm{a}_{1}}+\frac{2}{2 r-1}\right]\right\} \tag{4.14}\\
\delta_{W}^{\text {hard }}= & \frac{\alpha_{\mathrm{em}}}{\pi}\left\{\mathcal{N}_{0} \ln \left(\frac{m_{S}^{2}}{4 \Lambda_{\gamma}^{2}}\right)+\frac{\mathcal{N}_{2}\left(\mathcal{N}_{0}+1\right)}{\mathrm{a}_{1}}+\frac{14}{3}\left(1-\frac{t}{r} \sqrt{1-\frac{1}{t}}\right)+\right. \\
& +\frac{1}{\mathcal{N}_{3}}\left[\frac{\mathrm{a}_{2}-\mathrm{a}_{1}}{2 r^{2}}\left(2-\frac{1}{r}\right)+\frac{t}{3 r} \sqrt{1-\frac{1}{t}}\left(1-\frac{t}{r}\right)\left(2-\frac{4 t-1}{r}\right)\right]- \\
& \left.-2 \ln \left(\frac{1-\left(\mathrm{c}_{-} \mathrm{d}_{+}\right)^{2}}{1-\left(\mathrm{c}_{-} \mathrm{d}_{-}\right)^{2}}\right)+4\left(\frac{t}{r} \mathrm{a}_{2}-\mathrm{b}_{-}\right)\right\} \tag{4.15}
\end{align*}
$$

with,

$$
\begin{align*}
& \mathcal{N}_{0}= {\left[\mathrm{a}_{1}(2-1 / r) /(\sqrt{1-1 / r})\right]-1, } \tag{4.16}\\
& \mathcal{N}_{1}= \operatorname{Li}_{2}\left(\mathrm{c}_{-}^{2}\right)+\mathrm{a}_{1}\left(\mathrm{a}_{1}-2 \mathrm{~b}_{-}\right)-\left(\pi^{2} / 6\right), \tag{4.17}\\
& \mathcal{N}_{2}= \operatorname{Li}_{2}\left(\left(\mathrm{c}_{-} \mathrm{d}_{+}\right)^{2}\right)-\operatorname{Li}_{2}\left(\left(\mathrm{c}_{-} \mathrm{d}_{-}\right)^{2}\right)+\operatorname{Li}_{2}\left(\mathrm{c}_{-}\right)^{4}+4 \mathrm{a}_{1}\left(\mathrm{a}_{1}-\mathrm{b}_{+}\right)+ \\
& \quad+2 \mathrm{a}_{2} \ln \left[\left(1-\left(\mathrm{c}_{-} \mathrm{d}_{+}\right)^{2}\right)\left(1-\left(\mathrm{c}_{-} \mathrm{d}_{-}\right)^{2}\right)\right]-\left(\pi^{2} / 6\right), \tag{4.18}\\
& \mathcal{N}_{3}= \sqrt{1-1 / r}\left[1-(1 / r)+\left(3 / 4 r^{2}\right)\right] \tag{4.19}\\
& \mathrm{a}_{1}= \ln \left(\mathrm{c}_{+}\right), \mathrm{a}_{2}=\ln \left(\mathrm{d}_{+}\right), \mathrm{b}_{ \pm}=\ln \left(\mathrm{c}_{+} \pm \mathrm{c}_{-}\right), \tag{4.20}\\
& \mathrm{c}_{ \pm}=\sqrt{r} \pm \sqrt{r-1}, \mathrm{~d}_{ \pm}=\sqrt{t} \pm \sqrt{t-1} . \tag{4.21}
\end{align*}
$$

and $r=m_{S}^{2} / 4 m_{W}^{2}, t=r\left(1-2 q_{\gamma} / m_{S}\right)^{2}$.
The m_{γ} and Λ_{γ} dependencies show up in $\delta Z_{W}, \delta V_{W}^{\mathcal{E}}, \delta_{W}^{\text {soft }}$ and $\delta_{W}^{\text {hard }}$, as detailed in Tab.(4.2). The function \mathcal{N}_{0} is defined in App.A.

	m_{γ} (IR regulator)	Λ_{γ} (IR cutoff)
δZ_{W}	$\frac{\alpha_{e m}}{2 \pi} \ln \left(\frac{m_{V}^{2}}{m_{\gamma}^{2}}\right)$	-
$\delta V_{W}^{\mathcal{E}}$	$\frac{\alpha_{e m}}{2 \pi}\left[\mathcal{N}_{0}+1\right] \ln \left(\frac{m_{\gamma}^{2}}{m_{W}^{2}}\right)$	-
$\delta_{W}^{\text {soft }}$	$\frac{\alpha_{e m}}{\pi} \mathcal{N}_{0} \ln \left(\frac{m_{W}^{2}}{m_{\gamma}^{2}}\right)$	$\frac{\alpha_{e m}}{\pi} \mathcal{N}_{0} \ln \left(\frac{4 \Lambda_{\gamma}^{2}}{m_{W}^{2}}\right)$
$\delta_{W}^{\text {hard }}$	-	$\frac{\alpha_{e m}}{\pi} \mathcal{N}_{0} \ln \left(\frac{m_{S}^{2}}{4 \Lambda_{\gamma}^{2}}\right)$

Table 4.2: IR-dependence on m_{γ} and Λ_{γ} in $\delta Z_{W}, \delta V_{W}^{\mathcal{E}}, \delta_{W}^{\text {soft }}$ and $\delta_{W}^{\text {hard }}$.

Finally, the NLO total decay width which we call $\Gamma_{V V}^{\mathrm{NLO}}$ can be defined as:

$$
\begin{gather*}
\Gamma_{V V}^{\mathrm{NLO}}=\frac{G_{F}}{16 \sqrt{2} \pi} m_{S}^{3} s_{\alpha}^{2}\left(1+\delta_{V}\right) \sqrt{1-4 x_{V}}\left(1-4 x_{V}+12 x_{V}^{2}\right) \times \\
\times\left\{1+2\left[\delta \rho_{V}^{\prime}+\delta V_{V}^{\mathcal{E}}+\frac{m_{S}^{2}}{2}\left(\frac{1-6 x_{V}+8 x_{V}^{2}}{1-4 x_{V}+12 x_{V}^{2}}\right) \delta V_{V}^{\mathcal{D}}\right]\right\}+\delta_{V} \Gamma_{W W}^{\mathrm{brem}}, \tag{4.22}
\end{gather*}
$$

${ }^{2}$ Notice that for $q_{\gamma}=q_{\gamma}^{\max }$, eq.(4.15) is reduced to,

$$
\delta_{W}^{\mathrm{hard}}=\frac{\alpha_{\mathrm{em}}}{\pi}\left\{\mathcal{N}_{0} \ln \left(\frac{m_{S}^{2}}{4 \Lambda_{\gamma}^{2}}\right)-4 \mathrm{~b}_{-}+\frac{14}{3}+\frac{\left(\mathcal{N}_{0}+1\right)}{\mathrm{a}_{1}}\left[\mathrm{Li}_{2}\left(\mathrm{c}_{-}\right)^{4}-\frac{\pi^{2}}{6}+4 \mathrm{a}_{1}\left(\mathrm{a}_{1}-\mathrm{b}_{+}\right)-\frac{2 \mathrm{a}_{1}}{4 r^{2}-4 r+3}\right]\right\} .
$$

where $\delta V_{V}^{\mathcal{D}}$ are the corrections from the coefficient \mathcal{D}_{V} and $\delta_{V}=0,1$ for $V=Z, W^{ \pm}$respectively. Notice that the first row of eq.(4.22) is the LO decay width of eq.(2.4). Now, two comments are in order:
i) using the m_{γ}-dependent contributions, reported in Tab.(4.2), we can verify the cancellation of the IR-divergences:

$$
\begin{equation*}
\left\{\Gamma_{W W}^{\mathrm{NLO}}\right\}_{\mathrm{IR}}=\left\{\Gamma_{W W}^{\mathrm{LO}}\left[1+\delta_{W}^{\mathrm{soft}}+2\left(\delta Z_{W}+\delta V_{W}^{\mathcal{E}}\right)\right]\right\}_{\mathrm{IR}} \propto\left[1+\frac{\alpha_{\mathrm{em}}}{\pi} \mathcal{N}_{0} \ln \left(\frac{4 \Lambda_{\gamma}^{2}}{m_{W}^{2}}\right)\right] \tag{4.23}
\end{equation*}
$$

ii) the combination of all terms in Tab.(4.2) is Λ_{γ}-independent at $\mathcal{O}\left(\alpha_{e m}\right)$.

4.2 NLO Decay Width to Fermions

The dominant decay channel with fermionic final state is $S \rightarrow \bar{t} t$. The tree-level amplitude of this process is given by:

$$
\begin{equation*}
\mathcal{M}^{\mathrm{LO}}[S(k) \rightarrow \bar{t}(p) t(q)]=\mathcal{M}_{S f f}^{\mathrm{LO}}=-i \bar{U}(p) \rho_{t} V(q), \tag{4.24}
\end{equation*}
$$

where ρ_{t} has the following form:

$$
\begin{equation*}
\rho_{t}=e \frac{m_{t}}{2 s_{W} m_{W}} s_{\alpha} . \tag{4.25}
\end{equation*}
$$

Following the same treatment for the Feynman diagrams discussed in the previous section, we only report in Fig.(4.3) the contributions due to the insertion of the S field in the loops since loops with the SM fields are equivalent to those quoted in [64] with the external Higgs leg replaced by the new scalar singlet.

Figure 4.3: Fig.(a): S field contributions to the top quark self-energy; Fig.(b): S field contributions to the St̄ vertex.

The bare coupling and the one-loop corrections to the $S \bar{t} t$ vertex can be expressed as:

$$
\begin{equation*}
\mathcal{V}=\rho_{t}\left(1+T_{t}\right), \tag{4.26}
\end{equation*}
$$

with T_{t} given by

$$
\begin{equation*}
T_{t}=\mathcal{A}_{t}+\mathcal{B}_{t} \not \not k+\mathcal{C}_{t} q+\mathcal{D}_{t} \not \not k q+\mathcal{E}_{t} \gamma_{5}+\mathcal{F}_{t} \not \not k \gamma_{5}+\mathcal{G}_{t} q \gamma_{5}+\mathcal{H}_{t} \not k q \gamma_{5}, \tag{4.27}
\end{equation*}
$$

where k and q are the four-momenta of the external top quarks. Obviously, the coefficients $\mathcal{A}_{t}, \ldots, \mathcal{H}_{t}$ which appear in the T_{t} expression have to be UV-finite. In addition, it is possible to verify that the loop corrected decay rate is not affected by the γ_{5}-terms at the NLO for the parity conserving [28]. The coupling counterterm $\delta \rho_{t}$ is enclosed in \mathcal{A}_{t} while all threepoint functions are included in the remaining terms. We call the full set of NLO three-point corrections as δV_{t}. As set for the $S V V$ case, we fix the external squared momenta in the $S(p) \bar{t}(k) t(q)$ vertex as: $\left[p^{2}, k^{2}, q^{2}\right] \rightarrow\left[m_{S}^{2}, m_{t}^{2}, m_{t}^{2}\right]$. Notice that this decay channel is also affected by QCD corrections. Therefore, we separately discuss the QCD-only contributions (denoted with a superscript "QCD") and the remaining electroweak corrections ("EW"). This distinction is needed for the counterterms $\delta m_{t}, \delta Z_{t \mathrm{~V}}, \delta V_{t}$.

- EW Correction:

We rewrite the EW expression of $\delta \rho_{t}$ as:

$$
\begin{align*}
\delta \rho_{t}^{\mathrm{EW}}=\frac{\delta m_{t}^{\mathrm{EW}}}{m_{t}}- & \frac{\delta m_{W}^{2}}{2 m_{W}^{2}}-\frac{\delta s_{W}^{2}}{2 s_{W}^{2}}+\delta Z_{t \mathrm{~V}}^{\mathrm{EW}}+\delta Z_{e}+ \\
& +\frac{\delta Z_{S}}{2}+\frac{c_{\alpha}}{s_{\alpha}}\left(\frac{\delta Z_{H S}^{\mathrm{ios}}}{2}-\delta \alpha^{\mathrm{ios}}\right)+\frac{\delta s_{\alpha}^{\mathrm{ios}}}{s_{\alpha}} \tag{4.28}
\end{align*}
$$

We can note the independence from the mixing angle counterterm which is eliminated by substituting $\delta s_{\alpha}^{\text {ios }}=c_{\alpha} \delta \alpha^{\text {ios }}$. By comparison with the gauge boson decay channel, the new counterterms are given by δm_{t} and $\delta Z_{t \mathrm{~V}}$ which are defined in Subsect.(3.2.1-3.2.2). The application of the MOMS shift implies that $\delta \rho_{t}^{\mathrm{EW}} \rightarrow \delta \rho_{t}^{\mathrm{EW}}{ }^{\prime}$ which is then given by:

$$
\begin{equation*}
\delta \rho_{t}^{\mathrm{EW}}{ }^{\prime}=\delta Z_{t \mathrm{~V}}^{\mathrm{EW}}+\frac{\delta Z_{S}}{2}+\frac{c_{\alpha}}{s_{\alpha}} \frac{\delta Z_{H S}^{\mathrm{ios}}}{2}+\frac{\delta m_{t}^{\mathrm{EW}}}{m_{t}}-\frac{\widetilde{R e} \Sigma_{T}^{W W}(0)}{2 m_{W}^{2}}+\frac{R e \Sigma_{T}^{A Z}(0)}{s_{W} c_{W} m_{Z}^{2}}-\mathcal{C}_{\text {muon }} \tag{4.29}
\end{equation*}
$$

As a consequence of the external charged particles in the final state, the $S \bar{t} t$ vertex shows IR-divergences which are canceled by soft-photon bremsstrahlung contributions corresponding to the process $S \rightarrow \bar{t} t(\gamma)$ (shown in Fig.(4.4)) [64]. Using the ($m_{\gamma}, \Lambda_{\gamma}$)prescription, the total photon bremsstrahlung decay rate is given by:

$$
\begin{equation*}
\Gamma_{t t}^{\mathrm{brem} \mathrm{EW}}=\Gamma_{t t}^{\mathrm{soft} \mathrm{EW}}+\Gamma_{t t}^{\mathrm{hardEW}}=\Gamma_{t t}^{\mathrm{LO}}\left(\delta_{t}^{\mathrm{soft} \mathrm{EW}}+\delta_{t}^{\mathrm{hardEW}}\right), \tag{4.30}
\end{equation*}
$$

$$
\begin{aligned}
& { }^{3} \text { For } q_{\gamma}=q_{\gamma}^{\max } \text {, eq.(4.32) is reduced to, } \\
& \qquad \begin{array}{l}
\delta_{t}^{\text {hard EW }}=\frac{\alpha_{\mathrm{em}}}{\pi}\left\{\mathcal{N}_{0} \ln \left(\frac{m_{S}^{2}}{4 \Lambda_{\gamma}^{2}}\right)-4 \mathrm{~b}_{-}+\frac{26 r-29}{8(r-1)}+\right. \\
\left.\quad+\frac{\left(\mathcal{N}_{0}+1\right)(2-1 / r)}{\mathrm{a}_{1}}\left[\operatorname{Li}_{2}\left(\mathrm{c}_{-}\right)^{4}-\frac{\pi^{2}}{6}+4 \mathrm{a}_{1}\left(\mathrm{a}_{1}-\mathrm{b}_{+}\right)-\frac{\left(8 r^{2}-8 r+3\right) \mathrm{a}_{1}}{8 r(r-1)}\right]\right\} .
\end{array}
\end{aligned}
$$

$$
\begin{align*}
\delta_{t}^{\text {soft EW }}= & \frac{\alpha_{\mathrm{em}}}{\pi}\left\{\mathcal{N}_{0} \ln \left(\frac{4 \Lambda_{\gamma}^{2}}{m_{\gamma}^{2}}\right)+\left(\mathcal{N}_{0}+1\right)\left[\frac{\mathcal{N}_{1}}{\mathrm{a}_{1}}+\frac{2}{2 r-1}\right]\right\}, \tag{4.31}\\
\delta_{t}^{\text {hard EW }}= & \frac{\alpha_{\mathrm{em}}}{\pi}\left\{\mathcal{N}_{0} \ln \left(\frac{m_{S}^{2}}{4 \Lambda_{\gamma}^{2}}\right)+\frac{\mathcal{N}_{2}\left(\mathcal{N}_{0}+1\right)+\mathcal{N}_{4}}{\mathrm{a}_{1}}+\frac{26 r-29}{8(r-1)}+\right. \\
& \left.-2 \ln \left(\frac{1-\left(\mathrm{c}_{-} \mathrm{d}_{+}\right)^{2}}{1-\left(\mathrm{c}_{-} \mathrm{d}_{-}\right)^{2}}\right)+4\left(\frac{t}{r} \mathrm{a}_{2}-\mathrm{b}_{-}\right)\right\} \tag{4.32}
\end{align*}
$$

with,

$$
\begin{align*}
& \mathcal{N}_{4}=\frac{1}{8 r(r-1)}\left(\mathrm{a}_{2} \mathcal{N}_{5}+\mathrm{a}_{1} \mathcal{N}_{6}+\mathcal{N}_{7}\right), \tag{4.33}\\
& \mathcal{N}_{5}=8 t^{2}+16 t r-32 r^{2}-32 t+40 r-3, \tag{4.34}\\
& \mathcal{N}_{6}=8 r^{2}-8 r+3, \tag{4.35}\\
& \mathcal{N}_{7}=\left(9 t-2 t^{2}-24 t r\right) \sqrt{1-1 / t}, \tag{4.36}
\end{align*}
$$

and the remaining quantities are the same mentioned for $S \rightarrow W^{+} W^{-}(\gamma)$ and defined below eq.(4.15). Notice that all these factors (listed in eqs.(4.16-4.21) and eqs.(4.334.36)) now have to be expressed in terms of $r=m_{S}^{2} / 4 m_{t}^{2}$.

Figure 4.4: Feynman diagrams of the photon bremsstrahlung associated to the first-order radiative corrected $\operatorname{Stt}(\gamma)$ vertex.

- QCD Correction:

The total QCD corrections can be defined as:

$$
\begin{equation*}
\Delta V_{t}^{\mathrm{QCD}}=\delta Z_{t \mathrm{~V}}^{\mathrm{QCD}}+\frac{\delta m_{t}^{\mathrm{QCD}}}{m_{t}}+\delta V_{t}^{\mathrm{QCD}}+\frac{\delta_{t}^{\mathrm{soft} \mathrm{QCD}}}{2}+\frac{\delta_{t}^{\mathrm{hard} \mathrm{QCD}}}{2} \tag{4.37}
\end{equation*}
$$

where $\delta_{t}^{\text {soft QCD }}$ and $\delta_{t}^{\text {hard QCD }}$ stand for the soft and hard gluon emission corrections, respectively. These can be directly derived by $\delta_{t}^{\text {soft EW }}$ and $\delta_{t}^{\text {hard EW }}$ using the following replacements: $\alpha_{\mathrm{em}} Q_{t}^{2} \rightarrow 4 \alpha_{\mathrm{s}} / 3, m_{\gamma} \rightarrow m_{g}$ and $\Lambda_{\gamma} \rightarrow \Lambda_{g}$ (with m_{g} and Λ_{g} acting as gluon mass regulator and cutoff energy). Notice that the scale of the momentum
transfer Q in the process is indicative of the effective strength of the strong interactions and this affects the running of α_{s} which is given at one-loop order by [50]:

$$
\alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{6}{33-2 n_{f}} \frac{1}{\ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)},
$$

where Q is the typical scale related to the scalar singlet decay processes, $n_{f}=6$ is the number of flavors when $m_{S} \geq 2 m_{t}$ and $\Lambda_{\mathrm{QCD}} \simeq 217 \mathrm{MeV}$ represents the basic QCD scale.
Since the only difference between $H_{\mathrm{sm}} \rightarrow \bar{t} t(g)$ and $S \rightarrow \bar{t} t(g)$ processes lies in defining the external scalar field, we observe that the QCD one-loop factors corresponding to the SM and SSM cases (in terms of the respective scalar masses) are totally equivalent. These corrections are known in the SM and we report the results up to order $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ [65]:

$$
\begin{equation*}
\Delta V_{t}^{\mathrm{QCD}}=\frac{C_{F} \alpha_{\mathrm{s}}\left(m_{S}^{2}\right)}{\pi}\left\{\frac{\mathcal{N}_{8}+17 \ln \left(\frac{\mathrm{c}_{+}^{\prime}}{\mathrm{c}_{-}^{\prime}}\right)}{2 \beta}+\frac{21-13 \beta \ln \left(\frac{\mathrm{c}_{+}^{\prime}}{\mathrm{c}_{-}^{\prime}}\right)}{16}-\frac{3\left[2 \beta-\ln \left(\frac{\mathrm{c}_{+}^{\prime}}{\mathrm{c}_{-}^{\prime}}\right)\right]}{32 \beta^{3}}\right\}, \tag{4.38}
\end{equation*}
$$

where $\beta=\sqrt{1-4 m_{t}^{2} / m_{S}^{2}}, \mathrm{c}_{ \pm}^{\prime}=m_{S} \pm \sqrt{m_{S}^{2}-4 m_{t}^{2}}$ and \mathcal{N}_{8} is defined as,

$$
\begin{equation*}
\mathcal{N}_{8}=\left(1+\beta^{2}\right)\left[4 \mathrm{Li}_{2}\left(\frac{\mathrm{c}_{+}^{\prime}}{\mathrm{c}_{-}^{\prime}}\right)+2 \mathrm{Li}_{2}\left(-\frac{\mathrm{c}_{+}^{\prime}}{\mathrm{c}_{-}^{\prime}}\right)-\ln \frac{\mathrm{c}_{+}^{\prime}}{\mathrm{c}_{-}^{\prime}} \ln \frac{\beta^{2}}{(1+\beta)^{3}}\right] . \tag{4.39}
\end{equation*}
$$

Therefore, the NLO total decay width $\Gamma_{t t}^{\mathrm{NLO}}$ with the EW and QCD corrections is as follows:

$$
\begin{align*}
\Gamma_{t t}^{\mathrm{NLO}} & =s_{\alpha}^{2} G_{F} N_{c} \frac{m_{S} m_{t}^{2}}{4 \pi \sqrt{2}}\left(1-\frac{4 m_{t}^{2}}{m_{S}^{2}}\right)^{3 / 2} \times \\
& \times\left\{1+2\left[\delta \rho_{t}^{\mathrm{EW}}+\delta V_{t}^{\mathrm{EW}}+\Delta V_{t}^{\mathrm{QCD}}\right]\right\}+\Gamma_{\bar{t} t}^{\mathrm{brem}, \mathrm{EW}} \tag{4.40}
\end{align*}
$$

The definition of $\Gamma_{t t}^{\mathrm{NLO}}$ is UV- and IR- finite and this can be explicitly verified looking at the divergent parts of all counterterms. Some of these counterterms are in common with the $S W^{+} W^{-}$vertex and their divergent parts have been previously listed in Tab.(4.1) while for the remaining ones ($\delta m_{t}, \delta Z_{t \mathrm{~V}}, \delta V_{t}, \delta_{t}^{\text {soft EW }}$ and $\delta_{t}^{\text {hardEW }}$) the UV- and IR- divergent parts are separately quoted in Tab.(4.3) and Tab.(4.4).
Here, $C_{F}=4 / 3, Q_{t}=+2 / 3$ is the top quark charge and the function \mathcal{N}_{0} (see eq.(4.16)) has to be defined in terms of $r=m_{t}^{2} / 4 m_{S}^{2}$. Notice that the sum of all terms in Tab.(4.4) are Λ_{γ} and Λ_{g}-independent at $\mathcal{O}\left(\alpha_{\mathrm{em}}\right)$ and $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$, respectively.
It is important to specify that the EW and the QCD corrections exhibit a threshold divergence if $m_{S} \rightarrow 2 m_{t}=346.68 \mathrm{GeV}$; this is of the type $\left(\alpha_{\mathrm{em}, \mathrm{s}} / \beta\right)$ where β is defined below eq.(4.38)

	$\mathrm{UV}_{\text {bosonic }}^{\mathrm{EW}}$	$\mathrm{UV}_{\text {fermionic }}^{\mathrm{EW}}$	$\mathrm{UV}_{\text {bosonic }}^{\mathrm{QCD}}$	$\mathrm{UV}_{\text {fermionic }}^{\mathrm{QCD}}$
$\delta Z_{t \mathrm{~V}}$	$-\frac{5}{36}-\frac{17}{72 c_{W}^{2}}$	$-\frac{3 m_{t}^{2}+m_{b}^{2}}{8 m_{W}^{2}}$	$-\frac{C_{F}}{3}$	-
$\delta m_{t} / m_{t}$	$\frac{7}{12}-\frac{5}{24 c_{W}^{2}}$	$\frac{3 m_{t}^{2}-3 m_{b}^{2}}{8 m_{W}^{2}}$	$-C_{F}$	-
δV_{t}	$\frac{1}{18}+\frac{25}{36 c_{W}^{2}}$	$\frac{m_{b}^{2}}{2 m_{W}^{2}}$	$\frac{4}{3} C_{F}$	-

Table 4.3: Coefficients of the bosonic and fermionic UV divergent parts (EW and QCD) of the new counterterms introduced for the St̄t vertex. The $E W$ and $Q C D$ coefficients are divided by the common factors $g^{2} /\left(16 \pi^{2} \epsilon\right)$ and $\alpha_{\mathrm{s}} /(\pi \epsilon)$, respectively.

	m_{γ} (IR regulator)	Λ_{γ} (IR cutoff)	m_{g} (IR regulator)	Λ_{g} (IR cutoff)
$\delta Z_{t \mathrm{~V}}$	$\frac{\alpha_{\mathrm{em}} Q_{t}^{2} \ln \frac{m_{t}}{m_{\gamma}}}{\pi}$	-	$\frac{C_{F} \alpha_{\mathrm{s}} \ln \frac{m_{t}}{m_{g}}}{\pi}$	
δV_{t}	$\frac{\alpha_{\mathrm{em}} Q_{t}^{2}\left[\mathcal{N}_{0}+1\right] \ln \frac{m_{\gamma}}{m_{t}}}{\pi}$	-	$\frac{C_{F} \alpha_{s}\left[\mathcal{N}_{0}+1\right] \ln \frac{m_{g}}{m_{t}}}{\pi}$	
$\delta_{t}^{\mathrm{soft}}$	$\frac{\alpha_{\mathrm{em}} Q_{t}^{2} \mathcal{N}_{0} \ln \frac{m_{t}}{m_{\gamma}}}{\pi}$	$\frac{\alpha_{\mathrm{em}} Q_{t}^{2} \mathcal{N}_{0} \ln \frac{2 \Lambda_{\gamma}}{m_{\gamma}}}{\pi}$	$\frac{C_{F} \alpha_{s} \mathcal{N}_{0} \ln \frac{m_{t}}{m_{g}}}{\pi}$	$\frac{C_{F} \alpha_{\mathrm{s}} \mathcal{N}_{0} \ln \frac{2 \Lambda_{g}}{m_{g}}}{\pi}$
$\delta_{t}^{\text {hard }}$	-	$\frac{\alpha_{\mathrm{em}} Q_{t}^{2} \mathcal{N}_{0} \ln \frac{m_{S}}{2 \Lambda_{\gamma}}}{\pi}$	-	$\frac{C_{F} \alpha_{\mathrm{s}} \mathcal{N}_{0} \ln \frac{m_{S}}{2 \Lambda_{g}}}{2 \pi}$

Table 4.4: $E W$ and $Q C D$ IR-dependence on $m_{\gamma, g}$ and $\Lambda_{\gamma, g}$ of $\delta Z_{t \mathrm{~V}}, \delta V_{t}, \delta_{t}^{\text {soft }}$ and $\delta_{t}^{\text {hard }}$.
and represents the velocity of either fermion in the center-of-mass frame. For instance, the $\Delta V_{t}^{\mathrm{QCD}}$ term is reduced to $\Delta V_{t}^{\mathrm{QCD}} \simeq\left(\pi^{2} / 2 \beta\right)-1$. Although this singularity is tamed by the LO factor β^{3} (see eq.(2.14)) it, nevertheless, implies the breakdown of the perturbation theory at the threshold value. In this case, the NLO prediction can be improved by the resummation of all terms proportional to $\left(\alpha_{\mathrm{em}, \mathrm{s}} / \beta\right)^{n}$ which imply n-photon or gluon exchanges between the top and the antitop states. For the EW corrections, this procedure corresponds to use a non-relativistic Coulomb potential to describe the electromagnetic interactions between the decay products $[66,67]$. On the other hand, this potential assumes a more complicated form for the QCD corrections but, in any case, we can avoid these singularities following alternative approaches, as those described in [68, 69]). However, we neglect the new NLO finite contributions arising from the procedure to cancel these threshold divergences since they are associated with the LO decay width results which are strongly suppressed for $m_{S} \simeq 2 m_{t}$. Following [66, 69], we have verified that our results for the EW and QCD corrections become reliable once we exceed the physical threshold by more than 10 GeV . Therefore, we will perform the numerical analysis of the NLO corrections to the top quark final state for $m_{S} \geq 360 \mathrm{GeV}$.

4.3 NLO Decay Width to Higgs Bosons

The three-level amplitude corresponding to the $S \rightarrow H H$ decay channel is simply due to the definition of the coupling $\mathrm{C}_{H H S}$ in eq.(1.21):

$$
\begin{equation*}
\mathcal{M}^{\mathrm{LO}}[S(k) \rightarrow H(p) H(q)]=\mathcal{M}_{S H H}^{\mathrm{LO}}=\rho_{H} \quad \text { with } \rho_{H}=\mathrm{C}_{H H S} \tag{4.41}
\end{equation*}
$$

Therefore, the coupling ρ_{H} is a function of λ, κ, ρ and s_{α}, w, v. Notice that λ, κ, ρ, can be defined in terms of $m_{H}, m_{S}, \delta m_{H S}^{2}, T_{H}$ and T_{S} as mentioned in eqs.(1.39-1.41). As a consequence, the correction factor to the $S H H$ coupling $\delta \rho_{H}$ will include the counterterms $\delta m_{H}^{2}, \delta m_{S}^{2}, \delta m_{H S}^{2 \text { ios }}\left(\delta \alpha^{\text {ios }}\right), T_{H}, T_{S}$ and the Higgs vev counterterm δv which can be expressed in terms of $\delta Z_{e}, \delta m_{W}, \delta s_{W}$ (using $v=2 m_{W} s_{W} / e$).

Figure 4.5: Feynman diagrams associated to the SHH vertex corrections; u_{i} are the Ghosts and $\eta_{i}=\eta_{0}, \eta^{ \pm}$are the Goldstone bosons associated to the diagrams with $v=Z, W^{ \pm}$, respectively.

Including the field renormalization constant $\delta Z_{S}, \delta Z_{H}, \delta Z_{H S}^{\text {ios }}, \delta Z_{S H}^{\text {ios }}$, we can generally write $\delta \rho_{H}$ as:

$$
\begin{align*}
\delta \rho_{H} & =c_{1} \delta m_{S}^{2}+c_{2} \delta m_{H}^{2}+c_{3} \delta m_{H S}^{2 \text { ios }}+c_{4} \delta T_{S}+c_{5} \delta T_{H}+ \tag{4.42}\\
& +c_{6}\left(\frac{\delta m_{W}^{2}}{2 m_{W}^{2}}+\frac{\delta s_{W}^{2}}{2 s_{W}^{2}}-\delta Z_{e}\right)+\delta Z_{H}+\frac{\delta Z_{S}}{2}+\frac{2 \mathrm{C}_{H H H} \delta Z_{H S}^{\mathrm{ios}}+\mathrm{C}_{H S S} \delta Z_{S H}^{\mathrm{ios}}}{2 \mathrm{C}_{H H S}}
\end{align*}
$$

where the trilinear couplings $\mathrm{C}_{H H H}, \mathrm{C}_{H S S}$ are given in eqs.(1.19-1.20) and the coefficients $c_{i}(i=1, \ldots, 6)$ are defined as follows:

$$
\begin{aligned}
& c_{1}= \frac{1}{2 m_{H}^{2}+m_{S}^{2}}, \quad c_{4}=3 \frac{c_{\alpha} s_{\alpha}\left(v^{2}+w^{2}\right)}{v w\left(2 m_{H}^{2}+m_{S}^{2}\right)\left(c_{\alpha} w+s_{\alpha} v\right)} \\
& c_{2}= \frac{2}{2 m_{H}^{2}+m_{S}^{2}}, \quad c_{5}=3 \frac{c_{\alpha} w-s_{\alpha} v}{v w\left(2 m_{H}^{2}+m_{S}^{2}\right)} \\
& c_{3}=\frac{s_{\alpha} w-c_{\alpha} v+\left(w / s_{\alpha}\right)-\left(v / c_{\alpha}\right)}{\left(2 m_{H}^{2}+m_{S}^{2}\right)\left(c_{\alpha} w+s_{\alpha} v\right)}, \quad c_{6}=\frac{c_{\alpha} w}{s_{\alpha} v+c_{\alpha} w} .
\end{aligned}
$$

Notice that we have chosen the mixed mass counterterm prescription in terms of $\delta m_{H S}^{2}$ to simplify the structure of $\delta \rho_{H}$. After the application of the MOMS shift $\delta Z_{e} \rightarrow \delta Z_{e}^{\prime}$, we get:

$$
\begin{align*}
& \delta \rho_{H}^{\prime}=c_{1} \delta m_{H}^{2}+c_{2} \delta m_{S}^{2}+c_{3} \delta m_{H S}^{2 \mathrm{ios}}+c_{4} \delta T_{H}+ \tag{4.43}\\
&+c_{5} \delta T_{S}+c_{6}\left(\frac{\widetilde{\operatorname{Re} \Sigma_{T}^{W W}(0)}}{2 m_{W}^{2}}-\frac{\operatorname{Re} \Sigma_{T}^{\gamma Z}(0)}{s_{W} c_{W} m_{Z}^{2}}+\frac{\mathcal{C}_{\text {muon }}}{2}\right)+ \\
&+\delta Z_{H}+\frac{\delta Z_{S}}{2}+\frac{2 \mathrm{C}_{H H H} \delta Z_{H S}^{\mathrm{ios}}+\mathrm{C}_{H S S} \delta Z_{S H}^{\mathrm{ios}}}{2 \mathrm{C}_{H H S}} .
\end{align*}
$$

Defining the three-point function corrections related to the $S H H$ vertex as δV_{H}, whose Feynman diagrams are depicted in Fig.(4.5), we obtain the UV-divergence cancellation by the following sum: $\delta \rho_{H}{ }^{\prime}+\delta V_{H}$. This can be directly verified through the UV-divergence coefficients reported in Tab.(4.5).
In conclusion, the NLO total decay width $\Gamma_{H H}^{\mathrm{NLO}}$ is described by:

$$
\begin{equation*}
\Gamma_{H H}^{\mathrm{NLO}}=\frac{\left(\mathrm{C}_{H H S}\right)^{2}}{32 \pi m_{H}} \sqrt{1-\frac{4 m_{H}^{2}}{m_{S}^{2}}} \times\left\{1+2\left[\delta \rho_{H}{ }^{\prime}+\delta V_{H}\right]\right\} \tag{4.44}
\end{equation*}
$$

4.4 NLO Total Decay Width

The NLO corrections to the total decay width of the scalar singlet particle can be expressed as the sum below:

$$
\begin{equation*}
\Gamma_{\mathrm{TOT}}^{\mathrm{NLO}} \simeq \Gamma_{W W}^{\mathrm{NLO}}+\Gamma_{Z Z}^{\mathrm{NLO}}+\Gamma_{t t}^{\mathrm{NLO}}+\Gamma_{H H}^{\mathrm{NLO}}+\sum_{i j} \Gamma_{i j}^{\mathrm{LO}} \tag{4.45}
\end{equation*}
$$

where we only consider the LO contributions for the rare decays, represented by $i j=$ ($g g, \gamma \gamma, Z \gamma, \bar{b} b, \bar{c} c, \bar{s} s, \bar{u} u, \bar{d} d, \tau^{+} \tau^{-}, \mu^{+} \mu^{-}, e^{+} e^{-}$), being these channels already suppressed by the loop factor or the small fermion masses.
It is interesting to observe that we can define the NLO signal cross section at proton center-of-mass energy \sqrt{s} corresponding to the resonant process $p p \rightarrow S \rightarrow X Y$ in terms of the

	$\mathrm{UV}_{\text {bosonic }}$	$\mathrm{UV}_{\text {fermionic }}$
δm_{S}^{2}	$s_{\alpha}^{2} g^{2}\left[9 m_{Z}^{2}\left(1+2 c_{W}^{4}\right)-2 m_{S}^{2}\left(1+2 c_{W}^{2}\right)\right]-2 c_{W}^{2}\left[\sum_{i j} \frac{2 \mathrm{C}_{i j S}^{2}}{1+\delta_{i j}}+\sum_{n m} m_{n}^{2} \mathrm{C}_{S S n m}\right]$	$s_{\alpha}^{2} g^{2} \sum_{f} N_{c}\left(m_{f}^{2} m_{S}^{2}-6 m_{f}^{4}\right)$
	$\begin{gathered} 4 c_{W}^{2} \\ c_{\alpha}^{2} g^{2}\left[9 m_{Z}^{2}\left(1+2 c_{W}^{4}\right)-2 m_{H}^{2}\left(1+2 c_{W}^{2}\right)\right]-2 c_{W}^{2}\left[\sum_{i j} \frac{2 \mathrm{C}_{H i j}^{2}}{1+\delta_{i j}}+\sum_{n m} m_{n}^{2} \mathrm{C}_{H H n m}\right] \end{gathered}$	$\frac{2 m_{W}^{2}}{c_{\alpha}^{2} g^{2} \sum_{f} N_{c}\left(m_{f}^{2} m_{H}^{2}-6 m_{f}^{4}\right)}$
δm_{H}^{2}	$\begin{gathered} 4 c_{W}^{2} \\ s_{2 \alpha} g^{2}\left[9 m_{Z}^{2}\left(1+2 c_{W}^{4}\right)-2 p^{* 2}\left(1+2 c_{W}^{2}\right)\right]-4 c_{W}^{2}\left[\sum_{i j} \frac{2 \mathrm{C}_{H i j} \mathrm{C}_{i j S}}{1+\delta_{i j}}+\sum_{n m} m_{n}^{2} \mathrm{C}_{H n m S}\right] \end{gathered}$	$\begin{gathered} 2 m_{W}^{2} \\ s_{2 \alpha} g^{2} \sum_{f} N_{c}\left(m_{f}^{2} p^{* 2}-6 m_{f}^{4}\right) \end{gathered}$
$\delta m_{H S}^{\text {ios } 2}$	$\begin{gathered} 8 c_{W}^{2} \\ -3 s_{\alpha} g\left(1+2 c_{W}^{4}\right)+c_{W}^{4} \sum_{n m} \mathrm{C}_{S n m} m_{n}^{2} \end{gathered}$	$\begin{gathered} 4 m_{W}^{2} \\ 2 s_{\alpha} g \sum_{f} N_{c} m_{f}^{4} \\ \hline \end{gathered}$
δT_{H}	$\begin{gathered} 2 c_{W}^{4} \\ \frac{-3 c_{\alpha} g\left(1+2 c_{W}^{4}\right)+c_{W}^{4} \sum_{n m} \mathrm{C}_{H n m} m_{n}^{2}}{2 c_{W V}^{4}} \end{gathered}$	$\begin{gathered} m_{W} c_{\alpha} g \sum_{f} N_{c} m_{f}^{4} \\ m_{W} \end{gathered}$
$c_{6}(\ldots)$	$c_{6} \frac{2 c_{W}^{2}+1}{2 c_{W}^{2}}$	$-c_{6} \frac{\sum_{f}^{W} N_{c} m_{f}^{2}}{4 m_{W}^{2}}$
δZ_{H}	$\frac{c_{\alpha}^{2} g^{2}\left(2 c_{W}^{2}+1\right)}{2 c_{W}^{2}}$	$-\frac{c_{\alpha}^{2} g^{2} \sum_{f} N_{c} m_{f}^{2}}{2 m_{W}^{2}}$
δZ_{S}	$\frac{s_{\alpha}^{2} g^{2}\left(2 c_{W}^{2}+1\right)}{2 c_{W}^{2}}$	$-\frac{s_{\alpha}^{2} g^{2} \sum_{f} N_{c} m_{f}^{2}}{2 m_{W}^{2}}$
$\delta Z_{H S}^{\mathrm{ios}}$	$\frac{c_{\alpha} s_{\alpha} g^{2}\left(2 c_{W}^{2}+1\right)}{2 c_{W}^{2}}$	$-\frac{s_{2 \alpha} g^{2} \sum_{f}^{w} N_{c} m_{f}^{2}}{4 m_{W}^{2}}$
$\delta Z^{\text {ios }}$	$c_{c_{\alpha} s_{\alpha} g^{2}\left(2 c_{W}^{2}+1\right)}$	$-\frac{s_{2 \alpha} g^{2} \sum_{f} N_{c} m_{f}^{2}}{}$
$\delta L_{S H}$	$2 c_{W}^{2}$	$-\frac{4 m^{2}}{W^{2}}{ }^{2}$
δV_{H}	$\frac{c_{\alpha} g}{2} \sum_{k l} \frac{s_{\alpha} \mathrm{C}_{H k l}+c_{\alpha} \mathrm{C}_{k l S}}{\left[1+\delta_{k l}\left(2 c_{W}^{2}-1\right)\right]}-\sum_{i j} \frac{2 \mathrm{C}_{H i j} \mathrm{C}_{H i j S}+\mathrm{C}_{i j S} \mathrm{C}_{H H i j}}{1+\delta_{i j}}$	$-\frac{3 c_{\alpha}^{2} s_{\alpha} \sum_{f}^{n} N_{c} m_{f}^{4}}{m_{W}^{3}}$

Table 4.5: Coefficients of the bosonic and fermionic UV divergent parts of the counterterms associated with the SHH vertex. These are divided by the common factor $1 /\left(16 \pi^{2} \epsilon\right)$. In this table $\{i j, n m, k l\}$ can be one of the combinations ij $=\left\{H H, S S, H S, \eta^{+} \eta^{-}, \eta^{0} \eta^{0}\right\}$, $n m=\left\{H H, S S, \eta^{+} \eta^{-}, \eta^{0} \eta^{0}\right\}$ and $k l=\left\{\eta^{+} \eta^{-}, \eta^{0} \eta^{0}\right\}$. Besides, $\delta_{i j, n m, k l}$ are equal to 1 for $\left\{H H, S S,, \eta^{0} \eta^{0}\right\}$ and to 0 for $\left\{H S, \eta^{+} \eta^{-}\right\}$. The parenthesis (...) indicates the quantity in eq.(4.43) which multiplies the coefficient c_{6}.
partial and total decay width expressions as,

$$
\begin{equation*}
\sigma(p p \rightarrow S \rightarrow X Y) \simeq \frac{1}{m_{S} \Gamma_{\mathrm{TOT}}^{\mathrm{NLO}} s}\left[\sum_{k} C_{\bar{k} k} \Gamma_{\bar{k} k}^{\mathrm{NLO}}\right] \Gamma_{X Y}^{\mathrm{NLO}}, \tag{4.46}
\end{equation*}
$$

where $k=g, \gamma, b, c, s, u, d$ are the partons, $X Y$ are all possible decay channels of the particle associated with the resonance state and $C_{\bar{k} k}$ are the dimensionless partonic integrals defined as follows [71]:

$$
\begin{equation*}
C_{g g}=\frac{\pi^{2}}{8} \int_{m_{S}^{2} / s^{2}}^{1} \frac{d x}{x} P_{g}(x) P_{g}\left(m_{S}^{2} / s x\right) \tag{4.47}
\end{equation*}
$$

$$
\begin{align*}
C_{\gamma \gamma} & =8 \pi^{2} \int_{m_{S}^{2} / s^{2}}^{1} \frac{d x}{x} P_{\gamma}(x) P_{\gamma}\left(m_{S}^{2} / s x\right), \tag{4.48}\\
C_{\bar{q} q} & =\frac{4 \pi^{2}}{9} \int_{m_{S}^{2} / s^{2}}^{1} \frac{d x}{x}\left[P_{q}(x) P_{\bar{q}}\left(m_{S}^{2} / s x\right)+P_{\bar{q}}(x) P_{q}\left(m_{S}^{2} / s x\right)\right] . \tag{4.49}
\end{align*}
$$

Numerical examples of $C_{\bar{k} k}$, computed using the MSTW2008NLO set of pdfs $\left(P_{k}\right)$ at the scale $Q=m_{S}=750 \mathrm{GeV}$ and $\sqrt{s}=8,13 \mathrm{TeV}$, are given in Tab.(4.6) ${ }^{4}$.

\sqrt{s}	$C_{\bar{b} b}$	$C_{\bar{c} c}$	$C_{\bar{s} s}$	$C_{\bar{d} d}$	$C_{\bar{u} u}$	$C_{g g}$	$C_{\gamma \gamma}$
8 TeV	1.07	2.7	7.2	89	158	174	11
13 TeV	15.3	36	83	627	1054	2137	54

Table 4.6: List of parton luminosity factors $C_{\bar{k} k}$ at the scale $Q=m_{S}=750 \mathrm{GeV}$ and $\sqrt{s}=$ 8, 13 TeV .

The higher order QCD corrections to the processes $g g, \bar{q} q \rightarrow S$ can be roughly expressed in terms of the so-called K-factors: $C_{g g, \bar{q} q} \rightarrow K_{g g, \bar{q} q} C_{g g, \bar{q} q}$ with $K_{g g} \simeq 2$ and $K_{\bar{q} q} \simeq 1.2$ (cf. [73, 74]).

4.5 NLO Application of the MF renormalization scheme

By applying the MF scheme prescription, we observe two main differences in the definitions of the $\Gamma_{i}^{\text {NLO }}$ previously discussed. The first one is related to the mixing scalar sector counterterms and can be described by the following shifts: $\delta Z_{H S}^{\mathrm{ios}} \rightarrow \delta Z_{H S}^{\mathrm{mf}}$ and $\delta m_{H S}^{2 \text { ios }}\left(\delta \alpha^{\mathrm{ios}}\right) \rightarrow$ $\delta m_{H S}^{2 \mathrm{mf}}\left(\delta \alpha^{\mathrm{mf}}\right)$. The second one lies in the insertion of the finite wave function corrections to the external scalar legs needed to absorb the residual factor which can be generated by the the $H-S$ or $S-H$ oscillation if $\mu_{R}^{2} \neq\left(m_{H}^{2}, m_{S}^{2}\right)$. Therefore, we must apply the following substitutions in order to obtain all NLO decay rates $S \rightarrow Z Z, W^{+} W^{-}, \bar{t} t, H H$ as a function of the MF counterterms:

$$
\begin{equation*}
\delta \rho_{i}{ }^{\prime}\left(\delta Z_{H S}^{\mathrm{ios}}, \delta \alpha^{\mathrm{ios}}\right) \rightarrow \delta \rho_{i}{ }^{\prime}\left(\delta Z_{H S}^{\mathrm{mf}}, \delta \alpha^{\mathrm{mf}}\right)+\delta \rho_{i}^{\mathrm{WF}} . \tag{4.50}
\end{equation*}
$$

Here, $\delta \rho_{i}^{\mathrm{WF}}$ (with $i=Z, W, t, H$) are defined in the following way:

$$
\begin{equation*}
\delta \rho_{Z}^{\mathrm{WF}}=\delta \rho_{W}^{\mathrm{WF}}=\delta \rho_{t}^{\mathrm{WF}}=\frac{c_{\alpha}}{s_{\alpha}} \hat{Z}_{S H} \quad, \quad \delta \rho_{H}^{\mathrm{WF}}=\frac{\mathrm{C}_{H H H}}{\mathrm{C}_{H H S}} \hat{Z}_{S H}+2 \frac{\mathrm{C}_{H S S}}{\mathrm{C}_{H H S}} \hat{Z}_{H S} \tag{4.51}
\end{equation*}
$$

[^16]where $\hat{Z}_{S H, H S}$ are expressed in eq.(3.57). Using eq.(3.88) and eq.(3.92), we explicitly get:
\[

$$
\begin{gather*}
\delta \rho_{Z}^{\mathrm{WF}}=\delta \rho_{W}^{\mathrm{WF}}=\delta \rho_{t}^{\mathrm{WF}}=\frac{c_{\alpha}}{s_{\alpha}} \frac{\operatorname{Re} \Sigma^{H S}\left(m_{S}^{2}\right)-\operatorname{Re} \Sigma^{H S}\left(\mu_{R}^{2}\right)+\delta Z_{H S}^{\mathrm{mf}}\left(m_{S}^{2}-\mu_{R}^{2}\right)}{m_{H}^{2}-m_{S}^{2}}, \tag{4.52}\\
\delta \rho_{H}^{\mathrm{WF}}=\frac{1}{\mathrm{C}_{H H S}\left(m_{H}^{2}-m_{S}^{2}\right)}\left\{\left(2 \mathrm{C}_{H S S}-\mathrm{C}_{H H H}\right)\left[\operatorname{Re} \Sigma^{H S}\left(\mu_{R}^{2}\right)+\mu_{R}^{2} \delta Z_{H S}^{\mathrm{mf}}\right]+\right. \\
\left.+\mathrm{C}_{H H H}\left[\operatorname{Re} \Sigma^{H S}\left(m_{S}^{2}\right)+m_{S}^{2} \delta Z_{H S}^{\mathrm{mf}}\right]-2 \mathrm{C}_{H S S}\left[\operatorname{Re} \Sigma^{H S}\left(m_{H}^{2}\right)+m_{H}^{2} \delta Z_{H S}^{\mathrm{mf}}\right]\right\} . \tag{4.53}
\end{gather*}
$$
\]

Chapter 5

Numerical Results

In this chapter, we will illustrate the numerical results for the NLO corrections to the scalar singlet decay rates discussed analytically in the previous chapters. It has to be specified that all amplitudes are computed with FeynArts [75] while their analytical processing was done with FormCalc [75]. The outputs, written in terms of standard loop integrals [76, 77], have been evaluated with the help of Package-X [78].
In the evaluation of the corrections to the NLO decay rates we make use of the following quantity:

$$
\begin{equation*}
\mathcal{R}_{i}^{\mathrm{SSM}}=\left[\left(\Gamma_{i}^{\mathrm{NLO}} / \Gamma_{i}^{\mathrm{LO}}\right)-1\right], \tag{5.1}
\end{equation*}
$$

with $i=W W, Z Z, H H, t t$ and TOT (which includes all decay channels). For the decay to top quarks, we will indicate whether the "EW + QCD" or only EW corrections are considered.

5.1 Dependence on s_{α} and w

We start evaluating $\mathcal{R}_{i}^{\text {SSM }}$ as a function of s_{α} for different values of m_{S} and w. It has to be considered that the maximally allowed ranges for $\left|s_{\alpha}\right|$ depend on the assumed singlet mass and such informations are summarized on Tab.(1.2). The numerical results are reported in Fig.(5.1). In the four panels we show separately the gauge boson channels $V=Z, W$; in the case of $V=W$ we fixed the momenta of the emitted photon-bremsstrahlung to its maximal value, $q_{\gamma}=q_{\gamma}^{\max }$. For the considered final states we choose four fixed values of m_{S} : a high mass region with $m_{S}=(900,1000) \mathrm{GeV}$ and a low mass region with $m_{S}=(200,300) \mathrm{GeV}$, $m_{S}=(300,400) \mathrm{GeV}$ and $m_{S}=(400,500) \mathrm{GeV}$ for $\mathcal{R}_{V V}^{\text {SSM }}, \mathcal{R}_{H H}^{\text {SSM }}$ and $\mathcal{R}_{t t}^{\text {SSM }}$, respectively. In order to roughly analyze the dependence on w, in the same plots we also show $\mathcal{R}_{i}^{\text {SSM }}$ computed for two different values of the singlet vev w : the smallest one (solid lines) is chosen according to the minimum reported in Tab.(1.2) while the largest is kept fixed at $w=6.67 v$ (dashed lines), which is a value used in [29] to determine the allowed intervals of s_{α} and, according to Tab.(1.2), valid for every m_{S}.

Figure 5.1: $\mathcal{R}_{i}^{S S M}$ as a function of s_{α}, for different values of m_{S} (and the corresponding vev $w)$. The range of s_{α} is the one deduced from Tab.(1.2). $\mathcal{R}_{W W, t t}^{S S M}$ are computed with $q_{\gamma}=q_{\gamma}^{\max }$.

- Low Mass Region

We clearly see that the dependence on w corresponding to the gauge final states is not dramatic. For instance, the variation with w for both $\mathcal{R}_{Z Z}^{\text {SSM }}$ and $\mathcal{R}_{W W}^{\text {SSM }}$ amount to a maximum of $\mathcal{O}(8 \%)$ when $m_{S}=300 \mathrm{GeV}$ and $s_{\alpha} \sim-0.3$. For the fermionic final state we can note that the larger w-variations are associated with small correction values of $\left|\mathcal{R}_{t t}^{\text {SSM }}\right|$ which does not exceed $\mathcal{O}(2 \%)$; an example is given by $\mathcal{R}_{t t}^{\text {SSM }}(w=$ $2.13 v) / \mathcal{R}_{t t}^{\mathrm{SSM}}(w=6.67 v) \sim 0.3$ for $m_{S}=500 \mathrm{GeV}, s_{\alpha} \sim-0.25$ and the corresponding correction values $\mathcal{R}_{t t}^{\text {SSM }} \sim(-0.1 \%,-0.3 \%)$ for $w=2.13 v$ and $6.67 v$, respectively. On the other hand, the ratio $\mathcal{R}_{H H}^{\mathrm{SSM}}$ shows a pronounced w-dependence especially in the case of s_{α} negative. This is due the fact that some of the loop contributions can be directly proportional to w and not strongly suppressed by the mixing.
We can also observe a dependence on s_{α} and its sign; in particular, the ratio $\mathcal{R}_{H H}^{\mathrm{SSM}}$ shows large variations with s_{α} as expected for a process with mixed scalar fields as external particles; to be more quantitative: when $\mathcal{O}(3 \%) \lesssim\left|\mathcal{R}_{H H}^{\mathrm{SSM}}\right| \lesssim \mathcal{O}(4 \%)$, for $m_{S}=400$ GeV and $w=1.69 v$, the ratio $\mathcal{R}_{H H}^{\mathrm{SSM}}\left(s_{\alpha}=0.055\right) / \mathcal{R}_{H H}^{\mathrm{SSM}}\left(s_{\alpha}=0.27\right) \sim 0.75$ and in the case of $\mathcal{O}(1 \%) \lesssim\left|\mathcal{R}_{H H}^{\text {SSM }}\right| \lesssim \mathcal{O}(2 \%)$, for $m_{S}=300 \mathrm{GeV}$ and $w=1.25 v$, we get $\mathcal{R}_{H H}^{\mathrm{SSM}}\left(s_{\alpha}=0.067\right) / \mathcal{R}_{H H}^{\mathrm{SSM}}\left(s_{\alpha}=0.31\right) \sim 0.2$. Regarding the ratios $\mathcal{R}_{W W, Z Z}^{\mathrm{SSM}}$, these are weakly dependent on the mixing for $m_{S} \lesssim 300 \mathrm{GeV}$ while for $\mathcal{R}_{t t}^{\text {SSM }}$ this dependence is not totally negligible; for example, for $m_{S}=400 \mathrm{GeV}$ and $w=1.69 v$, the ratio $\mathcal{R}_{t t}^{\mathrm{SSM}}\left(s_{\alpha}=-0.055\right) / \mathcal{R}_{t t}^{\mathrm{SSM}}\left(s_{\alpha}=-0.27\right) \sim 0.4$.
The reasons for such dependences on w and s_{α} are:

1. The loop interactions can be directly proportional to w and s_{α}.
2. The parameters κ, λ and ρ, entering $\mathcal{R}_{i}^{\text {SSM }}$ can be expressed as a function of w and s_{α} according to eq.(1.69).

On the other hand, the reason of different behaviors with respect to $\operatorname{sign}\left(s_{\alpha}\right)$ has to be ascribed to those diagrams which contain odd powers of the coupling κ whose sign is only determined by $\operatorname{sign}\left(s_{\alpha}\right)$. Typical Feynman diagrams with such a structure and that contribute to the mixing angle dependence of $\mathcal{R}_{i}^{\text {SSM }}$ are depicted in Fig.(5.2). Neglecting the loop integrals and using the approximate expressions in eq.(1.11) for simplicity, the couplings evaluated up to $\mathcal{O}\left(v^{2} / w^{2}\right)$ are the following:

$$
\begin{aligned}
& \text { Fig. }(5.2 \mathrm{a}, 5.2 \mathrm{~b}) \rightarrow \\
& \quad(\mathrm{SSH}) \sim \kappa v, \quad\left(\mathrm{HV} \eta^{i}\right) \propto \frac{m_{V}}{v}, \quad\left(\mathrm{SV} \eta^{i}\right) \propto s_{\alpha} \frac{m_{V}}{v} \sim \frac{\kappa m_{V}}{2 \rho w}, \\
& \text { Fig. }(5.2 \mathrm{c}) \rightarrow(\mathrm{SSH}) \sim \kappa v, \quad(\mathrm{H} \bar{t} t) \propto \frac{m_{t}}{v} \quad, \quad(\mathrm{~S} \bar{t} t) \propto s_{\alpha} \frac{m_{t}}{v} \sim \frac{\kappa m_{t}}{2 \rho w}, \\
& \text { Fig. }(5.2 \mathrm{~d}) \rightarrow(\mathrm{SHH}) \sim \kappa w, \quad(\mathrm{HHH}) \propto \lambda_{\mathrm{sm}}, \quad(\mathrm{SSH}) \propto \kappa,
\end{aligned}
$$

which in turn imply an overall dependence given by:

$$
\begin{align*}
(\mathrm{SSH}) & \times\left(\mathrm{SV} \eta^{i}\right) \times\left(\mathrm{HV} \eta^{i}\right) \tag{5.2}
\end{align*} \propto \frac{\kappa^{2} m_{V}^{2}}{2 \rho w} \sim \rho_{V} \kappa, ~(\mathrm{SSH}) \times(\mathrm{S} \bar{t} t) \times(\mathrm{H} \bar{t} t) \propto \frac{\kappa^{2} m_{t}^{2}}{2 \rho w} \sim \rho_{t} \kappa, ~(\mathrm{SSH}) \times(\mathrm{SHH}) \times(\mathrm{HHH}) \propto \kappa^{2} \lambda_{\mathrm{sm}} w \sim \rho_{H} \lambda_{\mathrm{sm}} \kappa,
$$

where $\lambda_{\mathrm{sm}} \sim \lambda+\kappa^{2} / 4 \rho$ and $i=(3, \pm)$ for $V=Z, W^{ \pm}$, respectively.

Figure 5.2: Examples of the Feynman diagrams contributing to the mixing angle dependence of $\mathcal{R}_{i}^{S S M}$.

- High Mass Region

In the region of larger masses, the w dependence in $\mathcal{R}_{V V}^{\text {SSM }}$ is more evident; for example, for $m_{S}=900 \mathrm{GeV}$ and $s_{\alpha} \sim 0.2$, the ratio $\mathcal{R}_{V V}^{\mathrm{SSM}}(w=6.67 v) / \mathcal{R}_{V V}^{\mathrm{SSM}}(w=3.85 v) \sim$ $(0.6,0.8)$ for $V=Z, W$, respectively. For the top quark final state, the w dependence becomes pronounced when $\left|\mathcal{R}_{t t}^{\mathrm{SSM}}\right| \gtrsim \mathcal{O}(3 \%)$; for instance, it reaches the maximum variation, which is at the level of $\mathcal{O}(15 \%)$, when $m_{S}=900 \mathrm{GeV}$ and $s_{\alpha} \sim 0.2$. The ratio $\mathcal{R}_{H H}^{\mathrm{SSM}}$ confirms the dependence on w, s_{α} and $\operatorname{sign}\left(s_{\alpha}\right)$ discussed in the low mass case; the maximum s_{α}-variation of $\mathcal{R}_{H H}^{S S M}$ is of $\mathcal{O}(35 \%)$ for $m_{S}=900 \mathrm{GeV}$ and $w=6.67 v$ while the dependence on w reaches the maximum when $m_{S}=900 \mathrm{GeV}$ and $s_{\alpha} \sim-0.2$: $\mathcal{R}_{H H}^{\mathrm{SSM}}(w=6.67 v) / \mathcal{R}_{H H}^{\mathrm{SSM}}(w=3.85 v) \sim 0.8$. Interestingly enough, in the high mass region the sign of the ratios $\mathcal{R}_{i}^{\text {SSM }}$ is negative for every choice of s_{α} and w.

5.2 Dependence on m_{S}

In this section we will scrutinize more in detail the dependence of $\mathcal{R}_{i}^{\text {SSM }}$ on the singlet mass for fixed values of s_{α} and w. In the upper plots of Fig.(5.3) we show the behavior of $\mathcal{R}_{V V}^{S S M}$ ($V=W$ on the left, $V=Z$ on the right) as a function of m_{S} for a fixed $s_{\alpha}=0.17$ and $w=4.34 v$.

For the sake of comparison, we also computed the same ratio $\mathcal{R}_{V V}^{\mathrm{SM}}=\left[\left(\Gamma_{V V}^{\mathrm{NLO}} / \Gamma_{V V}^{\mathrm{LO}}\right)-1\right]$ in the SM (red line) leaving the Higgs mass as a free parameter (in practice, the SM with a heavy Higgs) and for which we obtained the same behaviors as those discussed in [57, 63]. In the plots, on the common x-axis we use the label $m_{\text {scalars }}$ to indicate either m_{H} or m_{S}.

Figure 5.3: Upper plots: $\mathcal{R}_{V V}^{S M}$ (red line) and $\mathcal{R}_{V V}^{S S M}$ (black line) as a function of the scalar mass $m_{\text {scalars }}$. We fixed $s_{\alpha}=0.17, w=4.34 v$ and $q_{\gamma}=q_{\gamma}^{\max }$. Lower left plot: $E W$ and $Q C D$ contributions to $\mathcal{R}_{t t}^{S S M}$ (thick and dashed black lines, respectively) and total contributions to $\mathcal{R}_{t t}^{S S M}$ (red line) computed to $s_{\alpha}=0.17, w=4.34 v$ and $q_{\gamma}=q_{\gamma}^{\max }$. Lower right plot: behavior of $\mathcal{R}_{H H}^{S S M}$ for fixed values: $s_{\alpha}=0.17, w=4.34 v$ (black line) and $s_{\alpha}=0.17, w=6.67 v$ (red line).

We observe three main differences between the red and the black lines:

- Finite peak at $\mathrm{m}_{\mathrm{S}}=2 \mathrm{~m}_{\mathrm{H}}$:
this appears in $\mathcal{R}_{V V}^{\text {SSM }}$ due to the new coupling $S H H$ which is obviously absent in the SM. These peaks are generated by the $\mathcal{B}_{0,1}\left(p^{2}, m^{2}, m^{2}\right)$ functions (reported in App.D) and their derivative with respect to p^{2} which present a maximum $\left(\mathcal{B}_{0}\right.$ and $\left.\mathcal{B}_{0}^{\prime}\right)$ and minimum (\mathcal{B}_{1} and \mathcal{B}_{1}^{\prime}) for $p=2 m$.
- Different peaks at $\mathrm{m}_{\mathrm{S}}=2 \mathrm{~m}_{\mathrm{t}}$:
in this case the main contributions are given by the fermionic loops which appear in δZ_{S} and $\delta V_{V}^{\mathcal{E}, \mathcal{D}}$. Differently from the SM ratio (red lines), in the SSM case these fermionic expressions contain an overall s_{α}^{2} factor which induces the suppression of the considered peak.

- High mass region behavior:

it is clearly visible a different behavior for large values of m_{S}. This is mainly due to the new scalar contributions arising from the coefficient \mathcal{D}_{V} (see [57] for an explicit evaluation in the SM). For example, setting the mass of the heavy scalars to $m_{\text {scalars }}=$ 1000 GeV and considering $V=Z$, we have:

$$
\left\{\delta V_{Z}^{\mathcal{D}}\right\}^{\mathrm{SM}} \sim(3.31-0.16 \lambda) \times 10^{-5}>0
$$

whose positivity is determined by the fact that $\lambda=m_{\text {scalars }}^{2} / 2 v^{2}$. Instead, in the case of the SSM, we get:

$$
\left\{\delta V_{Z}^{\mathcal{D}}\right\}^{\mathrm{SSM}} \sim(4.97-2.27 \lambda-2.07 \rho-13.95 \kappa) \times 10^{-5}<0
$$

due to λ, ρ and κ which are all positive parameters for $s_{\alpha}=0.17$ and $w=(4.34,6.67) v$, see eq.(1.69).
In the lower plots of Fig.(5.3) we show the behavior of $\mathcal{R}_{t t, H H}^{\mathrm{SSM}}$ as a function of m_{S} when $\left(s_{\alpha}, w\right)=(0.17,4.34 v)$, for $\mathcal{R}_{t t}^{\mathrm{SSM}}$, and $\left(s_{\alpha}, w\right)=(0.17,4.34 v)$ and $(0.17,6.67 v)$, for $\mathcal{R}_{H H}^{\mathrm{SSM}}$. In the case of the top quark final state, the QCD and EW contributions are represented by the dashed and the solid black lines, respectively, while the total sum (QCD plus EW) is depicted by the red line. We observe that the QCD contributions remain larger than the EW part for $m_{S} \lesssim 800 \mathrm{GeV}$ and dominate the region of $m_{S} \lesssim 450 \mathrm{GeV}$. The EW contributions of $\mathcal{R}_{t t}^{\text {SSM }}$ are no larger than $\mathcal{O}(5 \%)$ in all mass range and become negative for $m_{S} \gtrsim 400$ GeV . This implies a cancellation between the EW and QCD contributions in the mass range $400 \lesssim m_{S} \lesssim 750 \mathrm{GeV}$ while for larger masses these become totally negative driving toward negative values the global correction due to $\mathcal{R}_{t t}^{\mathrm{SSM}}$. Concerning $\mathcal{R}_{H H}^{\mathrm{SSM}}$, we note that it remains positive for $300 \lesssim m_{S} \lesssim 700 \mathrm{GeV}$ reaching a maximum value of order $\mathcal{O}(3.5 \%)$ at $m_{S} \sim 400$ GeV . At $m_{S}=2 m_{H}$, we can observe that $\mathcal{R}_{H H}^{\text {SSM }}$ shows a similar behavior as the one mentioned for $\mathcal{R}_{V V}^{\mathrm{SSM}}$. An additional slight variation of the curves is visible when $m_{S} \sim 470 \mathrm{GeV}$. This variation arises exactly from the loop integral $\mathcal{B}_{0}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)$ which appear in the definition of $\delta m_{H S}^{2 \text { ios }}$ defined at $p^{* 2}=\left(m_{S}^{2}+m_{H}^{2}\right) / 2$. As a consequence, the peak-condition becomes,

$$
\begin{equation*}
p^{*}=\sqrt{\frac{m_{H}^{2}+m_{S}^{2}}{2}}=2 m_{t} \quad \Longrightarrow \quad m_{S}=\sqrt{8 m_{t}^{2}-m_{H}^{2}} \sim 470 \mathrm{GeV} \tag{5.5}
\end{equation*}
$$

It is important to stress that we are not totally in agreement with the results obtained in [29]. In Tab.(5.1), we compare our results for $\mathcal{R}_{H H}^{\text {SSM }}$ with the numerical values of the corresponding quantity computed by the authors of [29]. To this aim, we only refer to the results collected in Tab.(6) of [29] calculated in the MOMS ${ }^{1}$ and iOS schemes for the following fixed values:

[^17]

Figure 5.4: Ratio $\mathcal{R}_{i}^{S S M}$ as a function of the singlet mass m_{S} for the three fixed values $s_{\alpha}=$ $-0.09,-0.13$ and -0.17 . Ratio $\mathcal{R}_{W W, t t}^{S S M}$ are computed for $q_{\gamma}=q_{\gamma}^{\max }$.
$m_{S}=300,500,700 \mathrm{GeV}, s_{\alpha}=0.1,0.2,0.3$ and $w=5 v$. The deviations between our results and the ones of [29] seem to be roughly the same in all mass range, for each fixed value of s_{α}, at the level of $\mathcal{O}(3 \%)$. Thus, the factor which generates this disagreement is almost completely independent on the singlet scalar mass. The reason for this discrepancy is still under investigation.
As it was shown in Fig.(5.1), the ratio $\mathcal{R}_{i}^{\text {SSM }}$ depend on the sign and the assumed value of s_{α} and the variation with $\operatorname{sign}\left(s_{\alpha}\right)$ is more evident when $s_{\alpha}<0$; to be more quantitative we also study in detail the region of negative s_{α}. In Fig. (5.4), we show $\mathcal{R}_{i}^{\text {SSM }}$ as a function of the singlet mass m_{S} for three fixed values of s_{α}, namely $s_{\alpha}=-0.09,-0.17$ (which are the two extremes of the considered range) and its central value $s_{\alpha}=-0.13$. Notice that the dependence on the scalar mixing angle starts to be significant for all ratios $\mathcal{R}_{i}^{\mathrm{SSM}}$ for $m_{S} \gtrsim 400 \mathrm{GeV}$ while it can be neglected for smaller masses. In addition, $\mathcal{R}_{V V}^{S S M}$ becomes negative when the scalar mass is roughly larger than $800 \mathrm{GeV}, \mathcal{R}_{t t}^{\mathrm{SSM}}$ when $m_{S} \gtrsim 400 \mathrm{GeV}$ and $\mathcal{R}_{H H}^{\mathrm{SSM}}$ for mass values in the interval $300 \lesssim m_{S} \lesssim 800 \mathrm{GeV}$, as it was the case for $s_{\alpha}>0$ (see plots of Fig.(5.3)). As far as we know, the NLO corrections to the decay widths $\Gamma(S \rightarrow Z Z), \Gamma\left(W^{+} W^{-}(\gamma)\right)$ and

Set of Parameters $w=5 v$	$\mathcal{R}_{H H}^{\text {SSM }[\%]}$		$\delta_{G_{F}}[\%]$
		Our Results	Results of [29]
	$s_{\alpha}=0.1$	0.164	2.990
$m_{S}=300 \mathrm{GeV}$	$s_{\alpha}=0.2$	0.343	3.100
	$s_{\alpha}=0.3$	0.616	3.278
	$s_{\alpha}=0.1$	2.593	5.236
$m_{S}=500 \mathrm{GeV}$	$s_{\alpha}=0.2$	2.959	5.518
	$s_{\alpha}=0.3$	3.599	6.012
	$s_{\alpha}=0.1$	-0.304	2.473
$m_{S}=700 \mathrm{GeV}$	$s_{\alpha}=0.2$	0.326	3.071
	$s_{\alpha}=0.3$	1.424	4.195

Table 5.1: Comparison between the results of the NLO corrections to the decay rate $\Gamma(S \rightarrow$ $H H)$ obtained in this thesis and those reported in Tab.(6) of [29] (called $\delta_{G_{F}}$) for fixed values: $m_{S}=300,500,700 \mathrm{GeV}, s_{\alpha}=0.1,0.2,0.3$ and $w=5 v$.

Figure 5.5: Leading order (dashed line) and next-to-leading order (solid line) results for $\Gamma(S \rightarrow$ $X Y)$ with $X Y=Z Z, W^{+} W^{-}(\gamma), \bar{t} t, H H$ for $s_{\alpha}=0.17$ (left plot), $s_{\alpha}=-0.17$ (right plot) and $w=4.34 v$. In the case $X Y=W^{+} W^{-}(\gamma)$ and $\bar{t} t$, we have fixed $q_{\gamma}=q_{\gamma}^{\max }$.
$\Gamma(S \rightarrow \bar{t} t(\gamma))$ have not been numerically computed before ${ }^{2,3}$. In order to briefly summa-

[^18]rize the NLO EW results for the dominant decay channels obtained in this thesis, we list in Tab.(5.2) for fixed $\left(s_{\alpha}, w\right)=(0.17,4.34 v)$ the ratios $\mathcal{R}_{i i}^{\text {SSM }}$ computed for $m_{S}=1000 \mathrm{GeV}$ which involves the larger values of all NLO decay rates and for those singlet masses which give rise to the maximum correction values $\left(\mathcal{R}_{i i \max }^{\text {SSM }}\right)$, namely $m_{S} \simeq 200 \mathrm{GeV}\left(\mathcal{R}_{W W \text { max }}^{\text {SSM }}\right)$, $m_{S} \simeq 252 \mathrm{GeV}\left(\mathcal{R}_{Z Z \max }^{\mathrm{SSM}}\right), m_{S} \simeq 360 \mathrm{GeV}\left(\mathcal{R}_{t t \max }^{\mathrm{SSM}}\right)$ and $m_{S} \simeq 406 \mathrm{GeV}\left(\mathcal{R}_{H H \text { max }}^{\mathrm{SSM}}\right)$.

	$s_{\alpha}=0.17$	and	$w=4.34 v$	
$m_{S}[\mathrm{GeV}]$	$\mathcal{R}_{W W}^{\text {SSM }}[\%]$	$\mathcal{R}_{Z Z}^{\text {SSM }}[\%]$	$\mathcal{R}_{H H}^{\text {SSM }}[\%]$	$(\mathrm{EW}) \mathcal{R}_{t t}^{\text {SSM }}[\%]$
200	$\mathbf{6 . 2 7 7}$	4.876	-	-
252	5.685	$\mathbf{5 . 0 8 8}$	-0.065	-
360	4.523	2.923	2.657	$\mathbf{4 . 2 2 9}$
406	3.952	2.172	$\mathbf{3 . 2 5 6}$	0.676
1000	-2.239	-1.494	-3.857	-2.792

Table 5.2: Results of $\mathcal{R}_{i i}^{S S M}[\%]$ (with $i=W, Z, H$ and t) for fixed values: $s_{\alpha}=0.17, w=4.34 v$ and $m_{S}=200,252,360,406$ and 1000 GeV . The bold numbers correspond to the maximum values of the ratios $\mathcal{R}_{i i}^{S S M}$ for the representative choice of variables.

Finally, in Fig.(5.5) we summarize our results for the decay widths $\Gamma(S \rightarrow X Y)$ (with $\left.X Y=Z Z, W^{+} W^{-}(\gamma), \bar{t} t, H H\right)$ as a function of m_{S} for the selected values $w=4.34 v$ and $s_{\alpha}= \pm 0.17$. As expected from our previous considerations, the NLO results (solid line) are above the LO behavior (dashed line) in the small mass region but becomes generally smaller in the region of larger masses ($m_{S} \gtrsim 750 \mathrm{GeV}$).

Having discussed the full set of quantities entering in the NLO total decay rate $\Gamma(S \rightarrow$ All $)$ (see eq.(4.45)), we are now in the position to compute the ratio $\mathcal{R}_{\mathrm{TOT}}^{\mathrm{SSM}}$ that we report in Fig.(5.6) for fixed values $w=4.34 v$ and $s_{\alpha}= \pm 0.17$. It can be useful for the considerations below to rewrite $\mathcal{R}_{\text {TOT }}^{\text {SSM }}$ in terms of the other single ratios as:

$$
\begin{equation*}
\mathcal{R}_{\mathrm{TOT}}^{\mathrm{SSM}}=\mathrm{BR}_{S W W}^{\mathrm{LO}} \mathcal{R}_{W W}^{\mathrm{SSM}}+\mathrm{BR}_{S Z Z}^{\mathrm{LO}} \mathcal{R}_{Z Z}^{\mathrm{SSM}}+\mathrm{BR}_{S H H}^{\mathrm{LO}} \mathcal{R}_{H H}^{\mathrm{SSM}}+\mathrm{BR}_{S t t}^{\mathrm{LO}} \mathcal{R}_{t t}^{\mathrm{SSM}} \tag{5.6}
\end{equation*}
$$

We observe that the variation with s_{α} starts to be relevant for $m_{S} \gtrsim 250 \mathrm{GeV}$. Since the dependence on the scalar mixing angle of $\mathcal{R}_{W W, Z Z, t t}^{\mathrm{SSM}}$ become relevant for $m_{S} \gtrsim 400 \mathrm{GeV}$ (see for example Fig.(5.4)), this implies that the variation of $\mathcal{R}_{\mathrm{TOT}}^{\mathrm{SSM}}$ with s_{α} and its sign for the mass range $250 \lesssim m_{S} \lesssim 400 \mathrm{GeV}$ is mainly due to $\mathcal{R}_{H H}^{\text {SSM }}$ which is the only one that presents a not negligible mixing angle dependence in the low mass region. The behavior of the shapes depicted in Fig.(5.6) can be briefly analyzed in different mass regions:

- $200 \lesssim m_{S} \lesssim 2 m_{H} \mathrm{GeV}$: this region is only affected by the gauge boson decay channels since the other processes are absent being kinematically not accessible. Notice that the

Figure 5.6: Behavior of $\mathcal{R}_{\mathrm{TOT}}^{S S M}$ computed for fixed values, namely $s_{\alpha}=0.17$ (black and red dashed lines), $s_{\alpha}=-0.17$ (black solid line) and $w=4.34 v$. The photon momenta in $\mathcal{R}_{W W, t t}^{S S M}$ are fixed to $q_{\gamma}=q_{\gamma}^{\max }$ and the $Q C D$ corrections of $\mathcal{R}_{t t}^{S S M}$ are only taken into account in the black lines.
$W W$ branching fraction at the LO is larger than $Z Z$ final state at the fixed values $w=4.34 v$ and $s_{\alpha}= \pm 0.17$; this implies that $\mathcal{R}_{\mathrm{TOT}}^{\mathrm{SSM}}$ are mainly influenced by the ratio $\mathcal{R}_{W W}^{\text {SSM }}$. In addition, the ratio $\mathcal{R}_{\mathrm{TOT}}^{\text {SSM }}$ tends to decrease following the behavior of $\mathcal{R}_{V V}^{\mathrm{SSM}}$ in the low mass region. Notice that the smooth peak at $m_{S} \sim 225 \mathrm{GeV}$ (near to the other one at $\left.m_{S}=2 m_{H}\right)$ is due to the loop integrals in $\delta m_{H S}^{2 \text { ios }}$ when $p^{*}=2 m_{Z}$.

- $2 m_{H} \lesssim m_{S} \lesssim 2 m_{t} \mathrm{GeV}:$ in this range, the correction to the total decay width is characterized by the additional contribution proportional to $\mathcal{R}_{\mathrm{HH}}^{\mathrm{SSM}}$. The loop functions entering in the counterterms δZ_{S} and $\delta V_{H, Z, W}$ generate the peaks at the extreme values $m_{S}=2 m_{H}, 2 m_{t}$ while the variation of the curve at $m_{S} \sim 330 \mathrm{GeV}$ is due to the function $\mathcal{B}_{0}\left(p^{* 2}, m_{H}^{2}, m_{H}^{2}\right)$ appearing in the counterterm $\delta m_{H S}^{2 \text { ios }}$.
- $2 m_{t} \lesssim m_{S} \lesssim 1000 \mathrm{GeV}:$ here, the $\mathcal{R}_{t t}^{\mathrm{SSM}}$ contribution appears. Notice that the QCD effects are not negligible even though the LO decay rate of $S \rightarrow \bar{t} t$ is smaller then the other dominant decay widths for $m_{S} \gtrsim 400 \mathrm{GeV}$. We observe that $\mathcal{R}_{\mathrm{TOT}}^{\text {SSM }}$ tends to be negative in the high mass region according to the behavior of the individual ratios $\mathcal{R}_{i}^{\text {SSM }}$ discussed above. Since the counterterm $\delta m_{H S}^{2 \text { ios }}$ appears in all expressions of partial decay rate corrections, we observe the slight variations of the $\mathcal{R}_{\mathrm{TOT}}^{\text {SSM }}$ shapes at $m_{S} \sim 470 \mathrm{GeV}$ due to the function $\mathcal{B}_{0}\left(p^{* 2}, m_{t}^{2}, m_{t}^{2}\right)$ computed for $p^{*}=2 m_{t}$.

For completeness, we conclude reporting in Tab.(5.3) an example of the cross section values at proton center-of-mass energy \sqrt{s} corresponding to the resonant process $p p \rightarrow S \rightarrow X Y$
(defined in eq.(4.46)) for $X Y=Z Z, W^{+} W^{-}, \bar{t} t, H H$ and fixed values, namely $m_{S}=750 \mathrm{GeV}$, $s_{\alpha}= \pm 0.17$ and $w=4.34 v$. First of all, we note that the QCD corrections to the partonic

$m_{S}=750 \mathrm{GeV}, w=4.34 v$	$s_{\alpha}=0.17$		$s_{\alpha}=-0.17$	
without $K_{g g, \bar{q} q}$	LO [fb]	NLO [fb]	LO [fb]	NLO [fb]
$\sigma^{8 \mathrm{TeV}}\left(p p \rightarrow S \rightarrow W^{+} W^{-}\right)$	1.179	1.183	1.226	1.231
$\sigma^{8 \mathrm{TeV}}(p p \rightarrow S \rightarrow Z Z)$	0.578	0.582	0.601	0.606
$\sigma^{8 \mathrm{TeV}}(p p \rightarrow S \rightarrow \bar{t} t)$	0.141	0.137	0.147	0.146
$\sigma^{8 \mathrm{TeV}}(p p \rightarrow S \rightarrow H H)$	0.676	0.672	0.600	0.594
$\sigma^{13 \mathrm{TeV}}\left(p p \rightarrow S \rightarrow W^{+} W^{-}\right)$	5.485	5.502	5.705	5.726
$\sigma^{13 \mathrm{TeV}}(p p \rightarrow S \rightarrow Z Z)$	2.689	2.709	2.797	2.821
$\sigma^{13 \mathrm{TeV}}(p p \rightarrow S \rightarrow \bar{t} t)$	0.657	0.639	0.683	0.668
$\sigma^{13 \mathrm{TeV}}(p p \rightarrow S \rightarrow H H)$	3.147	3.127	2.792	2.763
with $K_{g g, \bar{q} q}$	LO [fb]	NLO [fb]	LO [fb]	NLO [fb]
$\sigma^{8 \mathrm{TeV}}\left(p p \rightarrow S \rightarrow W^{+} W^{-}\right)$	1.179	2.364	1.226	2.460
$\sigma^{8 \mathrm{TeV}}(p p \rightarrow S \rightarrow Z Z)$	0.578	1.164	0.601	1.212
$\sigma^{8 \mathrm{TeV}}(p p \rightarrow S \rightarrow \bar{t} t)$	0.141	0.275	0.147	0.287
$\sigma^{8 \mathrm{TeV}}(p p \rightarrow S \rightarrow H H)$	0.676	1.344	0.600	1.187
$\sigma^{13 \mathrm{TeV}}\left(p p \rightarrow S \rightarrow W^{+} W^{-}\right)$	5.485	10.996	5.705	11.444
$\sigma^{13 \mathrm{TeV}}(p p \rightarrow S \rightarrow Z Z)$	2.689	5.413	2.797	5.637
$\sigma^{13 \mathrm{TeV}}(p p \rightarrow S \rightarrow \bar{t})$	0.657	1.278	0.683	1.334
$\sigma^{13 \mathrm{TeV}}(p p \rightarrow S \rightarrow H H)$	3.147	6.250	2.792	5.521

Table 5.3: LO and NLO Cross sections $\sigma^{8,13 \mathrm{TeV}}\left(p p \rightarrow S \rightarrow W^{+} W^{-}, Z Z, \bar{t} t, H H\right)$ at proton center-of-mass energy $\sqrt{s}=8$ and 13 TeV computed for fixed values, namely $m_{S}=750 \mathrm{GeV}$, $s_{\alpha}= \pm 0.17$ and $w=4.34 v$.
process $\Gamma(g g \rightarrow S)$ (numerically given by the K-factor, $K_{g g} \simeq 2$) affect the NLO cross section values for $\sqrt{s}=8,13 \mathrm{TeV}: \sigma_{\mathrm{NLO}}(p p \rightarrow S \rightarrow X Y) / \sigma_{\mathrm{LO}}(p p \rightarrow S \rightarrow X Y) \sim 2$. Neglecting the $K_{g g}$ contributions, the corrections to the scalar singlet decay rates imply that the NLO cross section $\sigma_{\mathrm{NLO}}^{8,13 \mathrm{TeV}}(p p \rightarrow S \rightarrow X Y)$ reaches a maximum variation of $\mathcal{O}(2 \%)$ for each $X Y$ final states. Obviously, the process $p p \rightarrow S \rightarrow X Y$ is a simple case to roughly quantify the impact of the NLO scalar singlet decay widths in the cross section corresponding to a scalar resonance but is not phenomenologically interesting since these effects are much smaller than the QCD corrections to the resonance production processes, mainly due to $g g \rightarrow S$. The corrections to the scalar singlet decay widths could become relevant in EW processes with leptons in the final states, like $p p(\bar{q} q) \rightarrow S Z \rightarrow X Y \bar{l} l$, in the hadron colliders (see Fig.(5.7)).

Figure 5.7: Feynman diagram related to the process $\bar{q} q \rightarrow S Z \rightarrow X Y \bar{l} l$.

5.3 A Comment on the Gauge Dependence

It has been verified by the authors of [29] that the physical quantities computed in the MF scheme prescription show a gauge-dependence for each possible value of the renormalization scale μ_{R}. As discussed in Sect.3.2.4, we demonstrated that the iOS and the MF schemes are equivalent at $p^{* 2}=\mu_{R}^{2}=\left(m_{S}^{2}+m_{H}^{2}\right) / 2$ and this would imply that the results obtained in terms of the MF counterterms is only gauge-independent if $\mu_{R}^{2}=\left(m_{S}^{2}+m_{H}^{2}\right) / 2$. This is not totally in agreement with the results of [29] which show different values computed in the iOS scheme at $p^{* 2}=\left(m_{S}^{2}+m_{H}^{2}\right) / 2$ and in the MF scheme $\mu_{R}^{2}=\left(m_{S}^{2}+m_{H}^{2}\right) / 2$. Since the two renormalization schemes should give equivalent results for $p^{*}=\mu_{R}$, we are not able to explain the reason of the difference between the results computed in the MF and the iOS schemes of the Tab.(6) in [29]. To get an estimate of the gauge-dependence impact in the NLO decay rates, we define the following variable:

$$
\begin{equation*}
\Delta \Gamma_{i}=\frac{\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{ios}}-\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{mf}}}{\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{ios}}} \quad \text { with } i=Z Z, W W, t t, H H \tag{5.7}
\end{equation*}
$$

where $\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\text {ios }}$ and $\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{mf}}$ are the NLO decay widths computed in the iOS and MF prescription, respectively. The analysis of the gauge dependence is performed in terms of different values of μ_{R} which we fix in the following range: $m_{H} \leq \mu_{R} \leq m_{S}$ with $m_{S}=400,1000 \mathrm{GeV}$. We can directly obtain the NLO decay rates in the MF scheme from those performed in the iOS scheme following the treatment described in Sect.4.5. As it is shown in Fig.(5.8), the gauge dependence generates $\Delta \Gamma_{i}$ included in the range $[-2,+3] \%$ for $m_{S}=400 \mathrm{GeV}$ and 1000 GeV for each channel. Notice that the QCD corrections are $\mu_{R^{-}}$-independent and survive only in the denominator of $\Delta \Gamma_{t t}$. Since the QCD corrections are positive for $m_{S} \lesssim 800 \mathrm{GeV}$, their insertion reduces the gauge-dependence effects in the case of $m_{S}=400 \mathrm{GeV}$ and vice versa for $m_{S}=1000 \mathrm{GeV}$. In addition, we clearly observe the peaks at $p=\mu_{R}=2 m_{Z}, 2 m_{H}, 2 m_{t}$ and the increasing gauge dependence effects as μ_{R} increases.

Figure 5.8: Ratio $\Delta \Gamma_{i}$ with $i=Z Z, W W, H H$, tt as a function of the renormalization scale μ_{R} for fixed values $s_{\alpha}=0.17, w=4.34 v$ and $m_{S}=400 \mathrm{GeV}$ (upper plot), 1000 GeV (lower plot). The $\Delta \Gamma_{t t}$ are analyzed with (solid line) and without (dashed line) the $Q C D$ corrections.

At $\mu_{R}=296.35 \mathrm{GeV}$ (for $m_{S}=400 \mathrm{GeV}$) and 712.62 GeV (for $m_{S}=1000 \mathrm{GeV}$), we numerically found that $\Delta \Gamma_{i}=0$ which implies that $\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\text {ios }}=\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{mf}}$. These μ_{R} values correspond exactly to the average geometrical mass $\left(m_{S}^{2}+m_{H}^{2}\right) / 2$ computed for $m_{S}=400$ GeV and 1000 GeV . Therefore, we confirm that the MF and the iOS prescriptions converge to $\mu_{R}^{2}=\left(m_{S}^{2}+m_{H}^{2}\right) / 2$.

Conclusions

In this thesis we have studied in details an extension of the SM which involves the presence of a new real scalar field s^{0}, singlet under the SM gauge group. Its main effect is to mix with the SM-like scalar doublet ϕ via a quartic interaction of the form $\kappa|\phi|^{2}\left|s^{0}\right|^{2}$, giving rise to two mass eigenstates that we call H (the lighter) and S (the heaviest). We have limited our interests here to the study of the dominant decay rates of S to a pair of gauge bosons Z and W, to top quarks t and to lighter scalar bosons H; as far as we know, the amplitudes of such vertices can be extracted by the one-loop self energies and vertex corrections quoted in [55, 70] but the one-loop corrections to the dominant heavy scalar decays have not been computed explicitly before (in the literature we only found the analysis of the one-loop corrections to $S \rightarrow H H$ [29, 70]). In order to ensure the gauge-independence in the NLO decay width results, we use the improved on-shell renormalization scheme (iOS) which gives a gauge-invariant expression for the counterterms corresponding to the mixed scalar sector, as it is shown in [29]. In the mass range analyzed in this thesis, $200 \leq m_{S} \leq 1000 \mathrm{GeV}$ which corresponds to mixing angles in the range $\left|s_{\alpha}\right| \in[0.09,0.17]$, the decay rates of $S \rightarrow Z Z, W^{+} W^{-}, \bar{t} t, H H$ are kinematically accessible and we estimated that their EW one-loop corrections can be as large as $\mathcal{O}(6 \%)$ in the $W^{+} W^{-}$channel, $\mathcal{O}(5 \%)$ in the $Z Z$ channel and $\mathcal{O}(4 \%)$ in the $H H$ and $\bar{t} t$ channels. The $\Gamma(S \rightarrow \bar{t} t)$ also receive the QCD loop contributions which for $m_{S} \lesssim 400 \mathrm{GeV}$ can be larger than $\mathcal{O}(50 \%)$. Interestingly enough, the sign of the NLO corrections is not fixed a priori: for $300 \lesssim m_{S} \lesssim 700 \mathrm{GeV}$, the quantity $\mathcal{R}_{i}^{\text {SSM }}=\left[\left(\Gamma_{i}^{\mathrm{NLO}} / \Gamma_{i}^{\mathrm{LO}}\right)-1\right]$ with $i=Z Z, W W, t t, H H$ is always positive for every values of α (if $\mathcal{R}_{t t}^{\mathrm{SSM}}$ also includes the QCD corrections) while for larger masses $\mathcal{R}_{i}^{\mathrm{SSM}}$ can also become negative (the precise turning point depends on the assumed values of α and w). In addition, $\mathcal{R}_{H H}^{\mathrm{SSM}}$ is the only ratio which becomes negative for $m_{S} \lesssim 300 \mathrm{GeV}$. Regarding the dependence on α and its sign, $\mathcal{R}_{i}^{\text {SSM }}$ exhibits different behaviors in the mass range taken into account. In fact, these dependences are almost totally confined in the high mass region for masses somehow larger than 400 GeV . We have also studied the dependence of $\mathcal{R}_{i}^{\text {SSM }}$ on the singlet vev w; we found that it is practically absent for masses $m_{S} \lesssim 400 \mathrm{GeV}$ whereas in the higher mass range it is not negligible (see for example the ratio $\mathcal{R}_{H H}^{\mathrm{SSM}}$ in Fig.(5.3)); this condition becomes not completely reliable if we take a w value lower than $4.34 v$; to give an example, for $m_{S}=300 \mathrm{GeV}$ and $s_{\alpha}=0.17$ the ratio $\mathcal{R}_{H H}^{\mathrm{SSM}}(w=4.34 v) / \mathcal{R}_{H H}^{\mathrm{SSM}}(w=1.25 v) \sim 0.35$. The NLO corrections to the total decay width reach a maximum of $\mathcal{O}(6 \%)$ for $m_{S}=200 \mathrm{GeV}$ and its s_{α} dependence becomes clearly visible for masses larger than $m_{S} \gtrsim 350 \mathrm{GeV}$. For fixed values $\left(s_{\alpha}, w\right)=(0.17,4.34 v)$, the maximal
value of the difference between the ratio $\mathcal{R}_{\mathrm{TOT}}^{\mathrm{SSM}}$ including the EW and QCD corrections and the same EW-only quantity amounts to $\mathcal{O}(2 \%)$ when $m_{S}=400 \mathrm{GeV}$.
Finally, we give a comment on the gauge-dependence defining the following variables: $\Delta \Gamma_{i}=$ $\left.\left[\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\text {ios }}-\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{mf}}\right)\right] /\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\text {ios }}$, where $\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{mf}}$ represents the NLO decay width computed in terms of the counterterms associated with "minimal field" renormalization scheme (which needs the introduction of a renormalization scale μ_{R} and gives gauge-dependent results for physical observables if $\left.\mu_{R} \neq \sqrt{\left(m_{H}^{2}+m_{S}^{2}\right) / 2}\right)$. For fixed m_{S} values, we observe that the gauge dependence for the scale range $m_{H} \leq \mu_{R} \leq m_{S}$ generates $\Delta \Gamma_{i}$ included in the range $[-2,+3] \%$ when $m_{S}=400 \mathrm{GeV}$ and 1000 GeV for each channel. Besides, for $\mu_{R}=296.35 \mathrm{GeV}$ (when $m_{S}=400 \mathrm{GeV}$) and 712.62 GeV (when $m_{S}=1000 \mathrm{GeV}$) we found $\Delta \Gamma_{i}=0$ and this implies that $\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\text {ios }}=\left(\Gamma_{i}^{\mathrm{NLO}}\right)_{\mathrm{mf}}$. Since these μ_{R} values correspond exactly to the average geometrical mass $\left(m_{S}^{2}+m_{H}^{2}\right) / 2$ computed for $m_{S}=400 \mathrm{GeV}$ and 1000 GeV , we confirm the equivalence of the MF and the iOS prescriptions when $\mu_{R}^{2}=\left(m_{S}^{2}+m_{H}^{2}\right) / 2$ (analytically proven in Sect.3.2.4).

Acknowledgements

I would like to thank all the people who helped me during these three years of PhD and made this thesis possible. In particular, I am strongly indebted with Davide Meloni for his patience and illuminating advices. I am also very grateful to Giuseppe Degrassi and Roberto Franceschini for their precious comments and suggestions.

Appendix

In this appendix we explicitly quote all contributions to the two and three-point functions needed to evaluate the NLO order corrections for the scalar singlet decay channels discussed in this thesis. We work in the t'Hooft-Feynman gauge and give the amplitudes in terms of the Passarino-Veltman integrals. Besides we can generally decompose the self-energies and the three-point functions as follows:

- Self-Energies of the Bosonic (B) and Fermionic Fields (F)

$$
\begin{aligned}
& \Sigma^{B B}\left(p^{2}\right)=\left\{\Sigma^{B B}\left(p^{2}\right)\right\}_{\text {fer }}+\left\{\Sigma^{B B}\left(p^{2}\right)\right\}_{\text {bos }}, \\
& \Sigma^{F}\left(p^{2}\right)=m_{F} \Sigma_{\mathrm{S}}^{F}\left(p^{2}\right)+\not p \Sigma_{\mathrm{V}}^{F}\left(p^{2}\right)+\not p \gamma_{5} \Sigma_{\mathrm{A}}^{F}\left(p^{2}\right)
\end{aligned}
$$

- Three-Point Functions with Bosonic (B) and Fermionic Final States (F) $\delta V_{B}=\left\{\delta V_{B}\right\}_{\text {fer }}+\left\{\delta V_{B}\right\}_{\text {bos }}$,
$\delta V_{t}=\delta V_{t}^{\mathcal{A}}+\delta V_{t}^{\mathcal{B}} k+\delta V_{t}^{\mathcal{C}} q+\delta V_{t}^{\mathcal{D}} k \phi+\delta V_{t}^{\mathcal{E}} \gamma_{5}+\delta V_{t}^{\mathcal{F}} k \gamma_{5}+\delta V_{t}^{\mathcal{G}} q \gamma_{5}+\delta V_{t}^{\mathcal{H}} k q q \gamma_{5}$,
where "fer" and "bos" stand for fermionic and bosonic loop contributions.

A - SSM Tadpole Amplitudes

Tadpole for the H Field

$$
\begin{align*}
\delta T_{H} & =\frac{g^{2}}{16 \pi^{2}} m_{W}^{2}\left\{3 v m_{b}^{2} c_{\alpha} \mathcal{A}_{0}\left(m_{b}^{2}\right)+\mathcal{A}_{0}\left(m_{H}^{2}\right)\left(-\frac{3}{8} \kappa v^{3} c_{\alpha} s_{\alpha}^{2}+\frac{3}{8} \kappa v^{2} w c_{\alpha}^{2} s_{\alpha}-\right.\right. \\
& \left.-\frac{3}{4} \lambda v^{3} c_{\alpha}^{3}+\frac{3}{4} \rho v^{2} w s_{\alpha}^{3}\right)+\mathcal{A}_{0}\left(m_{S}^{2}\right)\left(\frac{1}{4} \kappa v^{3} c_{\alpha} s_{\alpha}^{2}-\frac{3}{4} \lambda v^{3} c_{\alpha} s_{\alpha}^{2}-\right. \\
& \left.-\frac{1}{4} \kappa v^{2} w c_{\alpha}^{2} s_{\alpha}+\frac{3}{4} \rho v^{2} w c_{\alpha}^{2} s_{\alpha}-\frac{1}{8} \kappa v^{3} c_{\alpha}^{3}+\frac{1}{8} \kappa v^{2} w s_{\alpha}^{3}\right)+\mathcal{A}_{0}\left(m_{W}^{2}\right)\left(-\frac{3}{2} v c_{\alpha} m_{W}^{2}-\right. \\
& \left.-\frac{1}{2} \lambda v^{3} c_{\alpha}+\frac{1}{4} \kappa v^{2} w s_{\alpha}\right)+\mathcal{A}_{0}\left(m_{Z}^{2}\right)\left(-\frac{3 v c_{\alpha} m_{W}^{2} s_{W}^{4}}{4 c_{W}^{2}}-\frac{3}{2} v c_{\alpha} m_{W}^{2} s_{W}^{2}-\right. \\
& \left.-\frac{3}{4} v c_{\alpha} c_{W}^{2} m_{W}^{2}-\frac{1}{4} \lambda v^{3} c_{\alpha}+\frac{1}{8} \kappa v^{2} w s_{\alpha}\right)+3 v c_{\alpha} m_{t}^{2} \mathcal{A}_{0}\left(m_{t}^{2}\right)+v c_{\alpha} m_{\tau}^{2} \mathcal{A}_{0}\left(m_{\tau}^{2}\right)+ \tag{8}
\end{align*}
$$

$$
\begin{equation*}
\left.+3 v c_{\alpha} m_{c}^{2} \mathcal{A}_{0}\left(m_{c}^{2}\right)+\frac{v c_{\alpha} m_{W}^{2} m_{Z}^{2} s_{W}^{4}}{2 c_{W}^{2}}+v c_{\alpha} m_{W}^{2} m_{Z}^{2}+\frac{1}{2} m_{W}^{4} v c_{\alpha}\right\} \tag{9}
\end{equation*}
$$

Tadpole for the S Field

$$
\begin{align*}
\delta T_{S} & =\frac{g^{2}}{16 \pi^{2}} m_{W}^{2}\left\{3 v m_{b}^{2} s_{\alpha} \mathcal{A}_{0}\left(m_{b}^{2}\right)+\mathcal{A}_{0}\left(m_{H}^{2}\right)\left(\frac{1}{4} \kappa v^{3} c_{\alpha}^{2} s_{\alpha}-\frac{3}{4} \lambda v^{3} c_{\alpha}^{2} s_{\alpha}+\right.\right. \\
& \left.+\frac{1}{4} \kappa v^{2} w c_{\alpha} s_{\alpha}^{2}-\frac{3}{4} \rho v^{2} w c_{\alpha} s_{\alpha}^{2}-\frac{1}{8} \kappa v^{2} w c_{\alpha}^{3}-\frac{1}{8} \kappa v^{3} s_{\alpha}^{3}\right)+ \\
& +\mathcal{A}_{0}\left(m_{S}^{2}\right)\left(-\frac{3}{8} \kappa v^{3} c_{\alpha}^{2} s_{\alpha}-\frac{3}{8} \kappa v^{2} w c_{\alpha} s_{\alpha}^{2}-\frac{3}{4} \rho v^{2} w c_{\alpha}^{3}-\right. \\
& \left.-\frac{3}{4} \lambda v^{3} s_{\alpha}^{3}\right)+\mathcal{A}_{0}\left(m_{W}^{2}\right)\left(-\frac{1}{4} \kappa v^{2} w c_{\alpha}-\frac{3}{2} v m_{W}^{2} s_{\alpha}-\frac{1}{2} \lambda v^{3} s_{\alpha}\right)+ \\
& +\mathcal{A}_{0}\left(m_{Z}^{2}\right)\left(-\frac{3 v m_{W}^{2} s_{\alpha} s_{W}^{4}}{4 c_{W}^{2}}-\frac{3}{4} v c_{W}^{2} m_{W}^{2} s_{\alpha}-\frac{1}{8} \kappa v^{2} w c_{\alpha}-\frac{3}{2} v m_{W}^{2} s_{\alpha} s_{W}^{2}-\right. \\
& \left.-\frac{1}{4} \lambda v^{3} s_{\alpha}\right)+3 v m_{c}^{2} s_{\alpha} \mathcal{A}_{0}\left(m_{c}^{2}\right)+3 v m_{t}^{2} s_{\alpha} \mathcal{A}_{0}\left(m_{t}^{2}\right)+v m_{\tau}^{2} s_{\alpha} \mathcal{A}_{0}\left(m_{\tau}^{2}\right)+ \\
& \left.+\frac{v m_{W}^{2} m_{Z}^{2} s_{\alpha} s_{W}^{4}}{2 c_{W}^{2}}+\frac{1}{2} v c_{W}^{2} m_{W}^{2} m_{Z}^{2} s_{\alpha}+v m_{W}^{2} m_{Z}^{2} s_{\alpha} s_{W}^{2}+m_{W}^{4} v s_{\alpha}\right\} . \tag{10}
\end{align*}
$$

B - SSM Self-Energy Amplitudes

Self-Energy for the W Boson

$$
\begin{align*}
& \left\{\Sigma_{T}^{W W}\left(p^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}}\left\{-6 \mathcal{B}_{00}\left(p^{2}, m_{b}^{2}, m_{t}^{2}\right)-6 \mathcal{B}_{00}\left(p^{2}, 0, m_{c}^{2}\right)-2 \mathcal{B}_{00}\left(p^{2}, 0, m_{\tau}^{2}\right)-\right. \\
& \quad-10 \mathcal{B}_{00}\left(p^{2}, 0,0\right)-3 p^{2} \mathcal{B}_{1}\left(p^{2}, m_{b}^{2}, m_{t}^{2}\right)+3\left(m_{t}^{2}-p^{2}\right) \mathcal{B}_{0}\left(p^{2}, m_{b}^{2}, m_{t}^{2}\right)- \\
& \quad-3 p^{2} \mathcal{B}_{1}\left(p^{2}, 0, m_{c}^{2}\right)+3\left(m_{c}^{2}-p^{2}\right) \mathcal{B}_{0}\left(p^{2}, 0, m_{c}^{2}\right)+p^{2} \mathcal{B}_{1}\left(p^{2}, 0, m_{\tau}^{2}\right)+ \\
& \left.\quad+5 p^{2} \mathcal{B}_{1}\left(p^{2}, 0,0\right)+3 \mathcal{A}_{0}\left(m_{b}^{2}\right)+\mathcal{A}_{0}\left(m_{\tau}^{2}\right)\right\}, \tag{11}\\
& \left\{\Sigma_{T}^{W W}\left(p^{2}\right)\right\}_{\text {bos }}=\frac{g^{2}}{16 \pi^{2}}\left\{c_{\alpha}^{2} \mathcal{B}_{00}\left(p^{2}, m_{W}^{2}, m_{H}^{2}\right)+\left(8 c_{W}^{2}+1\right) \mathcal{B}_{00}\left(p^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\right. \tag{12}
\end{align*}
$$

$$
\begin{align*}
& +s_{\alpha}^{2} \mathcal{B}_{00}\left(p^{2}, m_{W}^{2}, m_{S}^{2}\right)+8 s_{W}^{2} \mathcal{B}_{00}\left(p^{2}, 0, m_{W}^{2}\right)-c_{\alpha}^{2} m_{W}^{2} \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{W}^{2}\right)+ \\
& +\frac{\mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{Z}^{2}\right)\left(c_{W}^{4}\left(2 m_{Z}^{2}+3 p^{2}\right)-s_{W}^{4} m_{W}^{2}\right)}{c_{W}^{2}}-2 p^{2} c_{W}^{2} \mathcal{B}_{1}\left(p^{2}, m_{W}^{2}, m_{Z}^{2}\right)- \\
& -m_{W}^{2} s_{\alpha}^{2} \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{W}^{2}\right)+2 p^{2} s_{W}^{2} \mathcal{B}_{1}\left(p^{2}, 0, m_{W}^{2}\right)-s_{W}^{2}\left(m_{W}^{2}-5 p^{2}\right) \mathcal{B}_{0}\left(p^{2}, 0, m_{W}^{2}\right)- \\
& \left.-\frac{1}{4} c_{\alpha}^{2} \mathcal{A}_{0}\left(m_{H}^{2}\right)+\left(-3 c_{W}^{2}-\frac{1}{4}\right) \mathcal{A}_{0}\left(m_{Z}^{2}\right)-\frac{1}{4} s_{\alpha}^{2} \mathcal{A}_{0}\left(m_{S}^{2}\right)-\frac{3}{2} \mathcal{A}_{0}\left(m_{W}^{2}\right)+\frac{2 p^{2}}{3}\right\} . \tag{13}
\end{align*}
$$

Self-Energy for the Z Boson

$$
\begin{align*}
& \left\{\Sigma_{T}^{Z Z}\left(p^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}}\left\{-\frac{\left(32 c_{W}^{4}-40 c_{W}^{2}+17\right)\left(\mathcal{B}_{00}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)+\mathcal{B}_{00}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)\right)}{3 c_{W}^{2}}+\right. \\
& \quad+\left(-\frac{8 c_{W}^{2}}{3}-\frac{5}{3 c_{W}^{2}}+\frac{4}{3}\right) \mathcal{B}_{00}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)-\left(-8 c_{W}^{2}-\frac{5}{c_{W}^{2}}+12\right) \mathcal{B}_{00}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
& \quad+\left(-32 c_{W}^{2}-\frac{22}{c_{W}^{2}}+40\right) \mathcal{B}_{00}\left(p^{2}, 0,0\right)+\frac{3 m_{b}^{2} \mathcal{B}_{0}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)}{2 c_{W}^{2}}+\left(\frac{4}{3} p^{2} c_{W}^{2}+\frac{5 p^{2}}{6 c_{W}^{2}}-\frac{2 p^{2}}{3}\right) \times \\
& \quad \times \mathcal{B}_{1}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)+\frac{p^{2}\left(32 c_{W}^{4}-40 c_{W}^{2}+17\right)\left(\mathcal{B}_{1}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)+\mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)\right)}{6 c_{W}^{2}}+ \\
& \quad+\frac{3 m_{t}^{2} \mathcal{B}_{0}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)}{2 c_{W}^{2}}+\frac{m_{\tau}^{2} \mathcal{B}_{0}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)}{2 c_{W}^{2}}+\left(4 p^{2} c_{W}^{2}+\frac{5 p^{2}}{2 c_{W}^{2}}-6 p^{2}\right) \mathcal{B}_{1}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
& \quad+\frac{3 m_{c}^{2} \mathcal{B}_{0}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)}{2 c_{W}^{2}}+\mathcal{B}_{1}\left(p^{2}, 0,0\right)\left(16 p^{2} c_{W}^{2}+\frac{11 p^{2}}{c_{W}^{2}}-20 p^{2}\right)+\left(\mathcal{A}_{0}\left(m_{t}^{2}\right)+\mathcal{A}_{0}\left(m_{c}^{2}\right)\right) \times \\
& \left.\quad \times\left(\frac{16 c_{W}^{2}}{3}+\frac{17}{6 c_{W}^{2}}-\frac{20}{3}\right)+\left(\frac{4 c_{W}^{2}}{3}+\frac{5}{6 c_{W}^{2}}-\frac{2}{3}\right) A_{0}\left(m_{b}^{2}\right)+\left(4 c_{W}^{2}+\frac{5}{2 c_{W}^{2}}-6\right) \mathcal{A}_{0}\left(m_{\tau}^{2}\right)\right\} \tag{14}
\end{align*}
$$

$$
\left\{\Sigma_{T}^{Z Z}\left(p^{2}\right)\right\}_{\mathrm{bos}}=\frac{g^{2}}{16 \pi^{2}}\left\{\frac{c_{\alpha}^{2} \mathcal{B}_{00}\left(p^{2}, m_{Z}^{2}, m_{H}^{2}\right)}{c_{W}^{2}}+\frac{s_{\alpha}^{2} \mathcal{B}_{00}\left(p^{2}, m_{Z}^{2}, m_{S}^{2}\right)}{c_{W}^{2}}+\right.
$$

$$
+\left(12 c_{W}^{2}+\frac{1}{c_{W}^{2}}-4\right) \mathcal{B}_{00}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)-\frac{c_{\alpha}^{2} m_{W}^{2} \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{Z}^{2}\right)}{c_{W}^{4}}-
$$

$$
-\frac{m_{Z}^{2} s_{\alpha}^{2} \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{Z}^{2}\right)}{c_{W}^{2}}+2 p^{2} c_{W}^{2} \mathcal{B}_{1}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)-\frac{c_{\alpha}^{2} \mathcal{A}_{0}\left(m_{H}^{2}\right)}{4 c_{W}^{2}}+
$$

$$
+\left(-\frac{2 m_{W}^{2}}{c_{W}^{2}}+5 p^{2} c_{W}^{2}+4 m_{W}^{2}\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)-\frac{s_{\alpha}^{2} \mathcal{A}_{0}\left(m_{S}^{2}\right)}{4 c_{W}^{2}}-
$$

$$
\begin{equation*}
\left.-\frac{\mathcal{A}_{0}\left(m_{Z}^{2}\right)}{4 c_{W}^{2}}+\left(-6 c_{W}^{2}-\frac{1}{2 c_{W}^{2}}+2\right) \mathcal{A}_{0}\left(m_{W}^{2}\right)+\frac{2}{3} p^{2} c_{W}^{2}\right\} \tag{15}
\end{equation*}
$$

Self-Energy for the $\mathbf{Z} \gamma$ Mixing

$$
\begin{align*}
\left\{\Sigma_{T}^{\gamma Z}\left(p^{2}\right)\right\}_{\text {fer }}= & \frac{g^{2}}{16 \pi^{2}} \frac{s_{W}}{3 c_{W}}\left\{\left(2-8 c_{W}^{2}\right) \mathcal{B}_{00}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)+\left(20-32 c_{W}^{2}\right) \mathcal{B}_{00}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)+\right. \\
+ & \left(18-24 c_{W}^{2}\right) \mathcal{B}_{00}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+\left(20-32 c_{W}^{2}\right) \mathcal{B}_{00}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)+ \\
+ & \left(60-96 c_{W}^{2}\right) \mathcal{B}_{00}\left(p^{2}, 0,0\right)+\left(4 p^{2} c_{W}^{2}-p^{2}\right) \mathcal{B}_{1}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)+ \\
& +\left(16 p^{2} c_{W}^{2}-10 p^{2}\right) \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(12 p^{2} c_{W}^{2}-9 p^{2}\right) \mathcal{B}_{1}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
+ & \left(16 p^{2} c_{W}^{2}-10 p^{2}\right) \mathcal{B}_{1}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)+\mathcal{B}_{1}\left(p^{2}, 0,0\right)\left(48 p^{2} c_{W}^{2}-30 p^{2}\right)+ \\
+ & \left(4 c_{W}^{2}-1\right) \mathcal{A}_{0}\left(m_{b}^{2}\right)+\left(16 c_{W}^{2}-10\right) \mathcal{A}_{0}\left(m_{t}^{2}\right)+\left(12 c_{W}^{2}-9\right) \mathcal{A}_{0}\left(m_{\tau}^{2}\right)+ \\
& \left.+2\left(8 c_{W}^{2}-5\right) \mathcal{A}_{0}\left(m_{c}^{2}\right)\right\}, \tag{16}\\
\left\{\Sigma_{T}^{\gamma Z}\left(p^{2}\right)\right\}_{\text {bos }}= & \frac{g^{2}}{16 \pi^{2}} \frac{s_{W}}{c_{W}}\left\{\left(12 c_{W}^{2}-2\right) \mathcal{B}_{00}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+2 p^{2} c_{W}^{2} \mathcal{B}_{1}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+\right. \\
+ & \left.\left(5 p^{2} c_{W}^{2}+2 m_{W}^{2}\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(1-6 c_{W}^{2}\right) \mathcal{A}_{0}\left(m_{W}^{2}\right)+\frac{2}{3} p^{2} c_{W}^{2}\right\} . \tag{17}
\end{align*}
$$

Self-Energy for the γ Boson

$$
\begin{align*}
& \left\{\Sigma_{T}^{\gamma \gamma}\left(p^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} \frac{4 s_{W}^{2}}{3}\left\{-2 \mathcal{B}_{00}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)-8 \mathcal{B}_{00}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)-\right. \\
& \quad-6 \mathcal{B}_{00}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)-24 \mathcal{B}_{00}\left(p^{2}, 0,0\right)+p^{2} \mathcal{B}_{1}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)-8 \mathcal{B}_{00}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)+ \\
& \quad+4 p^{2} \mathcal{B}_{1}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)+4 p^{2} \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)+3 p^{2} \mathcal{B}_{1}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
& \left.\quad+12 p^{2} \mathcal{B}_{1}\left(p^{2}, 0,0\right)+\mathcal{A}_{0}\left(m_{b}^{2}\right)+4 \mathcal{A}_{0}\left(m_{c}^{2}\right)+4 \mathcal{A}_{0}\left(m_{t}^{2}\right)+3 \mathcal{A}_{0}\left(m_{\tau}^{2}\right)\right\} \tag{18}\\
& \left\{\Sigma_{T}^{\gamma \gamma}\left(p^{2}\right)\right\}_{\text {bos }}= \\
& =\frac{g^{2}}{16 \pi^{2}} s_{W}^{2}\left\{12 \mathcal{B}_{00}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+5 p^{2} \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+\right. \tag{19}\\
& \\
& \left.+2 p^{2} \mathcal{B}_{1}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)-6 \mathcal{A}_{0}\left(m_{W}^{2}\right)+\frac{2 p^{2}}{3}\right\}
\end{align*}
$$

Self-Energy for the H Boson

$$
\begin{align*}
& \left\{\Sigma^{H H}\left(p^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} c_{\alpha}^{2}\left\{-\frac{6 m_{b}^{4} \mathcal{B}_{0}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} m_{b}^{2} \mathcal{B}_{1}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)}{m_{W}^{2}}-\right. \\
& -\frac{6 m_{t}^{4} \mathcal{B}_{0}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} m_{t}^{2} \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)}{m_{W}^{2}}-\frac{3 m_{t}^{2} \mathcal{A}_{0}\left(m_{t}^{2}\right)}{m_{W}^{2}}- \\
& -\frac{2 m_{\tau}^{4} \mathcal{B}_{0}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)}{m_{W}^{2}}-\frac{p^{2} m_{\tau}^{2} \mathcal{B}_{1}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)}{m_{W}^{2}}-\frac{m_{\tau}^{2} \mathcal{A}_{0}\left(m_{\tau}^{2}\right)}{m_{W}^{2}}- \\
& -\frac{6 m_{c}^{4} \mathcal{B}_{0}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} c_{\alpha}^{2} m_{c}^{2} \mathcal{B}_{1}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)}{m_{W}^{2}}-\frac{3 m_{c}^{2} \mathcal{A}_{0}\left(m_{c}^{2}\right)}{m_{W}^{2}}- \\
& \left.-\frac{3 m_{b}^{2} \mathcal{A}_{0}\left(m_{b}^{2}\right)}{m_{W}^{2}}\right\}, \tag{20}\\
& \left\{\Sigma^{H H}\left(p^{2}\right)\right\}_{\text {bos }}=\frac{g^{2}}{16 \pi^{2}}\left\{-\frac{3 c_{\alpha}^{2} m_{Z}^{4}}{2 m_{W}^{2}}+\frac{p^{2} c_{\alpha}^{2} \mathcal{B}_{1}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right) m_{Z}^{2}}{2 m_{W}^{2}}-3 c_{\alpha}^{2} m_{W}^{2}+\right. \\
& +\left(\frac{3 v^{2} \lambda c_{\alpha}^{4}}{4 m_{W}^{2}}+\frac{3 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{3 v^{2} \rho s_{\alpha}^{4}}{4 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{H}^{2}\right)+\left(\frac{v^{2} \kappa c_{\alpha}^{4}}{8 m_{W}^{2}}-\frac{v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{2 m_{W}^{2}}+\right. \\
& \left.+\frac{3 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{3 v^{2} \rho s_{\alpha}^{2} c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{v^{2} \kappa s_{\alpha}^{4}}{8 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{S}^{2}\right)+\left(\frac{v^{2} \lambda c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{3 c_{\alpha}^{2}}{2}+\frac{v^{2} \kappa s_{\alpha}^{2}}{4 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{W}^{2}\right)+ \\
& +\left(\frac{3 m_{Z}^{2} c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{v^{2} \lambda c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{v^{2} \kappa s_{\alpha}^{2}}{8 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{Z}^{2}\right)+\left(\frac{9 v^{4} \lambda^{2} c_{\alpha}^{6}}{2 m_{W}^{2}}-\frac{9 v^{3} w \kappa \lambda s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\frac{9 v^{2} w^{2} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{8 m_{W}^{2}}+\right. \\
& +\frac{9 v^{4} \kappa \lambda s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}-\frac{9 v^{3} w \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}-\frac{9 v^{3} w \lambda \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{9 v^{4} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{8 m_{W}^{2}}+\frac{9 v^{2} w^{2} \kappa \rho s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}- \\
& \left.-\frac{9 v^{3} w \kappa \rho s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha}^{6}}{2 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(\frac{v^{2} w^{2} \kappa^{2} c_{\alpha}^{6}}{4 m_{W}^{2}}-\frac{v^{3} w \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{m_{W}^{2}}+\right. \\
& +\frac{3 v^{3} w \kappa \lambda s_{\alpha} c_{\alpha}^{5}}{m_{W}^{2}}+\frac{v^{4} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}-\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{9 v^{4} \lambda^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}-\frac{6 v^{4} \kappa \lambda s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+ \\
& +\frac{5 v^{3} w \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{2 m_{W}^{2}}-\frac{6 v^{3} w \kappa \lambda s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{6 v^{3} w \kappa \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{18 v^{3} w \lambda \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{v^{4} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}+ \\
& +\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{6 v^{2} w^{2} \kappa \rho s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{v^{3} w \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{m_{W}^{2}}+ \\
& \left.+\frac{3 v^{3} w \kappa \rho s_{\alpha}^{5} c_{\alpha}}{m_{W}^{2}}+\frac{v^{4} \kappa^{2} s_{\alpha}^{6}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(\frac{v^{4} \kappa^{2} c_{\alpha}^{6}}{8 m_{W}^{2}}+\frac{v^{3} w \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}-\right. \\
& -\frac{3 v^{3} w \kappa \rho s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}-\frac{v^{4} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}+\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}+\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}-
\end{align*}
$$

$$
\begin{align*}
& -\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}-\frac{5 v^{3} w \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{3 v^{3} w \kappa \lambda s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{3 v^{3} w \kappa \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{9 v^{3} w \lambda \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+ \\
& +\frac{v^{4} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{2}}{2 m_{W}^{2}}-\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{9 v^{4} \lambda^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}-\frac{3 v^{4} \kappa \lambda s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{v^{3} w \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}- \\
& \left.-\frac{3 v^{3} w \kappa \lambda s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{6}}{8 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(\frac{\lambda^{2} c_{\alpha}^{2} v^{4}}{m_{W}^{2}}-\frac{w \kappa \lambda c_{\alpha} s_{\alpha} v^{3}}{m_{W}^{2}}+\frac{w^{2} \kappa^{2} s_{\alpha}^{2} v^{2}}{4 m_{W}^{2}}-\right. \\
& \left.-\frac{1}{2} p^{2} c_{\alpha}^{2}+3 c_{\alpha}^{2} m_{W}^{2}\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(\frac{\lambda^{2} c_{\alpha}^{2} v^{4}}{2 m_{W}^{2}}-\frac{w \kappa c_{\alpha} s_{\alpha} v^{3}}{2 m_{W}^{2}}+\frac{w^{2} \kappa^{2} s_{\alpha}^{2} v^{2}}{8 m_{W}^{2}}+\right. \\
& \left.\left.+\frac{3 c_{\alpha}^{2} m_{Z}^{4}}{2 m_{W}^{2}}-\frac{p^{2} c_{\alpha}^{2} m_{Z}^{2}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+p^{2} c_{\alpha}^{2} \mathcal{B}_{1}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)\right\} \tag{21}
\end{align*}
$$

Self-Energy for the S Boson

$$
\begin{align*}
& \left\{\Sigma^{S S}\left(p^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} s_{\alpha}^{2}\left\{-\frac{6 m_{b}^{4} \mathcal{B}_{0}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} m_{b}^{2} \mathcal{B}_{1}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)}{m_{W}^{2}}-\right. \\
& \quad-\frac{6 m_{t}^{4} \mathcal{B}_{0}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} m_{t}^{2} \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)}{m_{W}^{2}}-\frac{3 m_{t}^{2} \mathcal{A}_{0}\left(m_{t}^{2}\right)}{m_{W}^{2}}- \\
& \quad-\frac{2 m_{\tau}^{4} \mathcal{B}_{0}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)}{m_{W}^{2}}-\frac{p^{2} m_{\tau}^{2} \mathcal{B}_{1}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)}{m_{W}^{2}}-\frac{m_{\tau}^{2} \mathcal{A}_{0}\left(m_{\tau}^{2}\right)}{m_{W}^{2}}- \\
& \quad-\frac{6 m_{c}^{4} \mathcal{B}_{0}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} c_{\alpha}^{2} m_{c}^{2} \mathcal{B}_{1}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)}{m_{W}^{2}}-\frac{3 m_{c}^{2} \mathcal{A}_{0}\left(m_{c}^{2}\right)}{m_{W}^{2}}- \\
& \left.\quad-\frac{3 m_{b}^{2} \mathcal{A}_{0}\left(m_{b}^{2}\right)}{m_{W}^{2}}\right\}, \tag{22}
\end{align*}
$$

$$
\begin{align*}
& \left\{\Sigma^{S S}\left(p^{2}\right)\right\}_{\text {bos }}=\frac{g^{2}}{16 \pi^{2}}\left\{-\frac{3 s_{\alpha}^{2} m_{Z}^{4}}{2 m_{W}^{2}}+\frac{p^{2} s_{\alpha}^{2} \mathcal{B}_{1}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right) m_{Z}^{2}}{2 m_{W}^{2}}-3 m_{W}^{2} s_{\alpha}^{2}+\left(\frac{v^{2} \kappa c_{\alpha}^{4}}{8 m_{W}^{2}}-\frac{v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{2 m_{W}^{2}}+\right.\right. \\
& \left.\quad+\frac{3 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{3 v^{2} \rho s_{\alpha}^{2} c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{v^{2} \kappa s_{\alpha}^{4}}{8 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{H}^{2}\right)+\left(\frac{3 v^{2} \rho c_{\alpha}^{4}}{4 m_{W}^{2}}+\frac{3 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{3 v^{2} \lambda s_{\alpha}^{4}}{4 m_{W}^{2}}\right) \times \\
& \quad \times \mathcal{A}_{0}\left(m_{S}^{2}\right)+\left(\frac{v^{2} \kappa c_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{v^{2} \lambda s_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{3 s_{\alpha}^{2}}{2}\right) \mathcal{A}_{0}\left(m_{W}^{2}\right)+\left(\frac{v^{2} \kappa c_{\alpha}^{2}}{8 m_{W}^{2}}+\frac{3 m_{Z}^{2} s_{\alpha}^{2}}{4 m_{W}^{2}}+\frac{v^{2} \lambda s_{\alpha}^{2}}{4 m_{W}^{2}}\right) \times \\
& \quad \times \mathcal{A}_{0}\left(m_{Z}^{2}\right)+\left(\frac{v^{2} w^{2} \kappa^{2} c_{\alpha}^{6}}{8 m_{W}^{2}}-\frac{v^{3} w \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\frac{3 v^{3} w \kappa \lambda s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\frac{v^{4} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}-\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}+\right. \\
& \quad+\frac{9 v^{4} \lambda^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}-\frac{3 v^{4} \kappa \lambda s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}+\frac{5 v^{3} w \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}-\frac{3 v^{3} w \kappa \lambda s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}- \tag{23}
\end{align*}
$$

$$
\begin{align*}
& -\frac{3 v^{3} w \kappa \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{9 v^{3} w \lambda \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{v^{4} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}- \\
& \left.-\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{v^{3} w \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+\frac{3 v^{3} w \kappa \rho s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+\frac{v^{4} \kappa^{2} s_{\alpha}^{6}}{8 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(\frac{v^{4} \kappa^{2} c_{\alpha}^{6}}{4 m_{W}^{2}}+\right. \\
& +\frac{v^{3} w \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{m_{W}^{2}}-\frac{3 v^{3} w \kappa \rho s_{\alpha} c_{\alpha}^{5}}{m_{W}^{2}}-\frac{v^{4} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}- \\
& -\frac{6 v^{2} w^{2} \kappa \rho s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}-\frac{5 v^{3} w \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{2 m_{W}^{2}}+\frac{6 v^{3} w \kappa \lambda s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{6 v^{3} w \kappa \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{18 v^{3} w \lambda \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+ \\
& +\frac{v^{4} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{9 v^{4} \lambda^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{6 v^{4} \kappa \lambda s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{v^{3} w \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{m_{W}^{2}}- \\
& \left.-\frac{3 v^{3} w \kappa \lambda s_{\alpha}^{5} c_{\alpha}}{m_{W}^{2}}+\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{6}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(\frac{9 v^{2} w^{2} \rho^{2} c_{\alpha}^{6}}{2 m_{W}^{2}}+\frac{9 v^{3} w \kappa \rho s_{\alpha}^{5} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{9 v^{4} \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{8 m_{W}^{2}}+\right. \\
& +\frac{9 v^{2} w^{2} \kappa \rho s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}+\frac{9 v^{3} w \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{9 v^{3} w \lambda \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{9 v^{2} w^{2} \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{8 m_{W}^{2}}+\frac{9 v^{4} \kappa \lambda s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+ \\
& \left.+\frac{9 v^{3} w \kappa \lambda s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+\frac{9 v^{4} \lambda^{2} s_{\alpha}^{6}}{2 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(\frac{\lambda^{2} s_{\alpha}^{2} v^{4}}{m_{W}^{2}}+\frac{w \kappa \lambda c_{\alpha} s_{\alpha}^{3} v^{3}}{m_{W}^{2}}+\frac{w^{2} \kappa^{2} c_{\alpha}^{2} v^{2}}{4 m_{W}^{2}}-\right. \\
& \left.-\frac{1}{2} p^{2} s_{\alpha}^{2}+3 m_{W}^{2} s_{\alpha}^{2}\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(\frac{\lambda^{2} s_{\alpha}^{2} v^{4}}{2 m_{W}^{2}}+\frac{w \kappa \lambda c_{\alpha} s_{\alpha} v^{3}}{2 m_{W}^{2}}+\frac{w^{2} \kappa^{2} c_{\alpha}^{2} v^{2}}{8 m_{W}^{2}}+\frac{3 m_{Z}^{4} s_{\alpha}^{2}}{2 m_{W}^{2}}-\right. \\
& \left.-\frac{p^{2} m_{Z}^{2} s_{\alpha}^{2}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+p^{2} s_{\alpha}^{2} \mathcal{B}_{1}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right) \tag{24}
\end{align*}
$$

Self-Energy for the HS Mixing

$$
\begin{align*}
& \left\{\Sigma^{H S}\left(p^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} s_{\alpha} c_{\alpha}\left\{-\frac{6 m_{b}^{4} \mathcal{B}_{0}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} m_{b}^{2} \mathcal{B}_{1}\left(p^{2}, m_{b}^{2}, m_{b}^{2}\right)}{m_{W}^{2}}-\right. \\
& \quad-\frac{6 m_{t}^{4} \mathcal{B}_{0}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} m_{t}^{2} \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{t}^{2}\right)}{m_{W}^{2}}-\frac{3 m_{t}^{2} \mathcal{A}_{0}\left(m_{t}^{2}\right)}{m_{W}^{2}}- \\
& \quad-\frac{2 m_{\tau}^{4} \mathcal{B}_{0}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)}{m_{W}^{2}}-\frac{p^{2} m_{\tau}^{2} \mathcal{B}_{1}\left(p^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)}{m_{W}^{2}}-\frac{m_{\tau}^{2} \mathcal{A}_{0}\left(m_{\tau}^{2}\right)}{m_{W}^{2}}- \\
& -\frac{6 m_{c}^{4} \mathcal{B}_{0}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)}{m_{W}^{2}}-\frac{3 p^{2} c_{\alpha}^{2} m_{c}^{2} \mathcal{B}_{1}\left(p^{2}, m_{c}^{2}, m_{c}^{2}\right)}{m_{W}^{2}}-\frac{3 m_{c}^{2} \mathcal{A}_{0}\left(m_{c}^{2}\right)}{m_{W}^{2}}- \\
& \left.\quad-\frac{3 m_{b}^{2} \mathcal{A}_{0}\left(m_{b}^{2}\right)}{m_{W}^{2}}\right\}, \tag{25}
\end{align*}
$$

$$
\begin{align*}
& \left\{\Sigma^{H S}\left(p^{2}\right)\right\}_{\text {bos }}=\frac{g^{2}}{16 \pi^{2}}\left\{-\frac{3 c_{\alpha} s_{\alpha} m_{Z}^{4}}{2 m_{W}^{2}}+\frac{p^{2} c_{\alpha} s_{\alpha} \mathcal{B}_{1}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right) m_{Z}^{2}}{2 m_{W}^{2}}-3 c_{\alpha} m_{W}^{2} s_{\alpha}+\right. \\
& +\left(-\frac{3 v^{2} \kappa s_{\alpha} c_{\alpha}^{3}}{8 m_{W}^{2}}+\frac{3 v^{2} \lambda s_{\alpha} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{3 v^{2} \kappa s_{\alpha}^{3} c_{\alpha}}{8 m_{W}^{2}}-\frac{3 v^{2} \rho s_{\alpha}^{3} c_{\alpha}}{4 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{H}^{2}\right)+\left(\frac{3 v^{2} \kappa s_{\alpha} c_{\alpha}^{3}}{8 m_{W}^{2}}-\right. \\
& \left.-\frac{3 v^{2} \rho s_{\alpha} c_{\alpha}^{3}}{4 m_{W}^{2}}-\frac{3 v^{2} \kappa s_{\alpha}^{3} c_{\alpha}}{8 m_{W}^{2}}+\frac{3 v^{2} \lambda s_{\alpha}^{3} c_{\alpha}}{4 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{S}^{2}\right)+\left(-\frac{\kappa c_{\alpha} s_{\alpha} v^{2}}{4 m_{W}^{2}}+\frac{\lambda c_{\alpha} s_{\alpha} v^{2}}{2 m_{W}^{2}}+\frac{3 c_{\alpha} s_{\alpha}}{2}\right) \times \\
& \times \mathcal{A}_{0}\left(m_{W}^{2}\right)+\left(-\frac{\kappa c_{\alpha} s_{\alpha} v^{2}}{8 m_{W}^{2}}+\frac{\lambda c_{\alpha} s_{\alpha} v^{2}}{4 m_{W}^{2}}+\frac{3 c_{\alpha} m_{Z}^{2} s_{\alpha}}{4 m_{W}^{2}}\right) \mathcal{A}_{0}\left(m_{Z}^{2}\right)+\left(\frac{3 v^{3} w \kappa \lambda c_{\alpha}^{6}}{4 m_{W}^{2}}-\right. \\
& -\frac{3 v^{2} w^{2} \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{8 m_{W}^{2}}+\frac{9 v^{4} \lambda^{2} s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}-\frac{3 v^{4} \kappa \lambda s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\frac{9 v^{3} w \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{8 m_{W}^{2}}-\frac{15 v^{3} w \kappa \lambda s_{\alpha}^{2} c_{\alpha}^{4}}{4 m_{W}^{2}}+ \\
& +\frac{9 v^{3} w \lambda \rho s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}-\frac{3 v^{4} \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{3 v^{2} w^{2} \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}- \\
& -\frac{9 v^{3} w \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{8 m_{W}^{2}}+\frac{15 v^{3} w \kappa \rho s_{\alpha}^{4} c_{\alpha}^{2}}{4 m_{W}^{2}}-\frac{9 v^{3} w \lambda \rho s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{3 v^{4} \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{8 m_{W}^{2}}-\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+ \\
& \left.+\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}-\frac{3 v^{3} w \kappa \rho s_{\alpha}^{6}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(\frac{v^{3} w \kappa^{2} c_{\alpha}^{6}}{4 m_{W}^{2}}-\frac{v^{4} \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\right. \\
& +\frac{v^{2} w^{2} \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}-\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}-\frac{2 v^{3} w \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{9 v^{3} w \kappa \lambda s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}+ \\
& +\frac{9 v^{3} w \kappa \rho s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}-\frac{9 v^{3} w \lambda \rho s_{\alpha}^{2} c_{\alpha}^{4}}{m_{W}^{2}}+\frac{5 v^{4} \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}-\frac{5 v^{2} w^{2} \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{9 v^{4} \lambda^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}- \\
& -\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{6 v^{4} \kappa \lambda s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{6 v^{2} w^{2} \kappa \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{2 v^{3} w \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{9 v^{3} w \kappa \lambda s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}- \\
& -\frac{9 v^{3} w \kappa \rho s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}+\frac{9 v^{3} w \lambda \rho s_{\alpha}^{4} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{v^{4} \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+\frac{v^{2} w^{2} \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}- \\
& \left.-\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}-\frac{v^{3} w \kappa^{2} s_{\alpha}^{6}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(\frac{3 v^{3} w \kappa \rho c_{\alpha}^{6}}{4 m_{W}^{2}}+\frac{3 v^{4} \kappa^{2} s_{\alpha} c_{\alpha}^{5}}{8 m_{W}^{2}}-\right. \\
& -\frac{9 v^{2} w^{2} \rho^{2} s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha} c_{\alpha}^{5}}{2 m_{W}^{2}}+\frac{9 v^{3} w \kappa^{2} s_{\alpha}^{2} c_{\alpha}^{4}}{8 m_{W}^{2}}-\frac{15 v^{3} w \kappa \rho s_{\alpha}^{2} c_{\alpha}^{4}}{4 m_{W}^{2}}+\frac{9 v^{3} w \lambda \rho s_{\alpha}^{2} c_{\alpha}^{4}}{2 m_{W}^{2}}- \\
& -\frac{3 v^{4} \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{3 v^{2} w^{2} \kappa^{2} s_{\alpha}^{3} c_{\alpha}^{3}}{4 m_{W}^{2}}+\frac{3 v^{4} \kappa \lambda s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{3 v^{2} w^{2} \kappa \rho s_{\alpha}^{3} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{9 v^{3} w \kappa^{2} s_{\alpha}^{4} c_{\alpha}^{2}}{8 m_{W}^{2}}+ \\
& +\frac{15 v^{3} w \kappa \lambda s_{\alpha}^{4} c_{\alpha}^{2}}{4 m_{W}^{2}}-\frac{9 v^{3} w \lambda \rho s_{\alpha}^{4} c_{\alpha}^{2}}{2 m_{W}^{2}}-\frac{3 v^{2} w^{2} \kappa^{2} s_{\alpha}^{5} c_{\alpha}}{8 m_{W}^{2}}+\frac{9 v^{4} \lambda^{2} s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}-\frac{3 v^{4} \kappa \lambda s_{\alpha}^{5} c_{\alpha}}{2 m_{W}^{2}}- \\
& \left.-\frac{3 v^{3} w \kappa \lambda s_{\alpha}^{6}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(\frac{\lambda^{2} c_{\alpha} s_{\alpha} v^{4}}{m_{W}^{2}}-\frac{w \kappa \lambda s_{\alpha}^{2} v^{3}}{2 m_{W}^{2}}+\frac{w \kappa \lambda c_{\alpha}^{2} v^{3}}{2 m_{W}^{2}}-\right. \tag{26}
\end{align*}
$$

$$
\begin{gather*}
\left.-\frac{w^{2} \kappa^{2} c_{\alpha} s_{\alpha} v^{2}}{4 m_{W}^{2}}+3 c_{\alpha} m_{W}^{2} s_{\alpha}-\frac{1}{2} p^{2} c_{\alpha} s_{\alpha}\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(\frac{\lambda^{2} c_{\alpha} s_{\alpha} v^{4}}{2 m_{W}^{2}}-\frac{w \kappa \lambda s_{\alpha}^{2} v^{3}}{4 m_{W}^{2}}+\right. \\
\left.+\frac{w \kappa \lambda c_{\alpha}^{2} v^{3}}{4 m_{W}^{2}}-\frac{w^{2} \kappa^{2} c_{\alpha} s_{\alpha} v^{2}}{8 m_{W}^{2}}+\frac{3 c_{\alpha} m_{Z}^{4} s_{\alpha}}{2 m_{W}^{2}}-\frac{p^{2} c_{\alpha} m_{Z}^{2} s_{\alpha}}{4 m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+ \\
\left.\quad+p^{2} c_{\alpha} s_{\alpha} \mathcal{B}_{1}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)\right\}, \tag{27}
\end{gather*}
$$

Self-Energies for the Top Quark

$$
\begin{align*}
& \Sigma_{\mathrm{S}}^{t}\left(p^{2}\right)= \frac{g^{2}}{16 \pi^{2}}\left\{-\frac{c_{\alpha}^{2} m_{t}^{2} \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{t}^{2}\right)}{4 m_{W}^{2}}-\frac{m_{t}^{2} s_{\alpha}^{2} \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{t}^{2}\right)}{4 m_{W}^{2}}+\mathcal{B}_{0}\left(p^{2}, 0, m_{t}^{2}\right) \times\right. \\
& \times\left(\frac{16 \pi v^{2} \alpha_{\mathrm{s}}}{3 m_{W}^{2}}-\frac{16 m_{W}^{2}}{9 m_{Z}^{2}}+\frac{16}{9}\right)+\left(\frac{m_{t}^{2}}{4 m_{W}^{2}}+\frac{4 m_{Z}^{2}}{9 m_{W}^{2}}+\frac{16 m_{W}^{2}}{9 m_{Z}^{2}}-\frac{20}{9}\right) \mathcal{B}_{0}\left(p^{2}, m_{t}^{2}, m_{Z}^{2}\right)- \\
&\left.\quad-\frac{8 \pi v^{2} \alpha_{s}}{3 m_{W}^{2}}-\frac{2 m_{Z}^{2}}{9 m_{W}^{2}}+\frac{2}{9}\right\}, \tag{28}\\
& \Sigma_{\mathrm{V}}^{t}\left(p^{2}\right)= \frac{g^{2}}{16 \pi^{2}}\left\{-\frac{c_{\alpha}^{2} m_{t}^{2} \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{H}^{2}\right)}{4 m_{W}^{2}}-\frac{m_{t}^{2} s_{\alpha}^{2} \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{S}^{2}\right)}{4 m_{W}^{2}}-\frac{17 m_{Z}^{2}}{72 m_{W}^{2}}+\frac{1}{9}+\right. \\
&+ \mathcal{B}_{0}\left(p^{2}, 0, m_{t}^{2}\right)\left(\frac{8 \pi v^{2} \alpha_{s}}{3 m_{W}^{2}}-\frac{8 m_{W}^{2}}{9 m_{Z}^{2}}+\frac{8}{9}\right)+\mathcal{B}_{1}\left(p^{2}, 0, m_{t}^{2}\right)\left(\frac{8 \pi v^{2} \alpha_{s}}{3 m_{W}^{2}}-\frac{8 m_{W}^{2}}{9 m_{Z}^{2}}+\frac{8}{9}\right)+ \\
&\left.+\left(-\frac{m_{t}^{2}}{4 m_{W}^{2}}-\frac{17 m_{Z}^{2}}{36 m_{W}^{2}}-\frac{8 m_{W}^{2}}{9 m_{Z}^{2}}+\frac{10}{9}\right) \mathcal{B}_{1}\left(p^{2}, m_{t}^{2}, m_{Z}^{2}\right)-\frac{4 \pi v^{2} \alpha_{s}}{3 m_{W}^{2}}\right\}, \tag{29}
\end{align*}
$$

C - SSM Three Point Functions

One-Loop Corrections to SZZ Vertex

$$
\begin{align*}
& \left\{\delta V_{Z}^{\mathcal{E}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{12 m_{W}^{2}}\left\{4\left(4 c_{W}^{4}-2 c_{W}^{2}+7\right) \mathcal{B}_{0}\left(q^{2}, m_{b}^{2}, m_{b}^{2}\right) m_{b}^{2}+\right. \\
& \left(16 c_{W}^{4}-20 c_{W}^{2}+13\right) m_{c}^{2} \times \mathcal{B}_{0}\left(q^{2}, m_{c}^{2}, m_{c}^{2}\right)+\left(64 m_{t}^{2} c_{W}^{4}-80 m_{t}^{2} c_{W}^{2}+52 m_{t}^{2}\right) \times \tag{31}
\end{align*}
$$

$$
\begin{align*}
& \times \mathcal{B}_{0}\left(q^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(48 m_{\tau}^{2} c_{W}^{4}-72 m_{\tau}^{2} c_{W}^{2}+36 m_{\tau}^{2}\right) \mathcal{B}_{0}\left(q^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+\left(8 k^{2} m_{b}^{2} c_{W}^{4}+\right. \\
& +p^{2} m_{b}^{2} c_{W}^{4}-8 q^{2} m_{b}^{2} c_{W}^{4}-4 k^{2} m_{b}^{2} c_{W}^{2}-4 p^{2} m_{b}^{2} c_{W}^{2}+4 q^{2} m_{b}^{2} c_{W}^{2}+36 m_{b}^{4}+5 k^{2} m_{b}^{2}+ \\
& \left.+5 p^{2} m_{b}^{2}-5 q^{2} m_{b}^{2}\right) \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)+\left(32 k^{2} m_{c}^{2} c_{W}^{4}+32 p^{2} m_{c}^{2} c_{W}^{4}-\right. \\
& -32 q^{2} m_{c}^{2} c_{W}^{4}-40 k^{2} m_{c}^{2} c_{W}^{2}-40 p^{2} m_{c}^{2} c_{W}^{2}+40 q^{2} m_{c}^{2} c_{W}^{2}+36 m_{c}^{4}+17 k^{2} m_{c}^{2}+17 p^{2} m_{c}^{2}- \\
& \left.-17 q^{2} m_{c}^{2}\right) \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)+\left(32 k^{2} m_{t}^{2} c_{W}^{4}+32 p^{2} m_{t}^{2} c_{W}^{4}-32 q^{2} m_{t}^{2} c_{W}^{4}-\right. \\
& \left.-40 k^{2} m_{t}^{2} c_{W}^{2}-40 p^{2} m_{t}^{2} c_{W}^{2}+40 q^{2} m_{t}^{2} c_{W}^{2}+36 m_{t}^{4}+17 k^{2} m_{t}^{2}+17 p^{2} m_{t}^{2}-17 q^{2} m_{t}^{2}\right) \times \\
& \times \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(24 k^{2} m_{\tau}^{2} c_{W}^{4}+24 p^{2} m_{\tau}^{2} c_{W}^{4}-24 q^{2} m_{\tau}^{2} c_{W}^{4}-36 k^{2} m_{\tau}^{2} c_{W}^{2}-\right. \\
& \left.-36 p^{2} m_{\tau}^{2} c_{W}^{2}+36 q^{2} m_{\tau}^{2} c_{W}^{2}+12 m_{\tau}^{4}+15 m_{\tau}^{2}\left(k^{2}+p^{2}-q^{2}\right)\right) \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
& +\left(-64 m_{b}^{2} c_{W}^{4}+32 m_{b}^{2} c_{W}^{2}-40 m_{b}^{2}\right) \mathcal{C}_{00}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)+\left(-256 m_{c}^{2} c_{W}^{4}+\right. \\
& \left.+320 m_{c}^{2} c_{W}^{2}-136 m_{c}^{2}\right) \mathcal{C}_{00}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)+\left(-256 m_{t}^{2} c_{W}^{4}+320 m_{t}^{2} c_{W}^{2}-136 m_{t}^{2}\right) \times \\
& \times \mathcal{C}_{00}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(-192 c_{W}^{4}+288 c_{W}^{2}-120\right) m_{\tau}^{2} \mathcal{C}_{00}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
& +\left(32 k^{2} m_{b}^{2} c_{W}^{4}-16 k^{2} m_{b}^{2} c_{W}^{2}+29 k^{2} m_{b}^{2}+9 p^{2} m_{b}^{2}-9 q^{2} m_{b}^{2}\right) \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)+ \\
& +\left(128 k^{2} m_{c}^{2} c_{W}^{4}-160 k^{2} m_{c}^{2} c_{W}^{2}+77 k^{2} m_{c}^{2}+9 p^{2} m_{c}^{2}-9 q^{2} m_{c}^{2}\right) \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)+ \\
& +\left(128 k^{2} m_{t}^{2} c_{W}^{4}-160 k^{2} m_{t}^{2} c_{W}^{2}+77 k^{2} m_{t}^{2}+9 p^{2} m_{t}^{2}-9 q^{2} m_{t}^{2}\right) \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)+ \\
& +\left(96 k^{2} m_{\tau}^{2} c_{W}^{4}-144 k^{2} m_{\tau}^{2} c_{W}^{2}+63 k^{2} m_{\tau}^{2}+3 p^{2} m_{\tau}^{2}-3 q^{2} m_{\tau}^{2}\right) \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
& +m_{b}^{2}\left(16 k^{2} c_{W}^{4}+16 p^{2} c_{W}^{4}-16 q^{2} c_{W}^{4}-8 k^{2} c_{W}^{2}-8 p^{2} c_{W}^{2}+8 q^{2} c_{W}^{2}+10 k^{2}+28 p^{2}-10 q^{2}\right) \times \\
& \times \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)+\left(64 k^{2} m_{c}^{2} c_{W}^{4}+64 p^{2} m_{c}^{2} c_{W}^{4}-64 q^{2} m_{c}^{2} c_{W}^{4}-80 k^{2} m_{c}^{2} c_{W}^{2}-\right. \\
& \left.-80 p^{2} m_{c}^{2} c_{W}^{2}+80 q^{2} m_{c}^{2} c_{W}^{2}+34 k^{2} m_{c}^{2}+52 p^{2} m_{c}^{2}-34 q^{2} m_{c}^{2}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)+ \\
& +m_{t}^{2}\left(64 k^{2} c_{W}^{4}+64 p^{2} c_{W}^{4}-64 q^{2} c_{W}^{4}-80 k^{2} c_{W}^{2}-80 p^{2} c_{W}^{2}+80 q^{2} c_{W}^{2}+34 k^{2}+52 p^{2}-34 q^{2}\right) \times \\
& \times \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(48 k^{2} m_{\tau}^{2} c_{W}^{4}+48 p^{2} m_{\tau}^{2} c_{W}^{4}-48 q^{2} m_{\tau}^{2} c_{W}^{4}-72 k^{2} m_{\tau}^{2} c_{W}^{2}-\right. \\
& \left.\left.-72 p^{2} m_{\tau}^{2} c_{W}^{2}+72 q^{2} m_{\tau}^{2} c_{W}^{2}+30 k^{2} m_{\tau}^{2}+36 p^{2} m_{\tau}^{2}-30 q^{2} m_{\tau}^{2}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)\right\}, \tag{32}
\end{align*}
$$

$$
\begin{align*}
&\left\{\delta V_{Z}^{\mathcal{D}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{6 m_{W}^{2}}\left\{-\left(8 c_{W}^{4}-4 c_{W}^{2}+5\right) \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right) m_{b}^{2}-\right. \\
&-9 \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right) m_{b}^{2}-\left(32 c_{W}^{4}-40 c_{W}^{2}+17\right) m_{c}^{2} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)- \\
&-\left(32 m_{t}^{2} c_{W}^{4}-40 m_{t}^{2} c_{W}^{2}+17 m_{t}^{2}\right) \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)-m_{\tau}^{2}\left(24 c_{W}^{4}-36 c_{W}^{2}+15\right) \times \\
& \times \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)-9 m_{c}^{2} \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)-3 m_{\tau}^{2} \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)- \\
&-9 m_{t}^{2} \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)-\left(32 m_{b}^{2} c_{W}^{4}-16 m_{b}^{2} c_{W}^{2}+20 m_{b}^{2}\right) \mathcal{C}_{12}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)- \\
&-\left(128 m_{c}^{2} c_{W}^{4}-160 m_{c}^{2} c_{W}^{2}+68 m_{c}^{2}\right) \mathcal{C}_{12}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)-\left(128 m_{t}^{2} c_{W}^{4}-160 m_{t}^{2} c_{W}^{2}+\right. \\
&\left.+68 m_{t}^{2}\right) \mathcal{C}_{12}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)-m_{\tau}^{2}\left(96 c_{W}^{4}-144 c_{W}^{2}+60\right) \mathcal{C}_{12}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)- \\
&-\left(32 m_{b}^{2} c_{W}^{4}-16 m_{b}^{2} c_{W}^{2}+20 m_{b}^{2}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)-m_{c}^{2}\left(128 c_{W}^{4}-160 c_{W}^{2}+68\right) \times \\
& \times \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)-\left(128 m_{t}^{2} c_{W}^{4}-160 m_{t}^{2} c_{W}^{2}+68 m_{t}^{2}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)- \\
&-\left(96 m_{\tau}^{2} c_{W}^{4}-144 m_{\tau}^{2} c_{W}^{2}+60 m_{\tau}^{2}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)-m_{b}^{2}\left(32 c_{W}^{4}-16 c_{W}^{2}+20\right) \times \\
& \times \mathcal{C}_{22}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)-m_{c}^{2}\left(128 c_{W}^{4}-160 c_{W}^{2}+68\right) \mathcal{C}_{22}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)- \\
&-m_{t}^{2}\left(128 c_{W}^{4}-160 c_{W}^{2}+68\right) \mathcal{C}_{22}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)-m_{\tau}^{2}\left(96 c_{W}^{4}-144{\left.c_{W}^{2}+60\right) \times} \mathcal{C}_{22}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)\right\},
\end{align*}
$$

$$
\begin{align*}
& \left\{V_{Z}^{\mathcal{E}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\mathrm{bos}}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{8 m_{W}^{2} s_{\alpha} c_{W}^{4}}\left\{-\frac{1}{m_{Z}^{2}}\left(4 s_{\alpha} c_{\alpha}^{2} \mathcal{B}_{0}\left(k^{2}, m_{H}^{2}, m_{Z}^{2}\right) m_{W}^{4}+\right.\right. \\
& \left.\quad+4 s_{\alpha}^{3} \mathcal{B}_{0}\left(k^{2}, m_{S}^{2}, m_{Z}^{2}\right) m_{W}^{4}\right)-\frac{4 c_{\alpha}^{2} s_{\alpha} \mathcal{B}_{0}\left(q^{2}, m_{H}^{2}, m_{Z}^{2}\right) m_{W}^{4}}{m_{Z}^{2}}-\frac{4 s_{\alpha}^{3} \mathcal{B}_{0}\left(q^{2}, m_{S}^{2}, m_{Z}^{2}\right) m_{W}^{4}}{m_{Z}^{2}}- \\
& \quad-8 c_{\alpha}^{2} s_{\alpha} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{H}^{2}\right) m_{W}^{4}-8 s_{\alpha}^{3} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{S}^{2}\right) m_{W}^{4}- \\
& \quad-\left(8 m_{W}^{2} s_{\alpha} c_{W}^{8}-16 m_{W}^{2} s_{\alpha} c_{W}^{6}+8 m_{W}^{2} s_{\alpha} c_{W}^{4}\right) \mathcal{B}_{0}\left(k^{2}, m_{W}^{2}, m_{W}^{2}\right)-\left(v w \kappa c_{W}^{4} c_{\alpha}^{5}-\right. \\
& \left.\quad-2 v^{2} \kappa c_{W}^{4} s_{\alpha} c_{\alpha}^{4}+6 v^{2} \lambda c_{W}^{4} s_{\alpha} c_{\alpha}^{4}-2 v w \kappa c_{W}^{4} s_{\alpha}^{2} c_{\alpha}^{3}+6 v w \rho c_{W}^{4} s_{\alpha}^{2} c_{\alpha}^{3}+v^{2} \kappa c_{W}^{4} s_{\alpha}^{3} c_{\alpha}^{2}\right) \times \\
& \quad \times \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{H}^{2}\right)-\left(-2 v w \kappa c_{\alpha} s_{\alpha}^{4} c_{W}^{4}-4 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{3} c_{W}^{4}+12 v^{2} \lambda c_{\alpha}^{2} s_{\alpha}^{3} c_{W}^{4}+4 v w \kappa c_{\alpha}^{3} s_{\alpha}^{2} c_{W}^{4}-\right. \\
& \left.\quad-12 v w \rho c_{\alpha}^{3} s_{\alpha}^{2} c_{W}^{4}+2 v^{2} \kappa c_{\alpha}^{4} s_{\alpha} c_{W}^{4}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{S}^{2}\right)-\left(6 v^{2} \lambda c_{W}^{4} s_{\alpha}^{5}+3 v w \kappa c_{W}^{4} c_{\alpha} s_{\alpha}^{4}+\right. \\
& \left.\quad+3 v^{2} \kappa c_{W}^{4} c_{\alpha}^{2} s_{\alpha}^{3}+6 v w \rho c_{W}^{4} c_{\alpha}^{3} s_{\alpha}^{2}\right) \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{S}^{2}\right)-\left(8 v w \kappa c_{\alpha} c_{W}^{8}+48 m_{W}^{2} s_{\alpha} c_{W}^{8}+\right. \tag{34}
\end{align*}
$$

$\left.+16 v^{2} \lambda s_{\alpha} c_{W}^{8}-8 v w \kappa c_{\alpha} c_{W}^{6}-16 v^{2} \lambda s_{\alpha} c_{W}^{6}+2 v w \kappa c_{\alpha} c_{W}^{4}+4 v^{2} \lambda s_{\alpha} c_{W}^{4}\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)-$
$-\left(v w \kappa c_{\alpha} c_{W}^{4}+2 v^{2} \lambda s_{\alpha} c_{W}^{4}\right) \mathcal{B}_{0}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right)-\left(-8 m_{W}^{2} s_{\alpha} c_{W}^{8}-32 m_{W}^{2} s_{\alpha} c_{W}^{6}+8 m_{W}^{2} s_{\alpha} c_{W}^{4}\right) \times$
$\times \mathcal{B}_{0}\left(q^{2}, m_{W}^{2}, m_{W}^{2}\right)-\left(4 v w \kappa c_{W}^{2} m_{W}^{2} c_{\alpha}^{5}-8 v^{2} \kappa c_{W}^{2} m_{W}^{2} s_{\alpha} c_{\alpha}^{4}+24 v^{2} \lambda c_{W}^{2} m_{W}^{2} s_{\alpha} c_{\alpha}^{4}-\right.$
$\left.-8 v w \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}+24 v w \rho c_{W}^{2} m_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}+4 v^{2} \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{H}^{2}, m_{H}^{2}\right)-$
$-\left(4 v^{2} \kappa c_{W}^{2} m_{W}^{2} s_{\alpha} c_{\alpha}^{4}+8 v w \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}-24 v w \rho c_{W}^{2} m_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}-8 v^{2} \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}+\right.$
$\left.+24 v^{2} \lambda c_{W}^{2} m_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}-4 v w \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{4} c_{\alpha}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{H}^{2}, m_{S}^{2}\right)-\left(24 v^{2} \lambda c_{W}^{2} m_{W}^{2} s_{\alpha}^{5}+\right.$
$\left.+12 v w \kappa c_{W}^{2} c_{\alpha} m_{W}^{2} s_{\alpha}^{4}+12 v^{2} \kappa c_{W}^{2} c_{\alpha}^{2} m_{W}^{2} s_{\alpha}^{3}+24 v w \rho c_{W}^{2} c_{\alpha}^{3} m_{W}^{2} s_{\alpha}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{S}^{2}, m_{S}^{2}\right)-$
$-c_{W}^{4}\left(8 v w \kappa c_{\alpha} m_{W}^{2} c_{W}^{4}-40 k^{2} m_{W}^{2} s_{\alpha} c_{W}^{4}+48 p^{2} m_{W}^{2} s_{\alpha} c_{W}^{4}-40 q^{2} m_{W}^{2} s_{\alpha} c_{W}^{4}+16 v^{2} \lambda m_{W}^{2} s_{\alpha} c_{W}^{4}-\right.$
$-16 v w \kappa c_{\alpha} m_{W}^{2} c_{W}^{2}-48 m_{W}^{4} s_{\alpha} c_{W}^{2}-8 k^{2} m_{W}^{2} s_{\alpha} c_{W}^{2}-16 p^{2} m_{W}^{2} s_{\alpha} c_{W}^{2}+8 q^{2} m_{W}^{2} s_{\alpha} c_{W}^{2}-$
$\left.-32 v^{2} \lambda m_{W}^{2} s_{\alpha} c_{W}^{2}+8 v w \kappa c_{\alpha} m_{W}^{2}+16 m_{W}^{4} s_{\alpha}+16 v^{2} \lambda m_{W}^{2} s_{\alpha}\right) \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)-$
$-\left(4 v^{2} \kappa c_{W}^{2} m_{W}^{2} s_{\alpha} c_{\alpha}^{4}+8 v w \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}-24 v w \rho c_{W}^{2} m_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}-8 v^{2} \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}+\right.$
$\left.+24 v^{2} \lambda c_{W}^{2} m_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}-4 v w \kappa c_{W}^{2} m_{W}^{2} s_{\alpha}^{4} c_{\alpha}\right) \mathcal{C}_{0}\left(q^{2}, p^{2}, k^{2}, m_{Z}^{2}, m_{H}^{2}, m_{S}^{2}\right)-\left(-4 v w \kappa c_{W}^{4} c_{\alpha}^{5}+\right.$
$\left.+8 v^{2} \kappa c_{W}^{4} s_{\alpha} c_{\alpha}^{4}-24 v^{2} \lambda c_{W}^{4} s_{\alpha} c_{\alpha}^{4}+8 v w \kappa c_{W}^{4} s_{\alpha}^{2} c_{\alpha}^{3}-24 v w \rho c_{W}^{4} s_{\alpha}^{2} c_{\alpha}^{3}-4 v^{2} \kappa c_{W}^{4} s_{\alpha}^{3} c_{\alpha}^{2}\right) \times$
$\times \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{H}^{2}, m_{H}^{2}\right)-\left(4 v w \kappa c_{\alpha} s_{\alpha}^{4} c_{W}^{4}+8 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{3} c_{W}^{4}-24 v^{2} \lambda c_{\alpha}^{2} s_{\alpha}^{3} c_{W}^{4}-\right.$
$\left.-8 v w \kappa c_{\alpha}^{3} s_{\alpha}^{2} c_{W}^{4}+24 v w \rho c_{\alpha}^{3} s_{\alpha}^{2} c_{W}^{4}-4 v^{2} \kappa c_{\alpha}^{4} s_{\alpha} c_{W}^{4}\right) \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{H}^{2}, m_{S}^{2}\right)-$
$-c_{W}^{4}\left(-24 v^{2} \lambda s_{\alpha}^{5}-12 v w \kappa c_{\alpha} s_{\alpha}^{4}-12 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{3}-24 v w \rho c_{\alpha}^{3} s_{\alpha}^{2}\right) \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{S}^{2}, m_{S}^{2}\right)-$
$-\left(-32 v w \kappa c_{\alpha} c_{W}^{8}-192 m_{W}^{2} s_{\alpha} c_{W}^{8}-64 v^{2} \lambda s_{\alpha} c_{W}^{8}+32 v w \kappa c_{\alpha} c_{W}^{6}+64 m_{W}^{2} s_{\alpha} c_{W}^{6}+64 v^{2} \lambda s_{\alpha} c_{W}^{6}-\right.$
$\left.-8 v w \kappa c_{\alpha} c_{W}^{4}-16 m_{W}^{2} s_{\alpha} c_{W}^{4}-16 v^{2} \lambda s_{\alpha} c_{W}^{4}\right) \mathcal{C}_{00}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)-\left(-4 v w \kappa c_{\alpha}^{3} c_{W}^{4}-\right.$
$\left.-8 v^{2} \lambda c_{\alpha}^{2} s_{\alpha} c_{W}^{4}-8 c_{\alpha}^{2} m_{W}^{2} s_{\alpha} c_{W}^{2}\right) \mathcal{C}_{00}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{H}^{2}\right)-\left(-8 v^{2} \lambda s_{\alpha}^{3} c_{W}^{4}-\right.$

$$
\begin{align*}
& \left.-4 v w \kappa c_{\alpha} s_{\alpha}^{2} c_{W}^{4}-8 m_{W}^{2} s_{\alpha}^{3} c_{W}^{2}\right) \mathcal{C}_{00}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{S}^{2}\right)-\left(4 v w \kappa c_{\alpha} s_{\alpha}^{4} c_{W}^{4}+\right. \\
& \left.+8 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{3} c_{W}^{4}-24 v^{2} \lambda c_{\alpha}^{2} s_{\alpha}^{3} c_{W}^{4}-8 v w \kappa c_{\alpha}^{3} s_{\alpha}^{2} c_{W}^{4}+24 v w \rho c_{\alpha}^{3} s_{\alpha}^{2} c_{W}^{4}-4 v^{2} \kappa c_{\alpha}^{4} s_{\alpha} c_{W}^{4}\right) \times \\
& \times \mathcal{C}_{00}\left(q^{2}, p^{2}, k^{2}, m_{Z}^{2}, m_{H}^{2}, m_{S}^{2}\right)-\left(-8 k^{2} m_{W}^{2} s_{\alpha} c_{W}^{8}-8 p^{2} m_{W}^{2} s_{\alpha} c_{W}^{8}+8 q^{2} m_{W}^{2} s_{\alpha} c_{W}^{8}-\right. \\
& \left.-32 k^{2} m_{W}^{2} s_{\alpha} c_{W}^{6}\right) \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)-\left(-16 p^{2} m_{W}^{2} s_{\alpha} c_{W}^{8}-16 k^{2} m_{W}^{2} s_{\alpha} c_{W}^{6}-\right. \\
& \left.\left.-16 p^{2} m_{W}^{2} s_{\alpha} c_{W}^{6}+16 q^{2} m_{W}^{2} s_{\alpha} c_{W}^{6}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)\right\}, \tag{35}
\end{align*}
$$

$$
\begin{aligned}
& \left\{\delta V_{Z}^{\mathcal{D}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {bos }}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{2 m_{W}^{2} c_{W}^{2} s_{\alpha}}\left\{\frac{4 s_{\alpha} \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right) m_{W}^{4}}{m_{Z}^{2}}+\right. \\
& +\frac{4\left(8 c_{W}^{4}-4 c_{W}^{2}+1\right) s_{\alpha} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right) m_{W}^{4}}{m_{Z}^{2}}+2 c_{\alpha}^{2} s_{\alpha} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{H}^{2}\right) m_{W}^{2}+ \\
& +2 s_{\alpha}^{3} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{S}^{2}\right) m_{W}^{2}+2 c_{\alpha}^{2} s_{\alpha} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{H}^{2}\right) m_{W}^{2}+ \\
& +2 s_{\alpha}^{3} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{S}^{2}\right) m_{W}^{2}+\left(v w \kappa c_{W}^{2} c_{\alpha}^{3}+2 v^{2} \lambda c_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{2}+2 m_{W}^{2} s_{\alpha} c_{\alpha}^{2}\right) \times \\
& \times \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{H}^{2}\right)+s_{\alpha}^{2}\left(2 v^{2} \lambda c_{W}^{2} s_{\alpha}+2 m_{W}^{2} s_{\alpha}+v w \kappa c_{W}^{2} c_{\alpha}\right) \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{S}^{2}\right)+
\end{aligned}
$$

$$
+\left(v w \kappa c_{W}^{2} c_{\alpha}^{3}+2 v^{2} \lambda c_{W}^{2} s_{\alpha} c_{\alpha}^{2}+2 m_{W}^{2} s_{\alpha} c_{\alpha}^{2}\right) \mathcal{C}_{11}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{H}^{2}\right)+\left(2 v^{2} \lambda c_{W}^{2} s_{\alpha}^{3}+\right.
$$

$$
\left.+2 m_{W}^{2} s_{\alpha}^{3}+v w \kappa c_{W}^{2} c_{\alpha} s_{\alpha}^{2}\right) \mathcal{C}_{11}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{S}^{2}\right)+\left(-v w \kappa c_{W}^{2} c_{\alpha}^{5}+2 v^{2} \kappa c_{W}^{2} s_{\alpha} c_{\alpha}^{4}-\right.
$$

$$
\left.-6 v^{2} \lambda c_{W}^{2} s_{\alpha} c_{\alpha}^{4}+2 v w \kappa c_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}-6 v w \rho c_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}-v^{2} \kappa c_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}\right) \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{H}^{2}, m_{H}^{2}\right)+
$$

$$
+\left(-v^{2} \kappa c_{W}^{2} s_{\alpha} c_{\alpha}^{4}-2 v w \kappa c_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}+6 v w \rho c_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}+2 v^{2} \kappa c_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}-6 v^{2} \lambda c_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}+v w \kappa c_{W}^{2} s_{\alpha}^{4} c_{\alpha}\right) \times
$$

$$
\times \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(-6 v^{2} \lambda c_{W}^{2} s_{\alpha}^{5}-3 v w \kappa c_{W}^{2} c_{\alpha} s_{\alpha}^{4}-3 v^{2} \kappa c_{W}^{2} c_{\alpha}^{2} s_{\alpha}^{3}-6 v w \rho c_{W}^{2} c_{\alpha}^{3} s_{\alpha}^{2}\right) \times
$$

$$
\times \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{Z}^{2}, m_{S}^{2}, m_{S}^{2}\right)+c_{W}^{2}\left(8 v w \kappa c_{\alpha} c_{W}^{4}+48 m_{W}^{2} s_{\alpha} c_{W}^{4}+16 v^{2} \lambda s_{\alpha} c_{W}^{4}-8 v w \kappa c_{\alpha} c_{W}^{2}-\right.
$$

$$
\left.-16 m_{W}^{2} s_{\alpha} c_{W}^{2}-16 v^{2} \lambda s_{\alpha} c_{W}^{2}+2 v w \kappa c_{\alpha}+4 m_{W}^{2} s_{\alpha}+4 v^{2} \lambda s_{\alpha}\right) \mathcal{C}_{12}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)+
$$

$$
+\left(v w \kappa c_{W}^{2} c_{\alpha}^{3}+2 v^{2} \lambda c_{W}^{2} s_{\alpha} c_{\alpha}^{2}+2 m_{W}^{2} s_{\alpha} c_{\alpha}^{2}\right) \mathcal{C}_{12}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{H}^{2}\right)+\left(2 v^{2} \lambda c_{W}^{2} s_{\alpha}^{3}+\right.
$$

$$
\left.+2 m_{W}^{2} s_{\alpha}^{3}+v w \kappa c_{W}^{2} c_{\alpha} s_{\alpha}^{2}\right) \mathcal{C}_{12}\left(p^{2}, q^{2}, k^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{S}^{2}\right)+\left(-v^{2} \kappa c_{W}^{2} s_{\alpha} c_{\alpha}^{4}-2 v w \kappa c_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}+\right.
$$

$$
\begin{align*}
& \left.+6 v w \rho c_{W}^{2} s_{\alpha}^{2} c_{\alpha}^{3}+2 v^{2} \kappa c_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}-6 v^{2} \lambda c_{W}^{2} s_{\alpha}^{3} c_{\alpha}^{2}+v w \kappa c_{W}^{2} s_{\alpha}^{4} c_{\alpha}\right) \mathcal{C}_{12}\left(q^{2}, p^{2}, k^{2}, m_{Z}^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& +\left(8 v w \kappa c_{\alpha} c_{W}^{6}+48 m_{W}^{2} s_{\alpha} c_{W}^{6}+16 v^{2} \lambda s_{\alpha} c_{W}^{6}-8 v w \kappa c_{\alpha} c_{W}^{4}-16 m_{W}^{2} s_{\alpha} c_{W}^{4}-16 v^{2} \lambda s_{\alpha} c_{W}^{4}+\right. \\
& \left.+2 v w \kappa c_{\alpha} c_{W}^{2}+4 m_{W}^{2} s_{\alpha} c_{W}^{2}+4 v^{2} \lambda s_{\alpha} c_{W}^{2}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(8 v w \kappa c_{\alpha} c_{W}^{6}+\right. \\
& +48 m_{W}^{2} s_{\alpha} c_{W}^{6}+16 v^{2} \lambda s_{\alpha} c_{W}^{6}-8 v w \kappa c_{\alpha} c_{W}^{4}-16 m_{W}^{2} s_{\alpha} c_{W}^{4}-16 v^{2} \lambda s_{\alpha} c_{W}^{4}+2 v w \kappa c_{\alpha} c_{W}^{2}+ \\
& \left.\left.+4 m_{W}^{2} s_{\alpha} c_{W}^{2}+4 v^{2} \lambda s_{\alpha} c_{W}^{2}\right) \mathcal{C}_{22}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)\right\} \tag{36}
\end{align*}
$$

One-Loop Corrections to SWW Vertex

$$
\begin{align*}
\{ & \left.\delta V_{W}^{\mathcal{E}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{m_{W}^{2}}\left\{-6 \mathcal{C}_{00}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right) m_{b}^{2}+3 m_{c}^{2} \mathcal{B}_{0}\left(q^{2}, 0, m_{c}^{2}\right)+\right. \\
& +m_{\tau}^{2} \mathcal{B}_{0}\left(q^{2}, 0, m_{\tau}^{2}\right)+\left(\frac{3 m_{b}^{2}}{m_{W}^{2}}+\frac{3 m_{t}^{2}}{m_{W}^{2}}\right) m_{W}^{2} \mathcal{B}_{0}\left(q^{2}, m_{b}^{2}, m_{t}^{2}\right)+\left(\frac{3 m_{c}^{4}}{m_{W}^{2}}-\frac{3 k^{2} m_{c}^{2}}{m_{W}^{2}}\right) m_{W}^{2} \times \\
& \times \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, 0, m_{c}^{2}, m_{c}^{2}\right)+m_{W}^{2}\left(\frac{m_{\tau}^{4}}{m_{W}^{2}}-\frac{k^{2} m_{\tau}^{2}}{m_{W}^{2}}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, 0, m_{\tau}^{2}, m_{\tau}^{2}\right)+ \\
& +\left(\frac{3 m_{t}^{4}}{m_{W}^{2}}-\frac{3 k^{2} m_{t}^{2}}{m_{W}^{2}}\right) m_{W}^{2} \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{b}^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(3 m_{b}^{4}+\frac{3 k^{2} m_{b}^{2}}{4}+\frac{3 p^{2} m_{b}^{2}}{4}-\frac{3 q^{2} m_{b}^{2}}{4}\right) \times \\
& \times \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)-6 m_{c}^{2} \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, 0, m_{c}^{2}, m_{c}^{2}\right)-2 m_{\tau}^{2} \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, 0, m_{\tau}^{2}, m_{\tau}^{2}\right)- \\
& -6 m_{t}^{2} \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{b}^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(\frac{-15 k^{2}-3 p^{2}+3 q^{2}}{4}\right) m_{c}^{2} \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{c}^{2}, m_{c}^{2}\right)+ \\
& +\left(-\frac{5 k^{2} m_{\tau}^{2}}{4}-\frac{p^{2} m_{\tau}^{2}}{4}+\frac{q^{2} m_{\tau}^{2}}{4}\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{\tau}^{2}, m_{\tau}^{2}\right)+\left(-\frac{15 k^{2} m_{t}^{2}}{4}-\frac{3 p^{2} m_{t}^{2}}{4}+\frac{3 q^{2} m_{t}^{2}}{4}\right) \times \\
& \times \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{b}^{2}, m_{t}^{2}, m_{t}^{2}\right)+\left(\frac{3 k^{2} m_{b}^{2}}{2 m_{W}^{2}}+\frac{3 p^{2} m_{b}^{2}}{m_{W}^{2}}-\frac{3 q^{2} m_{b}^{2}}{2 m_{W}^{2}}\right) m_{W}^{2} \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)+ \\
& +\left(-\frac{9 k^{2} m_{c}^{2}}{4}+\frac{9 p^{2} m_{c}^{2}}{4}-\frac{3 q^{2} m_{c}^{2}}{4}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{c}^{2}, m_{c}^{2}\right)+\left(-\frac{3 k^{2} m_{\tau}^{2}}{4}+\frac{3 p^{2} m_{\tau}^{2}}{4}-\frac{q^{2} m_{\tau}^{2}}{4}\right) \times \\
& \left.\times\left(\frac{\mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{\tau}^{2}, m_{\tau}^{2}\right)+\left(-\frac{9 k^{2} m_{t}^{2}}{4 m_{W}^{2}}+\frac{9 p^{2} m_{t}^{2}}{4 m_{W}^{2}}-\frac{3 q^{2} m_{t}^{2}}{4 m_{W}^{2}}\right) m_{W}^{2} \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{b}^{2}, m_{t}^{2}, m_{t}^{2}\right)+}{4 m_{W}^{2}}+\frac{3 p^{2} m_{b}^{2}}{4 m_{W}^{2}}-\frac{3 q^{2} m_{b}^{2}}{4 m_{W}^{2}}\right) m_{W}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)\right\},
\end{align*}
$$

$$
\begin{align*}
& \left\{\delta V_{W}^{\mathcal{D}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{m_{W}^{2}}\left\{-\frac{3}{2} m_{b}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)-\right. \\
& \quad-6 m_{b}^{2} \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)+\frac{3}{2} m_{t}^{2} \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{b}^{2}, m_{t}^{2}, m_{t}^{2}\right)+ \\
& \quad+\frac{3}{2} m_{c}^{2} \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{c}^{2}, m_{c}^{2}\right)+\frac{1}{2} m_{\tau}^{2} \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{\tau}^{2}, m_{\tau}^{2}\right)- \\
& \quad-6 m_{b}^{2} \mathcal{C}_{11}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)-6 m_{b}^{2} \mathcal{C}_{12}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)+ \\
& \quad+6 m_{t}^{2} \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{b}^{2}, m_{t}^{2}, m_{t}^{2}\right)+6 m_{c}^{2} \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, 0, m_{c}^{2}, m_{c}^{2}\right)+ \\
& \quad+2 m_{\tau}^{2} \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, 0, m_{\tau}^{2}, m_{\tau}^{2}\right)-\frac{3}{2} m_{b}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{b}^{2}, m_{b}^{2}, m_{t}^{2}\right)+ \\
& \quad+\frac{3}{2} m_{t}^{2} \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{b}^{2}, m_{t}^{2}, m_{t}^{2}\right)+\frac{3}{2} m_{c}^{2} \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{c}^{2}, m_{c}^{2}\right)+ \\
& \left.\quad+\frac{1}{2} m_{\tau}^{2} \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{\tau}^{2}, m_{\tau}^{2}\right)\right\} \tag{38}
\end{align*}
$$

$$
\begin{aligned}
& \left\{\delta V_{W}^{\mathcal{E}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\mathrm{bos}}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{8}\left\{-4 \mathcal{B}_{0}\left(k^{2}, m_{H}^{2}, m_{W}^{2}\right) c_{\alpha}^{2}-4 \mathcal{B}_{0}\left(q^{2}, m_{H}^{2}, m_{W}^{2}\right) c_{\alpha}^{2}-8 m_{W}^{2} \times\right. \\
& \quad \times \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{H}^{2}\right) c_{\alpha}^{2}-4 s_{W}^{2} \mathcal{B}_{0}\left(k^{2}, 0, m_{W}^{2}\right)-4 s_{\alpha}^{2} \mathcal{B}_{0}\left(k^{2}, m_{S}^{2}, m_{W}^{2}\right)+ \\
& \\
& \quad+\left(-4 c_{W}^{2}+8-\frac{4}{c_{W}^{2}}\right) \mathcal{B}_{0}\left(k^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(-\frac{v w \kappa c_{\alpha}^{5}}{m_{W}^{2} s_{\alpha}}+\frac{2 v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}-\frac{6 v^{2} \lambda c_{\alpha}^{4}}{m_{W}^{2}}+\frac{2 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\right. \\
& \left.\quad-\frac{6 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(-\frac{2 v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}-\frac{4 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{12 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\right. \\
& \left.\quad+\frac{4 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{12 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{2 v w \kappa s_{\alpha}^{3} c_{\alpha}}{m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(-\frac{6 v^{2} \lambda s_{\alpha}^{4}}{m_{W}^{2}}-\frac{3 v w \kappa c_{\alpha} s_{\alpha}^{3}}{m_{W}^{2}}-\right. \\
& \left.\quad-\frac{3 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{2}}{m_{W}^{2}}-\frac{6 v w c_{\alpha}^{3} s_{\alpha}}{m_{W}^{2}}\right) \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(-\frac{4 \lambda v^{2}}{m_{W}^{2}}-\frac{2 w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}-24\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+ \\
& \\
& \quad+\left(-\frac{2 \lambda v^{2}}{m_{W}^{2}}-\frac{w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}-24\right) \mathcal{B}_{0}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+20 s_{W}^{2} \mathcal{B}_{0}\left(q^{2}, 0, m_{W}^{2}\right)-4 s_{\alpha}^{2} \mathcal{B}_{0}\left(q^{2}, m_{S}^{2}, m_{W}^{2}\right)+ \\
& \\
& \quad+\left(20 c_{W}^{2}+16-\frac{4}{c_{W}^{2}}\right) \mathcal{B}_{0}\left(q^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(8 c_{W}^{2} k^{2}-8 k^{2}-12 p^{2}+16 q^{2}+12 p^{2} c_{W}^{2}-\right. \\
& \\
& \quad \times \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, 0, m_{W}^{2}, m_{W}^{2}\right)+\left(-\frac{4 v w \kappa c_{\alpha}^{5}}{s_{\alpha}}+8 c_{W}^{2} \kappa c_{\alpha}^{4}-24 v_{W}^{2} m_{W}^{2}+24{m_{\alpha}^{4}}_{2}^{2}-8 v v^{2} \lambda+\frac{4 v w \kappa c_{W}^{2} c_{\alpha}}{s_{\alpha}}-\frac{4 v w \kappa c_{\alpha}}{s_{\alpha}}\right) \times
\end{aligned}
$$

$\left.-4 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(-4 v^{2} \kappa c_{\alpha}^{4}-8 v w \kappa s_{\alpha} c_{\alpha}^{3}+24 v w \rho s_{\alpha} c_{\alpha}^{3}+\right.$ $\left.+8 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}-24 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}+4 v w \kappa s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(-24 v^{2} \lambda s_{\alpha}^{4}-\right.$ $\left.-12 v w \kappa c_{\alpha} s_{\alpha}^{3}-12 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{2}-24 v w \rho c_{\alpha}^{3} s_{\alpha}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(-\frac{8 m_{Z}^{4}}{m_{W}^{2}}+\right.$ $\left.+16 m_{Z}^{2}+4 k^{2}-20 p^{2}+20 q^{2}+\frac{16 m_{W}^{2}}{c_{W}^{2}}-8 m_{W}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)-$
$-8 m_{W}^{2} s_{\alpha}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{S}^{2}\right)+\left(28 c_{W}^{2} k^{2}-4 k^{2}-8 p^{2}+4 q^{2}-8 p^{2} c_{W}^{2}+12 q^{2} c_{W}^{2}-\right.$
$\left.-8 v^{2} \lambda c_{W}^{2}+24 c_{W}^{2} m_{W}^{2}-8 m_{W}^{2}+16 v^{2} \lambda-\frac{4 v w \kappa c_{W}^{2} c_{\alpha}}{s_{\alpha}}+\frac{8 v w \kappa c_{\alpha}}{s_{\alpha}}-\frac{4 v w \kappa c_{\alpha}}{c_{W}^{2} s_{\alpha}}-\frac{8 v^{2} \lambda}{c_{W}^{2}}\right) \times$
$\times \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(-4 v^{2} \kappa c_{\alpha}^{4}-8 v w \kappa s_{\alpha} c_{\alpha}^{3}+24 v w \rho s_{\alpha} c_{\alpha}^{3}+8 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}-\right.$
$\left.-24 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}+4 v w \kappa s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{0}\left(q^{2}, p^{2}, k^{2}, m_{W}^{2}, m_{H}^{2}, m_{S}^{2}\right)+64 s_{W}^{2} \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, 0, m_{W}^{2}, m_{W}^{2}\right)+$
$+\left(\frac{4 v w \kappa c_{\alpha}^{5}}{m_{W}^{2} s_{\alpha}}-\frac{8 v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}+\frac{24 v^{2} \lambda c_{\alpha}^{4}}{m_{W}^{2}}-\frac{8 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{24 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{4 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}\right) \times$
$\times \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(\frac{4 v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}+\frac{8 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{24 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{8 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}+\right.$
$\left.+\frac{24 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{4 v w \kappa s_{\alpha}^{3} c_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(\frac{24 v^{2} \lambda s_{\alpha}^{4}}{m_{W}^{2}}+\frac{12 v w \kappa c_{\alpha} s_{\alpha}^{3}}{m_{W}^{2}}+\right.$
$\left.+\frac{12 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{2}}{m_{W}^{2}}+\frac{24 v w \rho c_{\alpha}^{3} s_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(\frac{8 \lambda v^{2}}{m_{W}^{2}}+\frac{4 w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}+\frac{8}{c_{W}^{2}}+64\right) \times$
$\times \mathcal{C}_{00}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\left(\frac{4 v w \kappa c_{\alpha}^{3}}{m_{W}^{2} s_{\alpha}}+\frac{8 v^{2} \lambda c_{\alpha}^{2}}{m_{W}^{2}}+8 c_{\alpha}^{2}\right) \mathcal{C}_{00}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{H}^{2}\right)+$
$+s_{\alpha}\left(\frac{8 v^{2} \lambda s_{\alpha}}{m_{W}^{2}}+8 s_{\alpha}+\frac{4 v w \kappa c_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{00}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{S}^{2}\right)+\left(\frac{8 \lambda v^{2}}{m_{W}^{2}}+\frac{4 w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}+64 c_{W}^{2}+\right.$
$+8) \mathcal{C}_{00}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(\frac{4 v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}+\frac{8 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{24 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{8 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}+\right.$
$\left.+\frac{24 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}-\frac{4 v w \kappa s_{\alpha}^{3} c_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{00}\left(q^{2}, p^{2}, k^{2}, m_{W}^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(36 c_{W}^{2} k^{2}-36 k^{2}-4 p^{2}+4 q^{2}+\right.$
$\left.+4 c_{W}^{2}\left(p^{2}-q^{2}\right)\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{W}^{2}, m_{W}^{2}\right)+4\left(-5 k^{2}-p^{2}+q^{2}\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+$
$+\left(16 c_{W}^{2} k^{2}-8 k^{2}-8 p^{2}+8 q^{2}+24 p^{2} c_{W}^{2}-16 q^{2} c_{W}^{2}\right) \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)+$

$$
\begin{align*}
& +\left(20 c_{W}^{2} k^{2}-20 k^{2}+20 p^{2}-12 q^{2}-20 p^{2} c_{W}^{2}+12 q^{2} c_{W}^{2}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{W}^{2}, m_{W}^{2}\right)+ \\
& +\left(-12 k^{2}+12 p^{2}-4 q^{2}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+4\left(9 c_{W}^{2} k^{2}-4 k^{2}+p^{2} c_{W}^{2}-q^{2} c_{W}^{2}\right) \times \\
& \left.\quad \times \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)\right\} \tag{39}
\end{align*}
$$

$$
\begin{aligned}
& \left\{\delta V_{W}^{\mathcal{D}}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {bos }}=\frac{g^{2}}{16 \pi^{2}} \frac{1}{2}\left\{2 \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{H}^{2}\right) c_{\alpha}^{2}+\right. \\
& +2 \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{H}^{2}\right) c_{\alpha}^{2}+8 \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+2 s_{\alpha}^{2} \times \\
& \times \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{S}^{2}\right)+\left(8 c_{W}^{2}+2\right) \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(8 c_{W}^{2}-8\right) \times \\
& \times \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{W}^{2}, m_{W}^{2}\right)-\frac{2 \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)}{c_{W}^{2}}+\left(\frac{v w \kappa c_{\alpha}^{3}}{m_{W}^{2} s_{\alpha}}+\frac{2 v^{2} \lambda c_{\alpha}^{2}}{m_{W}^{2}}+2 c_{\alpha}^{2}\right) \times \\
& \times \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{H}^{2}\right)+\left(\frac{2 v^{2} \lambda s_{\alpha}^{2}}{m_{W}^{2}}+2 s_{\alpha}^{2}+\frac{v w \kappa c_{\alpha} s_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{S}^{2}\right)+ \\
& +\left(\frac{2 \lambda v^{2}}{m_{W}^{2}}+\frac{w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}+16 c_{W}^{2}+2\right) \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(\frac{v w \kappa c_{\alpha}^{3}}{m_{W}^{2} s_{\alpha}}+\frac{2 v^{2} \lambda c_{\alpha}^{2}}{m_{W}^{2}}+2 c_{\alpha}^{2}\right) \times \\
& \times \mathcal{C}_{11}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{H}^{2}\right)+\left(\frac{2 v^{2} \lambda s_{\alpha}^{2}}{m_{W}^{2}}+2 s_{\alpha}^{2}+\frac{v w \kappa c_{\alpha} s_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{11}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{S}^{2}\right)+ \\
& +\left(\frac{2 \lambda v^{2}}{m_{W}^{2}}+\frac{w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}+16 c_{W}^{2}+2\right) \mathcal{C}_{11}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(16 c_{W}^{2}-16\right) \times \\
& \times \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, 0, m_{W}^{2}, m_{W}^{2}\right)+\left(-\frac{v w \kappa c_{\alpha}^{5}}{m_{W}^{2} s_{\alpha}}+\frac{2 v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}-\frac{6 v^{2} \lambda c_{\alpha}^{4}}{m_{W}^{2}}+\frac{2 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\frac{6 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}-\right. \\
& \left.-\frac{v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}\right) \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(-\frac{v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}-\frac{2 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{6 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{2 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}-\right. \\
& \left.-\frac{6 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{v w \kappa s_{\alpha}^{3} c_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(-\frac{6 v^{2} \lambda s_{\alpha}^{4}}{m_{W}^{2}}-\frac{3 v w \kappa c_{\alpha} s_{\alpha}^{3}}{m_{W}^{2}}-\right. \\
& \left.-\frac{3 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{2}}{m_{W}^{2}}-\frac{6 v w \rho c_{\alpha}^{3} s_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(-\frac{2 \lambda v^{2}}{m_{W}^{2}}-\frac{w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}-\frac{2}{c_{W}^{2}}-16\right) \times \\
& \times \mathcal{C}_{12}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\left(\frac{v w \kappa c_{\alpha}^{3}}{m_{W}^{2} s_{\alpha}}+\frac{2 v^{2} \lambda c_{\alpha}^{2}}{m_{W}^{2}}+2 c_{\alpha}^{2}\right) \mathcal{C}_{12}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{H}^{2}\right)+ \\
& +\left(\frac{2 v^{2} \lambda s_{\alpha}^{2}}{m_{W}^{2}}+2 s_{\alpha}^{2}+\frac{v w \kappa c_{\alpha} s_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{12}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{S}^{2}\right)+\left(\frac{2 \lambda v^{2}}{m_{W}^{2}}+\frac{w \kappa c_{\alpha} v}{m_{W}^{2} s_{\alpha}}+16 c_{W}^{2}+2\right) \times \\
& \times \mathcal{C}_{12}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)+\left(-\frac{v^{2} \kappa c_{\alpha}^{4}}{m_{W}^{2}}-\frac{2 v w \kappa s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{6 v w \rho s_{\alpha} c_{\alpha}^{3}}{m_{W}^{2}}+\frac{2 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}-\right. \\
& \left.-\frac{6 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}}{m_{W}^{2}}+\frac{v w \kappa s_{\alpha}^{3} c_{\alpha}}{m_{W}^{2}}\right) \mathcal{C}_{12}\left(q^{2}, p^{2}, k^{2}, m_{W}^{2}, m_{H}^{2}, m_{S}^{2}\right)+\left(8 c_{W}^{2}-8\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{W}^{2}, m_{W}^{2}\right)-
\end{aligned}
$$

$$
\begin{align*}
& -\frac{2 \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{W}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)}{c_{W}^{2}}+2 s_{\alpha}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{S}^{2}\right)+\left(8 c_{W}^{2}-6\right) \times \\
& \left.\quad \times \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{W}^{2}, m_{W}^{2}, m_{Z}^{2}\right)\right\} . \tag{40}
\end{align*}
$$

One-Loop Corrections to SHH Vertex

$$
\begin{align*}
\{ & \left.\delta V_{H}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {fer }}=\frac{g^{2}}{16 \pi^{2}} \frac{c_{\alpha}^{2}}{v m_{W}^{2} \mathrm{C}_{H H S}}\left\{-18 s_{\alpha} \mathcal{B}_{0}\left(q^{2}, m_{b}^{2}, m_{b}^{2}\right) m_{b}^{4}-\right. \\
& -18 m_{c}^{4} s_{\alpha} \mathcal{B}_{0}\left(q^{2}, m_{c}^{2}, m_{c}^{2}\right)-18 m_{t}^{4} s_{\alpha} \mathcal{B}_{0}\left(q^{2}, m_{t}^{2}, m_{t}^{2}\right)-6 m_{\tau}^{4} s_{\alpha} \mathcal{B}_{0}\left(q^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)-\left(24 m_{b}^{6}+\right. \\
& \left.+3 k^{2} m_{b}^{4}+3 p^{2} m_{b}^{4}-3 q^{2} m_{b}^{4}\right) s_{\alpha} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)-\left(24 m_{c}^{6}+3 k^{2} m_{c}^{4}+3 p^{2} m_{c}^{4}-\right. \\
& \left.-3 q^{2} m_{c}^{4}\right) s_{\alpha} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)-\left(24 m_{t}^{6}+3 k^{2} m_{t}^{4}+3 p^{2} m_{t}^{4}-3 q^{2} m_{t}^{4}\right) s_{\alpha} \times \\
& \times \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)-m_{\tau}^{4}\left(8 m_{\tau}^{2}+k^{2}+p^{2}-q^{2}\right) s_{\alpha} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)- \\
& -\left(18 k^{2} m_{b}^{4}+6 p^{2} m_{b}^{4}-6 q^{2} m_{b}^{4}\right) s_{\alpha} \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)-\left(18 k^{2} m_{c}^{4}+6 p^{2} m_{c}^{4}-6 q^{2} m_{c}^{4}\right) s_{\alpha} \times \\
& \times \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)-\left(18 k^{2} m_{t}^{4}+6 p^{2} m_{t}^{4}-6 q^{2} m_{t}^{4}\right) s_{\alpha} \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)- \\
& -\left(6 k^{2} m_{\tau}^{4}+2 p^{2} m_{\tau}^{4}-2 q^{2} m_{\tau}^{4}\right) s_{\alpha} \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)-\left(6 k^{2} m_{b}^{4}+18 p^{2} m_{b}^{4}-6 q^{2} m_{b}^{4}\right) s_{\alpha} \times \\
& \times \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{b}^{2}, m_{b}^{2}, m_{b}^{2}\right)-\left(6 k^{2} m_{c}^{4}+18 p^{2} m_{c}^{4}-6 q^{2} m_{c}^{4}\right) s_{\alpha} \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{c}^{2}, m_{c}^{2}, m_{c}^{2}\right)- \\
& -\left(6 k^{2} m_{t}^{4}+18 p^{2} m_{t}^{4}-6 q^{2} m_{t}^{4}\right) s_{\alpha} \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)-\left(2 k^{2} m_{\tau}^{4}+6 p^{2} m_{\tau}^{4}-2 q^{2} m_{\tau}^{4}\right) s_{\alpha} \times \\
& \left.\times \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{\tau}^{2}, m_{\tau}^{2}, m_{\tau}^{2}\right)\right\}, \tag{41}
\end{align*}
$$

$$
\begin{aligned}
& \left\{\delta V_{H}\left(p^{2}, k^{2}, q^{2}\right)\right\}_{\text {bos }}=\frac{g^{2}}{16 \pi^{2}} \frac{c_{\alpha}^{2}}{v m_{W}^{2} \mathrm{C}_{H H S}}\left\{-48 c_{\alpha}^{2} s_{\alpha} m_{W}^{4}-24 c_{\alpha}^{2} m_{Z}^{4} s_{\alpha}+v^{3} \mathrm{C}_{H H H} \mathrm{C}_{H H H S} \times\right. \\
& \quad \times \mathcal{B}_{0}\left(k^{2}, m_{H}^{2}, m_{H}^{2}\right)+2 v^{3} \mathrm{C}_{H H S} \mathrm{C}_{H H S S} \mathcal{B}_{0}\left(k^{2}, m_{H}^{2}, m_{S}^{2}\right)+v^{3} \mathrm{C}_{H S S} \mathrm{C}_{H S S S} \mathcal{B}_{0}\left(k^{2}, m_{S}^{2}, m_{S}^{2}\right)+ \\
& \quad+\left(32 c_{\alpha}^{2} s_{\alpha} m_{W}^{4}+2 v^{3} \mathrm{C}_{H S \eta^{+} \eta^{-}} \mathrm{C}_{H \eta^{+} \eta^{-}}\right) \mathcal{B}_{0}\left(k^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(16 c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}+v^{3} \mathrm{C}_{H \eta_{3} \eta_{3}} \mathrm{C}_{H S \eta_{3} \eta_{3}}\right) \times \\
& \quad \times \mathcal{B}_{0}\left(k^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+v^{3} \mathrm{C}_{H H H H} \mathrm{C}_{H H S} \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{H}^{2}\right)+2 v^{3} \mathrm{C}_{H H H S} \mathrm{C}_{H S S} \mathcal{B}_{0}\left(p^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& \\
& \quad+v^{3} \mathrm{C}_{H H S S} \mathrm{C}_{S S S} \mathcal{B}_{0}\left(p^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(32 c_{\alpha}^{2} s_{\alpha} m_{W}^{4}+2 v^{3} \mathrm{C}_{H H \eta^{+} \eta^{-}} \mathrm{C}_{S \eta^{+} \eta}\right) \mathcal{B}_{0}\left(p^{2}, m_{W}^{2}, m_{W}^{2}\right)+ \\
& \quad+\left(16 c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}+v^{3} \mathrm{C}_{H H \eta_{3} \eta_{3}} \mathrm{C}_{S \eta_{3} \eta_{3}}\right) \mathcal{B}_{0}\left(p^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+v^{3} \mathrm{C}_{H H H} \mathrm{C}_{H H H S} \mathcal{B}_{0}\left(q^{2}, m_{H}^{2}, m_{H}^{2}\right)+ \\
& \\
& \quad+2 v^{3} \mathrm{C}_{H H S} \mathrm{C}_{H H S S} \mathcal{B}_{0}\left(q^{2}, m_{H}^{2}, m_{S}^{2}\right)+v^{3} \mathrm{C}_{H S S} \mathrm{C}_{H S S S} \mathcal{B}_{0}\left(q^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(8 c_{\alpha}^{2} s_{\alpha} m_{W}^{4}-\right. \\
& \\
& \left.\quad-4 v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta} m_{W}^{2}-8 v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta} s_{\alpha} m_{W}^{2}+2 v^{3} \mathrm{C}_{H S \eta^{+} \eta^{-}} \mathrm{C}_{H \eta^{+} \eta}\right) \mathcal{B}_{0}\left(q^{2}, m_{W}^{2}, m_{W}^{2}\right)+
\end{aligned}
$$

$$
\begin{align*}
& +\left(4 c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}+v^{3} \mathrm{C}_{H \eta_{3} \eta_{3}} \mathrm{C}_{H S \eta_{3} \eta_{3}}-\frac{2 v c_{\alpha}^{2} m_{W}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}}}{c_{W}^{2}}-\frac{4 v c_{\alpha} m_{W}^{2} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha}}{c_{W}^{2}}\right) \mathcal{B}_{0}\left(q^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+ \\
& +2 v^{3} \mathrm{C}_{H H S}^{2} \mathrm{C}_{S S S} \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{H}^{2}, m_{S}^{2}, m_{S}^{2}\right)+2 v^{3} \mathrm{C}_{H H H}^{2} \mathrm{C}_{H H S} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{H}^{2}, m_{H}^{2}, m_{H}^{2}\right)+ \\
& +2 v^{3} \mathrm{C}_{H H H} \mathrm{C}_{H H S} \mathrm{C}_{H S S} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{H}^{2}, m_{H}^{2}, m_{S}^{2}\right)+2 v^{3} \mathrm{C}_{H H S} \mathrm{C}_{H S S}^{2} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{H}^{2}, m_{S}^{2}, m_{S}^{2}\right)+ \\
& +2 v^{3} \mathrm{C}_{H S S}^{2} \mathrm{C}_{S S S} \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{S}^{2}, m_{S}^{2}, m_{S}^{2}\right)+\left(96 c_{\alpha}^{2} s_{\alpha} m_{W}^{6}-4 v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}} m_{W}^{4}-20 k^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{4}-\right. \\
& -20 p^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{4}-12 q^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{4}-8 v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha} m_{W}^{4}+4 p^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}} m_{W}^{2}-4 q^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}} m_{W}^{2}- \\
& \left.-4 k^{2} v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha} m_{W}^{2}-8 p^{2} v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha} m_{W}^{2}+4 q^{2} v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha} m_{W}^{2}+4 v^{3} \mathrm{C}_{H \eta^{+} \eta^{-}}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}}\right) \times \\
& \times \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(\frac{60 c_{\alpha}^{2} s_{\alpha} m_{W}^{6}}{c_{W}^{6}}+\frac{2 p^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}} m_{W}^{2}}{c_{W}^{2}}-\frac{2 q^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}} m_{W}^{2}}{c_{W}^{2}}-\right. \\
& -\frac{2 v c_{\alpha}^{2} m_{Z}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}} m_{W}^{2}}{c_{W}^{2}}-\frac{4 v c_{\alpha} m_{Z}^{2} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha} m_{W}^{2}}{c_{W}^{2}}-\frac{2 k^{2} v c_{\alpha} \mathrm{C}_{H \eta_{\eta_{3} \eta_{3}}} s_{\alpha} m_{W}^{2}}{c_{W}^{2}}-\frac{4 p^{2} v c_{\alpha} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha} m_{W}^{2}}{c_{W}^{2}}+ \\
& +\frac{2 q^{2} v c_{\alpha} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha} m_{W}^{2}}{c_{W}^{2}}+2 v^{3} \mathrm{C}_{H \eta_{3} \eta_{3}}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}}-12 c_{\alpha}^{2} m_{Z}^{6} s_{\alpha}-10 k^{2} c_{\alpha}^{2} m_{Z}^{4} s_{\alpha}-10 p^{2} c_{\alpha}^{2} m_{Z}^{4} s_{\alpha}- \\
& \left.-6 q^{2} c_{\alpha}^{2} m_{Z}^{4} s_{\alpha}\right) \mathcal{C}_{0}\left(k^{2}, q^{2}, p^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+2 v^{3} \mathrm{C}_{H H S} \mathrm{C}_{H S S}^{2} \mathcal{C}_{0}\left(p^{2}, k^{2}, q^{2}, m_{H}^{2}, m_{S}^{2}, m_{S}^{2}\right)+ \\
& +2 v^{3} \mathrm{C}_{H H S}^{3} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{H}^{2}, m_{H}^{2}, m_{S}^{2}\right)+2 v^{3} \mathrm{C}_{H H H} \mathrm{C}_{H H S} \mathrm{C}_{H S S} \mathcal{C}_{0}\left(q^{2}, p^{2}, k^{2}, m_{H}^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& +\left(-24 k^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{4}-8 p^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{4}+8 q^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{4}+4 k^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}} m_{W}^{2}-4 p^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}} m_{W}^{2}+\right. \\
& \left.+4 q^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}} m_{W}^{2}-16 k^{2} v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha} m_{W}^{2}\right) \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(-12 k^{2} c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}-\right. \\
& -4 p^{2} c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}+4 q^{2} c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}+\frac{2 k^{2} v c_{\alpha}^{2} m_{W}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}}}{c_{W}^{2}}-\frac{2 p^{2} v c_{\alpha}^{2} m_{W}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}}}{c_{W}^{2}}+\frac{2 q^{2} v c_{\alpha}^{2} m_{W}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}}}{c_{W}^{2}}- \\
& \left.-\frac{8 k^{2} v c_{\alpha} m_{W}^{2} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha}}{c_{W}^{2}}\right) \mathcal{C}_{1}\left(k^{2}, q^{2}, p^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+m_{W}^{2}\left(-8 k^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{2}-24 p^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{2}+\right. \\
& +8 q^{2} c_{\alpha}^{2} s_{\alpha} m_{W}^{2}+4 k^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}}-4 p^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}}-4 q^{2} v c_{\alpha}^{2} \mathrm{C}_{S \eta^{+} \eta^{-}}-8 k^{2} v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha}- \\
& \left.-8 p^{2} v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha}+8 q^{2} v c_{\alpha} \mathrm{C}_{H \eta^{+} \eta^{-}} s_{\alpha}\right) \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{W}^{2}, m_{W}^{2}, m_{W}^{2}\right)+\left(-4 k^{2} c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}-\right. \\
& -12 p^{2} c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}+4 q^{2} c_{\alpha}^{2} s_{\alpha} m_{Z}^{4}+\frac{2 k^{2} v c_{\alpha}^{2} m_{W}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}}}{c_{W}^{2}}-\frac{2 p^{2} v c_{\alpha}^{2} m_{W}^{2} \mathrm{C}_{S S \eta_{3}}}{c_{W}^{2}}-\frac{2 q^{2} v c_{\alpha}^{2} m_{W}^{2} \mathrm{C}_{S \eta_{3} \eta_{3}}}{c_{W}^{2}}- \\
& \left.-\frac{4 k^{2} v c_{\alpha} m_{W}^{2} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha}}{c_{W}^{2}}-\frac{4 p^{2} v c_{\alpha} m_{W}^{2} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha}}{c_{W}^{2}}+\frac{4 q^{2} v c_{\alpha} m_{W}^{2} \mathrm{C}_{H \eta_{3} \eta_{3}} s_{\alpha}}{c_{W}^{2}}\right) \times \\
& \left.\times \mathcal{C}_{2}\left(k^{2}, q^{2}, p^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)\right\} . \tag{42}
\end{align*}
$$

One-Loop Corrections to Stt Vertex

$$
\begin{aligned}
& \delta V_{t}^{\mathcal{A}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{144 m_{W}^{2}}\left\{-72 c_{\alpha}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right) m_{t}^{4}-\right. \\
& -72 s_{\alpha}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right) m_{t}^{4}-36 c_{\alpha}^{2} \mathcal{B}_{0}\left(q^{2}, m_{H}^{2}, m_{t}^{2}\right) m_{t}^{2}-36 s_{\alpha}^{2} \mathcal{B}_{0}\left(q^{2}, m_{S}^{2}, m_{t}^{2}\right) m_{t}^{2}+ \\
& +32 m_{W}^{2}-32 m_{Z}^{2}-384 \pi v^{2} \alpha_{s}-256\left(-3 \pi \alpha_{s} v^{2}-m_{W}^{2} s_{W}^{2}\right) \mathcal{B}_{0}\left(q^{2}, 0, m_{t}^{2}\right)+\left(36 m_{t}^{2}+\right. \\
& \left.+256 c_{W}^{2} m_{W}^{2}-320 m_{W}^{2}+100 m_{Z}^{2}\right) \mathcal{B}_{0}\left(q^{2}, m_{t}^{2}, m_{Z}^{2}\right)+\left(384 \pi q^{2} \alpha_{s} v^{2}+1536 \pi m_{t}^{2} \alpha_{s} v^{2}-\right. \\
& -384 k^{2} \pi \alpha_{s} v^{2}-384 p^{2} \pi \alpha_{s} v^{2}-128 k^{2} m_{W}^{2}-128 p^{2} m_{W}^{2}+128 q^{2} m_{W}^{2}+128 k^{2} c_{W}^{2} m_{W}^{2}+ \\
& \left.+128 p^{2} c_{W}^{2} m_{W}^{2}-128 q^{2} c_{W}^{2} m_{W}^{2}-512 c_{W}^{2} m_{t}^{2} m_{W}^{2}+512 m_{t}^{2} m_{W}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, 0, m_{t}^{2}, m_{t}^{2}\right)+ \\
& +\left(-\frac{36 v w \kappa m_{t}^{2} c_{\alpha}^{5}}{s_{\alpha}}+72 v^{2} \kappa m_{t}^{2} c_{\alpha}^{4}-216 v^{2} \lambda m_{t}^{2} c_{\alpha}^{4}+72 v w \kappa m_{t}^{2} s_{\alpha} c_{\alpha}^{3}-216 v w \rho m_{t}^{2} s_{\alpha} c_{\alpha}^{3}-\right. \\
& \left.-36 v^{2} \kappa m_{t}^{2} s_{\alpha}^{2} c_{\alpha}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{H}^{2}, m_{H}^{2}\right)+m_{t}^{2}\left(-36 v^{2} \kappa c_{\alpha}^{4}-72 v w \kappa s_{\alpha} c_{\alpha}^{3}+\right. \\
& \left.+216 v w \rho s_{\alpha} c_{\alpha}^{3}+72 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}-216 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}+36 v w \kappa s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& +m_{t}^{2}\left(-216 v^{2} \lambda s_{\alpha}^{4}-108 v w \kappa c_{\alpha} s_{\alpha}^{3}-108 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{2}-216 v w \rho c_{\alpha}^{3} s_{\alpha}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{S}^{2}, m_{S}^{2}\right)+ \\
& +\left(512 m_{W}^{4}-640 m_{Z}^{2} m_{W}^{2}+164 m_{Z}^{4}+72 v^{2} \lambda m_{t}^{2}-36 k^{2} m_{Z}^{2}+\frac{36 v w \kappa c_{\alpha} m_{t}^{2}}{s_{\alpha}}\right) \times \\
& \times \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\left(72 m_{t}^{4}+512 c_{W}^{2} m_{W}^{2} m_{t}^{2}-640 m_{W}^{2} m_{t}^{2}+128 m_{Z}^{2} m_{t}^{2}\right) \times \\
& \times \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+\left(-36 v^{2} \kappa m_{t}^{2} c_{\alpha}^{4}-72 v w \kappa m_{t}^{2} s_{\alpha} c_{\alpha}^{3}+216 v w \rho m_{t}^{2} s_{\alpha} c_{\alpha}^{+}\right. \\
& \left.+72 v^{2} \kappa m_{t}^{2} s_{\alpha}^{2} c_{\alpha}^{2}-216 v^{2} \lambda m_{t}^{2} s_{\alpha}^{2} c_{\alpha}^{2}+36 v w \kappa m_{t}^{2} s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{0}\left(q^{2}, p^{2}, k^{2}, m_{t}^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& +\left(384 \pi q^{2} \alpha_{s} v^{2}-384 k^{2} \pi \alpha_{s} v^{2}-384 p^{2} \pi \alpha_{s} v^{2}-128 k^{2} m_{W}^{2}-128 p^{2} m_{W}^{2}+128 q^{2} m_{W}^{2}+\right. \\
& \left.+128 k^{2} c_{W}^{2} m_{W}^{2}+128 p^{2} c_{W}^{2} m_{W}^{2}-128 q^{2} c_{W}^{2} m_{W}^{2}\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{t}^{2}, m_{t}^{2}\right)+\left(9 k^{2} m_{Z}^{2}-\right. \\
& \left.-9 p^{2} m_{Z}^{2}+9 q^{2} m_{Z}^{2}\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\left(-36 k^{2} c_{\alpha}^{2} m_{t}^{2}-36 p^{2} c_{\alpha}^{2} m_{t}^{2}-36 q^{2} c_{\alpha}^{2} m_{t}^{2}\right) \times \\
& \times \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right)-36 m_{t}^{2} s_{\alpha}^{2}\left(k^{2}+p^{2}+q^{2}\right) \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right)+ \\
& +\left(36 k^{2} m_{t}^{2}+36 p^{2} m_{t}^{2}+36 q^{2} m_{t}^{2}-320 p^{2} m_{W}^{2}+256 p^{2} c_{W}^{2} m_{W}^{2}+64 p^{2} m_{Z}^{2}\right) \times
\end{aligned}
$$

$$
\begin{align*}
& \times \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+\left(384 \pi q^{2} \alpha_{s} v^{2}-384 k^{2} \pi \alpha_{s} v^{2}+384 p^{2} \pi \alpha_{s} v^{2}-128 m_{W}^{2}\left(k^{2}+\right.\right. \\
& \left.\left.+p^{2}+q^{2}+k^{2} c_{W}^{2}-p^{2} c_{W}^{2}-q^{2} c_{W}^{2}\right)\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{t}^{2}, m_{t}^{2}\right)+\left(-27 k^{2} m_{Z}^{2}+27 p^{2} m_{Z}^{2}-\right. \\
& \left.-63 q^{2} m_{Z}^{2}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\left(-54 k^{2} c_{\alpha}^{2} m_{t}^{2}-18 p^{2} c_{\alpha}^{2} m_{t}^{2}+18 q^{2} c_{\alpha}^{2} m_{t}^{2}\right) \times \\
& \times \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right)-18 m_{t}^{2} s_{\alpha}^{2}\left(3 k^{2}+p^{2}-q^{2}\right) \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right)+ \\
& +\left(54 k^{2} m_{t}^{2}+18 p^{2} m_{t}^{2}-18 q^{2} m_{t}^{2}-160 k^{2} m_{W}^{2}-160 p^{2} m_{W}^{2}+160 q^{2} m_{W}^{2}+128 k^{2} c_{W}^{2} m_{W}^{2}+\right. \\
& \left.\left.+128 p^{2} c_{W}^{2} m_{W}^{2}-128 q^{2} c_{W}^{2} m_{W}^{2}+32 k^{2} m_{Z}^{2}+32 p^{2} m_{Z}^{2}-32 q^{2} m_{Z}^{2}\right) \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)\right\} \tag{43}
\end{align*}
$$

$$
\begin{align*}
& \delta V_{t}^{\mathcal{B}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{72 m_{W}^{2}}\left\{18 c_{\alpha}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right) m_{t}^{3}\right. \\
& \quad+18 s_{\alpha}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right) m_{t}^{3}+36 c_{\alpha}^{2} \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right) m_{t}^{3}+ \\
& \\
& +36 s_{\alpha}^{2} \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right) m_{t}^{3}-64\left(-3 \pi \alpha_{s} v^{2}-m_{W}^{2} s_{W}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, 0, m_{t}^{2}, m_{t}^{2}\right) m_{t}- \\
& \\
& -9 m_{Z}^{2} \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right) m_{t}+\left(18 m_{t}^{3}+64 c_{W}^{2} m_{W}^{2} m_{t}-80 m_{W}^{2} m_{t}+34 m_{Z}^{2} m_{t}\right) \times \\
& \\
& \times \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+\left(36 m_{t}^{3}+128 c_{W}^{2} m_{W}^{2} m_{t}-160 m_{W}^{2} m_{t}+68 m_{Z}^{2} m_{t}\right) \times \\
& \\
& \times \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+\left(-18 v^{2} \kappa m_{t} c_{\alpha}^{4}-36 v w \kappa m_{t} s_{\alpha} c_{\alpha}^{3}+108 v w \rho m_{t} s_{\alpha} c_{\alpha}^{3}+\right. \\
& \\
& \left.+36 v^{2} \kappa m_{t} s_{\alpha}^{2} c_{\alpha}^{2}-108 v^{2} \lambda m_{t} s_{\alpha}^{2} c_{\alpha}^{2}+18 v w \kappa m_{t} s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{1}\left(q^{2}, p^{2}, k^{2}, m_{t}^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& \\
& +\left(384 \pi m_{t} \alpha_{s} v^{2}-128 c_{W}^{2} m_{t} m_{W}^{2}+128 m_{t} m_{W}^{2}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, 0, m_{t}^{2}, m_{t}^{2}\right)+\left(-\frac{18 v w \kappa m_{t} c_{\alpha}^{5}}{s_{\alpha}}+\right. \tag{44}\\
& \\
& \left.+36 v^{2} \kappa m_{t} c_{\alpha}^{4}-108 v^{2} \lambda m_{t} c_{\alpha}^{4}+36 v w \kappa m_{t} s_{\alpha} c_{\alpha}^{3}-108 v w \rho m_{t} s_{\alpha} c_{\alpha}^{3}-18 v^{2} \kappa m_{t} s_{\alpha}^{2} c_{\alpha}^{2}\right) \times \\
& \\
& \times \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(-18 v^{2} \kappa m_{t} c_{\alpha}^{4}-36 v w \kappa m_{t} s_{\alpha} c_{\alpha}^{3}+108 v w \rho m_{t} s_{\alpha}^{3} c_{\alpha}^{3}+\right. \\
& \\
& \left.+36 v^{2} \kappa m_{t} s_{\alpha}^{2} c_{\alpha}^{2}-108 v^{2} \lambda m_{t} s_{\alpha}^{2} c_{\alpha}^{2}+18 v w \kappa m_{t} s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& \\
& +m_{t}\left(-108 v^{2} \lambda s_{\alpha}^{4}-54 v w \kappa c_{\alpha} s_{\alpha}^{3}-54 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{2}-108 v w \rho c_{\alpha}^{3} s_{\alpha}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{S}^{2}, m_{S}^{2}\right)+ \\
& \\
& +\left(-\frac{128 m_{W}^{4}}{m_{t}}+\frac{160 m_{Z}^{2} m_{W}^{2}}{m_{t}}-\frac{68 m_{Z}^{4}}{m_{t}}-18 m_{t} m_{Z}^{2}-36 v^{2} \lambda m_{t}-\frac{18 v w \kappa c_{\alpha} m_{t}}{s_{\alpha}}\right) \times \\
& \left.\quad \times \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)\right\},
\end{align*}
$$

$$
\begin{align*}
& \delta V_{t}^{\mathcal{C}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{72 m_{W}^{2}}\left\{18 c_{\alpha}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right) m_{t}^{3}+\right. \\
& +18 s_{\alpha}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right) m_{t}^{3}+36 c_{\alpha}^{2} \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right) m_{t}^{3}+ \\
& +36 s_{\alpha}^{2} \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right) m_{t}^{3}+36 c_{\alpha}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right) m_{t}^{3}+ \\
& +36 s_{\alpha}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right) m_{t}^{3}+64 m_{t}\left(-3 \pi \alpha_{s} v^{2}-m_{W}^{2} s_{W}^{2}\right) \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, 0, m_{t}^{2}, m_{t}^{2}\right)+ \\
& +9 m_{Z}^{2} \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right) m_{t}+\left(18 m_{t}^{3}+64 c_{W}^{2} m_{W}^{2} m_{t}-80 m_{W}^{2} m_{t}+34 m_{Z}^{2} m_{t}\right) \times \\
& \times \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)-128 m_{t}\left(3 \pi \alpha_{s} v^{2}-s_{W}^{2} m_{W}^{2}\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, 0, m_{t}^{2}, m_{t}^{2}\right)+ \\
& +m_{t}\left(\frac{18 v w \kappa c_{\alpha}^{5}}{s_{\alpha}}-36 v^{2} \kappa c_{\alpha}^{4}+108 v^{2} \lambda c_{\alpha}^{4}-36 v w \kappa s_{\alpha} c_{\alpha}^{3}+108 v w \rho s_{\alpha} c_{\alpha}^{3}+18 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}\right) \times \\
& \times \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{H}^{2}, m_{H}^{2}\right)+\left(18 v^{2} \kappa m_{t} c_{\alpha}^{4}+36 v w \kappa m_{t} s_{\alpha} c_{\alpha}^{3}-108 v w \rho m_{t} s_{\alpha} c_{\alpha}^{3}-\right. \\
& \left.-36 v^{2} \kappa m_{t} s_{\alpha}^{2} c_{\alpha}^{2}+108 v^{2} \lambda m_{t} s_{\alpha}^{2} c_{\alpha}^{2}-18 v w \kappa m_{t} s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{H}^{2}, m_{S}^{2}\right)+ \\
& +m_{t}\left(108 v^{2} \lambda s_{\alpha}^{4}+54 v w \kappa c_{\alpha} s_{\alpha}^{3}+54 v^{2} \kappa c_{\alpha}^{2} s_{\alpha}^{2}+108 v w \rho c_{\alpha}^{3} s_{\alpha}\right) \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{S}^{2}, m_{S}^{2}\right)+ \\
& +\left(\frac{128 m_{W}^{4}}{m_{t}}-\frac{160 m_{Z}^{2} m_{W}^{2}}{m_{t}}+\frac{68 m_{Z}^{4}}{m_{t}}+18 m_{t} m_{Z}^{2}+36 v^{2} \lambda m_{t}+\frac{18 v w \kappa c_{\alpha} m_{t}}{s_{\alpha}}\right) \times \\
& \times \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\left(36 m_{t}^{3}+128 c_{W}^{2} m_{W}^{2} m_{t}-160 m_{W}^{2} m_{t}+68 m_{Z}^{2} m_{t}\right) \times \\
& \times \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+\left(36 m_{t}^{3}+128 c_{W}^{2} m_{W}^{2} m_{t}-160 m_{W}^{2} m_{t}+68 m_{Z}^{2} m_{t}\right) \times \\
& \times \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+m_{t}\left(18 v^{2} \kappa c_{\alpha}^{4}+36 v w \kappa s_{\alpha} c_{\alpha}^{3}-108 v w \rho s_{\alpha} c_{\alpha}^{3}-36 v^{2} \kappa s_{\alpha}^{2} c_{\alpha}^{2}+\right. \\
& \left.\left.+108 v^{2} \lambda s_{\alpha}^{2} c_{\alpha}^{2}-18 v w \kappa s_{\alpha}^{3} c_{\alpha}\right) \mathcal{C}_{2}\left(q^{2}, p^{2}, k^{2}, m_{t}^{2}, m_{H}^{2}, m_{S}^{2}\right)\right\}, \tag{45}\\
& \delta V_{t}^{\mathcal{D}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{8 m_{W}^{2}}\left\{-3 m_{Z}^{2} \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\right. \\
& +2 c_{\alpha}^{2} m_{t}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{H}^{2}\right)+2 m_{t}^{2} s_{\alpha}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{S}^{2}\right)- \\
& \left.-2 m_{t}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)-3 m_{Z}^{2} \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)\right\}, \tag{46}
\end{align*}
$$

$$
\begin{align*}
& \delta V_{t}^{\mathcal{E}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{48 m_{W}^{2}}\left\{\left(8 c_{W}^{2}-5\right) m_{Z}^{2}\left(-\left(k^{2}+3 p^{2}-3 q^{2}\right)\right) \times\right. \\
& \left.\quad \times \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)-\left(8 c_{W}^{2}-5\right) m_{Z}^{2}\left(3 k^{2}-3 p^{2}-q^{2}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)\right\} \tag{47}
\end{align*}
$$

$$
\begin{align*}
& \delta V_{t}^{\mathcal{F}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{24 m_{W}^{2}}\left\{-\left(8 c_{W}^{2}-5\right) m_{t} m_{Z}^{2} \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\right. \\
& \quad+2\left(8 c_{W}^{2}-5\right) m_{t} m_{Z}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+4\left(8 c_{W}^{2}-5\right) m_{t} m_{Z}^{2} \times \\
& \left.\quad \times \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)-\frac{\left(8 c_{W}^{2}-5\right) m_{Z}^{4}\left(2 c_{W}^{2} m_{t}^{2}+4 m_{W}^{2}\right) \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)}{m_{t} m_{W}^{2}}\right\} \tag{48}
\end{align*}
$$

$$
\begin{align*}
& \delta V_{t}^{\mathcal{G}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{24 m_{W}^{2}}\left\{\left(8 c_{W}^{2}-5\right) m_{t} m_{Z}^{2} \mathcal{C}_{0}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+\right. \\
& \quad+2\left(8 c_{W}^{2}-5\right) m_{t} m_{Z}^{2} \mathcal{C}_{0}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+\frac{\left(8 c_{W}^{2}-5\right) m_{Z}^{4}\left(2 c_{W}^{2} m_{t}^{2}+4 m_{W}^{2}\right)}{m_{t} m_{W}^{2}} \times \\
& \quad \times \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)+ \\
& \left.\quad+4\left(8 c_{W}^{2}-5\right) m_{t} m_{Z}^{2} \mathcal{C}_{1}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)+4\left(8 c_{W}^{2}-5\right) m_{t} m_{Z}^{2} \mathcal{C}_{2}\left(p^{2}, q^{2}, k^{2}, m_{t}^{2}, m_{t}^{2}, m_{Z}^{2}\right)\right\} \tag{49}
\end{align*}
$$

$$
\begin{align*}
& \delta V_{t}^{\mathcal{H}}\left(p^{2}, k^{2}, q^{2}\right)=\frac{g^{2}}{16 \pi^{2}} \frac{1}{24 m_{W}^{2}}\left\{\left(8 c_{W}^{2}-5\right) m_{Z}^{2} \mathcal{C}_{1}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)-\right. \\
& \left.-\left(8 c_{W}^{2}-5\right) m_{Z}^{2} \mathcal{C}_{2}\left(k^{2}, p^{2}, q^{2}, m_{t}^{2}, m_{Z}^{2}, m_{Z}^{2}\right)\right\} . \tag{50}
\end{align*}
$$

D - Loop Integral Expressions: $\mathcal{A}_{0}, \mathcal{B}_{0}, \mathcal{B}_{00}, \mathcal{B}_{1}$

Now let us report the loop integrals which are expressed in the $\overline{\mathrm{MS}}$ renormalization scheme:

$$
\begin{align*}
\Delta\left[p^{2}\right] & =\frac{1}{\epsilon}+\log \left[\frac{\mu^{2}}{p^{2}}\right] \tag{51}\\
\mathcal{K}\left[p, m_{a}, m_{b}\right] & =\sqrt{m_{a}^{4}+\left(m_{b}^{2}-p^{2}\right)^{2}-2 m_{a}^{2}\left(m_{b}^{2}+p^{2}\right)} \tag{52}\\
\mathcal{Q}[p, m] & =\sqrt{1-\frac{4 m^{2}}{p^{2}}} \log \left[1-\frac{p^{2}}{2 m^{2}}\left(1+\sqrt{1-\frac{4 m^{2}}{p^{2}}}\right)\right] \tag{53}
\end{align*}
$$

$$
\begin{align*}
\mathcal{A}_{0}\left(m^{2}\right) & =m^{2}\left(1+\Delta\left[m^{2}\right]\right), \tag{54}\\
\mathcal{B}_{0}\left(p^{2}, 0,0\right) & =2+\Delta\left[-p^{2}\right], \tag{55}\\
\mathcal{B}_{0}\left(p^{2}, m^{2}, m^{2}\right) & =2+\Delta\left[m^{2}\right]-\mathcal{Q}[p, m], \tag{56}\\
\mathcal{B}_{0}\left(p^{2}, 0, m^{2}\right) & =2+\Delta\left[-m^{2}\right]+\left(1-\frac{m^{2}}{p^{2}}\right) \log \left[\frac{m^{2}}{m^{2}-p^{2}}\right] \tag{57}\\
\mathcal{B}_{0}\left(p^{2}, m_{a}^{2}, m_{b}^{2}\right)= & 2+\Delta\left[m_{b}^{2}\right]+\frac{\mathcal{K}\left[p, m_{a}, m_{b}\right]}{p^{2}} \log \left[\frac{2 m_{a} m_{b}}{m_{a}^{2}+m_{b}^{2}-p^{2}-\mathcal{K}\left[p, m_{a}, m_{b}\right]}\right]+ \\
& +\left(\frac{m_{b}^{2}}{p^{2}}-\frac{m_{a}^{2}}{p^{2}}-1\right) \log \left[\frac{m_{a}}{m_{b}}\right], \tag{58}
\end{align*}
$$

$\mathcal{B}_{00}\left(p^{2}, 0,0\right)=-p^{2}\left(\frac{2}{9}+\frac{\Delta\left[-p^{2}\right]}{12}\right)$
$\mathcal{B}_{00}\left(p^{2}, m^{2}, m^{2}\right)=-\frac{2 p^{2}}{9}+\frac{m^{2}}{6}\left(\Delta\left[m^{2}\right]+7\right)+\frac{p^{2}-4 m^{2}}{12}\left(\mathcal{Q}[p, m]-\Delta\left[m^{2}\right]\right)$,
$\mathcal{B}_{00}\left(p^{2}, 0, m^{2}\right)=\frac{m^{2}}{12}\left(7-\frac{m^{2}}{p^{2}}\right)-\frac{2 p^{2}}{9}+\left(\frac{3 m^{2}-p^{2}}{12}\right) \Delta\left[m^{2}\right]+$
$+\frac{\left(m^{2}-p^{2}\right)^{3}}{12 p^{4}} \log \left[\frac{m^{2}}{m^{2}-p^{2}}\right]$,
$\mathcal{B}_{00}\left(p^{2}, m_{a}^{2}, m_{b}^{2}\right)=\frac{7\left(m_{a}^{2}+m_{b}^{2}\right)}{12}-\frac{2 p^{2}}{9}-\frac{m_{a}^{4}-2 m_{a}^{2} m_{b}^{2}+m_{b}^{4}}{12 p^{2}}+\left(\frac{m_{a}^{2}+m_{b}^{2}}{4}-\frac{p^{2}}{12}\right) \times$
$\times\left(\Delta\left[m_{b}^{2}\right]+\log \left[\frac{m_{b}}{m_{a}}\right]\right)-\frac{1}{12 p^{4}}\left\{\frac{\left[\left(m_{a}^{2}-m_{b}^{2}\right)^{3}+3 p^{2}\left(m_{b}^{4}-m_{a}^{4}\right)\right]}{4} \log \left[\frac{m_{b}}{m_{a}}\right]-\right.$
$\left.-\mathcal{K}^{3}\left[p, m_{a}, m_{b}\right] \log \left[\frac{2 m_{a} m_{b}}{m_{a}^{2}+m_{b}^{2}-p^{2}-\mathcal{K}\left[p, m_{a}, m_{b}\right]}\right]\right\}$,

$$
\begin{align*}
\mathcal{B}_{1}\left(p^{2}, 0,0\right) & =-1-\frac{\Delta\left[-p^{2}\right]}{2} \tag{63}\\
\mathcal{B}_{1}\left(p^{2}, m^{2}, m^{2}\right) & =-1+\frac{\mathcal{Q}[p, m]-\Delta\left[m^{2}\right]}{2}, \tag{64}\\
\mathcal{B}_{1}\left(p^{2}, 0, m^{2}\right) & =-1+\frac{m^{2}}{2 p^{2}}-\frac{\Delta\left[m^{2}\right]}{2}-\frac{\left(m^{2}-p^{2}\right)^{2}}{2 p^{4}} \log \left[\frac{m^{2}}{m^{2}-p^{2}}\right], \tag{65}\\
\mathcal{B}_{1}\left(p^{2}, m_{a}^{2}, m_{b}^{2}\right) & =-1-\frac{\Delta\left[m_{b}^{2}\right]}{2}+\frac{1}{2 p^{2}}\left\{m_{b}^{2}-m_{a}^{2}+\frac{2 m_{a}^{2} p^{2}+\mathcal{K}^{2}\left[p, m_{a}, m_{b}\right]}{p^{2}} \log \left[\frac{m_{a}}{m_{b}}\right]\right. \\
& \left.-\frac{m_{a}^{2}-m_{b}^{2}+p^{2}}{p^{2}} \mathcal{K}\left[p, m_{a}, m_{b}\right] \log \left[\frac{2 m_{a} m_{b}}{m_{a}^{2}+m_{b}^{2}-p^{2}-\mathcal{K}\left[p^{2}, m_{a}, m_{b}\right]}\right]\right\} . \tag{66}
\end{align*}
$$

Bibliography

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B $\mathbf{7 1 6}$ (2012) 1 doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].
[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B $\mathbf{7 1 6}$ (2012) 30 doi:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 [hep-ex]].
[3] P. W. Higgs, Phys. Rev. Lett. 13 (1964) 508. doi:10.1103/PhysRevLett.13.508
[4] P. W. Higgs, Phys. Lett. 12 (1964) 132. doi:10.1016/0031-9163(64)91136-9
[5] F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321. doi:10.1103/PhysRevLett.13.321
[6] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13 (1964) 585. doi:10.1103/PhysRevLett.13.585
[7] R. M. Schabinger and J. D. Wells, Phys. Rev. D 72 (2005) 093007 doi:10.1103/PhysRevD.72.093007 [hep-ph/0509209].
[8] G. M. Pruna and T. Robens, Phys. Rev. D 88 (2013) no.11, 115012 doi:10.1103/PhysRevD.88.115012 [arXiv:1303.1150 [hep-ph]]; C. Englert, T. Plehn, D. Zerwas and P. M. Zerwas, Phys. Lett. B 703, 298 (2011) doi:10.1016/j.physletb.2011.08.002 [arXiv:1106.3097 [hep-ph]]; B. Batell, S. Gori and L. T. Wang, JHEP 1206, 172 (2012) doi:10.1007/JHEP06(2012)172 [arXiv:1112.5180 [hep-ph]].
[9] D. Buttazzo, F. Sala and A. Tesi, JHEP 1511 (2015) 158 doi:10.1007/JHEP11(2015)158 [arXiv:1505.05488 [hep-ph]].
[10] T. Robens and T. Stefaniak, Eur. Phys. J. C 75, 104 (2015) doi:10.1140/epjc/s10052-015-3323-y [arXiv:1501.02234 [hep-ph]];
[11] T. Robens and T. Stefaniak, Eur. Phys. J. C 76 (2016) no.5, 268 doi:10.1140/epjc/s10052-016-4115-8 [arXiv:1601.07880 [hep-ph]].
[12] I. M. Lewis and M. Sullivan, arXiv:1701.08774 [hep-ph]
[13] S. Dawson and I. M. Lewis, Phys. Rev. D 92, no. 9, 094023 (2015) doi:10.1103/PhysRevD. 92.094023 [arXiv:1508.05397 [hep-ph]].
[14] C. Y. Chen, S. Dawson and I. M. Lewis, Phys. Rev. D 91, no. 3, 035015 (2015) doi:10.1103/PhysRevD. 91.035015 [arXiv:1410.5488 [hep-ph]].
[15] F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl and M. Shaposhnikov, JHEP 1210, 140 (2012) doi:10.1007/JHEP10(2012)140 [arXiv:1205.2893 [hep-ph]]; S. Alekhin, A. Djouadi and S. Moch, Phys. Lett. B 716, 214 (2012) doi:10.1016/j.physletb.2012.08.024 [arXiv:1207.0980 [hep-ph]]; D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, JHEP 1312, 089 (2013) doi:10.1007/JHEP12(2013)089 [arXiv:1307.3536 [hep-ph]].
[16] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, H. M. Lee and A. Strumia, JHEP 1206, 031 (2012) doi:10.1007/JHEP06(2012)031 [arXiv:1203.0237 [hep-ph]];
[17] A. Falkowski, C. Gross and O. Lebedev, JHEP 1505 (2015) 057 doi:10.1007/JHEP05(2015)057 [arXiv:1502.01361 [hep-ph]].
[18] B. Patt and F. Wilczek, hep-ph/0605188.
[19] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 92 (2015) no.1, 012006 doi:10.1103/PhysRevD.92.012006 [arXiv:1412.2641 [hep-ex]].
[20] V. Khachatryan et al. [CMS Collaboration], JHEP 1510 (2015) 144 doi:10.1007/JHEP10(2015)144 [arXiv:1504.00936 [hep-ex]].
[21] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75 (2015) no.9, 412 doi:10.1140/epjc/s10052-015-3628-x [arXiv:1506.00285 [hep-ex]].
[22] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 114 (2015) no.8, 081802 doi:10.1103/PhysRevLett.114.081802 [arXiv:1406.5053 [hep-ex]].
[23] V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 749 (2015) 560 doi:10.1016/j.physletb.2015.08.047 [arXiv:1503.04114 [hep-ex]].
[24] V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf and G. Shaughnessy, Phys. Rev. D 77, 035005 (2008) doi:10.1103/PhysRevD.77.035005 [arXiv:0706.4311 [hepph|]; W. L. Guo and Y. L. Wu, JHEP 1010, 083 (2010) doi:10.1007/JHEP10(2010)083 [arXiv:1006.2518 [hep-ph]]; A. Biswas and D. Majumdar, Pramana 80, 539 (2013) doi:10.1007/s12043-012-0478-z [arXiv:1102.3024 [hep-ph]].
[25] J. A. Casas, D. G. Cerdeño, J. M. Moreno and J. Quilis, arXiv:1701.08134 [hep-ph].
[26] D. López-Val and T. Robens, Phys. Rev. D 90 (2014) 114018 doi:10.1103/PhysRevD.90.114018 [arXiv:1406.1043 [hep-ph]].
[27] G. Chalons, D. Lopez-Val, T. Robens and T. Stefaniak, arXiv:1611.03007 [hep-ph].
[28] M. E. Peskin and D. V. Schroeder, Reading, USA: Addison-Wesley (1995) 842 p
[29] F. Bojarski, G. Chalons, D. Lopez-Val and T. Robens, JHEP 1602 (2016) 147 doi:10.1007/JHEP02(2016)147 [arXiv:1511.08120 [hep-ph]].
[30] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, Comput. Phys. Commun. 185 (2014) 2250 doi:10.1016/j.cpc.2014.04.012 [arXiv:1310.1921 [hep-ph]].
[31] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].
[32] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and A. Strumia, JHEP 1208 (2012) 098 doi:10.1007/JHEP08(2012)098 [arXiv:1205.6497 [hepph]].
[33] A. Denner, Fortsch. Phys. 41 (1993) 307 doi:10.1002/prop. 2190410402 [arXiv:0709.1075 [hep-ph]].
[34] F. Boudjema and E. Chopin, Z. Phys. C 73 (1996) 85 doi:10.1007/s002880050298 [hepph/9507396];
[35] G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato and Y. Shimizu, Phys. Rept. 430 (2006) 117 doi:10.1016/j.physrep.2006.02.001 [hep-ph/0308080].
[36] L. D. Faddeev and V. N. Popov, Phys. Lett. 25B (1967) 29. doi:10.1016/0370-2693(67)90067-6
[37] C. Becchi, A. Rouet and R. Stora, Annals Phys. 98 (1976) 287. doi:10.1016/0003-4916(76)90156-1 ; M. Z. Iofa and I. V. Tyutin, Teor. Mat. Fiz. 27 (1976) 38 [Theor. Math. Phys. 27 (1976) 316]. doi:10.1007/BF01036547
[38] J. F. Gunion, H. E. Haber and J. Wudka, Phys. Rev. D 43 (1991) 904. doi:10.1103/PhysRevD. 43.904
[39] J. Alcaraz et al. [ALEPH and DELPHI and L3 and OPAL Collaborations and LEP Electroweak Working Group], hep-ex/0612034.
[40] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 108 (2012) 151803 doi:10.1103/PhysRevLett.108.151803 [arXiv:1203.0275 [hep-ex]].
[41] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. D 89 (2014) no.1, 012005 doi:10.1103/PhysRevD. 89.012005 [arXiv:1310.8628 [hep-ex]].
[42] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2014-009.
[43] [CMS Collaboration], CMS-PAS-HIG-13-005.
[44] G. Aad et al. [ATLAS and CMS Collaborations], JHEP 1608 (2016) 045 doi:10.1007/JHEP08(2016)045 [arXiv:1606.02266 [hep-ex]].
[45] B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. Lett. 38 (1977) 883. doi:10.1103/PhysRevLett. 38.883
[46] W. Y. Keung and W. J. Marciano, Phys. Rev. D 30 (1984) 248. doi:10.1103/PhysRevD. 30.248
[47] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106 (1976) 292. doi:10.1016/0550-3213(76)90382-5
[48] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368].
[49] L. Bergstrom and G. Hulth, Nucl. Phys. B 259 (1985) 137 Erratum: [Nucl. Phys. B 276 (1986) 744]. doi:10.1016/0550-3213(86)90074-X, 10.1016/0550-3213(85)90302-5
[50] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40 (2016) no.10, 100001. doi:10.1088/1674-1137/40/10/100001
[51] S. S. Schweber, Princeton, USA: Univ. Pr. (1994) 732 p
[52] C. G. Bollini and J. J. Giambiagi, Nuovo Cim. B 12 (1972) 20. doi:10.1007/BF02895558
[53] G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 44 (1972) 189. doi:10.1016/0550-3213(72)90279-9
[54] D. A. Ross and J. C. Taylor, Nucl. Phys. B 51 (1973) 125 Erratum: [Nucl. Phys. B 58 (1973) 643]. doi:10.1016/0550-3213(73)90608-1, 10.1016/0550-3213(73)90505-1
[55] S. Kanemura, M. Kikuchi and K. Yagyu, Nucl. Phys. B 907 (2016) 286 doi:10.1016/j.nuclphysb.2016.04.005 [arXiv:1511.06211 [hep-ph]].
[56] S. Heinemeyer, Int. J. Mod. Phys. A 21 (2006) 2659 doi:10.1142/S0217751X06031028 [hep-ph/0407244].
[57] B. A. Kniehl, Nucl. Phys. B 352 (1991) 1. doi:10.1016/0550-3213(91)90126-I
[58] A. Sirlin, Phys. Rev. D 22 (1980) 971. doi:10.1103/PhysRevD.22.971
[59] J. R. Espinosa and Y. Yamada, Phys. Rev. D 67 (2003) 036003 doi:10.1103/PhysRevD.67.036003 [hep-ph/0207351].
[60] D. Binosi and J. Papavassiliou, Phys. Rept. 479 (2009) 1 doi:10.1016/j.physrep.2009.05.001 [arXiv:0909.2536 [hep-ph]].
[61] S. Kanemura, M. Kikuchi, K. Sakurai and K. Yagyu, Phys. Rev. D 96 (2017) no.3, 035014 doi:10.1103/PhysRevD.96.035014 [arXiv:1705.05399 [hep-ph]].
[62] D. Lopez-Val and J. Sola, Phys. Rev. D 81 (2010) 033003 doi:10.1103/PhysRevD. 81.033003 [arXiv:0908.2898 [hep-ph]].
[63] B. A. Kniehl, Nucl. Phys. B 357 (1991) 439. doi:10.1016/0550-3213(91)90476-E
[64] B. A. Kniehl, Nucl. Phys. B 376 (1992) 3. doi:10.1016/0550-3213(92)90065-J
[65] M. Drees and K. i. Hikasa, Phys. Lett. B 240 (1990) 455 Erratum: [Phys. Lett. B 262 (1991) 497]. doi:10.1016/0370-2693(90)91130-4
[66] J. S. Schwinger, REDWOOD CITY, USA: ADDISON-WESLEY (1989) 318 P. (ADVANCED BOOK CLASSICS SERIES)
[67] B. A. Kniehl, Phys. Rept. 240 (1994) 211. doi:10.1016/0370-1573(94)90037-X
[68] M. Drees and K. i. Hikasa, Phys. Rev. D 41 (1990) 1547. doi:10.1103/PhysRevD.41.1547
[69] M. J. Strassler and M. E. Peskin, Phys. Rev. D 43 (1991) 1500. doi:10.1103/PhysRevD.43.1500
[70] S. Kanemura, M. Kikuchi and K. Yagyu, Nucl. Phys. B 917 (2017) 154 doi:10.1016/j.nuclphysb.2017.02.004 [arXiv:1608.01582 [hep-ph]]. 11 citations counted in INSPIRE as of 17 May 2017
[71] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63 (2009) 189 doi:10.1140/epjc/s10052-009-1072-5 [arXiv:0901.0002 [hep-ph]].
[72] R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, F. Riva, A. Strumia and R. Torre, JHEP 1607 (2016) 150 doi:10.1007/JHEP07(2016)150 [arXiv:1604.06446 [hep-ph]].
[73] A. Djouadi, Phys. Rept. 457 (2008) 1 doi:10.1016/j.physrep.2007.10.004 [hepph/0503172].
[74] A. Djouadi, Phys. Rept. 459 (2008) 1 doi:10.1016/j.physrep.2007.10.005 [hepph/0503173].
[75] T. Hahn, Comput. Phys. Commun. 140 (2001) 418 doi:10.1016/S0010-4655(01)00290-9 [hep-ph/0012260].
[76] G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B 153 (1979) 365. doi:10.1016/0550-3213(79)90605-9
[77] G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151. doi:10.1016/0550-3213(79)90234-7
[78] H. H. Patel, Comput. Phys. Commun. 197 (2015) 276 doi:10.1016/j.cpc.2015.08.017 [arXiv:1503.01469 [hep-ph]].

[^0]: ${ }^{1}$ Notice that the potential is stationary at:

 $$
 v^{2}=\frac{4 \rho \mu^{2}-2 \kappa \mu_{s}^{2}}{\kappa^{2}-4 \lambda \rho}, \quad w^{2}=\frac{4 \lambda \mu_{s}^{2}-2 \kappa \mu^{2}}{\kappa^{2}-4 \lambda \rho}
 $$

[^1]: ${ }^{2}$ We generated all Feynman rules for the SSM model using FEynRules [30].

[^2]: ${ }^{3}$ The tadpoles $T_{\phi, s^{0}}$ are rotated in the mass basis as

 $$
 \binom{T_{H}}{T_{S}}=\left(\begin{array}{cc}
 \cos \alpha & -\sin \alpha \tag{1.37}\\
 \sin \alpha & \cos \alpha
 \end{array}\right)\binom{T_{\phi}}{T_{s^{0}}} .
 $$

[^3]: ${ }^{4}$ Notice that we chose as initial condition $\kappa>0$. However, the stabilization mechanism becomes more complicated when the running quartic couplings are analyzed with respect to negative κ values. In this case the stability condition is given by $-\kappa(\mu)<[\lambda(\mu) \rho(\mu)]^{1 / 2}$ and with the positive shift of λ it is essentially canceled out. This implies that the stability condition is much more constraining than in the case $\kappa>0$ (see [16] for more details).

[^4]: ${ }^{5}$ The definitions of the F functions and the treatment of the non-linear gauge fixing in the SM can be found in [34, 35].

[^5]: ${ }^{6}$ As discussed in [28], the introduction of the new auxiliary field B^{a} is given by the following substitution: $\left|\partial^{\mu} A_{\mu}^{a}\right|^{2} / 2 \xi \rightarrow \xi\left|B^{a}\right|^{2} / 2+B^{a} \partial^{\mu} A_{\mu}^{a}$.

[^6]: ${ }^{7}$ Following the standard conventions in the literature, the Δr definition is obtained matching the muon lifetime expression in the four fermions Fermi interaction to the equivalent calculation performed within the SM:

 $$
 \begin{equation*}
 m_{W}^{2}\left(1-\frac{m_{W}^{2}}{m_{Z}^{2}}\right) \simeq \frac{\pi \alpha_{\mathrm{em}}}{\sqrt{2} G_{F}}(1+\Delta r) \tag{1.61}
 \end{equation*}
 $$

 where α_{em} is the fine structure constant at zero momentum $\left(\alpha_{\mathrm{em}}(0)=e^{2} / 4 \pi\right)$.

[^7]: ${ }^{1}$ To determine the relation which links the two approaches, we have required the off-diagonal terms of the following matrix are zero:

 $$
 U^{\prime}(\alpha+\delta \alpha) \cdot\left[U(\alpha)^{-1} \cdot\left(\begin{array}{cc}
 m_{H}^{2} & \delta m_{H S}^{2} \tag{3.26}\\
 \delta m_{H S}^{2} & m_{S}^{2}
 \end{array}\right) \cdot U(\alpha)\right] U^{\prime}(\alpha+\delta \alpha)^{-1}=\operatorname{diag}\left(m_{H}^{2}, m_{S}^{2}\right) .
 $$

[^8]: ${ }^{2}$ This renormalization scheme was proposed for the first time in [54].

[^9]: ${ }^{3}$ These contributions are described by the complete set of self energy loop-contributions which cannot be separated into two distinct diagrams by a cut of one internal line. As shown in Fig.(3.1), the tadpoles (which can be separated into two distinct diagrams by a single cut) are excluded for simplicity since it is possible to assume an appropriate renormalization condition which removes them [28].

[^10]: ${ }^{4}$ The only three-point function needed is associated with $e^{+} e^{-} \gamma$ vertex. This fixes δZ_{e}.

[^11]: ${ }^{5}$ Our expression of δZ_{e} differs from the one quoted in [33] because of a different sign convention in the definition of the covariant derivative, see eq.(1.12).

[^12]: ${ }^{6}$ In the SSM, the new contributions to Δr generates a maximum variation of $\mathcal{O}(0.1) \%$ for $\left|s_{\alpha}\right| \sim 0.2[26]$.

[^13]: ${ }^{7}$ The use of the $\overline{\mathrm{MS}}$ scheme also allows us to neglect the counterterm δw in the physical definition of w, which is promoted to be an independent input parameter. Thus, no singlet vev counterterm appears in the one-loop calculations: $\delta w^{\overline{\mathrm{MS}}}=0$. Since $\delta Z_{s^{0}}$ does not appear in the iOS scheme prescription, the renormalization condition on δw can be automatically imposed: $\delta w_{\mathrm{ios}}^{\overline{\mathrm{MS}}}=0$.

[^14]: ${ }^{8}$ Obviously, the equivalence of these schemes implies that the gauge dependence of the MF scheme disappears only if $\mu_{R}^{2}=\left(m_{H}^{2}+m_{S}^{2}\right) / 2$.

[^15]: ${ }^{1}$ Notice that for the lightest mass eigenstate H the following replacement applies in eq.(4.41):

 $$
 \begin{equation*}
 S(k) \rightarrow H(k) \quad \Longrightarrow \quad \rho_{V} \rightarrow \rho_{V} c_{\alpha} / s_{\alpha} \tag{4.6}
 \end{equation*}
 $$

[^16]: ${ }^{4}$ We obtain the same results of $C_{\bar{k} k}$ quoted in [72].

[^17]: ${ }^{1}$ In [29], the results obtained in the MOMS scheme are indicated by $\delta_{G_{F}}$.

[^18]: ${ }^{2}$ Although we are not in agreement with the results in [29], they have shown for the first time the numerical results of the NLO corrected decay rate $\Gamma(S \rightarrow H H)$. Concerning the QCD-only corrections to $S \rightarrow \bar{q} q(g)$, these do not receive any new loop contributions beyond the SM results in [65].
 ${ }^{3}$ Analytical expressions of the NLO couplings $S V V, S \bar{f} f$ and $S H H$ can be extracted by the amplitudes for the Higgs boson vertices in [55, 70], which are discussed for the SSM without \mathbb{Z}_{2}-symmetry. In [55, 70], the numerical analysis is performed only for the corrections to the couplings $H V V, H \bar{f} f$ and $S H H$.

