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ABSTRACT 

The aim of this research is twofold. First is related to segmentation of colorectal 

cancer in 3D MRI, and the second is to characterize the colorectal tumor into two 

groups; complete responders (CR) and non-responders (NR) to therapy in colorectal 

cancer. These two studies are conducted in parallel, independently.  

Study I: Objective: An accurate segmentation of colorectal tumor in 3D magnetic 

resonance imaging (MRI) volume is an essential requirement in colorectal cancer 

chemo-radiotherapy. Manual segmentation of colorectal tumor in 3D MRI requires high 

expertise and subject to laborious work, time consumptions and, inter and intra-

observer variability. The primary goal of this research work is to design and develop a 

straightforward deep learning based algorithm which automatically segments colorectal 

tumor in 3D T2-weighted (T2w) MRI with reasonable accuracy.  

Material and Methods: In this study, T2-weighted (T2w) MRI volumes (those were 

acquired from 43 patients in a sagittal view on a 3.0 Tesla scanner without contrast 

agent) are used. These patients are diagnosed with a locally advanced colorectal tumor 

(cT3/T4). In this work, a novel CNN architecture based on a densely connected neural 

network for volumetric colorectal tumor segmentation is proposed. The proposed CNN 

architecture contains multi-scale dense inter-connectivity between layers of fine and 

coarse scales, thus by leveraging multi-scale contextual information in the network to 

get a better flow of information throughout the network. Additionally, the 3D level set 

algorithm was incorporated as a post-processing task to refine the contours of the 

network predicted segmentation. Cross-validation was performed in 100 rounds by 

partitioning the dataset into 30 volumes for training and 13 for testing. Three 

performance metrics were computed to assess the similarity between predicted 

segmentation and the true ground truth (i.e., manual segmentation by an expert 

radiologist/oncologist); including Dice similarity coefficient (DSC), recall rate (RR), 

and average surface distance (ASD). 
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Results: Above performance metrics were computed in terms of mean and standard 

deviation (mean ± standard deviation). The DSC, RR, and ASD were (0.84 ± 0.02), 

(0.85 ± 0.02), and (2.64 ± 2.8) before post-processing; and these performance metrics 

were (0.86 ± 0.02), (0.87 ± 0.02), and (2.54 ± 2.4) after post-processing, respectively.  

Conclusion: We compared our proposed method with other existing volumetric 

medical image segmentation methods (particularly 3D U-net and DenseVoxNet) in our 

segmentation task. Experimental results reveal that the proposed method has achieved 

better performance in colorectal tumor segmentation in volumetric MRI than others 

have. Besides, the proposed method has total parameters approximately 0.7 million due 

to its simple network architecture, which is much fewer than DenseVoxNet with 1.8 

million and 3D U-net with 19.0 million parameters.  

Study II: Objective: An accurate diagnosis and staging of colorectal cancer at early 

basis is the supreme interest in the oncology where medical experts have to decide the 

treatment plan that a patient should go for either therapy or surgical operation. 

Radiomics is a semiautomatic/automatic quantitative diagnostic technique that decodes 

the encoded information in large medical imaging datasets, quantitatively. Radiomics 

measures tumor heterogeneity for diagnosis of several cancers types non-invasively, 

thus by providing an accurate prognostic or predictive model. Several studies have been 

carried out to create radiomics based prognostic model for different clinical issues such 

as patient survival outcome, treatment response, tumor grading, and more where several 

types of radiomics were used. Therefore, it is difficult to say that what radiomics 

features are useful in the assessment of colorectal cancer. Hence, the goal of this work 

is to find which of the radiomics features are the most appropriate in predicting 

complete tumor response to neoadjuvant therapy, and to assess the possible correlation 

among these features.  

Methods: 3D MRI used in this study, was consisted on 43 patients. Consequently, 

among 43 patients, we have 23 patients observed as complete responders and 20 

observed as non-responders. Two different types of radiomics features were extracted 

from our data; traditional handcrafted radiomics features and deep radiomics features. 

A total of 109 handcrafted radiomics features were calculated from each MRI volume 

in this study. Furthermore, 4096 deep radiomics features for each patient, are computed 

using transfer learning from a pre-trained convolutional neural network (CNN_S). 
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Since high accuracy, efficiency, and reliability are crucial factors in the obtained 

predictive and prognostic models, which totally depend on the success of radiomics 

based clinical biomarkers. Therefore, to examine the effectiveness of radiomics based 

features in achieving an accurate predictive model, it is necessary to validate and 

compare different machine learning models utilizing all possible radiomics features. 

For this purpose, in this thesis, the most widely explored supervised machine learning 

based classifiers were employed. Besides, radiomics have high space dimensionality 

problem like any high-throughput data-mining field. In this regard, we have assessed 

the performance of six different feature selection algorithms, which can improve the 

performance of radiomics based predictive models in different ways. Cross-validation 

was performed in 100 rounds by partitioning the data as 75% for training and 25% for 

testing. 

Results: Using only handcrafted radiomics features, Artificial Neural Network 

(ANN) classifier and Fisher as feature selection algorithm have achieved the best 

predictive performance in term of mean area under the ROC curve, AUC, ( i.e., AUCs 

[mean ± Std]; 0.79 ± 0.016 and 0.8 ± 0.01, respectively). The best prognostic 

performance using only deep radiomics features was achieved by linear support vector 

machine (LSVM) classifier and Relief based feature selection algorithm, as 0.8 ± 0.042 

and 0.82 ± 0.04, respectively. Whereas, when using a combination of both handcrafted 

radiomics and deep radiomics features, almost all classifiers in combination with every 

feature selection algorithm gave better AUC and the best accuracy was given by the 

LSVM classifier and the Relief based feature selection, as 0.84 ± 0.025 and 0.87 ± 

0.013, respectively. 

Conclusion:  we found that the integration of these both handcrafted and deep 

radiomics features increases the performance of the majority of predictive models. 

Moreover, the best performance was given by LSVM with all feature selection 

methods, and Relief based feature selection algorithms gave the best prognostic 

performance in combination with all classifiers. 
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3DFCNNs, segmentation results by 3D FCNNs (red), and 3D FCNNs + 3D Level Set 

(red) overlapped with true ground truth (green), correspondingly. Similarly Second, 

third and fourth three columns are related to predicted probability, segmentation 

results by rest of methods; 3D U-net (red), 3D U-net + 3D Level Set (red), 

DenseVoxNet (red), DenseVoxNet + 3D Level Set (red), 3D MSDensenet (red), and 
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CHAPTER 1 

INTRODUCTION 

This thesis presents two different research studies, conducted independently, 

considering the same application. First work is related to the evaluation of deep 

learning based algorithms for segmenting colorectal cancer/tumor in 3D magnetic 

resonance imaging (MRI) and second is related to the assessment of machine learning 

based approaches as being radiomics based prognostic models in prediction of tumor 

response to neoadjuvant chemoradiotherapy (CRT) in colorectal cancer using 3D MRI. 

1.1 Motivation  

Colon and rectum are fundamental parts of the gastrointestinal (GI), or digestive 

system. The colon, which is also called large intestine starts from the small intestine 

and connects to the rectum. Its primary function is to absorb minerals, nutrients, and 

water, and remove waste from the body [1-2]. Colorectal cancer or rectum/bowel cancer 

is diagnosed as the third most common in the United States (US) trailed by lung cancer 

and breast cancer. Colorectal cancer is the second leading cause of cancer death 

worldwide; about half of million people die due to this type of cancer where women 

and men are equally affected [3]. 

Early diagnosis and accurate staging of colorectal cancer plays a crucial role in 

oncologic patients' management, especially in personalized treatment plans. Generally, 

medical diagnosis of suspected cancer is carried out in terms of different medical tests; 

such as biopsy or medical diagnostic imaging. Nevertheless, the biopsy can provide an 

informative diagnosis, but it is an invasive diagnostic technique and may not provide 

heterogeneity of the tumor entirely, which is essential in the evaluation of response to 

therapy in colorectal chemoradiotherapy (CRT).  
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On contrary, diagnostic imaging such as magnetic resonance imaging (MRI) and 

computed tomography (CT), which are non-invasive and can provide essential 

information related tumor's characteristics, such as, tumor size and its overall shape, 

tumor heterogeneity and tumor  growth over time; these advantages of medical 

diagnostic imaging techniques make them more preferable than the biopsy. Currently, 

MRI is the most widely explored and excellent imaging modality in the loco-regional 

staging of colorectal cancer [4-5], and T2-weighted MRI has high contrast resolution 

which differentiates the standard rectal wall from diseased tissues more precisely [6]. 

Nevertheless, the role of this technique in the assessment of response to therapy is tough 

as T2-weighted MR images cannot discriminate fibrotic to viable residual tissue during 

neoadjuvant chemoradiotherapy (CRT) through morphologic approach [7]. Mostly, 

these studies were carried out based on visual inspection by expert oncologists. 

Furthermore, visual evaluation presents many limitations compared to quantitative 

measurements such as inter-observer variability due to human eye error [8]. As an 

example, figure 1.1 presents two cases of each complete responders (CR) and non-

responders (NR) to neoadjuvant chemoradiotherapy (CRT). Figure 1.1 (a) versus (b), 

and (c) versus (d) show a visual comparison between responders versus non-responders, 

respectively. In the first case, figure 1.1 (a) versus (b); one may differentiate between 

CR and NR. Whereas in the second case, figure 1.1 (c) versus (d); it is challenging to 

say which is CR and which is NR. For this reason, a possible approach to overcome 

this issue, a multiparametric approach was proposed [9-10]. The multiparametric 

(a) (b)   (c)    (d) 

Figure 1.1: An example of visualizing complete responders versus non-responders. 

(a) and (c) are related to responders and (b) and (d) are non-responders. Red 

rectangles cover tumor related colorectal parts where blue arrows indicate tumor. 
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approach is a combination of any two different modalities including T2-weighted, 

diffusion-weighted images (DWI) [11-13] and dynamic contrast-enhanced MRI (DCE-

MRI) [14-15]. However, the multiparametric approaches have achieved improved 

results but not optimal, which could not ensure a personalized treatment to patients, and 

they could not evaluate the tumor at the cellular level, as well. 

Therefore, taking into account the weaknesses in the procedure of visual inspection, 

there exists a need to develop an accurate semiautomatic/automatic quantitative 

diagnostic technique [16]. In this regard, new MRI biomarkers, such as texture analysis, 

were recently investigated [16-20], [22-24]. Texture analysis is a non-invasive 

quantitative technique, which assesses tissue heterogeneity of tumor lesions 

quantitatively [17]. Typically, these textural features assess the spatial variation of gray 

levels within the observed image/s by utilizing different statistics (i.e., first order, 

second order, or higher order statistics) [19, 21]. Recently, first order textural features 

were extracted from T2-weighted images of rectal cancer and these extracted first order 

textural features played a potential role as being prognostic biomarkers of tumor 

response to neoadjuvant CRT [17-18]. However, these studies were conducted at an 

initial experimental basis with limited datasets.  

Presently, radiomics [25-33]; semiautomatic/automatic quantitative diagnostic 

technique that decodes the encoded information in large medical imaging datasets, 

quantitatively. Radiomics measures tumor heterogeneity for diagnosis of several 

cancers types invasively, thus by providing a prognostic or predictive model. More 

precisely, the radiomics is the method, which extracts features from the medical images 

quantitatively, and these extracted quantitative features are analyzed to get predictive 

or prognostic models in personalized treatment strategies. Additionally, radiomics 

based features can be divided into two categories: 1) handcrafted radiomics features, 

and 2) deep radiomics features [34-38]. The handcrafted radiomics features are based 

on the shape-based, first order, and second order or high order textural features. The 

handcrafted radiomics process is usually conducted on four primary tasks, including 

data acquisition and processing; segmentation of a region of interest (ROI) in the data; 

features extraction and quantification; data integration, feature selection, and model 

building. Whereas in deep radiomics, features are extracted by employing deep learning 

based approaches [32]. Several studies have been carried out to create radiomics based 
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prognostic model for different clinical issues such as patient survival outcome [25, 38], 

treatment response [17-18], tumor grading [26-28], and more [34-37].  

An accurate diagnosis and staging of colorectal cancer at early basis is the supreme 

interest in the oncology where medical experts have to decide the treatment plan that a 

patient should go for either therapy or surgical operation. In literature, multiple 

radiomics based features have been incorporated for different purposes; therefore, it is 

difficult to say that what radiomics features are useful in the assessment of colorectal 

cancer. Thus, the goal of this work is to find which of the radiomics feature are the most 

appropriate in the prediction of complete tumor response to neoadjuvant therapy and to 

assess the possible correlation among these features. 

Beside this work, accurate segmentation of colorectal tumor in 3D magnetic 

resonance imaging (MRI) volume is an essential requirement in colorectal cancer 

chemoradiotherapy. Commonly, the oncologist or radiologist delineates colorectal 

tumor regions from volumetric MRI data manually. This manual delineation or 

segmentation is time-consuming and laborious and presents inter and intra-observer 

variability. Therefore, there exists a need for efficient automatic colorectal tumor 

segmentation methods in clinical radiotherapy practices to segment colorectal tumor 

from large volumetric data, as this may save time, and reduce human interventions. In 

contrast to natural images, medical imaging is generally more chaotic, as the shape of 

the cancerous regions may vary from slice to slice, as shown in figure 1.2. Hence, 

automatically segment colorectal tumor is a very challenging task, not only because its 

Figure 1.2: An illustration of colorectal tumor location, intensity and size 

variation in different slice of a same volume where cancerous region is 

contoured by red marker. 



 

5 

size may be tiny, but also because of its somewhat inconsistent behavior in terms of 

shape and intensity distribution.  

Lately, automatic segmentation of colorectal tumor from volumetric MRI data 

based on atlas [39] and super-voxel clustering [40] have been presented with some good 

performance. Newly, deep learning-based approaches have been explored with 

impressive results in medical image segmentation [41-49]: Trebeshi et al. [41], have 

presented a deep learning-based automatic segmentation method to localize and 

segment rectal tumor in multiparametric MRI by incorporating a fusion between T2-

weighted (T2w) MRI and diffusion-weighted imaging (DWI) MRI. Despite their 

method displaying good performance, it is unclear whether only T2w modality, which 

provides more anatomy information than DWI modality, could be useful for colorectal 

tumor segmentation. Secondly, they employed their implementation on 2D data, as 

most deep learning algorithms are intrinsically designed in 2D nature, while medical 

data, such as CT (Computed Tomography) and MRI are in 3D volumetric form. These 

2D Convolutional Neural Network (CNN) algorithms segment the volumetric MRI or 

CT data in a slice-by-slice sequentially [42-44], where 2D kernels are used by 

aggregating axial, coronal, and sagittal planes in a one-to-one association, individually. 

Although these 2D CNN-based methods demonstrated vast improvement in 

segmentation accuracy in comparison to traditional machine learning algorithms [50], 

the inherent 2D nature of the kernels limits their application when using volumetric 

spatial information. Taking into account the problems in 2D CNN for segmenting 

colorectal tumor in 3D MRI, there exists a need of 3D CNN, such as 3D U-net [45], 

where 3D kernels are used instead of 2D to extract spatial information across all three 

volumetric dimensions. 

1.2 Objectives 

From the above discussion in Section 1.1, this study has two-fold objectives 

consequently. First is related to segmentation of colorectal cancer in 3D MRI, and 

second is to characterize the colorectal tumor into two groups; complete responders 

(CR) and non-responders (NR) to therapy in colorectal cancer. Accordingly, the 

research objectives related to this study are enlisted as follows, 
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a) To design and develop deep learning based algorithm that can automatically 

segment colorectal tumor in 3D MRI volumetric data.  

b)  To design and develop radiomics based prognostic model as biomarkers for 

prediction of tumor response to therapy in colorectal cancer. 

1.3 Contributions to Knowledge 

In this thesis, we presented three different novel contributions related to automatic 

segmentation of colorectal tumor in volumetric MRI data and modeling of radiomics 

based predictive model. First contribution: we have incorporated three different 3D 

CNN based segmentation algorithms, which have successfully been applied in the 

segmentation of volumetric medical images for different applications. These methods 

were employed in our application to segment colorectal tumor in 3D MRI. Second 

contribution: Based on the pros and cons of those 3D CNN based methods, we proposed 

a novel algorithm, 3D Multiscale Densely connected neural network (3D 

MSDenseNet). The third contribution of this thesis is; assessment of predictive model 

using radiomics features in three different cases; Case 1: Predictive model using only 

handcrafted radiomics features, Case 2: Predictive model using only deep radiomics 

features, and Case 3: Predictive model using a combination of handcrafted and deep 

radiomics features, respectively. Considering radiomics features using any case from 

the above three cases; different feature selection and several predictive modeling can 

produce an optimal radiomics based biomarker in tumor response to colorectal therapy. 

In this regard, we incorporated six different feature selection algorithms and seven 

different classification algorithms. 

1.4 Thesis Organization 

This thesis presents a series of self-reliant chapters and these chapters can be studied 

at large extent, individualistically. Chapters 2, 3, 4 and 5 present the theoretical 

backgrounds related to the workflow of this research study. The experimental works 
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related to core contributions of this thesis are presented in chapters 6 and 7, respectively. 

A summary of each chapter of this thesis is presented below: 

 

Chapter 2:  Background on Colorectal Cancer 

 Chapter 2 deals with the comprehensive details of colorectal cancer. It begins from 

colorectal anatomy, pathological anatomy of colorectal cancer, risk factors of getting 

colorectal cancer and followed by quantitative and non-quantitative methodologies for 

colorectal cancer staging. This chapter is written with the collaboration of the 

Department of Radiological Sciences, University of Pisa, Via Savi 10, 56126 Pisa, Italy. 

Chapter 3: Background on Feature Selection and Machine Learning Algorithms 

Since high accuracy, efficiency and reliability are crucial factors in the obtained 

predictive and prognostic models, which totally depend on the success of radiomics 

based clinical biomarkers. Thus, in order to examine the effectiveness of radiomics 

based features in obtaining an accurate predictive model; it is necessary to validate and 

compare different machine learning models utilizing all possible radiomics features. 

Besides, radiomics have high space dimensionality problem like any high-throughput 

data-mining field. In this regard, different feature selection algorithms can improve the 

performance of radiomics based predictive models in different ways. Consequently, 

different feature selection algorithms should be assessed along with different machine 

learning models. This chapter gives a comprehensive revision on widely explored 

supervised machine learning algorithms and commonly used filter-based feature 

selection algorithms. 

Chapter 4: Background on Deep Learning  

Chapter 4 presents the advantages of deep learning and basic building blocks of deep 

learning.  

Chapter 5: 3D Colorectal Tumor Segmentation 

This chapter discusses 3D deep learning algorithms, which have successfully been 

applied in different medical image segmentation applications, mainly 3D fully 

connected convolutional neural network (3D FCNNs), 3D U-net and 3D DenseVoxNet. 

These methods have been incorporated in our application for segmenting colorectal 

tumor in 3D MRI. Furthermore, this chapter presents the pros and cons of above 

methods and, based on these pros and cons, this chapter presents a novel methodology 
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for segmenting the colorectal that is: 3D Multiscale Densely connected neural network 

(3D MSDenseNet). 

Chapter 6: 3D Colorectal Tumor Segmentation ― Experimental Results 

This chapter gives comprehensive experimental detail on segmentation of colorectal 

tumor in volumetric MRI. This chapter presents the validation of the proposed 

segmentation method for volumetric segmentation of colorectal tumor in 3D MRI. In 

addition, the proposed method was compared with other deep learning-based baseline 

methods those were discussed in chapter 5. 

Chapter 7: Classification of Responders and Non-Responders ─Experimental 

Results 

This chapter discusses three different types of radiomics features, handcrafted based 

radiomics, deep features based radiomics and their combination. Based on these 

radiomics features, this chapter evaluates the seven different families of supervised 

machine learning algorithms and six different feature selection algorithms as being a 

prognostic model for prediction of response to therapy in colorectal cancer. 

Chapter 8: Conclusion 

This chapter summarizes the thesis and offers some future research directions. 

  





  

CHAPTER 2 

BACKGROUND ON COLORECTAL CANCER 

This chapter is written in collaboration with staffs of Department of Radiological 

Sciences, University of Pisa, Via Savi 10, and 56126, Pisa, Italy. The aim of this chapter 

deals with an understanding of the basic functional anatomy of colorectal, risk of 

getting colorectal cancer, colorectal cancer epidemiology, and to know about medical 

diagnostic techniques for colorectal cancer evaluation. This chapter presents the 

treatment procedures for colorectal cancer, especially, neoadjuvant 

chemoradiotherapy (CRT). Also, assessment of neoadjuvant chemoradiotherapy is 

explained in this chapter. Basis on this evaluation process, patients may be categories 

into complete responders and non-responders to therapy.  

2.1  Anatomy of Colorectum 

Colon or large bowel is a vital part of the gastrointestinal tract, which starts from 

the esophagus to anus [1], as shown in figure 2.1. Colon is further divided into five 

Transverse Colon, 5%  

Descending 

 Colon, 9% 

Ascending 

 Colon,  

15% 

Sigmoid 

 Colon, 20%  
Colorectum/ 

Rectum, 

50% 

Appendix 

Cecum 

Figure 2.1: Basic anatomy of colorectal/Colorectum 
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parts based on distance from anal margin: rectum (3.5-7.5cm), sigmoid colon (7.5-

12cm), descending colon (25 cm), transverse colon (50 cm) and ascending colon (15-

20 cm) [1], as shown in figure 2.1. In figure 2.1, numbers in percentage (%) show how 

different part of the colon can be affected by cancer. It is shown that rectum is the part 

of the colon, which is the most affected, i.e., 50% [1]. 

2.2 Epidemiology of Colorectal Cancer 

According to recent statistics, this type of cancer is diagnosed as the third most 

common in men (10%) worldwide after prostate cancer (20.3%) and lung cancer 

(17.2%).  While it is the second most common cancer in female (9.4% of the total) 

worldwide after breast cancer (30.9%). Considering these statistics, colorectal cancer 

is the second leading cause of cancer death among oncological patients in both sexes 

[3]. This type of cancer is increasing in the past years due to several risk factors. 

 Nevertheless, modern medical imaging diagnostic techniques and awareness have 

provided positive results to control the spread of this cancer. “From 1980 until 2000-

2002, five-year survival for all patients increased from 51% to 60% in northern Europe; 

from 52% to 62% in western European registries and from 45% to 58% in southern 

European registries [51].” These significant results are achieved because of 

improvement in surgical techniques (i.e., TME: Total Mesorectal Excision, which was 

first, performed in 1982 and became standard surgical therapy and currently, 

neoadjuvant chemo-radiotherapy is widely utilized in colorectal cancer treatments). 

Besides this, better medical diagnostic imaging quality has presented an accurate 

evaluation of pre-operative neoplasm, and this is essential for drawing up an appropriate 

therapeutic procedure and reducing local recurrence cancer risk [52]. 

2.3 Risk Factors 

Nowadays, the main risk factor of getting colorectal cancer is diet intake: a diet 

with full of vegetables and fiber is prescribed as a protective factor by an EPIC 

(European Prospective Investigation into Cancer and Nutrition) in epidemiological 
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study, because fiber allows some important biological mechanism to fight against 

colorectal cancer risk [53].  

The high intake of fat, red meat, and consumption of alcohol (between 30-59.9 

g/day), and cigarette chain-smoking may increase the risk of getting colorectal cancer 

[54-56]. Also, environmental factors and lifestyle are also effective factors in 

developing colorectal cancer [57]. There is another significant increase in the 

development of colorectal cancer after rectal irradiation: patients who underwent 

radiation therapy have approximately a 70% changes of developing rectal cancer 

compared to those underwent surgery therapy [58]. A meta-analysis of 2001 shows that 

another important risk factor of developing this type of cancer is from inflammatory 

bowel disease (IBD) [59].  The rest factors are colorectal cancer etiology, genetic and 

hereditary factors, which have an incredibly significant role [53-59]. 

2.4 Pathological Anatomy of Colorectal Cancer 

Colorectal carcinoma is invasive neoplasia that originates as intestinal epithelium 

TIS (tumor in situ) and can evolve in different morphological ways. It is demonstrated 

that adenomatous polyps can be a precursor of invasive carcinoma, even thug only 5-

10% of them will turn in a malignant tumor. Neoplastic evolution risk is upper 

according to polyps' number, size polyps greater than 2 cm, villous adenoma and the 

presence of dysplasia and polyps hereditary syndrome index [60]. Colorectal tumors 

can be divided into four shape: vegetative tumor that appear as sessile formation 

fungoid-like jutting into the intestinal lumen; ulcerative tumor that looks like a 

malignant ulcer with irregular and raised edges; infiltrative tumor that usually presents 

a central ulcer and a scattered and extensive wall thickening and annular tumor that has 

an irregular surface with broad areas of necrosis [61]. 

According to the World Health Organization Histological Classification, we can 

describe five different types of rectal tumors: Epithelial tumors, Carcinoid tumors, Non-

epithelial tumors, Hematopoietic and Lymphoid neoplasms and Under classified 

tumors. The adenocarcinoma known as epithelial tumors is a main histological type of 

colon cancer. 90-95% of tumors in the colon are adenocarcinomas [60]. 
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2.5 Neoplastic Dissemination 

Intestinal cancer can disseminate itself in many different ways, and directions and 

the dissemination depends on primary localization of the tumor where pararectal lymph 

nodes can be involved in the upper and middle rectum, the intermediate lymphatic 

drainage involves internal iliac (or hypogastric) lymph nodes and sacral group lymph 

nodes. In the lowest lymphatic drainage, below the dentate line, inguinal nodes and 

external iliac chain can be involved [62]. 

During the growth of rectal cancer can infiltrate small venous vessels transferring 

neoplastic cells in the circulation; liver and lung are the most commonly involved sites 

of colorectal cancer metastasis [60]. 

2.6 Colorectal Cancer Diagnosis  

The modern technology has contributed prominently in the medical field. Due 

to the use of these technologies widely, cancer-causing deaths have been reduced. 

According to European Society of Gastrointestinal Endoscopy (ESGE) and European 

Society of Gastrointestinal and Abdominal Radiology (ESGAR) guidelines: CT, MRI, 

colonography (virtual colonoscopy), and Endorectal Ultrasound (EUS) are the 

recommended medical diagnostic imaging techniques for colorectal cancer diagnosis. 

Among these techniques, MRI is more preferable and widely explored for colorectal 

cancer evaluation [4-5]. 

2.6.1 Magnetic Resonance Imaging (MRI) 

MRI, a phased-array surface coils technique, which is the main preoperative 

staging diagnostic imaging test for rectal cancer, particularly 3-Tesla examinations with 

a high accuracy level [63]. MRI has 65-86% overall prediction accuracies for T-staging. 

Whereas, it has better prediction accuracies in detecting larger tumors, T3 and T4, as 

80-86% [64]. The development of T2-weighted fast spin-echo sequence increases the 

spatial and contrast resolution by obtaining a better anatomic assessment of rectal 

tumors details. Morphological study of rectal tumors is based on high-spatial-resolution 
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T2-weighted fast spin-echo sequences on the axial, sagittal and coronal planes. 

Moreover, images are obtained on the axial-oblique plane, perpendicular to the major 

tumor axis [63]. The main diagnostic features that must be analyzed for rectal cancer 

are: Localization/Detection; Tumor (T) staging; Nodal (N) staging; Anal complex 

sphincter and puborectal muscle involvement; Circumferential resection margin 

(CRM); Extramural vascular invasion [63].  

2.7 Treatment for Colorectal Cancer  

The primary goal of surgical therapy is taking control of the primitive tumor, 

maintenance or reconstitution of intestinal continuity with normal anal continence, 

preserving bladder and sexual function, minimizing morbidity and mortality associated 

with surgery [69]. A procedure can include:  

 Complex rectal resections 

 Polypectomy: during a colonoscopy where there is polyp with benign 

appearance. 

 Local excision: it consists of a full-thickness resection with 1 cm of free 

margin, through endoscopic microsurgery (TEM) for proximal wounds 

[69]. 

Local excision, in the case of elective surgery, is appropriate for wound lower than 

4 cm, carcinoma in situ or stage C T1 N0 M0, the absence of lymphatic and vascular 

invasion, a suitable distance from the anal verge [70]. The Local excision technique 

presents a better post-surgery, compared to resective procedures. For stage C T2 N0 

M0 the local excision is avoided with resective surgery of the rectum [51]. The resection 

of the rectum involves adequate disease-free margins and to the removal of regional 

lymph node stations to the tumor site excision. 

For middle and low rectum carcinoma the treatments include [70]: 

 Total Mesorectal Excision (TME) 

 Preservation of autonomic innervations using a nerve-sparing 

technique 
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 Protective ileostomy or colostomy packaging 

The TME, Total Mesorectal Excision, consists of complete removal of 

mesorectum, with lymphovascular tissue, and mesorectal fascia too. Local recurrences 

are dramatically reduced because tumor cells in mesorectum are entirely removed in 

this procedure [71]. The general resective are the anterior resection of the rectum 

(RAR), and abdominoperineal resection (APR) called Miles operation. The RAR is a 

golden standard of rectal cancer surgery, and it leads a colorectal or colo-anal 

anastomosis with the aim to preserve the sphincter. Furthermore, the APR is performed 

when the anal sphincter is invaded, when its functions are compromised or when 

enough tumor-free distal margin is not obtained [69]. After surgery an anatomo-

pathologist, in general, analyze these parameters: 

 Histotype. 

 Differentiation degree. 

 Tumor budding. 

 Resection Margin (proximal, distal, circumferential). 

 Number of lymph nodes examined. 

 Number of lymph nodes metastatic ones. 

The surgeon removes at least 12 lymph nodes during surgery, to have reliable lymphatic 

staging [70]. 

2.7.1 Neoadjuvant Chemoradiotherapy (CRT) 

The Neoadjuvant chemoradiotherapy (CRT) reduces local tumor recurrence, 

increases sphincters-preserving in patients with low-rectal cancer; thanks to down-

staging and downsizing that show lower toxicity and greater effectiveness than 

adjuvant treatment [73]. In the case of the locally advanced tumor (T3/T4 or any T 

with N+), the standard therapy is the combination of surgery (TME) and preoperative 

radio-chemotherapy [72]. In that way, the conventional preoperative radiotherapy 

technique is the three-dimensional conformal radiation therapy (3D-CRT) with a 

multi-leaf collimator, and the treatment unit is called Linear Accelerator (LINAC). 

Following the guidelines of the International Commission on Radiation Units (ICRU 

62), the target volume must include all the mesorectum, the internal iliac and the 
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obturator lymph nodes. For a T4 tumor, are involved the external iliac lymph nodes. 

Usually, the preoperative radiotherapy is so-called long course radiotherapy, 

administered in 28 fractions. The standard preoperative chemotherapy consists of 5-

Fluorouracil (225 mg/m2/die) in continuous intravenous infusion, or Capecitabine 

(825 mg/m2/BID) orally; both the drugs are administered for the entire RT duration. 

Usually, surgery is planned after 7/8 weeks of the preoperative radio-chemotherapy 

ending [72].  These tumors when shows synchronous metastasis at the time of 

diagnosis should be treated using the preoperative radiotherapy, the rectal resection 

surgery, and hepatic metastasis resection in simultaneous operation, performing after 

the surgery some cycles of adjuvant therapy.  

2.8 Evaluation of Neoadjuvant Therapy Response  

The treatment we talked above is a combination of neoadjuvant 

radiochemotherapy and mesorectum total excision. The general indications for this 

therapy based on local recurrence risks like extramural vascular invasion, locally 

advanced rectum tumor (LARC) T3 and T4 with an invasion beyond muscolaris 

propria more than 5 mm, tumor distance from mesorectal fascia less than 1mm, lymph 

node involvement (N+) and sphincter proximity or involvement in lower rectum 

tumors [63]. A percentage of patients between 10% and 30%, at the end of the 

neoadjuvant treatment, have a complete response (pCR) characterized by the absence 

of neoplastic tissue. While others have a partial response and other ones are non-

responders [74].  Patients with complete response are considered for different 

therapeutic approaches as minimally invasive surgery, or clinical surveillance and; 

only for partial or non-responder patients are recommended for surgery. The outcome 

is evaluated before the surgery. During the assessment of clinical response, the 

nomenclature ycTN is used, where “y” means a neoadjuvant post-therapy evaluation 

(at the tumor and lymph node level); “c” means that are used clinical criteria [75]. The 

clinical criteria are clinically examined by endoscopy or other medical diagnostic 

imaging. Therefore, during the surgery, there is a pathological evaluation, with ypTN 

nomenclature where the p indicates the anatomopathological criterion. It can be 

introduced as TRG (Tumor Regression Grade), related to a classification of post-
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irradiation fibrotic changes compared to residual neoplastic cells. With the aim to 

categorize therapy outcomes based on the number of regressive changes after the 

treatment, the TRG in according to Dworak can be shown as follow [76-77].  

Table 2.1: The TRG system according to Dworak [76] 

TRG0  No regression  

TRG1  Dominant tumor with fibrosis and/or vasculopathy  

TRG2  Significant fibrosis with groups of tumor cells (easy to find)  

TRG3  Predominant fibrosis or mucin with very few tumor cells 

(challenging to find microscopically) 

TRG4  No tumor cells, only fibrotic mass (total regression)  

The outcome is evaluated with morphological, dimensional and intensity criteria on 

T2-weighted images using with the diffusion-weighted imaging technique. 

Furthermore, complete response to therapy can be assessed in two ways; visual 

inspection using multiparametric MRI and the quantitative approach by applying 

radiomics, which more preferable than visual inspection [9, 16-20]. 

  



  

CHAPTER 3 

BACKGROUND ON FEATURE SELECTION AND MACHINE LEARNING 

ALGORITHMS 

The aim of this chapter is to introduce the background of supervised machine 

learning algorithms and filtered based feature selection algorithms. These methods are 

utilized to build a prognostic model using radiomics features (as discussed in chapter 

7); therefore, it is requisite to understand their background to interpret the 

experimental results yield by these algorithms. 

3.1 Machine Learning 

The term ‘machine learning’ generally refers to computational methods/models, 

which utilizes observed data (experience) for generating an accurate prediction [124, 

138-139].  Machine learning approaches are programmable computational approaches 

based on artificial intelligence (AI). These approaches can learn the model from the 

Figure 3.1: A basic block diagram of machine learning.  
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observed data automatically and thus can improve and automate the prediction process. 

In this study, we have assessed machine-learning approaches for radiomics based 

prediction of tumor response to neoadjuvant chemoradiotherapy (CRT) in colorectal 

cancer. Figure 3.1 represents a basic building block diagram of general machine 

learning based approach, which consists of three major blocks: feature extraction, 

feature selection, and training/testing model.  Here, the given input is images, and then 

features are extracted using different statistics. Sometimes, these extracted features are 

in abundance as several numbers of features may increase training procedure time 

exponentially and increase the risk of overfitting as well. Fewer but relevant features 

are desirable which can reduce the computational complexity of the model and can 

provide a good fit. Therefore, conventional machine learning approaches incorporate 

feature selection methods in their operation to produce an accurate predictive model. 

Feature selection algorithms select particular and relevant features by discarding 

redundant and irrelevant features. Those selected features can give a better-fit model 

with high accuracy while requiring fewer features.   

In medical imaging, radiomics [25-33], which decodes the encoded information 

within the medical images, i.e., tumor tissue heterogeneity for predicting or grading 

several types of cancers. More precisely, the radiomics is the method that extracts 

features from the medical images quantitatively, and these extracted quantitative 

features are analyzed to get predictive or prognostic models in personalized treatment 

strategies. Since high accuracy, efficiency and reliability are crucial factors in the 

attained predictive and prognostic models, which entirely depend on the success of 

radiomics based clinical biomarkers. Thus, in order to examine the effectiveness of 

radiomics based features in obtaining an accurate predictive model; it is necessary to 

validate and compare different machine learning models utilizing all possible radiomics 

features. Also, radiomics have high space dimensionality problem like any high-

throughput data-mining field. In this regard, in [146], different feature selection 

algorithms are introduced for feature space dimensionality reduction. Different feature 

selection algorithms can improve the performance of radiomics based predictive 

models in different ways. Consequently, different feature selection algorithms should 

be assessed along with different machine learning models.  
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3.1.1 Machine Learning Types 

There are several kinds of machine learning algorithm depending on the specific 

task and the characteristic of the data. There are some ML types: 

 Supervised learning 

 Unsupervised learning 

 Semi-supervised learning 

 Self-taught learning 

 Reinforced learning 

Supervised Learning: The supervised learning is one of the traditional ML setting 

[124], where a tuple of (xi, yi) is given as input; xi is the input data and yi the 

corresponding target vector (i.e., input labels) [128]. If the target is discrete, we have a 

recognition problem where the machine learns a map (function) made by finite 

categories doing a subsequent classification. If the problem is continuous, we have a 

regression problem [124]. In this thesis, we have incorporated a supervised learning 

based classifiers. 

Unsupervised Learning: unsupervised learning presents training data that includes 

an example of the input vectors without any corresponding input labels [124]. In 

unsupervised learning, we have different objects like clustering, density estimation and 

visualization [124]. The term clustering refers to discover such groups or pairs of 

similar examples by measuring the resemblances between the examples [124]. The 

density estimation and visualization identifies the data distribution and transforms the 

data from high-dimensional space to low-dimensional space (i.e., dimensional 

reduction [137]).  

Semi-supervised Learning: In this ML type, a considerable extent of unlabeled data 

is given to the algorithm for learning good feature representation of the input. It's a 

halfway between supervised and unsupervised learning, the training samples are parted 

into two portions: the data samples Xk = {x1, ..., xk} with corresponding known labels 

Yk = {y1, ..., yk}, and the data samples Xu = {xk+1, ..., xl+u} where the labels are not known 

[127]. Here, the unlabeled data has the same distribution as the labeled data.  



 

20 

Self-taught learning: The self-taught learning is also a halfway but unlike the semi-

supervised learning; self-taught learning assumes unlabeled data Xu that does not come 

from the same distribution as the labeled data Xk [131].  

Reinforced Learning: The reinforced learning solves problems involving 

interactions with the environment and chooses the correct actions because of individual 

circumstances. In this case, there are no examples, but the algorithm learns by itself 

through a trial and error process. 

3.1.2 Hyper-Parameters 

   Hyper-parameters refer to a selection of model with particular parameters that 

can enhance the performance of the machine learning algorithm. We have different 

hyper-parameters setting, and they are characteristic for each model. For example, there 

is the learning rate (continuous value) and the number of neurons (discrete value) for 

the Artificial Neural Network (ANN) model. The researcher gives these values through 

the operation called-so "fine-tuning," and sophisticated techniques obtain them, but 

sometimes it uses the empirical method, running different algorithms in parallel and 

choosing the best combination. 

3.1.3 Model Selection 

  The principal object is choosing the values of such hyper-parameters to obtain 

the best generalizability in the ML algorithm [127]. For avoiding the problem of the 

over-fitting, the data set is parted into three parts: the training set, and validation and 

test set. During training of the model, different hyper-parameter settings are 

incorporated where these hyper-parameters are compared on the validation to select the 

best-trained model [124]. The test set, the last fraction, is used to evaluate the model in 

terms of generalization to predict the output.  

 Another technique is often used when there are not enough data; it is called 

cross-validation. It consists of a division of the data set into two portions obtaining the 

training and the test set, respectively. K-fold cross-validation is a common type of 

cross-validation. In this type, the data is randomly partitioned into equal sized k-
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subsamples [124]. In K-fold cross-validation, K-1 sub-samples are employed for the 

training of a model while the single rest sample is used as a validation set to validate 

the model [124]. This process is repeated for several rounds where every subsample is 

used once in the evaluation process, and selection of the final model is a mean of all 

rounds. Another type of cross-validation is leave-one-out. In this type, the size of k is 

equal to the number of samples. The number of rounds in the Cross-validation increases 

by the factor of k, which consequently increases the computational complexity. The 

computational aspects must be taken into account, and this is one aspect of the methods 

for boosting hyper-parameters, such as coordinate descent, grid search or random 

search, multi-resolution search [122]. 

 Coordinate descent: we change one hyper-parameter at time  

 Grid search: it works on all the possible groupings of the chosen hyper-

parameters [122], with an apparent problem of increasing number of 

parameters. The number of possible combinations increases exponentially (for 

example, with 5 parameters, where each of these takes 4 values, we will have 

45 = 1024 combinations). Fortunately, it is possible to parallelize the work 

making it cheaper on time and computationally efficient. 

 Random search: all the parameters are changed at the same time. It includes 

prior distribution knowledge to sample every hyper-parameter independently 

[122]. Random sampling is more efficient, especially when the number of 

parameters starts to grow (i.e., over 3). 

 Multi-resolution search: the idea is starting with a selection of the hyper-

parameters with mostly sized steps. Afterward some best configurations, the 

steps are reduced in dimension to optimize the configuration in detail [122]. 

3.1.4 Under-fitting and Over-fitting 

 In machine learning, the object is maximizing the predictive accuracy of new 

unknown data. When a model fits well with the training set while giving a bad 

predictive accuracy on new data [130], is called the over-fitting problem. Regarding 

under-fitting, we observe the opposite of the over-fitting that is a function, which not 
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follow well the training data set giving a poor representation of the exact function [124]. 

Naturally, the model which neither perform well with training nor with test data sets. 

3.2 Supervised Classification Methods  

  The following is a discussion of the primary methods of classification in ML, 

those we used in our study. The methods are:  

 K-Nearest Neighbour (KNN) 

 Logistic Regression (LR) 

 Artificial Neural Networks (ANN) 

 Linear Discriminant (LD) 

 Support Vector Machines (SVM) 

 Naïve Bayes (NB) 

3.2.1 K-Nearest Neighbour (KNN) 

KNN is straightforwardly easy to understand, and commonly used classification 

method [129]. This method solves the classification problem using Euclidean 

distance/similarity function by following two steps. The first one is the calculation of 

the distance between two instances, and the performance of the method is obtained from 

the distance metric, which is used to identify the nearest neighbors [129, 132]. The 

second step involves determining the class of new data points, identifying the 

corresponding label of the k nearest neighbors, which have been known in the previous 

step [124, 129]. Finally, instances that are apart from each other at a small distance have 

more chances to be grouped in the same class comparing to those who have high 

distance.   

KNN Hyper-Parameters: The hyper-parameter for the KNN method is the selection 

of K value (i.e., number of nearest neighbors). By changing this value, we obtain 
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different dimensions for each classification region (a smaller K value produces more 

but smaller classification regions and vice-versa) [124]. A good choice of K is a small 

value because it controls the degree of smoothing. In our study, we have set K = 4.  

3.2.2 Logistic Regression  

The LR is called in that way for the similarity with the linear regression, but it is a 

method of classification, not regression, it works on the probability of outcome Y, given 

a specific feature X, and then Pr( 1| )Y X . Given a value X, it could predict if a given 

Y-class label is positive or negative in binary classification. For instance, any data point 

where it is verified Pr( ) 0.5X  , Y is classified as positive. The probability is estimated 

as follow, with the logistic function Pr( )X , where 0 and 1  are the parameters of the 

model. 
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Logistic Regression Hyper-Parameters: Manipulating with the logarithm the previous 

equation we arrive at the following relation  
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The values 0 and 1  can be estimated by the technique called maximum likelihood 

[133]. The maximum likelihood tries to find 0 and 1 so that probability Pr( )X  

approaches as much as possible to 1 for all data points ending in the positive class. As 

for the data points of the negative classes Pr( )X  must be close to 0. This way is 

mathematically formalized by maximum likelihood function as follow: 
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3.2.3 Artificial Neural Networks (ANNs) 

It is called the ANNs because initially, it was an attempt to represent 

mathematically the information processed in the nerve cells, the neurons. The neuron 

is the basic unit with inputs and outputs, and each neuron is connected through a 

synapse, which controls the gain of the signal from each source. In the ANNs design 

the neuron, that mimics the behavior is a perceptron that takes several inputs with their 

associated weights wi, if the input weight exceeds a certain defined threshold, a 

particular output signal is activated. Mathematically speaking, the perceptron can be 

defined as the following equation: 

1

n

i i

i

y w x b


 
  

 
                                        (3.4) 

Here, y is an output signal,   is the activation function, n the number of the connection 

of perceptron, xi represents the values of the i-th connections, and b the threshold (or 

bias). 

 The strength of this method is given when more perceptrons are combined to 

work together forming an ANN. To form a network, we organize the perceptrons in 

layers where each of it takes inputs from the previous one, and applies weights and 

(a)                                                                      (b) 

  Figure 3.2: This block diagram represents the Perceptron model. (a) Every 

activity is multiplied by a weight and passes through a weighted sum and finally 

is computed using an activation function, and (b) ANN consists of three layers 

that are fully connected. 

 



 

25 

passes the signal to the next layer appropriately, as shown in figure 3.2. By 

incorporating hidden layer/s, we reduce the limitation associated with the use of a single 

perceptron to learn [134]. The training of an ANN occurs with the adjustment in each 

node of the weights so that the error between the desired output and the current one is 

reduced (but not eliminated) and this process requires the ANN to compute the error 

derivative of the weights [135]. In other words, there is an evaluation of the error 

variation when each weight changes its value. The random initialization of weights is a 

way to do that, feeding the network with examples; the error made by the network at 

the output is calculated and is used backward in the process of back-propagation. 

Repeating this process many times, the ANN can distinguish between different classes.  

ANNs hyper-parameters: We use backpropagation ANNs with five hidden considering 

900 training epochs. 

3.2.4 Linear Discriminant (LD) 

Linear Discriminant (LD) is one of the machine-learning approaches that divide 

the data points into classes and categories [120]. LD applies statistical properties on the 

data to differentiate the data into classes. Assuming the conditional PDF (probability 

density function), ( | 0)p x y  and ( | 1)p x y   are normally distributed with mean and 

covariance parameters are 0 0( , )   and 1 1( , )  , respectively. LD based prediction 

model utilizes Bayes theorem where the probability of second class is estimated by 

comparing the log of likelihood ratio with certain of threshold T as follow:  

                  
1 1

0 0 0 0 1 1 1 1( ) ( ) ln | | ( ) ( ) ln | |T Tx x x x T                     (3.5) 

Here, each class utilizes its own mean and covariance, and makes the classifier as 

quadratic discriminant analysis and using the assumption of homoscedasticity, we 

obtain: 
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   with 𝜀𝑖 Hermitian                           (3.6) 

       We obtain from this criterion a threshold w x c  . 

 For some threshold constant C we, will have;  



 

26 

        

1

1 1 0

1 1

0 0 0 1 1 1

( )

1
( )

2

T T

w

C T

  

     



 

 

  
                                           (3.7)                           

In other words, the criterion of the input x being in a class y depending on a linear 

combination of the known observations. LD has a closed form solution and therefore 

no hyper-parameters. The solution can be obtained by an empirical sample of class 

covariance matrix [121]. 

3.2.5 Support Vector Machine (SVM) 

The SVM is one of the classification approaches presented in the '90s by Boser 

et al. [125], and it presented the appreciable performance in solving problems related 

to classification and regression [122]. In contrast to ANNs, the SVM involves a problem 

of optimization of a convex function where each single local solution is considered as 

a global solution [124]. To understand the SVM technique, it is essential for introducing 

some concepts such as hyperplanes, maximal margin classifiers, and support vector 

classifier. A hyperplane is defined as a two-dimensional subspace of dimension p-1 in 

a p-dimensional space and is defined by a simple equation: 

0 1 1 2 2 0.p pX X X                                                 (3.8) 

A hyperplane is useful to identify the class of the data points depending on their 

location corresponding to the hyperplane and the regions it subdivides, as shown in 

Figure 3.3: This figure shows a one-dimensional hyperplane 𝛽0 + 𝛽1𝑋1 +

𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 = 0 and every region is identified observing how the 

hyperplane divides the space. In other words evaluating𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +

⋯ + 𝛽𝑝𝑋𝑝 ≤ 0  and𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 ≥ 0 
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figure 3.3. To decide which hyperplane should be chosen, the maximal margin classifier 

is used in the decision process. The margin refers to the minimum distance between the 

hyperplane and some samples, where the closer data points from the hyperplane appear, 

known as support vectors [124]. The maximum margin is obtained from a problem of 

optimization as follow: 

 minimize 

21
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i iy w x b i   ,             (3.9) 
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Lagrange theory:  
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where i  is the Lagrange multiplier for every single constraint, in such a way, we have 

a new object function co i ncerning [123]. We have a twofold problem because finding 

a value of 𝛼𝑖 is a finding the value for w, and vice-versa. The decision function for a 

new c input is written as
1

( )
n T

i i ii
sign y x c b


 
  . If all values of i  are zero then w is a 

linear combination of insufficient data points, and where i  is not zero we obtain the 

support vectors those find the choice of the hyperplane [124]. The support vectors are 

the bounds and a function of the training data misclassification error and the complexity 
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related to the capacity of the model [123]. Until now, we have assumed the possibility 

to separate two classes correctly in a linear way, when it is impossible it is used the soft 

margin technique. With a soft margin, we lessen the effect of specific data points to let 

some of the training points to be misclassified (positioned on the wrong side of the 

hyperplane) [123]. We introduce slack variables 0i  with  1,...,i n   , with 

one slack variable for every single data point [124]. The underlying problem is 

transformed as follow: 

     minimize    
2

1

1
|| ||
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n
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i

w C 


  subject to ( ) 1 , 0T

i i i iy w x b i      , (3.11) 

The term C > 0 controls the trade-off between the necessities of a lower error and 

maximizes the margin obtaining less stringent constraint [124]. For 0i  we have 

the point data inside the right margin, or on it. With 0 1i   data point is inside the 

margin where it is on the correct region of the hyperplane, and it is classified correctly 

on the decision boundary. If 1i  , the data is misclassified [124]. Considering a linear 

increase for the penalty of misclassification with   and 
1

n

ii


   is an upper bound on 

the number of misclassified points. We can formulate the primary problem as a twofold 

representation as follow: 
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Differently from the previous case, here, we observe the upper bound on i [123] in a 

convex quadratic programming work where an optimum value for C cannot be found 

experimentally using a linear boundary. The idea is transforming the data points from 

the original input-space function into a high-dimensional feature-space; where it is 

possible to divide them using a linear function. The linear function in the new space is 

nonlinear in the input space [124]. We have a transformation that can be defined as
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( ) : n nx R R


 , where n n  [123]. We can rearrange the dual optimization problem 

as follow: 
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Computing ( )ix is very costly, and the kernel is used to avoid the inner product. The 

formula gives the kernel function: 

( , ) ( ) ( )T

i j i jK x y x x                               (3.14) 

where we can observe the likeness extent between arguments [123]. 

The kernel uses the inner product between the mapped data points, which is assessed 

without the explicit mapping function. Using the kernel function in the previous twofold 

problem of SVM in training [124] : 
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This “kernel-trick” is employed to avoid computing 𝜃(𝑥) explicitly. New points z are 

now classified as follow: 
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with 𝑠𝑖 support vectors and 𝑁𝑠 is the number of support vectors [124]. We have more 

than one kernel but for the practical seek we introduce two of them, and they are the 

Polynomial of degree ‘p’ and Radial Basis Function (RBF). 
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 Polynomial of degree ‘p’              ( , ) ( 1)pK a b a b    

 Radial Basis Function (RBF)       
2|| || 2( , ) / 2a bK a b e       

In the polynomial kernel we need to determine p, and for RBF-Kernel we need to select 

an appropriate 𝜎. Changing kernels, we obtain different non-linear classifiers with the 

same algorithm, but on other hands, the selection of the specific kernel function limits 

the transformation type to be applied on the data [123].  

With the classification, we can use the SVM technique for regression tasks too. 

The  -insensitive error is utilized to penalize the data points evaluating if the difference 

between the prediction function and the target is greater than   [124]. Assuming the 

presence of noise, constraints like i iy w x b     and i iy w x b   are well-

defined letting a deviation 𝜖 from the predictable function [123]. We can visualize the 

constraints like a regression tube with size 2𝜖. As in the previous case, we introduce 

slack variables 0i  and ˆ 1i   for every type of error, two of them in this case. 

Similar than before if ˆ0i i   the point lies inside the tube, the sample above the tube 

has obviously 0i  and ˆ 0i   [124]. In this case, for a linear 𝜖 −

𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 we have the following problem:  

minimize  2

1
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                   (3.17)                                   

The term
21

|| ||
2

w  is the regularization term to control the complexity of the regression 

algorithm, and C controls the trade-off between the number of errors and the model 

complexity, which are tolerated (for instance if a higher amount of errors leads with a 

more complex model) [123, 128]. Another term of control is 𝜖, that term controls the 

width of the regression-tube where bigger is this value, lower is the number of data 
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points in the tube giving a more straightforward function [128]. We can use the kernel 

technique on the regression model if it presents a non-linear function with the same 

strategy as in the section above. 

SVM Hyper-Parameters: SVM hyper-parameters are selected subject to the use of  

kernel-function, except the term C, different terms appear:  

 C: C > 0 controls the trade-off maximizing the margin and minimizing the error 

due to misclassified points. If C is too large, we have a narrow and complicated 

margin so that over-fitting can occur for this term, with a large C [124, 126]. 

 The RBF, Radial Basis Function Kernel is controlled choosing the hyper-

parameter γ. Choosing γ, we choose the complexity of the margin; for example, 

a smaller γ gives a more straightforward margin. A higher complicate margin 

[126]. 

 In the Polynomial Kernel, the degree of polynomial P is a hyper-parameter 

[126]. 

 When the Linear Kernel ( , ) TK a b a b   is used, it is not necessary for 

selecting kernel/parameters [123, 126]. 

In our study, we used two types of the kernel in the SVM algorithm, linear (we named 

as, LSVM), and polynomial (we named as QSVM) with P = 2. We set the C = 0.5 for 

both kernels.   

3.2.6 Naïve Bayes (NB) 

The probabilistic nature of Bayesian classifiers is useful for implementation in 

computer decision support settings. This classifier works by merely assigning each 

observation to the most likely class j, given a particular feature x0, as per it is conditional 

probability[133, 136]. Conditional probability is the probability that Y= j given x0 as 

per: 

                                                   
0Pr( | )Y j X x                                      (3.18) 
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It works choosing the class which conditional probability is largest, and the 

Bayes error rate represents the probability of misclassification on the instance as follow 

: 

01 max Pr( | )j Y j X x                            (3.19) 

Classification is done by values of multiple features where all features are 

assumed to be conditionally independent given the class label. Even though this 

approach usually false, but the result works very well. Using probability distribution, 

we obtain the characterization of confidence in classifier prediction, allowing prediction 

with low confidence to be rejected and passed to a human.   

3.3 Feature Selection Algorithms 

Feature selection refers to an automatic selection of the most relevant variables or 

attributes while removing undesired irrelevant variables from data, which aids to create 

an accurate and more straightforward predictive model with those selected fewer 

variables [138-139].  

Generally, there are three types of feature selection methods, including filter 

methods, wrapper methods, and embedded methods. The last two methods, wrapper, 

and embedded methods are classifier dependent approaches, whereas, the first ones, 

filter methods, are classifier independent. 

Wrapper methods are the search methods, which search through the whole feature 

space and identify a relevant and non-redundant feature subset where several 

combinations are assessed, and compared to other combinations [140]. These methods 

are computationally expensive methods and may generate feature subsets those are 

overly particular to the classifiers and hence has low generalizability. 

Embedded methods include feature selection as a part of the training process because 

these methods can learn the best attribute/variable, which enhances model accuracy 

while the model is being produced. They are computationally efficient as compared to 

the wrappers. However, they still use a quite strict model (classifier) structure 

assumption and hence lacks in the generalizability.  



 

33 

Filters are computationally efficient, and they have high generalizability and 

scalability, and these are some reasons why they are often used. These methods are 

classifier-independent methods, and they are the simple feature ranking methods based 

on some heuristic scoring criterion. Filters based methods employ simple statistics to 

describe a scoring to every attribute. The defining component of filter-based feature 

selection methods is the scoring/selection and ranking the scored features criterion, 

which is often known as ‘relevance index.'   

Filters methods are further categories into two types: univariate and multivariate 

methods. The univariate filters methods includes scoring criterion based on considering 

attribute relevancy and eliminating attribute redundancy (some examples of these 

methods are Fisher score, Relief, T-test, Chi-square, and Mutual information 

maximization), whereas multivariate methods (for instance Minimum redundancy 

maximum relevance) examine the multivariate relations within attributes, and the 

scoring criterion is weighted average of attribute redundancy and relevancy. The 

attribute relevancy is an association of the attribute with the target variable, while the 

attribute redundancy is the extent of redundancy existing in a specific attribute 

concerning the set of already selected attributes [140]. This feature selection problem 

could be defined, as done by Brown et al. [141]. Where J be the scoring criterion 

(relevance index), Y is the class labels, X be the set of all features, Xk be the feature to 

be assessed, and S be the set of already selected features.  

In the following paragraphs, we will concentrate in the description of some feature 

selection methods mentioned before.   

3.3.1 Fisher score  

Fisher score [142], filter-based feature selection method, which selects features 

such that the distance between the two classes is maximized and the within-class 

distance is minimized. The scoring criterion is defined as, 

   

       

2 2

,1

2 2

,1

( )
( )

m k m km
Fisher k

m k mm

n
J X

n

 












,            (3.20) 

 



 

34 

where 
k is the overall mean of the feature

kX ,
mn  is the number of samples in m-th class, 

and 
,k m and

2
,k m  is the mean and variance of the feature

kX  on m-th class. 

3.3.2 Relief  

Relief [143], assumes p randomly sampled data instances and defines the 

scoring criterion as, 

     , ( ), , ( ),

1

1

2 t t

p

Relief k t k NM x k t k NH x k

t

J X d X X d X X


                    (3.21) 

 

where 
,t kX is the value of instance 

tx on features
kX ,

( ),tNM x kX  and
( ),tNH x kX  are the values 

on the k-th feature of the nearest point to 
tx with the same and different class label 

respectively, and (.)d  denotes the distance. 

3.3.3 T-test (T_Score)  

T-test based feature selection evaluates a feature using a t-score, which is 

defined as, 

             ,                                          (3.22) 

 

where
1 ,

2  and 2
1 , 2

2  are the means and variances of the two classes on the feature
kX

, whereas 
1n and

2n  correspond to the cardinality of the two classes. 

3.3.4 Chi-square (Chi_Score) 

Chi-square score for a feature with r different values is defined as, 
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where 
imn  is the number of samples with i-th feature value in m-th class and m i

im

n n

N
    

Here, 
in 

 is the number of samples with i-th feature value, 
mn  is the number of samples 

in class m and 𝑁 is the number of samples. 

3.3.5 Mutual information maximization (MIM) 

Mutual information maximization [144] uses information theory to measure the 

relevance of a feature. The scoring criterion is defined as mutual information between 

a feature and a class label. It is given as, 

min ( ) ( ; )k kJ X I X Y .                                              (3.24) 

3.3.6 Minimum redundancy Maximum relevance (MrMr) 

Minimum redundancy maximum relevance (MrMr) [145], tries to evaluate 

feature using relevancy-redundancy trade-off. Here the configurable parameter 𝛽 is set 

as the cardinality of the set of selected features. Hence, the scoring criterion is defined 

as,   

   
1

( ) ; ;
j

mrmr k k k j

X S

J X I X Y I X X
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   .                        (3.25) 

  



  

CHAPTER 4 

BACKGROUND ON DEEP LEARNING 

The primary goal of this chapter is to understand the basic building blocks of deep 

learning. It is essential to get fundamental knowledge of a basic working principle of 

the deep learning, which subsequently helps in understanding the deep learning-based 

segmentation algorithms described in Chapter 5, and their experimental results 

explained in Chapter 6. The main architectures of deep neural networks are discussed 

in Section 4.3 followed by their sub-sections. The primary motivation of using deep 

learning is mentioned in Section 4.2, before this, a fundamental concept of traditional 

feed-forward ANNs is given in Section 4.1. Network training is explained in Section 4.5 

and, as regularization improves the performance of the network training, explained in 

Section 4.4. 

4.1 Basic Concept of Feed-Forward Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) also known as neural networks (NNs), which 

are computing systems imprecisely inspired by the biological neural system of the 

human brain [78]. Neural networks consist of single neurons unit, which creates the 

neural networks by their connections with each other [79]. The fundamental concept of 

ANNs is to extract linear relationship in derived input features, and then the target is 

modeled by mapping these derived input features by non-linear activation function [80]. 

Figure 4.1 illustrates the basic structure of a single neuron. Here, x1, x2, and x3 represent 

inputs, +1 denotes bias (b), and w1, w2, and w3 indicate weights. Finally, H(x) is an 

output, which is obtained by the sum of weighted inputs transferred through activation 

function, and mathematically can be expressed as:  
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4

1

( ) i i

i

H x g x w b


 
  

 
                                     (4.1) 

where g(·) represents a nonlinear activation function. Traditionally, neural networks 

were modeled using hyperbolic tangent function Tanh and sigmoid as non-linear 

activation functions but recently rectified linear unit (ReLU) function is more efficient 

computationally [81]. These activation functions are described in section 4.3.4. 
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Figure 4.1: An illustration of a unit neuron with four inputs. 
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Figure 4.2: An example of feed-forward or multilayer perceptron 
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According to equation (4.1), each xi is weighted by multiplying its value with every wi, 

individually. After that, the weighted inputs are summed up along with bias (i.e., offset). 

The final output is obtained by transferring their linear combination through the 

nonlinear activation function g(·) [79].  

Generally, ANNs consist of tri chronological layers as shown in Figure 4.2, 

where layer 1 and 3 are input and output layers, and middle layer 2 is a hidden layer, 

respectively.  There are many hidden layers can be integrated depending on complexity 

in decisions, where the previous layer is fully connected to the next one. In other words, 

each neuron in every previous layer is connected with each neuron of the next layer as 

shown in figure 4.2. These types of networks are known as feed-forward neural 

networks or also known as multilayer perceptron, in which inputs are always passed in 

the forward direction without any closed directed loop [82]. Furthermore, the network 

requires a backpropagation process which adjusts and updates the weights wi in the 

training phase to learn a general rule from the given training data. In section 4.5.1, 

backpropagation process is explained. 

4.2 Deep Learning  

Deep learning [83] has recently emerged as a successful and popular methodology 

in computer vision, speech recognition and natural language processing. Deep learning 

is also known as deep convolutional neural networks; abbreviated as CNNs or 

ConvNets. CNNs have successfully attained many breakthroughs and state-of-the-art 

performance in various computer vision applications, including image classification 

and recognition [84-85], semantic segmentation [86-88], stereo matching [89], and 

object detection [90-91]. Convolutional neural networks (CNNs) have a very close 

resemblance to traditional neural networks (NNs). Similarly, CNNs are made-up of a 

group of neurons to have learnable weights and biases. As ordinary NNs performs dot 

product operation as discussed in section 4.1 and from equation (4.1). Similarly, CNNs 

utilizes a linear operation namely, convolution (where inputs are convolved with 

weights of different kernel sizes) followed by a nonlinear activation function. Besides, 

they also contain loss function such as cross-entropy based Softmax loss or SVM Hinge 

loss on the last layer (i.e., fully connected (FC) layer). Thus, all the approaches that are 
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developed for learning regular Neural Networks parameters still apply to the CNNs  

[92]. However, both networks contain the same properties but CNNs still expresses a 

single differentiable score function: as CNNs takes input as raw images and processes 

the input on one end to class scores at the other. 

The main question arises that if these both networks have similar properties where 

every developed method have been learned for Neural Networks can be utilized in 

CNNs, then why there exists a need to learn another type of network like CNNs? An 

explicit assumption made by CNNs, which allow us to incorporate certain 

modifications into the network architecture; making the network computationally faster 

and reduces the number of parameters.  

In short, CNNs takes advantage of three crucial considerations those may help to 

improve a machine learning system, such as 1) sparse interactions, 2) parameter 

sharing, and 3) equivariant representations [83]. These three properties make CNNs 

more efficient, to be able to reduce the number of parameters in the whole network 

dramatically. Moreover, convolution offers several ways to deal with inputs of variable 

size. 

Convolution 

Layer 

Convolution 

Layer 

5 filters with 

kernel size of  

5×5×1 

3 filters with 

kernel size of 

3×3×1 

Feature maps Feature 

maps 

Input  

Figure 4.3: An example of convolutional networks by applying different size of filters 

but smaller than the input size. Each thin cuboid represents one feature channel that is 

convolution output obtained by applying one filter on the preceding input. 
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In conventional neural network layers where every output unit interacts with every 

input unit, as shown in Figure 4.2. Whereas, CNNs provides sparse interactions 
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Figure 4.4: An example of ordinary NNs or fully connected neural networks. The 

top row (i.e., output) is molded by matrix multiplication with full connectivity. 

The black arrows point out the effect of input units over the output units, and it 

demonstrates that all units along with red circles in the bottom row affect the 

output y3. The figure is redrawn from [83]. 

 

Figure 4.5: An example of convolution operations. The top row referred to the output which 

is achieved by applying a filter of kernel size 3 to the input, i.e. bottom row. The black 

arrows point out the effect of input units over the output units. The output y3 is affected by 

red circles in the bottom row and are called as the receptive field of the output y3 whereas 

blue circles in the bottom row indicate no effect on the output units. The figure is redrawn 

from [83]. 
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between output and input units. This sparse connectivity is achieved by incorporating 

different kernel sizes that should be smaller than the input size, as shown in Figure 4.3. 

By Considering an example of image processing where images are high dimensional 

vectors, and each image might have thousands or millions of pixels which require a 

massive amount of parameters to characterize the network. In this scenario, if ordinary 

NNs receive 256 × 256 images as input then each neuron in the hidden layers will have 

64K connections; this lead the network to have a significant number of weights, and it 

also requires much memory. 

 On the contrary, CNNs uses a kernel that occupies the small and restricted area to 

extract meaningful features, like edges features, etc. This strategy in CNNs leverage 

several benefits over ordinary NNs. First, fewer parameters are required to store; in this 

way memory requirement of the model is dramatically reduced. An illustration is 

depicted in figures 3.4 and 3.5 where a comparative difference between CNNs and 

ordinary NNs in terms of connectivity, required parameters and the receptive field 

difference of one unit in each network is shown respectively. Secondly, it also 

demonstrates that output computation typically requires fewer numerical computations, 

which may often be quite significant in real applications.  

Moreover, CNNs offers parameter sharing where the same value of the weight 

applied to one input is tied to the value of weight applied elsewhere. In contrast to this, 

the traditional neural network uses each element of the weight matrix exactly only once 

to compute the output of one layer. CNNs employ each associate kernel at every pixel 

of the input image. However, the kernel may not be applied at pixel around the 

boundary of the input image, but there are some CNNs architecture designs, which 

incorporate ‘zero padding' (explained in section 4.3.1), can deal with pixels around the 

boundary. This parameter sharing property in CNNs ensures that the network learns 

only one set of parameters shared by all location rather than learning a set of parameters 

for each location, separately. In this way, the memory storage requirements of the model 

are further reduced. Hence, the convolution operation is immensely more efficient than 

dense matrix multiplication in terms of memory requirements and the number of 

parameters to be learned. 

Furthermore, by adopting this parameter sharing causes the convolution layer to 

maintain equivariance property to translation. For example, convolution layer generates 
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a 2D features map for the 2D input image. If the object in the input is moved with a 

particular amount or direction, then the same amount in the output will be moved by 

the feature representation of the input.  

4.3 Convolutional Neural Networks (CNNs) Architecture 

Recall from Section 4.2, CNNs have advantages to extracting information from the 

raw input images, and they constrain the architecture in a more functional way than 

traditional NNs. Originally, a CNNs architecture was designed for 2D input data (i.e., 

2D color image with three red (R), green (G), and blue (B) channels). Therefore, 

traditional CNNs are 2D in nature. In this Section, we will enlighten the basic structure 

of 2D CNNs, and then we will discuss their modification to 3D in chapter 4. Typically, 

CNN was designed for image classification, where predicted output was considered as 

a single class label as shown in figure 4.6. Here network takes an input image and 

predicts image class; it is either dog, cat or bird. CNN can also be used for detection or 

segmentation purposes, where the predicted output contains object location 

information. More simply, a single class label is assigned to every pixel associated with 

the desired object in the output image. Figure 4.7 shows an example of semantic 

segmentation where a bird is a given input and pixels related to the bird is associated 

with the predicted class label, and these pixels are marked with green while unrelated 

pixels are colored with black.  

Usually, a CNN comprises the number of convolution layers, alternated between 

many pooling layers. A typical CNN contains a set of filters or kernels, which are 

convolved with input to generate a number of feature maps equal to a number of filters. 

After that, the nonlinear activation (i.e., ReLU) function is applied to the generated 

feature maps to introduce nonlinearity in them. Some CNN integrate batch 

normalization (BN) before applying a non-linear activation function that makes training 

easy for deep networks.   
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Figure 4.6 shows a traditional CNNs architecture, which is comprised of multiple 

layers defining several operations. Each of which is elucidated in the following 

subsections: Input layer in Section 4.3.1, convolution layers in Section 4.3.2, pooling 

layers or subsampling layer in Section 4.3.3, activation layers in Section 4.3.4, batch 

normalization (BN) layers in Section 4.3.5, and fully connected layers in Section 4.3.6. 

Additionally, deconvolution layer is described in Section 4.3.7, which is used in 

segmentation to up-sample the sub-sampled features by pooling layer in the network. 

Finally, the classification layer, which produce output in class probabilities, is 

explained in Section 4.3.8.  

 

 

 

Figure 4.7: An example of a convolutional neural network's architecture for image 

classification. 

 

Figure 4.6: An example of a convolutional neural network's architecture for semantic 

segmentation. 
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4.3.1 Input Layer 

The input layer is actually not considered as a network layer, which is not used for 

learning or training purpose. It is a visible layer, which generalizes the input data, like 

pre-processing for normalizing the data or converting the data into the required format.  

4.3.2 Convolution Layer 

A mathematical representation of images are in matrices containing color 

information in the form of RGB color codes (i.e., natural images), and intensity texture 

information, etc., (i.e., medical images). Therefore, an image has volumetric size h × w 

× d, where color channel depth d = 3. Whereas,  in medical images like computer 

tomography (CT) or magnetic resonance imaging (MRI), the depth d is corresponding 

to the number of channels. Convolutional layers are fundamental layers in CNNs. 

Generally, a convolutional layer contains a set of kernels or filters. These kernels are 

convolved with the given input to extract features and generate one feature map 

corresponding to every kernel.  Let K be the kernel with size K x × K y × d; x and y 

represent rows (i.e., height) and columns (i.e., width) of K, and d is its depth. The height 

and width of the kernel are smaller than image height and width. The kernel with its 

given height and width convolves with the whole input as shown in figure 4.6 and 3.7 

(i.e., dotted line circles correspond to the kernel, which slides over the input) and their 

numerical illustration is shown in figure 4.8. Besides, the size of the kernel corresponds 

to a receptive field on the input as shown in figure 4.8; therefore one may call kernel as 

the receptive field on the input.   

Typically, CNNs performs convolution operation as the sum of the element-wise 

multiplication of the kernel and the input image (from the first layer) or input feature 

maps (from second and onward layers). While creating a convolution layer, one can 

modify the number and size of kernels, the size of the stride, and the presence or absence 

of padding.  

Stride1: The term stride in convolution layer is referred to a number of pixels by 

which the kernel shifts at a time. In the CNNs, the output feature maps produced by 

each convolutional layer is consequently decreased in every next layer depending on 

the size of the kernel and stride. Equation (4.2), illustrates the relationship between 
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output feature maps (h) size and the input (I), after convolution with the kernel (K) and 

stride (s).   

                      ,1
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where hx and hy represent rows and column of output feature maps produced by the 

convolutional layer. Equation (4.2) shows that the convolutional layer with larger stride 

values produces smaller sized output feature maps. Figure 4.9 shows an example where 

given input of size 5 × 5 which is convolved with the kernel of size 3 × 3 and stride of 

2 × 2 sized. Recall from equation (4.2); the convolution operation produced an output 

size 2 × 2.  
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Figure 4.8: An illustrative example with one color channel, i.e. gray level image. This 

example shows how a convolution operation is performed on an input image I with 

kernel K using a unit stride. The kernel weights are referred to as the parameters to be 

trained.  

 

1https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2 
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Figure 4.9: An example of convolution on an input image I with kernel K using a 

non-unit stride of size 2 x2. 
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Padding1: In order to get less overlapping between the receptive fields, we usually 

use the stride of larger size. This also produces smaller resulting output feature maps 

since the kernel is shifted over potential pixels. If someone wants to maintain the 

dimensionality of the output with respect to the input, they can use padding around the 

input (i.e., edge) either with zeros or randomly chosen image’s values, as shown in 

figure 4.10.  Padding is usually utilized in deep CNN architectures to maintain the size 

of the feature maps, elsewise they would reduce at every next layer, which is unwanted 

as it may increase the error rate of the network. 

4.3.3 Batch Normalization (BN) 

Batch normalization (BN) [93] is an adaptive re-parametrization technique which 

optimizes deeper CNNs networks by making their training easier. Training deep neural 

networks is intricate since each layer's inputs are affected during training as the 

parameters of the preceding layers change with saturating nonlinearities. Taking into 

account this fact, a careful parameter initialization and lower learning rate are required. 

On the other hand, this makes the network slower and also makes the network 

disreputably hard to train models.  This phenomenon is referred to as internal covariate 

shift [93]. In these situations, it is tough to select a suitable learning rate, e.g., for 

stochastic gradient descent (SGD) (described in Section 4.5.3) updates the network's 

parameters in each layer simultaneously. Therefore, any layer in the network cannot 

learn independently.  In [93], batch normalization algorithm was proposed to address 

I 

I* K 
K 

7 × 7 × 1 

3 × 3 × 1  

5 × 5 × 1  

*                         = 

Figure 4.10: An example of using padding with unit stride. 

1https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2 
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the above problem. BN increases the stability of a neural network by normalizing each 

layer input (i.e., the output of the previous layer). BN follows simple normalization 

procedure where the layer input is subtracted from batch mean and further their 

subtraction is divided by batch standard deviation; as described in the following 

paragraph.  

Since the normalization is applied independently to every input layer. LetB is mini-

batch of size m and x is an input of any layer, consequentlyB  contains m values of this 

layer input activation, i.e . 𝓑 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, . . . , 𝒙𝒎}, the batch normalization procedure 

is illustrated in the following steps:   

Step 1: Calculate mini-batch mean and variance, such that:  
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where B and
2

B  indicate mini-batch mean and variance, respectively.  

Step 2: Calculate normalized values x for x such as,  

     For each i = 1,2,…m 
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where ɛ is a minimal positive scalar value to be added in the denominator to avoid 

getting an undefined result.   

Step 3: After that, these normalized values are linearly transformed, such that:  

                             

      )( ii xy                    (4.6) 

Subsequently, batch normalization incorporates these two trainable parameters 

(i.e., γ and β) to each activation, so the normalized output ix  is multiplied by a “standard 

deviation” parameter (γ) and add a “mean” parameter (β). As the normalizing value of 

each activation in the network reduces the network's expressive power. Therefore, in 

order to maintain the network's expressive power, the normalized values are linearly 
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transformed with these two trainable parameters. The new parametrization of the 

network is much more natural to be trained with SGD as it makes the SGD do de-

normalization by varying only these two parameters or weights for every activation 

rather than decreasing the stability of the network by varying all the weights.  

In CNNs, the same normalizing parameters γ and β are applied at every location in 

a feature map to guarantee that the feature map statistically is the same across all the 

spatial locations [83]. 

4.3.4 Non-linear Activation Layer 

Usually, neural networks (NNs) generates output neuron can take on enormous 

values. When this output with such large values is fed as an input to the next layer 

without any modifications, then the next layer will transform these large values into 

even more significant. This larger value makes the process computationally intricate. 

The activation functions play a vital role in squeezing neural networks' output to be 

within certain bounds ( e.g., between 0 and 1). The activation function can be two types; 

linear and non-linear activation functions.  

Linear activation function: It is an ordinary linear function, i.e., f(x) = x, which 

linearly transforms input to output without any amendments, shown in figure 4.11.  

Non-linear activation function: In contrast to the linear activation function, non-

linear functions are utilized to separate the data that is not linearly separable. 

Furthermore, NNs employed complex functions, where non-linear activation functions 

allow them to estimate randomly complex functions. Thus, the absence of non-linearity 

in activation function, all layers of the network are equivalent to a single layer neural 

network. Considering this fact, there are some types of non-linear activation functions 

such as sigmoid, hyperbolic tangent function Tanh, and rectified linear unit (ReLU), 

etc. have been implemented. These functions are discussed as follows:  

A. Sigmoid: This function is called as a logistic activation function. It squeezes the 

output to be bounded between 0 and 1. It converts large negative numbers to 0 and large 

positive numbers to 1. This function is represented mathematically in equation (4.7) 

and graphically in figure 4.11 (b).  
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However, this function is easy to understand but has some drawbacks, which are 

mentioned as follows:  

It vanishes the gradient: As the function is flat near 0 and 1, therefore during 

backpropagation gradient in neurons which are saturated in these regions is almost zero. 

As each gradient is updated in the backpropagation process where the number of factors 

is multiplied. These factors are derivatives of activation function neurons, weights, and 

Figure 4.11: Activation functions: (a) Linear activation function, (b) nonlinear 

sigmoid function, (c) nonlinear Tanh function, and (d) ReLU. 

 

 

     

(a)                                                                            (b) 

 

 

   (c)                                                   (d) 

 

Figure 3.11  Activation functions: (a) Linear activation function, (b) nonlinear sigmoid 

function, (c) nonlinear Tanh function, and (d) ReLU 
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biases, etc.  If you multiply the bunch of terms which are very small, i.e. less than 1 or 

nearly zero then resulting gradient will be very small, and if multiply the bunch of terms 

which are greater than 1, the resulting gradient will be infinity. In other words, if there 

is a deeper network comprises on several layers than gradient will be reduced in every 

next layer and the end, it may have vanished. Thus, the network is not able to perform 

backpropagation further anymore. Hence, gradient should be near to or equal to 1 

ideally.  

Not zero centered: The output of the sigmoid function is not centered which may make 

optimization tougher. Computationally expensive: As sigmoid incorporates exp (·) 

function, which makes it computationally expensive. 

B. Hyperbolic Tangent Function (Tanh): Tanh is similar to sigmoid, which 

squeezes the values in the output but bounds them into the range between -1 and 1. Its 

mathematical representation is given in equation (4.8), and the graphical representation 

is depicted in figure 4.11 (c). In contrast to sigmoid, Tanh provides resulting output 

values; those are zero-centered since the scope is between -1 and 1. Considering this, 

Tanh produces positive inputs considered as positive (i.e., values near to 1), negative 

inputs corresponds to negative, and while zero input values mapped near zero. 

However, practically Tanh is more preferable over sigmoid as it provides zero-centered 

output values, but it also suffers from the vanishing gradient problem.   

                                                  1
1

2
)( 
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C. Rectified Linear Unit (ReLU): To address the main vanishing gradient problem 

in above two activation functions, ReLU was proposed [81]. ReLU is expressed 

mathematically in equation (4.9) and graphically shown in figure 4.11 (d). From its 

mathematical representation, it contains a simple expression, which demonstrates that 

when the input x > 0 the output is x, elsewhere the output is zero. In other word, ReLU 

has gradient 1 (i.e. if x = 1) when output > 0, and zero otherwise. Also, ReLU is 

computationally simple and efficient than sigmoid and tanh as it does not contain any 

exponential function like them. Thus, ReLU significantly increases the convergence 

speed of the stochastic gradient descent (SGD). Nowadays, most of the deep learning 
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algorithms are using ReLU as non-linear activation function in their network 

architectures.  

),0()( xmaxxR                                                  (4.9)  

4.3.5 Pooling Layer 

Pooling layer is referred to as a down-sampling layer, is incorporated periodically 

in-between successive convolution layers to reduce the spatial dimensions 

progressively excluding depth of the learned convolutional layer output. The most 

commonly used pooling operation is max pooling where the convolution layer output 

is down-sampled by taking its maximum value within the applied kernel.  Except max 

pooling, there are several types of pooling layer like average pooling (where the output 

is down-sampled by taking only mean value within the kernel), and L2-norm pooling, 

etc. In max pooling, specifically, both kernel and stride have similar sizes, i.e., 2 × 2. 

Figure 4.12 (a) and (b) exemplify the operation of max pooling operation. In figure 4.12 

(a), the pooling operation slides the kernel of size 2 × 2 over a single slice of 4 × 4 

dimensions, and the max value is chosen from each kernel, resulting output has reduced 

the dimension of 2 × 2.  

512 × 512 × 122 
256 × 256 × 122 

512 

512 

256 

256 

max 

pooling  
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sampling 

 
(a) 

max pooling 

with a kernel 

size of 2 × 2 

and stride of 2  

 

 
(b) 

x 

y 

Single depth slice 

Figure 4.12: An example of max pooling operation; (a) multiple slice depth, (a) 

numerical illustration using single-slice depth. 
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What are the advantages of using pooling layer? Firstly, it reduces spatial 

dimension, therefore less spatial dimension means less parameter are required to learn 

and also fewer parameters decreases the risk of getting over-fit. Secondly, pooling 

operation introduces some translation invariance in the output [94]. Translation 

invariance means that the system produces precisely the same response, regardless of 

how its input is shifted.  

4.3.6 Fully Connected (FC) Layer  

Fully connected (FC) layer is usually incorporated at the end of the network as 

shown in figure 4.6. Basically, FC takes an input volume from the previous 

convolutional layer or pooling layer and convert the volumetric output into N-

dimensional vector and ensures that all activations are received. The main difference 

between the convolutional layer and FC layer is that neurons in the convolutional layer 

only connected to a local region of the input where the neurons share parameters. 

Whereas in FC layer, neurons are fully connected to all activations in the preceding 

layer likewise traditional NNs (described in section 4.1).  Nevertheless, both layers have 

the same functionality as neurons in both layers still calculate dot products. Therefore, 

these both layers are interconvertible through reshaping process.   

Since neurons in the FC are fully connected to all activations from the previous 

layer, their full connections result in spatial information loss. This is objectionable 

particularly in segmentation problem, where spatial information is crucial to learn. 

Therefore, some recent research in medical image segmentation replaced FC layer with 

a convolutional layer to have a kernel of 1 × 1 sized at the end of network architecture 

[47, 49]. 

4.3.7 Deconvolution Layer 

As in Section 4.3.5, we describe pooling layer, which is used to reduce the number 

of network parameters by decreasing the spatial dimension of the convolutional layer 

output. In order to recover the spatial dimension of the output (i.e., especially in 

segmentation problem), un-pooling; a reverse operation of pooling layer is incorporated 
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at the end of the network [88] to enlarge the pooled input. However, the un-pooling 

produces sparse output as shown in figure 4.13.  Considering this problem in un-

pooling, deconvolution layer is introduced in [86]. In contrast to the un-pooling layer, 

Deconvolution layer produces dense output as shown in figure 4.13. In brief, 

convolutional layers map several activations in a receptive field to a single activation 

whereas deconvolution layers perform vice versa. 

4.3.8 Classification Layer  

This is the last layer of the network. In this layer, softmax function is used to predict 

the un-normalized probability of mutually exclusive classes by calculating cross-

entropy loss (discussed in Section 4.5.2). Let is a specific input corresponds to a 

particular class, c, then the softmax function predicts its probability value as,  
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Figure 4.13: Working principle of deconvolution, the figure is taken from [88]. 
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where SR is the score achieved for the specific class from the preceding layer of the 

network. 

4.4 Dropout Layer 

Overfitting is a major problem in neural network training. Generally, the network 

loses its ability of generalization with the over-fitted model on the training data. Mainly, 

deep networks are subject to learn noise along with fine pattern in training data set [95], 

and lead the network to learn a large number of weights with few train samples which 

may lead over-fitting and high variance. To address this problem, a simple method, 

dropout, to prevent the overfitting was proposed in [96]. Basically, the dropout process 

randomly drops the nodes and its connections from the network as shown in figure 4.14.  

By doing this, the network has weights which are less fitted to the data and consequently 

decreases the difference in performance between training data and validation data. Note 

that dropout layers are only incorporated throughout the training phase, not during 

testing or validation phase. 

Figure 4.14: An example of dropout regularization. (a) is a standard network, 

(b) after dropout operation. The figure is redrawn from [96]. 
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4.5 Network Training 

The main aim of network training is to estimate the best fit for the weights 

throughout the network. Network learning/training process requires training data along 

with its ground truth. During training, the loss is computed in each iteration between 

predicted output and given ground truth at the last layer. Then the output is back 

propagated to the network for updating the weights for further loss minimization. This 

back propagation process is carried out either one-to-one or in batches. As the training 

of deep neural networks is an expensive process; therefore optimization algorithms 

have been developed. The optimization algorithm finds the best parameters that 

minimize loss. In this section, we will discuss the importance of backpropagation, cross 

entropy loss and the most commonly used optimization algorithm, stochastic gradient 

descent (SGD), which is used by many deep learning algorithms.  

4.5.1 Backpropagation  

Backpropagation is a process that is used to update or adjust the weights for a better 

generalization of the trained model. As a specific combination of weights that can be 

effective in minimization of loss function or cost function is a solution of the network 

optimization problem. The backpropagation is a process of calculating gradients. The 

network requires these gradients to calculate the weights. Then gradient-based 

optimization algorithm, i.e., SGD, uses backpropagation to calculate the gradient of the 

loss or cost function, which adjust or update the weights of the networks [96-97]. The 

backpropagation process computes the gradient of the error function at each iteration, 

thus optimizing the loss function at all iterations. 

Initially, random weights are assigned for network training. These random weights 

do not make any relationship between the ground truth and the output; thus they cannot 

produce a meaningful prediction.  For the better prediction, the weights should be 

updated or adjusted in a way there should be minimum error/loss between the ground 

truth and the predicted output class. Usually, weights are updated in the network in two 

computational phases, the forward pass and the backward pass. 

Forward pass: It is a simple feedforward network that we discussed in section 4.1. 

Simply in CNN, an input image is given to network where feature maps are calculated 
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then these feature maps are fed to next layer on. This process continues until the last 

output layer.  

Backward pass: In backward pass, weights are adjusted and updated by 

backpropagation process. The backpropagation is carried out in epochs where multiple 

epochs are employed in network training, and one epoch comprises several parts, like 

1. Loss function: in the forward pass where predefined loss L is incorporated to 

minimize the error between the input and the output.  The main aim to adapt the weights 

that can reduce the value of loss function, which is achieved by computing the 

derivatives of loss function with respect to its weights.  2. Backward pass: through 

backpropagation process, in each iteration the weights those contribute the most to the 

loss, are adjusted for decreasing the total loss. 3. Weight update: As the loss, function 

gradient is calculated in a negative direction, which makes a problem for 

backpropagation to calculate the loss function gradient with respect to the network 

weights. In this regard, it is essential to calculate the partial derivative 
dW

L
in the 

backward pass to minimize the value of loss function. 

4.5.2 Loss Function  

The set of predicted scores needs to be optimized by adjusting the values of 

parameters learned in the network (weight filter or bias). The loss function defines 

quantitatively which set of parameters are ideal. For the softmax classifier, the loss 

function corresponds to cross-entropy loss for each vector of class scores SR: 

𝑳𝒏 =  − 𝐥𝐨𝐠 (
𝒆𝑺𝑹𝒏

∑ 𝒆𝑺𝑹𝒏𝒏
).                      (4.11) 

While cross entropy loss which is mostly used by CNN is given as, 

 

𝑳(𝒑, 𝒒) =  − ∑ 𝒑(𝒙𝒎)𝒏
𝒎=𝟏 𝒍𝒐𝒈𝒒(𝒙𝒎),                               (4.12) 

where q denotes softmax function, and p is a prediction. The final loss is given as,  

𝑳 =  ∑ 𝑳𝒏
𝑵
𝒏 +  𝝀𝑹(𝑾),            (4.13) 

where L is a total loss, and λ is scalar value multiplied with regularization term R. The 

total loss is minimized by optimization algorithm SGD.   
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4.5.3 Stochastic Gradient Descent (SGD) 

Stochastic gradient descent (SGD) is a network optimization algorithm, which 

updates or adjusts the previous weights in the network by utilizing a linear combination 

of these preceding weight update Vt and the negative gradient )(WL . Let’s α is the 

learning rate, and µ is momentum. The scalar value of α changes the negative gradient

)(WL , and scalar value of α changes the prior update Vt. SGD uses these weights of α 

and β on preceding weight update Vt, and calculates the new updated values Vt+1, such 

that:  

)(1 ttt WLVV   .             (4.14) 

where α and µ are called network learning hyperparameters. These updated values 

consequently update weights Wt+1 at iteration t + 1, such that: 

11   ttt VWW                                                (4.15) 

4.5.4 CNN Hyperparameters 

Network hyperparameters are variables, which are defined before the training 

process and their proper selection is an essential part of developing CNN architecture. 

Different methods exist in choosing the Hyperparameters: 

1. Manual: the values are chosen manually by an expert user.  

2. Search algorithms: a random search or a grid search or algorithm is 

recommended, which identifies appropriate ranges for the network 

hyperparameters. Thereafter, the training process is then carried out by 

incorporating all combinations of parameters made available in these ranges.  

3.  “Hyper” Optimization: Here, a need exists to design an automated method, 

which can select hyperparameters those can optimize the performance of the 

model with better generalization according to the task. There are three 

commonly followed methods to optimize the hyper-parameters: 

a)   Batch Gradient Descent: The cost function gradient is calculated over 

the entire dataset. 
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b) Mini-Batch Gradient Descent: A subset of the training dataset, the mini-

batch, is fed into the network. Each mini-batch leads to updates. 

c)  Stochastic Gradient Descent: Parameters updates are made for each 

training example. 

Many researchers have done the best practices by considering the following factors, 

as listed below: 

Learning Rate: The learning rate might be understood as the rate at which the gradient 

updates to the parameters occur in the gradient direction. When learning rate value is 

too small, the model takes a long time to converge. Model diverges if the learning rate 

is too high. To guarantee optimal learning, an initial learning rate should be defined 

appropriately.  

Weight Initialization: The local minimum reached by the training algorithm is highly 

dependent on the initialization of the weights matrix. Weights are initialized to vary in 

a random zero mean distribution, while bias can be set to 0. 

  



  

CHAPTER 5 

3D COLORECTAL TUMOR SEGMENTATION 

In this chapter a brief introduction of 3D deep learning-based algorithms is given, 

they are successfully applied in different medical image segmentation applications; 

these are 3D fully connected convolutional neural networks (3D FCNNs) [48], 3D U-

net [45] and 3D DenseVoxNet [49]. In Section 5.1, limitations of traditional level set 

algorithms and 2D CNNs are briefly elaborated. Sections 5.2, 5.3, 5.4 describe 3D 

FCNNs, 3D U-net and DenseVoxNet, respectively. We utilized them in colorectal tumor 

segmentation from 3D MRI. Based on their pros and cons, we proposed a novel 

algorithm, 3D Multiscale Densely connected neural network (3D MSDenseNet), 

explained in Section 5.5. Finally, 3D level-set algorithm is discussed in Section 5.6, 

which is used to refine the final output of each network. 

5.1 Limitations of Level Set And 2D CNN 

Lately, level-set based segmentation algorithms have been widely used and become 

preferable algorithms for medical image segmentation [98-99]. Level-set approaches 

perform segmentation based on energy minimization problem by integrating different 

type of regularization (smoothing terms) and priors [100]. However, level-set based 

segmentation methods are more preferable in segmentation problems as they provide 

segmentation function with a tendency to change topological properties, but they 

required an appropriate contour initialization to obtain better segmentation results. 

Also, level-set based approaches are progressively deficient due to their simple 

appearance model [100]. In very recent, convolution neural networks (CNNs) based 

deep learning methods have been successfully employed in medical imaging, especially 

for segmentation and detection purpose [101-102]. In deep learning based methods, 

features for complex structures and patterns are erudite from well-defined large training 
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data sets. After that, these trained features are utilized for prediction. Unlike level-set 

based methods, deep learning can learn appearance models automatically from the 

extensive training data. Nevertheless, deep learning based approaches are not able to 

provide an explicit way of integrating prior shape and regularization [103]. 

Moreover, medical image segmentation is a task more chaotic than natural image 

segmentation. Firstly, the patient data is extremely diversified. In other words, the 

pattern of the same pathology varies among patients. Secondly, small and incomplete 

medical data sets make CNNs training more prone to overfitting [101]. Despite this, 

recent proposed CNN architectures demonstrated better performance than other machine 

learning based algorithms for medical image segmentation [50]. Thirdly, medical images 

such as MRI (Magnetic Resonance Imaging) or CT (Computed Tomography) scans are 

often in 3D volumetric form while the existing CNNs are in 2D nature. These 2D CNNs 

are applied slice-by-slice sequentially [44], thereby disregarding spatial information in 

the third dimension. An alternative solution was proposed in [42], where spatial 

information is enhanced by aggregating axial, sagittal and coronal planes in a one-to-

one association, respectively. In [42], input slices are treated independently considering 

each orthogonal plane separately where the convolutional kernel is used only for two 

orthogonal planes when it is not shared with the third one. Although these 2D CNN-

based methods demonstrated vast improvement in segmentation accuracy [50], the 

inherent 2D nature of the kernels limits their application when using volumetric spatial 

information. Hence, this solution is not able to utilize volumetric spatial information 

completely. Furthermore, 3D CNNs have been discouraged due to computational 

complexity and memory requirement [102]. Considering above problem in the 2D CNN 

for volumetric data, 3D CNN based algorithms [102] have been recently presented where 

3D kernels are used instead of 2D, which extract spatial information across all three 

volumetric dimensions. Unlike other 2D CNNs based methods, they use the 3D kernel, 

which shares spatial information across all three dimensions. In [101], 3D-FCNNs 

provide efficient performance in segmenting brain lesions. In [102], 3D-FCNNs based 

on baseline CNN architecture is proposed for subcortical segmentation. 3D U-net [45], 

the first method was proposed for 3D volumetric biomedical images. After that, recently, 

DenseVoxNet [49] as 3D CNN, was proposed for 3D volumetric cardiovascular 

segmentation. 
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5.2 3D Fully Connected Convolutional Neural Networks (3D FCNNs) 

In this study, 3D-FCNNs [48], based on CNNs baseline model by incorporating the 

concept from [102], is used for segmenting colorectal tumor. The architecture of the 

3D-FCNNs is shown in Fig. 4.1, which we proposed with preliminary results [48]. 

Unlike traditional CNNs where the dimension of output maps are spatially reduced by 

pooling layer of stride 2, the 3D FCNNs architecture contains only convolutional layers 

with unit stride. As this network excludes pooling layers, therefore they did not use any 

up-sampling component (i.e., deconvolutional layer). At first convolutional layer, MRI 

volume as an input is taken, and then the input is convolved with 3D convolutional 

filters (i.e., kernels) to yield feature volume. In consequent layers, the input is taken as 

feature volumes of previous layers. Suppose 1l
kF is kth feature volume of (l-1) layer then 

mth output feature volume of l layer is given as, 
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where l
kiW denotes the 3D filters with a kernel size of (m×n×t) is convolved element-

wise over feature volume of each preceding layer, 1l
kF   represents a 3D convolutional 

operation, k
lb  denotes bias and )(H  is non-linear activation function. Here, newly 

introduced non-linear activation function namely Parametric Rectified Linear Unit 

(PReLU) [109], is used as a replacement of the famous Rectified Linear Unit. PReLU 

function is given as,  

         ),,0min(),0max()( iiii FFFH                           (5.2) 

where Fi represents input, )( iFH is output, and αi is a trainable parameter which is 

required to learn to control the negative part of Fi, while αi is almost zero in ReLU. 

Consequently, PReLU can adjust rectifiers to their input, thus by improving the 

network's accuracy with nearly zero additional computational cost and also reducing 

overfitting risk. This PReLU is applied on each layer except last layer (i.e., softmax 

layer). The proposed network contains two fully connected layers to retain spatial 

information further and learn complex patterns extracted in preceding layers. Finally, 
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in end all the neurons are convened in n class feature maps where the normalized 

probability values are computed using n class feature maps by softmax function, such 

that: 
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In this work, authors presented deeper architecture with small kernel size, 3×3×3, 

where each convolutional layer is once repeated with same kernel size. The size of the 

feature volume depends on kernel size (i.e., the size of feature volume = kernel size - 

1). Therefore, feature volume produced each layer is smaller by 2 voxels than their 

input volumes as shown in figure 5.1. In [48], the 3D-FCNNs presents 8 convolutional 

layers with a number of filters followed by each convolutional layer are as 16, 16, 32, 

32, 64, 64, 128, and 128, with a small kernel size of 3 ×  3 × 3. Finally, two fully 

connected (FCs) layers with a kernel size of 1 × 1 × 1, contained 200 and 150 hidden 

neurons, individually, are incorporated. These FCs layers are followed by final softmax 

layer or classification layer, which produces probability maps. 

Figure 5.1: 3D FCNNs network architecture [13]. 
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5.3 3D-Unet 

At very first U-Net [104], one of more prominent 2D CNN based algorithm was 

proposed for biomedical image segmentation. The U-Net has outperformed in medical 

image segmentation and won a number of competitions. Traditional 2D U-Net is 

depicted in figure 5.2. The U-net contains two different paths contraction (i.e., encoder) 

and expansion (i.e., decoder) as shown in figure 5.1. Each path has an architecture based 

on convolutional neural networks. The contraction path is also known as analysis path 

and utilizes chronological application of convolution and pooling layers where the 

spatial dimension of each convolutional layer output is reduced by pooling layer 

periodically.  The expansion path, also known as synthesis or up-sampling path; where 

the original spatial dimension of the outputs from the contraction path is recovered. The 

expansion path contains deconvolution layers to produce full resolution segmentation 

output. Furthermore, the output feature maps from the contraction path are concatenated 

to the same resolution layer of expansion path through skip connection. These skip 

connections between the feature maps of layers of both paths having the same 

resolution, give fine details of the segmented object.  

 In [45], a 3D version of U-net was proposed for 3D volumetric data by 

incorporating 3D operation. Particularly, the 2D kernel was replaced with 3D kernel 

corresponding to each layer (i.e., 3D convolutional layers, 3D max pooling and 3D 
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Figure 5.2: Network architecture of  2D U-net [104]. 
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deconvolutional layers). Additionally, 3D U-net integrates batch normalization [101] 

for faster convergence. Figure 5.3 exemplifies the 3D U-net architecture. Similar to 

traditional 2D U-net, the 3D U-net has both contraction and expansion paths. In the 

contraction path, each layer contains convolutions of 3 × 3 × 3 sized kernels followed 

by batch normalization (BN) and a rectified linear unit (ReLU), and subsequently a max 

pooling of 2 × 2 × 2 sized kernels with strides of two in each dimension. In the 

expansion path, each deconvolutional layer contains the kernel of 2 × 2 × 2 sized with 

strides of two in each dimension, trailed by two convolutions of 3 × 3 × 3 sized kernel 

each followed by batch normalization (BN) and a rectified linear unit (ReLU). 

Similarly, in 3D U-net, skip connections from layers of the same resolution in the 

contraction path provide the significant high-resolution features to the expansion path. 

Finally, the last layer convolution layer of 1 × 1 × 1 sized kernel decreases the number 

Figure 5.3: 3D U-net network architecture [45]. 
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of output channels to the number of labels. The 3D U-net architecture has 19 million 

total parameters.   

5.4 DenseVoxNet 

Generally, in feed-forward CNN or ConvNet, the output of the lth layer is 

represented as, Xl, which is obtained by mapping non-linear transformation Hl from the 

output of the preceding layer Xl-1, such that: 

)( 1 lll XHX             (5.4) 

where Hl is composed of convolution or pooling operation followed by non-linear 

activation function such as rectified linear Unit (ReLU) or Batch Normalization-ReLU 

(BN-ReLU) etc. Recent work in computer vision problem has addressed that as deeper 

the network with more layers as more accuracy with better learning [105]. However, 

the performance of deeply modelled network tends to decrease, and its training 

accuracy is saturated with the network depth increasing due to vanishing/exploding 

gradient [130]. Later, [104] solved this vanishing gradient problem in the deep network 

by incorporating skip-connection, which propagates output features from layers of same 

resolution in the contraction path to the output features from the layers in the expansion 

path.  Nevertheless, this skip-connection allows the gradient to flow directly from the 

low-resolution path to high-resolution path, which makes training easy, but this 

generally produces enormous feature channels in every layer and lead network to adjust 

a large number of parameters during training. To overcome this problem, Huang et al. 

[105] introduce a densely connected network (DenseNet). The DenseNet extends the 

concept of skip connections by constructing a direct connection (as shown in figure 5.4) 

from every layer to its corresponding previous layers to ensure maximum gradient flow 

between layers. In DenseNet, feature maps produced by the preceding layer were 

concatenated as an input to the advanced layer, thus providing a direct connection from 

any layer to subsequent layer, such that: 

𝑿𝒍 = 𝑯𝒍([𝑿𝒍−𝟏, 𝑿𝒍−𝟐 , 𝑿𝒍−𝟑, … . , 𝑿𝟎])            (5.5) 

where  [···] represents the concatenation operation. In [105], DenseNet has emerged as 

an accurate and efficient method for natural image classification. Yu et al. [49] 
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proposed densely-connected volumetric convolutional neural network (DenseVoxNet) 

for volumetric cardiac segmentation which is an extended 3D version of DenseNet 

[105]. DenseVoxNet architecture is depicted in figure 5.4. The DenseVoxNet utilizes 

two dense blocks followed by pooling layers. The first block learns high-level feature 

maps and second block learn low-level feature maps followed by pooling layer, which 

reduces the resolution of the learned high-level feature maps in the first block.  Finally, 

high-resolution feature maps are restored by incorporating deconvolution layers. 

 Figure 5.4 shows the DenseVoxNet architecture that takes on fully convolutional 

network architecture and adopts both down-sampling and up-sampling components to 

lead the network for end-to-end learning. The network architecture prefixed the first 

dense block with a convolution layer of 16 output channels with a stride of two to learn 

primitive features. In this prefixed convolution layer, the input feature map size is 

down-sampled by the stride of two for better efficiency of memory space, and it also 

increases the receptive field to enclose more information for better prediction. 

Afterward, the down-sampling components were further divided into two dense blocks, 

as discussed earlier. Each dense block has consisted on 12 densely connected 

transformation layers where every transformation layer has consecutively consisted on 

a batch normalization (BN), and ReLU followed by convolution of 3 × 3 × 3 sized 

kernels with feature growth rate, k, of 12. A transition layer is used to connect these 

Figure 5.4: DenseVoxNet architecture, the figure is taken from [49]. 

 



 

67 

dense blocks. The transition layer is composed of a BN, a ReLU followed by con 

convolution of 1 ×1 × 1 sized kernel and 2 ×2 × 2 max-pooling layers. 

In order to recover the shape details from coarser (i.e., down-sampled) feature 

maps, the network contains 3D up-sampling block. The 3D up-sampling block has 

consisted on a BN, a ReLU, followed by a convolution of 1 ×1 × 1 sized kernel and 2 

×2 × 2 deconvolutional (Deconv) layers to make segmentation prediction map to have 

equal size of the input data. Finally, the up-sampling block is then trailed by a 

convolution of 1 ×1 × 1 sized kernel and soft-max layers to produce the final label map 

of the segmentation. Furthermore, DenseVoxNet incorporates a dropout layer with a 

dropout rate of 0.2 in its network after each convolution layer to increase the robustness 

in the network against overfitting problem. The DenseVoxNet is a method that is more 

preferable over 3D U-net as the DenseVoxNet has lesser total parameters 

approximately 1.8 million than 3D U-net with 1.9 million. 

5.5 Proposed Method (3D MSDenseNet) 

In DenseVoxNet, early layers of the first block learn fine-scale features (i.e., high-

level features) based on a small receptive field while coarse-scale features (i.e., low-

level features) are learned by later layers of the second block with a larger receptive 

field. In short, fine-scale and coarse-scale features are learned in early and later layers, 

respectively, which limit the network to learn multi-scale contextual information 

throughout the network and may lead the network in poor performance [106].  

Considering multi-scale contextual learning problem in DenseVoxNet, a novel 

method to overcome the above challenges in 3D volumetric segmentation is presented. 

We propose 3D multi-scale densely connected convolutional neural network (3D-

MSDenseNet), a 3D volumetric network that is an extension recently proposed 2D 

Multi-scale dense networks (MSDNet) for natural image classification [107]. summary, 

we have employed 3D-MSDenseNet to colorectal tumor segmentation problem with 

the following contributions:  

1. Multiscale training scheme with parallel 3D densely interconnected 

convolutional layers for two-dimensional depth and coarser scales are utilized 

where low, and high-level features are generated from each scales individually. 
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A diagonal propagation layout is incorporated to decouple the depth features 

with the coarser features from the first layer and on, thus maintaining local and 

global contextual information throughout the network to improve segmentation 

results efficiently.   

 

2. Proposed network is based on volume-to-volume learning and interference, 

which eradicate computation redundancy.   

 

3. The proposed method is validated on colorectal tumor segmentation from 3D 

MR images and have achieved better and comparable segmentation results with 

the state-of-the-art. The proposed method may be applied in other related 

applications. 

In 3D-MSDenseNet, we have two interconnected levels, depth level and scaled 

level for simultaneous computation of high and low-level features, respectively. Let 

consider 1
0X  is an original input volume and feature volume produced by layer l at scale 

s represented as, s
lX . Considering two scales in the network (i.e., s1 and s2), we represent 

depth level (horizontal path) and scaled level as s1 and s2 individually, as shown in 

figure 5.5. The first layer is an inimitable layer where the feature map of very first 

convolution layer is divided into respective scale s2 via pooling of stride of power 2. 

The high-resolution feature maps ( 1
lX ) in a horizontal path (s1) produced at subsequent 

layers (l ˃1) are densely connected by following (Huang et al. [105]). While output 

feature maps of subsequent layers in a vertical path (i.e., coarser scale, s2) are results of 

a concatenation of transformed features maps from previous layers in s2 and down-

sampled features maps from previous layers of s1, propagated as a diagonal way, as 

shown in figure 5.5. In this way, output features of coarser scale s2 at layer l in our 

proposed network expressed as: 
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where [···] denotes concatenation operator, )(
~ 2 lH represents to feature maps from finer 

scale s1 which are transformed by pooling layer of stride of power 2, diagonally (as 

shown in figure 5.5), and )(2 lH  indicates to feature maps from coarser scale s2 

transformed by regular convolution. Here, )(
~ 2 lH and )(2 lH have the same size of feature 
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maps. In our network, classifier only utilizes the feature maps from the coarser scale at 

layer l for final prediction.  

Network Architecture: Our network architecture is composed of dual parallel paths, 

depth and scaled path, as illustrated in figure 5.5, which achieves 3D end-to-end 

training by adopting the nature of the fully convolutional network. The depth path 

consists of eight transformation layers, and the scaled path consists of nine 

transformation layers. In each path, every transformation layer is composed of a BN, a 

ReLU followed by 3×3×3 convolution (Conv), by following the similar fashion of 

DenseVoxNet. Furthermore, 3D up-sampling block is utilized likewise DenseVoxNet. 

Like DenseVoxNet, the proposed network uses dropout layer with a dropout rate of 0.2 

after each Conv layer to increase the robustness in the network against overfitting 

problem. Our proposed method has total parameters approximately 0.7 million, which 

is much fewer than DenseVoxNet [49] with 1.8 million and 3D U-net [45] with 19.0 

million parameters. The implementation code of the proposed method in 3D-Caffe is 

publically available online at: 

http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/documents/codemsdn.zip 

5.6 3D Level Set  

The 3D level set is used in the testing phase as a post-preprocessor to refine the 

output of each method by integrating smoothing function and prior information. In this 

work, 3D level-set based on 3D geodesic active contour algorithm [108] is incorporated 

to refine the initial segmentation obtained by each method discussed above. 3D active 

contour regulates the tumor boundaries more precisely. The mathematical derivation of 

the geodesic active contour is well explained in [108] and [98].  This algorithm presents 

an association between active contours and the calculation of geodesic or nominal 

distance curves. This association gives stable boundary detection even in the presence 

of abundant gaps and variations of gradients. Suppose φ(Pl, t = 0) be level-set function 

with given initial surface at t = 0. Here, Pl is the probability map obtained from each 

method and is used as the initial surface to initialize 3D level-set. The level-set function 

is evolved to refine the tumor boundaries by partial differential equation [108], such 

that:                                                                      

http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/documents/codemsdn.zip
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where X(.) is a convection function, Y(.) represents expansion or propagation function, 

and Z(.) is a spatial modifier or smoothing function. And α, β, and γ is constant scalar 

quantities to make tradeoff among convection, propagation, and spatial modifier 

functions. As the initial zero-level surface is required by a level-set algorithm then the 

initial surface is propagated in a particular direction (inward, outward) with speed, this 

is controlled by the propagation function and smoothness of regions concerning mean 

curvature κ is controlled by spatial modifier function. The termination of this process 

depends on a convergence criterion or a maximum number of iteration. Here, we have 

set maximum iteration as 50.   

  



  

CHAPTER 6 

3D COLORECTAL TUMOR SEGMENTATION ― EXPERIMENTAL RESULTS 

In this chapter, experimental results obtained by each method (discussed in chapter 

5), are presented. In Section 6.1, we present the details of our experimental volumetric 

data. Section 6.2 describes the networks' parameters setting for their training, and we 

describe the evaluation metrics that we used to assessed and compare the segmentation 

results produced by each method in Section 6.3. Experimental results are discussed in 

Section 6.4, and finally, the discussion is given in Section 6.5. 

6.1 Experimental Data Sets  

All algorithms described in the previous chapter are validated and compared on T2-

weighted 3D Colorectal MRI. Data were collected from two hospitals; Department of 

Radiological Sciences, Oncology, and Pathology, University La Sapienza, AOU 

Sant'Andrea, Via di Grottarossa 1035, 00189 Rome, Italy and Department of 

Radiological Sciences, University of Pisa, Via Savi 10, 56126 Pisa, Italy. The overall 

dataset consisted on 43 volumes T2-weighted MRI, and each MRI volume has consisted 

on several slices which are varied in number across subjects as 69 ~122 and have 

dimension as 512 × 512 × (69 ~122). Their voxels with voxel spacing also varying from 

0.46 × 0.46 × 0.5 to 0.6 × 0.6 × 1.2 mm/voxel across each subject. As the data have a 

slight slice gap, thus we did not incorporate any spatial resampling. Cross-validation 

was performed in 100 rounds by partitioning the dataset into 30 volumes for training 

and 13 for testing. The colorectal MR volumes were acquired in a sagittal view on a 3.0 

Tesla scanner without contrast agent. All MRI volumes went for pre-processing where 

they were normalized so that they have zero mean and unit variance. We cropped all 

the volumes with a size of 195 × 114 × 61. 
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Furthermore, during training, the data were augmented with random rotations of 900, 

1800 and 2700 in the sagittal plane to enlarge the training data. Also, the colorectal 

tumor was manually segmented in all volumes by two medical experts using ITK-snap 

software [109-110]. These manual delineations of tumor s from each volume were then 

used as ground truth labels to train the network and validate the network in the test 

phase. 

6.2 Networks Training Procedure 

All the networks, 3D FCNNs, 3D U-net1, DenseVoxNet2, and proposed network 3D 

MSDenseNet3,  as their network architectures are described in previous Chapter 5, were 

originally implemented in Caffe library [111]. For a fair comparison, we have applied 

the same training procedure, which is almost utilized by 3D U-net, DenseVoxNet.  

Firstly, we randomly initialized weights with a zero-mean Gaussian distribution by 

setting values as, μ = 0, σ = 0.01. The stochastic gradient descent (SGD) algorithm 

(described in Chapter 4, Section 4.5.3) is used to realize the network optimization. We 

set the meta-parameters for the SGD algorithm to update the weights as; batch size = 4, 

weight decay = 0.0005 and momentum was set as 0.05. We set an initial learning rate 

as 0.05 and divide by 10 every 50 epochs. Similar learning rate policy in DenseVoxNet, 

i.e., "poly," was adopted for all methods. The "poly" learning rate policy changes the 

learning rate over each iteration by following a polynomial decay, where the learning 

rate is multiplied by the term4 

power

iterationsimum

iteration










_max
1 [112]. Here the term 

power was set as 0.9, and 40000 maximum iterations were set.  Moreover, considering 

limited GPU memory, the training volumes were cropped randomly with sub-volumes 

of 32 × 32 × 32 sized as an input to the network and the major voting strategy [113] 

was incorporated to obtain final segmentation results from the predictions of the 

overlapped sub-volumes. Finally, the softmax with cross-entropy loss was used to 

measure the loss between network predicted output and the ground truth labels.  

1https://lmb.informatik.uni-freiburg.de/resources/opensource/unet.en.html 

2https://github.com/yulequan/HeartSeg 

3http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/documents/codemsdn.zip 

4https://github.com/BVLC/caffe/wiki/Solver-Prototxt 
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6.3 Evaluation Metrics  

In this study, three evaluation metrics were used to validate and compare the 

proposed algorithm; namely Dice similarity coefficient (DSC) [114], Recall rate, and 

Average symmetric surface distance (ASD) [115]. These metrics are briefly explained 

as follows:  

6.3.1 Dice Similarity Coefficient (DSC) 

The Dice similarity coefficient is widely explored performance metric in 

medical image segmentation. It is also known as overlap index. It computes a general 

overlap similarity rate between the given ground truth label and the predicted 

segmentation output by a segmentation method. DSC is expressed as, 
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                       (6.1) 

where Sp and Sg are predicted segmentation output and ground truth label, respectively. 

FP, TP, and FN indicate false positive, true positive and false negative, individually. 

DSC gives the score between 0 and 1, where 1 gives the best prediction and indicates 

that the predicted segmentation output is identical to the ground truth.    

6.3.2 Recall Rate  

The recall is also referred to as a true positive rate (TPR) or sensitivity. We 

utilized this term as a voxel-wise recall rate to assess the recall performance of different 

algorithms. This metric performance measures misclassified and correctly classified 

tumor-related voxels. It is mathematically expressed as, 
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 .                           (6.2) 

It also gives a value between 0 and 1. A higher value indicates the better the 

prediction. 
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6.3.3 Average Symmetric Surface Distance (ASD) 

Average symmetric surface distance (ASD) measures an average distance 

between the sets of boundary voxels of the predicted segmentation and the ground truth, 

mathematically given as,  
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where kp  and gp represent kth
 voxel from Sp and Sg sets, respectively. d denotes the 

point to set distance and defined as  
 Sεp

gkgk

gg

ppSpd ),( , here  is Euclidean 

distance. Lower values of ASD indicate higher closeness between two sets, hence, 

better segmentation and vice versa. 

6.4 Experimental Results  

In this section, we experimentally evaluate the efficacy of multiscale end-to-end 

training scheme of our proposed method, where parallel 3D densely interconnected 

convolutional layers for two-dimensional depth and coarser scales paths are 

incorporated (as described in Chapter 5, Section 5.5). In this work, the proposed 

network is assessed on 3D colorectal MRI data. For more comprehensive analysis and 

comparison of segmentation results, each dataset was divided into ground truth masks 

(i.e., manual segmentation is done by medical experts), training and validation subsets. 

Quantitative and qualitative evaluations and comparisons with baseline networks are 

stated for the segmentation of the colorectal tumor. First, we analyzed and compared 

the learning process of each method, described in Section 6.4.1. Secondly, we assessed 

the efficiency of each algorithm qualitatively, and Section 6.4.2 presents a comparison 

of qualitative results. Finally, we evaluated the segmentation results yielded by each 

algorithm quantitatively, using evaluation metrics as described below in Section 6.4.3. 
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6.4.1 Learning Curves 

Learning process of each method is illustrated in figure 6.1, where loss versus 

training and loss versus validation is compared, individually, among baseline methods. 

Figure 6.1, demonstrates that each method does not observe severe overfitting as their 

validation loss decreases along with decrement in training loss consistently because 

each method has adopted 3D fully convolutional architecture where error 

backpropagation is carried on per-voxel-wise strategy instead of patch-based training 

scheme [116]. In other words, every single voxel is utilized as an independent training 

sample, which enlarges the training database dramatically and thus reducing the over-

fitting risk. In contrast to this, traditional patch-based training scheme [116], needs 

dense prediction (i.e., many patches are required) for each voxel in 3D volumetric data; 

thus this redundant patches computation for every voxel makes the network 

computationally complex and impractical for volumetric segmentation. 

(c)             (d) 

(a)             (b) 

Figure 6.1: Comparison of learning curves of state-of-art methods. (a), (b), (c) and (d) 

are learning curves correspond to 3D FCNNs, 3D U-net, DenseVoxNet, and proposed 

method 3D MSDenseNet, respectively. 
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By comparing the learning curves of 3D FCNNs (figure 6.1 (a)), 3D U-net (figure 

6.1 (b)), and DenseVoxNet (figure 6.1 (c)), the 3D U-net and DenseVoxNet converge 

much faster with minimum error rate than the 3D FCNNs. This demonstrates that the 

3D U-net and DenseVoxNet successfully overcome gradients vanishing/exploding 

problems through reuse of the features of earlier layers to later layers as discussed in 

chapter 5, section 5.3 and 5.4, respectively. On the other hand, it is also shown that 

there is no any significant difference between learning curves of the 3D U-net and 

DenseVoxNet, however, in the beginning; the DenseVoxNet attains a steady drop of 

validation loss. It further proves that reusing of features from subsequent layers to every 

next layer by DenseVoxNet, which propagates maximum gradients than those skip 

connections utilized by 3D U-net, which propagates output features from layers of the 

same resolution in the contraction path to the output features from the layers in the 

expansion path. Furthermore, figure 6.1 (d) shows that the proposed method, which 

incorporates a multiscale dense training scheme, has a minimum loss rate than all. It 

reveals that the multiscale training scheme in our proposed method optimizes and 

speeds up the network training procedure, thus proposed method has the fastest 

convergence with the lowest loss rate than all. 

 

6.4.2 Qualitative Results 

In this section, we presented the qualitative results to assess the effectiveness of 

each segmentation method qualitatively on the colorectal tumor segmentation task. 

Figure 5.2 (a) gives a visual comparison of colorectal tumor segmentation results 

achieved from each method. In figure 6.2 (a), from left to right; the first two columns 

are the raw MRI input volume and its cropped volume, rest every three columns are 

related to segmentation results produced by each method where each column represents 

predicted foreground probability, initial colorectal segmentation results and then 

refined segmentation results by 3D level set, correspondingly. Moreover, the 

segmentation results produced by each method are outlined with a red marker and 

overlapped with true ground truth, which is outlined with a green marker. In figure 6.2 

(b), we overlapped the segmented 3D mask with the true ground truth 3D mask to 
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observe visually false negative rate in the segmentation results. It is observed that the 

proposed method 3D MSDenseNet outperforms than all with less false negative rate 

followed by DenseVoxNet, 3D U-net, and 3DFCNNs. It is also noteworthy that 

segmentation results of each method improve by incorporating 3D level set. 

 

6.4.3 Quantitative Results 

Table 6.1 presents the quantitative results of colorectal tumor segmentation 

produced by each method. The quantitative results are achieved by computing the mean 

and standard deviation of each performance metric for 13 test volumes. We initially 

compared the results obtained by each method without post-processing of the 3D level 

set, and we call them baseline methods. Afterward, we presented a comparison in 

among them by incorporating 3D level set as a post-processor to refine the boundaries 

of the segmented results of these baseline algorithms. In this way, we have got total 

eight settings and we name them as; 3D FCNNs, 3D U-net, DenseVoxNet, 3D 

MSDenseNet, 3D FCNNs + 3D Level Set, 3D U-net + 3D Level Set, DenseVoxNet + 

3D Level Set, 3D MSDenseNet + 3D Level Set, respectively. From Table 6.1, it reveals 

that the 3D FCNNs has the lowest performance in all metrics followed by 3D U-net and 

DenseVoxNet. Whereas, the proposed method has maintained his performance by 

achieving the highest value of the dice similarity coefficient (DSC), recall, and the 

lowest value of ASD. When comparing the methods after post-processing where every 

method has effectively improved their performance in all. Where 3D FCNNs + 3D 

Level Set has improved DSC and recall as 16.44% and 15.23%, individually, and it 

reduced ASD to 3.0029 from 4.2613 mm. Similarly, 3D U-net + 3D Level Set and 

DenseVoxNet + 3D Level Set have attained improvements in (DSC and recall) as; (5% 

and 5.97%), and (4.99% and 4.29%), correspondingly. They both also have got a 

noteworthy reduction in ASD, as 3D U-net + 3D Level Set and DenseVoxNet + 3D 

Level Set reduce ASD (to 2.9 from 3.02) and (to 2.52 from  
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(a) 

 

(b) 

Figure 6.2: Qualitative comparison of colorectal tumor segmentation results produced by each method. 

In (a), from left to right columns are the raw MRI input volume, cropped volume,  first three columns 

are corresponded to  predicted probability by 3DFCNNs, segmentation results by 3D FCNNs (red), and 

3D FCNNs + 3D Level Set (red) overlapped with true ground truth (green), correspondingly. Similarly 

Second, third and fourth three columns are related to predicted probability, segmentation results by rest 

of methods; 3D U-net (red), 3D U-net + 3D Level Set (red), DenseVoxNet (red), DenseVoxNet + 3D 

Level Set (red), 3D MSDensenet (red), and 3D MSDensenet + 3D Level Set (red), respectively. In (b), 

we have overlapped the 3D masks segmented by each method with the ground truth 3D mask. In (b), 

from left to right are ground truth 3D mask, overlapping of segmented 3D mask by 3D FCNNs (red), 

3D FCNNs + 3D Level Set (red), 3D U-net (red), 3D U-net + 3D Level Set (red), DenseVoxNet (red), 

DenseVoxNet + 3D Level Set (red), 3D MSDensenet (red), and 3D MSDensenet + 3D Level Set (red) 

with the ground truth 3D mask (green points). The green points which are not covered by the 

segmentation results (red) of each method are referred as false negatives. 

 



 

80 

Table 6.1: Quantitative comparison of colorectal tumor segmentation results 

 

2.7), respectively. While 3D MSDenseNet + 3D Level Set has got progress in  DSC 

and recall as 2.13% and 2.42%, separately, and it reduces ASD to 2.54 from 2.64. 

Nevertheless, the 3D MSDenseNet + 3D Level Set method could not attain a significant 

improvement by utilizing the post-processing step but still outperforms than all. Taking 

into account both qualitative and quantitative results, it has been observed that the 

addition of the 3D level set as a post-processor with each method improves their 

segmentation results. 

 

6.5 Discussion and Conclusion 

In this work, we tested our initially proposed method 3D FCNNs + 3D Level Set 

[48], and two prominent and widely explored volumetric segmentation algorithms, 

namely 3D U-net [45], and 3D DenseVoxNet [49] for volumetric segmentation of 

colorectal tumor from T2-weight abdominal MRI. Furthermore, we extended their 

ability by incorporating 3D level set in their original implementations for the colorectal 

tumor segmentation task. Based on their pros and cons, we proposed a novel algorithm; 

3D Multiscale Densely connected neural network (3D-MSDenseNet). In medical image 

segmentation, there are many studies have been carried out for developing several 

techniques, mostly based on geometrical methods to address the hurdles and challenges 

Methods 
Performance Metrics 

DSC Recall ASD [mm] 

3D FCNNs [48] 0.65 ± 0.012 0.69 ± 0.1 4.3 ± 3.2 

3D U-net [45] 0.72 ± 0.013 0.75 ± 0.03 3.02 ± 3.0 

DenseVoxNet [49] 0.783 ± 0.015 0.81 ± 0.02 2.7 ± 2.9 

3D MSDenseNet (Proposed 

Method) 
0.84 ± 0.02 0.85 ± 0.02 2.6 ± 2.8 

3D FCNNs + 3D Level Set [48] 0.76 ± 0.02 0.79 ± 0.02 3.0 ± 3.0 

3D U-net + 3D Level Set 0.82 ± 0.02 0.84 ± 0.02 2.9 ± 2.7 

DenseVoxNet + 3D Level Set 0.83 ± 0.012 0.84 ± 0.02 2.52 ± 2.8 

3D MSDenseNet + 3D Level Set 

(Proposed Method) 
0.86 ± 0.02 0.87 ± 0.02 2.54 ± 2.4 



 

81 

in the chaotic medical image segmentation, including statistical shape models, graph 

cuts, level set and so on [117]. Recently, level-set based segmentation algorithms are 

commonly explored approaches for medical image segmentation. Generally, level set 

based algorithms utilize the energy minimization problem by incorporating different 

regularization (smoothing terms) and priors depending on segmentation tasks. The level 

set based segmentation algorithms can vary topological properties of segmentation 

function [118], which makes the level set more preferable in segmentation problems. 

However, they always require an initial appropriate contour initialization to segment 

the desired object. This initial contour initialization requires expert user intervention in 

the medical image segmentation. Also, medical imaging has disordered intensity 

distribution and also varies from one imaging modality to another, and even varies slice 

to slice in a volume of the same modality. Therefore, their segmentation is impeded to 

generalize using these traditional approaches based on statistical models of the intensity 

distribution. In other words, level-set based approaches are progressively deficient due 

to their simple appearance model [100], which may limit its transferability and 

generalization capability to learn the chaotic intensity distribution in medical images. 

Currently, convolution neural networks (CNNs) based deep learning methods have 

been successfully employed in medical imaging, especially for image classification, 

detection and segmentation purposes. Usually, the deep learning based approaches 

learn a model by extracting features deeply from intricate structures and patterns from 

well-defined large training data sets where the trained model is used for prediction. 

Unlike level-set based methods, deep learning can learn appearance models 

automatically from the extensive training data, which improves its transferability and 

generalization ability. Nevertheless, deep learning based approaches are not able to 

provide an explicit way of integrating prior shape and regularization. Therefore, 

considering the merits and demerits of both level set and deep learning contrariwise, 

we incorporated 3D level set in each method that we used for our task. 

Moreover, traditional CNNs are 2D in nature and were designed primarily for 2D 

natural images. Whereas, medical images like MRI or CT are in 3D form. Generally, 

these 2D CNNs with 2D kernels have been used for medical image segmentation where 

volumetric segmentation was performed in a slice by slice sequentially. These 2D 

kernels are not able to use volumetric spatial information completely by sharing spatial 
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information among the three planes simultaneously. Taking into account this problem 

with tradition CNN, 3D U-net and DenseVoxNet provide a 3D CNN architecture, 

which utilizes 3D kernel which simultaneously shares spatial information among three 

planes. 

Another challenge with 3D CNN is controlling the network optimization when the 

network goes deeper. Deeper networks are more prone to get the risk of over-fitting due 

to the vanishing of gradients in advance layers. This has been proven in this work. From 

the segmentation results produced by 3D FCNNs, someone can see in figure 6.2 that 

how the patterns/gradients have been lessened. In order to preserve the gradients in the 

next layers when the network goes deeper, 3D U-net and DenseVoxNet reused the 

features from early to the next layer. In this way, 3D U-net overcomes this vanishing 

gradient problem in a deep network by incorporating skip-connection, which 

propagates output features from layers of the same resolution in the contraction path to 

the output features from the layers in the expansion path. 

Nevertheless, this skip-connection allows the gradient to flow directly from the low-

resolution path to high-resolution path, which makes training easy, but this generally 

produces large feature channels in every layer and lead network to adjust a large number 

of parameters during training. To overcome this problem, the DenseVoxNet extends 

the concept of skip connections by constructing a direct connection from every layer to 

its corresponding previous layers to ensure maximum gradient flow between layers. In 

simple words, feature maps produced by the preceding layer were concatenated as an 

input to the advanced layer, thus providing a direct connection from any layer to the 

subsequent layer. Our results have proven that direct connection strategy by 

DenseVoxNet provides better segmentation than skip connection strategy by 3D U-net. 

However, DenseVoxNet has a deficit as network learns high-level feature and low-level 

features in early and later layers, individually, which limit the network to learn multi-

scale contextual information throughout the network and may lead the network in poor 

performance. Our proposed network provides a multi-scale dense training scheme 

where high resolution and low-resolution features are learned simultaneously, thus 

maintaining maximum gradients throughout the network. Our experimental analysis 

reveals that reusing of features through multi-scale dense connectivity produces 

effective colorectal tumor segmentation. 
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Nevertheless, our proposed method obtained better performance in the 

colorectal tumor segmentation, but it has a limitation too. As it is seen from Table 6.1 

that our proposed algorithm has high standard deviations in DSC and recall as compared 

to other methods. It shows that the proposed method is not able to confront with a 

variation of contrast in the cancerous region and variation of the slice gap along z-axis 

among data sets. The better normalization and super-resolution method may be required 

to solve this problem, and more training samples might be helpful. 

  



  

CHAPTER 7 

CLASSIFICATION OF RESPONDERS AND NON-RESPONDERS TUMORS ─ 

EXPERIMENTAL RESULTS

This chapter presents experimental results related to our third contribution; 

assessment of predictive model using radiomics features in three different cases; Case 

1: Predictive model using only handcrafted radiomics features, Case 2: Predictive 

model using only deep radiomic features, and Case 3: Predictive model using a 

combination of handcrafted and deep features, respectively. Our study focuses on 

analyzing the above three cases to obtain an optimal radiomics based biomarker in 

tumor response to colorectal therapy. Since high accuracy, efficiency and reliability 

are crucial factors in the obtained predictive and prognostic models, which totally 

depend on the success of radiomics based clinical biomarkers. Thus, in order to 

examine the effectiveness of radiomics based features in obtaining an accurate 

predictive model; it is necessary to validate and compare different machine learning 

models utilizing all possible radiomics features. For this purpose, in this thesis, the 

most widely explored supervised machine learning based classifiers were employed. In 

addition, radiomics have high space dimensionality problem like any high-throughput 

data-mining field. In this regard, we have assessed the performance of six different 

feature selection algorithms, which can improve the performance of radiomics based 

predictive models in different ways.  

7.1 Material and Methods 

In this work, we have assessed seven classification methods and six feature 

selection methods for radiomics based prediction of tumor response to neoadjuvant 

chemoradiotherapy (CRT) in colorectal cancer. In our study, a selection of these 

methods was based on their popularity and wide exploration in the literature.  
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Additionally, their implementation is publicly available online (http://www.scikit-

learn.org), we have set configuration in these methods with their general and widely 

testified hyper-parameters [139], thus by following unbiased assessment for these 

approaches.  A detail description of each classifier and feature selection algorithm is 

given in previous chapter 3.   

An overview of the proposed methodology is depicted in figure 7.1. We used 3D 

MRI data acquired from two different hospitals (Department of Radiological Sciences, 

University of Pisa, Via Savi 10, 56126 Pisa, Italy and Department of Radiological 

Sciences, Oncology and Pathology, University La Sapienza, AOU Sant'Andrea, Via di 

Grottarossa 1035, 00189 Rome, Italy) along with their manual segmentation of tumor 

volumes. A detail description of data sets is discussed in section 7.1.1. Two different 

types of radiomics features were extracted from our data: traditional handcrafted 

radiomics features and deep radiomics features. A total of 109 handcrafted radiomic 

features were extracted from each MRI volume in this study. These handcrafted 

radiomics features are divided into further three groups, including 1) Tumor shape 

based, 2) Tumor intensity based, and 3) Textural features. The tumor shape-based 

features are referring to 3D shape representation of the tumor. The intensity-based 

features are first-order textural features where first-order statistical distribution of the 

voxel intensities within the tumor are calculated. The textural features are second-order 

statistical textural features where the second-order spatial distribution of the voxel 

Figure 7.1: Proposed methodology for classification of responders and non-responders 
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intensities is computed. These handcrafted radiomics features are explained in section 

7.1.2. Furthermore, 4096 deep radiomics features for each patient are computed using 

transfer learning from the pre-trained convolutional neural network (CNN_S), as 

explained in section 7.1.3. 

Consequently, this study examines a predictive model using radiomics features in 

three different cases as shown in figure 7.1; Case 1: Predictive model using only 

handcrafted features, Case 2: Predictive model using only deep radiomics features, and 

Case 3: Predictive model using a combination of handcrafted and deep radiomics 

features, respectively. A detail experimental analysis using the above three cases is 

mentioned in section 7.2. Considering radiomics features using any case from the above 

three cases; feature selection and predictive modeling can produce an optimal radiomics 

based biomarker in clinical oncology. 

7.1.1 Experimental Data sets   

Study Population: The retrospective study has involved 43 patients, 27 males, and 

16 females. All patients have locally advanced rectal cancer, with an average age of 

diagnosis of 67 (52 – 81 years old range).   

The inclusion criteria were:  

• Rectal cancer diagnosis;  

• Local advanced rectal cancer: T3, T4 or any T with N+;  

• Patients undergoing preoperative radiochemotherapy;   

• Anatomopathological examination available after surgery;  

• MRI both pre- and post-radiochemotherapy and good quality imaging; 

• The absence of other neoplastic diseases  

Every patient underwent to staging analysis before radiochemotherapy, which includes 

digital rectal examination, blood tests, chest X-ray examination, and colonoscopy, 

abdominal computed tomography with contrast, endorectal ultrasound and magnetic 

resonance imaging with phased-array surface coils. 

MRI acquired data: The overall data set consisted of 43 volumes T2-weighted MRI 

and each MRI volume consists of several slices which are varied in number across 

subjects as 69 ~122 and have dimensions as 512 × 512 × (69 ~122). Their voxel spacing 
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also varying from 0.46 × 0.46 × 0.5 to 0.6 × 0.6 × 1.2 mm/voxel across each subject. 

As the data have a slight slice gap, thus we did not incorporate any spatial resampling. 

Anatomopathological Examination: The surgery samples have been evaluated by 

an anatomopathologist both macro- and microscopically after fixed with formalin and 

stained mesorectal fascia with ink. The microscopic examination has been performed 

with hematoxylin and eosin stain. All the suspect areas have been accurately observed, 

including the mesorectal and inferior mesenteric lymph nodes. In some cases, 

particularly difficult to evaluate, immunohistochemical analysis has been performed 

too. 

Every histological report described: 

 Histotype 

 Tumor grade: G1 if the tumor is well differentiated, G2 if the tumor is 

moderately differentiated, G3 if the tumor is poorly differentiated, G4 if the 

tumor is undifferentiated 

 Tumor invasion limited to the rectal wall, beyond the rectal wall into 

mesorectum, etc. 

 Neoplastic growth pattern 

 Vascular invasion 

 Perineural invasion 

 Tumor budding (the presence of tiny detached clusters and cords of tumor cells 

embedded in desmoplastic stroma at the leading edge of the invasive front of 

the tumor): absent/present 

 Peritumoral lymphocyte infiltration 

 Intratumoral lymphocyte infiltration 

 Surgical margin status: absent/present tumor invasion; 

 Number of lymph nodes involved 

 Quirke’s graded assessment of completeness of mesorectal excision: 1-poor, 2-

moderate, 3-good; 

 Circumferential Resection Margin (CRM), the distance between tumor cells and 

CRM, it is considered positive if the distance is less than 1 mm 

 ypTNM according to American Joint Committee on Cancer 



 

88 

 TRG of Dworak: TRG0 = no regression, TRG1 = Dominant tumor with fibrosis 

and/or vasculopathy, TRG2 = Significant fibrosis with groups of tumor cells 

(easy to find), TRG3 = Dominant fibrosis or mucin with very few tumor cells 

(difficult to find microscopically), TRG4 = No tumor cells, only fibrotic mass 

(total regression) 

There are many different TRG score systems, and actually, a gold standard has not 

been defined. Each system classifies specimens according to the increasing or 

decreasing percentage of fibrosis in three to five groups. Generally, a percentage of 

fibrosis greater than 85% is representative of a complete response that is TRG 4 [147]. 

A higher overall survival, as well as disease-free survival, has been demonstrated in 

complete responders [148-149]. Particularly, we have considered this last parameter in 

order to divide patients into two different categories: patients with a response TRG4 are 

being considered complete responders, the other one (with a chemoradiotherapy 

response TRG0, TRG1, TRG2, and TRG3) are being considered partial /non-

responders. Consequently, among 43 patients, we have 23 patients observed as 

complete responders, and 20 observed as non-responders. 

7.1.2 Handcrafted Radiomics Features 

Handcrafted features were extracted from the region of interest (ROI) in three 

different groups: first-order histogram based features, shaped based, and second order 

textural features. These features were extracted in python using publicly online 

pyradiomics software (https://pyradiomics.readthedocs.io/en/latest/), [28]. A detail of 

these features is given in Appendix A. 

7.1.3 Deep Radiomics Features 

Recently, deep learning [83] has arisen as a successful and widely explored 

methodology in computer vision and attained many breakthroughs and state-of-the-art 

performance in various computer vision applications, including image classification 

and recognition [84-85], semantic segmentation [86-88], stereo matching [89], object 

detection [90-91], etc. Deep learning is also known as deep convolutional neural 

https://pyradiomics.readthedocs.io/en/latest/
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networks, abbreviated as CNNs or ConvNets. We have already explained the details of 

the advantages and basic building blocks of CNN in previous chapter 4. Due to the fact, 

the performance of deep learning based algorithms is dependent on data density. As 

large data sets improve the performance of deep learning algorithms. Nonetheless, in 

contrast to natural images, the data sets in the medical imaging domain are insufficient 

to obtain an effective performance in the deep learning approaches.  

Despite this fact, transfer learning is frequently employed in computer vision to 

tackle with a small data set problem [143]. In the machine-learning domain, transfer 

learning is a way where previously learned knowledge from one domain, is applied to 

a new but different domain in a similar way to the previous domain [140]. More 

precisely, the new problem is solved by previously learned model or experience. 

Transfer learning can be employed in the radiomics field for extraction of abundance 

deep radiomics features from the hidden layers of CNN. These deep features decode 

more nonconcrete information from medical images. These deep features may deliver 

more prognostic patterns than traditional handcrafted radiomics features. According to 

our best knowledge through literature review, there is some work at small-scale has 

been proposed where deep radiomics features are evaluated in comparison with 

traditional handcrafted radiomics features [26, 35].   

In our work, we extracted deep features via transfer learning by applying the pre-

trained CNN_S model [141] on our data in forward propagation only. The CNN_S was 

Table 7.1: CNN_S Architecture [141] 

Conv1 96 × 7 × 7, stride of 2, padding 0, ×3 max pooling, LRN 

Conv2 256 × 5 × 5, stride of 1, padding 1, ×2 max pooling 

Conv3 512 × 5 × 5, stride of 1, padding 1 

Conv4 512 × 5 × 5, stride of 1, padding 1 

Conv5 512 × 5 × 5, stride of 1, padding 1, ×3 max pooling 

Full 6 4096, dropout 

Full7 4096, dropout 

Full8 1000 softmax 
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trained on large ImageNet Large Scale Visual Recognition Challenge dataset 2012 

(ILSVRC2012 [145]). ILSVRC database is comprised of more than fourteen million  

images and more than thousands of object cliques. On the other hand, we have a 

comparatively a small number of medical data sets (i.e., 43 patients) that is insufficient 

to train such a CNN, which can learn millions of weights. The CNN_S architecture 

consists of total eight layers: five are convolution (Conv) layers, and two are fully 

connected (FC), and the last one is a softmax classification layer, as mentioned in Table 

7.1 and figure 7.2. We provide segmented tumor as an input to CNN_S. For this 

purpose, we have selected out the slice from each segmented volume, which contains 

the tumor with the biggest area. As CNN_S requires an input of size 224 × 224 × 3 

where 3 is channel depth, i.e., RGB. However, MR images are grayscale images; 

therefore, we modified the code by using only one channel, red (R), while keeping 

others off. Secondly, CNN_S requires normalized data; subsequently, the voxel 

intensities of MR volumes were normalized to the range [0 255]. Thirdly, the size of 

the segmented tumor varies in the range of average width and height, ~ 45 to 33 

approximately, pixels concerning the actual resolution of the MRI scan. Therefore, we 

use a window of an approximate size of tumor size (i.e., if the segmented tumor has 

size 36 × 42, the window size should be 35 × 35, so that window covers all pixels related 

to the tumor). In this way, we cropped the tumor with its corresponding window size. 

In order to achieve the CNN_S input size requirement that is 224 × 224, the cropped 

tumor resized accordingly to 224 × 224 by applying bi-cubic interpolation. Finally, we 

extracted deep features from the second last layer (i.e., fully connected layer 7), as 

shown in figure 7.2. In a result, we have in total 4096 deep features. This experiment 

has been performed in a MATLAB toolbox, MatConvNet, [142].  

Figure 7.2: Extraction of deep radiomics features using pertained model of CNN_S. 
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7.1.4 Statistical Analysis  

A. Evaluating predictive and prognostic performance of feature selection 

algorithms and classifiers 

In this study, we used filtered based feature selection algorithms, namely T-test (T-

score), Chi-square (Chi-score), Fisher, Mutual Information Maximization (MIM), 

Minimum Redundancy Maximum Relevance (MrMr) and Relief. We used supervised 

machine learning based classifiers, namely Support Vector Machine (SVM) with linear 

kernel (LSVM), SVM with kernel ‘poly’ (QSVM), Logistic Regression (LR), Linear 

Discriminant (LD), Naïve Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural 

Network (ANN). The training of these classifiers was carried out on by 100 repetitions 

where the data were randomly divided into 75% training data and 25% test data in each 

repetition. The trained model was evaluated on split test data in term of area under ROC 

curve (AUC). 

The best size of selected features is very important to assess and compare each 

classifier performance with respect to each feature selection algorithm. In this regard, 

considering three factors, size of selected features, feature selection algorithm, and 

classifier model; a three-dimensional parameter search grid is formed. Thus, we 

incremented a number of selected features for each feature selection algorithm with an 

incremental factor of 5 till 25; like in different subsets, i.e., 5, 10, 15, 20, and 25. 

Consequently, the performance of each classifier is assessed using each subset in terms 

of area under ROC curves (AUC). As 100 repetitions were used; therefore, we took the 

mean of 100 AUCs for each classifier with respect to each subset of every feature 

selection algorithm.  

B. Finding the potential size of the selected features and the effect of classifier 

performance regarding the feature selection algorithm 

In order to find the best size of selected features, and their effect corresponding to 

its feature selection algorithm on classifier performance; we use multi-factor ANOVA 

on computed AUCs. First, we compare the different size of selected features of all 

feature selection algorithms to find the best size of selected features, which gives the 
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highest AUC. Then we compare interactions between classifiers and feature selection 

algorithms, to get the best combination of feature selection and classification 

algorithms.   

7.2 Experimental Results 

  In order to assess the performance of classifiers utilizing predictive radiomics 

features as prognostic biomarkers, we extracted features from our data in different three 

cases. Such as, a total of 109 handcrafted radiomics features were extracted in case 1; 

in case 2, a total of 4096 deep radiomics features extracted via transfer learning and; in 

case 3, we analyzed predictive model using a combination of handcrafted radiomics 

features and deep radiomics features. In case 3, these features were combined by 

concatenating the selected features from each case.  

7.2.1 Case 1: Analysis with only Handcrafted Radiomics Features 

 In this study, we assessed six feature selection algorithms and seven classification 

methods in term of AUC by utilizing handcrafted features as the predictive biomarkers. 

Figure 7.3 (a), gives a heatmap representation of obtained mean AUCs (in %) by 

different feature selection algorithms, depicted in rows; and different classification 

algorithms, depicted in columns. Accordingly, each feature selection algorithm 

contains seven mean AUC values (in %) with respect to seven different classifiers; 

similarly, each classifier contains six different mean AUC values (in %) with respect to 

six different feature selection algorithms. Furthermore, for more simplification, their 

obtained AUCs (mean ± Std) are depicted in Table 7.2, and Table 7.3. Table 7.2 

presents the performance of each classification method in term of AUC (mean ± Std) 

with respect to all features selection for each case, and Table 7.3 presents the 

performance of each feature selection in term of AUC (mean ± Std) with respect to all 

classification method for each case. For case 1, Table 7.2 demonstrates that 

classification methods, ANN and LD stood first by obtaining the best mean AUC values 

(mean ± Std), as 0.79 ± 0.02 and 0.79 ± 0.023, individually. Whereas, NB and LSVM 

stood the last by obtaining mean AUCs, as 0.76 ± 0.025 and 0.76 ± 0.44, respectively. 
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In regard to feature selection algorithms, Fisher followed by Chi_Score and T_Score 

 

(a) Case 1: Analysis with only Handcrafted Radiomics Features 

                        

(b) Case 2: Analysis with only Deep Radiomics Features 

                             

(c) Case 3: Analysis with Combination of both Handcrafted and Deep Radiomics 

Features 

Figure 7.3:  Heatmap representing the mean AUCs (in %) for each case with size of 

selected features = 5; feature selection algorithms (in rows) and, in columns for 

classification methods (in columns). 
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have the better predictive performance (i.e. AUCs (mean ± Std).                                                  Classification 

Algorithms 

AUC (mean  ± Std) 

Case 1 Case 2 Case 3 

LSVM        0.76 ± 0.44   0.8   ± 0.042 0.84 ±  0.025 

QSVM  0.77 ± 0.024 0.73 ± 0.03       0.83 ± 0.035 

LR  0.77 ± 0.025 0.79 ± 0.04       0.82 ± 0.044 

LD  0.79 ± 0.023 0.76 ± 0.07       0.78 ± 0.064 

NB  0.76 ± 0.025 0.73 ± 0.08       0.78 ± 0.051 

KNN  0.77 ± 0.014  0.77 ±  0.06 0.81 ±  0.055 

ANN  0.79 ± 0.016  0.77 ± 0.06       0.81 ± 0.06 

 

Feature Selection 

Algorithms 

AUC (mean  ± Std) 

Case 1 Case 2 Case 3 

T_Score 0.78 ± 0.01 0.77 ±  0.03 0.82 ±  0.018 

Chi_Score   0.79 ± 0.012 0.77 ± 0.04      0.80 ± 0.05 

Fisher        0.8   ± 0.01 0.81 ± 0.03      0.85 ± 0.012 

MIM        0.74 ± 0.02        0.7   ± 0.04      0.77 ± 0.031 

MrMr        0.77 ± 0.3 0.71 ± 0.05      0.75 ± 0.04 

Relief        0.77 ± 0.01 0.82 ± 0.04      0.87 ±  0.013 

 

 

 

 

Figure 7.4: Comparison of ROC for the best combination of classifier and FS for each 

case. 

Table 7.3: Mean values of AUCs obtained by different feature selection methods in each 

case. 

Table 7.2: Mean values of AUCs obtained by different classifier in each case. 
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In regard to feature selection algorithms, Fisher followed by Chi_Score, and T_Score 

  

(a)         (b) 

 

(c) 

 

 

(d) 
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have the better predictive performance (i.e. AUCs (mean ± Std); 0.8±0.001, 0.79 ±          
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In regard to feature selection algorithms, Fisher followed by Chi_Score, and T_Score 

have the better predictive performance (i.e. AUCs (mean ± Std); 0.8 ± 0.001, 0.79 ± 

0.012, and 0.78 ± 0.01 respectively) compared to MrMr followed by Relief and MIM, 

as they have AUC; 0.77 ± 0.3, 0.77 ± 0.01 and 0.74 ± 0.02, individually. In this study, 

our focus was to obtain the best predictive model with the most relevant with the 

minimum rank of selected features. The above results we obtained using the most 

relevant prognostic features with a rank of 5.  

Likewise, we repeated our analysis by increasing the rank of selected features as 

10, 15, 20 and 25. Results related to these ranks are presented in Appendix B. 

Furthermore, multifactor ANOVA is used to analyze each experimental factor (i.e., 

size of selected features, classification algorithm and feature selection algorithm) 

independently as well as their interaction with each other. Figure 7.5, a, b and c show 

an independent analysis of each experimental factor. Figure 7.5 (a) shows that the size 

of selected features with top-rank of 5 comparatively produces the better prognostic 

performance. Similarly, figure 7.5 (b) shows that Chi_Score, T_Score, and Fisher are 

better featured selection methods than MIM and MrMr. In the case of classification 

algorithms as an individual comparison, figure 7.4 (c) shows that the ANN has achieved 

better prognostic performance followed by LR and KNN those have merely same 

prognostic performance as ANN has. Now considering the interaction of the above 

experimental factors with each other. Our analysis regarding the interaction between 

the classification algorithms and feature selection algorithms shows that the ANN 

classifier with four different feature selection algorithms (viz., Chi_Score, T_Score, 

Fisher and Relief) produces the best prognostic model, as shown in figure 7.5 (d).  In 

case of interaction between classification algorithms and different sizes of selected 

features, it is noted that all classifiers except the LD perform well with all sizes of 

selected features; the performance of the LD classifier tends to decrease with increasing 

the size of selected features, as shown in figure 7.5 (f). Furthermore, it is noteworthy 

that the ANN has the best performance than all in combination with all size of selected 

features. Finally, the interaction between the feature selection algorithm and the size of 

the selected features were analyzed. Figure 7.5 (e) shows that the feature selection 
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algorithm Fisher has the highest prognostic performance than all; particularly, in 

combination with the size of selected features with the minimum ranks of 5 and 10. 

In case 1, we have found that the combination of the ANN classifier and the Fisher 

as feature selection algorithm with the minimum (i.e., 5) top-rank of the size of selected 

features outperforms as being the best predictive model in our study.  Those top-five 

ranked features selected by the Fisher are: Volume (shape-based feature), Energy 

(Haralick’s Second order GLCM), Entropy (Haralick’s Second order GLCM), Long 

Run Emphasis (LRE) (Second-order GLRLM), Size Zone Non-Uniformity Normalized 

(SZNN) (GLSZM), Cluster shade (Haralick’s Second order GLCM).  

7.2.2 Case 2: Analysis with only Deep Radiomics Features 

In case 2, we have extracted a total of 4096 deep radiomics features as explained 

in Section 7.1.3. In this case, the results were obtained utilizing deep radiomics features 

as the prognostic biomarkers by following an analogous strategy of statistical analysis 

as in case 1. Figure 7.3 (b) gives a heatmap representation of attaining mean AUCs (in 

%) by different future selection algorithms (rows) and different classification 

algorithms (columns). Like in case 1, their obtained mean AUCs are depicted in Table 

7.2 and Table 7.3, respectively. Table 7.2 shows that the classification methods, LSVM, 

and LR stood first by obtaining the best mean AUC values (mean ± Std), as 0.8 ± 0.042 

and 0.79 ± 0.04, respectively. Whereas, the NB stands the last by obtaining the lowest 

mean AUCs, as 0.73 ± 0.06. Table 7.3 shows feature selection algorithms' performances 

where Relief and Fisher have achieved better predictive performance (i.e., AUCs (mean 

± Std); 0.82 ± 0.04, and 0.81 ± 0.03, respectively) compared to Chi_Score and T_Score 

(AUC; 0.77 ± 0.04 and 0.77 ± 0.03, respectively). Whereas, MIM and MrMr have the 

lowest performances, as 0.7 ± 0.04 and 0.71 ± 0.05, correspondingly.  Like in case 1, 

the above results are obtained by selecting the top 5 ranked features from each feature 

selection algorithm. Similarly, we repeated our analysis by increasing the rank of 

selected features as 10, 15, 20 and 25. The results related to these selected ranks are 

presented in Appendix C. 

Likewise, multi-factor ANOVA was also used here to analyze the behavior of those 

three experimental factors (i.e., size of selected features, classifier, and feature selection 
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algorithm). Figures 7.6 (a), (b) and (c), show an individual comparison of each factor 

  

(a)         (b) 

 

(c) 

 

(d) 
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and figures 7.6 (d), (e) and (f) show the comparison of their interaction to each other. 
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algorithm). Figures 7.6 (a), (b) and (c), show an individual comparison of each factor 

and figures 7.6 (d), (e) and (f) show the comparison of their interaction to each other.  

Similar to case 1, we also found that the size of selected features as 5 top-ranked 

features produces the best prognostic performance, as shown in figure 7.6 (a). In this 

case, the LSVM classifier shows the highest prognostic performance than all, as shown 

in figure 7.8 (b). The Relief based feature selection algorithm has achieved the best 

performance than other four algorithms (viz., Chi_Score, T_Score, MIM, and MrMr) 

whereas the Fisher has merely the same performance as the Relief has. Considering an 

interaction between the classification methods and the different rank of selected 

features, figure 7.6 (f) shows all classifiers behaves nearly and merely same with respect 

to all ranks of selected features except the NB; the performance of NB decreases as the 

size of selected feature increases. Figure 7.6 (d) shows that the combination of LSVM 

with Relief, Fisher and Chi_Score and the combination of LD with Relief, Fisher and 

T_Score provide a better predictive model. It is clearly shown that the Relief based 

feature selection algorithm provides a better combination with almost all classifiers to 

produce the best predictive model. Finally, by analyzing an interaction between the size 

of selected features and feature selection algorithms; it has been observed that the Relief 

and the Fisher based algorithms have achieved the best performance with the size of 

selected features of top-ranked 5. 

In conclusion, predicting prognostic model by using deep features; the classifier, 

LSVM, in combination with Relief or Fisher based feature selection algorithms with 

the size of selected features as the top-ranked 5, could be used as a good predictive 

model. 

7.2.3 Case 3: Analysis with a Combination of both Handcrafted and Deep 

Radiomics Features 

In the above two cases, it was observed that 5 top-ranked selected features could 

produce a better prognostic model. Considering this, in this case, we concatenated 5 

top-ranked selected features from each case (i.e., case 1 and case 2). Consequently, we 

similarly analyzed these concatenated features as we did before in case 1 and 2. 

Similarly, figure 7.3 (c) represents the mean AUCs (in %) obtained by different feature 
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selection algorithms (column) and classification algorithms (row). Table 7.2 (column 

3) shows mean AUCs values of each classifier with respect to all feature selection 

algorithms and Table 7.3 (column 3) shows mean AUCs values of each feature selection 

algorithm with respect to all classifiers. From Table 7.2, it can be seen that the 

performance of all classifiers except the LD, is improved by utilizing the concatenation 

of these two types of radiomics features. However, there is no significant improvement 

in LD classifier's performance by doing this. Similarly, a remarkable improvement was 

noted in the performance of all feature selection algorithms except MrMr. In addition, 

we also repeated the analysis by concatenating top-ranked features as 10, 15, 20 and 

25; their results are depicted in Appendix D. 

Table 7.3 reveals that the Relief and the Fisher based feature selection algorithms 

have achieved the best prognostic performance in combination with all classifiers, as 

they have mean AUCs (i.e., 0.87 ± 0.013 and 0.85 ± 0.011, respectively). Whereas 

classifiers, the LSVM followed by QSVM and LR have attained the best prognostic 

performance, as they obtained mean AUCs (0.84 ± 0.025, 0.83 ± 0.035, and 0.82 ± 

0.045, respectively). In conclusion, the best performance in term of mean AUC with 

respect to all feature selection methods has been achieved by the LSVM and similarly 

among feature selection methods; the Relief has attained the best performance in term 

of mean AUC with respect to all classification methods. Those top-five ranked features 

selected by the Relief are Skewness (First-order statistic feature), Sphericity (shape-

based feature), Energy (Haralick’s Second order GLCM), Entropy (Haralick’s Second 

order GLCM), and Cluster shade (Haralick’s Second order GLCM).  

Considering the above three cases with the best size of selected features (i.e., top-

ranked 5), the best prognostic model corresponding to case 1, case and case 3 is 

produced by the combination of ANN + Fisher, LSVM + Relief, and LSVM + Relief, 

respectively. Their comparison in term of ROC curves obtained as a mean over 100 

runs, is depicted in figure 7.4. Figure 7.4, shows that the best ROC curve is attained in 

case 3 while the other two cases have nearly the same ROC curves. 
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7.3 Discussion and Conclusion  

Early diagnosis and accurate staging of colorectal cancer is very crucial in the 

oncologic patients' management, predominantly in personalized treatment strategies. 

Currently, magnetic resonance imaging (MRI) is the most widely explored and 

preferable imaging modality in the loco-regional staging of colorectal cancer [4-5]. 

Generally, medical diagnosis of suspected cancer is carried out in terms of different 

medical tests like a biopsy or medical diagnostic imaging. Nevertheless, the biopsy can 

provide an informed diagnosis, but it is an invasive diagnostic technique and may not 

provide heterogeneity of the tumor entirely, which is essential in the evaluation of 

response to therapy in colorectal chemoradiotherapy (CRT).  On the contrary, the 

diagnostic imaging such as MRI and computed tomography (CT) those are non-

invasive diagnostic techniques and can provide essential information related tumor’s 

characteristics, such as, tumor size and its overall shape, tumor heterogeneity and tumor 

growth over time; these advantages of the medical diagnostic imaging techniques make 

them more preferable than the biopsy. However, the role of the medical diagnostic 

imaging in the prognosis of suspected cancer is challenging where the radiologist with 

high expertise is required to locate/detect the suspected cancer in a large data set, which 

is a time-consuming process too. 

Nowadays, radiomics [34-38], semiautomatic/automatic quantitative diagnostic 

technique that decodes the encoded information in large medical imaging datasets, 

quantitatively. Radiomics measure tumor heterogeneity for diagnosis of several cancer 

types non-invasively, thus by providing a prognostic or predictive model. Several 

studies have been carried out to create Radiomics based prognostic model for different 

clinical issues such as patient survival outcome [25, 38], treatment response [17-18], 

tumor grading [26-28], and more [34-37]. In our study, an accurate diagnosis and 

staging of colorectal cancer at early basis is the supreme interest where medical experts 

may decide the treatment plan that a patient should go for either therapy or surgical 

operation. In literature, multiple radiomics based features have been incorporated for 

different purposes; therefore, it is difficult to say that what radiomics features are useful 

in the assessment of colorectal cancer. Thus, the goal of this work is to find which of 

the radiomics feature are the most appropriate in the prediction of complete tumor 

response to neoadjuvant therapy and to assess the possible correlation among these 
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features. In this regard, we have extracted two types of radiomics features; handcrafted 

features (traditional features) and deep Radiomics features via transfer learning, 

inspired by [38]. For effective insight analyses of radiomics based prognostic model, it 

is necessary to assess and compare several feature selection algorithms and 

classification algorithms as being a prognostic model. Getting inspired by recent studies 

[144], we have analyzed six different filter-based feature selection algorithms and seven 

different widely explored classification algorithms. Nevertheless, we did not follow the 

exact study in [144] by selecting similar classifiers and feature selection algorithms. 

Due to the limited sample size in our study, we have chosen those classifiers and feature 

selection algorithms, which are fitted with our limited datasets. These classifiers tune 

with the parameters’ as defined in [139], where 179 different classifiers' families were 

evaluated on 121 datasets corresponding different domains. Similarly, to the previous 

study in [139], we tuned those parameters in our training datasets only using cross-

validation of 100 repetitions, thus by assessing each classification algorithm in an 

unbiased manner. Their implementation in Python is publicly available. The recent 

studies have proven that radiomics derived from multiparametric MRI can provide a 

better prediction of tumor response in colorectal cancer [150-151]. In [151], it is 

confirmed that the radiomics derived from T2-w MRI modality can produce the best 

prediction of the colorectal tumor response than other MRI modalities. In our study, we 

have derived radiomics features from T2-w MRI. 

Furthermore, our analysis is conducted on three different predictive models 

considering three different cases. In case 1, where the predictive model base on only 

handcrafted radiomics features was analyzed. In this case, we found that ANN 

classifiers produced the highest prognostic performance with the majority of feature 

selection algorithms. Similarly, Fisher based feature selection algorithm was observed 

with the best prognostic performance with all classifiers. Furthermore, our study 

demonstrates that the top-ranked five selected features (viz., Volume (shape-based 

feature), Energy (Haralick’s Second order GLCM), Entropy (Haralick’s Second order 

GLCM), Long Run Emphasis (LRE) (Second-order GLRLM), Size Zone Non-

Uniformity Normalized (SZNN) (GLSZM), Cluster shade (Haralick’s Second order 

GLCM)) provides the best prognostic performance.  
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Regarding case 2, where deep radiomic features were used as biomarkers as being 

the predictive model. We analyzed that the classifier, LSVM, has the best predictive 

performance with all feature selection algorithms. Accordingly, Relief or Fisher based 

feature selection algorithms arose as a good predictive model. In both cases, using 

multi-factor ANOVA, we found that the top-ranked features as 5 for the majority of 

feature selection algorithms have achieved the best predictive performance than all 

other ranks (i.e., 10, 15, 20 and 25). Considering this, we concatenated the 5 top-ranked 

features from case 1 case 2, as we discussed in case 3. In case 3, we found that the 

integration of these both Radiomics features to increase the performance of the majority 

of predictive models. Moreover, the comparable performance was given by LSVM and 

QSVM with all feature selection methods and Fisher and Relief based feature selection 

algorithms gave a comparable prognostic performance with respect to all classifiers. 

The LSVM as a classifier and the Relief as a feature selection algorithm gave the best 

prognostic performance. Our analysis found the best prognostic model in ease case, and 

we compare them in term of ROC curves as shown in figure 7.4 where the best 

performance is given by LSVM in combination with Relief using the combine 

radiomics features from both case 1 and case 2. Whereas the best predictive models of 

case 1 (i.e., ANN + Fisher) and case 2 (i.e., LSVM + Relief) have approximately similar 

ROC curves.  Taking into account the results obtained in the above three different cases, 

our study may be a reference to the use of different radiomics based biomarkers to 

evaluate different prognostic models in different cancer diagnosis applications. 

  



  

CHAPTER 8 

CONCLUSION 

The primary goal of this study was to design a system envisioned to automatically 

segment colorectal tumor with reasonable accuracy and predict tumor response in 

colorectal cancer evaluation in 3D MRI. This study was based on two fold objectives. 

First was related to segmentation of colorectal cancer in 3D MRI, and second, was to 

characterize the colorectal tumor into two groups; complete responders (CR) and non-

responders (NR) to therapy in colorectal cancer. These two studies were carried out in 

parallel, in finding solutions for under the set objectives. Accordingly, the general 

conclusion is given for each study, as follows: 

8.1 General Conclusion  

Study 1: The segmentation of the tumor is the first and crucial step in the 

characterization of the tumor, which is generally segmented manually. The manual 

segmentation of the colorectal tumor is time consuming, laborious and it requires high 

expertise. Consider this problem; this study analyzed different deep learning-based 

algorithms (viz., 3D FCNNs, 3D Unet, DenseVoxNet) as baseline methods to 

automatically segment tumor with reasonable accuracy. Based on pros and cons of 

those deep learning-based baseline methods, in this research work, 3D MSDenseNet, a 

novel 3D fully convolutional network architecture is presented for the accurate 

colorectal tumor segmentation in T2-weighted MRI volumes.  Our proposed network 

provides dense interconnectivity among the horizontal layers (depth) and vertical layers 

(scaled). In this way, finer (i.e., high-resolution features) and coarser (low-resolution 

features) are coupled in a two-dimensional array of horizontal and vertical layers, and 

thus, features of all resolutions are produced from the first layer on and maintained 

throughout the network. However, in other networks (i.e., traditional CNN, 3D U-net, 

or DenseVoxNet ) coarse level features are generated with increasing network depth. 
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The experiment results show that the multi-scale scheme in our proposed method has 

achieved the best performance overall. In addition, we incorporated a 3D level set 

algorithm with each method, as a post-processor to refine the segmented prediction. It 

is also shown that the incorporation of the 3D level set increases the performances of 

deep learning based approaches.  As a future direction, the proposed method will further 

testify on other medical volumetric segmentation tasks. 

Study 2: The accurate diagnosis and staging of colorectal cancer at first basis is the 

supreme in the oncology where medical experts have to decide the treatment plan that 

a patient should go for either therapy or surgical operation. Regarding the above 

motivational statement, the clinical appropriateness of our study lies in analyzing and 

classifying colorectal cancer non-invasively using radiomics and offering a user-

friendly tool to the clinician. For such a purpose, in this study, we analyzed three 

different types of radiomics features, case 1: handcrafted based radiomics, case 2: deep 

features based radiomics and case 3: their combination. This study used seven 

classifiers (viz., LSVM, QSVM, LD, LR, NB, KNN, ANN) and six feature selection 

algorithms (viz., Fisher, Chi-square, T-test, MrMr, MIM, and Relief) to design and 

analyze different predictive models using different radiomic features. We have 

compared the performances of predictive models in terms of mean AUC (i.e., AUC; 

mean ± std). 

Considering case 1, where traditional 109 handcrafted features were used, it was 

found that 5 features (viz., Volume (shape-based feature), Energy (Haralick’s Second 

order GLCM), Entropy (Haralick’s Second order GLCM), Long Run Emphasis (LRE) 

(Second-order GLRLM), Size Zone Non-Uniformity Normalized (SZNN) (GLSZM), 

Cluster shade (Haralick's Second order GLCM)) among 109 features provide the best 

prognostic performance in the predicting of the colorectal tumor response to therapy in 

the pre-treatment 3D MRI. These five best features were selected by the feature 

selection algorithm, so-called Fisher. Our analysis shows that Fisher presented the best 

prognostic performance in combination with all classifiers, that was (AUC; 0.8 ± 0.01). 

Using selected top-ranked five features, ANN classifier provided the best prognostic 

performance in combination with all feature selection algorithms, that was (AUC; 0.79 

± 0.016). In case 1, the best prognostic model was obtained from the combination of 

ANN classifier and Fisher feature selection algorithms.   
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Considering case 2 where 4096 deep radiomic features were extracted from our data 

by applying a pre-trained CNN_s model via transfer learning as explained in Chapter 

7, section 7.1.2.  In the case 2, we found that top five ranked features which are selected 

by Relief based feature selection algorithm produced the best prognostic performance 

in combination with all classifiers, that was (AUC; 0.82 ± 0.04). Similarly, using the 

top-ranked selected five deep radiomics features, LSVM classifier presented the best 

prognostic performance in combination with all feature selection, that was (AUC; 0.8 

± 0.042). In case 2, the combination of the LSVM and Relief based feature selection 

methods presented the best predictive performance in our study. 

Considering case 3 where top-ranked five selected features from the above each 

case (i.e., case 1 and case 2) are merged to obtain the prognostic model. In case 3, we 

have found that the top-ranked five selected features by Relief showed the best 

prognostic performance (AUC; 0.87 ± 0.013) in combination with all classifiers. 

Similarly, LSVM classifier has the best performance (AUC; 0.84 ± 0.025) in 

combination with all feature selection algorithms. In case 3, the best prognostic 

performance was produced by the combination of Relief based feature selection and 

LSVM classifier algorithms. In the case 3, the top-ranked five best-handcrafted 

radiomics features selected by Relief, are: Skewness (First-order statistic feature), 

Sphericity (shape-based feature), Energy (Haralick’s Second order GLCM), Entropy 

(Haralick’s Second order GLCM), and Cluster shade (Haralick’s Second order 

GLCM).  

Our results in comparison of different classifiers and feature selection algorithms 

revealed that the combination of these both types of radiomics based features could give 

a better prognostic model for the colorectal cancer evaluation in 3D MRI. It was also 

observed that the performance of only handcrafted and only deep features have no 

significant difference. 

8.2 Future Research Work 

Below are some research directions for the possible improvement in the work 

carried out in this Ph.D. thesis: 
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1. Although, the above both studies are linked these were carried out in parallel, 

independently, due to unavailability of the data on time. In our first study related 

to segmentation of colorectal tumor in 3D MRI, we have achieved promising 

results. In the future, it would be interesting to analyze our second study by 

replacing the manual segmentation by automatic segmentation obtained by the 

proposed method. 

2. In the second study, case 2, the deep radiomics features were extracted via 

transfer learning where pre-trained CNN_S model was trained on natural 

images. In the future, it would be interesting to train the CNN_S model on MR 

images dataset and may be utilized accordingly in this study. For such a 

purpose, an abundant number of MRI datasets are required. Nonetheless, 

nowadays, there is a considerable advancement in the medical imaging data, 

and these data are publicly available at the online database.  Furthermore, there 

are many data augmentation techniques (i.e., rotation, flipping, mirroring, etc.) 

can be incorporated to enlarge the training samples. 

3. In the second study, case 2 where the cropped tumor was resized using bi-cubic 

interpolation to required input size of pre-trained CNN_S model. The required 

input size was 224 × 224 while the cropped tumors' sizes were in the range of 

average width and height, ~ 45 to 33 approximately, pixels with respect to the 

actual resolution of the MRI scan. In this way, we were required to super-

resolved by a factor of ×5. We believe that employing a better super-resolution 

algorithm instead of traditional bi-cubic interpolation could produce a better 

prognostic performance. 
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Handcrafted radiomics features are extracted using python based pyradiomics code 

available at https://pyradiomics.readthedocs.io/en/latest/, [28]. Extraction of handcrafted 

Radiomics features can subdivide them into classes as follow: 

• Shape-Based 

• First order statistics features 

• Gray Level Co-occurrence Matrix (GLCM) 

• Gray Level Run Length Matrix (GRLM) 

• Gray Level Size Zone Matrix (GLSZM) 

• Neighboring Gray Tone Difference Matrix (NGTDM) 

A.1. Shape-based 

The Shape-based features present inside descriptors of the 3D size and the region 

of interest shape. These features characteristics do not depend on the intensity coming 

from the voxels and are derived from the approximated shape defined by the triangle 

mesh. To make this build are used vertices defined as points halfway on an edge 

between two voxels placed one outside the region the interest and the other inside them. 

Connecting 3 of them are obtain a triangular mesh. Every triangle made using this 

technique shares each side with a nearby triangle and vice-versa. The triangular mesh 

is generated using a marching cubes algorithm where a 2 × 2 cube is moved through 

the mask space. For every position are obtained only two different response, segmented 

(1) or not-segmented (0). A unique cube-index is obtained, evaluating the corner in 

binary code, to define how many triangles are present in a cube and everything is saved 

in a tab. The triangles are defined by the normal (from the cross product of vector 

describing 2 out of 3 edges), oriented always in the same direction and in Pyradiomics 

[1] the calculated normal pointing outward. All of them is essential to obtain the 

volume, used to calculate the mesh-volume [2]. 

Let’s introduce some values: 

 Nv  it represents the number of voxels in the ROI. 

 Nf  it represents the number of triangles defines the mesh. 

 V   is the mesh volume in mm3  

 A is the mesh area in mm2 

A.1.1 Mesh volume  

https://pyradiomics.readthedocs.io/en/latest/
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                            (A.1.1)  

Where 
1

fN

i

i

V V


  and V is the volume that is obtained by the previous calculation of each 

triangle mesh volume of the ROI and after there is the sum. Every face is defined by I 

and the i-th points ai, bi and ci. The normal identifies the sign of the volume, it must be 

consistently defined as either facing the outward-ROI and the inward-ROI. After that, 

there is the sum of all Vi and is obtained all the volume of the ROI [2]. 

A.1.2 Voxel volume  

1

vN

voxel k

k

V V


            (A.1.2) 

 

Voxel represents the volume of the ROI and is obtained by multiplying the number of 

voxels in the ROI by the volume of a single voxel  Vk. This feature is an approximation 

and doesn’t use the mesh, for that isn’t used for the calculation of other shape features. 

A.1.3 Surface Area  

 
1

2
i i i i iA a b a c               (A.1.3) 

Where 
1

fN

i

i

A A


   

The edges of the i-th triangle are represented by aibi  and aici , where ai, bi and ci  are 

the vertices. 

Ai is the surface area of each triangle, and A is the sum of all calculated sub-areas. 

A.1.4 Surface Area to volume ratio  

A
surface to volume ratio

V
                       (A.1.4) 

 

This feature indicates with its value how much sphere-like the shape is. 

A.1.5 Sphericity 

3 236 V
sphericity

A


             (A.1.5) 
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This feature measure the roundness of the shape of the tumor region, with a value 

dimensionless and orientation-independent, scale-independent. The sphericity is 

between 0 and 1 (0 1)sphericity   , where for 1 there are a perfect sphere. 

A.1.6 Compactness 1 

3
1

V
compactness

A
             (A.1.6) 

Following the definition: 31 1
1 2

6 6
compactness compactness sphericity

 
   . 

This feature measure how the tumor shape is compact (relative to a sphere). Similar to 

sphericity,  10 1
6

compactness


    , where for 1
6

 indicates a perfect sphere. 

A.1.7 Compactness 2 

2
3

3
2 36 ( )

V
compactness sphericity

A
            (A.1.7) 

 

Similar to compactness 1, this feature is independent of scale and orientation and also 

is dimensionless. Compactness 2 is defined in the range 0 2 1compactness    where for 

1 indicates a perfect sphere. 

A.1.8 Spherical disproportion  

2 3 2

3

4 36

3

4

A A
spherical disproportion

R V

and

V
R

 



 



                                (A.1.8) 

 

With R, the radius of the sphere of the same volume of the tumor. Spherical 

Disproportion is a ratio obtained by the surface of the tumor region on the surface of 

the same tumor region. By definition is the inverse of sphericity. The spherical 

disproportion range is 1spherical disproportion  , with a value 1 indicates a perfect 

sphere. 

 

A.1.9 Maximum 3D diameter 

This feature is defined as the largest pairwise Euclidean distance between the vertices 

of the tumor surface mesh. It is also called Feret Diameter. 
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A.1.10 Maximum 2D diameter (Slice) 

This feature is defined as the largest pairwise Euclidean distance between the vertices 

of the tumor surface mesh, usually in the axial plane (row-column plane). 

A.1.11 Maximum 2D diameter (Column) 

This feature is defined as the largest pairwise Euclidean distance between the vertices 

of the tumor surface mesh, usually in the coronal plane (row-slice plane). 

A.1.12 Maximum 2D diameter (Row) 

This feature is defined as the largest pairwise Euclidean distance between the vertices 

of the tumor surface mesh, usually in the sagittal plane (column-slice plane). 

A.1.13 Major Axis Length  

major axis 4 major           (A.1.13) 

This feature yields the largest axis length of the ROI-enclosing ellipsoid, calculated 

using the largest principal component major  , and the principal component is performed 

using the coordinate centers of the voxels defining the ROI. 

A.1.14 Minor Axis Length  

4 minorminor axis            (A.1.14) 

This feature yields the second largest axis length of the ROI-enclosing ellipsoid, 

calculated using the largest principal component , minor  , and the principal component 

is performed using the coordinate centers of the voxels defining the ROI. 

A.1.15 Least Axis Length  

                                    4 leastleast axis                (A.1.15) 

This feature yields the smallest axis length of the ROI-enclosing ellipsoid, calculated 

using the largest principal component least , for 2D segmentation this value is 0. The 

principal component is performed using the coordinate centers of the voxels defining 

the ROI. 

A.1.16 Elongation 

The elongation feature shows the ratio between the largest principal components of the 

ROI shape. This feature is defined as the inverse of true elongation. 

minor

major

elongation



            (A.1.16) 
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The length of the largest principal components ( major ) and the length of the second 

largest principal components ( minor ) are used in a ratio. The range of this feature is. 

The principal component is performed using the coordinate centers of the voxels 

defining the ROI. It, therefore, takes spacing into account, but does not make use of 

shape mesh-like previous   . 

A.1.17 Flatness 

least

major

flateness



             (A.1.17) 

Shows relationship between the largest and the smallest principal component axes. This 

feature present the following range of values 0 1flatness  , where for 0 there is a flat 

object and for 1 a sphere-like object. The principal component is performed using the 

coordinate centers of the voxels defining the ROI. It, therefore, takes spacing into 

account, but does not make use of shape mesh-like previous   . 

A.2  First order statistics features 

The First order statistic features describe the distribution intensities within by a mask 

through commonly used and basic metrics. 

Let’s introduce some values: 

 X  be a set of Np voxels in the Region Of Interest. 

 ( )P i  be the first histogram with Ng discrete intensity levels and it indicates the 

non-zero bins equally spaced. 

 p(i) be the normalized first order histogram and equal to 
( )

p

P i

N
. 

A.2.1 Energy 

2

1

( ( ) )
pN

i

energy X i c


            (A.2.1) 

Whit c, optional value to prevent negative values, with gray level intensity closest to 0. 

Energy is the magnitude of the voxels in an image. 

A.2.2 Total Energy  

 2

1

( ( ) )
pN

voxel

i

total energy V X i c


                    (A.2.2) 
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This feature is scaled by the volume of the voxel in mm3. 

A.2.3 Entropy 

 2

1

( )log ( )
gN

i

entropy p i p i


           (A.2.3) 

Here, is measured the amount of information required to encode the image values. The 

entropy feature specifies the uncertainty/randomness in the image values. 

A.2.4 Minimum  

 minminimum X      (A.2.4) 

 The minimum intensity value of X . 

  A.2.5 10th percentile  

The 10th percentile of X . 

A.2.6 90th percentile 

     The 90th percentile of X . 

A.2.7 Maximum  

 maxmaximum X         (A.2.7) 

The maximum intensity value of X , is the maximum gray level intensity in the ROI. 

A.2.8 Mean 

 
1

1
pN

p i

mean X i
N 

       (A.2.8) 

Is the average grey level intensity of the ROI. 

A.2.9 Median 

Is the median grey level intensity of the ROI. 

 

A.2.10 Interquartile range 

75 25interquartile range P P         (A.2.10) 

Where P25 and P75  are the 25th and 75th  percentile of the image array, respectively. 
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A.2.11 Range 

    max( ) min( )range X X          (A.2.11) 

This feature represents the range of gray levels in the ROI. 

A.2.12 Mean Absolute Deviation (MAD) 

1

1
| ( ) |

pN

p i

MAD X i X
N 

         (A.2.12) 

This feature represents the mean distance of all intensity values from Mean Value of 

the image array. 

A.2.13 Robust Mean Absolute Deviation (rMAD) 

10 90

10 90 10 90

10 90 1

1
| ( ) ( ) |

N

i

rMAD X i X i
N



 

 

           (A.2.13) 

 

This feature represent the mean distance of all intensity values from Mean Value. It’s 

calculated on the subset of image array with gray level in between or equal to 10th and 

90th . 

A.2.14 Root Mean Squared (RMS) 

 
2

1

1
( )

pN

p i

RMS X i c
N 

     (A.2.14) 

This feature is another measure of the magnitude of the image values. It is a volume-

confounded feature and a high value of c increase that effect. The optional value c is 

implemented to prevent negative values in X. 

  A.2.15 Standard deviation  

 

 
2

1

1
( )

pN

p i

standard deviation X i X
N 

        (A.2.15) 

The standard deviation measures the amount of variation from the mean value. 

A.2.16 Skewness  
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           (A.2.16) 

This feature, characterized by the 3rd central moment  
3

 , represent the asymmetry of 

the distribution about the mean value depending on where the tail is elongated and the 

mass of the distribution is concentrated and can assume positive or negative values. 

A.2.17 Kurtosis 
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              (A.2.17) 

This feature, characterized by the 4th   central moment  4 , represent the peakedness of 

the distribution in the image of the ROI on where the mass of the distribution is 

concentrated towards the tail(s) rather than toward mean. A lower value of Kurtosis 

implies the vice-versa, with the mass concentrated around the mean value. 

 A.2.18 Variance 

 
2

1

1
( )

pN

p i

variance X i X
N 

           (A.2.18) 

The variance represents the mean of the squared distances of each intensity value from 

the mean. This is a measure of the spread of the distribution about the mean. 

 

A.2.19 Uniformity  

 
2

1

gN

i

uniformity p i


           (A.2.19) 

This feature measures the sum of the square of each intensity value. It gives a measure 

of the homogeneity of the image array, where if there is a greater uniformity it’s 

associated with a greater homogeneity or a smaller range of discrete values of the 

intensity level. 
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A.3 Gray Level Co-Occurrence Matrix (GLCM) features 

A gray level Co-occurrence Matrix (GLCM) of size g gN N  is used to describe the 

second-order joint probability function using a mask on a region and is defined by 

 , | ,P i j   . The element (i,j)the represent the number of times the combination of level 

i and j occur in two pixels in the image, separated by a distance of   along an angle .

For 1  this result in 2 neighbors for each of 13 angles in 3D (26-connectivity) and for 

2  is 98-connectivity (49 unique angles). As two dimensional example, let the 

following matrix I represent an 5 5   image, having 5 discrete grey levels: 

 

1 2 5 2 3

3 2 1 3 1

I 1 3 5 5 2

1 1 1 1 2

1 2 4 3 5

 
 
 
 
 
 
 
 

 

  and for distance 1  and 0   the symmetrical GLCM is 

6 4 3 0 0

4 0 2 1 3

P 3 2 0 1 2

0 1 1 0 0

0 3 2 0 2

 
 
 
 
 
 
 
 

 

Now the following values are introduced: 

 

  be an arbitrarily small positive number ( 610  ) 

 ( , )P i j  is the co-occurrence matrix for an arbitrary value of  and  . 

  ( , )p i j  is the normalized co-occurrence matrix and
( , )

( , )
( , )

P i j
p i j

P i j



 

 gN  is the number of discrete intensity levels in the image. 

 
1

( ) ( , )
gN

x

j

p i P i j


   represent the marginal row probabilities 

 
1

( ) ( , )
gN

x

i

p j P i j


  represent the marginal column probabilities 
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 x  represent the mean gray level intensity of xp  and defined as                

1

( )
gN

x x

i

p i i


  

 y  represent the mean gray level intensity of yp  and defined as 

1

( )
gN

y y

j

p j j


  

 x  is the standard deviation of xp   

 y  is the standard deviation of yp  

 
1 1

( ) ( , )
g gN N

x y

i j

p k p i j

 

 , where i j k  , with k=2,3,…, 2 gN   

 
1 1

( ) ( , )
g gN N

x y

i j

p k p i j

 

 , where | |i j k  , with k=0,1,…, 1gN    

  2

1

( )log ( )
gN

x x

i

HX p i p i


     is the entropy of xp  

  2

1

( ) log ( )
gN

y y

j

HY p j p j


    is the entropy of yp  

  2

1 1

( , ) log ( , )
g gN N

i j

HXY p i j p i j
 

    is the entropy of ( , )p i j   

  2

1 1

1 ( , ) log ( ) ( )
g gN N

x y

i j

HXY p i j p i p j
 

    

  2

1 1

2 ( ) ( ) log ( ) ( )
g gN N

x y x y

i j

HXY p i p j p i p j
 

    

The feature value is calculated on the GLCM for each angle separately, after the mean 

of these value return. The GLCM matrix shows the weighting factor W and then 

summed and normalized, after that the feature is calculated on the resultant matrix. W 

is defined as the distance between neighboring voxel following the formula 
2|| ||dW e  

with d, the distance for the associated angle according to the norm specified in setting 

weighting-Norm. 

The following class specific setting is possible: 
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 distances[[1]]: List of integers. Provides the distances between the center voxel 

and the neighbor, for which angles should be generated. 

 SymmetricalGLCM[True]: Boolean. It indicates if the co-occurrences should 

be assessed in two directions per angle giving a symmetrical matrix with equal 

distribution x  and y. 

 weightingNorm[None]: string. It indicates what norm use when is applied the 

distance weighted. Enumerated setting present the following values: 

 manhattan: first order normalization 

 Euclidean: second order normalization 

 Infinity: infinity normalization 

  no_weighting: GLCMs are weighted by factor 1 and summed 

  None: no-weight applied, the mean of values is calculated on separate 

matrices is returned.  

For other values, a warning is logged and is used the no_weighting. 

A.3.1 Autocorrelation 

1 1

( , )
g gN N

i j

aucorrelation p i j ij
 

   (A.3.1) 

This feature measures the magnitude of the fineness and coarseness of texture. 

  

A.3.2 Joint Average 

1 1

( , )
g gN N

x

i j

joint average p i j i
 

   (A.3.2) 

This feature returns the mean grey level of the i-distribution, and it is independent of 

the j-distribution 

A.3.3 Cluster Prominence 

   
4

1 1

,
g gN N

x y

i j

cluster prominence i j p i j 
 

      (A.3.3) 
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This feature is a measure of the skewness and the asymmetry of the GLCM. A higher 

value imply asymmetry about the mean and a lower value indicates a peak near the 

mean value. 

A.3.4 Cluster Shade 

   
3

1 1

,
g gN N

x y

i j

cluster shade i j p i j 
 

       (A.3.4) 

This feature is the measure of the skewness and uniformity of the GLCM. High cluster 

shade value implies greater asymmetry about the mean. 

A.3.5 Cluster Tendency 

   
2

1 1

,
g gN N

x y

i j

cluster tendency i j p i j 
 

       (A.3.5) 

This feature is a measure of groupings of the voxel with similar gray level values. 

A.3.6 Contrast 

2

1 1

( ) ( , )
g gN N

i j

contrast i j p i j
 

    (A.3.6) 

This feature measures the local intensity variation, favoring values away from the 

diagonal where i=j. 

A.3.7 Correlation 

1 1

( , )

( ) ( )

g gN N

x y

i j

x y

p i j i j

correlation
i j

 

 

 






   (A.3.7) 

This feature measure values correlation, the value assumed are between 0 

(uncorrelated) and 1 (perfectly correlated). 

A.3.8 Difference Average 

1

0

( )
gN

x y

k

difference averange kp k







   (A.3.8) 

This feature measures the relationship between occurrences of pairs with similar 

intensity values and occurrences of pairs with differing intensity values. 

A.3.9 Difference Entropy 
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1

2

0

( )log ( )
gN

x y x y

k

difference entropy p k p k



 



     (A.3.9) 

This feature measures the randomness/variability in neighborhood intensity value 

difference. 

A.3.10 Difference Variance 

 
1

2

0

( )
gN

x y

k

difference variance k DA p k







   (A.3.10) 

This feature measures the heterogeneity, where places higher weights on differing 

intensity level pairs that deviate more from the mean. 

A.3.11 Dissimilarity (DEPRECATED) 

1 1

| | ( , )
g gN N

i j

dissimilarity i j p i j
 

     (A.3.11) 

Mathematically equal to Difference Average. 

A.3.12 Joint energy 

 
2

1 1

( , )
g gN N

i j

joint energy p i j
 

  (A.3.12) 

The energy is a measure of homogeneity of the pattern in an image. A great value of 

this feature implies that there are more instances of intensity value pairs in the image 

that neighbor each other at higher frequencies. 

A.3.13 Joint entropy 

 2

1 1

( , ) log ( , )
g gN N

i j

joint entropy p i j p i j
 

       (A.3.13) 

This feature is a measure of randomness/variability in neighborhood intensity values. 

A.3.14 Homogeneity 1 (DEPRECATED) 

1 1

( , )
1

1 | |

g gN N

i j

p i j
homogeneity

i j 


 

     (A.3.14) 

This feature is mathematically equal to Inverse Difference. 

A.3.15 Homogeneity 2 (DEPRECATED) 
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2
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g gN N

i j

p i j
homogeneity

i j 


 

   (A.3.15) 

This feature is mathematically equal to Inverse Difference Moment. 

A.3.16 Information Measure of Correlation (IMC 1)  

 
1

1
max ,

HXY HXY
IMC

HX HY


  (A.3.16) 

This feature assesses the correlation between the probability distribution of i and the 

probability distribution of j, and quantifies the complexity of the texture, using mutual 

information I(x,y): 
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(A.3.16) 

 

The numerator of IMC 1 is equal to –I(i, j) and is divided by the maximum of the two 

marginal entropies. 

A.3.17 Information Measure of Correlation (IMC 2)  

2( 2 )2 1 HXY HXYIMC e    (A.3.17) 

This feature also assessed the correlation between the probability distribution of i and 

j, and it quantifies the complexity of the texture. 

A.3.18 Inverse differences moment (IDM) 
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gN
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k

p k
IDM

k










    (A.3.18) 

This feature is equal to Homogeneity 2, and it measures the local homogeneity of an 

image. IDM weights are the inverse of the Contrast weights. 

 A.3.19 Maximal correlation coefficient (MCC) 
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         (A.3.19) 

This Feature measures the complexity of the texture and. For a flat region, each GLCM 

matrix has a shape (1, 1), resulting in just 1 eigenvalue. 

A.3.20 Inverse Difference Moment Normalized (IDMN) 
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    (A.3.20) 

This feature is a measure of the local homogeneity of an image where the IDMN 

weights are the inverse of the Contrast weights. The IDMN normalizes the square of 

the difference between neighbring intensity values. 

A.3.21 Inverse Difference (ID) 
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    (A.3.21) 

This feature is another measure of the local homogeneity of an image. 

A.3.22 Inverse Difference Normalized (IDN) 
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   (A.3.22) 

The IDN normalizes the square of the difference between neighbring intensity values. 

A.3.23 Inverse Variance 

1

2
1

( )gN

x y

k

p k
inverse variance

k







    (A.3.23) 

Where k=0 is skipped, to avoid the division by 0. 

A.3.24 Maximum Probability  

max( ( , ))maximum probability p i j   (A.3.24) 
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This feature is the occurrence of the most predominant pair of neighboring intensity 

values. 

 

A.3.25 Sum Average (DEPRECATED) 

2

2

( )
gN

x y

k

sum average p k k



   (A.3.25) 

This feature measures the relationship between the occurrence of pairs with lower 

intensity values and the occurrence of pairs with higher intensity values. 

A.3.26 Sum Variance 
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k

sum variance k SA p k



    (A.3.26) 

This feature is mathematically equal to Cluster Tendency. 

A.3.27 Sum Entropy 
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x y x y
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sum entropy p k p k 



   (A.3.27) 

This feature is a sum of neighborhood intensity value differences. 

A.3.28 Sum of Squares 

2

1 1

( ) ( , )
g gN N

x

i j

sum squares i p i j
 

   (A.3.28) 

This feature (or Variance) is a measure in the distribution of neighboring intensity level 

pairs about the mean intensity level in the GLCM. 

A.4 Gray Level Run Lenght Matrix (GRLM) 

 

A GLRLM, Gray Level Run Length Matrix, quantifies gray level runs of consecutive 

pixels that have the same gray level value. In a gray level run length matrix ( , | )P i j  , 

the ( , )thi j    element describes the number of runs with gray level i and length  j occur 

in the image (ROI) along the angle   . For instance, with a two-dimensional example, 

let’s consider the following  image, with 5 discrete gray levels: 
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With the GRLM for , 0 degrees indicate the horizontal direction, we obtain: 

 

 

          Now the following values are introduced: 

 gN   is the number of discrete intensity levels in the image. 

 rN   is the number of discrete run lengths in the image. 

 pN   is the number of voxels in the image. 

 ( )zN   is the number of runs in the image along angle , and is equal to  

1 1

( , | )
g r

N N

i j

P i j 
 

   and 1 ( )z pN N      

 ( , | )P i j   is the run length matrix for an arbitrary direction  

 ( , | )p i j  is the normalized run length matrix as: 

                    
( , | )

( , | )
( )z

P i j
p i j

N





        

The feature value is calculated on the GLCM for each angle separately, after the 

mean of these value return. If distance weighting is enabled. The GLRLMs are 

weighted by the distance between neighboring voxels and then summed and 

normalized, The features are calculated on the resultant matrix. The distance 

between neighboring voxels is calculated for each angle using the norm specified 

in weightingNorm. 

 

The following class specific setting is possible: 
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 weightingNorm[None]: string. It indicates what norm use when is applied the 

distance weighted. Enumerated setting present the following values: 

 manhattan: first order normalization 

 Euclidean: second order normalization 

 Infinity: infinity normalization 

  no_weighting: GLCMs are weighted by factor 1 and summed 

  None: no-weight applied, the mean of values is calculated on separate 

matrices is returned.  

For other values, a warning is logged and is used the no_weighting. 

A.4.1 Short Run Emphasis (SRE) 
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   (A.4.1) 

SRE is a measure of the distribution of short-run lengths, with a greater value indicative 

of shorter run lengths and more fine textures. 

A.4.2 Long Run Emphasis (LRE) 
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  (A.4.2) 

 

This feature measures the distribution of long-run lengths. A greater value indicates 

longer run lengths and more coarse structural textures. 

A.4.3 Gray Level Non-Uniformity (GLN) 
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  (A.4.3) 
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This feature measures the similarity of gray-level intensity in the image. A lower GLN 

value correlates with a greater similarity in intensity values. 

A.4.4 Gray Level Non-Uniformity  Normalized (GLNN) 
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(A.4.4) 

 

This is the normalized version of the GLN formula. 

A.4.5 Run Length Non-Uniformity (RLN) 
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  (A.4.5) 

 

This feature measures the similarity of runs throughout the image. A lower value 

indicates more homogeneity among run lengths in the image. 

A.4.6 Run Length Non-Uniformity Normalized (RLNN) 
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   (A.4.6) 

 

This is the normalized version of the RLN formula. 

A.4.7 Run Percentage (RP) 

( )z

p

N
RP

N


   (A.4.7) 

This feature measures the coarseness of the texture by taking the ratio of a number of 

runs and the number of voxels in the region of interest (ROI). The range of this value 

is # where a high value indicates a larger portion of ROI consist of short runs. 

A.4.8 Gray Level Variance (GLV) 



 

141 
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    (A.4.8) 

This feature measures the variance in gray level intensity for the runs. 

A.4.9 Run Variance (RV) 
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    (A.4.9) 
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, |
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This feature measures the variance in runs for the run lengths. 

A.4.10 Run Entropy (RE) 
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( , | ) log ( ( , | ) )
g r

N N

i j

RE p i j p i j 
 

     (A.4.10) 

  is an arbitrarily small positive value number ( 1610  ). 

This feature measures the uncertainty/randomness in the distribution lengths and gray 

levels.  

A.4.11 Low Gray Level Run Emphasis (LGLRE) 
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 (A.4.11) 

 

This feature measures the distribution of lower gray level value, where a higher value 

indicates a greater concentration of low gray level values in the image. 

A.4.12 High Gray Level Run Emphasis (HGLRE) 
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(A.4.12) 

This feature measures the distribution of higher gray level value, where a higher value 

indicates a greater concentration of high gray level values in the image. 

A.4.13 Short Run Gray- Level Emphasis (SRLGLE) 
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   (A.4.13) 

 

This feature measures the joint distribution of shorter run lengths with lower gray level 

values 

A.4.14 Short Run High Gray- Level Emphasis (SRHGLE) 
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(A.4.14) 

This feature measures the joint distribution of shorter run lengths with higher gray level 

values. 

A.4.15 Long Run Low Gray- Level Emphasis (LRLGLE) 
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  (A.4.15) 

This feature measures the joint distribution of long-run lengths with lower gray levels 

values. 

A.4.16 Long Run High Gray- Level Emphasis (LRHGLE) 
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  (A.4.16) 

This feature measures the joint distribution of long-run lengths with higher gray level 

values. 

A.5 Gray Level Size Zone Matrix (GLSZM) Features 

A GLSZM, Gray Size Zone Matrix, quantifies gray level zones in an image. A grey 

level zone is defined by the number of connected voxels that have the same gray 

intensity value. A voxel is considered connected if the distance is 1 according to the 

infinity norm. In a gray level size zone matrix ( , | )P i j  , the ( , )thi j    element equals 
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the number of zones with gray level i and length  j occur in the image (ROI). GLSZM 

is rotation independent. 

 

For instance, with a two-dimensional example, let’s consider the following  image, 

with 5 discrete gray levels: 

 

5 2 5 4 4

3 3 3 1 3

2 1 1 1 3

4 2 2 2 3

3 5 3 3 2

I

 
 
 
 
 
 
  

 

 

We obtain: 

 

0 0 0 1 0

1 0 0 0 1

1 0 1 0 1

1 1 0 0 0

3 0 0 0 0

P

 
 
 
 
 
 
  

 

 

Now the following values are introduced: 

 gN   is the number of discrete intensity levels in the image. 

 rN   is the number of discrete run lengths in the image. 

 pN   is the number of voxels in the image. 

 ( )zN   is the number of runs in the image along angle , and is equal to  

1 1

( , | )
g r

N N

i j

P i j 
 

   and 1 ( )z pN N      

 ( , )P i j  is the size zone matrix. 

 ( , )p i j is the normalized zone matrix as: 

                    
( , )

( , )
( )z

P i j
p i j

N 
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A.5.1 Small Area Emphasis (SAE) 
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    (A.5.1) 

This feature is the measure of the distribution of the small zones, a higher value 

indicates smaller size zones an more fine textures. 

A.5.2 Large Area Emphasis (LAE) 
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 (A.5.2) 

This feature measures the distribution of large area size zones, with a higher value 

indicating low homogeneity in intensity values. 

A.5.3 Gray Level Non-Uniformity (GLN) 
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(A.5.3) 

This feature measures the variability of gray-level intensity values in the image, with a 

higher value indicating low homogeneity in intensity values. 

A.5.4 Gray Level Non-Uniformity Normalized (GLNN) 
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  (A.5.4) 

This is the normalized version of the GLN formula. 

 

A.5.5 Size Zone Non-Uniformity (SZN) 
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 (A.5.5) 

This feature measures the variability of size zone volumes in the image, with a lower 

value indicating more homogeneity in size zone volumes. 

A.5.6 Size Zone Non-Uniformity Normalized (SZNN) 
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 (A.5.6) 

This is the normalized version of the SZN formula. 

A.5.7 Zone Percentage (ZP) 

z

p

N
ZP

N
    (A.5.7) 

This feature is the measure of coarseness of the texture by taking the ratio of a number 

of zones and number of voxels in the ROI. The values of ZP are in the range 

1
1

p

ZP
N

   , with a higher value indicating a larger portion of the ROI consist of small 

zones and a more fine texture. 

A.5.8 Gray Level Variance (GLV) 
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( , )( )

g sN N

i j
GLV p i j i 

 
    (A.5.8) 

Where 
1 1

( , )
g sN N

i j
p i j i

 
    

The feature GLV measure the variance in zone size volumes for the zones. 

A.5.9 Zone Variance (ZV) 
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i j
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     (A.5.9) 

Where 
1 1

( , )
g sN N

i j
p i j j

 
   

This feature measure the variance in zone size volumes for the zones. 

A.5.10 Zone Entropy (ZE) 
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     (A.5.10) 

  is an arbitrarily small positive value number ( 1610  ). 

This feature measures the uncertainty/randomness in the distribution of zone sizes and 

gray and gray levels.  

A.5.11 Low Gray Level Zone Emphasis (LGLZE) 
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 (A.5.11) 

This feature measures the distribution of lower gray level size zones, a higher value 

indicating a greater proportion of lower gray level value and size zones in the image. 

A.5.12 High Gray Level Zone Emphasis (HGLZE) 
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 (A.5.12) 

This feature measures the distribution of higher gray level size zones, a higher value 

indicating a greater proportion of higher gray level value and size zones in the image. 

A.5.13 Small Area Low Gray Level Zone Emphasis (SALGLE) 
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 (A.5.13) 

This feature measures the proportion in the image of the joint distribution of smaller 

size zones with lower gray level values. 

A.5.14 Small Area High Gray Level Emphasis (SAHGLE) 
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 (A.5.14) 
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This feature measures the proportion in the image of the joint distribution of smaller 

size zones with higher gray level values. 

A.5.15 Large Area Low Gray Level Emphasis (LALGLE) 
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 (A.5.15) 

This feature measures the proportion in the image of the joint distribution of larger size 

zones with lower gray level values. 

A.5.16 Large Area High Gray Level Emphasis (LAHGLE) 
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 (A.5.16) 

This feature measures the proportion in the image of the joint distribution of larger size 

zones with higher gray level values. 

A.6 Neighbouring Gray Tone Difference Matrix (NGTDM) 

A Neighbouring Gray Tone Difference Matrix quantifies the difference between a gray 

value and the average gray value of its neighbors within the distance  . The sum of the 

absolute differences for gray level i is stored in a matrix, where Xgl is a set of segmented 

voxels and ( , , )x y zj j j , then the average gray level of the neighborhood is: 

 

, ,

A A( , , )

1
( )

x y z

i x y z

gl x x y y z z

k k k

j j j

x j k j k j k
W

  

    

 

    
  

 

Where  ( , , ) 0,0,0x y zk k k   and 
, ,( , )gl x x y y z z glx j k j k j k X     

 

The value W is the number of voxels in the neighborhood that are also in 
glX . 

For instance, with a two-dimensional example, let’s consider the following 4 4  image, 

with 5 discrete gray levels: 
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1 2 5 2

3 5 1 3

1 3 5 5

3 1 1 1

I

 
 
 
 
 
 

 

We obtain the following NGTDM: 

 

i ni pi si 

1 6 0.375 13.35 

2 2 0.125 2.00 

3 4 0.25 2.63 

4 0 0.00 0.00 

5 4 0.25 10.075 

 

6 pixels have gray level 1 and we have 

 

1
10 30 15 13 15 11|1 | |1 | |1 | |1 | |1 | |1 | 13.35

3 8 5 5 5 3
s                

For gray level 2 there are 2 pixels 

2
15 152 2 2

5 5
s        

And similar for gray values 3 and 5: 

3

5

18 20 5123 3 3 3 3.03
5 5 8 3

18 2014 115 5 5 5 10.075
5 5 8 5

s

s

        

        
  

 

Where: 

 

 in    is the number of voxels in Xgl with i, the gray level. 

,v pN   is the total number of voxels in Xgl and equal to 
in . The value 

,v p pN N , 

where 
pN is the    number of all the voxels in the ROI. 

ip  is the gray level probability and equal to i

v

n

N
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A    for 0

               0   for 0

in

i i

i

i

i n
s

n

  
 




  

 

gN  is the number of gray of discrete gray levels 

,g pN  is the number of gray levels for 0ip    

 

The following class specific setting is possible: 

distances[[1]]: List of integers. Provides the distances between the center voxel and the 

neighbor, for which angles should be generated. 

 

A.6.1 Coarseness 

1

1
gN

i ii

coarseness
p s






  (A.6.1) 

This feature is the measure of the average difference between the central voxel and its 

neighborhood and is an indication of the spatial rate of change. A higher value indicates 

a lower spatial change rate and a locally more uniform texture. 

 

A.6.2 Contrast 
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i j i i ji j i
g p g p v p
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N N N  

  
         

     

(A.6.2) 

This feature is the measure of the spatial intensity change and is dependent on the 

overall gray level dynamic range. The contrast is high when both the dynamic range 

and spatial change range are higher. 

A.6.3 Busyness 
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 ,  where 0,  0i jp p    (A.6.3) 

This feature measures the change from a pixel to its neighbor. When this feature 

presents a high value indicates a busy image, with rapid changes of intensity between 

pixels and its neighborhood.  

A.6.4 Complexity  

1 1,

1
,  where 0,  0

g gN N

i i j j
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i jv p i j

p s p s
complexity i j p p

N p p 


   


    (A.6.4) 

There is a complex image when there are many primitive components in the image, for 

example when there are many rapid changes in gray level intensity there is a non-

uniform image. 

A.6.5 Strength 
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   (A.6.5) 

This feature is the measure of the primitive in an image. It presents a high value when 

the primitives are easily defined and visible. 

 A.7 Gray Level Dependence Matrix (GLDM) 

 

5 2 5 4 4

3 3 3 1 3

2 1 1 1 3

4 2 2 2 3

3 5 3 3 2
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 and for 0  and 1   the GLDM is: 

0 1 2 1

1 2 3 0

1 4 4 0

1 2 0 0

3 0 0 0

P
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APPENDIX B 

CASE 1: ANALYSIS WITH ONLY HANDCRAFTED RADIOMICS FEATURES 
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Figure 0.1: Heatmap representing the mode AUCs with size of selected features = 10; 

in rows for feature selection algorithms and, in columns for classification methods. 

 

     Figure 0.2: Heatmap representing the mode AUCs with size of selected features = 

15; in rows for feature selection algorithms and, in columns for classification 

methods. 
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Figure 0.3: Heatmap representing the mode AUCs with size of selected 

features = 25; in rows for feature selection algorithms and, in columns for 

classification methods. 

Figure 0.4: Heatmap representing the mode AUCs with size of selected 

features = 20; in rows for feature selection algorithms and, in columns 

for classification methods. 
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APPENDIX C 

CASE 2: ANALYSIS WITH ONLY DEEP RADIOMICS FEATURES 
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 Figure 0.5: Heatmap representing the mode AUCs with size of selected features = 10; 

in rows for feature selection algorithms and, in columns for classification 

 

Figure 0.6: Heatmap representing the mode AUCs with size of selected features = 15; 

in rows for feature selection algorithms and, in columns for classification 
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Figure 0.7:  Heatmap representing the mode AUCs with size of selected features = 20; 

in rows for feature selection algorithms and, in columns for classification 

 

 

 

 

Figure 0.8: Heatmap representing the mode AUCs with size of selected 

features = 25; in rows for feature selection algorithms and, in columns for 

classification 
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APPENDIX D 

CASE 3: ANALYSIS WITH COMBINATION OF BOTH  HAND-CRAFTED 

RADIOMICS AND DEEP RADIOMICS FEATURES 
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Figure 0.10: Heatmap representing the mode AUCs with size of selected features = 

15; in rows for feature selection algorithms and, in columns for classification 

  

 

 

 

Figure 0.9: Heatmap representing the mode AUCs with size of selected features = 10; 

in rows for feature selection algorithms and, in columns for classification 
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Figure 0.12: Heatmap representing the mode AUCs with size of selected features = 25; 

in rows for feature selection algorithms and, in columns for classification 

 

Figure 0.11: Heatmap representing the mode AUCs with size of selected features = 20; 

in rows for feature selection algorithms and, in columns for classification 


