
Università degli studi Roma Tre

Dipartimento di Ingegneria,

Sezione Elettronica Applicata

Semantic processing of multimedia
data and applications

Federico Colangelo

Abstract

Nowadays systems able to process multimedia data automatically are of pri-

mary interest. As a matter of fact, volumes of data that cannot be handled

by human operators are now generated everyday. Managing this kind of data

becomes increasingly difficult when it must be processed according to human-

level attributes. In fact, understanding human perception is a complex task

and it is difficult to implement algorithms able to extract human-level at-

tributes from multimedia data. Since many of such attributes lack an analyt-

ical definition, it is desirable to leverage how they emerge from the raw data

in a data-driven fashion, mining association between raw values and high-level

attributes. However, multimedia data is characterized by high dimensionality.

This feature causes numerical problems that hinder the performances of many

state-of-the-art techniques. Novel models are thus being developed for the es-

timation of human-level attributes from multimedia data and, consequently,

new attributes can be leveraged to perform complex tasks.

In this context, the two most important research questions that we attempt

to answer are how to estimate the semantic attributes of multimedia content

and how to leverage them for building systems that can assist humans in har-

nessing the stream of data. In this thesis, the first question is addressed in

the domain of audio surveillance. This task deals with the detection and clas-

sification of selected audio events in contexts characterized by non-relevant,

background events as well as unstructured noise, with critical constraints on

false rejection rate for the detection phase. A novel model for the classification

and detection of critical audio events is proposed, based on the aforementioned

requirements. The second question is addressed in the visual domain, more

i

specifically in the context of unsupervised video orchestration. Here, a method

to combine different types of high-level attributes in order to enhance the qual-

ity of viewers’ experience is shown. More specifically, the proposed method

leverages frame-based aesthetic values estimation, as well as automatic esti-

mation of the quality of camera changes through a Markov model, combined

through a multi-objective optimization algorithm. In both cases, the proposed

methods show satisfying results, contributing to the growing field of semantic

data processing.

ii

Acknowledgements

Questi tre anni si sono rivelati ricchi di sfide, sul piano professionale e person-

ale. Molte di queste sfide sono state al limite di quello che ero in grado di fare,

se non oltre. Se non mi sono schiantato completamente in questo percorso, è

in gran parte grazie alle persone che ho avuto intorno, come mentori, familiari

ed amici. Sono solo poche parole, che rappresentano la punta dell’iceberg del

contributo che avete dato alla mia vita. Nonostante questo, voglio ringraziarvi

qui.

Per primo ringrazio il mio supervisore, il prof. Alessandro Neri. Grazie so-

prattutto per avermi voluto dare un’occasione in un momento del mio percorso

di studi in cui in pochi lo avrebbero fatto. Grazie per tutti gli insegnamenti,

troppi per citarli, di questi anni. In special modo, grazie per la capacità di

vedere sempre lo scenario pi grande (cosa che sto ancora apprendendo). Gra-

zie prof. Marco Carli. Anche se a più riprese non siamo andati d’accordo,

da quei confronti ho imparato (spesso malvolentieri) più di quanto non vorrei

ammettere. Devo molto alla tua schiettezza. Alla prof. Federica Battisti va

un enorme ringraziamento, per tutto quello che mi ha insegnato in questi anni.

È stata ed una guida nel mondo dell’università ed ha dato uno dei contributi

pi grandi alla mia sopravvivenza in questi tre anni, specialmente nei momenti

più disorientanti.

Una delle cose migliori che ho compreso davvero in questi anni il valore della

mia famiglia. Ci sono voluti anni, ma ho finalmente capito quanto sono fortu-

nato. Grazie a tutti voi, dal più profondo. Grazie a papà per le chiacchierate

ed i consigli che mi hanno fatto crescere, diventare pi simile alla persona che

un giorno spero di essere. Grazie a mamma, per esserti avvicinata a me nei

iii

momenti in cui più ne avevo bisogno. Grazie a mia sorella, per aver riso sempre

assieme a me. Grazie a zia Teresa, zio Salvatore ed Aldo, Claudia e Valentina,

Liberato ed al nuovo arrivato, Lorenzo. Ogni volta che torno, non importa

dopo quanto, trovo sempre un sorriso che più di ogni altra cosa significa casa.

Grazie a tutti voi a Roma: ci vediamo poco, meno di quanto vorrei, eppure si-

ete sempre capaci di farmi sorridere, in ogni occasione. Ed infine grazie a tutti

gli spoletini: ci siamo ritrovati da poco e nonostante questo vi sento vicini.

Grazie Noemi. Grazie infinite, per tutto quello che hai portato e porti nella

mia vita. Per quello che mi hai insegnato e per i momenti in cui mi sei stata

vicina e per tutte le volte che mi hai sopportato. Chi mi conosce sa che non

sono una persona facilissima a cui stare accanto, specialmente nei momenti pi

complicati grazie per aver trovato una parte di me che nessuno (incluso me)

conosceva, grazie per tutti i nostri momenti. Grazie anche alla tua famiglia,

che mi ha accolto calorosamente.

Ai miei amici devo molto. È molto difficile raccogliere tutti voi in un singolo

paragrafo. La mia amicizia con ciascuno di voi piè diversa ed ognuna porta

qualcosa di differente. Mi preme particolarmente citare due grandi categorie

però, perdonatemi se non vi nomino e non rendo giustizia a tutti.

Grazie a voi che mi avete sostenuto, ascoltato e consigliato nei momenti bui.

A più riprese questo percorso si è rivelato incredibilmente difficile, in un modo

che non riesco a descrivere qui. Aver trovato qualcuno nei momenti più bui è

stata una delle mie fortune più grandi.

Grazie a voi, con cui ho condiviso momenti allegri, stupidi e senza pensieri.

Non è facile spiegare il valore di quei momenti, oltre l’allegria e le risa mi

hanno ricordato quanto ci fosse al di fuori del dottorato, che in certi momenti

sembrava essere l’unica, titanica componente della mia vita.

iv

A molti di quelli che ho incontrato durante questi anni devo dei ringraziamenti

e forse anche delle scuse. Sono sicuro che avremmo condiviso molte risate in

più se fossi riuscito ad gestire meglio lo stress da lavoro in questi anni. Ci

rifaremo.

Molte altre persone meritano un ringraziamento. Grazie ad esempio a Raf-

faella, Enrico, Annalisa, Gemma e Laura (e, più recentemente, Marzia) per

avermi aiutato ad arginare i disastri di documentazione che sono cos̀ı bravo a

combinare. Grazie a tutte le persone di Roma Tre con cui ogni tanto chiac-

chiero: rendete questa università un posto pi bello (e decisamente più umano).

Più rileggo questi ringraziamenti più mi rendo conto di quanto siano incom-

pleti, incoerenti ed a tratti melensi. Mi perdoneranno tutti quelli a cui non ho

reso giustizia ma che hanno contribuito al raggiungimento di questo giorno.

In ogni caso, grazie a tutti voi per avermi aiutato ad arrivare qui. Spero di

condividere ancora strada con tutti voi nei miei percorsi futuri.

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 3

1.0.1 Semantic processing of data 5

2 Machine learning fundamentals 10

2.1 Fundamentals of machine learning 10

2.2 Selecting and preparing data . 17

2.2.1 Feature selection . 17

2.3 Selecting the model . 22

2.3.1 Models . 23

vi

CONTENTS vii

2.4 Conclusions . 31

3 Deep learning 32

3.1 Deep architectures . 33

3.1.1 Convolutional networks 33

3.1.2 Long short-term memory and gated architectures 41

3.1.3 Autoencoders . 43

3.1.4 Generative adversarial networks 45

3.2 Deep networks components and techniques 46

3.2.1 Activation functions . 46

3.2.2 Optimization for deep neural networks 51

3.2.3 Regularization and normalization 56

3.2.4 Visualization techniques 60

3.3 Properties of DNN . 62

3.4 Conclusions . 65

4 Applications to audio 66

4.1 Introduction . 66

CONTENTS viii

4.2 Digital audio fundamentals . 67

4.2.1 The frequency domain 68

4.2.2 Perceptual considerations 72

4.3 Applications of machine learning to audio signals 74

4.3.1 Audio features . 75

4.3.2 Audio classifiers . 80

4.3.3 Data augmentation for audio signals 82

4.4 Audio classification for safety applications 84

4.4.1 Previous work . 85

4.4.2 Proposed method . 87

4.4.3 Validation . 88

4.5 Conclusions . 94

5 Applications to images and videos 97

5.1 Introduction . 97

5.2 Digital images fundamentals . 98

5.3 Images, videos and machine learning 100

5.3.1 Previous work . 102

5.4 Video orchestration based on semantic features 103

5.4.1 Proposed Method . 104

5.4.2 System validation . 115

5.5 Conclusions . 117

6 Conclusion 119

Bibliography 120

ix

List of Tables

4.1 Accuracy percentage for proposed method compared with the

state-of-the-art . 91

4.2 Accuracy across different levels of noise 92

4.3 Classification accuracy with partial events 93

5.1 Camera framing features. 106

5.2 Source videos used for the experiment 114

5.3 Percentage of preferences expressed during the subjective tests. . 116

x

List of Figures

2.1 Example of convex function, given by z = x2 + xy + y2 16

2.2 Alternative representations of RNN 29

3.1 The convolution operation . 34

3.2 Influence of input region on single neuron activation 36

3.3 Dilated convolution operation 37

3.4 Architecture of the residual block 40

3.5 Architecture of an LSTM unit 42

3.6 The sigmoid function . 47

3.7 The hyperbolic tangent function 48

3.8 Loss for a fully connected network trained on the MNIST dataset,

with η = 0.01 (a) η = 0.1 (b) . 57

xi

4.1 Time and frequency plots for the Rect (a), Hamming (b) and

Blackman-Harris (c) windows 71

4.2 Comparison of time resolutions: spectrogram of a dog bark for

512 (a) and 1024 (b) samples windows 72

4.3 Architecture of a simple Markov model 81

4.4 Architecture of a simple hidden Markov model 82

4.5 Block diagram of the proposed method 87

4.6 Distribution of event duration in the dataset 88

4.7 Spectrograms of events extracted from the dataset for different

SNR values . 89

5.1 Motion rate partitioning: the frames with higher OF are consid-

ered faster and thus use less camera changes. Frames with lower

OF are considered slower and thus have more camera changes. . 107

5.2 Example of two possible shot types: a POV (a) and a panoramic

shot (b) . 111

5.3 Multi-objective genetic optimization of the editing 112

xii

List of Acronyms

ASR Automatic Speech Recognition

BN Batch Normalization

CNN Convolutional Neural Network

DCASE Detection and Classification of Acoustic Scenes and Events

DFT Discrete Fourier Transform

DNN Deep Neural Network

DSS Decision Support System

FRR False Rejection Rate

GA Genetic Algorithm

GAN Generative Adversarial Network

GMM Gaussian Mixture Model

HMM Hidden Markov Model

1

LIST OF FIGURES 2

HSV Hue Saturation Value

LSTM Long Short Term Memory

ME Motion Estimation

MFCC Mel Frequency Cepstral Component

OF Optical Flow

PCM Pulse Code Modulation

RGB Red Green Blue

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SNR Signal to Noise Ratio

STFT Short-Time Fourier Transform

SVM Support Vector Machine

TTS Text-To-Speech

VTLP Vocal Tract Length Perturbation

ZCR Zero Crossing Rate

Chapter 1

Introduction

In recent years, data generation has increased exponentially. According to

Eric Schmidt, Google CEO, the amount of information created between the

dawn of civilization and 2003 (5 exabytes) is being created every two days,

as of 2011. The progressive availability of cheap acquisition hardware (e.g.

smartphones, cameras) as well as storage space has certainly played a key role

in this phenomenon.

While multimedia data constitutes an important portion of this data, IoT (In-

ternet of Things) devices are also producing a large amount of data. According

to Gartner, within the next three years there will be a massive increase of In-

ternet of Things devices connected to the internet (i.e. estimated growth from

8.4 billions in 2017 to 20.4 billions in 2020).

Nevertheless, it is progressively unfeasible for human beings to process the

3

4

data stream without the help of automated techniques.

The term Decision Support System (DSS) has been in use since the 70’s to

describe techniques for the assistance of human operators, especially in fields

in which the dimensionality of the problem cannot be handled through human

means. In particular, data-driven DSS defines systems based on the extraction

of knowledge from large scale analysis of data. The major limits of current

DSSs lie in the type of data that can be handled and in the type of attributes

that can be estimated. These techniques have been successfully applied in sce-

narios characterized by simple input data (e.g. input variables that are either

qualitative or of limited dimensionality) such as demographics and market bas-

ket analysis. However, with more complex data, such as in recommendation

systems for multimedia content, the DSS relies on input simplification (e.g.

genre tags in music) defined and selected by human operators. It is therefore

evident that, in order to effectively use this large amount of data, better DSSs

are needed and that they must be able to handle high-dimensional data and

to estimate abstract properties from it. To better characterize the concept of

abstract attributes, as opposed to low-level properties, the terms semantic and

syntactic are often used. They are both inherited from the linguistics field,

where semantic refers to the meaning while syntactic refers to the structure of

the language.

Thus, in multimedia, we refer to semantic attributes to describe the content

of data as opposed to syntactic attributes to describe the structure of data. In

the following Section the issue of estimating semantic attributes, especially in

5

multimedia content, is described.

1.0.1 Semantic processing of data

Semantic features are intrinsically difficult to estimate, since they lack an an-

alytical form. In general, complex attributes emerge from the combination

of simpler ones. This is true also within the set of semantic attributes. For

example, if we consider the picture of a street from the point of view of a

self-driving car, not only must significant objects be recognized (e.g. pedestri-

ans, cars, road signs), but also their position in space must be used to infer a

higher-level attribute, e.g. if it safe to accelerate. Semantic meaning can thus

emerge at different scales, usually depending on the abstraction level of the

attribute itself.

Since it is not possible to formulate an analytical rule that defines how the

specific pattern of an attribute expresses a semantic concept, the estimation

of the decision rule must be inferred automatically from the data. This task

is nowadays performed by means of machine learning algorithms. Machine

learning concerns algorithms that are not programmed to perform a specific

task, but rather learn to do so in a data-driven fashion. Learning a task con-

sists in estimating a function that associates a specific output to a particular

configuration of inputs. While these techniques are a promising solution to

the problem of estimating semantic attributes, practical limitations, described

in Chapter 2, prevent inference in semantic tasks. More specifically, the most

6

significant limitation lies in the complexity of the function that can be learned.

More complex functions enable a wider abstraction gap between the input data

and the estimated attribute. Therefore, in order to effectively estimate seman-

tic attributes from syntactic properties or from the data itself, new machine

learning models are needed.

Considerable advancements have been recently introduced in the field of ma-

chine learning. One of the key factors in this evolution is Deep Learning, a

term that describes the recent techniques in the field of neural networks. Deep

learning techniques infer complex features hierarchically, starting from a low-

level representation of the data. Deep learning has been applied in several

different domains such as in image classification [1] and generative modeling

of multimedia content [2] [3], outperforming state-of-the-art algorithms.

To summarize, the availability of data and of modern machine learning mod-

els, such as deep learning, motivates us to develop and adopt new approaches

for processing multimedia content on a semantic level. While in the more es-

tablished domains of machine learning, such as image classification and speech

recognition, deep learning represents the new standard, other areas of mul-

timedia currently offer good opportunities to use these techniques. In many

fields, however, additional constraints are present, together with achieving the

best possible accuracy, such as:

• Timeliness of the recognition (i.e. delay due to processing)

• Computational complexity

7

• Need of minimizing false negatives or false positives

• Robustness of the system to noise

• Robustness to attackers

The applications of modern machine learning algorithms in these framework

still need to be deeply investigated. In this context, the contribution of this

thesis is two-fold. First, new models for the classification of multimedia data

according to semantic attributes are defined. These models can be used in

many different contexts, such as tagging specific portions of a multimedia el-

ement with labels (i.e. content enrichment). Such data can then be leveraged

for semantic-based data processing (e.g. multimedia data retrieval, machine

intelligence). This problem is studied in the audio domain and, more specif-

ically, in the context of smart audio surveillance systems. This application

is especially challenging, given the constraints on classification and detection

accuracy, as well as the system’s efficiency.

In this sense, the most important contribution is presented in Section 4.4,

where it is shown how techniques of machine learning, and more specifically

deep learning, can be leveraged to build a low-delay detector and classifier of

critical audio events.

Second, novel techniques for combining multimedia data based on semantic at-

tributes are studied. As more and more information becomes available thanks

to the algorithms studied in this thesis, the problem of leveraging and combin-

ing the information in a coherent and efficient manner arises. In the context

8

of smart surveillance, semantic information could be used to combine video

and audio information coming from different sensors in order to obtain a sin-

gle video summarizing the events that have taken place. In this sense, many

criteria should influence the final product: it should give priority to sources

containing anomalous events while maintaining an overall vision of the whole

monitored area in order to give security operators a good situational awareness.

These types of constraints are common in multimedia orchestration tasks and

can be more severe depending on the context. A particularly challenging sce-

nario is orchestrating amateur videos of an event (e.g. concert) since the output

video must also provide a good quality of experience, which, in turn, is influ-

enced by multiple semantic attributes, interacting in a non-trivial manner. In

this thesis, algorithms for leveraging and combining data are developed in the

context of video orchestration for amateur videos. In this framework, Section

5.4 introduces an automatic video orchestration system based on the auto-

matic estimation of high-level semantic concepts, such as aesthetics, combined

through multi-objective optimization. It is also shown how the evaluation of

these systems can be used as a knowledge discovery tool for mining higher-level

influences between semantic attributes. The thesis is structured as follows: an

introduction to machine learning and its most important techniques is given in

Chapter 2, while Chapter 3 introduces deep learning, presenting the state-of-

the-art in terms of models and techniques for training deep learning models.

Chapter 4 introduces the audio domain and reviews the state-of-the-art con-

cerning audio machine learning. Experimental results within the domain of

9

audio surveillance are contextually presented.

Chapter 5 introduces the images and video domain. Applications of machine

learning techniques to produce an automatic video orchestration system are

presented.

Finally, the conclusions are drawn in Chapter 6.

Chapter 2

Machine learning fundamentals

2.1 Fundamentals of machine learning

The purpose of a machine learning system is to learn to make predictions

about given attributes of a data instance, such as the content of a picture or

the evolution of the stock market. The value that is being predicted is called

target and, in order to predict it, a dependence between such value and some

available data is assumed (e.g. the dependency between the future values of a

stock and the past ones). This is why the quantities used to predict the target

are called explanatory variables (i.e. they explain a certain property of the

data), albeit in practice the term features is often used, as will be shown in

Section 2.2.

The ensemble of data instances used to learn the relations between the ex-

10

2.1. Fundamentals of machine learning 11

planatory variables and the target are called training set. The selection of the

explanatory variables plays a critical role in the success of the learning phase.

On the one hand, it is desirable to have a larger number of features to train the

model, as this gives more information and thus better explanatory power to the

model itself. On the other hand, the model complexity needed to handle more

features introduces significant obstacles in the learning process. In detail, the

number of possible configurations of the model’s parameters grows exponen-

tially with the number of parameters influencing not only the computational

complexity of the learning, but also the ability to find an effective solution to

the problem. This phenomenon is known as the curse of dimensionality.

Having selected the training data, it is necessary to select the model, as well

as the number of its parameters, which has another key effect on the success

of the learning process. As a matter of fact, a model that lacks a sufficient

number of parameters could prove unable to learn the relations between the

input and the target. This phenomenon is called under-fitting.

Conversely, when too many parameters are used, the model tends to learn a

mapping for each observation in the training set, failing to learn the general

relations between the input and the target. This phenomenon is known as over-

fitting. Moreover, reducing model parameters, over-fitting can be mitigated by

increasing the number of observations in training data and by imposing con-

straints during the learning phase. These techniques are called regularization.

In general, since the model can over-fit the training data, a tool to measure the

generality of the function learned by the model is needed. For this reason, a

2.1. Fundamentals of machine learning 12

second set of observations of the training variables are collected, but not used

for the training. Instead, this set of observations, known as testing data, is

used to benchmark the generalization capabilities of the model.

Machine learning algorithms are categorized according to the training data

used and the type of target variable. The first categorization regards the ex-

act form of the training data. Supervised learning algorithms learn by being

exposed to observation from the training data and the corresponding ground

truth target value, called label.

Unsupervised learning algorithms are exposed only to the training data, with

the general aim of finding similarities in it. Finally, reinforcement learning

algorithms are trained by exposing the model (often called agent) to the state

of the environment and a set of actions with an associated reward.

The second attribute that describes a learning algorithm is the type of target

variable.

Classification algorithms aim to predict an integer value, representing the pres-

ence of one of the classes considered in the observation (e.g. determine if the

input image has a cat, a dog or neither of two in it). However, since encoding

the classes as successive integers would introduce a spurious ordinal relation

(e.g. class 2 would result closer to class 3 than to class 5), it is common

practice to use the one-hot encoding technique for target vectors. A one-hot

encoded target vector, representing the ith class out of m is an m dimensional

vector composed entirely of zeros except for the ith element. As a result, no

unintentional ordinal relation between classes is introduced.

2.1. Fundamentals of machine learning 13

Classification algorithms can be further labeled as multi-class (if the target

value is non-binary) and multi-label (if more than one class can be present at

a time, e.g. a cat, a dog or both).

Regression algorithms predict continuous values for each observation (e.g. pre-

dict the future value of a stock). Generally, the output of regression tasks are

real numbers.

Generative algorithms are different from regression and classification, as their

aim is not to predict values in the stricter sense. Generative models are trained

to create new instances of a certain quantity (e.g. generate images of cats).

Trained models typically take noise as input and use it as a sort of seed for

the trained generator.

Other types of algorithmic attributes are sometimes used. As an example,

clustering refers to the problem of predicting a cluster value for input based

on unsupervised learning methods. However, these problems can usually be

casted into a more general supervised/unsupervised classification/regression

framework.

In order to train models, a distance function between the current model output

yc and the target ground truth yt must be calculated. In regression problems

this is straightforward, as generally both yc and yt are real number, and their

distance can be measured by simple approaches such as the squared difference.

In classification problems, this is often achieved by normalizing the output of

the model to resemble a probability distribution (i.e outputs into the [0 1] in-

terval that sums to 1) with a function such as the softmax, described in Section

2.1. Fundamentals of machine learning 14

3.2.1. In this way, the current output yc is interpreted as a probability distri-

bution over the possible classes, Pc. Probability distribution distance measure

can thus be used to measure the difference between model output and ground

truth, such as the Kullback-Leibler divergence, DKL between two probability

distributions Pc and Pt, defined as:

DKL(Pt||Pc) =
∑
i

Pt(i) log
Pt(i)

Pc(i)
(2.1)

The divergence can be interpreted as the loss of information due to the ap-

proximation of Pt with Pc. In practice, the most used distance function is the

cross-entropy between two probability distributions Pt and Pc is defined as:

H(Pt, Pc) = H(Pt) +DKL(Pt||Pc) (2.2)

where H(P) is the Shannon entropy. However, given that Pt is a fixed quantity,

the two measures are equivalent in practice. Since the outputs of the models

are normalized, the numerical result obtained in the output yc are used as a

measure of the belief of the model about x belonging to a certain class.

The distance function is then used to optimize the model’s parameters. As a

matter of fact, in machine learning, to learn means to optimize the parameters

of a model with respect to data in the training set. Optimization is performed

by minimizing the distance function, also called error or loss function.

The properties of the loss function L strongly influence the convergence of

the optimization algorithm. While it is generally difficult to determine if the

2.1. Fundamentals of machine learning 15

optimization procedure will converge, some machine learning algorithms are

structured so that the loss function is easier to optimize. The most important

distinction to be made is between convex and non-linear loss functions.

Convex functions are defined based on convex sets. A set X is said to be

convex if, for any x, y ∈ X, given a scalar α ∈ [01], then (1 − α)x + αy ∈ X.

Given a convex set X a function f : X → R is said to be convex if, given an

scalar α ∈ [0 1], ∀x1, x2 ∈ X

f(αx1 + (1− α)x2) ≤ αf(x1) + (1 + α)f(x2) (2.3)

An important property of convex functions is that they admit only a single

local minimum (that is therefore also the global one). Thus, simply updating

the model’s parameters in the direction in which the loss function gradient de-

creases guarantees finding the optimal solution of the problem. An example of

a convex function is given in Figure 2.1, showing how the structure of the func-

tion does not admit local minima. The more general class of non-linear func-

tions admit multiple local minima. Therefore, especially in high-dimensional

spaces, it is generally not possible to recognize a local minimum from a the

global minimum.

Another, indirect, optimization procedure is needed when developing a ma-

chine learning model. As previously cited, the number of parameters in the

model influences the results of the optimization, regulating under-fitting and

over-fitting. However, more complex models have other parameters that can

also influence the learning process efficiency and the quality of the final result.

2.1. Fundamentals of machine learning 16

80

60

40

20

0

z

0

5

-5 -5

0

5

xy

Figure 2.1: Example of convex function, given by z = x2 + xy + y2

These variables are called hyper-parameters. Hyper-parameters tuning is re-

ferred to as model validation.

Having defined the basic terminology, the problem of developing a machine

learning system can be considered as two-fold.

Firstly, the type of data to be used must be selected and, for the chosen type of

data, the representation must be selected. This process is described in Section

2.2.

Secondly, having selected the data, the algorithms must be chosen. This choice

is dependent on the type of data and especially on their dimensionality. The

main properties of machine learning algorithms are discussed in Section 2.3.

2.2. Selecting and preparing data 17

Furthermore, an overview of the major machine learning models is presented.

2.2 Selecting and preparing data

The selection and preparation of the data encompass feature’s selection and

data pre-processing. The pre-processing step is performed both before and

after the feature extraction step, since it entails both cleaning the data and

operations to improve the training as will be discussed in the following section.

2.2.1 Feature selection

Feature selection refers to the choosing of alternative representations for the

input data, usually with the purpose of simplifying the learning process by re-

ducing dimensionality and removing less informative data. Features are lossy

representations, imposing a trade-off on information content against simplic-

ity. The selection of features should thus be considered as part of the model

selection problem, in the sense that the feasibility of the learning process de-

pends directly on it.

Features can be characterized as syntactic or semantic. Syntactic features re-

late to the structure of the signal (as syntax describes the structure of sentences

in linguistics) while semantic features relate to the content (as semantics is con-

cerned with the meaning of sentences in linguistics). A similar categorization

is done in multimedia, where features are characterized as low or high-level.

2.2. Selecting and preparing data 18

Low-level features are usually very close to physical properties of signal, while

high-level ones are designed to capture concepts closer to human perception.

High-level/semantic features are more difficult to estimate, as generally per-

ceptual concepts cannot be expressed easily in analytical form. Low-level de-

scriptors, on the other hand, can be defined and calculated reliably and can

characterize the signal completely from a mathematical point of view. How-

ever, they are lackluster when tasked with replicating a human operator.

A hierarchical approach is usually adopted, that is building high-level repre-

sentations of concepts as compositions of low-level features. Since the relations

between these quantities cannot be estimated manually, machine learning al-

gorithms are used. In general, it is desirable to feed the algorithms data as

close as possible to the original representation. In this way, the model can

discover other representations that were not discovered manually.

In this process, it is commonplace to attempt to use of domain-specific knowl-

edge. More specifically, every domain (especially in multimedia) has some

kind of ontology 1 that can be used in order to select features in relation to the

high-level target variable. This procedure is widely used in the process of the

selection and design of features. In the image domain, for example, it is com-

mon to design features to capture specific aspects of an image, such as borders

[4] and textures [5]. Similarly, in the audio domain, features can be selected

according to their ontological relation with low level spectral and temporal

characteristics, as will be described in Chapter 4. However, this procedure is

1Here, the term ontology is intended as a set of definition and relationship between
quantities in a specific domain of knowledge

2.2. Selecting and preparing data 19

not well defined and often relies on heuristics. This is due to the ontologies

being poorly defined, aside from a restricted number of concepts. Despite the

attempts described in literature [6] [7], the definition of a common ontology

for features in multimedia is still an open problem.

Recently, Deep Neural Networks (DNN) have shown the ability to learn from

minimally preprocessed input data, simultaneously outperforming state-of-the-

art feature based approaches. DNN learn by composing complex features hi-

erarchically, discovering non-linear relations between data at different levels

of abstraction. This procedure can be considered opposite to the ontological-

based selection described above. As a matter of fact, most deep models do not

leverage domain-specific knowledge, but rather learn the associations from the

input to the target variable. As it has been proven in literature, intermediate

representations learned by DNN can be used as features with state-of-the-art

performances [8] [9]. The first important results were obtained in image clas-

sification tasks where the architecture known as AlexNet [1] outperformed the

state of the art on the ImageNet dataset [10], an image classification dataset

composed of one thousand image classes with a hierarchical ontology. Since

then, the use of deep learning has extended from multimedia classification to a

variety of tasks including classification of very different data types (e.g. from

malware detection [11], [12]) to generative models ([2], [3]).

2.2. Selecting and preparing data 20

Pre-processing

The term pre-processing encompasses cleaning the data as well as performing

transformation that simplify the learning process.

Cleaning data refers to the removal of known artifacts not due to the phe-

nomenon that is being analyzed. As an example, considering sensor readings,

the hardware gathering data can impact the data in a systematic way for which

a mathematical model is known. In this case, it is desirable to remove artifacts

coming from the hardware by applying an inverse transformation. As with this

example, pre-processing is in general dependent on the type of data considered

as well as on the acquisition process noise.

Some practice applies to a more general case. However, it is worth to note

that most of the following methods are actually heuristics: intuition can be

obtained in toy problems and experimental results confirm the validity of the

technique in higher dimension. Nevertheless, there are no formal proofs or

rules that apply in these cases.

A common practice is to normalize the data into a unique interval by applying:

x′ =
x0 − xmin
xmax − xmin

(2.4)

Where xmin and xmax are the boundary values of the new interval. Normaliza-

tion to the [0 1] interval is a common practice. In general, given two quantities

that possess different numerical ranges (e.g. height and income of a person),

the differences in magnitude introduce spurious information into the system.

2.2. Selecting and preparing data 21

Reducing the magnitudes of the values improves the numerical stability of

many training algorithms. Finally, gradient descent-based algorithms show

improved convergence speed with normalization [13].

Another common pre-processing step is per-feature zero-centering of the data.

For example, given a dataset of grey-scale images, X, with j indexing pixels

and i indexing samples:

X′i,j = Xi,j − µj (2.5)

where µj is the dataset mean along the jth pixel of all the samples in the

dataset. Another commonly performed operation is dataset scaling in order

to have unit variance along each feature. Maintaining the previous example of

an image dataset, the normalization is obtained by performing the following

transformation:

X′i,j = Xi,j − σj (2.6)

where σj is the variance calculated along the jth pixel of all the samples in the

dataset.

Another transformation that simplifies the learning is the decorrelation of the

input features. The most common method is Principal Component Analysis

(PCA), a technique to remove linear correlations from a set of input data.

Basically, PCA linearly un-correlates the data by calculating the covariance

matrix and calculating its eigenvalue decomposition. The dataset is then mul-

tiplied by the calculated eigenvectors to re-orient the samples in the direction

of the principal components. A secondary benefit of performing PCA is that it

2.3. Selecting the model 22

can be used to perform dimensionality reduction as well. Extracting the eigen-

representation of the covariance matrix, the eigenvectors whose corresponding

eigenvalues are small can be discarded in order to simplify the problem.

2.3 Selecting the model

Model selection is a step that is often performed based on heuristics and avail-

able literature results. However, machine learning algorithms can be charac-

terized based on different attributes useful to, at least, exclude some choices.

Representation power (i.e. the maximum complexity of results that can be

achieved) is clearly the first attribute, as it determines if a given problem can

be solved by a model class. In this sense, the most important attribute is the

ability to perform a non-linear classification (i.e. to learn a non-linear function

from the data x to target y).

In general, a variety of models are able to solve a problem, with varying levels

of effectiveness. However, better performances are generally achieved by more

complex models. Thus, a trade-off between performances and computational

complexity exists.

Some models have additional constraints that limit their applicability. DNNs

are a prime example of that, since they require considerable amount of data

to yield state-of-the-art results (although this problem can be bypassed under

certain circumstances, as will be discussed in Section 3.3).

2.3. Selecting the model 23

2.3.1 Models

In this section, the most important models are presented, focusing on the

pros and cons of each. While many of these models are native of a particular

domain of machine learning (e.g. classification, regression), they can generally

be easily re-purposed for other applications.

Linear models

Linear models represent the simplest alternative in the field of machine learn-

ing. A linear dependence is assumed between the features x and the target y

is assumed:

y(x) =
N∑
i=1

wixi + b (2.7)

whereN is the dimensionality of x while the wi and b are the model parameters.

Linear models can be used in regression problems or extended to classification

by using a function that maps the output to integers, such as the sigmoid

function discussed in Section 3.2.1. The most common choice for the error

function is least square.

While the linear separability assumption is rarely valid in complex problem,

the simplicity of the model makes it useful in many practical applications.

2.3. Selecting the model 24

Trees and forests

Decision trees, first proposed in [14], are algorithms that handle data through

a graph-like structure. In a decision tree, the leaf node represents the target

variable, such as the different classes in a classification model. Inference is per-

formed by traversing the graph, deciding the direction at each node depending

on the value of one of the features. The feature xf with the most explanatory

power is selected greedily at each step by maximizing a criterion such as the

information gain Ig:

Ig(P (y), xf = f) = H(P (y))−H(P (y/xf = f)) (2.8)

Decision trees are often used as they provide a model that is simple to under-

stand. However, a single tree does not perform very well in advanced tasks.

Random forests [15] are an advanced version of decision trees. Basically, a ran-

dom forest is built from an ensemble of decision trees trained on random over-

lapping subsets of the dataset (random sampling with replacement or boosting)

and produces an estimation based on the average of the single trees.

The resulting forest can then be pruned in order to keep only the most valu-

able trees and leaves nodes. This procedure is generally performed to simplify

the model and reduce the computational burden, especially in tasks with con-

strained resources [16]. Nevertheless, more elaborated pruning procedures can

also yield better performances, when the pre-trained model contains redundant

leaf nodes and trees suffering from over-fitting [17].

2.3. Selecting the model 25

In past years, random forests have been applied widely, especially in computer

vision, including image classification [18], object detection [19], segmentation

[20] and hand tracking [21].

Recently, given the success of DNNs in computer vision, extension of random

forests that leverage principles of deep learning have been developed. Exam-

ples of this paradigm are deep neural decision forests, presented in [22], using a

random forest to replace the final layers of a DNN and [23], where the authors

use Dropout, a technique for regularizing DNNs, discussed in 3, to improve

the generalization capabilities of a random forest.

Support Vector Machines

Support Vector Machines (SVM), first proposed in [24] rely on the use of a

linear classifier coupled with a non-linear transformation. The basic idea is

to transform data to a space with higher dimensions by applying a kernel

function. The hypothesis is that in the new space the data will be linearly

separable. Thus, the hyper-plane that best separates the data is learned by

maximizing the margin (i.e. the distance from the data samples that are closer

to the hyper-plane). Some of the most used kernel functions are the polynomial

kernel and the Gaussian Radial Basis Function kernel.

One of the main advantages of SVM classifiers is that the error function is

convex. Therefore, optimization is greatly simplified by the absence of local

minima.

SVMs represent some of the most widely used classifiers in practice since they

2.3. Selecting the model 26

offer good performances without requiring complex optimization procedures.

For this reason, while DNNs usually show better performances, SVMs are still

widely used. Recently, SVMs are also being used as a replacement for the last

layer of DNNs [25] [26].

Neural networks

Neural networks are machine learning models based on hierarchical concate-

nation of linear classifiers with non-linear functions. In the following section,

the two fundamental neural network architectures are introduced

Feed-forward neural networks Feed-forward neural networks are orga-

nized in layers of neurons, that is units receiving inputs from the previous

layer and whose output is used as input in the next layer. The connections in

feed-forward neural networks do not form cycles.

Each unit calculates a weighted sum of its inputs with weights w, applies a

bias term b and finally applies an activation function to the result. Thus, each

unit can be seen as a function f defined as follows:

f(x) = h(
N∑
i=1

wixi + b) (2.9)

2.3. Selecting the model 27

Where x represents the vector of the N inputs, and h() is the activation, a

non-linear function. An example of activation function is the sigmoid function:

σ(x) =
1

1 + e−x
(2.10)

The non-linear function enables the stacking of layers of neurons to create

more complex representations, as linear operators are closed under composi-

tion. As a matter of fact, using linear activation, a neural network would not

gain representation power from additional layers. Neural networks are thus

built stacking an input layer, an output layer, and a number of hidden layers.

The parameters learned from the data are the weights w and the bias term b.

Neural networks are trained by error back-propagation. Back-propagation is a

gradient descent based algorithm. A series of training iterations are performed.

At each iteration, the output of the model, yc is calculated. This is referred

to as the forward pass.

Then the loss L between the output and the target ground truth, yc is calcu-

lated, for example by means of equation 2.2.

The derivative of L with respect to the model parameters θ (i.e. weights and

biases) is calculated by mean of the chain rule of calculus. This is referred to

as the backward pass

Finally, the parameters are updated according to the loss:

∆Θt = Θt−1 − η∇ΘL (x, y) (2.11)

2.3. Selecting the model 28

where η is the learning rate, a scalar in the [0 1] interval while L (x, y) is the

loss associated with the model output for x and y. This step is performed over

the entire dataset multiple times.

Neural networks have the property of being universal function approximators.

In more details, a neural network with at least one hidden layer can approx-

imate any function, given enough neurons in the hidden layer. Thus, from a

theoretical point of view, any machine learning problem can be solved effec-

tively with a neural network.

However, while the existence of the solution is guaranteed, there is no infor-

mation regarding the optimization procedure or the data that are necessary

to reach it. Furthermore, the loss function for optimizing a neural network is

non-linear. Thus, local minima can hamper the optimization procedure.

Practical results have shown that stacking layers yields better performances

with respect to widening the network (i.e. adding more neurons per-layer).

Furthermore, in the past, neural networks with more than two hidden layers

have gotten worse results than architectures with fewer layers. This problem

has been attributed to the joint effect of the non-linear loss function and the

curse of dimensionality, since adding layers also adds poor local minimums to

the optimization problem.

Recurrent neural networks While feed-forward neural networks can be

used to process any kind of data, more specialized models can be used when

2.3. Selecting the model 29

Figure 2.2: Alternative representations of RNN

the data possess certain properties.

Sequential data are quantities composed of multiple, subsequent observations

of a certain quantity. Example of these types of data are sentences (i.e. se-

quences of words) or non-stationary audio data (sequences of sums of frequency

components of varying intensities).

Since every element of the sequence has the same properties, it is desirable to

re-use the learned weights.

Recurrent neural networks (RNNs) are models in which the connections be-

tween neurons can form cycles. In more details, given a recurrent neural net-

work, the tth unit outputs a value ht at each time-step t (i.e. element of the

sequence). ht depends on the current input, xt and the output of the pre-

vious unit, which, recursively, depends on the previous outputs. A recurrent

network containing N units can be unrolled into a corresponding feed-forward

2.3. Selecting the model 30

architecture, as shown in Figure 2.2.

Since RNNs do not contain non-differentiable functions, they are still trainable

by error back-propagation. However, in this case, the derivatives for the re-

cursive connections are calculated backward to the first unit. For this reason,

back-propagation in RNNs is called back-propagation through time.

Non-causal extensions to RNNs have been proposed as well. Bi-directional

RNNs, proposed in [27], calculate the current state based on future infor-

mation as well (i.e. output from successive units). This is accomplished by

training simultaneously two RNNs: one cell processes the sequence in the nat-

ural order, while the second cell is trained with the reversed sequence. The

output is computed by considering the output of both cells. Bi-directional

RNNs have shown better performances than simple RNNs, but they are more

computationally expensive and cannot be used where causality is needed.

While a RNN can be used recursively on sequences containing any number

of time-steps, the number of units, and thus the longer temporal dependency

the network can learn, is limited by numerical problems. An explanation for

this phenomenon has been given in [28]. In detail, calculating derivatives over

RNNs with a large number of units yields a progressively larger gradient (ex-

ploding gradient), if the recurrent weights are greater than 1 or a progressively

smaller gradient (vanishing gradient) if the recurrent weights are lesser than

1. Thus, RNNs could not be used over long input sequences in the past.

2.4. Conclusions 31

2.4 Conclusions

In this section, fundamental concepts of machine learning have been intro-

duced, as well as an overview of the most important algorithms that are still

relevant.

In the following Section, DNNs will be introduced in detail, giving an overview

of the most relevant architectures as well as discussing the methodologies for

training DNNs.

Chapter 3

Deep learning

In the past, neural networks models were limited to a shallow number of hidden

layers (i.e. 1-2).

Recently, technical advancements, as well as the availability of better hardware

and training data, enabled deeper neural network models less limited in the

number of layers. The term deep learning has been used to describe the set of

all those techniques, as opposed to shallower neural networks. DNNs represent

the state-of-the-art in many machine learning tasks. More specifically, while

previous machine learning systems rely on the use of a particular set of features,

DNNs generally use coarser representation of the input data.

A DNN can be considered composed of two systems: the upper layers, learning

a suitable representation of data for the problem at hand, and the bottom layer,

a linear classifier using the learned data representation to predict on input. In

32

3.1. Deep architectures 33

the following, the most important deep architecture are described, as well as

the most important techniques used to train DNN.

3.1 Deep architectures

3.1.1 Convolutional networks

Convolutional neural networks (CNNs) are among the most important archi-

tectures in deep learning. A CNN is basically a DNN that includes one or

more convolutional layers.

The convolutional layer generally contains three building blocks: the convolu-

tion, the non-linear activation and the pooling operation. The convolution and

the pooling operation are described in the following, while the more general

topic of the activation functions is discussed in Section 3.2.1.

Convolution operation

The most crucial element in the convolutional layer is the convolution oper-

ation. Basically, the name convolution refers to the arrangement of the con-

nections to the next layer: in a fully-connected layer every neuron in layer li

is connected to every neuron in layer li+1 whereas, in a convolutional layer,

patches of nearby neurons are connected to a single output neuron. The pa-

rameters learned are shared across all the patches. The resulting operation is

3.1. Deep architectures 34

analogous to the convolution between the input to the layer xi and the filter

defined by the parameters of the connections θi, called the convolution kernel.

For each convolutional layer, c kernels are learned, generating an output fea-

ture map with c channels. The convolution operation is shown in Figure 3.1.

Figure 3.1: The convolution operation

3.1. Deep architectures 35

This connection topology offers multiple advantages. First of all, the number

of inter-layer connections is greatly reduced, simplifying the optimization.

The use of shared parameters in based on the idea that filters should act as

feature detectors. The ability to detect a feature independently from its po-

sition in the input, known as invariance to translation, is necessary in many

fields (e.g. image classification). The shared parameters achieve this property

without having to learn the feature detector in each portion of the input, dif-

ferently from fully-connected layers, simplifying the learning.

Another key advantage of the convolution operation is the local influence of the

input. While it is important to detect a feature independently from where it

appears, the information about the position is essential to build a meaningful,

hierarchical representation of the input. As an example, an image classifica-

tion problem can be considered: if a filter is trained to detect edges with a

certain orientation, the pattern must be detected anywhere in the input data.

However, its position with respect to the other features gives meaningful in-

formation. Figure 3.2 shows the influence field of a region of the input across

multiple convolutional layers. As can be seen, in the upper layer only a limited

portion of the output is influenced. In the deeper layers, a progressively larger

part of the input is known to each neuron. This property is also known as

sparse connectivity [29].

Besides the connection parameters learned during training, the convolution

is characterized by the following hyper-parameters: the number of learned fil-

ters, the filters’ dimensions and the convolution stride. The stride refers to

3.1. Deep architectures 36

Figure 3.2: Influence of input region on single neuron activation

the density of the filters in the layer. The name comes from the analogy with

the convolution operation, since the filter density can be seen as the number

of discrete steps (i.e. input elements such as pixels) that are jumped when the

filter shifts.

Finally, an important variation of the convolution operation is the dilation.

Dilation refers to the filtering of the inputs considering non-adjacent elements.

Figure 3.3 shows how a dilated convolution is performed. The default convo-

lution is considered to have a dilation rate of 1. However, a dilation factor

3.1. Deep architectures 37

Figure 3.3: Dilated convolution operation

greater than 1 basically inserts holes in the filter, skipping input elements

while widening the receptive field. Dilated convolutions have been proposed in

[30] and have shown good results in practice, especially in object segmentation

tasks [31].

Pooling

The pooling operation replaces values in the input with a statistic calculated

on them. Common examples are the average pooling (i.e. replace a patch of

values with their average) and the max pooling (i.e. replace a patch of values

with the maximum), albeit many forms of pooling have been proposed [29].

While pooling can be lossless, it is usually used as a form of downsampling.

Pooling is performed to reduce the input of the next layer and to introduce

invariance to small translation in the input. While in principle it seems redun-

3.1. Deep architectures 38

dant to the invariance introduced by the convolution operation, in this case

the aim is to impose the prior that the position at which a particular occurs is

invariant to small translation. Thus, while convolution introduces invariance

to translation at a higher representation level, keeping the position informa-

tion at feature level, the pooling operation loses the position information to

introduce lower-level invariance. Theoretical attempts at analyzing the effect

of max-pooling have shown that the dimension of the pooling window has im-

portant influences on the features that are propagated to the next step [32].

In practical applications, max pooling is the most used variation, since it gen-

erally shows enhanced effectiveness with respect to other operations [33]. More

elaborated pooling operations have been proposed as well in literature. In [34],

the authors propose max-pooling dropout a pooling scheme that samples the

activations based on a multinomial distribution during training while leverag-

ing a weighted sampling at test time. In [35], different pooling schemes are

proposed, based on learned combination of max and average pooling.

Evolution of CNNs

Among deep learning architectures, CNN is the most studied one and was first

proposed in [36]. However, it was popularized in [1], where the proposed model,

named Alexnet, surpassed the competitors by more than 10% in accuracy [10].

The Alexnet model leveraged several results in neural network training, such

as dropout and rectified linear units (described in the following). These tech-

3.1. Deep architectures 39

niques have since become fundamental building blocks of deep neural networks

and are described in the following sections.

Since the introduction of Alexnet, advancements have been summarized inside

named architectures that represent milestones in CNN research. In the follow-

ing, the most important architectures are presented, focusing on the structural

improvement to the basic CNN architecture.

An architecture worth mentioning, despite it not introducing modifications to

the convolutional layers’ structure, is the Vggnet, proposed in [37]. The main

architectural difference with respect to previous architectures is the number of

layers: while Alexnet has only 5 convolutional layers, VGGnet has 19, demon-

strating that depth of the model is directly related to performances.

The next breakthrough in convolutional architectures was achieved by Googlenet

[38]. Beside increasing the number of convolutional layer to 21, the authors in-

troduced the inception module. The idea at the basis of the inception module

is to use a convolutional layer that leverages several filter dimensions per-layer.

However, since this would introduce too many parameters in the network, each

module first performs a 1x1 convolution on its input. The 1x1 convolution acts

as a pooling on single features across the channels. The number of channels

of the 1x1 convolution is a hyper-parameter that controls the intensity of the

channel pooling.

In 2015, a further record was achieved by the Resnet architecture [39]. The

two main features of ResNet are the level of depth, that reached 150 layers, as

well as the introduction of the residual block. As a matter of fact, the authors

3.1. Deep architectures 40

Figure 3.4: Architecture of the residual block

claim that the increase in depth without the residual block would yield worse

performances in both training and testing. The residual block structure is

shown in Figure 3.4. Basically, a residual block works like a normal convolu-

tional layer, except the original input gets added after two layers of weighted

summation:

yi = σ(
N∑
i=1

wj+1,iσ(
N∑
i=1

wj,ixi + bj) + bj + 1 + xi) (3.1)

Where σ is the activation function, while wj, i and bj represents the parameters

of the jth layer.

3.1. Deep architectures 41

3.1.2 Long short-term memory and gated architectures

Long short-term memory (LSTM) architectures, first proposed in [40], are

variants of the previously described RNNs, developed with the purpose of

addressing the vanishing/exploding gradient problem. An LSTM is a recurrent

neural network with additional parameters to control the flow of information

(and thus the gradient) through the recurrent connections. In more details,

an LSTM cell is composed of recurrently connected units. Each unit has three

inputs: the cell state from the previous unit, Ct−1, the previous output, ht−1,

and the current input, xt. The inputs are used to update the cell state, yielding

Ct, and to calculate the current output ht.

The update of the cell state is performed in two steps: first, the input from

the previous cell state Ct−1 is modulated by the Forget Gate as detailed in

Equation 3.2; then, the update of the cell state due to the current input is

computed by the combination of the content of the Contribution Selection

block and the Input Gate.

Equation 3.2 is used for updating the cell state:

Ct = ftCt−1 + it tanh(Wcxt + Ucht−1 + bc) (3.2)

where ft and it are scalars in the range [0 1], and represent the outputs of the

Forget and Input gate respectively, Wc,Uc,bc are learned parameters and xt

is the input. ft and it are calculated in the Forget and Input gates by means

3.1. Deep architectures 42

Figure 3.5: Architecture of an LSTM unit

of Equations 3.3 and 3.4 respectively:

ft = σ(Wfxt + Ufht−1 + bf) (3.3)

it = σ(Wixt + Uiht−1 + bi) (3.4)

where σ is the sigmoid function.

Finally, the output of the unit, ht, is calculated with the following equation:

ht = ot ◦ tanh(Ct) (3.5)

where ot is a scalar in the range [0 1] given by the Output Gate:

ot = σ(Woxt + Uoht−1 + bo). (3.6)

Variations of the basic LSTM architectures have also been proposed. Basi-

3.1. Deep architectures 43

cally, the units in the cell can be modified by either adding connections, such

as in [41], or by simplifying the unit architecture, such as in [42]. Nevertheless,

a comparison among many unit structural variations of LSTM cells, performed

in [43], demonstrates that none of the variations offer a significant advantage

over the basic one.

Gated architectures have been successfully applied to multiple tasks, including

language modeling [44], machine translation [45] and natural language process-

ing [46]. However, good performances have been demonstrated also in image

processing tasks thanks to their memory. Examples of this are [47] and [48],

where recurrent architectures are used for image generation and inpainting, re-

spectively. While LSTMs (and RNNs in general) are limited to bi-dimensional

data, extensions have been proposed to handle multi-dimentional sequences,

such as videos [49], where the authors leverage multiple hidden connections to

handle the data dimensionality. In [50], hierarchical RNNs are proposed. The

model uses hierarchical connections between hidden units to learn multi-scale

information from sequences.

3.1.3 Autoencoders

An autoencoder is a deep neural network for unsupervised learning, often with

the purpose of training a generative model (i.e. a model that can generate new

instances of a particular type of data). The basic structure of an autoencoder

3.1. Deep architectures 44

can be divided into two parts, the encoder and the decoder. More specifically,

the upper part of the network (i.e. encoder) learns a lossy representation

for the input data. The lower part (i.e. decoder) learns to reconstruct the

input data from a given coded representation (i.e. the code generated by the

decoder). In this case, the loss function L is generated by a distance function

between the original input x and the reconstructed output x̂, such as mean

squared error:

LMSE =
N∑
i=1

(xi − x̂i)2 (3.7)

While the most general autoencoder is built from fully-connected layers, the

encoder and the decoder can be composed of arbitrary layers. As an example,

the popularity of CNNs in classification tasks has inspired convolutional au-

toencoders [51]. In general, variations of deep architectures are first proposed

in the classification domain and then re-used in other fields.

Variations of the autoencoder architecture have also been proposed to deal

with particular properties of the data.

Denoising autoencoders [52] learn a representation from data corrupted by

stochastic noise. A common form of noise used is the elimination of random

features in the input, that is stochastically setting some of the xi = 0. The

network is then trained by calculating the loss between the reconstructed out-

put (obtained by the noisy version of xn) and the uncorrupted input x, so that

robustness to noise is forced into the learned representation.

Finally, a notable evolution of the basic autoencoder are Variational Autoen-

coders (VAEs) [53]. The idea behind VAEs is to model the observations as

3.1. Deep architectures 45

produced by a set of latent variables, which distribution P (z) must be learned.

An encoding function Pe is learned, maximizing P (z/x) The generation of new

data is achieved by sampling P (z). The sampled values are fed to a function

Pdthat produces a sample x̂ that maximize P (x̂/z). A gaussian prior is im-

posed over P (z) to make the problem tractable.

3.1.4 Generative adversarial networks

Generative Adversarial Networks (GANs) have been proposed in [54] and have

rapidly gained popularity in the field of DNN-based generative modeling. The

basic idea behind GANs is to train a generative model by making it play an

adversarial game (in the game theoretic sense) against a discriminative model

(i.e. a classifier). More specifically, the generative model produces samples

for the target distribution. The discriminator is fed with data from both the

dataset and the generator and has to yield a label for the current sample:

genuine (i.e. from the dataset) or fake (i.e. from the generator). It is possi-

ble to prove that a GAN is able to recover the true probability distribution

generating the data, given infinite capacity for the models [54]. Nevertheless,

the training process is not stable. A balance between the training iteration

of the discriminator and the generator must be maintained, since otherwise

the networks are unable to train. As an example, if the discriminator is too

efficient, the generator will not be able to get meaningful gradient and train.

GANs are currently very popular in generative modeling and have been ap-

3.2. Deep networks components and techniques 46

plied to a variety of fields, from traditional tasks such as image in-painting and

denoising to the generation of images starting from text description [55].

Furthermore, many variations of the traditional architecture have been pro-

posed incorporating elements from other deep architectures, such as Deep Con-

volutional GANs [56], which employ de-convolutional layers [57], a variant of

the convolutional layer.

3.2 Deep networks components and techniques

In this section, the components of DNNs are presented, discussing their im-

portance and performances. The most relevant techniques to effectively train

a DNN are also presented in this section.

3.2.1 Activation functions

Activation functions have a critical role in determining the success in training

a DNN. As already stated in Chapter 2, non-linear activation functions are

needed since linear operators are closed under composition.

Generally, the main concern with non-linearities is the saturation region, that

is the intervals of the input domain for which the non-linear function h does

not have a response proportional to the input. If the input falls in these re-

gions during training, the corresponding gradient will be zero, thus preventing

any learning. As a matter of fact, the use of better non-linear functions is

3.2. Deep networks components and techniques 47

Figure 3.6: The sigmoid function

considered one of the key factors that contributed to the success of DNNs. In

the following sections, the most important activation functions are discussed.

Sigmoid

The sigmoid function was defined in Equation 2.10 and it is here repeated for

the sake of clarity:

σ(x) =
1

1 + e−x
(3.8)

The sigmoid function was mostly used in older neural networks. As can be

seen in Figure 3.6, the sigmoid function presents two drawbacks: the saturation

regions and the non-zero-centered outputs.

3.2. Deep networks components and techniques 48

Figure 3.7: The hyperbolic tangent function

Hyperbolic tangent

The hyperbolic tangent is defined by:

tanh(x) =
1− e−2x

1 + e−2x
(3.9)

The tanh function was first recommended in [13] as a strictly better alterna-

tive to the sigmoid function. As can be seen in Figure 3.7, while the saturation

problem is still present, the output of the tanh is zero-centered, avoiding po-

tential oscillation in the parameters updates.

Rectified linear units

The Rectified Linear Unit (ReLU) was first proposed in [58] as a mean to

improve the performances of Restricted Boltzmann Machines. The ReLU is

3.2. Deep networks components and techniques 49

defined as:

ReLU(x) =

x x ≥ 0

0 x ≤ 0

(3.10)

The ReLU output is not zero-centered. However, a ReLU does not saturate

for large values of the activation. In [1], it has been shown that the training

process is much more efficient when ReLUs are used in place of tanh.

Nevertheless, the ReLU still saturates for low (i.e. < 0) activation values.

This property can still hinder training, especially if the random parameters’

initialization is sampled so that a part of the network starts in a saturated

state. For this reason, variation of the ReLU have been proposed.

Leaky variants of the ReLU (lReLU) with a small proportionality relation

between the input and the output when the activation is less than 0 have also

been proposed:

lReLU(x) =

x x ≥ 0

αx x ≤ 0

(3.11)

where α can be a constant or a trainable parameter [59]. Other proposed

improvements to the ReLU include units able to output zero-mean values,

such as Exponential Linear Units (ELU) [60], defined as:

ELU(x) =

x x ≥ 0

α(ex − 1) x ≤ 0

(3.12)

3.2. Deep networks components and techniques 50

where α is a constant hyper-parameter. However, since no activation function

has shown strictly better performances, ReLUs are still considered the safe

default in terms of activation functions.

Maxout activation

The Maxout activation was proposed in [61]. Basically, the activation outputs

the maximum value between k inputs:

σmax = max
j∈1,2...k

(
N∑
i=1

wj,ixi + bj) (3.13)

Maxout can be considered as an extension of dropout, described in Section

3.2.3, that is a combination of different sub-models, or as a generalization of a

ReLU, that is effectively a particular case of the Maxout activation (k = 2, with

one of the inputs being 0). However, a maxout activation has a considerable

computational cost, since each of the k inputs has its own set of parameters.

Activation of the output layer

The final layer of a neural network is a linear classifier that does not need a

non-linear activation function to be effective. As a matter of fact, in regression

problems, the output of the neuron is taken as it is.

However, in classification problems, it is useful to get outputs that are more

comparable to one-hot encoded labels or, better yet, values that can be inter-

3.2. Deep networks components and techniques 51

preted as probabilities. In binary classification problems, the sigmoid function

is used, as it can be seen as the posterior probability of the classes [62].

For multi-class classification, the softmax function is used, defined as:

σm =
exi∑N
i=1 e

xi
(3.14)

The softmax can be seen as an extension of the sigmoid. Being a normalized

exponential function, the probabilistic interpretation is also straightforward.

3.2.2 Optimization for deep neural networks

Optimization algorithms are selected based on their convergence properties,

such as, theorems on converge speed and optimality of the solution found.

Furthermore, secondary benefits, such as low sensitivity to the algorithm’s

hyper-parameters can also be considered.

As previously stated, the training of a neural network is a non-linear optimiza-

tion problem. Given the number of parameters involved, it is usually feasible

to only compute the first order derivatives of the loss function with respect to

the parameters. Besides, given the nature of the problem, the loss function

minima found by the gradient descent are not guaranteed to be global.

Extensions of the previously described gradient descent algorithm have been

developed to improve its convergence, as well as to decrease its sensitivity to

hyper-parameters. The most well-known extension is the Stochastic Gradient

Descent (SGD). The SGD represents an extension of gradient descent suited

3.2. Deep networks components and techniques 52

for very large datasets. In these cases, computation of the loss gradient over

the whole dataset can be impossible because of hardware constraints (e.g. the

dataset does not fit into the working memory) or very slow. In the SGD the

gradient of the loss function is estimated from a limited number of samples at

a time. Thus, the parameters’ update equation is given by:

∆Θt = Θt−1 − η
n∑
i=1

∇ΘL (xi, yi) (3.15)

where η is the learning rate, n, the batch size, represents the number of samples

used in a single parameters update and L (x, y) is the loss calculated on the

n-element batch. The reduced number of samples hinder the variance of the

gradient estimation, thus smaller η are used.

The SGD represents the de facto standard to train a DNN given the size of the

datasets employed. However, extensions to the basic SGD algorithms have also

been proposed. Many algorithms have been proposed based on combinations

and variations of two fundamental concepts: Momentum and variable learning

rate.

Momentum

Momentum was first proposed in [63]. The idea is to use the gradients from

the previous iterations linearly combined with the gradient of the current time-

step. Depending on the curvature of the loss function, in [64], it was demon-

strated that Momentum yields up to a quadratic reduction in iterations needed

3.2. Deep networks components and techniques 53

to converge to a local minimum. Thus, the model parameters are updated ac-

cording to the following equations:

∆Θt = −η
n∑
i=1

∇ΘL (xi, yi) + α∆Θt−1 (3.16)

Where α is a scalar ∈ [0 1]

A technique closely related to Momentum that is also used to accelerate the

SGD is the Nesterov Accelerated Gradient (NAG) also known as Nesterov mo-

mentum, first proposed in [65]. The NAG is similar to a standard momentum

in that it uses the previous gradient to accelerate the convergence. However,

in this case, the gradient for the current time-step is calculated after updating

the parameters with the Momentum term. The update rule is thus:

∆Θt = −η
n∑
i=1

∇Θ+α∆Θt−1L (xi, yi) + α∆Θt−1 (3.17)

In general, while momentum offers significantly improved performances in

terms of convergence time, it should be noted how it also requires more com-

putational power. As a matter of fact, during training, previous calculations

of the gradient will have to be kept in the memory.

Variable learning rate

Variable learning rates refer to the use of an η that is a function of time (i.e.

function of the number of iterations) t. In practice, it is observed that dur-

3.2. Deep networks components and techniques 54

ing the earlier gradient calculations, the loss function decreases more steeply

toward the minimum. In the more advanced phases, however, progressively

smaller updates are needed to properly reach the minimum.

Thus, the learning rate is usually decreased as the number of gradient iteration

rises. A common procedure is to decay the learning rate according to some

function of the number of iterations t. Some examples are time-based decay:

η(t) =
η0

1 + kt
(3.18)

and exponential decay:

η(t) = η0 exp−kt (3.19)

where k is a scalar hyper-parameter, the decay factor.

However, adaptive learning rates have also been proposed. An adaptive scheme

of per-parameter learning rates has been proposed in [66]. The proposed al-

gorithm, Adagrad, calculates an upgrade for each parameter based on all the

past updates of the parameter itself. More precisely, given a parameter θi, its

update is calculated as follows:

θt = θt−1 − ηt,i∇θtL (xi, yi) (3.20)

where ηt,i is given by:

ηt,i =
η√∑t−1

τ=1(∇θτL (xi, yi))2

(3.21)

3.2. Deep networks components and techniques 55

The use of all the past gradients can generate too small updates during ad-

vanced iterations. For this reason, it is often observed in practice that Adagrad

converges to slightly worse solutions than the SGD. However, Adagrad has a

much weaker sensitivity to the initial learning rate η.

In order to slow the steep decay of the learning rate observed in Adagrad,

the RMSProp algorithm has been proposed. The RMSProp uses a similar

per-parameter decay scheme, albeit it dampens the influence of past gradi-

ents by averaging and decaying exponentially with respect to iterations. The

normalized learning rate is calculated as follows:

ηt,i =
η√

γ(
∑t−2
τ=1∇θτL (xi,yi)

t
) + (1− γ)∇θtL (xi, yi))

(3.22)

where γ is the decay factor. Albeit the RMSprop algorithm is unpublished, a

very similar version exists, named Adadelta [67].

Figures 3.8 shows the different performances of SGDs and its variants. As can

be seen in Figure 3.8 (a), with an appropriate η, both the SGD and the mo-

mentum version converge slower than Adadelta, while Adagrad performances

worsen due to the learning rate decay scheme. As the number of iterations

grows, the SGD converges to the same L values of Adadelta. However, when

η is not properly set, the SGD converges to much worse values than Adagrad

and Adadelta (Figure 3.8 (b)). Finally, the Adam algorithm [68] combines the

ideas of the RMSprop and the decaying momentum by applying the following

3.2. Deep networks components and techniques 56

update rule:

θt = θt−1 − ηt,iG (Θ) (3.23)

where G is given by:

G = α∆Θt−1 − (1− α)∇θτL (xi, yi) (3.24)

and ηn,i is given by Equation 3.22.

3.2.3 Regularization and normalization

Regularization refers to the set of techniques employed to avoid training in-

stabilities as well as to improve the generalization capabilities of a model. In

any machine learning model, imposing constraints over the parameters has a

regularizing effect. In more details, the norm of the parameters is added to

the function L , optimizing over the modified loss:

Lr = L + λ||Θ||n (3.25)

where λ is a scalar in the interval [0 1] that controls the intensity of the

regularization and n is the order of the norm. Depending on the order of the

norm, n, different effects are obtained.

The L1 norm, defined as:

||Θ||1 =
∑
i

|θi| (3.26)

3.2. Deep networks components and techniques 57

Figure 3.8: Loss for a fully connected network trained on the MNIST dataset,
with η = 0.01 (a) η = 0.1 (b)

3.2. Deep networks components and techniques 58

is heuristically used in order to encourage sparsity in the parameters. It has

been shown analytically in linear models that the L1 norm can converge to

solutions with multiple zero-valued parameters [29].

The L2 norm, defined as:

||Θ||2 =
∑
i

θ2
i (3.27)

penalizes large weight values. Penalizing larger weights severely reduces the

model over-fitting.

Among the techniques specific to DNNs, dropout [69] has been used exten-

sively in recent years, yielding good practical results. Dropout refers to the

introduction during the model’s training of stochastic neuron activation. More

specifically, during a forward pass, each neuron is active with static probabil-

ity Pd. Dropout has been proposed initially to limit the co-adaptation of the

features learned by the DNN: since neurons are not active in each training

iteration, the network strives toward learning mutually independent features.

Batch normalization (BN) is a commonly used technique in modern feed-

forward neural networks. In [70], the authors argue that layers in a neural

network experience covariance shift [71] during training. In more details, as

the network trains, the parameters are updated; deeper layers see a shift in

the input data distribution due to the parameters’ updates. This phenomenon

can drive the non-linear functions in the network in saturation, causing the

gradient to vanish. To address this concern, inter-layer whitening could be

used. However, the authors point out that this operation would be inefficient

and could potentially interfere with the training. BN aims at solving inter-

3.2. Deep networks components and techniques 59

nal covariance shifts by introducing a mini-batch, differentiable transformation

between layers. Basically, the inputs of every layer defined by:

x̂i =
xi − µ(xi)

σ(xi)
(3.28)

where xi represent the ith feature in the input (e.g. a pixel in an image), while

µ and σ are the mean and standard deviation of the ith feature across the mini-

batch. Since this transformation could hinder the representation capabilities

of the network, a second step is introduced:

yi = γixi + βi (3.29)

Where γi and βi are learned parameters. The authors note that this scaling

and shifting restores the representation power, since the whole transformation

is not lossy. In practice, BN has shown impressive results in improving the it-

erations to convergence in training deep feed-forward networks such as CNNs,

also reducing sensitivity to other hyper-parameters such as the learning rates

[70].

An indirect form of regularization is done by dataset augmentation. Augmen-

tation of the dataset refers to training the model by exposing it to modified

versions of the input x. The procedure is performed to obtain an dataset ef-

fectively bigger than the original, as well as to introduce invariance to selected

input transformation in the model. Example of augmentation are cropping,

rescaling and flipping in images or time stretching and pitch shifting in audio.

3.2. Deep networks components and techniques 60

3.2.4 Visualization techniques

While the performance of DNNs have widely surpassed other feature-based

methods, one of the most critical issues of deep learning is understanding the

learned representation (i.e. explaining the performances) from both a theoret-

ical and intuitive point of view.

One of the most used approach is to understand the learned representation

through visualization techniques. An important advantage of such techniques

is that they give insight about the success of the learning, as well as about the

tuning of the hyper-parameters, as will be explained shortly.

In feed-forward networks, one approach is to plot the activation of filters with

respect to an instance of a particular class. While this technique gives param-

eters plots that are harder to interpret, it is useful to assess the validity of the

hyper-parameters by checking for filters that never activate [72].

Visualization of the learned weights (e.g. the filters in a CNN) is sometimes

used as a debugging technique. Noisy weights, as opposed to smooth ones,

generally indicate improper training parameters.

More complex approaches have also been proposed. Activation maximization

[73] consists in optimizing an image so that it maximally activates a certain

portion of the network. Basically, a random image is optimized so that one

of the neurons in the network, generally taken from the deeper layers, yields

the maximum activation possible, by optimizing the gradient of the activation

3.2. Deep networks components and techniques 61

with respect to the input pixels:

xi = arg max
δFi(x)

xi
(3.30)

where Fi(x) is the activation of the neuron corresponding to the ith class.

The optimization is performed similarly to the learning, albeit in this case the

parameters are considered constants and the input is optimized.

This optimization approach can also be used to understand which part of the

input are more significant for the DNN. In [73], the calculation of a saliency

map based on the derivative of Fi with respect to the input is proposed. A

saliency map is an image with the same dimensionality of the input x, which

pixels are given by:

si = arg max
δFi(x)

xi
(3.31)

assuming that the image m by n with is re-shaped as a 1-dimensional vector

with N = mxn elements.

As shown above, many visualization techniques have been proposed for feed-

forward architectures. RNNs have been studied less, partly because of their

structure, which does not allow to establish a simple correspondence between

the parameters and the visual features of an image. However, attempts to

visualize RNNs have been done in [74] by studying the saturation of the gates

in LSTMs as well as the activation of the units. While some insights about

how the cell learned to process text have been derived(e.g. keeping track of

line length, keeping track of comments), understanding the learned parameters

3.3. Properties of DNN 62

of a RNN remains an open problem.

3.3 Properties of DNN

In this section, two fundamental properties discovered in DNNs are presented

and discussed. Transfer learning enables the use of DNNs in context where

large datasets are not available, while adversarial examples constitute an im-

portant caveat for the application of DNNs in security contexts.

Transfer learning

Transfer learning refers to the use of parameters learned to solve a problem,

such as the classification of a particular dataset (i.e. of particular classes) in

order to solve a similar problem. Most often, the similarity lies in the type of

data that is being processed.

While transfer learning has been practiced and studied in the past [75], the

hierarchical structure of a DNN allows for simpler approaches to transfer learn-

ing. In more details, it has been observed that the first layer of deep networks

learns similar features, independently from the problem or the formulation of

the loss L [76]. However, learned patterns become progressively more specific

with respect to the problem, its formulation and the dataset in the deeper

layer of the network.

The most used transfer learning scheme leverages a feed-forward network that

3.3. Properties of DNN 63

has been trained on a very large dataset, such as Alexnet or Resnet, described

in Section 3.1.1. Depending on the data available for the target task, two

approaches are possible. If the target dataset contains the same kind of data,

then the layers that work as feature extractors (e.g. the convolutional layers)

are kept as they are (the parameters are said to be frozen), while the lower

layers (e.g. the last layer, acting as a linear classifier) are trained with a low

η (fine-tuning). This technique, also known as pre-training, is particularly im-

portant as it enables the use of DNNs even in the absence of dataset of proper

size. Furthermore, it enables the use of deep models without the need of a

high computational power. As a matter of fact, training the whole network

has a much bigger computational cost than fine-tuning, since fewer iterations

are required.

If the first task is very different from the second task, initializing the param-

eters with the values obtained by another network improves the training. In

this case however no parameter is frozen and a much larger dataset is needed.

Adversarial examples

A peculiar phenomenon that has been observed in DNNs is the vulnerability

to adversarial examples. Basically, DNNs consistently misclassify samples that

have been modified with adversarial noise [77]. The adversarial noise was ob-

tained by optimizing a noise mask with respect to the network loss function L .

The noteworthy discovery is that even for a very small perturbation (i.e. not

3.3. Properties of DNN 64

visible by the human eye), the samples are classified as completely unrelated

objects with high confidence. Furthermore, adversarial samples generated for

a particular DNN transfer to other networks trained on similar task as well.

Since the first contributions, other strategies have been developed to generate

adversarial examples leveraging evolutionary algorithms [78], as well as attacks

that can be successful in modifying only a very limited number of features in

the input (e.g. a limited number of pixel in an image) [79]. Furthermore, it

has been shown in [80] that knowledge of the network’s parameters or struc-

ture is not necessary for an attacker, as a substitute model that enables the

attack is obtainable with a limited number of queries to the model that is to

be attacked.

While this property could be seen as a flaw of deep models, in [80] it is shown

that other machine learning algorithms are vulnerable as well.

Some countermeasures have been proposed for this problem [81], but deeper

investigation has shown that such countermeasures are not completely effec-

tive [82]. This phenomenon has important implications for the use of DNNs in

contexts where security might be an issue, especially since it has been shown

[83] that it is possible to achieve misclassification in real world scenarios by

leveraging simple physical alterations such as stickers. In contexts such as

self-driving cars, this represents a paramount problem.

3.4. Conclusions 65

3.4 Conclusions

In this section DNNs have been discussed. To date, DNNs have surpassed

hand-crafted features in almost every traditional machine learning task. The

phenomenon of transfer learning enables the use of DNNs even in contexts

with a reduced amount of available data.

However, training DNNs is a complex process that largely relies on heuristics.

Furthermore, phenomena such as adversarial examples demonstrate that the

learned representations are not fully understood, despite the attempts made

with techniques such as visualization.

Chapter 4

Applications to audio

4.1 Introduction

In this Chapter, the applications of the concepts of the estimation of semantic

attributes based on the techniques discussed in Chapter 2 and 3 are considered

in the context of audio. The effectiveness of the aforementioned methods

is evaluated in the context of audio surveillance. This domain has different

requirements with respect to other applications of machine learning in the

auditory domain, such as music processing and speech recognition. Thus, it

is worth evaluating the performances of advanced techniques such as DNNs in

this context. Section 4.2 introduces the fundamentals of audio signal processing

that are relevant to machine learning applications, while Section 4.3 discusses

the most important audio features and the most recent contributions to audio

66

4.2. Digital audio fundamentals 67

machine learning.

Finally, Section 4.4 presents the aforementioned applications of DNNs in the

domain of audio surveillance, originally proposed in [85].

4.2 Digital audio fundamentals

In general, a sound can be modeled as a continuous signal in time, characterized

by its amplitude x(t). As it is well known, it is possible to represent x(t)

through the coefficients of its Fourier transform:

X(f) =

∫ +∞

−∞
x(t)e−i2πftdt (4.1)

that is, x(t) can be represented as a sum of harmonic components.

In order to obtain a digital representation of x(t), the signal must be sampled

and quantized. From the Shannon-Nyquist sampling theorem, a time-discrete

representation of the signal can be obtained without losing information if the

samples are taken with a sampling frequency fs that is at least the double

of the largest frequency component of x. However, due to several non-ideal

features of analog to digital converters, the sampling in time loses some infor-

mation, albeit small, and a higher frequency is used to compensate. In most

audio-centered applications, the human hearing range of frequency is consid-

ered. In the past, most audio coding formats used 32kHz sampling frequencies,

assuming that humans hear sounds in the [0 16] kHz range. Nowadays it is

4.2. Digital audio fundamentals 68

common to use an fs of 44 kHz for music applications; other systems exploit

up to 192kHz sampling frequencies.

Successively, the signal amplitude is quantized. Quantization inevitably loses

information. The maximum per-sample loss of information depends on how

many bits are used to represent each sample. Older systems used 8 bits/sample

(i.e. 256 possible values), with low audio fidelity. Currently, 16 bits/sample

are used in most systems, while high fidelity standards impose quantization

with 24 bits/sample. Digitalization through these steps is referred to as Linear

Pulse Code Modulation (LPCM), whereas the use of non-uniform quantization

schemes based on psychoacoustics considerations (i.e. A-law, µ-law) are simply

called PCMs. After these steps, a digital version of x(t), x(n), where n ∈ N is

obtained.

4.2.1 The frequency domain

As previously stated, it is possible to analyze an audio signal in the frequency

domain. A PCM-digitalized signal can be analyzed through the Discrete

Fourier Transform (DFT). However, unless the frequency content of the signal

does not vary with time (i.e., unless x(t) can be considered generated by a

stationary stochastic process), analyzing the frequency components will not

give any information about the time of occurrence of a particular harmonic.

Since, in general, audio signals have frequency content varying with time, it

4.2. Digital audio fundamentals 69

is important to identify with more precision when a particular harmonic has

occurred.

To this aim, a windowed version of the DFT is used, that is the transform of a

particular time window. The Short-Time Fourier Transform (STFT) has been

developed for this purpose. The STFT of a discrete signal x(n) is defined as:

X(k, f) =
+∞∑

n=−∞

x(n)w(n− k)e−i2πfn (4.2)

where w is a window function, that is non-zero only in the interval under test-

ing. The complete observation of the evolution of the signal frequency content

with time is obtained by sliding the window in time by k samples.

The set of X(k, f) is represented graphically by using the spectrogram S(X).

The spectrogram is a matrix with the same dimensions of X(k, f), and is ob-

tained by taking the squared absolute value of the intensity for each frequency

and time index:

S(X) = |X(k, f)|2 (4.3)

The calculation of the DFT in general introduces artifacts. This can be mod-

eled as the product of a periodic summation (i.e. a periodic version of the

signal generated by summing shifted copies of the signal) of a signal with a

rectangular window wRect, defined as:

wRect(n) =

1 −∆N

2
≤ t ≥ +∆N

2

0 otherwise

(4.4)

4.2. Digital audio fundamentals 70

where ∆N represents the length of the window in samples.

This non-ideality causes cross-talk between frequencies as well as artifacts. For

this reason, other windowing functions have been developed. The following

parameters are considered in designing a window function:

• Width of the main lobe.

• Intensity of the side lobes.

• Roll-off of the side lobes.

Examples of window functions that offer a trade-off between the aforemen-

tioned parameters are the Hamming windows, wH :

wH(n) = wRect(n)(α1 + 2α2 cos (
2π

M
n)) (4.5)

and the Blackman-Harris windows:

wBH(n) = wRect(n)
L−1∑
l=0

αl cos (l
2π

M
n) (4.6)

Besides the type of the window function w, the other parameter is the length

of the window (i.e., the number of samples). By considering wRect, it is possible

to understand how using a larger time resolution (i.e. transforming a lower

number of sample of x(n) per frame)causes, in the frequency domain, the width

of the main lobe to widen. Conversely, as the time resolution is reduced (i.e.

transforming a higher number of sample of x(n) per frame) the width of the

4.2. Digital audio fundamentals 71

Figure 4.1: Time and frequency plots for the Rect (a), Hamming (b) and
Blackman-Harris (c) windows

4.2. Digital audio fundamentals 72

Figure 4.2: Comparison of time resolutions: spectrogram of a dog bark for 512
(a) and 1024 (b) samples windows

main lobe in frequency is reduced. Thus, another fundamental trade-off exists

between time and frequency resolution, i.e. there is a fundamental limit on

the resolution that can be obtained contemporary in time and frequency. It

is possible to see how in Figure 4.2 (a), the spectrogram is less resolved in

frequency, due to the smaller time window (i.e. 512 samples). The frequency

components appear as small rectangles with the longer side parallel to the

frequency axis. The opposite behaviour is shown in Figure 4.2 (b), where a

longer window (1024 samples) causes the samples to be less resolved in time.

4.2.2 Perceptual considerations

Since the aim of many audio applications is to replicate the human hearing as

closely as possible, auditory models have been developed with the purpose of

4.2. Digital audio fundamentals 73

replicating the human frequency response. It is well known that the human ear

is more sensitive to lower frequencies, and more specifically with a logarithmic

perception of frequency separation (i.e. sounds are perceived equally spaced

when the separation doubles).

Gammatone filters have been derived in [86] as a model of the frequency re-

sponse of the cochlea (i.e. the organ that performs the frequency analysis in

the human ear). Basically, a gammatone filter is obtained by modulating a

sinusoidal wave (tone) with a gamma distribution [87]. This model is widely

used, mainly for its simplicity.

The Constant-Q transform is an alternative construction of the STFT filter-

bank for music applications, based on the idea that equal separation should be

granted to harmonic components in the log-frequency space [88]. The filters

are spaced to obtain a constant quality factor Q, defined as:

Q =
fk

∆fk
(4.7)

where fk is the central frequency of the kth bin and ∆fk is the bin width.

A representation that is commonly used in ASR and audio processing in general

is the Mel-Frequency Cepstral Coefficient (MFCC). The MFCC are extracted

by mapping the STFT magnitude coefficients to Mel. The mapping from Hz

to Mel is performed according to perceptually derived formulas, such as:

m = 2595 log10(1 +
f

700
) (4.8)

4.3. Applications of machine learning to audio signals 74

where m is the value in mel of the f frequency. The conversion is performed

through a filterbank of M triangular filters, whose central frequencies are lin-

early spaced in the Mel domain (thus with logarithmic spacing in the frequency

domain).

After this step, the Discrete Cosine Transform of the coefficients is taken.

Finally, a subset N of the coefficients is taken (trading-off the information

content and the simplicity of the representation).

In older ASR applications, MFCC greatly reduced the dimensionality of the

problem, since typically only 20-30 coefficients were kept. However, by using

more triangular filters and by keeping more coefficients after the DCT it is pos-

sible to control the loss of information, thus returning to the usual trade-off of

feature selection.

4.3 Applications of machine learning to audio

signals

Machine learning has been applied for a long time in the audio domain, pri-

marily to process voice: this encompasses both Speech-To-Text systems, also

known as Automatic Speech Recognition (ASR), and Text-To-Speech (TTS).

As stated in Chapter 2, older approaches rely on the extraction of features to

simplify the learning problem while keeping as much information as possible.

In the following sections, the most relevant features for audio classification are

4.3. Applications of machine learning to audio signals 75

discussed. Furthermore, Hidden Markov Models (HMM)-based audio models

will be presented.

4.3.1 Audio features

Designing effective features is always a challenging task. The core problem

is to design descriptors that can be expressed analytically and that capture

perceptual attributes of the audio signal, especially in music applications. In

everyday life, general sounds (e.g. voices, music, etc.) are described according

to semantic/perceptual attributes. Among the key perceptual attributes of

sound, there are:

• Duration, the temporal support of the sound.

• Loudness, the perceived intensity of the sound.

• Pitch, the perceived main harmonic of the sound.

• Timbre, the set of secondary harmonics that give the color of the sound.

• Rhythm, the periodic pattern of organization of harmonics and in gen-

eral, the temporal organization of the sound.

These types of descriptors lacks an analytical form and can exhibit a strong

degree of subjectivity.

On the other hand, features with a precise analytical form are needed in order

4.3. Applications of machine learning to audio signals 76

to automatically process sound. Thus, in the designing feature, high-level,

perceptual attributes of the sound must be reconstructed by mean of low and

mid-level signal features. In literature, many characterizations of features rely

on clustering descriptors based on the high-level attribute they attempt to es-

timate [89], [90].

In the following, the most important audio features will be reviewed, based on

the domain upon which they are calculated (e.g. temporal, spectral).

The Zero-Crossing Rate (ZCR) is calculated by counting the number of times

the signal’s values change sign in the time domain. Despite being particularly

sensitive to additive noise, ZCR can be used effectively in the detection of

percussive sounds (i.e. non-periodic sounds) [91].

The beat histogram, proposed in [92], estimates the main periodic compo-

nents inside a sound by performing a wavelet transform and extracting the

envelope of the signal at different octaves, summing then and calculating the

auto-correlation. The peaks of the auto-correlation function give the periodic

temporal components that can be used to estimate the overall rhythm.

In general, statistics of the signal (e.g. mean, variance) extracted at various

time-scales are used as temporal features.

On the other hand, spectral features consider statistical properties of the STFT

short time-span between 10 and 25 ms (i.e. where the signal can be considered

stationary).

The spectral centroid Sc is the mean of the frequency bins weighted with the

4.3. Applications of machine learning to audio signals 77

amplitude of the bins:

Sc =

∑N
n=1 fn|X[n]|∑N
n=1 |X[n]|

(4.9)

where N is the number of bins, fn is the frequency value associated to the nth

bin and X[n] are the coefficient of the STFT for a given frame. The spectral

centroid has been found correlated with the perception of the sound brightness

in perceptual experiments [93].

The spectral flux Sf is calculated by evaluating the sum of squared difference

between the current STFT frame and the previous one:

Sf =
N∑
1

(Xn,k −Xn,k−1)2 (4.10)

it is used to evaluate the evolution of the spectral content.

The spectral roll-off is a percentile of the power spectrum, usually the 85th,

and characterizes the skew of the power spectrum distribution. Other statis-

tical properties of the spectrum are used as features as well, such as spectrum

flatness [94], envelope [95] and kurtosis [96]. Energy features can also be used:

the energy of the signal is calculated over the whole vector or over sub-bands.

The use of feature vectors built from the concatenation of the aforementioned

features has been a very used approach in audio classification, especially for

topics such as music understanding and retrieval, while for ASR, MFCC fea-

tures, described in Section 4.2 have been predominantly used.

Recently, due also to the introduction of the Detection and Classification of

Acoustic Scenes and Events (DCASE) challenge [97], there has been a new

4.3. Applications of machine learning to audio signals 78

wave of interest in the design of audio features. In more details, the analysis of

spectrograms by means of image processing techniques has gained popularity.

The first example of this approach is [98]: a pseudo-colorization technique is

used to partition the spectrogram into separate images. Statistical properties

are then calculated over the three resulting images and used as features.

Another example of image techniques applied to spectrograms is found in [99],

where the authors use HOG descriptors with the purpose of extracting in-

formation about the spectrogram’s shape, in order to perform audio event

classification.

In [100], a modified version of the LBP, an image feature for texture estima-

tion, is proposed for audio classification. The authors point out that, given the

different statistical properties between spectrograms and images (e.g. trans-

lational invariance), textures are better suited to capture the information in

spectrograms.

An interesting aspect to note about this trend is that the employed feature

vectors grow in dimensionality with the availability of better classifiers and

more processing power.

Recently, while deep learning has not been applied as much as in images, DNN

architectures have been applied successfully to many tasks of the audio domain,

establishing new state-of-the-art performance levels.

In the context of ASR, DNNs have been applied as an end-to-end solution [101]

and have been combined with more traditional techniques such as HMM [102].

ASR architectures often exploit some kind of RNN, sometimes combining them

4.3. Applications of machine learning to audio signals 79

with convolutional layers (or evolution thereof) for feature extraction.

Most of the results obtained in ASR are still valid for speech synthesis, i.e.

a prevalence of recurrent architecture is used in today’s systems. A differ-

ent approach to TTS was proposed in [3]. The model, Wavenet, is composed

of a CNN leveraging residual blocks and dilated filters, discussed in Section

3.1.1 and learns a probability distribution over raw audio values (i.e. 16 bit

samples). Despite reaching high levels of naturalness, the authors stated that

the complete model is computationally too expensive to be run in real-time.

Furthermore, the exact architecture of the model was not made public.

As previously said, audio event recognition and classification is becoming an

increasingly popular topic. Many deep learning-based approaches have been

proposed in literature to solve this problem. In [103], biologically-inspired au-

ditory features are combined with image features of the spectrogram to train

a SVM and a DNN classifier, showing that the DNN outperforms the SVM.

In [104], Deep Belief Networks (DBNs) are used to extract features from the

STFTs of the audio events, calculated at various time resolutions. The learned

features are compared to traditional audio domains descriptors such as MFCC

and Linear Predictive Coding coefficients, showing that the DBN yields better

performances.

While the earlier approaches tried to combine audio features with DNNs, ar-

chitectures that leverage less processed data have recently been proposed. In

[105], a Convolutional Neural Network (CNN) is trained using MFCC coeffi-

cients to detect environmental sounds.

4.3. Applications of machine learning to audio signals 80

A multi-resolution approach to acoustic event detection is presented in [106].

Multiple spectrograms are extracted and used to train a CNN in order to char-

acterize events with different spectral features.

An architecture for audio event detection based on RNN is presented in [107],

where the authors perform recognition of sound events overlapped to other

background events using Mel coefficients and a LSTM.

In [108], the authors propose an unsupervised method for acoustic novelty de-

tection based on denoising autoencoders and a bi-directional LSTM.

As can be seen, deep architectures are being used in the audio domain with in-

creasing success. However, while in most DNN applications the data is merely

pre-processed, without extracting any kind of features, in the audio domain

analysis of spectrograms and MFCC coefficients are still prevalent and outper-

form coarser approaches.

4.3.2 Audio classifiers

HMMs have long been applied to audio processing and to ASR in particular. A

HMM is a Markov model, that is a probabilistic graphical model that satisfies

the Markov assumption. More precisely, in a Markov model, a system state is

modeled through a chain of states. Each state allows transition to a limited

number of other states, defined by transition probabilities Pt that are non-zero

if the transition is allowed. Since the models satisfies the Markov assumption,

the model can be specified completely through the transition probabilities

4.3. Applications of machine learning to audio signals 81

from one state to the other. Figure 4.3 shows the graphical representation of

Figure 4.3: Architecture of a simple Markov model

a Markov model. The architecture can be alternatively described through a

matrix M in which mi,j encodes the transition probability from the ith to the

jth state.

An HMM is a Markov model in which the state is not directly observable

(i.e. hidden) and thus the state of the system given the observable variables is

stochastic. Therefore, in order to fully specify an HMM, the transition prob-

abilities must be specified as well as the conditional probabilities P (s/O) of

states s given observed variables O. The structure of an exemplary HMM is

shown in Figure 4.4

In the context of ASR, the speech is modeled by a sequence of phonemes that

constitute words. Each phoneme is modeled by a single HMM. The emission

probabilities (i.e. the conditional probability of a state given an observed vari-

4.3. Applications of machine learning to audio signals 82

Figure 4.4: Architecture of a simple hidden Markov model

able) is modeled through a Mixture of Gaussian probability density function.

In this context, the learning phase yields the parameters of the model, the

state transition probabilities and the emission probabilities.

4.3.3 Data augmentation for audio signals

As said in Chapter 3, data augmentation can yield a larger effective dataset

without the costly process of acquiring more data. While dataset augmenta-

tion in the audio domain is somehow less common than in images, some recent

contributions show that this is a feasible option also with sound.

4.3. Applications of machine learning to audio signals 83

In [109], the authors propose augmentation techniques in the general frame-

work of audio event classification. The proposed techniques are:

• Stretching the sample time support (time stretching)

• Shifting the height of the pitch (pitch shifting)

• Compressing the dynamic range of the sample

• Additive structured noise (i.e. background audio events)

The authors apply the proposed techniques on the UrbanSound8K [110] dataset,

demonstrating that the use of augmentation allows a CNN to perform better

than a non-DNN model. However, the authors note how augmentation can

worsen the performance on very similar classes (e.g. air conditioner noise vs

drill noise).

In [111], Vocal Tract Length Perturbation (VTLP) is introduced in the context

of ASR. VTLP non-uniformly warps the frequency axis by a factor α in the

interval [0.9 1], causing a larger distortion in frequencies that do not interest

human voice. In [112], the authors propose another augmentation technique

specific to ASR. More specifically Stochastic Feature Mapping is performed

by mapping speech utterances from one speaker to another by estimating an

acoustic model for each speaker and then applying it to the utterance.

4.4. Audio classification for safety applications 84

4.4 Audio classification for safety applications

Surveillance systems play a critical role in ensuring safety. Sensitive targets

are increasing in number, making it impossible to ensure safety through human

operators alone. Nevertheless, to issue a proper response, reliable and fast de-

tection of critical events must be ensured. In this way, command centers can

effectively tackle emergencies. Since this requirement cannot be satisfied by

manpower alone, modern surveillance systems rely on multimedia systems that

allow to monitor wide areas from few stations. This approach enables better

situational awareness for on-field teams, improving effectiveness and reducing

the costs of the system as a whole, since fewer human resources are needed.

To date, surveillance applications rely mostly on visual media gathered by dis-

tributed camera systems, monitored by operators in control centers. In wide

areas, cheap hardware is often used since many sensors are necessary to cover

them, thus resulting in noisy, low resolution data. Furthermore, operators

notoriously lose focus over long work shifts, introducing the risk of missing

significant events.

Audio sensors, on the other hand, represent an opportunity, since good quality

audio signals can be obtained with low cost hardware. Audio-based distributed

surveillance has been seldom employed however, since operators cannot effec-

tively monitor more than a few input streams at once. For this reason, auto-

matic recognition of audio events in the domain of surveillance has become an

interesting field of research, as it enables the monitoring of large areas while

4.4. Audio classification for safety applications 85

addressing at the same time the operator’s attention problem (since the system

can issue an alert if it detects an anomaly).

However, in order to be used in practical applications, an audio event detec-

tion system must satisfy different key performance indicators. Timeliness of

the recognition is critical: if the system is not able to work in real time, the au-

dio stream will have to be decimated to keep processing newly available data.

Decimating the audio input for reducing the computational complexity causes

loss of information that can impact on the accuracy of the classification.

High detection and classification accuracy (i.e. comparable to human ones)

are necessary especially in the sense of low False Rejection Rate (FRR), that

is, being able to detect as many significant events as possible.

Finally, these performances must be obtained also in the presence of noise,

since surveillance hardware is often of poor quality, as previously stated.

4.4.1 Previous work

In literature, the standard approach to audio event recognition is to reduce the

dimensionality of the input data by extracting a set of features and then train-

ing a classifier to perform the recognition. For example, in [113], the authors

use Mel Frequency Cepstral Coefficients (MFCC) as features and a set of binary

Support Vector Machine (SVM) classifiers, obtaining multi-class classification

by exploiting a decision tree. In [114], the authors propose a hierarchical sys-

4.4. Audio classification for safety applications 86

tem where the events are modeled with Gaussian Mixture Models (GMM)

optimized through a combination of temporal and spectral domain features.

In [115], the authors propose a system employing two GMM-based classifiers

trained with different sets of features for detecting screams and gunshots, us-

ing the delay differences extracted from a microphone array to estimate the

position of the event.

In [116], the authors use a GMM-based classification, optimized on features

extracted from the cepstral and spectral domain, considering additional classes

of background events to improve the system’s performances.

The topic is further explored in [117], where the authors propose a hierarchi-

cal approach to build features, useful to discriminate background events from

relevant ones exploiting their short and long-time variations. A similar ap-

proach is used in [118] to detect anomalous audio events for road surveillance

purposes.

DNNs represent a good tool for the purpose of audio surveillance. While they

require a heavy computational cost during the training phase, the classification

procedure is computationally fast. This factor, coupled with a reduced need

for data pre-processing, allows the system to have good performances in terms

of timeliness. An attempt at using DNNs specifically for audio surveillance is

shown in [119], where the authors combine MFCC with a deep belief neural

network to detect screams.

In the following Section, a method for audio surveillance based on hierarchi-

cally organized LSTM cells is presented.

4.4. Audio classification for safety applications 87

Figure 4.5: Block diagram of the proposed method

4.4.2 Proposed method

The goal is to detect, from an audio signal s, the presence of events belonging

to a selected number n of classes. To this aim, s is processed as shown in Fig-

ure 4.5. In more details: s is partitioned in non-overlapping time windows of

length T s and, for each window, the STFT is calculated over N samples with

a step of Ns samples. The output of the STFT is a set of Tf frames and, for

each frame, the magnitude of the spectrum is filtered using a Mel filter-bank

composed by M filters, resulting in a M by Tf signal, x.

Two LSTM cells, Cl1 and Cl2 are fed by x.

The classifier Cl1 detects the presence of a relevant event, and outputs a

boolean value, A. If A = 1, an alarm is raised and x is fed to the second

classifier Cl2 that gives a class label yn for the ongoing event. Both LSTM

cells are composed by Nh units. The outputs of the two cells, hCl1 and hCl2 ,

are used as features for two densely connected layers, which give A and yn as

output, respectively. If A = 0, no alarm is given, otherwise an alarm is raised

(i.e. A = 1) and a classification label yn for the event is given.

4.4. Audio classification for safety applications 88

Figure 4.6: Distribution of event duration in the dataset

4.4.3 Validation

In order to assess the performances of the proposed method, experimental tests

and comparisons with the state-of-the-art have been performed.

Dataset

In the performed tests, the dataset presented in [117] was used. The dataset

contains 3000 audio clips, digitalized with a sampling rate of 32 kHz, and 16

bits per sample. The dataset is generated by combining 271 sounds belonging

to three classes of events of interest (glass breaking, gunshots and screams)

with 379 instances of background noise (i.e. cars passing by, crowd noise, ...).

Furthermore, six versions of the dataset with different Signal to Noise Ration

(SNR) values (5, 10, 15, 20, 25 and 30 dB) were created. The dataset is split

4.4. Audio classification for safety applications 89

Figure 4.7: Spectrograms of events extracted from the dataset for different
SNR values

into a training set of 2100 events and a testing set of 900 events. The duration

of the events in the dataset is highly heterogeneous, as shown in Figure 4.6.

The number of instances used to generate the dataset represents an obstacle

to the use of a DNN. The generation process can be considered a procedure of

data augmentation, aimed at teaching the classifier invariance to background

events, but does not give additional data for the training. Thus, there is a

strong risk of over-fitting the training set.

Experimental parameters

In the performed experiments, the length of the time window is set to T = 3.23

s, while the STFT is performed with windows of N = 1024 samples (i.e. 0.032

s) with a step size of Ns = 256 samples (i.e. 0.008 s). A Mel filterbank of

M = 40 filters is used, thus resulting in an input vector x of 40 x 400 sam-

4.4. Audio classification for safety applications 90

ples. This time resolution allows to completely include the largest part of the

considered audio events, as shown in Figure 4.6. Longer events are handled by

dividing them in portions of equal length.

The first LSTM classifier, Cl1, is used for automatically detecting the need for

raising an alarm. In order to do this, Cl1 is trained using 4100 sounds: 2000

random portions of background noise extracted from the training set, and the

complete set of training events. The classifier is tested using background noise

and significant events from the test set.

The second classifier, Cl2, is trained with the three classes of significant events

(glass breaking, gunshots and screams) in the training set. Furthermore, as

validation set, 10% of the test set is used. Both Cl1 and Cl2 contain 90 units

and the Cl2 dense layer used a softmax activation function. Both classifiers

were trained using the Adam algorithm, described in Section 3.2.2, using a

learning rate η of 10−4 and parameters β1 = 0.9, β2 = 0.999, ε = 10−8, with a

batch size of 100 for Cl1 and 50 for Cl2. The training is run for 15 epochs for

Cl1 and 40 epochs for Cl2 with early stopping based on validation set accuracy.

Results

The architecture is tested in three sets of experiments. In the first set of ex-

periments, the system is trained and tested in matched conditions (i.e. with

data having the same SNR values), in order to be able to compare the perfor-

mances with the ones in [117]. In the second set of experiments performed, the

4.4. Audio classification for safety applications 91

Dataset SNR value Foggia et al. [117] Proposed method
5 dB 81.1% 90.7%
10 dB 85% 92.4%
15 dB 87% 98.5%
20 dB 88.4% 98,7%
25 dB 88.7% 99.1%
30 dB 90% 99.9%

Table 4.1: Accuracy percentage for proposed method compared with the state-
of-the-art

classifier is trained for each available SNR values, and each classifier is tested

with data characterized by low, medium and high SNR values (i.e. 5, 15 and

30 dB) to evaluate the resilience to different levels of noise.

The third set of experiments is performed to evaluate the accuracy of the clas-

sifiers when only a portion of the audio events is available. Three SNR values

(i.e. 5, 15 and 30 dB) are considered, and three test sets are generated for

each value: in more details, the 25%, 50% and 75% of the original signal is

discarded at random. Thus, 9 test sets are generated. Based on the previous

results, in this experiment the classifier trained with SNR value equal to 15

dB is used.

Furthermore, to verify the real-time capabilities of the system, the time needed

to process a time segment T is measured on a PC equipped with an Intel Core

i7 5960X CPU, 64 GB of RAM and a Nvidia Titan X GPU. Finally, to assess

the advantage deriving from the hierarchical architecture, a single-step classi-

fier Cls is trained with four classes (i.e. the three classes of interest and the

background events). The single classifier is trained with 15 dB data, with the

4.4. Audio classification for safety applications 92

Training SNR value Test SNR value Accuracy

5 dB
5 dB 90,7%
15 dB 95,7%
30 dB 97,6%

10 dB
5 dB 88,2%
15 dB 92,5%
30 dB 92,8%

15 dB
5 dB 90.1%
15 dB 98.5%
30 dB 99.7%

20 dB
5 dB 85,8%
15 dB 97,6%
30 dB 98,7%

25 dB
5 dB 80,1%
15 dB 97,4%
30 dB 99,3%

30 dB
5 dB 83,9%
15 dB 98,9%
30 dB 99,9%

Table 4.2: Accuracy across different levels of noise

4.4. Audio classification for safety applications 93

Testing SNR level
Percentage of discarded input
25% 50% 75%

5 dB 73.3% 60.8% 55.2%
15 dB 80.4% 71.7% 61.5%
30 dB 80.6% 72.9% 61.7%

Table 4.3: Classification accuracy with partial events

same hyper-parameters used for Cl2. For the first set of tests, Cl1 reaches

100% accuracy on each available SNR value, thus meaning that, in these con-

ditions, the system never fails to raise an alarm and never raises it when it

should not. The accuracy achieved by Cl2 is reported in Table 4.1 and it is

compared with the performances of the system in [117]. As it can be seen,

the proposed method shows a significant increase in the accuracy with respect

to the state-of-the-art. A notable difference in the performances is present for

SNR values <15 dB. This can be explained by analyzing the spectrograms in

Figure 4.7. It can be seen that for these range of SNR values, the background

events overlap the signal at all frequencies, thus explaining the drop in accu-

racy. A similar pattern can also be found in the results from [117].

Table 4.2 shows the accuracy results of the second set of experiments. The

classifiers exhibit different resilience performances depending on the noise with

which they have been trained. Some fluctuations in the results are present due

to early stopping, that can sometimes interrupt training prematurely. More-

over, exposing the classifiers to noise levels that largely differ from the ones

available during the learning phase has an impact on the overall performances.

Based on the results obtained, it can be concluded that the classifiers trained

4.5. Conclusions 94

with data with moderate noise values yield the best overall performance.

In the third set of experiment, Cl1 reached again 100% accuracy. On the other

hand, the performances of Cl2 were strongly influenced by the removal of por-

tions of the events. In fact, as can be seen in Table 4.3, in average the accuracy

drops of 20% for all SNR values.

The average processing time for segments not containing events of interest

(i.e. preprocessing and Cl1 classifier) is 16.2 ms, of which 14.8 ms where due

to preprocessing and 1.4 ms where due to Cl1. The Cl2 classifier added 1.6 ms

to the process, achieving a total mean processing time of 17.8 ms. Thus, it is

feasible to classify multiple audio streams in real-time using a single computer.

The single-step classifier Cls scored 95.0% accuracy, with a mean classification

time of 2.1 ms. The proposed hierarchical architecture offers a small advan-

tage in terms of accuracy and processing time when classifying background

time segments.

4.5 Conclusions

In this chapter, the applications of machine learning to the audio domain were

presented, introducing the basic elements of audio analysis and the most suc-

cessfully employed features and algorithms.

Furthermore, a novel application of DNNs to the field of audio surveillance

was presented, that sensibly improves the performance of the state-of-the-art.

The proposed method represents a considerable improvement over the state-

4.5. Conclusions 95

of-the-art.

Firstly, the proposed system improves performances in terms of detection

and classification accuracy. The detection step demonstrates optimal per-

formances. Furthermore, it exhibits robustness to structured noise (i.e. the

presence of other audio events) as well as to cropping of the input signals. The

classification step is able to distinguish between different critical events, with

almost perfect accuracy under the absence of noise. While structured noise de-

grades the performances of the system, high accuracy (i.e. greater than 90%)

is maintained even in the worst case.

The second advantage of the system is timeliness. It has been demonstrated

that an audio signal with good resolution (i.e. 32 kHz sampling frequency, 16

bits/sample) can be processed in real time without decimation or compression.

Furthermore, the timing performances are an indication that multiple input

audio streams can be processed on a single machine.

Considering the domain of application however, the system could introduce

vulnerability to adversarial inputs. Albeit the literature presents mostly vi-

sual examples (easier to implement in the physical world), the existence of an

adversarial audio noise, able to mask the presence of relevant events cannot

be excluded. However, as shown in Chapter 3, this problem is present in any

machine learning-based system.

Another issue in the system is the handling of the audio input: since the time

segments T are not overlapping, there is the risk of capturing only portions of

events. As shown in the results, this can hinder classification accuracy, espe-

4.5. Conclusions 96

cially in the worst case scenario in which a time window contains roughly half

of the event. Taking overlapping windows can be a solution to this problem,

albeit it worsens the timeliness performances.

Finally, testing the system on a larger dataset is necessary to evaluate its us-

ability in the real world, as the currently available datasets could not contain a

satisfactory representation of the classes. The proposed system also offers op-

portunities for future improvements. Two main directions can be considered.

First, in order to improve the classification performances, convolutional feature

extractors, described in Chapter 4, could be used in place of the Mel filterbank.

As shown in Section 4.3, there are hints in literature that convolutional layers

can extract meaningful features directly from spectrograms, especially when

coupled with a RNN. However, in spite of the potential gain of classification

accuracy, computational complexity would rise as well (in terms of memory

usage). Thus, the increment in accuracy would be obtained by reducing effi-

ciency.

Secondly, the system could be employed as part of a multi-modal smart surveil-

lance system. In more details, in order to get more accurate and specific infor-

mation about the event, information from a broader scope audio event detector

could be coupled with an activity recognition video system. While this would

result in a more complex and costly system, since good quality cameras would

be needed as well as more processing power, important information could be

obtained by the analysis of video cues.

Chapter 5

Applications to images and

videos

5.1 Introduction

In this Chapter, the visual domain and its intersections with machine learning

will be discussed.

This Chapter investigates the use of semantic attributes as an enabling factor

for algorithms that replicate tasks currently performable only by human be-

ings. In more details, the feasibility of automating the combination of multiple

videos into a final edited version based on their estimated aesthetic content is

investigated. This is a complex task, since it combines multiple perceptual

factors that lack a clear definition, as will be shown in the following sections.

97

5.2. Digital images fundamentals 98

The fundamentals of the fields will be introduced in a functional way for the

subsequent Sections. Section 5.2 introduces the fundamental elements of the

image/video domain, while Section 5.3 discusses applications of machine learn-

ing in the visual domain. Since many applications have already been cited in

Chapter 3, Section 5.3 focuses on the aesthetic semantic attributes.

Finally, Section 5.4 introduces the aforementioned application of aesthetic es-

timation for unsupervised video orchestration, originally proposed in [121].

5.2 Digital images fundamentals

A digital image is a visual representation of a scene. The first step in process-

ing an image is acquisition. The most important parameters of a digital image

are the spatial resolution and the per-pixel resolution. The first one controls

how many points are acquired when the picture is taken, and is measured in

pixels (vertical resolution times horizontal resolution).

The per-pixel resolution represents the number of bits per pixel used in quan-

tizing the values of the grid, analogously to what described for audio samples

in Chapter 4.

A digital image can be considered as a multi-channel array I(m,n, c), where m

and n represent respectively the number of rows and columns (i.e. the spatial

resolution used to acquire the image). The number of channels c is dependent

on the type of image that is being analyzed: a greyscale image will have c = 1

while color images usually have c = 3. The information encoded into the chan-

5.2. Digital images fundamentals 99

nels is different depending on the color space used to represent the image.

Historically, one of the most used color models is the RGB, with the three

channels corresponding to the red, green and blue components. This model is

based on the Young-Helmholtz color model which assumed that human vision

is based on three receptors in the eye (cone cells), sensitive to the red, blue and

green wavelengths. Even though cone cells sensitivity does not actually peak

in those spectrum regions 1 [122], this model proved effective, also enabling

color displays with a wide color gamut, and is widely used.

Other color spaces exist as well. The YUV refers to encoding of the color in-

formation into a luminance component (Y) and two chrominance components

(U, V). YUV color spaces are motivated by perceptual models of vision and

are used in applications such as lossy compression, where perceptually less

significant chrominance components can be sub-sampled in order to lose less

quality from a perceptual point of view.

Hue Saturation Values (HSVs) are cylindrical coordinates-based color spaces

that have been developed to have a more perceptually intuitive representation

of color. In more details, the color is specified through the H angle value, that

specifies the tone while S gives the saturation. Finally, the brightness value V

gives the light intensity. This separation can be useful in image processing as

it enables invariance to illumination condition.

Describing videos is in many senses analogous to describing images. A video

can be thought as a sequence of images and thus shares the same attributes for

1564580 for long cells, 534545 for medium cells and 420440 nm for short cells, correspond-
ing to yellow, green and violet

5.3. Images, videos and machine learning 100

spatial resolution and per-pixel resolution. However, the temporal resolution

fs must also be considered (i.e. the frame rate). In general, since the human

eye acts as a low pass filter with cut-off frequency around 25 Hz, having 25-30

frames/s is considered a good frame rate.

While a video is effectively a sequence of images or frames, the frames have

a strong degree of correlation, that is often exploited for compression pur-

poses. Most compression methods are based on the reduction of the temporal

redundancy between adjacent frames exploiting the motion estimation (ME).

ME refers to the evaluation of object displacement between successive frames

through the evaluation of the object’s apparent motion or Optical Flow (OF).

ME achieves compression by predicting the motion and encoding the predic-

tion error, thus eliminating the need of storing/transmitting each frame.

5.3 Images, videos and machine learning

As mentioned in Chapter 2, multimedia features can be classified in syntac-

tic and semantic. In the field of image/video in particular, the approach of

considering high-level or semantic attributes of images as particular combina-

tions of lower level features has been used extensively. A common approach

is to partition the image in blocks and then locally compute specific features,

finally inferring high-level properties by statistic on the features distribution

(e.g. histograms). The features are developed to capture specific properties

5.3. Images, videos and machine learning 101

of the image region, whose distribution is assumed to hold information about

the image’s semantic content. As an example, one can assume that a region

of interest in an image is characterized by a different distribution of edges and

patterns.

Before the introduction of DNNs, most of the research on images and video

machine learning was dedicated to developing more accurate features. One

of DNNs main advantages is the ability to build hierarchical representations

starting from simple filters in the upper layers, obtaining semantically signifi-

cant deeper neurons activations.

Most of the advancements in machine learning applied to vision have been

summarized in Chapter 3. As a matter of fact, image classification represents

the main task on which new machine learning techniques are benchmarked

nowadays. Other computer visions tasks, such as object segmentation, repre-

sent the immediately successive testing ground.

Given that DNNs can effectively solve many high-level vision tasks, more ad-

vanced contexts are becoming the focus. A domain that is only recently been

studied is aesthetic computing.

Aesthetic computing deals with the automatic estimation of the aesthetic value

of images and videos. It is useful to underline that, while human beings are

generally sensible to aesthetics (i.e., they have an intuitive distinction of what

is aesthetically pleasing and what is not), the precise evaluation of the aesthetic

is a challenging task even for a human subject. Determining which elements

contribute to aesthetic is even more difficult. In general, beauty is subjective

5.3. Images, videos and machine learning 102

and, even among experts, there is a degree of subjectivity.

5.3.1 Previous work

While a correlation with the quality of the media exists, as shown in [123], this

is not the only component.

In literature, many approaches rely on machine learning: in [124], the authors

attempt to estimate the aesthetic value through low-level features, while a vi-

sual saliency map is introduced in [125].

In [126], the authors exploit the differences between background and fore-

ground to estimate an appeal metric.

In [127], psycho-visual statistics extracted at different semantic levels are used.

A comparison of aesthetic models is performed in [128], taking into account

the different experimental environments and a rating scale is presented. In

general, the application of machine learning to aesthetic computing is a chal-

lenging task since it is difficult to obtain a good dataset. The most used

datasets rely on crowdsourced labels for photos, such as the AVA dataset [129]

or the CUHK [130] dataset. Furthermore, many of the techniques developed

for image classification assume properties that may not hold (or at least, not to

the same degree) in aesthetic estimation. As an example, invariance to trans-

lation could not be a desideratum: many rule-based approaches to aesthetic

5.4. Video orchestration based on semantic features 103

exploit the position of objects in the scene, such as the rule of third 2.

Basically, the estimation of the aesthetic value of a visual content is an open

problem. However, the current techniques can be exploited for practical ap-

plication.

5.4 Video orchestration based on semantic fea-

tures

As mentioned in the Introduction, a large amount of multimedia content is be-

ing created every day. This is particularly true for video contents: an estimated

300 hours of videos were being uploaded on Youtube alone, as of September

2016 [131]. In case of events of public interest, such as concerts and sport

events, multiple footages are usually available, since many people own a video

recording device, usually incorporated in their smartphones.

Automatic orchestration of videos is thus an interesting application, since it

produces a single content, presumably more pleasant with respect to the initial

videos.

This problem is also faced by professional video-makers whose goal is to avoid

missing important actions or scenes by exploiting events captured with mul-

tiple cameras. In literature, methods for combining shots from different cam-

eras have been proposed. In [132] an orchestration scheme for remote video-

2The rule of third is an empirical photography rule, stating that the content of the image
should be divided into 9 blocks, thus dividing the image into thirds

5.4. Video orchestration based on semantic features 104

conferences is proposed. The system aims at automatically detecting the best

camera from each of the locations in the conference. In [133] the authors ex-

ploit editing rules concerned with continuity to perform video editing in the

context of interacting videos.

In the following sections, an unsupervised video orchestration system, first

proposed in [121], is discussed. It relies on aesthetic features coupled with

rules extracted from traditional video editing theory. The goal is to produce

a video by exploiting the shots that in each time interval look more appealing

from an aesthetic point of view, while respecting the orchestration guidelines

described in [134]. This system can be useful for automatic video orchestration

of amateur videos ans a pre-processing step for media production.

5.4.1 Proposed Method

In the following, the term scene refers to the event being filmed. The term

shot refers to the output of a single camera while sub-shot is used to indicate

a part of the shot.

For all available video inputs, the position of each camera with respect to the

recorded scene is described through the attributes listed in Table 5.1. Since

different cameras may have a different acquisition setup (i.e., sampling rate

or frame size), in the proposed system the K contributions are normalized

with respect to the camera having the lowest frame rate fs and the smallest

frame size. The output video V is composed by N time-slots whose duration

5.4. Video orchestration based on semantic features 105

is determined based on the video content, as described in Subsection 5.4.1; for

each time-slot, the system selects one shot among the available K cameras.

Since there is usually a strong temporal stability in amateur videos (i.e. no

abrupt scene change is present), Nf representative frames Rf are used for each

second of the input videos, in order to reduce the computational complexity.

While video editing is in general strongly dependent on the content and on

the experience of the editor, there are guidelines in video editing theory [134],

[135] for orchestrating multiple video sources. Creating an entertaining and

dynamic experience for the viewer is the focus of video editing. General rules

derived from this principle are defined in [134] and can be summarized in the

following:

• Alternation of shot types and camera angles should be used to create

dynamism.

• Scenes should remain on screen proportionally to their information con-

tent.

• The angle of the camera should vary in at least 30 degrees between

successive sub-shots.

• Too harsh variations of framing should be avoided as it creates confusion

in the viewers.

Given these guidelines, the orchestration problem is articulated into two dis-

tinct phases: a first one to determine how often the video source should be

5.4. Video orchestration based on semantic features 106

Very wide/Panoramic
Wide

Shot Type Medium
Close-up
Point of view (POV)
0
70

Horizontal Angle (◦) 140
210
280
Bird’s eye
High

Vertical Angle Eye-level
Low
Worm’s eye

Table 5.1: Camera framing features.

changed (i.e. determining the duration of the time-slots); a second one to,

choose the content of each time-slot, optimizing aesthetic values and compli-

ance with the aforementioned rules.

Time-slot calculation

Basic rules of video editing state that changes of view should be used to create

a more dynamic orchestration. Intuitively, more changes are needed when the

scene has a slow pace. The pace of the scene is estimated by extracting the

Optical Flow (OF) from each of the available K videos.

The average OF for the K cameras is computed to obtain an estimation of

the average dynamics of the content, OF . This estimate is used to partition

the video in three categories according to the motion rate: low, medium, and

5.4. Video orchestration based on semantic features 107

0 100 200 300 400 500 600 700 800 900

Frames

0

2

4

6

8

10

12

14

16

Medium

changes

Faster

changes

Slower

changes

Figure 5.1: Motion rate partitioning: the frames with higherOF are considered
faster and thus use less camera changes. Frames with lower OF are considered
slower and thus have more camera changes.

high dynamics as shown in Figure 5.1. The length of the time slots is selected

according to the OF value, as suggested in [134].

Time-slot content selection

To select the content of each time-slot, a multi-objective optimization is per-

formed. The algorithm operates over a set of possible candidates Vc, evaluat-

ing the fitness through three functions:

• Mean aesthetic score of the sub-shots A(Vc)

• Rule-based evaluation R(Vc)

• Diversity score D(Vc)

5.4. Video orchestration based on semantic features 108

Aesthetic score computation

Selecting the method to assess the aesthetic value is a difficult task. On the

one hand, aesthetic is a high level attribute, with a strong dependence on the

content: it is foreseeable that elements that give aesthetic value to a portrait

will not be valuable in a landscape.

In the previous work [136], orchestration through a content-dependent fea-

tures was experimented. While the results were promising, the computational

complexity proved very large. Since the multi-objective optimization requires

multiple calculations of the aesthetic value, as is detailed in the following, this

approach proved incompatible with the system as a whole. Instead, to assess

the aesthetic value of a sub-shot, the approach proposed in [137] is used due to

its low computational complexity. A subset of images from the CUHK dataset

[130] is selected and, based on their labels, organized in two categories, high

and low-quality, to create a training set.

For each image, a 24-d feature vector is calculated and, based on the compari-

son with the high and low-quality images in the reference dataset, the following

information is calculated:

• Color palette (f1): the color palette evaluates the color scheme in the

HSV color space. A clustering is performed over the values of the color

histogram and the calculated centroids are considered as the dominant

colors. f1 is obtained by comparing dominant colors in the image under

analysis with the ones extracted from the training set.

5.4. Video orchestration based on semantic features 109

• Layout Composition (f2 − f5): a layout template is extracted from the

available high and low-quality images by averaging the value of their

pixels over four channels (H,S,V and H+S+V). The features are obtained

by calculating the L1 distance of the image under analysis, dH and dL

respectively, from the templates.

• Edge Composition (f6 − f9): the edge features are obtained by averag-

ing the edge information of the high and low-quality images to obtain

reference templates. Image features are extracted by subtracting the L1

distances from the templates.

• Global texture (f10 − f17): these features are generated by dividing the

image into 6 stripes and computing the sum of the differences of adjacent

stripes.

• General features (f18 − f24): features evaluating the amount of blur,

contrast, and the number of non-zero elements in the HSV quantized

histogram and the dark channels [138].

The resulting feature vector is classified with a SVM. In this work, the aes-

thetic score of a sub-shot is evaluated by classifying the features extracted

from the Rf frames in probabilistic mode, assigning a default label of high

quality. The classifier returns the predicted class together with the confidence

level, expressed as a probability. The confidence level is used as aesthetic score.

5.4. Video orchestration based on semantic features 110

Rule-based evaluation

The purpose of R(Vc) is to evaluate the smoothness of the transitions in Vc. In

order to do this, Vc is modeled as a Markov chain over the possible framings

of the scene. Each state (i.e. framing) is characterized by the attributes used

to tag the cameras in Table 5.1. The distance between two states is given by

the sum of the differences in the values of the considered attributes. Nearby

states will be cameras with similar features. Transitions to nearby states have

a high probability, while lower values are given to far states (i.e. very different

framing). Based on the cinematographic rules, the probability of remaining in

the same state is chosen to be low (< 10−4). The distance between states is

determined adaptively depending on which type of camera attributes are given

as input: a panoramic shot and a POV shot could be considered near only if

no other intermediate shot type (e.g. medium shot) is given. In this way, the

system prefers smooth transitions in the view, avoiding harsh scene changes

that would be annoying for the viewer. The value of R(Vc) is given by the

probability of the correspondent path on the Markov chain:

R(Vc) =
N−1∑
i=1

log(P (Vc(i),Vc(i+ 1)))

where P is the probability of transition from Vc(i) to Vc(i+ 1).

5.4. Video orchestration based on semantic features 111

Figure 5.2: Example of two possible shot types: a POV (a) and a panoramic
shot (b)

Diversity evaluation

In a real scenario, it can happen that one of the videos has an overall higher

aesthetic score than the others. This may be due to several reasons, such as

one of the operators being more skilled or be in a better position with respect

to the others. In this case, performing an optimization based exclusively on

A(Vc) and R(Vc) would result in the exclusion of a consistent number of video

sources.

Preliminary tests carried out with 10 experts, have shown that a video obtained

as orchestration of diverse inputs is preferable to one composed by combining

a smaller number of cameras, even if they are more valuable in aesthetic.

For this reason, a third function is introduced in the optimization problem,

5.4. Video orchestration based on semantic features 112

Figure 5.3: Multi-objective genetic optimization of the editing

the diversity score, to take into account and penalize the unbalanced use of

cameras. The diversity score D(Vc) is calculated through the following steps:

first, the cameras’ empirical probability distribution PVc is calculated. PVc is

then compared with a uniform probability distribution, Pu, over the K cameras

through the Kullback-Leibler (KL) divergence:

DKL(Pu, PVc) =
∑

i∈K
ln

(
Pu(i)

PVc(i)

)
Pu(i).

Multi-objective optimization

The goal of finding an optimal V can be formulated as a multi-objective opti-

mization problem over the three previously defined functions, A(Vc), R(Vc),

5.4. Video orchestration based on semantic features 113

D(Vc). This class of problem does not have a unique optimal solution. In fact,

the solutions produced by a multi-objective optimization are Pareto-optimal,

that is a solution where none of the involved functions can be optimized with-

out degrading the others. Evolutionary algorithms are often used in this setup

since they can find multiple non-dominated solutions with each iteration [139].

To find a set of candidate vectors Vc, multi-objective optimization is performed

using the Genetic Algorithm (GA).

The GA is inspired by natural selection processes, taking a populations of in-

dividuals with different sets of genes. In our case, the population is composed

by candidate editing vectors Vc, where a gene is the sub-shot contained in a

time-slot. A fitness value is then calculated for each individual in the popula-

tion, in our case using the A(Vc), R(Vc), D(Vc) functions.

Individuals with higher fitness scores are more likely to be used as parents

in the crossover step. The next generation is calculated during crossover by

combining the genes of the parents. The final step of an iteration is the mu-

tation: genes can be changed to random values with a small alteration. The

optimization problem described above can be formalized as:

minimize (−A(Vc),−R(Vc),D(Vc))

subject to 1 ≤ Vc(i) ≤ K, i = 1, . . . , N

this approach can generate multiple locally optimal solutions. This feature is

considered desirable, as multiple possible editing solutions can be examined

by professionals, fine tuning the orchestration to a desired output.

5.4. Video orchestration based on semantic features 114

Video set id Cameras fs(fps) Length (s) Res. (pxl)
1 4 29 6 1080x1080
2 3 29 10 1280x720
3 4 25 10 1080x1080
4 4 25 10 1080x1080

Table 5.2: Source videos used for the experiment

Time-slot duration fine tuning

The duration of each time-slot is determined without knowing its content.

Nevertheless, after the optimization procedure, such duration can be fine-tuned

based on the content of V. More specifically, longer time-slots are assigned

to cameras that are richer in details, since editing guidelines state that denser

scenes take longer to become boring for the viewer.

In order to estimate the content density of a scene, the mean edge values Ed

is extracted in the first frame of each sub-shot:

Ed(V(i)) =
1

m ∗ n

n∑
i=1

m∑
j=1

∇2fV(i)(1, i, j).

Where fV(i)(1) is the first frame of V(i) and m,n are the width and height of

the frame. For each pair of consecutive sub-shots Vc(i), Vc(i+ 1) the sub-shot

denser in content has its time-slot length, td extended by ∆t. Nevertheless, this

adjustment is performed only if the shortened sub-shot length is still longer or

equal to 1 second to avoid introducing excessively short sub-shots.

5.4. Video orchestration based on semantic features 115

5.4.2 System validation

In order to verify the effectiveness of the proposed method, a preliminary test

has been performed. Four different contents were considered and for each of

them different views were taken. Table 5.2 gives specifications for the video sets

used to test the algorithm. In this trial, subjective tests were performed with

the cooperation of 16 experts in media production and movie generation. As

described in [140], even if the results of expert viewing cannot be considered as

a replacement of the results provided by a formal subjective assessment, they

can be considered a valuable preliminary indication of the performances of the

tested system.

Video set 1 portrays a roller coaster ride recorded from four different points

of view, selected according to cinematographic rules: subjective point of view,

action of the subject, details of the subject and panoramic view. Video set 2

contains the final moments of a concert, with three views: left side and close

to the stage, left side and far from the stage and central and close to the

stage. Video set 3 records from four points of view a scene in a cafeteria in

which a guy is drinking a coffee. Finally, video set 4 plays a scene in which

a bartender opens a bottle of wine. Video sets 1, 3, and 4 were recorded

by using commercial mobile phones and a Go-Pro camera, while video set 2

is gathered from the internet. From each video content, by considering all

the available views, two different orchestrations were performed: one based

on the proposed algorithm and another one obtained by randomly merging

the input views. This means that overall, eight contents were used in the

5.4. Video orchestration based on semantic features 116

Video set id Proposed (%) Random (%)
1 68.8 31.2
2 56.3 43.7
3 18.8 81.2
4 25 75

Table 5.3: Percentage of preferences expressed during the subjective tests.

subjective experiment. For each video content, the two orchestrated videos

were shown to each user, who was asked to select the one that, according to

his/her experience was preferable. Furthermore, an interview was performed

for collecting feedbacks. The display used for the experiment is a Full HD

display. The parameters used in the experiment are: Nf = 4, faster, medium

and slower change rates are set to 1s, 2s, and 3s respectively. For the GA, an

initial population of 15 individuals has been used.

Results and discussion

From the results collected, reported in Table 5.3, an important feedback can

be extracted. It is possible to highlight two different trends. For the video

sets 3 and 4 the randomly orchestrated videos are preferred. This is mainly

due to the fact that the values used for time-slot selection were fitter to deal

with dynamic content characterized by fast scene changes, while video sets 3

and 4 are characterized by more calm scenarios, incompatible with fast scene

changes. Hence, a preliminary analysis of the video content and of the motion

rate should be performed in order to optimize the orchestrator performances,

and to adapt the scene changing rate to the video dynamics. Information

5.5. Conclusions 117

about content also allows a semantic, template-based approach, similar to the

one used in [137], for video-based aesthetic features. As an example, having a

reference template of motion for action videos would allow to use an aesthetic

fitness function leveraging also video information.

5.5 Conclusions

In this chapter, the applications of machine learning to the visual domain were

presented.

An application of aesthetic value estimation is reported, performing unsu-

pervised orchestration of videos based on multi-objective optimization. The

proposed system can be used as a preliminary step in professional video editing

as well as an end-to-end system for the general public.

It is worth to note how the system supports modularity for the optimization

phase. Additional rules and constraints can be added to the optimization

procedure to perform a more complex orchestration (e.g. favor scenes with

significant facial expressions), however, the results of the subjective experi-

ments demonstrate how the current model may be too simplistic for such task.

In particular, the time-slot selection cannot be performed without accounting

for the genre of the processed content. Given the complexity of the task, and

the fact that the influence of many factors on the video quality of experience

is not completely understood, it is foreseeable that similar properties will be

discovered in future versions of the system.

5.5. Conclusions 118

A disadvantage of the system is the processing time. In its current implemen-

tation, the system does not support real time processing. As a matter of fact,

generating a video can take up to half an hour for short sequences (i.e. up to

ten minutes), depending on how many shot changes are performed and thus on

the cardinality of Vc. Real time processing would be a very important feature,

as it would enable the use of the system in contexts where human operators

do not have the physical time to perform their job.

Many improvements for the system can be considered. First of all, the selec-

tion of time-slots duration must become a function of the genre. Sampling the

time-slot durations from a probability distribution parametrized based on the

genre could be a solution, but it would leave unsolved the problem of estimat-

ing the genre.

Furthermore, in the future, the applications of DNN-based models for aesthetic

evaluation seems to be the best direction to take, as DNNs enable semantic

level representation with a low computational complexity when performing

inference. Thus, this would also be a step toward real time orchestration.

Chapter 6

Conclusion

In this thesis, the use of machine learning techniques for estimating and ex-

ploiting multimedia data has been addressed. As demonstrated in Chapter

4, DNNs enable the processing of data with greater level of accuracy and effi-

ciency with respect to previous techniques. This is an enabling factor for many

practical applications, such as smart audio surveillance.

However, as discussed in Chapter 3, those techniques are not fully understood.

Phenomena such as adversarial examples represent consequences of the inabil-

ity to throughly understand the learning process, and represent a threat to

applications in security and safety. Investigation of these phenomena is fun-

damental both for a safe use of machine learning in security applications and

for a better understanding of the reasons for deep learning effectiveness.

The estimation of complex semantic attributes, such as the aesthetic value,

119

120

enables the use of DSSs in tasks that could previously not be handled by

automatic systems, such as video editing. The unsupervised video orches-

tration system presented in Chapter 5 represents an attempt to perform a

semantically-dense task, normally reserved to experts whose work largely re-

lies on experience. The effectiveness in performing these tasks is still limited at

present times, as shown by the results presented in Chapter 5. However, these

applications help investigating the relevance of the many semantic attributes

involved in complex topics such as video quality of experience, an element that

adds to their scientific value.

Overall, in this thesis it was shown that semantic data processing has made

considerable advancements in recent years, advancements to which this the-

sis contributes. As discussed in the Introduction, there are many levels of

semantic attributes. While effective techniques are now available for estimat-

ing simpler ones, such as the events in a sound, understanding and estimating

complex ones and effectively leveraging them for practical applications remains

an open problem and an interesting direction for future work.

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou,

and K. Q. Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc.,

2012.

[2] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-

tion with conditional adversarial networks,” CoRR, vol. abs/1611.07004,

2016.

[3] A. van den Oord et al., “Wavenet: A generative model for raw audio,”

CoRR, vol. abs/1609.03499, 2016.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 vol. 1,

June 2005.

121

BIBLIOGRAPHY 122

[5] L. Wang and D. He, “Texture classification using texture spectrum,”

Pattern Recognition, vol. 23, no. 8, pp. 905–910, 1990.

[6] A. Allik, G. Fazekas, and M. B. Sandler, “An ontology for audio fea-

tures.,” in ISMIR, pp. 73–79, 2016.

[7] R. I. Minu and K. K. Thyagharajan, “Semantic rule based image vi-

sual feature ontology creation,” International Journal of Automation and

Computing, vol. 11, pp. 489–499, Oct 2014.

[8] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep convolutional filter banks

for texture recognition and segmentation,” CoRR, vol. abs/1411.6836,

2014.

[9] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN

features off-the-shelf: an astounding baseline for recognition,” CoRR,

vol. abs/1403.6382, 2014.

[10] O. Russakovsky and et al., “ImageNet Large Scale Visual Recognition

Challenge,” International Journal of Computer Vision (IJCV), vol. 115,

no. 3, pp. 211–252, 2015.

[11] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for

classification of malware system call sequences,” 12 2016.

[12] O. E. David and N. S. Netanyahu, “Deepsign: Deep learning for auto-

matic malware signature generation and classification,” in 2015 Inter-

BIBLIOGRAPHY 123

national Joint Conference on Neural Networks (IJCNN), pp. 1–8, July

2015.

[13] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Effiicient backprop,”

in Neural Networks: Tricks of the Trade, This Book is an Outgrowth of

a 1996 NIPS Workshop, (London, UK, UK), pp. 9–50, Springer-Verlag,

1998.

[14] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,

no. 1, pp. 81–106, 1986.

[15] T. K. Ho, “Random decision forests,” in Proceedings of 3rd International

Conference on Document Analysis and Recognition, vol. 1, pp. 278–282

vol.1, Aug 1995.

[16] F. Nan, J. Wang, and V. Saligrama, “Feature-budgeted random forest,”

arXiv preprint arXiv:1502.05925, 2015.

[17] S. Ren, X. Cao, Y. Wei, and J. Sun, “Global refinement of random for-

est,” in 2015 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 723–730, June 2015.

[18] M. Ristin, J. Gall, M. Guillaumin, and L. V. Gool, “From categories

to subcategories: Large-scale image classification with partial class label

refinement,” in 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 231–239, June 2015.

BIBLIOGRAPHY 124

[19] S. Schulter, C. Leistner, P. Wohlhart, P. M. Roth, and H. Bischof, “Al-

ternating regression forests for object detection and pose estimation,” in

2013 IEEE International Conference on Computer Vision, pp. 417–424,

Dec 2013.

[20] A. Montillo, J. Shotton, J. Winn, J. E. Iglesias, D. Metaxas, and A. Cri-

minisi, “Entangled decision forests and their application for semantic

segmentation of ct images,” in Information Processing in Medical Imag-

ing, pp. 184–196, 2011.

[21] T. S. Toby and et al., “Accurate, robust, and flexible real-time hand

tracking,” pp. 3633–3642, ACM, April 2015.

[22] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo, “Deep neural

decision forests,” in Computer Vision (ICCV), 2015 IEEE International

Conference on, pp. 1467–1475, IEEE, 2015.

[23] R. K. Vinayak and R. Gilad-Bachrach, “Dart: Dropouts meet multi-

ple additive regression trees,” in Artificial Intelligence and Statistics,

pp. 489–497, 2015.

[24] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[25] Y. Bazi and F. Melgani, “Convolutional svm networks for object de-

tection in uav imagery,” IEEE Transactions on Geoscience and Remote

Sensing, vol. PP, no. 99, pp. 1–12, 2018.

BIBLIOGRAPHY 125

[26] T. Guofeng, C. Huairong, L. Yong, and Z. Kai, “Traffic sign recogni-

tion based on svm and convolutional neural network,” in 2017 12th

IEEE Conference on Industrial Electronics and Applications (ICIEA),

pp. 2066–2071, June 2017.

[27] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-

works,” IEEE Transactions on Signal Processing, vol. 45, pp. 2673–2681,

Nov 1997.

[28] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-

cies with gradient descent is difficult,” IEEE Transactions on Neural

Networks, vol. 5, no. 2, pp. 157–166, 1994.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[30] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated con-

volutions,” CoRR, vol. abs/1511.07122, 2015.

[31] R. Hamaguchi, A. Fujita, K. Nemoto, T. Imaizumi, and S. Hikosaka, “Ef-

fective use of dilated convolutions for segmenting small object instances

in remote sensing imagery,” CoRR, vol. abs/1709.00179, 2017.

[32] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature

pooling in visual recognition,” in Proceedings of the 27th international

conference on machine learning (ICML-10), pp. 111–118, 2010.

BIBLIOGRAPHY 126

[33] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations

in convolutional architectures for object recognition,” in International

conference on artificial neural networks, pp. 92–101, Springer, 2010.

[34] H. Wu and X. Gu, “Max-pooling dropout for regularization of convolu-

tional neural networks,” in International Conference on Neural Informa-

tion Processing, pp. 46–54, Springer, 2015.

[35] C.-Y.Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling functions

in convolutional neural networks: Mixed, gated, and tree,” in Artificial

Intelligence and Statistics, pp. 464–472, 2016.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-

ing applied to document recognition,” Proceedings of the IEEE, vol. 86,

pp. 2278–2324, Nov 1998.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[38] C. Szegedy and et al., “Going deeper with convolutions,” CoRR,

vol. abs/1409.4842, 2014.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” CoRR, vol. abs/1512.03385, 2015.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, pp. 1735–1780, Nov. 1997.

BIBLIOGRAPHY 127

[41] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,”

in Proceedings of the IEEE-INNS-ENNS International Joint Conference

on Neural Networks. IJCNN 2000. Neural Computing: New Challenges

and Perspectives for the New Millennium, vol. 3, pp. 189–194 vol.3, 2000.

[42] K. H. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the

properties of neural machine translation: Encoder-decoder approaches,”

CoRR, vol. abs/1409.1259, 2014.

[43] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmid-

huber, “LSTM: A search space odyssey,” CoRR, vol. abs/1503.04069,

2015.

[44] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,

“Recurrent neural network based language model,” in Eleventh An-

nual Conference of the International Speech Communication Association,

2010.

[45] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learn-

ing with neural networks,” in Advances in neural information processing

systems, pp. 3104–3112, 2014.

[46] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay,

M. Suleyman, and P. Blunsom, “Teaching machines to read and compre-

hend,” in Advances in Neural Information Processing Systems, pp. 1693–

1701, 2015.

BIBLIOGRAPHY 128

[47] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra,

“Draw: A recurrent neural network for image generation,” arXiv preprint

arXiv:1502.04623, 2015.

[48] A. Oord, N. Kalchbrenne, and K. Kavukcuoglu, “Pixel recurrent neural

networks,” arXiv preprint arXiv:1601.06759, 2016.

[49] A. Graves, S. Fernández, and e. J. Schmidhuber

[50] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent

neural networks,” arXiv preprint arXiv:1609.01704, 2016.

[51] e. a. J. Masci, Stacked Convolutional Auto-Encoders for Hierarchical Fea-

ture Extraction, pp. 52–59. 2011.

[52] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings

of the 25th International Conference on Machine Learning, ICML ’08,

pp. 1096–1103, ACM, 2008.

[53] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[54] I. Goodfellow and et al, “Generative adversarial nets,” in Advances in

neural information processing systems, pp. 2672–2680, 2014.

[55] e. a. S. E. Reed, “Generative adversarial text to image synthesis,” CoRR,

vol. abs/1605.05396, 2016.

BIBLIOGRAPHY 129

[56] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation

learning with deep convolutional generative adversarial networks,” arXiv

preprint arXiv:1511.06434, 2015.

[57] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-

tional networks,” in Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on, pp. 2528–2535, IEEE, 2010.

[58] V. Nair and G. E. Hinton, “Rectified linear units improve restricted

boltzmann machines,” in Proceedings of the 27th International Con-

ference on International Conference on Machine Learning, ICML’10,

(USA), pp. 807–814, Omnipress, 2010.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” CoRR,

vol. abs/1502.01852, 2015.

[60] D.-A.

[61] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio,

“Maxout networks,” arXiv preprint arXiv:1302.4389, 2013.

[62] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,

Inc., 2006.

[63] B. Polyak, “Some methods of speeding up the convergence of iteration

methods,” vol. 4, pp. 1–17, 12 1964.

BIBLIOGRAPHY 130

[64] I. Sutskever, J. Martens, G. Dahl, and G. E. Hinton, “On the impor-

tance of initialization and momentum in deep learning,” in International

conference on machine learning, pp. 1139–1147, 2013.

[65] Y. Nesterov, “A method of solving a convex programming problem with

convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27,

pp. 372–376, 1983.

[66] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for

online learning and stochastic optimization,” Journal of Machine Learn-

ing Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[67] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR,

vol. abs/1212.5701, 2012.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

CoRR, vol. abs/1412.6980, 2014.

[69] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: A simple way to prevent neural net-

works from overfitting,” Journal of Machine Learning Research, vol. 15,

pp. 1929–1958, 2014.

[70] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” CoRR,

vol. abs/1502.03167, 2015.

BIBLIOGRAPHY 131

[71] H. Shimodaira, “Improving predictive inference under covariate shift by

weighting the log-likelihood function,” Journal of statistical planning and

inference, vol. 90, no. 2, pp. 227–244, 2000.

[72] S. U. CS231n Convolutional Neural Networks for Visual Recognition,

“Visualizing what convnets learn.”

[73] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional

networks: Visualising image classification models and saliency maps,”

CoRR, vol. abs/1312.6034, 2013.

[74] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding

recurrent networks,” arXiv preprint arXiv:1506.02078, 2015.

[75] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 22, pp. 1345–1359, Oct

2010.

[76] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are

features in deep neural networks?,” CoRR, vol. abs/1411.1792, 2014.

[77] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint

arXiv:1312.6199, 2013.

[78] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are eas-

ily fooled: High confidence predictions for unrecognizable images,” in

BIBLIOGRAPHY 132

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 427–436, 2015.

[79] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami, “The limitations of deep learning in adversarial settings,”

in Security and Privacy (EuroS&P), 2016 IEEE European Symposium

on, pp. 372–387, IEEE, 2016.

[80] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability in

machine learning: from phenomena to black-box attacks using adversar-

ial samples,” CoRR, vol. abs/1605.07277, 2016.

[81] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation

as a defense to adversarial perturbations against deep neural networks,”

CoRR, vol. abs/1511.04508, 2015.

[82] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in Security and Privacy (SP), 2017 IEEE Symposium on,

pp. 39–57, IEEE, 2017.

[83] I. E. et al., “Robust physical-world attacks on machine learning models,”

CoRR, vol. abs/1707.08945, 2017.

[84] J. Smith, S. U. C. for Computer Research in Music, Acoustics, and

D. o. M. Stanford University, Spectral Audio Signal Processing. W3K,

2011.

BIBLIOGRAPHY 133

[85] F. Colangelo, F. Battisti, M. Carli, A. Neri, and F. Calabró, “Enhanc-

ing audio surveillance with hierarchical recurrent neural networks,” in

2017 14th IEEE International Conference on Advanced Video and Sig-

nal Based Surveillance (AVSS), Aug 2017.

[86] R. D. Patterson, “Auditory filters and excitation patterns as representa-

tions of frequency resolution,” Frequency Selectivity in Hear-ing, pp. 123–

177, 1986.

[87] M. S. et al., “An efficient implementation of the patterson-holdsworth

auditory filter bank,” Apple Computer, Perception Group, Tech. Rep,

vol. 35, no. 8, 1993.

[88] J. C. Brown, “Calculation of a constant q spectral transform,” The Jour-

nal of the Acoustical Society of America, vol. 89, no. 1, pp. 425–434, 1991.

[89] N. Scaringella, G. Zoia, and D. Mlynek, “Automatic genre classification

of music content: a survey,” IEEE Signal Processing Magazine, vol. 23,

pp. 133–141, March 2006.

[90] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “A survey of audio-based

music classification and annotation,” IEEE Transactions on Multimedia,

vol. 13, pp. 303–319, April 2011.

[91] F. Gouyon, F. Pachet, and O. Delerue, “On the use of zero-crossing rate

for an application of classification of percussive sounds,” in Proceedings

of the COST G-6 Conference on Digital Audio Effects (DAFX-00, 2000.

BIBLIOGRAPHY 134

[92] G. Tzanetakis and P. Cook, “Musical genre classification of audio sig-

nals,” IEEE Transactions on Speech and Audio Processing, vol. 10,

pp. 293–302, Jul 2002.

[93] E. Schubert, J. Wolfe, and A. Tarnopolsky, “Spectral centroid and timbre

in complex, multiple instrumental textures,” in Proceedings of the inter-

national conference on music perception and cognition, North Western

University, Illinois, pp. 112–116, sn, 2004.

[94] H. t. Cheng, Y. h. Yang, Y. c. Lin, I. Liao, and H. H. Chen, “Automatic

chord recognition for music classification and retrieval,” ICME, p. 2008.

[95] H.-G. Kim, N. Moreau, and T. Sikora, “Audio classification based on

mpeg-7 spectral basis representations,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 14, pp. 716–725, May 2004.

[96] S. Zhang, Y. Guo, and Q. Zhang, “Robust voice activity detection feature

design based on spectral kurtosis,” in 2009 First International Workshop

on Education Technology and Computer Science, vol. 3, pp. 269–272,

March 2009.

[97] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumb-

ley, “Detection and classification of acoustic scenes and events,” IEEE

Transactions on Multimedia, vol. 17, pp. 1733–1746, Oct 2015.

BIBLIOGRAPHY 135

[98] J. Dennis, H. D. Tran, and H. Li, “Spectrogram image feature for sound

event classification in mismatched conditions,” IEEE Signal Processing

Letters, vol. 18, pp. 130–133, Feb 2011.

[99] A. Rakotomamonjy and G. Gasso, “Histogram of gradients of time-

frequency representations for audio scene classification,” IEEE-ACM

Transactions on Audio, Speech, and Language Processing, vol. 23,

pp. 142–153, Jan 2015.

[100] J. Ren, X. Jiang, J. Yuan, and N. Magnenat-Thalmann, “Sound-event

classification using robust texture features for robot hearing,” IEEE

Transactions on Multimedia, vol. 19, pp. 447–458, March 2017.

[101] D. A. et al, “Deep speech 2: End-to-end speech recognition in english

and mandarin,” CoRR, vol. abs/1512.02595, 2015.

[102] D. Povey and et al., “Purely sequence-trained neural networks for asr

based on lattice-free mmi.,” in INTERSPEECH, pp. 2751–2755, 2016.

[103] I. McLoughlin, H. Zhang, Z. Xie, Y. Song, and W. Xiao, “Robust sound

event classification using deep neural networks,” IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing, vol. 23, no. 3, pp. 540–

552, 2015.

[104] F. Guo, D. Yang, and X. Chen, “Using deep belief network to capture

temporal information for audio event classification,” in Int. Conf. on In-

BIBLIOGRAPHY 136

telligent Information Hiding and Multimedia Signal Processing, pp. 421–

424, Sept 2015.

[105] K. J. Piczak, “Environmental sound classification with convolutional

neural networks,” in 25th Int. Workshop on Machine Learning for Signal

Processing, pp. 1–6, Sept 2015.

[106] M. Espi, M. Fujimoto, K. Kinoshita, and T. Nakatani, “Exploiting

spectro-temporal locality in deep learning based acoustic event detec-

tion,” EURASIP Journal on Audio, Speech, and Music Processing,

vol. 2015, no. 1, p. 26, 2015.

[107] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent neural net-

works for polyphonic sound event detection in real life recordings,” in

Int. Conf. on Acoustics, Speech and Signal Processing, pp. 6440–6444,

IEEE, 2016.

[108] E. Marchi, F. Vesperini, F. Eyben, S. Squartini, and B. Schuller, “A

novel approach for automatic acoustic novelty detection using a denoising

autoencoder with bidirectional lstm neural networks,” in Int. Conf. on

Acoustics Speech and Signal Processing, pp. 1996–2000, April 2015.

[109] J. Salamon and J. P. Bello, “Deep convolutional neural networks and

data augmentation for environmental sound classification,” IEEE Signal

Processing Letters, vol. 24, pp. 279–283, March 2017.

BIBLIOGRAPHY 137

[110] J. Salamon and C. J. J. Bello, “A dataset and taxonomy for urban sound

research,” in Proceedings of the 22nd ACM international conference on

Multimedia, pp. 1041–1044, ACM, 2014.

[111] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation (vtlp) im-

proves speech recognition,”

[112] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for deep neu-

ral network acoustic modeling,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 23, pp. 1469–1477, Sept 2015.

[113] W. Huang, S. Lau, T. Tan, L. Li, and L. Wyse, “Audio events classi-

fication using hierarchical structure,” in Procs.of the 2003 Joint Fourth

Int. Conf. on Information, Communications and Signal Processing, and

the Fourth Pacific Rim Conference on Multimedia, vol. 3, pp. 1299–1303

vol.3, Dec 2003.

[114] P. K. Atrey, N. C. Maddage, and M. S. Kankanhalli, “Audio based event

detection for multimedia surveillance,” in Int. Conf. on Acoustics Speech

and Signal Processing, vol. 5, pp. V–V, May 2006.

[115] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti,

“Scream and gunshot detection and localization for audio-surveillance

systems,” in Int. Conf. on Advanced Video and Signal-Based Surveil-

lance, pp. 21–26, Sept 2007.

BIBLIOGRAPHY 138

[116] W. Choi, J. Rho, D. Han, and H. Ko, “Selective background adaptation

based abnormal acoustic event recognition for audio surveillance,” in Int.

Conf. on Advanced Video and Signal-Based Surveillance, pp. 118–123,

IEEE, 2012.

[117] P. Foggia, N. Petkov, A. Saggese, and N. S. Vento, “Reliable detection of

audio events in highly noisy environments,” Pattern Recognition Letters,

vol. 65, pp. 22–28, 2015.

[118] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, and M. Vento, “Audio

surveillance of roads: A system for detecting anomalous sounds,” IEEE

Transactions on Intelligent Transportation Systems, vol. 17, pp. 279–288,

Jan 2016.

[119] M. Z. Zaheer, J. Y. Kim, H.-G. Kim, and S. Y. Na, “A preliminary study

on deep-learning based screaming sound detection,” in 5th Int. Conf. on

IT Convergence and Security, pp. 1–4, IEEE, 2015.

[120] R. Gonzalez and R. Woods, Digital Image Processing,2/e. Pearson Ed-

ucation, 2008.

[121] F. Colangelo, F. Battisti, M. Carli, and A. Neri, “A multi-objective op-

timization for video orchestration,” in 2017 25th European Signal Pro-

cessing Conference (EUSIPCO), Aug 2017.

BIBLIOGRAPHY 139

[122] G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quan-

titative Data and Formulae. Wiley Series in Pure and Applied Optics,

Wiley, 2000.

[123] A. K. M. P., Obrador, and N. Oliver, “Towards computational models

of the visual aesthetic appeal of consumer videos,” in Proc. of Computer

Vision, ECCV 2010.

[124] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Studying aesthetics in pho-

tographic images using a computational approach,” in Computer Vision

ECCV 2006: 9th European Conference on Computer Vision, Graz, Aus-

tria, May 7-13, 2006.

[125] Z. Dai and Y. Wu, “Where are focused places of a photo?,” in Advances

in Visual Information Systems: 9th International Conference, VISUAL

2007 Shanghai, China, June 28-29.

[126] P. Obrador, “Region based image appeal metric for consumer photos,”

in Proc. of Multimedia Signal Processing, 2008 IEEE 10th Workshop on.

[127] Bhattacharya and et al., “Towards a comprehensive computational

model foraesthetic assessment of videos,” in Proc. of the 21st ACM In-

ternational Conference on Multimedia, 2013.

[128] E. Siahaan, A. Hanjalic, and J. Redi, “A reliable methodology to collect

ground truth data of image aesthetic appeal,” IEEE Transactions on

Multimedia, vol. 18, pp. 1338–1350, July 2016.

BIBLIOGRAPHY 140

[129] N. Murray, L. Marchesotti, and F. Perronnin, “Ava: A large-scale

database for aesthetic visual analysis,” in Computer Vision and Pat-

tern Recognition (CVPR), 2012 IEEE Conference on, pp. 2408–2415,

IEEE, 2012.

[130] W. Luo, X. Wang, and X. Tang, “Content-based photo quality assess-

ment,” in Computer Vision (ICCV), 2011 IEEE Int. Conf. on.

[131] S. brain, “Youtube company statistics.”

[132] R. Kaiser, P. Torres, and M. Höffernig, “The interaction ontology: Low-

level cue processing in real-time group conversations,” in 2nd ACM In-

ternational Workshop on Events in Multimedia, EiMM ’10, ACM.

[133] E. S. d. Lima, B. Feij, A. L. Furtado, A. Ciarlini, and C. Pozzer, “Au-

tomatic video editing for video-based interactive storytelling,” in 2012

IEEE International Conference on Multimedia and Expo, pp. 806–811,

July 2012.

[134] K. Dancyger, The Technique of Film and Video Editing History, Theory,

and Practice.

[135] W. Murch, In the Blink of an Eye: A Perspective on Film Editing.

[136] A. Neri, F. Battisti, F. Colangelo, and M. Carli, “Unsupervised video

orchestration based on aesthetic features,” in 2017 IEEE International

Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2017.

BIBLIOGRAPHY 141

[137] K.-Y. Lo, K.-H. Liu, and C.-S. Chen, “Assessment of photo aesthetics

with efficiency,” in Pattern Recognition (ICPR), 2012 21st Int. Conf. on.

[138] X. Tang, W. Luo, and X. Wang, “Content-based photo quality assess-

ment,” IEEE Transactions on Multimedia, vol. 15, no. 8, pp. 1930–1943,

2013.

[139] D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algo-

rithms. John Wiley & Sons, Inc., 2001.

[140] ITU, “ITU-R Recommendation, Subjective assessment of video quality

using expert viewing protocol.” BT.2095, Apr. 2016.

