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Introduction

The puzzle of the Standard Model of the particle and interactions has been completed

with the discovery of the Higgs boson at Run 1 of the LHC [1, 2]. The SM provides a

theoretical framework describing the fundamental forces of nature in terms of a gauge

field theory, apart from the gravitational force. The Higgs boson is a crucial part of

the SM. It emerges as a remnant of the mechanism of electroweak symmetry breaking

(EWSB) [3–7], which gives mass to gauge bosons and fermions and is essential for the

consistency of the theory. Its discovery hence marks the beginning of a new era of particle

physics.

Even though the SM describes the so-far gathered data with high accuracy, there are

indications that it is not the ultimate theory of nature. Neither is gravitation implemented

in the SM nor does the SM provide a candidate for Dark Matter or an explanation for

Dark Energy. Furthermore, the Higgs boson mass in the SM seems to be unnatural since

contributions from very high-scale physics lead to large quantum corrections to the Higgs

boson mass. This poses the question why the Higgs boson mass scale is so much smaller

than the Planck scale, known as the hierarchy problem. A large amount of fine-tuning

between the different loop contributions is needed to achieve a Higgs boson mass at the

electroweak (EW) scale. This hints to New Physics which becomes relevant at a scale

that might be reachable at the LHC. In the past, this theoretical problem acted as a

guideline for numerous extensions of the SM.

A solution to many shortcomings of the SM is provided by supersymmetry (SUSY).

Supersymmetry is a space-time symmetry which enhances the Poincaré symmetry by

additional anti-commuting generators. These generators transform bosonic states into

fermionic states and vice versa. Each particle is hence paired with a superpartner, which

only differs by the spin. None of these superpartners, however, have been discovered

yet. Thus, SUSY cannot be an exact symmetry. This problem can be evaded by

introducing SUSY breaking sources, leading to different masses for the particles and their

superpartners. If SUSY is supposed to solve the naturalness problem of the SM Higgs
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boson, the discovery reach of the superpartners lies within the range of the LHC. By

now, all experiments could only report exclusion limits on the SUSY particle masses, but

large parts of the parameter space remain to be explored.

In this thesis we analyze the double Higgs production in the SM and MSSM. In the

chapter 1, we introduce the Low Energy Theorems, a powerful instruments to calculate

the NLO QCD corrections to cross section, and we summarise the result for double Higgs

production cross section. However, by using the LET, we make an approximation and

we will discuss the validity of this approach. At the end of the chapter we present the

newest prediction of the double Higgs production and the relative error in the SM.

In the chapter 2, we show our result for the double Higgs production in the MSSM. In

particular, making always use of LET, we obtain analytic results for the one- and two-loop

squark contributions to Higgs pair production in the limit of vanishing external momenta.

We also obtain, by direct calculation of the relevant two-loop diagrams, the subset

of bottom/sbottom contributions that involve the D-term-induced EW Higgs-squark

coupling and survive in the limit of vanishing bottom mass. To assess the importance of

the newly-computed corrections, we include the squark contributions to both triangle

and box form factors in a private version of the public code HPAIR, which computes the

NLO-QCD cross section for Higgs pair production in the SM and in the MSSM. We find

that the two-loop squark contributions can have a non-negligible effect in scenarios with

stop masses below the TeV scale.

Finally in the chapter 3 we discuss the calculation of the process gg → hhg, the most

relevant process for the real NLO QCD corrections in the double Higgs production. First

of all we evaluate a set of orthogonal projectors through which we can calculate the

amplitude. Then, from the exact result we made an expansion in the top mass to obtain,

for the first time, the analytic results of the large top-mass-expansion evaluation of cross

section up to and including O(1/m2
t ) terms.
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Chapter 1

Double Higgs production in the

Standard Model at NLO

In Run 1, the couplings of the Higgs boson to fermions and to gauge bosons have already

been measured, and found to be compatible with the predictions of the Standard Model

(SM) within an experimental accuracy of (10 – 20)% [8]. One of the major goals of

the forecoming runs of LHC is to improve the experimental results of the Run 1 and

the complete exploration of the properties of the Higgs boson, in particular the self

interactions. This is the only way to reconstruct the scalar potential of the Higgs doublet

field Φ, that is responsible for spontaneous electroweak symmetry breaking,

Vh = µ2Φ†Φ +
1

2
λ(Φ†Φ)2 ; λ =

m2
h

v2
and µ2 = −1

2
m2
h , (1.0.1)

with v = 246 GeV. Rewriting the Higgs potential in terms of a physical Higgs boson

leads to the trilinear Higgs self–coupling λhhh, which in the SM is uniquely related to the

mass of the Higgs boson and the VEV,

λhhh =
3m2

h

v
, (1.0.2)

and the quartic self couplings λhhhh = 3m2
h/v

2, which is further suppressed by a power of

v compared to the triple Higgs coupling. The triple Higgs coupling is accessible in Higgs

pair production processes and the quartic coupling in Higgs triple production process.

A measurement of the quartic Higgs self-coupling lies beyond the reach of the LHC [9,10],

on the contrary previous studies showed that the Higgs pair production process, and

hence the trilinear Higgs self-coupling, might be accessible for high integrated luminosities
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in the bbγγ [11–16], bbττ [12, 17], bbW+W− [18] and bbbb [19–21] final states.

In this chapter we summarize some general results on the Higgs boson pair production

via the gluon fusion mechanism in proton–proton collisions, pp→ hh up to next-to-leading

order. First of all we briefly discuss the Low Energy Theorem and his application in Higgs

sector. Then we present the exact results for the LO cross section that is known since

the late eighties [22]. However, similarly to what happens in single Higgs production, one

expects the LO contribution to be subject to large radiative corrections. For the higher

order corrections to Higgs pair production we show the NLO cross section by using the

effective theory with infinite top mass or, equivalently, the limit of vanishing external

momentum [23]. Then we discuss as the effective theory is a bad approximation for the

double Higgs production, contrarily than it happens for single Higgs production. Finally

we present the more recent numerical estimates of the double Higgs production and the

relative theoretical uncertainties.
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Figure 1.1: Classes of diagrams for Higgs pair production in hadron hadron collisions:
double Higgs production without hhh vertices on the left-hand side, and, on the right-
hand side, the contribution due to the Higgs self interaction. Final state particles other
than the Higgs bosons are understood.

1.1 Double Higgs production at LHC

In the SM, the diagrams contributing to Higgs pair production can be organised in two

classes (see 1.1): those where both Higgs bosons couple only to vector bosons or to

heavy quarks, and those that feature the Higgs self coupling. Analogously to single-Higgs

production, several channels can lead to a final state involving two Higgs bosons. They

entail the Higgs coupling to either the top quark (as in the case of gluon-gluon fusion

and of tt associated production), or vector bosons (in VBF, and in W and Z associated

production), or both (for single-top associated production). The dominant channel for

Higgs pair production is gluon-gluon fusion via virtual top quarks, i.e., box and triangle

diagrams, see fig. 1.2. This process therefore starts at the leading order with a loop,

exactly as single-Higgs production. In the “triangle” contribution a single Higgs boson

splits via an s-channel exchange into two Higgs bosons, thus it contains the trilinear

Higgs self-coupling. The “box” contribution plays the role of an irreducible background,

as it does not incorporate the trilinear Higgs self-coupling. A precise prediction of the

gluon fusion Higgs-pair production channel is essential to constrain new physics or to

determine the Higgs self-coupling.

The second-largest production channel is vector boson fusion (VBF). At variance with

single-Higgs production, the production of a Higgs pair in association with a tt pair is the

third most important process and, in fact, it is even larger than VBF at high Higgs-pair

transverse momenta, or for collider centre-of-mass energies higher than that of the LHC.

The other production channels are those with vector boson and top quark associated

production, see fig. 1.3 [24].
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Figure 1.2: Generic Feynman diagrams for box and triangle topologies for Higgs pair
production.
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Figure 1.3: Total cross sections at the NLO in QCD for the six largest hh production
channels at pp colliders. The thickness of the lines corresponds to the scale and PDF
uncertainties.

1.2 The Low Energy Theorem

In this section we briefly expose the low-energy theorem (LET) and its consequences

in the Higgs physics. The LET is the starting point of our calculations in SM and also

MSSM. The LET for Higgs interactions, relate the amplitude M(X,φ) for a generic
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particle configuration X plus an external Higgs boson φ of vanishing momentum to the

corresponding amplitude without the external Higgs boson, M(X). The LET can be

stated as follows: the amplitude M(X,φ) can be obtained by considering M(X) as a

field-dependent quantity via the dependence of the relevant parameters (masses, in the

SM, and also mixing angles in MSSM) on φ. The first term in the expansion of M(X)

in the Higgs field, evaluated at the minimum of the Higgs potential, corresponds to

M(X,φ). This leads to the following LET [25–27]:

lim
pH→0

M(X φ) =
∂

∂φ
M(X)

∣∣∣∣
φ=v

(1.2.1)

In case M(X) contains infrared (IR) divergent terms the theorem applies to the IR-safe

part of the two amplitudes. In order to proof the validity of the LET we can apply it at

the fermionic and bosonic propagators:

∂

∂φ

(
1

/p−mf

)∣∣∣∣
φ=v

=
∂mf

∂φ

∂

∂mf

(
i

/p−mf

)
=
imf

v

i(
/p−mf

)2
=

i

/p−mf

−imf

v

−i
/p−mf

,

∂

∂φ

(
1

p2 −m2
V

)∣∣∣∣
φ=v

=
∂m2

V

∂φ

∂

∂m2
V

(
1

p2 −m2
V

)
=
gm2

V

m2
W

1(
p2 −m2

V

)2
=

1

p2 −m2
V

gm2
V

m2
W

1

p2 −m2
V

. (1.2.2)

The result of this operation is to obtain vertex with a Higgs null momentum hff or

hV V †, for the fermionic and bosonic case respectively, with the exact costant coupling,

starting from a propagator. Obviously the amplitude that we can evaluate by using the

LET is exactly the same if we use the limit where the top quark mass tends to infinity

and in this way the calculation of the NLO corrections are very simplifies. Lagrangians

for single and multi-Higgs production in the mt →∞ assume this form respectively:

Lhgg =
αs

12π
GaµνGaµν

h

v
,

Lhngg =
αs

12π
GaµνGaµν log

(
1 +

h

v

)
, (1.2.3)

where Gaµν is the gluonic tensor. To use the LET in gluon fusion Higgs production one

identify M(X,φ) with the gluon-self energy and applies to it the relevant number of

derivatives with respect to φ.
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1.3 Cross section at LO and NLO

In this section we summarize some general results on the gluon-fusion production of a

pair of Higgs bosons [28]. The hadronic cross section for the process p+ p→ h+ h+X

at center-of-mass energy
√
s can be written as

M2
hh

dσ

dM2
hh

=
∑
a,b

∫ 1

0
dx1dx2 fa,h1(x1, µF ) fb,h2(x2, µF )

∫ 1

0
dz δ

(
z −

M2
hh

ŝ

)
M2
hh

dσ̂ab
dM2

hh

,

(1.3.1)

where: M2
hh is the invariant mass of the Higgs system; fa,hi(x, µF ) is the density for the

parton of type a (with a = g, q, q) in the colliding proton; µF is the factorization scale;

ŝ = s x1 x2 is the partonic center-of-mass energy; σ̂ab is the cross section for the partonic

subprocess ab→ h+ h+X. The partonic cross section can be written in terms of the

LO contribution σ(0) as

M2
hh

dσ̂ab
dM2

hh

= σ(0)(zŝ) z Gab(z) , (1.3.2)

where the coefficient function Gab(z) in eq. (1.3.2) can in turn be decomposed, up to

NLO terms, as

Gab(z) = G
(0)
ab (z) +

αs(µR)

π
G

(1)
ab (z) + O(α2

s) , (1.3.3)

where µR denoting the renormalization scale. The LO contribution is given by the

gluon-gluon channel by

G
(0)
ab (z) = δ(1− z) δag δbg . (1.3.4)

The amplitude for gµa (p1)gνb (p2)→ h(p3)h(p4) can be written as:

Aµν =
Gµ√

2

αs(µR)

2π
δab TF ŝ [Aµν1 F1 +Aµν2 F2] , (1.3.5)

where TF is the matrix normalization factor for the fundamental representation of SU(Nc)

(TF = 1/2) and the form factors F1, F2 are functions, besides of m2
t , of the partonic

Mandelstam variables

ŝ = (p1 + p2)2 , t̂ = (p1 − p3)2 , û = (p2 − p3)2 . (1.3.6)
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In eq. (1.3.5) the orthogonal projectors A1 and A2 onto the spin-0 and spin-2 states,

respectively, in nd = 4− 2 ε dimension and normalized to 2 read

Aµν1 =

√
2

nd − 2

[
gµν − pν1 p

µ
2

(p1 · p2)

]
, (1.3.7)

Aµν2 =

√
nd − 2

2(nd − 3)

{
nd − 4

nd − 2

[
gµν − pν1 p

µ
2

(p1 · p2)

]

+ gµν +
p2

3 p
ν
1 p

µ
2 − 2 (p3 · p2) pν1 p

µ
3 − 2 (p3 · p1) pν3 p

µ
2 + 2 (p1 · p2) pµ3 p

ν
3

p2
T (p1 · p2)

}
,

(1.3.8)

with pT the transverse momentum of the Higgs particle that can be expressed in terms

of the Mandelstam variables as

p2
T =

t̂û−m4
h

ŝ
. (1.3.9)

The spin-2 state receives contributions only from box topologies (see fig. 1.2) while in

the spin-0 case both box and triangle diagrams contribute such that F1 takes the form

F1 = F∆

3m2
h

ŝ−m2
h

+ F� , (1.3.10)

where F∆(F�) is the contribution of the triangle (box) diagrams. The Born cross section

is written as

σ(0)(ŝ) =
G2
µα

2
s(µR)

512 (2π)3

∫ t̂+

t̂−

{∣∣∣TF F 1`
1 (ŝ)

∣∣∣2 +
∣∣∣TF F 1`

2 (ŝ)
∣∣∣2} , (1.3.11)

with t̂± = −ŝ/2(1−2m2
h/ŝ∓

√
1− 4m2

h/ŝ). The one-loop form factors F 1`
1 , F 1`

2 are fully

known analytically [22, 29] and their values in the limit of vanishing external momentum

can be obtained via a low energy theorem (LET) calculation giving F 1`,LET
∆ = −F 1`,LET

� =

4/3, F 1`,LET
2 = 0, that correspond to the effective theory mt → ∞ result. From the

eq. (1.3.10) and from the LET values of form factors we can see that there is a strong

cancellation, the box and triangle diagram interfere destructively (in particular in effective

theory if ŝ = 4m2
h the cancellation is exact). The destructive interference are partial also

for the exact form factor.

The NLO terms include, besides the gg channel, also the one-loop induced processes

gq → qhh and qq → ghh. The gg-channel contribution, involving two-loop virtual
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corrections to gg → hh and one-loop real corrections from gg → hhg, can be written as

G(1)
gg (z) = δ(1− z)

[
CA

π2

3
+ β0 ln

(
µ2
R

µ2
F

)
+ CNLO

]

+ Pgg(z) ln

(
ŝ

µ2
F

)
+ CA

4

z
(1− z + z2)2D1(z) + CARgg , (1.3.12)

where

CNLO =

∫ t̂+
t̂−
dt̂
[(
TF F

1`
1

)∗
TF
(
F 2`

1 + F 2∆
1

)
+
(
TF F

1`
2

)∗
TF
(
F 2`

2 + F 2∆
2

) ]
∫ t̂+
t̂−
dt̂
(∣∣TF F 1`

1

∣∣2 +
∣∣TF F 1`

2

∣∣2) + h.c. .

(1.3.13)

In eq. (1.3.12), CA = Nc (Nc being the number of colors), β0 = (11CA − 2Nf )/6 (Nf

being the number of active flavors) is the one-loop β-function of the strong coupling in

the SM, Rgg is the contribution of the real corrections, Pgg is the LO Altarelli-Parisi

splitting function

Pgg(z) = 2CA

[
D0(z) +

1

z
− 2 + z(1− z)

]
, (1.3.14)

and

Di(z)1 =

[
lni(1− z)

1− z

]
+

. (1.3.15)

The first line of eq. (1.3.12) displays the two-loop virtual contribution regularized by the

infrared singular part of the real-emission cross section. In eq. (1.3.13) the terms F 2`
1 and

F 2`
2 contain the contribution of irreducible two-loop diagrams, (see fig. 1.4 a,c,d) and in the

limit of vanishing external momenta they read F 2`
∆ = −F 2`

� = −CF +5/3CA, F
2`
2 = 0 [23]

with CF = (N2
c − 1)/(2Nc). The term F 2∆

1 (F 2∆
2 ) represents the contribution of the

two-loop double-triangle diagrams with a t/u-channel gluon exchange (fig. 1.4 b) to the

spin-0 (spin-2) part of the amplitude. In the limit of vanishing external momenta the

1The plus-distribution is defined in terms of integrals:∫ 1

0

dx
f(x)

(x)+
=

∫ 1

0

dx
f(x)− f(0)

x∫ 1

0

dx f(x)

(
log(x)

x

)
+

=

∫ 1

0

dx [f(x)− f(0)]
log(x)

x
.
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Figure 1.4: Sample of Feynman diagrams for the virtual two-loop corrections to Higgs
pair production via gluon fusion.

double-triangle diagrams can be expressed in terms of F 1`,LET
∆ as

F 2∆
1 → 1

2
TF

(
F 1`,LET

∆

)2
and F 2∆

2 → −1

2
TF

p2
T

2t̂û
(ŝ− 2m2

h)
(
F 1`,LET

∆

)2
.

(1.3.16)

The second line in eq. (1.3.12) contains the non-singular contribution from the real

gluon emission in the gluon-fusion process. The function Rgg is obtained from one-loop

diagrams where quarks circulate in the loop, and in the limit of vanishing external

momenta it becomes Rgg → −11(1− z)3/(6z). The contributions of the gq → qhh and

qq → ghh channels are given by:

G
(1)
qq (z) = Rqq , G(1)

qg (z) = Pgq(z)

[
ln(1− z) +

1

2
ln

(
ŝ

µ2
F

)]
+Rqg , (1.3.17)

where

Pgq(z) = CF
1 + (1− z)2

z
. (1.3.18)

The functions Rqq and Rqg in (1.3.17) are obtained from one-loop quark diagrams, and

in the limit of vanishing external momenta become Rqq → 32 (1 − z)3/(27z), Rqg →
2 z/3− (1− z)2/z.

At the moment, by using the LET approximation, are known the NNLO cross section [30]

and recently, the complete NLO fixed order corrections, including all top quark mass

effects, have become available [31,32]. The QCD corrections are large, typically doubling
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the cross section from LO to NLO, with another ∼ 20% increase going from NLO

to NNLO. The threshold resummation corrections for Higgs boson pair production at

NNLL [33] further increase the rate. We presents the numerical results in section 1.5

when we presents also the uncertainties.

1.4 The validity of the LET approximation

As we have been discussed in the section 1.2, the LET is a powerful instruments to

calculate the matrix element in the contest of the Higgs physics. However it’s necessary

to discuss the validity of the LET in our calculation, in particular it is quite sensitive

to the hadronic center-of-mass energy and to the choice of the renormalization and

factorization scales [34]. In the case of single Higgs production, the LET result gives a

quite accurate estimate of the cross section, indeed the region above
√
ŝ > 2mt threshold

don’t contributes significantly to the hadronic cross section. On the contrary for the

double production the region up to
√
ŝ ∼ 600 − 700 contributes significantly to the

hadronic cross section. In this latter region the vanishing external momenta condition

is obviously not satisfied and therefore the result obtained in this approximation is

unreliable.

The inclusion of more terms in a large top-mass expansion of the form factors does

not improve the evaluation of the LO cross section [34,35] and it’s evident in Fig.1.5 [28].

Here there’s the partonic cross section as a function of
√
ŝ. The exact cross section (solid

black line), σ
(0)
ex , is compared with the approximated ones (dashed colored lines), σ

(0)
app,n,

obtained using for the form factors the expansions to the order n. An estimate of the

hadronic cross section from eq. (1.3.1) based on the use of σ
(0)
app,n depends on the relative

weights in the hadronic integral of the regions where σ
(0)
app,n < σ

(0)
ex vs. σ

(0)
app,n > σ

(0)
ex and

how these two regions can compensate each other. With the increase in the hadronic

energy, regions with larger
√
ŝ are going to contribute more to the hadronic cross section,

so that the LET approximation is going to grow in size and therefore become either

closer to the full cross section or overestimating it. For instance for
√
s = 100 TeV the

LET result overestimates the full cross section by a factor ∼ 2.2. Figure 1.5 indicates

that an estimate of the LO hadronic cross section obtained employing the large-mass

expanded results in the entire range of partonic energies is not going to be realistic.

We arrive at the same conclusions for the hadronic cross section, as it can see in the

Fig. 1.6, where we have the hadronic cross section as function of the invariant mass.

The inclusion of the O(m−2
t ) corrections does not significantly improve the low energy

theorem results. The m−4
t terms fail entirely in reproducing the exact distribution, in
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particular at large values of MHH .

To conclude, for what it concerns the double production, in the region
√
ŝ . 2mt

the LET result approximates relatively well the exact result but it fails in describing the

region
√
ŝ > 2mt, that from a physical top of mass mt ∼ 173 GeV implies

√
ŝ & 450

GeV. The sum of the first five terms in the large top-mass expansion reproduces quite

well the exact results when
√
ŝ . 400 GeV while the region

√
ŝ > 400 GeV is described

very badly, worse than in the LET case.

1.5 Theoretical uncertainties

The theoretical uncertainties on the inclusive cross section of the gluon fusion process

will be estimated by taking into account the following sources of error [12]:

1. the scale uncertainty, due to the missing higher order contributions and estimated

by varying the renormalization scale µR and the factorization scale µF ;

2. the PDFs and related αs errors. The PDFs are evaluated starting with a parametriza-
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Figure 1.6: Invariant mass distributions for LO Higgs pair-production at
√
s = 8 TeV

and
√
s = 14 TeV, for terms in the large mass expansion up to O(m−4

t ) (dashed lines),
with the LET (dotted red line) and with the exact cross section (solid line).

tion at low scale Q0 respect to the Bjorken variable x, and using the DGLAP

equations they are obtained at any scale and any x. Since the PDFs are fitted

from the data, they depend on the choice of the data sets and the treatment of the

errors on the data, as well as on the parametrization. Also the αs are fitted from

data, in general togheter with the PDF.

3. the error due to the heavy quark mass approximation for the calculation of the

higher order corrections.

The central value of the scales are now fixed [36] to µ0 = M2
hh/2 with the restriction

1/2 < µR/µF < 2. This choice has numerical importance in order to minimize the

threshold resummation. The scale uncertainties are ∼ 4− 6%.

The parametrization of the parton distribution functions is another source of theoretical

uncertainty. A possibility might be to compare different parameter sets. In particular

the PDF4LHC15 [37] combine this sets: CT10 [38], MMHT14 [39] and NNPDF3.0 [40].

In addition to the PDF uncertainties, there is also an uncertainty due to the errors on

the value of the strong coupling constant αs. In ref. [37], both at NLO and NNLO, is

being used the following value of αs(m
2
Z) and its associated uncertainty:

αs(m
2
Z) = 0.1180± 0.0015 . (1.5.1)

The PDF + αs uncertainties are determined by first computing the PDF uncertainty

for the central αs then computing predictions for the upper and lower values of αs,
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consistently using the corresponding PDF sets, and finally adding results in quadrature.

The NNLL threshold resummed cross sections are combined consistently with the fixed

order NNLO results in Table 1.1, with the rate being weighted by the exact LO finite mt

result normalized to the mt →∞ LO result. This is the HEFT approximation. For all

the predictions we use the PDF4LHC15 nnlo mc proton PDF set that is recommended by

the PDF4LHC group [37]. The inclusion of the mass effects reduces the NLO rate by an

energy dependent factor which can be parametrized as

σ(gg → hh)exactNLO = σ(gg → hh)HEFTNLO (1 + δt) , (1.5.2)

where, using mt = 173 GeV,

δt(7 )TeV = −9.94% (1.5.3)

δt(8 )TeV = −10.88% (1.5.4)

δt(13 )TeV = −13.72% (1.5.5)

δt(14 )TeV = −14.11% . (1.5.6)

The top mass effects can be included consistently by writing our final result as

σ′NNLL = σNNLL + δtσ
HEFT
NLO , (1.5.7)

where σNNLL is given in Table 1.1. This prescription amounts to subtracting 5.49 fb

from the 14 TeV, 4.50 fb from the 13 TeV, 1.02 fb from the 8 TeV and 0.64 fb from the

7 TeV numbers of Table 1.1 . (We note that Table 1.1 uses mt = 172.5 GeV, so there is a

slight mis-match in the mt values.) Furthermore, we neglect any possible mh dependence

of δt. The results are given in Table 1.2 and correspond to the convention of Eq. 1.5.7.

We arbitrarily assume a top mass uncertainty of ±5% from unknown top quark mass

effects at NNLO, and do not include a theoretical error on δt.

18



Table 1.1: NNLL matched to NNLO cross sections for gg → hh with a central scale
µ0 = M2

hh/2 with mh = 124.5 GeV, mh = 125 GeV, mh = 125.09 GeV and mh =
125.5 GeV [33] computed in the HEFT approximation. The uncertainties from top
quark mass effects are not included in this table. Uncertainties are evaluated using the
PDF4LHC recommendation and are based on the PDF4LHC15 nnlo mc set.

mh = 124.5 GeV σNNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.772 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 11.26 +4.1− 5.7 ±3.0 ±2.6
√
s = 13 TeV 38.20 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 45.34 +4.4− 6.0 ±2.1 ±2.2

mh = 125 GeV σNNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.718 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 11.18 +4.1− 5.7 ±3.1 ±2.6
√
s = 13 TeV 37.95 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 45.05 +4.4− 6.0 ±2.1 ±2.2

mh = 125.09 GeV σNNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.708 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 11.17 +4.1− 5.7 ±3.1 ±2.6
√
s = 13 TeV 37.91 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 45.00 +4.4− 6.0 ±2.1 ±2.2

mh = 125.5 GeV σNNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.663 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 11.11 +4.1− 5.7 ±3.1 ±2.6
√
s = 13 TeV 37.71 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 44.76 +4.4− 5.9 ±2.1 ±2.2
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Table 1.2: NNLL matched to NNLO cross sections for gg → hh including top quark mass
effects to NLO [31] with a central scale µ0 = M2

hh/2 with mh = 124.5 GeV, mh = 125 GeV,
mh = 125.09 GeV and mh = 125.5 GeV [33]. Uncertainties are evaluated using the
PDF4LHC15 recommendation and are based on the PDF4LHC15 nnlo mc set.

mh = 124.5 GeV σ′NNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.132 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 10.24 +4.1− 5.7 ±3.0 ±2.6
√
s = 13 TeV 33.78 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 39.93 +4.4− 6.0 ±2.1 ±2.2

mh = 125 GeV σ′NNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.078 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 10.16 +4.1− 5.7 ±3.1 ±2.6
√
s = 13 TeV 33.53 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 39.64 +4.4− 6.0 ±2.1 ±2.2

mh = 125.09 GeV σ′NNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.068 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 10.15 +4.1− 5.7 ±3.1 ±2.6
√
s = 13 TeV 33.49 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 39.59 +4.4− 6.0 ±2.1 ±2.2

mh = 125.5 GeV σ′NNLL(fb) Scale Unc. (%) PDF Unc. (%) αs Unc. (%)
√
s = 7 TeV 7.023 +4.0− 5.7 ±3.4 ±2.8
√
s = 8 TeV 10.09 +4.1− 5.7 ±3.1 ±2.6
√
s = 13 TeV 33.29 +4.3− 6.0 ±2.1 ±2.3
√
s = 14 TeV 39.35 +4.4− 5.9 ±2.1 ±2.2
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Chapter 2

Double Higgs production at NLO

in the MSSM

In SUSY, single particle states are included in irreducible representations of the super

algebra. These representations contain both fermionic and bosonic degrees of freedom.

Supersymmetric transformations convert fermions into bosons and vice versa. The SUSY

generators commute with gauge transformations, which make the bosons and the fermions

in one supersymmetric multiplet identical in quantum numbers and mass. In addition to

symmetry considerations, SUSY is motivated by the fact that many shortcomings of the

SM can be solved.

For instance, one of the main motivations for low-energy SUSY is, that the quadratic

dependence of the Higgs boson mass on the cut-off is cured. In a supersymmetric theory,

bosonic loops exactly cancel all fermionic loop contributions in the Higgs boson mass. In

contrast to the prediction of degenerate masses for the members of one supermultiplet,

none of the superpartners have been observed yet. Hence, SUSY must be broken. If

SUSY is broken softly, meaning that no SUSY breaking operators of dimension four

or higher are added in the SUSY breaking part, the Higgs mass corrections are only

logarithmically divergent, and not quadratically as in the SM. A moderate amount of

fine-tuning will, however, be introduced due to the current bounds from direct searches

for SUSY particles. In order to break SUSY, the Lagrangian has to be extended by terms

parameterizing this breaking. The coefficients of the soft-SUSY breaking operators in the

Lagrangian are in general treated as unknown parameters. This means, that many new

parameters are introduced into the theory. The number of parameters can be reduced by

assumptions on the SUSY breaking mechanism.

In supersymmetric extensions of the SM new renormalizable operators can arise leading
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to proton decay, which has not been observed so far. Such operators can be forbidden if

a discrete symmetry, called R-parity, is introduced. Superpartners get different charges

under R-parity. If R-parity is indeed preserved, the lightest SUSY particle (LSP) is

stable. In case the LSP is uncharged and colourless, it provides a natural candidate for

Dark Matter. Additional benefits of SUSY are the successful unification of the gauge

couplings and a dynamical mechanism for electroweak symmetry breaking. In most SUSY

models, the sign of the Higgs boson mass squared parameter is driven to negative values

by renormalization group running, whereas the signs of the other mass parameters stay

positive.

In the minimal supersymmetric extension of the SM (MSSM) the Higgs sector consists

of two SU(2) doublets, H1 and H2, whose relative contribution to electroweak (EW)

symmetry breaking is determined by the ratio of vacuum expectation values (VEVs) of

their neutral components, tanβ ≡ v2/v1. The spectrum of physical Higgs bosons is richer

than in the SM, consisting of two neutral scalars, h and H, one neutral pseudoscalar, A,

and two charged scalars, H±. The couplings of the scalars to matter fermions and gauge

bosons, as well as their self-couplings, differ in general from the SM ones. However, in

the so-called decoupling limit of the MSSM Higgs sector, mA � mZ, the lightest scalar

h has SM-like couplings and can be identified with the particle discovered at the LHC,

with mh ≈ 125 GeV [41].

In the contest of the Higgs physics, the SUSY effects could be discovery for example in

Higgs production as indirect signal. The dominant mechanism for Higgs pair production

in the MSSM is gluon fusion, like in the SM, mediated by loops involving the top and

bottom quarks and in this case also their superpartners, the stop and sbottom squarks.

The triangle form factor1 that contributes to the production of a scalar pair at the NLO

can again be borrowed from the calculation of single-scalar production. In particular,

the contributions of two-loop diagrams involving only quarks and gluons can be adapted

from the corresponding SM results [42–45] via a rescaling of the Higgs-quark couplings.

The contributions of two-loop diagrams involving only squarks and gluons are fully

known [44–47]. In contrast, an exact calculation of the two-loop diagrams involving

quarks, squarks and gluinos – which can involve up to five different masses – is still

missing. Calculations based on a combination of numerical and analytic methods were

presented in refs. [48,49], but neither explicit formulae nor computer codes implementing

the results of those calculations have been made available so far. Approximate results

1In the MSSM, loop topologies other than triangle and box contribute to scalar pair production, due
to the existence of quartic interactions involving squarks. With a slight abuse of language, in the following
we denote as “triangle” all diagrams that involve the s-channel exchange of a single scalar, and as “box”
all of the remaining diagrams.
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for the quark-squark-gluino contributions can however be obtained in the presence of

some hierarchy between the relevant masses. The top-stop-gluino contributions were

computed in the vanishing Higgs-mass limit (VHML) in refs. [50–52], and both the

top-stop-gluino and bottom-sbottom-gluino contributions were computed in the limit of

heavy superparticles – but without assuming a hierarchy between the Higgs mass and

the quark mass – in refs. [53–55]. In particular, the calculation in ref. [52] relied on a

low-energy theorem (LET) to provide explicit and compact analytic formulae for the

top-stop-gluino contributions to the triangle form factor in the VHML. For what concerns

the box form factor, in the MSSM the contributions of one-loop diagrams involving

quarks differ from their SM counterparts by a rescaling of the Higgs-quark couplings,

and their calculation must be extended to account for the possibility of two different

scalars in the final state [29]. The contributions of one-loop diagrams involving squarks

have been computed in refs. [56,57] (see also ref. [58]). Going beyond the LO calculation,

the contributions of two-loop diagrams involving top quarks and gluons in the heavy-top

limit can be adapted from the corresponding SM results via a rescaling of the Higgs-top

couplings [23]. On the other hand, the diagrams involving bottom quarks – whose effect

is negligible in the SM, but can become relevant in the MSSM where at least one of the

scalars has tanβ-enhanced couplings to down-type quarks – are known only at one loop,

because the heavy-quark limit adopted in the existing NLO calculations cannot, of course,

be applied to them. Finally, no calculation of the contributions to the box form fac-

tor from two-loop diagrams involving squarks has, to our knowledge, been presented so far.

This chapter is organised as follows: we present in 2.1 and in 2.2 the complete

NLO-QCD determination of the production of a pair of Higgs scalars in the MSSM,

evaluated with the LET, taking a step towards a complete NLO-QCD determination,

based on our work [59]. Finally in the section 2.3 we show the numerical results of our

calculation, pointing out that the two-loop squark contributions can have non-negligible

effects in MSSM scenarios with stop masses below the TeV scale. We also show in

appendix C how our results can be adapted to the case of Higgs pair production in the

NMSSM.
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2.1 Higgs pair production via gluon fusion at NLO in the

MSSM

In this section we recapitulate some general results on the gluon-fusion production of

a pair of neutral Higgs scalars, denoted as φ and χ (each of them can be either h or

H). Some equations are similar respect to sections 1.3, but now are generalized for the

MSSM, then for clarity we repeat some relations. The hadronic cross section for the

process h1 + h2 → φ+ χ+X at center-of-mass energy
√
s can be written as

M2
φχ

dσ

dM2
φχ

=
∑
a,b

∫ 1

0
dx1dx2 fa,h1(x1, µF ) fb,h2(x2, µF )

∫ 1

0
dz δ

(
z −

M2
φχ

ŝ

)
M2
φχ

dσ̂ab
dM2

φχ

,

(2.1.1)

where: M2
φχ is the invariant mass of the φ+ χ system; fa,hi(x, µF ) is the density for the

parton of type a (with a = g, q, q) in the colliding hadron hi; µF is the factorization scale;

ŝ = s x1 x2 is the partonic center-of-mass energy; σ̂ab is the cross section for the partonic

subprocess ab→ φ+ χ+X. The partonic cross section can be written in terms of the

LO contribution σ
(0)
φχ as

M2
φχ

dσ̂ab
dM2

φχ

= σ
(0)
φχ z Gab(z) . (2.1.2)

The LO cross section is

σ
(0)
φχ =

1

1 + δφχ

G2
F α

2
s(µR)

256 (2π)3

∫ t̂+

t̂−

dt̂

(∣∣∣Fφχ, 1`∣∣∣2 +
∣∣∣Gφχ, 1`∣∣∣2) , (2.1.3)

where: GF is the Fermi constant; αs(µR) is the strong gauge coupling expressed in the

MS renormalization scheme at the scale µR; the Mandelstam variables of the partonic

process, t̂ and (for later convenience) û, are defined as

t̂ = −1

2

(
M2
φχ −m2

φ −m2
χ − cos θ

√
λ(M2

φχ,m
2
φ,m

2
χ)
)
, (2.1.4)

û = −1

2

(
M2
φχ −m2

φ −m2
χ + cos θ

√
λ(M2

φχ,m
2
φ,m

2
χ)
)
, (2.1.5)

with θ the scattering angle in the partonic center-of-mass system, and

λ(x, y, z) = (x− y − z)2 − 4yz . (2.1.6)
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The integration limits in eq. (2.1.3) are given by

t̂± = −1

2

(
M2
φχ −m2

φ −m2
χ ∓

√
λ(M2

φχ,m
2
φ,m

2
χ)
)
, (2.1.7)

corresponding to cos θ = ±1. Finally, in eq. (2.1.3), where obviously we obtain the same

structure like in the SM in eq. 1.3.11, indeed Fφχ, 1` and Gφχ, 1` represent the one-loop

parts of the spin-zero and spin-two form factors for the process gg → φχ, respectively.

While the spin-two form factor Gφχ receives only contributions from box diagrams, the

spin-zero form factor Fφχ can be decomposed in box and triangle contributions as:

Fφχ = F φχ� + Chφχ∆ F h∆ + CHφχ∆ FH∆ . (2.1.8)

In particular, F φχ� contains the spin-zero part of the box diagrams, while F h∆ (FH∆ ) contains

the contribution of the triangle diagrams for the production of an off-shell scalar h (H)

which subsequently decays into the pair φχ through the factor Chφχ∆ (CHφχ∆ ), defined as

Chφχ∆ = λhφχ
m2
Z

M2
φχ −m2

h + imh Γh
, (2.1.9)

where λhφχ is the trilinear scalar coupling 2 and Γh is the width of the scalar h (in turn,

CHφχ∆ is obtained from eq. (2.1.9) with the replacement h→ H). The form factor F φ∆ is

decomposed in one- and two-loop parts as

F φ∆ = F φ, 1`∆ +
αs
π
F φ, 2`∆ + O(α2

s) , (2.1.10)

and analogous decompositions hold for F φχ� , Fφχ and Gφχ.

The coefficient function Gab(z) in eq. (2.1.2) can in turn be decomposed, up to NLO

terms, as

Gab(z) = G
(0)
ab (z) +

αs
π
G

(1)
ab (z) + O(α2

s) , (2.1.11)

with the LO contribution given only by the gluon-fusion channel:

G
(0)
ab (z) = δ(1− z) δag δbg . (2.1.12)

The NLO terms include, besides the gg channel, also the one-loop induced processes

gq → qφχ and qq → gφχ. The gg-channel contribution, involving two-loop virtual

2We normalize all trilinear Higgs couplings to λ0 = m2
Z/v, with v = (

√
2GF )−1/2 ≈ 246 GeV.
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corrections to gg → φχ and one-loop real corrections from gg → φχg, can be written as

G(1)
gg (z) = δ(1− z)

CA π2

3
+ β0 ln

(
µ2
R

µ2
F

)
+

∫ t+
t−
dt̂
(
CφχNLO + h.c.

)
∫ t̂+
t̂−
dt̂
(
|Fφχ, 1`|2 + |Gφχ, 1`|2

)


+ Pgg(z) ln

(
ŝ

µ2
F

)
+ CA

4

z
(1− z + z2)2D1(z) + CARgg , (2.1.13)

where

CφχNLO =
(
Fφχ, 1`

)∗ (
Fφχ, 2` + Fφχ∆∆

)
+
(
Gφχ, 1`

)∗ (
Gφχ, 2` + Gφχ∆∆

)
. (2.1.14)

The first line of eq. (2.1.13) displays the two-loop virtual contribution regularized by

the infrared singular part of the real-emission cross section. The second line contains

the non-singular contribution from the real gluon emission in the gluon-fusion process.

The function Rgg is obtained from one-loop diagrams where only quarks or squarks

circulate into the loop, and in the limit of vanishing external momenta it becomes

Rgg → −11(1 − z)3/(6z). The form factors Fφχ∆∆ and Gφχ∆∆ in eq. (2.1.14) represent the

contributions of two-loop double-triangle diagrams with t/u-channel gluon exchange.

In the limit of vanishing external momenta, the double-triangle form factors can be

expressed in terms of the one-loop triangle form factors:

Fφχ∆∆ −→
pi=0

1

2
F φ,1`∆ Fχ,1`∆ , Gφχ∆∆ −→

pi=0
− p2

T

4 t̂û
(M2

φχ−m2
φ−m2

χ)F φ,1`∆ Fχ,1`∆ , (2.1.15)

with

p2
T =

(
t̂−m2

φ

)(
û−m2

φ

)
M2
φχ

− m2
φ . (2.1.16)

Finally, the contributions of the gq → qφχ and qq → gφχ channels are given by:

G
(1)
qq (z) = Rqq , G(1)

qg (z) = Pgq(z)

[
ln(1− z) +

1

2
ln

(
ŝ

µ2
F

)]
+Rqg , (2.1.17)

where

Pgq(z) = CF
1 + (1− z)2

z
. (2.1.18)

The functions Rqq and Rqg in (2.1.17) are obtained from one-loop quark and squark

diagrams, and in the limit of vanishing external momenta become Rqq → 32 (1−z)3/(27z),

Rqg → 2 z/3− (1− z)2/z.
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Finally, a brief comment in order to illustrate the differences between SM and MSSM

cross section. As just mentioned in the introduction, the big difference between SM and

MSSM, for the double Higgs production, is the presence in the loop of top and bottom

superpartners. In the next sections we calculate the form factors with LET, then the

form factors in eq. (2.1.3) will be very more complicated respect to the SM, eq. (1.3.11).

This is true at LO and NLO but in the latter case we must consider also the contributions

of the gluino. Indeed in eq. (2.1.13) have the same structure of eq. (1.3.12) but in the

function CφχNLO are now presents the stop,sbottom and gluino contributions. Whereas for

the real channel the functions Rgg, Rqq and Rqg present the same dependence to z.

2.2 Box form factors in the limit of vanishing external mo-

menta

As already mentioned, exact results for the one-loop form factors Fφχ, 1` and Gφχ, 1` which

determine the cross section for Higgs pair production at the LO have been known for a

long time, both for the SM [22] and for the MSSM [29,56, 57]. At two loops, the triangle

contributions to the form factors can be borrowed from the calculation of the cross section

for single Higgs production. However, explicit formulae for the contributions of triangle

diagrams involving quarks, squarks and gluinos are available only in approximate form,

assuming the existence of some hierarchy among the relevant masses and momenta [50–55].

Two-loop results for the box contributions to the form factors are known only for the

diagrams involving top quarks and gluons, and only in the heavy-top limit [23].

In this section we present a novel calculation of the contributions of diagrams involving

top quarks and stop squarks to the box component F φχ� of the spin-zero form factor Fφχ,

up to the two-loop order. We restrict our calculation to the limit of vanishing external

momenta, which, for the top-gluon contribution alone, corresponds to the heavy-top

limit. Note that the corresponding triangle component F φ∆ can be extracted from ref. [52],

and that the spin-two form factor Gφχ vanishes in the zero-momentum limit. We also

present results for the contributions of the diagrams involving sbottom squarks, under the

additional approximation of vanishing bottom mass. Finally, we show how the formulae

for the two-loop part of the form factors are affected by a change in the renormalization

scheme of the parameters entering the one-loop part.

It is convenient to decompose the triangle and box form factors for the production
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of scalar mass eigenstates as

F h∆ = −TF [− sinαH1 + cosαH2] , (2.2.1)

FH
∆ = −TF [ cosαH1 + sinαH2] , (2.2.2)

F hh� = −TF
[
sin2 αH11 + cos2 αH22 − 2 sinα cosαH12

]
, (2.2.3)

FHH
� = −TF

[
cos2 αH11 + sin2 αH22 + 2 sinα cosαH12

]
, (2.2.4)

F hH� = −TF
[
(cos2 α− sin2 α)H12 − sinα cosα (H11 −H22)

]
, (2.2.5)

where TF = 1/2 is a color factor (we make it explicit to follow the notation of ref. [52]),

the angle α relates the scalar mass eigenstates, h and H, to the real parts of the neutral

components of the two MSSM Higgs doublets, S1 and S2,(
H

h

)
=

(
cosα sinα

− sinα cosα

) (
S1

S2

)
, (2.2.6)

and Hi and Hij , with i, j = (1, 2), are form factors in the interaction basis. As mentioned

above, the form factors Hi were computed in refs. [52, 53, 55] for single Higgs production.

Finally, we further decompose the form factors Hij into top/stop and bottom/sbottom

contributions, Hij = Htij + Hbij .

2.2.1 Top/stop contributions via the low-energy theorem

In our derivation of the top/stop contributions to the box form factors we rely on the

same LET for Higgs interactions [25–27] that was employed in ref. [52] for the calculation

of the top/stop contribution to the triangle form factors. We have just discussed the

LET in 1.2 simply in the case of single production in SM, where we make a single

derivative respect to the Higgs field. In our case, the LET connects the form factor for

the interactions of two gluons with two Higgs scalars at vanishing external momenta

to the second derivatives of the gluon self-energy with respect to the Higgs scalars. In

particular, we can write the top/stop contributions to the form factors in the interaction

basis as

Htij =
2π v2

αs TF

∂Πt(0)

∂Si ∂Sj
, (2.2.7)

where Πt(q2) denotes the top/stop contribution to the transverse part of the dimensionless

(i.e., divided by q2) self-energy of the gluon. In analogy with the effective-potential
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calculation of the MSSM Higgs masses in ref. [60] and with the LET calculation of single

Higgs production in ref. [52], the dependence of the gluon self-energy on the Higgs fields

Si can be identified through the field dependence of the top mass mt, the stop masses

m2
t̃1

and m2
t̃2

and the stop mixing angle θt, defined as(
t̃1

t̃2

)
=

(
cos θt sin θt

− sin θt cos θt

) (
t̃L

t̃R

)
. (2.2.8)

A lengthy but straightforward application of the chain rule for the derivatives allows us

to express the form factors as

Ht11 =
2m2

t

sin2 β

[
1

2
µ2 s2

2θt F3 +
µ2

m2
t̃1
−m2

t̃2

F

]

+ 4m2
Z

[
mt µ cotβ s2θt F̃2 + m2

Z cos2 β F̃3 +
1

2
D

]
, (2.2.9)

Ht12 =
2m2

t

sin2 β

[
µmt s2θt F2 +

1

2
µAt s

2
2θt F3 +

µAt
m2
t̃1
−m2

t̃2

F

]

+ 4m2
Z

[
m2
t cotβ F̃1 +

1

2
mt (At cotβ − µ) s2θt F̃2 − m2

Z sinβ cosβ F̃3

]
,

(2.2.10)

Ht22 =
2m2

t

sin2 β

[
2m2

t F1 + 2mtAt s2θt F2 +
1

2
A2
t s

2
2θt F3 +

A2
t

m2
t̃1
−m2

t̃2

F + G

]

+ 4m2
Z

[
− 2m2

t F̃1 −mtAt s2θt F̃2 + m2
Z sin2 β F̃3 −

1

2
D

]
, (2.2.11)

where At is the trilinear soft-SUSY breaking Higgs-stop coupling, µ is the Higgs/higgsino

mass term in the superpotential (with the sign convention of refs. [52,60]), and we define

s2θt ≡ sin 2θt and, for later convenience, c2θt ≡ cos 2θt. We note that the first line of each

equation contains contributions from diagrams in which the Higgs scalars interact only via

the top Yukawa coupling, whereas the second line contains sub-dominant contributions

from diagrams in which one or both Higgs scalars interact with the squarks via a D-term

induced EW coupling. The functions Fi, F , G, F̃i and D are combinations of the first

and second derivatives of the gluon self-energy with respect to the parameters m2
t , m

2
t̃1

,
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m2
t̃2

and c2
2θt

. At one loop, the functions in the first lines of eqs. (2.2.9)–(2.2.11) read

F 1`
1 =

1

6

(
1

m4
t̃1

+
1

m4
t̃2

+
4

m4
t

)
, F 1`

2 =
1

6

(
1

m4
t̃1

− 1

m4
t̃2

)
,

F 1`
3 =

1

6

(
1

m4
t̃1

+
1

m4
t̃2

− 2

m2
t̃1
m2
t̃2

)
, (2.2.12)

F 1` = −1

6

(
1

m2
t̃1

− 1

m2
t̃2

)
, G1` = −1

6

(
1

m2
t̃1

+
1

m2
t̃2

+
4

m2
t

)
, (2.2.13)

and those in the second lines read

F̃ 1`
1 =

dtL + dtR
12

(
1

m4
t̃1

+
1

m4
t̃2

)
+ c2θt

dtL − dtR
12

(
1

m4
t̃1

− 1

m4
t̃2

)
, (2.2.14)

F̃ 1`
2 =

dtL + dtR
12

(
1

m4
t̃1

− 1

m4
t̃2

)
+ c2θt

dtL − dtR
12

(m2
t̃1
−m2

t̃2
)2

m4
t̃1
m4
t̃2

, (2.2.15)

F̃ 1`
3 =

(dtL)2 + (dtR)2

12

(
1

m4
t̃1

+
1

m4
t̃2

)
− s2

2θt

(dtL − dtR)2

24

(m2
t̃1
−m2

t̃2
)2

m4
t̃1
m4
t̃2

+ c2θt

(dtL)2 − (dtR)2

12

(
1

m4
t̃1

− 1

m4
t̃2

)
, (2.2.16)

D1` = −d
t
L + dtR

12

(
1

m2
t̃1

+
1

m2
t̃2

)
− c2θt

dtL − dtR
12

(
1

m2
t̃1

− 1

m2
t̃2

)
, (2.2.17)

where

dtL =
1

2
− 2

3
sin2 θW , dtR =

2

3
sin2 θW , (2.2.18)

θW being the Weinberg angle.

It’s evident, for the box form factor, that the SM contribution is only presents in the

form factor in 2.2.11, in particular in the functions F1 in eq. (2.2.12) and G in eq. (2.2.13).

The triangle SM contribution, indeed, is located in eq. (2.2.1) in the form factor H2.

In appendix A we provide the explicit definitions of the two-loop functions F 2`
i , F 2`,

G2`, F̃ 2`
i and D2` in terms of the derivatives of the gluon self-energy. For the latter, we

define the shortcut Z ≡ (2/TF ) Π2`, t(0), after decomposing the gluon self-energy in one-
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and two-loop parts as

Π(q2) =
αs
π

Π1`(q2) +
(αs
π

)2
Π2`(q2) + O(α3

s) . (2.2.19)

Analytic formulae for the first derivatives of Z, computed under the assumption that

the one-loop part of the gluon self-energy is expressed in terms of DR-renormalized

top/stop parameters, were given in ref. [52]. Indeed, the functions F , G and D entering

eqs. (2.2.9)–(2.2.11) coincide with those defined in that paper for the case of single

Higgs production. Analytic formulae for the second derivatives of Z, which enter the

functions Fi and F̃i , can be easily obtained from those for the first derivatives, using the

recursive relations for the derivatives of the two-loop function Φ(m2
1,m

2
2,m

2
3) given e.g. in

appendix A of ref. [61]. However, those formulae are too lengthy to be given explicitly in

print, thus we make our results available upon request as a Fortran routine.

2.2.2 Bottom/sbottom contributions for vanishing bottom mass

The LET employed in the previous section to compute the top/stop contributions to the

box form factors relies on the assumption that the external momenta are negligible with

respect to the masses of all particles running in the loops. Obviously, this assumption

cannot hold for the contributions involving bottom quarks, nor for those involving

quarks of the first two generations. In ref. [53] the bottom/sbottom contributions to

single Higgs production were computed with an asymptotic expansion in the heavy

supersymmetric masses (which we collectively denote by M), up to terms that induce

O(m2
b/m

2
φ), O(mb/M) and O(m2

Z/M
2) contributions to the triangle form factors. In

the calculation of the bottom/sbottom contributions to the box form factors we follow

the same approach as in ref. [53], but we make the further approximation that the

bottom mass and the left-right mixing in the sbottom mass matrix are set to zero (i.e.,

mb = θb = 0), effectively killing the Yukawa-induced interactions between Higgs bosons

and bottom (s)quarks.3 This leaves us with the contributions of diagrams in which the

Higgs bosons interact with the squarks b̃L and b̃R only via D-term induced EW couplings,

which are parametrically of the same order as the terms involving the functions F̃3 and

3Since the sbottom mixing contains a tanβ-enhanced term, this might not be a good approximation
at large tanβ.
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D in the top/stop contributions, eqs. (2.2.9)–(2.2.11). In particular, we find

Hb11

∣∣∣
D-term

= 4m4
Z cos2 β F̃3 b + 2m2

Z Db , (2.2.20)

Hb12

∣∣∣
D-term

= − 4m4
Z sinβ cosβ F̃3 b , (2.2.21)

Hb22

∣∣∣
D-term

= 4m4
Z sin2 β F̃3 b − 2m2

Z Db . (2.2.22)

The one-loop parts of the functions F̃3 b and Db read, in this approximation,

F̃ 1`
3 b =

(dbL)2

6m4
b̃L

+
(dbR)2

6m4
b̃R

, D1`
b = − dbL

6m2
b̃L

− dbR
6m2

b̃R

, (2.2.23)

where

dbL = −1

2
+

1

3
sin2 θW , dbR = −1

3
sin2 θW . (2.2.24)

We obtained the two-loop parts of the functions F̃3 b and Db by explicit computation

of the relevant two-loop diagrams, setting mb = θb = 0 from the start and taking the

first non-vanishing term of an asymptotic expansion in the heavy superparticle masses

(for an outline of this approach, see section 3 of ref. [53]). Under the assumption that the

one-loop parts of the form factors are expressed in terms of DR-renormalized sbottom

masses at the scale Q, we get

F̃ 2`
3 b = (dbL)2

[
CF

12m4
g̃

(
−4 + 17xL − 29x2

L + 19x3
L − 3x4

L

(1− xL)3 x3
L

+
4

x3
L

ln
m2
g̃

Q2
xL

)

− 4

(1− xL)3
lnxL +

CA
12m4

g̃

(
1− 3xL

(1− xL)2 x2
L

− 2

(1− xL)3
lnxL

)]
+ (L→ R) ,

(2.2.25)

D2`
b = dbL

[
− CF

12m2
g̃

(
−2 + 9xL − 10x2

L + 3x3
L

(1− xL)2 x2
L

+
2

x2
L

ln
m2
g̃

Q2
+

2

(1− xL)2
lnxL

)

− CA
12m2

g̃

(
1

(1− xL)xL
+

1

(1− xL)2
lnxL

)]
+ (L→ R) , (2.2.26)

with xL,R = m2
b̃L,R

/m2
g̃ and the notation (L → R) means a term that is obtained from

the previous one with the exchanges xL → xR and dbL → dbR. We find that, when

mb = θb = 0, there are no infrared-divergent parts in the two-loop bottom/sbottom

diagrams, therefore our results could also be obtained as the first non-vanishing term of
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a Taylor expansion of those diagrams in the external momenta. On the other hand, we

stress that our results cannot be obtained by setting mt = θt = 0 in the LET results for

the top/stop contributions, because the latter rely on the assumption that the external

momenta are much smaller than the quark mass. Finally, the contributions of the first

two generations of quarks and squarks can be obtained, by means of trivial substitutions,

from eqs. (2.2.9)–(2.2.11) and from the results presented in this section.

2.2.3 Change of renormalization scheme

The results presented in sections 2.2.1 and 2.2.2 were obtained under the assumption

that the parameters entering the one-loop part of the form factors are expressed in the

DR renormalization scheme. If a different scheme is used, the two-loop part of the form

factor receives a shift

H2`
ij −→ H2`

ij +
π

αs
δHij , (2.2.27)

where δHij is a function of the shifts of all the parameters in the one-loop part of the

form factor that are subject to O(αs) corrections.4

In the top/stop sector, the parameters that need shifting are the top mass, the stop

masses, the stop mixing angle and the trilinear coupling At. In particular, the shifts of

those parameters to the on-shell (OS) scheme adopted in our numerical discussion can

be found in appendix B of ref. [60]. The shifts δHtij can then be written as

δHt11 =
2m2

t

sin2 β

[
1

2
µ2 s2

2θt δF3 +
µ2

m2
t̃1
−m2

t̃2

δF

]

+ 4m2
Z

[
mt µ cotβ s2θt δF̃2 + m2

Z cos2 β δF̃3 +
1

2
δD

]
, (2.2.28)

4For a generic parameter x, we define the shift from the DR scheme to a generic scheme R as

xDR = xR + δx.
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δHt12 =
2m2

t

sin2 β

[
µmt s2θt δF2 +

1

2
µAt s

2
2θt δF3 +

µAt
m2
t̃1
−m2

t̃2

δF

+
1

2
µ δAt s

2
2θt F

1`
3 +

µ δAt
m2
t̃1
−m2

t̃2

F 1`

]

+ 4m2
Z

[
m2
t cotβ δF̃1 +

1

2
mt (At cotβ − µ) s2θt δF̃2 − m2

Z sinβ cosβ δF̃3

+
1

2
mt δAt cotβ s2θt F̃

1`
2

]
, (2.2.29)

δHt22 =
2m2

t

sin2 β

[
2m2

t δF1 + 2mtAt s2θt δF2 +
1

2
A2
t s

2
2θt δF3 +

A2
t

m2
t̃1
−m2

t̃2

δF +

δG+ 2mt δAt s2θt F
1`
2 + At δAt s

2
2θt F

1`
3 +

2At δAt
m2
t̃1
−m2

t̃2

F 1`

]

+ 4m2
Z

[
− 2m2

t δF̃1 − mtAt s2θt δF̃2 + m2
Z sin2 β δF̃3 −

1

2
δD

−mt δAt s2θt F̃
1`
2

]
, (2.2.30)

where the one-loop parts of the functions F2, F3, F and F̃2 are given in eqs. (2.2.12),

(2.2.13) and (2.2.15), and explicit expressions for the shifts δFi, δF , δG, δF̃i and δD are

given in appendix B.

For what concerns the bottom/sbottom contributions, under the approximation

mb = θb = 0 employed in section 2.2.2 the shifts to the form factors reduce to

δHb11

∣∣∣
D-term

= 4m4
Z cos2 β δF̃3 b + 2m2

Z δDb , (2.2.31)

δHb12

∣∣∣
D-term

= − 4m4
Z sinβ cosβ δF̃3 b , (2.2.32)

δHb22

∣∣∣
D-term

= 4m4
Z sin2 β δF̃3 b − 2m2

Z δDb , (2.2.33)

where

δF̃3 b = − (dbL)2

3m6
b̃L

δm2
b̃L
− (dbR)2

3m6
b̃R

δm2
b̃R
, δDb =

dbL
6m4

b̃L

δm2
b̃L

+
dbR

6m4
b̃R

δm2
b̃R
.

(2.2.34)

If the sbottom masses in the one-loop part of the form factors are expressed in the OS
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scheme, the shift δm2
b̃L

reads, for mb = θb = 0,

δm2
b̃L

m2
b̃L

=
αsCF

2π

[
lnxL − 1 +

1

xL

(
2 ln

m2
g̃

Q2
− 3

)
−
(

1− 1

xL

)2

ln |1− xL|

]
,

(2.2.35)

and the shift δm2
b̃R
/m2

b̃R
can be obtained from eq. (2.2.35) with the replacement xL → xR.

2.3 The effect of SUSY contributions to Higgs pair pro-

duction

In this section we present numerical results for the newly-computed SUSY contributions to

the box form factors, and for their effect on the Higgs-production cross section. We focus

on the process that is most interesting from the point of view of LHC phenomenology,

i.e. the production of a pair of light MSSM scalars hh with mass mh ≈ 125 GeV.

2.3.1 Implementation in HPAIR

For the numerical evaluation of the cross section, we added the contributions of loops

involving superparticles to the code HPAIR [62], whose public version includes by default

the one-loop top- and bottom-quark contributions with full mass dependence [29] and

the QCD corrections to the top-quark contributions in the heavy-top limit [23].

For the LO cross section, we added the one-loop squark contributions to the spin-zero

and spin-two form factors, borrowing from ref. [56] the results with full mass dependence.

At NLO, we included our results for the two-loop stop and (partial) sbottom contributions

in the approximation of vanishing external momenta, derived in section 2.2. In order

to improve on that approximation, the LO cross section factored out of the coefficient

function Gab(z) in eq. (2.1.2) is computed with full dependence on the top and bottom

quark and squark masses. In analogy with the implementation of the top quark loops in

HPAIR, the gg-channel contribution to the NLO coefficient function in eqs. (1.3.12) and
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(1.3.13) – specialized to the production of a hh pair – becomes

G(1)
gg (z) = δ(1− z)

{
CA

π2

3
+ β0 ln

(
µ2
R

µ2
F

)
+ 2 Re

(
Fhh, 2`LET

Fhh, 1`LET

)

+

∫ t+
t−
dt̂ Re

[((
Fhh, 1`

)∗ − p2
T

2t̂û
(M2

hh − 2m2
h)
(
Ghh, 1`

)∗) (
F h, 1`∆ LET

)2
]

∫ t̂+
t̂−
dt̂
(
|Fhh, 1`|2 + |Ghh, 1`|2

)


+ Pgg(z) ln

(
ŝ

µ2
F

)
+ CA

4

z
(1− z + z2)2D1(z) + CARgg , (2.3.1)

where the subscript “LET” denotes form factors computed in the limit of vanishing

external momenta after setting mb = θb = 0. The two-loop SUSY contributions enter the

last term in the first line of eq. (2.3.1), which, if only the top-quark contributions were

considered as in ref. [23], would reduce to a simple coefficient c1 = 11/2. The second line

of eq. (2.3.1) contains the contributions of diagrams with t/u-channel gluon exchange.

Following ref. [23], in those contributions we retain the full momentum dependence in

the one-loop form factors that stem from the LO matrix element, but take the limit of

vanishing external momenta, see eq. (2.1.15), in the double-triangle form factors. We also

remark that in the NLO coefficient of eq. (2.3.1) all form factors – including those with

full momentum dependence – are obtained for mb = θb = 0.

For a precise prediction of the cross section for the production of a pair of MSSM

Higgs bosons, it is essential to include the corrections to the trilinear Higgs couplings,

which can be as significant as the corresponding corrections to the MSSM Higgs masses

and mixing. Indeed, to properly reproduce the decoupling limit in which the lightest

scalar h has a SM-like self-coupling, λSMhhh = 3m2
h/m

2
Z, the corrections to the coupling

should be computed at the same level of accuracy as the corrections to the mass mh.

The trilinear couplings are known at one loop [63–67], but at two loops only the O(αsαt)

corrections have been computed, in the effective-potential approximation, for both the

MSSM [68] and the NMSSM [69]. In contrast, in this analysis we compute the MSSM

Higgs masses and mixing using the code FeynHiggs [70–74], which includes two-loop

corrections beyond the O(αsαt) effective-potential ones. Since we are anyway focusing on

the effects of the SUSY contributions to the gluon-fusion loop, we bypass the calculation

of the corrections to the trilinear couplings by relying on a simplifying approach, known

as “hMSSM”, which was recently proposed in refs. [75–78]. In this approximation one

assumes that the corrections to the elements other than (2, 2) of the Higgs mass matrix

are negligible, i.e. ∆M2
1j ≈ 0 with j = 1, 2. In that case the remaining correction ∆M2

22,
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which includes potentially large logarithmic effects from top/stop loops, can be expressed

in terms of the parameters that determine the tree-level mass matrix (i.e. tanβ, mZ

and the pseudoscalar mass mA) plus the lightest eigenvalue mh, treated as an input

parameter:

∆M2
22 =

m2
h (m2

A +m2
Z −m2

h)−m2
Am

2
Z cos2 2β

m2
Z cos2 β +m2

A sin2 β −m2
h

. (2.3.2)

In this approximation the trilinear couplings relevant to the production of an hh pair

become

λhhh = 3 cos 2α sin (α+ β) + 3
∆M2

22

m2
Z

cos3 α

sinβ
, (2.3.3)

λHhh = 2 sin 2α sin (α+ β) − cos 2α cos (α+ β) + 3
∆M2

22

m2
Z

cos2 α sinα

sinβ
.(2.3.4)

Combining eqs. (2.3.2) and (2.3.3) one can see that in the decoupling limit mA � mZ,

when α → β − π/2, the coupling λhhh does indeed tend to its SM limit. As discussed

e.g. in refs. [79, 80], the approximation of neglecting the corrections ∆M2
1j might not

prove accurate for small mA and rather large µ and tanβ. We will therefore avoid those

choices of parameters in our numerical example.

2.3.2 A numerical example

The SM parameters entering our computation of the cross section for Higgs pair production

are the Z boson mass mZ = 91.1876 GeV, the W boson mass mW = 80.398 GeV, the

Fermi constant GF = 1.16637 · 10−5 GeV−2, the pole top-quark mass mt = 173.2 GeV

and the strong coupling αs(mZ) = 0.119. For the parton distribution functions we use

the MSTW08 set [81–83] with its default LO and NLO values of αs. The hadronic

center-of-mass energy is set to
√
s = 14 TeV. The factorization and renormalization

scales are set to the invariant mass Mhh of the Higgs boson pair.

We use the code FeynHiggs [70–74] to compute the masses and mixing angle of the

Higgs scalars. We consider an MSSM scenario characterized by the following parameters

in the OS renormalization scheme:

tanβ = 10, mA = 500 GeV, µ = −400 GeV, M3 = 1500 GeV,

Xt = 2MS , mt̃L
= mt̃R

= mb̃R
= MS , (2.3.5)

where M3 denotes the soft SUSY-breaking gluino mass, we define Xt ≡ At + µ cotβ,
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and mt̃L
, mt̃R

, and mb̃R
denote the soft SUSY-breaking masses of the third-generation

squarks. We remark that in the OS scheme, where all of the squark masses are considered

as pole masses, the soft SUSY-breaking parameter mb̃L
differs from its stop counterpart

mt̃L
by a finite shift [84, 85].

The parameters in eq. (2.3.5) – as well as the remaining soft SUSY-breaking param-

eters, which are not relevant to our discussion – were chosen in such a way that, for

MS = 500 GeV, they reproduce the light-stop benchmark scenario proposed in ref. [86]

and studied in the context of single-Higgs production in ref. [87]. Our choices of mA

and tanβ ensure that the lightest Higgs scalar h has essentially SM-like couplings to the

top and bottom quarks, and that the contribution of triangle diagrams with s-channel

exchange of the heaviest scalar H is significantly suppressed, allowing us to focus on the

effects of the SUSY contributions to the box form factor. We then vary the squark mass

parameter MS between 500 GeV and 1500 GeV, which results in a lightest stop mass

mt̃1
ranging between 324 GeV and 1326 GeV, and in a prediction by FeynHiggs for mh

ranging between 122.3 GeV and 130.7 GeV.

In figure 2.1 we plot the box form factor F hh� – computed in the vanishing-momentum

limit as described in section 2.2 – as a function of the squark-mass scale MS . The solid

lines correspond to the one-loop (dark blue) and two-loop (light blue) part of the form

factor, including both the top-quark contribution and the squark contributions. The

dashed lines correspond to the one- and two-loop form factors including only the top

contributions. The plot shows that the squark contributions can be relevant for small

squark masses, and they are significantly larger in the two-loop form factor than in the

one-loop form factor. Moreover, the decoupling behaviour of the squark contributions for

large MS appears to be slower at two loops than at one loop. This can be explained by

the occurrence of two-loop terms proportional to m2
t /M

2 ln(M2/m2
t ) (with M denoting

generically a SUSY mass parameter), whereas at one loop all terms decouple at least as

fast as m2
t /M

2.

In figure 2.2 we plot the cross section for the production of a hh pair as a function

of MS , computed as described in section 2.3.1. The dark-blue lines correspond to the LO

cross section, the light-blue lines to the NLO cross section, and again the solid (dashed)

lines correspond to form factors including (not including) the SUSY contributions.5 In

addition, the dotted light-blue line corresponds to the NLO cross section computed

by omitting the SUSY contributions in the two-loop part of the box form factor. The

plot shows that, for the considered choices of MSSM parameters, the squark loops can

significantly contribute to the cross section for relatively small MS , although their effect

5The mild MS dependence of the dashed lines reflects the dependence of mh on the stop masses.
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Figure 2.1: Box form factor F hh� in the vanishing-momentum limit, as a function of
the squark-mass scale MS . Dark-blue lines show the one-loop form factor, light-blue
lines show the two-loop form factor. The dashed lines correspond to the top-quark
contributions alone, whereas the solid lines include also the SUSY contributions.

gets quickly suppressed when MS >∼ 1 TeV. In particular, in the light-stop scenario –

corresponding to the left edge of the plot – for our choices of mA and tanβ the SUSY

contributions increase the NLO cross section for h pair production by more than 30% (in

contrast, ref. [87] showed that they reduce the cross section for the production of a single

SM-like scalar by about 20%). Finally, the comparison between the solid and dotted

light-blue lines shows that the newly-computed two-loop SUSY contributions to the box

form factor account for a non-negligible part of the increase in the pair-production cross

section.
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Figure 2.2: Higgs pair-production cross section σ(pp→ hh) as a function of the squark-
mass scale MS . Dark-blue lines show the LO cross section, light-blue lines show the NLO
cross section. The dashed lines correspond to the quark contributions alone, whereas
the solid lines include also the SUSY contributions. The dotted light-blue line omits the
SUSY contributions to the two-loop box form factor.

2.4 Discussion

Relying on a low-energy theorem that connects the Higgs-gluon interactions to the

derivatives of the gluon self-energy, we obtained analytic results for the contributions

to Higgs pair production from one- and two-loop box diagrams involving top quarks

and stop squarks in the limit of vanishing external momenta. We also obtained, by

direct calculation of the relevant two-loop diagrams, the subset of bottom/sbottom

contributions that involve the D-term-induced EW Higgs-squark coupling and survive in

the limit of vanishing bottom mass. Combined with the existing results for the triangle

diagrams in the same approximations [52, 53], our calculation allows for a consistent

NLO determination of the SUSY contributions to Higgs pair production in the MSSM.

We incorporated our results in a private version of the code HPAIR, and found that

the two-loop SUSY contributions to the production of a light-scalar pair can have a

non-negligible effect in scenarios with stop masses below the TeV scale.

To conclude, a discussion is in order of the approximation of vanishing external

momenta that we employed in our calculation. Our results can be viewed as the first
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term of an asymptotic expansion of the form factor Fφχ, 2` in the heavy masses of all

particles running in the loops. Such expansion is in principle valid only for partonic

center-of-mass energies up to the lowest threshold encountered in the relevant diagrams,

which for the contributions considered in this paper corresponds to
√
ŝ = 2mt.

In the SM, the vanishing-momentum approximation is known to work rather well for

the top-quark contributions to the production of a single scalar h with mh ≈ 125 GeV,

because the region in the partonic phase space with
√
ŝ > 2mt gives only a small

contribution to the hadronic cross section. In contrast, the same approximation is

less reliable for pair production, where it is always
√
ŝ > 2mh and the whole region

up to
√
ŝ ∼ 600 GeV gives a significant contribution to the cross section [88]. The

factorization of the LO cross section with full momentum dependence is expected to

reduce the uncertainty of the NLO result due to the dominance of soft and collinear gluon

effects [23]. Nevertheless, a NLO determination of the top-quark contributions to Higgs

pair production going beyond the vanishing-momentum – or, equivalently, infinite-top-

mass – approximation would be desirable. Of the necessary ingredients, the contribution

to Fh, 2`∆ of two-loop triangle diagrams involving top quarks and gluons is known with

full top-mass dependence from single-Higgs production; the contribution of one-loop

top diagrams to Rgg, Rqq and Rqg is known exactly from ref. [89]; the contribution

of two-loop, one-particle-reducible top diagrams to Fφχ∆∆ and Gφχ∆∆ is relatively easy to

compute. However, an exact evaluation of the two-loop box diagrams involving top

quarks and gluons is currently not available, and represents the bottleneck in the quest for

an exact NLO determination of the pair-production cross section. Attempts to go beyond

the limit of infinite top mass for the two-loop box diagrams were made in refs. [88,90],

where several terms in a heavy-top asymptotic expansion of the cross section, i.e. terms

proportional to powers of ŝ/m2
t or m2

h/m
2
t , were obtained. However, as shown explicitly

for the LO result in refs. [34, 35], the inclusion of additional terms in the large-mass

expansion does not necessarily improve the evaluation of the cross section. Indeed, by

including additional terms one is improving the evaluation of the region with
√
ŝ < 2mt

at the price of worsening the evaluation of the complementary region with
√
ŝ > 2mt,

which is approximated by a function that has the wrong behavior as ŝ increases. In fact,

the appropriate expansion in the region with
√
ŝ > 2mt would be a large-momentum

expansion as opposed to a large-mass expansion.

In the MSSM, the NLO cross section for the production of a pair of SM-like scalars hh

suffers from the same uncertainty as in the SM, stemming from the incomplete knowledge

of the two-loop diagrams with top quarks and gluons. For what concerns the SUSY

contributions, those from two-loop diagrams involving squarks and gluons or quartic
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squark couplings should be sufficiently well approximated, in realistic MSSM scenarios,

by the results obtained in the vanishing-momentum limit. In contrast, some two-loop

diagrams involving top, stop and gluino do have thresholds at
√
ŝ = 2mt, thus their

contributions are in principle subject to uncertainties comparable to those of the SM

contributions. The knowledge of those contributions could however be improved following

the same strategy employed in ref. [55] for single scalar production, namely evaluating

the top-stop-gluino box diagrams via a large-mass expansion in the SUSY masses while

treating the top quark as a light particle.

Finally, another feature specific to the MSSM calculation of hh production is the

possibility of large resonant contributions from triangle diagrams with s-channel exchange

of the heaviest scalar H. In such a scenario, the determination of the NLO cross section

could be improved by using for FH, 2`∆ the quark-gluon contributions with full momentum

dependence combined with the heavy-SUSY results of refs. [53,55], while retaining the

vanishing-momentum approximation in F h, 2`∆ to avoid spoiling potential cancellations

with the box form factor.
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Chapter 3

Real corrections in the double

Higgs production

As we have said in the first chapter the NLO corrections in the double Higgs production

(as in the single Higgs production) are very important, the K factor being about 2. In

particular the real corrections, basically at the parton level the processes gg → hhg,

qq → hhg and gq → qhh, are important.

As we have been discussed in 1.5 the dominant uncertainty is given by the unknown

top-quark mass effects at NLO in the corrections. The top-quark mass effects have been

included in various approximations in the literature:

1. The “Born-improved HEFT (Higgs Effective Field Theory)” approximation, which

is the one employed in the program Hpair [62]. It uses the heavy top-quark

limit throughout the NLO calculation, in combination with a re-weighting factor

B/BHEFT , where B denotes the leading order result in the full theory.

2. The “FT approx” result of [88], [24], [89] contains the full top-quark mass dependence

in the real radiation, while the virtual part is rescaled by the re-weighting factor

mentioned above. It was found that this approximation leads to a total cross section

which is about 10% smaller than the one obtained using Born-improved HEFT.

3. The “FT’ approx” is [89] as in (2) for the real radiation part, while it uses partial

NLO results for the virtual part, specifically, the exact results for the two-loop

triangle diagrams as far as they are known from single Higgs boson production.

The last two results were obtained via a full numerical approach and no analytic results

with respect to the real radiation were presented. All these results suggest that the
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uncertainty on the cross section due to top-quark mass effects is ±10% at NLO. In [31]

was observed that the total cross section including the full top-quark mass dependence is

about 14% smaller than the one obtained within the Born-improved HEFT approximation.

These results have been however obtained totally numerical.

It is clear that the calculation of the full top-quark mass dependence is vital in order

to get reliable predictions for Higgs boson pair production over the full invariant mass

range.

In this chapter we calculate the real NLO corrections at the double Higgs production,

in particular the process gg → hhg. We re-evaluated the amplitude in heavy top limit and

we will present for the first time, the result up to and including O(1/m2
t ). Going in order

in the first section, starting from the general amplitude, we construct the projectors of the

process. In the second one we describe the kinematics and the phase space for a process

with three body final states. Finally we show the analytic result of our calculation.
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3.1 General Lorentz structure of the process

We begin describing the general Lorentz structure of the process gg → hhg and con-

structing the orthogonal projectors. First of all, we fix the momenta and the Lorentz

indices in this way:

g(qµ1 ) + g(qν2 ) −→ g(qρ3) + h(q4) + h(q5) . (3.1.1)

The most general amplitude Tµνρ of the process presents only two forms gµνqρi and qµi q
ν
j q
ρ
k

with all possible index permutations without repetitions and without terms with qµ1 , qν2
and qρ3 . We can write:

Tµνρ = a1g
µνqρ1 + a2g

µνqρ2 + a3g
µνqρ4 + a4g

µρqν1 + a5g
µρqν3 + a6g

µρqν4 + a7g
νρqµ2

+ a8g
νρqµ3 + a9g

νρqµ4 + a10q
ν
1q
ρ
1q
µ
2 + a11q

ν
1q
ρ
1q
µ
3 + a12q

ν
1q
ρ
1q
µ
4 + a13q

ν
1q
µ
2 q

ρ
2

+ a14q
ν
1q
µ
2 q

ρ
4 + a15q

ν
1q
ρ
2q
µ
3 + a16q

ν
1q
ρ
2q
µ
4 + a17q

ν
1q
µ
3 q

ρ
4 + a18q

ν
1q
µ
4 q

ρ
4 + a19q

ρ
1q
µ
2 q

ν
3

+ a20q
ρ
1q
µ
2 q

ν
4 + a21q

ρ
1q
µ
3 q

ν
3 + a22q

ρ
1q
µ
3 q

ν
4 + a23q

ρ
1q
ν
3q
µ
4 + a24q

ρ
1q
µ
4 q

ν
4 + a25q

µ
2 q

ρ
2q
ν
3

+ a26q
µ
2 q

ρ
2q
ν
4 + a27q

µ
2 q

ν
3q
ρ
4 + a28q

µ
2 q

ν
4q
ρ
4 + a29q

ρ
2q
µ
3 q

ν
3 + a30q

ρ
2q
µ
3 q

ν
4 + a31q

ρ
2q
ν
3q
µ
4

+ a32q
ρ
2q
µ
4 q

ν
4 + a33q

µ
3 q

ν
3q
ρ
4 + a34q

µ
3 q

ν
4q
ρ
4 + a35q

ν
3q
µ
4 q

ρ
4 + a36q

µ
4 q

ν
4q
ρ
4 , (3.1.2)

where the coefficients ai stand for remaining of the amplitude, i.e. contains propagators

and so on.

In a gauge invariant theory, the total amplitude Mµ ν ρ 1 of a process which contains one

or more external gluons (3 in our case), has the properties:

qµ (ν, ρ)Mµ ν ρ = 0 . (3.1.3)

In our process we have three conditions, like 3.1.3, one for each external gluon, and using

them we obtain some relations for the coefficients ai in 3.1.2. In particular for each of

3.1.3 we obtain 10 relations and finally a linear system 30 × 36. Solving it we have

achieved 14 linear independent Lorentz structure that are not orthogonal. Now we are

able to rewrite the amplitude as

T µ ν ρ =
14∑
i=1

Fi P
µ ν ρ
i , (3.1.4)

1For total amplitude, obviously, we consider the sum of all possible Feynamn diagram for a generic
process. The amplitude of the single diagram is in general not gauge-invariant.
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where Fi are the form factors and Pi are the orthogonal projectors that can be constructed

from the 14 Lorentz structures found. The Lorentz structures, Lµνρi , have the form:

Lµνρ
1 =

(q1q2) (q2q3)

(q1q3)

(
g µν − q ν1 q

µ
2

(q1q2)

)(
q ρ1 −

(q1q3)

(q2q3)
q ρ2

)
, (3.1.5)

Lµνρ
2 =

(q1q2) (q3q4)

(q1q3)

(
g µν − q ν1 q

µ
2

(q1q2)

)(
q ρ1 −

(q1q3)

(q3q4)
q ρ4

)
, (3.1.6)

Lµνρ
3 = Lµνρ

1 (ν → ρ, q2 ↔ q3) , (3.1.7)

Lµνρ
4 = Lµνρ

2 (ν → ρ, q2 ↔ q3) , (3.1.8)

Lµνρ
5 = Lµνρ

3 (µ → ν, q1 ↔ q2) , (3.1.9)

Lµνρ
6 = Lµνρ

4 (µ → ν, q1 ↔ q2) , (3.1.10)

Lµνρ
7 = − (q2q3) g µν

(
q ρ1 −

(q1q3)

(q2q3)
q ρ2

)
− (q1q3) g νρ

(
q µ2 −

(q1q2)

(q1q3)
q µ3

)

+ (q2q3) g µρ
(
q ν1 −

(q1q2)

(q2q3)
q ν3

)
− q ν1 q

ρ
2 q

µ
3 + q ρ1 q

µ
2 q

ν
3 , (3.1.11)

Lµνρ
8 =

(q2q3) (q2q4)

(q1q2)

[(
g µρ − q ρ2 q

µ
3

(q2q3)

)(
q ν1 −

(q1q2)

(q2q4)
q ν4

)

−
(
g µν − q µ2 q

ν
4

(q2q4)

)(
q ρ1 −

(q1q3)

(q2q3)
q ρ2

)]
, (3.1.12)

Lµνρ9 =
(q2q4) (q3q4)

(q1q2)

[(
gµρ − qµ3 q

ρ
4

(q3q4)

)(
qν1 −

(q1q2)

(q2q4)
qν4

)

−
(
gµν − qµ2 q

ν
4

(q2q4)

)(
qρ1 −

(q1q3)

(q3q4)
qρ4

)]
, (3.1.13)

Lµνρ10 = Lµνρ9 (µ→ ν, q1 ↔ q2) , (3.1.14)

Lµνρ11 =
(q1q3) (q3q4)

(q1q2)

[(
gνρ − qν3q

ρ
4

(q3q4)

)(
qµ2 −

(q1q2)

(q1q3)
qµ3

)

−
(
gµν − qν1q

µ
3

(q1q3)

)(
qρ2 −

(q2q3)

(q3q4)
qρ4

)]
, (3.1.15)

Lµνρ12 =
(q1q4)(q2q3)

(q1q2)

(
gµρ − qρ1q

µ
4

(q1q4)

)(
qν1 −

(q1q2)

(q2q3)
qν3

)

+ (q1q4)

(
gνρ − qν1q

ρ
2

(q1q2)

)(
qµ3 −

(q1q3)

(q1q4)
qµ4

)
, (3.1.16)
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Lµνρ13 = −(q1q4)(q2q3)(q2q4)

(q1q2)(q1q3)

(
gµν − qν1q

µ
4

(q1q4)
− qµ2 q

ν
4

(q2q4)

)(
qρ1 −

(q1q3)

(q2q3)
qρ2

)

− (q2q3)

(q1q3)
qµ4 q

ν
4

(
qρ1 −

(q1q3)

(q2q3)
qρ2

)
, (3.1.17)

Lµνρ14 = −(q1q4)(q2q4)(q3q4)

(q1q2)(q1q3)

(
gµν − qν1q

µ
4

(q1q4)
− qµ2 q

ν
4

(q2q4)

)(
qρ1 −

(q1q3)

(q3q4)
qρ4

)

− (q3q4)

(q1q3)
qµ4 q

ν
4

(
qρ1 −

(q1q3)

(q3q4)
qρ4

)
, (3.1.18)

The orthogonal projectors (Pi · Pj = 0) are written as a linear combinations of the Lµνρi

as follows:

Pµνρ1 = − Lµνρ1

(q1q2)2(q2q3)
− Lµνρ7

2(q1q2)(q2q3)(q1q3)
, (3.1.19)

Pµνρ2 = − Lµνρ5

(q2q3)2(q1q3)
− Lµνρ7

2(q1q2)(q2q3)(q1q3)
, (3.1.20)

Pµνρ3 =
Lµνρ3

(q1q3)2(q2q3)
− Lµνρ7

2(q1q2)(q2q3)(q1q3)
, (3.1.21)

Pµνρ4 =
Lµνρ7

2(q1q2)(q2q3)(q1q3)
, (3.1.22)

Pµνρ5 = − K1

2(q1q2)(q2q3)
Lµνρ1 + Lµνρ2 , (3.1.23)

Pµνρ6 = −Lµνρ6 + Lµνρ8 − K2

2(q1q2)2
Lµνρ1 − K3

2(q1q2)(q1q3)
Lµνρ7 , (3.1.24)

Pµνρ7 = Lµνρ4 +
K3

2(q2q3)2
Lµνρ5 − (q1q3)

(q2q3)
Lµνρ6 − K3

2(q1q3)(q2q3)
Lµνρ3 ,

(3.1.25)

Pµνρ8 = Lµνρ8 +
(q3q4)

(q1q2)
− K3

2(q1q3)2
Lµνρ3 − K3

2(q1q2)(q1q3)
Lµνρ7

− K3

2(q1q3)(q2q3)
Lµνρ5 − (q2q3)

(q1q2)
Lµνρ2 +

(q2q3)

(q1q3)
Lµνρ4 , (3.1.26)

with

K1 = (q1q4)(q2q3)− (q1q3)(q2q4) + (q1q2)(q3q4) ,

K2 = (q1q4)(q2q3)− (q1q3)(q2q4)− (q1q2)(q3q4) ,
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K3 = (q1q4)(q2q3) + (q1q3)(q2q4)− (q1q2)(q3q4) . (3.1.27)

We have chosen the first four projectors like those of the process gg → hg [91] and this is

convenient as we will illustrate. We have showed only the first eight projectors because

the remaining six have norm equal to zero, namely Pi ·Pi = 0 for 9 ≤ i ≤ 14, so the index

i in 3.1.4 is restricted to 1 ≤ i ≤ 8.

3.2 Kinematics and phase space of the process

In general it is possible to describe the kinematics of a three-body proces by using five

independent scalar quantities [92]. In our case, keeping the notation of 3.1.1 for the

momenta, we define2:

s = (q1 + q2)2 ,

t = (q1 − q3)2 ,

u = (q2 − q3)2 ,

g1 = (q1 − q4)2 ,

g2 = (q2 − q5)2 . (3.2.1)

Another important invariant is the invariant mass of the Higgs system, M2
hh = s+ t+ u.

It will be convenient to introduce variables z and v, where z = M2
hh/s and v is related at

the cosine of the angle θ between q1 and q3 in the gg center of mass system, cos θ = 2v−1.

Defining τ = 4m2
h/s, we have

τ ≤ z ≤ 1, 0 ≤ v ≤ 1 , (3.2.2)

and

t = −s (1− z) (1− v) ,

u = −s (1− z) v . (3.2.3)

2In this chapter the partonic c.m. energy will be indicated as s and not ŝ as in the previous chapters.
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In the center of mass frame of the Higgs system, our four-momenta are given by

q1 = q0
1 (1, 0, 0, 1) ,

q2 = q0
2 (1, 0, sinψ, cosψ) ,

q3 = q0
3

(
1, 0, sinψ′, cosψ′

)
,

q4 =

√
M2
hh

2
(1, βz sin θ2 sin θ1, βz cos θ2 sin θ1, βz cos θ1) ,

q5 =

√
M2
hh

2
(1,−βz sin θ2 sin θ1,−βz cos θ2 sin θ1,−βz cos θ1) , (3.2.4)

where

q0
1 =

s+ t

2
√
M2
hh

, q0
2 =

s+ u

2
√
M2
hh

, q0
3 = − t+ u

2
√
M2
hh

,

cosψ = 1− s

2 q0
1 q

0
2

,

cosψ′ = 1 +
t

2 q0
1 q

0
3

,

βz =

√
1−

4m2
h

z s
. (3.2.5)

The two remaining independent invariants g1, g2 can be written as

g1 = m2
h −

s+ t

2
(1− βz cos θ1) ,

g2 = m2
h −

s+ u

2
(1 + βz cos θ2 sin θ1 sinψ + βz cos θ1 cosψ) . (3.2.6)

Now all invariants are expressed in terms of z, v, θ1, θ2 and s through the equations

3.2.3, 3.2.4, 3.2.5 and 3.2.6.

For what concerns the three-body phase space, dPS3, we can factorize it into two decays,

then the products of two two-body phase-space:

dPS3 =
d~p 2

hh

2π
dPS2 (q, q3, phh) dPS2 (phh, q4, q5) , (3.2.7)

where q is the momentum of the initial gluon system and phh = q4 + q5 the momentum

of the Higgs system. Fundamentally, we are considering two decays: the first one has
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as initial state, the initial gluons system q and as final states, the final gluon (q3) and a

intermediate state with momentum phh; the second is the decay of the state phh into the

two Higgs (q4, q5).

For the first decay we can write

d~p 2
hh

2π
dPS2 (q, q3, phh) =

2EhhdEhh
2π

d3~phh

(2π)3 2Ehh

d3~q3

(2π)3 2Eq3
(2π)4 δ4 (q − phh − q3)

=
d4phh

(2π)3

dEq3
2

d cos θ dφ δ4 (q − phh − q3) |~q3| , (3.2.8)

where the angle θ is just the same discuss previously instead φ can be integrated out,

there is not dependence in our amplitude with respect to this angle. The second phase

space of 3.2.7 reads

dPS2 (phh, q4, q5) =
d3~q4

(2π)3 2Eq4

d3~q5

(2π)3 2Eq5
(2π)4 δ4 (phh − q4 − q5)

=
d4q4

8π2
δ
(
q2

4 −m2
h

)
|~q5| dEq5 δ4 (phh − q4 − q5) d cos θ1 dθ2 .

(3.2.9)

where

δ
(
q2

4 −m2
h

)
= δ

(
(phh − q5)2 −m2

h

)
= δ

Eq5 −
√
M2
hh

2

 1

2
√
M2
hh

. (3.2.10)

With |~q3|2=
√
s

2 (1− z), |~q5|2=

√
M2
hh

2 βz and dEq3 = −dM2
hh

2
√
s

, we are now able to rewrite

dPS3 as

dPS3 =
d4phh

(2π)2

dEq3
2

d cos θ δ4 (q − phh − q3) (1− z)
√
s

2
· d

4q4

8π2

δ

(
Eq5 −

√
M2
hh

2

)
2
√
M2
hh

√
M2
hh

2
βz dEq5 δ

4 (phh − q4 − q5) d cos θ1 dθ2

=
1

26 (2π)4 (1− z)βz d cos θ d cos θ1 dθ2 dM
2
hh . (3.2.11)

where θ1 range between 0 and π instead θ2 between 0 and 2π.
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3.3 Outline of calculation of amplitude

Now we have all ingredients to evaluate the amplitude of the process gg → hhg and the

first step is to contract the eight orthogonal projectors with the amplitude. To improve the

CPU memory resource instead of projectors we have contracted the amplitude with the

Lorentz structure (LS) eq. 3.1.5 – 3.1.12 and then we reconstructed the eight projectors.

We have generated the amplitude and the Feynman diagrams by using the Mathematica

package FeynArts [93]. The relevant diagram, with amplitude different to zero, are 54

divided into 3 topologies: 6 triangles, 24 boxes and 24 pentagons with a fermionic loop,

as it showed in the figure 3.1.

We manipulate the amplitude with Mathematica [94] private routines and we make the

trace of the gamma matrices with Tracer [95]. The next steps are the sum over the color

and finally the reduction of the loop integrals in 2-point (B0), 3-point (C0), 4-point (D0)

and 5-point (E0) scalar functions.

All calculations were made in n = 4− 2ε dimension and the first check on our calculation

is respect to the 1
ε poles, which are obviously absent. The second simple check is to

obtain the result of [91] for gg → hg starting by our results and excluding the pentagon

diagrams and box diagrams without Higgs propagator. In this way we get the same

structure and symmetries for the form factors of [91].

At this stage the 8 Lorentz structure contracted with the amplitude3, have the same

set of scalar integrals, in total 4 B0, 25 C0, 30 D0 and 12 E0. In order to test the

numerical stability of our results we performed, in a private Fortran code, the phase-space

integration of the amplitude squared with Vegas evaluating the scalar integrals using

LoopTools [96].

We found that only LS 1, 2, 7 and 8 were numerically stable, this implies that these LS

were reduced to a integral basis. At the contrary the remaining LS presented a numerical

instability. However for the unstable LS one can use the transformations described in

eq. (3.1.7–3.1.10) in order to obtain the correct integral basis and then a good numerical

stability.

3For simplicity, in this discussion, we will refer to Lorentz structure as the contraction of LS with the
amplitude.
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Figure 3.1: The diagram topologies for the process gg → hhg.

3.4 Heavy top limit results

In this section we present for the first time the large top-mass-expansion evaluation of the

amplitude, by reporting the analytic expressions that we obtained via a Taylor expansion

for s, t, u,M2
hh,m

2
h � m2

t up to and including O(1/m2
t ).

First of all we show the expressions for the Lorentz structure, contracted with the

amplitude, Ci = Lµνρi Tµνρ, at order zero in the expansion. Defining ω =
(4m2

h−M
2
hh)

(m2
h−M

2
hh)

, we

have:

C1 = − s

6 t
ω
(
M4
hh + s2

)
, (3.4.1)

C2 =
ω

12 t u

(
M4
hh + s2

) (
g1(u− s) + g2(s+ t) +m2

h(s−M2
hh) + tu

)
,

(3.4.2)

C3 =
t

6 s
ω
(
M4
hh + t2

)
, (3.4.3)

C4 =
ω

12 s u

(
M4
hh + t2

) (
g1(M2

hh − t)− g2(s+ t) +m2
h(t− u)− tu

)
,

(3.4.4)

C5 = − u

6 s
ω
(
M4
hh + u2

)
, (3.4.5)

C6 =
ω

12 s t

(
M4
hh + u2

) (
g1(t−M2

hh) + g2(s+ t) +m2
h(t+ u) + tu

)
, (3.4.6)

C7 = −ω
3
M4
hh , (3.4.7)
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C8 =
ω

12 s t

(
−
(
M4
hh − 2M2

hhs+ 2s2
) (
g1M

2
hh − g2s+m2

h(s−M2
hh)
)

+ t
(
M4
hh(3g1 − g2 − 2m2

h −M2
hh) + 2s2(g1 + g2 − 2m2

h +M2
hh)

− M2
hhs(4(g1 + g2 − 2m2

h) + 3M2
hh)− 2s3

)
− t2

(
−s(2g1 + 3g2 − 5m2

h + 6M2
hh)

+ M2
hh(3g1 + 2g2 − 5m2

h +M2
hh) + 2s2

)
+ t3(g1 + g2 − 2m2

h + 3M − 3s)− t4
)
,

(3.4.8)

the Ci are in units 8√
2
Gµ g

3
s

1
(16π)2 f

abc, where g2
s = αs (4π) is the strong coupling costant,

Gµ is the muon decay constant, the factor 1/(16π)2 arises from the integral loop and

fabc is the structure constant of the Lie algebra of SU(3).

The symmetries for the L3 and L5 showed in 3.1.7, 3.1.9, which now are shifted in

L1
s↔t−→ −L3 and L3

t↔u−→ −L5, are evident, whereas for L4 and L6 the symmetries are

not manifest, but however present, because of the dependence of g1 and g2 by t and u.

Taking into account that PiPi = 16/(stu), for i = 1, ..., 4, the first four form factor read4

16

s t u
F1 =

8

s2u
C1 −

4

stu
C7 = −4ω

3

s2

s t u
,

16

s t u
F2 =

8

u2t
C5 −

4

stu
C7 = −4ω

3

u2

s t u
,

16

s t u
F3 = − 8

t2u
C3 −

4

stu
C7 = −4ω

3

t2

s t u
,

16

s t u
F4 =

4

stu
C7 =

4ω

3

M4
hh

s t u
, (3.4.9)

while the remaining form factors are egual to zero, this representing a remarkable result.

Now we can write the amplitude:

|A(0)
hhg|

2 =
(
F 2

1 + F 2
2 + F 2

3 + F 2
4

) 16

s t u
=

ω2

9

(
M8
hh + s4 + t4 + u4

)
s t u

. (3.4.10)

If we look the amplitude of gg → hg, |Ahg|2= m8
h + s4 + t4 + u4/(stu), we have found

the same structure apart the ratio in front of 3.4.10.

The process that we are analysing presents soft and collinear divergences, due to the

emission of the gluon in the final state, as it’s clear in the amplitudes 3.4.10 with the

4The contraction of the amplitude with the projectors is:

Pµνρi Tµνρ = |Pi|2 Fi .

53



denominator of the form s t u. The soft divergence are cancelled out with the virtual

contribution whereas collinear divergences can be removed thanks to the factorization

theorem: the t and u singularities (respectively v = 1 and v = 0) must factorize in terms

of the LO cross section of the process without the outgoing gluon, i.e. gg → hh, times

the Altarelli-Parisi splitting function. Then we have to know the LO process, the double

Higgs production, in the heavy top limit, see eq. (1.3.11):

M2
hh

dσ̂
(0)
hh

dM2
hh

=
G2
µα

2
s(µR)

512 (2π)3
βz zM

2
hh |A

(0)
hh |

2 , (3.4.11)

where

|A(0)
hh |

2 =
4

9
ω2 . (3.4.12)

For the process gg → hhg, the differential partonic cross section in heavy top limit will

be:

d σ̂
(0)
hhg

d cos θ dM2
hh

= CA
G2
µα

2
s(µR)

512 (2π)4

αs(µR)

π
βz (1− z) 4π

2 s

ω2

9

(
M8
hh + s4 + t4 + u4

)
s t u

,

(3.4.13)

where the numerical factor 1/512 in the above comes from averaging over the initial gluon

helicities 1/22, from color averaging 1/82 and from the identical final state particles the

factor 1/2! , the ratio 1
2s is the flux factor, 4π arises from the trivial integration of the

angles θ1 and θ2 and finally µR is the renormalization scale.

We want to write our results in terms of the function Rgg, known at the moment only in

heavy top limit, that appears in eq. (1.3.12) and in eq. (2.1.13). In order to regulate the

collinear singularities we have to introduce the contour term c.t.:

c.t. =
1

2

1

v(1− v)

αs(µR)

2π
Pgg(z) , (3.4.14)

where the Pgg(z) is the Altarelli-Parisi splitting function defined in eq. (1.3.14).

Performing the Altarelli-Parisi subtraction, the Rgg function reads

R(0)
gg =

(
dσ̂

(0)
hh

dM2
hh

)−1

2

∫ 1

0
dv

[
d σ̂

(0)
hhg

dM2
hh

− c.t.
dσ̂

(0)
hh

dM2
hh

]
, (3.4.15)
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where we have substituted d cos θ with 2 dv in the integral. Inserting the eq. (3.4.11),

eq. (3.4.13) and eq. (3.4.14) into eq. (3.4.15), and rearranging all terms we obtain

R(0)
gg =

2

z |A(0)
hh |2

∫ 1

0
dv

[
(1− z)

2 s
2 |A(0)

hhg|
2− (1− z + z2)2

2 (1− z) v (1− v)
|A(0)

hh |
2

]
, (3.4.16)

where we don’t have write the common coefficient of eq. (3.4.13) and eq. (3.4.11) because

the LO contribution is factorized out as is defined in eq. (1.3.2). Noticing that ω2 not

depends by t and u, we have

R(0)
gg =

1

z(1− z)

∫ 1

0

dv

v(1− v)

[
M8
hh + s4 + t4 + u4

2 s4
−
(
1− z + z2

)2 ]
, (3.4.17)

where in the denominator we insert the relations of eq. (3.2.3). We perform the integration

respect to v, by using a cut-off Λ and after the integration we restore the cross section

making the limit Λ→ 0. If we use the trick 1
v(1−v) = 1

v + 1
1−v , we can integrate separately

the singularities: in particular for v = 0 the divergent interval is [Λ, 1] and for v = 1

the divergent interval is [0, 1− Λ]. With the relations in eq. (3.2.3) we are now ready to

integrate eq. (3.4.17), obtaining the well-known results, just mentioned in the previous

chapters, mainly R
(0)
gg = −11 (1− z)3/(6z).

Now we present the result for Rgg at the first order of the expansion in the top mass. At

the zero order of the top mass expansion we have F
(0)
5 = F

(0)
6 = F

(0)
7 = F

(0)
8 = 0 whereas

for F
(1)
5 , F

(1)
6 , F

(1)
7 , F

(1)
8 we have checked numerically that they are zero. Therefore we

present the analytic expressions of the expansion only for the F
(1)
1 and F

(1)
7 , by using the

symmetries is simple to obtain the remaining F
(1)
i . Defining ω1 =

(2m2
h−M

2
hh)

(m2
h−M

2
hh)

, we obtain:

16

s t u
F

(1)
1 =

1

180m2
t s t u

[
11 (4m2

h −M2
hh)(M4

hh − 2M2
hhs)

+
s2

(m2
h −M2

hh)

(
11M4

hh − 40m4
h − 13m2

hM
2
hh

)
+

11M2
hh

(M2
hh − u2)

(
4G1G2

√
M2
hh s t u (s u−M2

hh t) + 2G2
2 (M4

hh t
2 + s2 u2)

+ G2
1 (M4

hh t
2 + 6M2

hh s t u+ s2 u2)
)]

,
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16

s t u
F

(1)
2 = F

(1)
1 (s→ t, t→ s) ,

16

s t u
F

(1)
3 = F

(1)
2 (t→ u, u→ t) ,

16

s t u
F

(1)
4 = − ω1

30m2
t s t u

(
7m2

hM
4
hh − 6 s t u

)
, (3.4.18)

where we have substituted the invariants g1 and g2, writing the dependence on the angles

θ1 and θ2 in G1 and G2, G1 = βz cos θ1, G2 = βz cos θ2 sin θ1. In this way we have

cancelled the apparent poles of the type 1/t2 and 1/u2.

Now we are able to evaluated the amplitude at order O(1/m2
t ). After the integration in

θ1 and θ2 we have:

|A′(1)
hhg|

2 = π |A(1)
hhg|

2 = π
m2
h

m2
t

7

45
ω ω1

[
6M4

hh

7m2
h

−
(
M8
hh + s4 + t4 + u4

)
s t u

]
, (3.4.19)

whereas for the LO process5 we have

|A(1)
hh |

2 =
m2
h

m2
t

7

45
ω ω1 . (3.4.20)

In order to calculate R
(1)
gg we have to consider all orders O(1/m2

t ) of this expression:

R(0,1)
gg =

(
dσ̂

(0,1)
hh

dM2
hh

)−1

2

∫ 1

0
dv

[
d σ̂

(0,1)
hhg

dM2
hh

− c.t.
dσ̂

(0,1)
hh

dM2
hh

]
, (3.4.21)

where

dσ̂
(0,1)
hh

dM2
hh

=
G2
µα

2
s(µR)

512 (2π)3
βz z

(
|A(0)

hh |
2+|A(1)

hh |
2
)
, (3.4.22)

dσ̂
(0,1)
hhg

dM2
hhd cos θ

= CA
G2
µα

2
s(µR)

512 (2π)4

αs(µR)

π
βz (1− z) 2π

2 s

(
2|A(0)

hhg|
2 +

1

2
|A(1)

hhg|
2

)
.

(3.4.23)

5From eq. 19-20 of [28] we have that, F 1`
∆ (ŝ) = 4

3
+ 7

90
ŝ
m2

t
and F 1`

� (ŝ) = − 4
3
− 7

15

m2
h

m2
t

. From eq. (1.3.11)

and since the form factor of spin-2 case not contribute at O(1/m2
t ) we obtain eq. (3.4.20)
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If we insert in eq. (3.4.22) the eq. (3.4.12) and eq. (3.4.20) and in eq. (3.4.23) insert the

eq. (3.4.10) and eq. (3.4.19) and expand the denominator6 we have (also in this case we

don’t write the prefactor of the cross section according to what made previously for the

zero order)

R(0,1)
gg = R(0)

gg +
2

z |A(0)
hh |2

∫ 1

0
dv

[
1− z
2 s

|A(1)
hhg|

2

2
− (1− z + z2)2

2 v (1− v)

|A(1)
hh |

2

1− z

]

− 2

z

|A(1)
hh |

2

|A(0)
hh |4

∫ 1

0
dv

[
1− z
2 s

2 |A(0)
hhg|

2 − (1− z + z2)2

2 v (1− v)

|A(0)
hh |

2

1− z

]
.

(3.4.24)

The amplitude |A(1)
hhg|

2, eq. (3.4.19), in the first part do not depend on v meanwhile the

second part have the same dependence to s, t and u of zero order, eq. (3.4.10). Therefore

we perform the integration in v, by using the cut-off tecnique, the result is obviously

divergence-safe. In eq. (3.4.24) the second term of |A(1)
hhg|

2, eq. (3.4.19), cancels with the

last term of eq. (3.4.24), so that we find7

R(0,1)
gg = R(0)

gg +R(1)
gg = −11

6

(1− z)3

z
+

1

20

s

m2
t

ω1

ω
(3 z (1− z)) . (3.4.25)

The result in eq. (3.4.25) represents the correction at the first order of the expansion

in top mass, evaluated for the first time in this work. We note that the correction is

proportional to s/m2
t and confirm the discussion made in 1.4 about the validity of the

LET and of the expansion in top mass.

6If we consider the denominator, mainly the amplitudes in the bracket in eq. (3.4.22), as a+ b/m2
t ,

the expansion, for m2
t →∞ will be:

1

a+ b/m2
t

∼ 1

a
− b

a2

1

m2
t

+O(1/m4
t ) .

7The second term of eq. (3.4.24) is proportional to
|A(1)

hh
|2

|A(0)
hh
|2
−6M4

hh

7m2
h

plus
|A(1)

hh
|2

|A(0)
hh
|2
R

(0)
gg , the third term

of eq. (3.4.24) is proportional to − |A
(1)
hh
|2

|A(0)
hh
|2
R

(0)
gg , then the result in eq. (3.4.25) will depend only from

|A(1)
hh
|2

|A(0)
hh
|2
−6M4

hh

7m2
h

.
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Conclusions

Determination of the Higgs self-interaction through the double Higgs production from

gluon fusion is a major goal of current and future collider experiments. The double

Higgs production is a process that proceed via fermionic loop, quark top fundamentally

in the SM, already at leading order. Therefore the NLO QCD corrections are very

difficult to compute. At moment an exact analytic evaluation of the two-loop QCD

virtual corrections is presently not available. At the analytic level explicit results for the

two-loop virtual corrections in Higgs pair production were presented in [28], where the

double-triangle contribution was computed exactly while the spin-0 and spin-2 two-loop

form factors in the amplitude were computed via an asymptotic expansion in the top

mass up to and including terms O(1/m8
t ).

For what concern the real corrections, at present we have analytic results only obtained

via LET approximation, and numerical results that include the top mass effects, as just

discuss extensively. The numerical analysis have estimated this effects to be of the order

of 10%, then they are very important in order to have a good estimate of the double

Higgs production cross section.

In this thesis we have showed, for the first time, the analytic results for the real correction

in the double Higgs production (focusing in particular on the process gg → hhg) in the

SM up to and including O(1/m2
t ). We have presented the result in terms of the Rgg

function, and by eq. (3.4.25) one can see that the new terms are proportional to s/m2
t , as

expected.

To obtain the first term of the expansion in heavy top we started from the exact amplitude.

Then in the near future we will be able to present the exact result for the amplitude

gg → hhg. At moment we have not a good cancellation of the divergences in the numerical

integration. This is due to the presence of apparent poles in the amplitude of the type

1/t2 and 1/u2, as already happened for the 1/m2
t term of the expansion showed in this

work. We must manipulate the amplitude in order to eliminate the apparent poles and

therefore go forward with the numerical integration and obtain the exact result.
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In this thesis we have also considered the double Higgs production in the MSSM, the

minimal supersymmetric extension of the SM. In this model we have an Higgs spectrum

more reach than the SM and the Higgs production can be mediated by loops involving

the top and bottom quarks and their superpartners, the stop and sbottom squarks.

We take a step towards a complete NLO-QCD determination of the production of a

pair of Higgs scalars in the MSSM. Exploiting a low-energy theorem that connects the

Higgs-gluon interactions to the derivatives of the gluon self-energy, we obtain analytic

results for the one- and two-loop squark contributions to Higgs pair production in the

limit of vanishing external momenta. To assess the importance of the newly-computed

corrections, we include the squark contributions to both triangle and box form factors

in a private version of the public code HPAIR, which computes the NLO- QCD cross

section for Higgs pair production in the SM and in the MSSM. We find that the two-loop

squark contributions can have a non-negligible effect in scenarios with stop masses below

the TeV scale.
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Appendix A

Functions entering the box form

factors

In this appendix we provide the definitions of the functions entering the form factors in

eqs. (2.2.9)–(2.2.11) in terms of the derivatives of the gluon self-energy. Focusing on the

two-loop part of the form factors, and defining the shortcut Z ≡ (2/TF ) Π2`, t(0) , the

functions that represent the contributions of diagrams involving only the top Yukawa

coupling read

F 2`
1 =

∂ 2Z

(∂m2
t )

2
+

∂ 2Z

(∂m2
t̃1

)2
+

∂ 2Z

(∂m2
t̃2

)2
+ 2

∂ 2Z

∂m2
t∂m

2
t̃1

+ 2
∂ 2Z

∂m2
t∂m

2
t̃2

+ 2
∂ 2Z

∂m2
t̃1
∂m2

t̃2

,

(A.0.1)

F 2`
2 =

∂ 2Z

(∂m2
t̃1

)2
− ∂ 2Z

(∂m2
t̃2

)2
+

∂ 2Z

∂m2
t∂m

2
t̃1

− ∂ 2Z

∂m2
t∂m

2
t̃2

−
4 c2

2θt

m2
t̃1
−m2

t̃2

(
∂ 2Z

∂c22θt∂m
2
t

+
∂ 2Z

∂c22θt∂m
2
t̃1

+
∂ 2Z

∂c22θt∂m
2
t̃2

)
, (A.0.2)
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F 2`
3 =

∂ 2Z

(∂m2
t̃1

)2
+

∂ 2Z

(∂m2
t̃2

)2
− 2

∂ 2Z

∂m2
t̃1
∂m2

t̃2

− 2

m2
t̃1
−m2

t̃2

(
∂Z

∂m2
t̃1

− ∂Z

∂m2
t̃2

)

+
16 c2

2θt

(m2
t̃1
−m2

t̃2
)2

(
c2

2θt

∂ 2Z

(∂c22θt)
2

+ 2
∂Z

∂c22θt

)

−
8 c2

2θt

m2
t̃1
−m2

t̃2

(
∂ 2Z

∂c22θt∂m
2
t̃1

− ∂ 2Z

∂c22θt∂m
2
t̃2

)
, (A.0.3)

F 2` =
∂Z

∂m2
t̃1

− ∂Z

∂m2
t̃2

−
4 c2

2θt

m2
t̃1
−m2

t̃2

∂Z

∂c22θt
, (A.0.4)

G2` =
∂Z

∂m2
t̃1

+
∂Z

∂m2
t̃2

+
∂Z

∂m2
t

. (A.0.5)

The functions that represent the sub-dominant contributions of diagrams involving

D-term induced EW couplings read

F̃ 2`
1 = dt11 f̃1 + dt22 f̃2 − 4 c2θt s2θt d

t
12 f̃3 , (A.0.6)

F̃ 2`
2 = dt11 f̃4 − dt22 f̃5 + 2

c2θt

s2θt

dt12 f̃6 , (A.0.7)

F̃ 2`
3 = (dt11)2 ∂ 2Z

(∂m2
t̃1

)2
+ (dt22)2 ∂ 2Z

(∂m2
t̃2

)2
+ 2 dt11 d

t
22

∂ 2Z

∂m2
t̃1
∂m2

t̃2

+ 2 (dt12)2 f̃7

− 8 c2θt s2θt

dt12

m2
t̃1
−m2

t̃2

(
dt11

∂ 2Z

∂c22θt∂m
2
t̃1

+ dt22

∂ 2Z

∂c22θt∂m
2
t̃2

)
, (A.0.8)

D2` = dt11

∂Z

∂m2
t̃1

+ dt22

∂Z

∂m2
t̃2

− 4 c2θt s2θt

dt12

m2
t̃1
−m2

t̃2

∂Z

∂c22θt
, (A.0.9)

where

dt11 =
dtL + dtR

2
+c2θt

dtL − dtR
2

, dt22 =
dtL + dtR

2
−c2θt

dtL − dtR
2

, dt12 = −s2θt

dtL − dtR
2

,

(A.0.10)

and

f̃1 =
∂ 2Z

(∂m2
t̃1

)2
+

∂ 2Z

∂m2
t̃1
∂m2

t̃2

+
∂ 2Z

∂m2
t∂m

2
t̃1

, (A.0.11)
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f̃1 =
∂ 2Z

(∂m2
t̃1

)2
+

∂ 2Z

∂m2
t̃1
∂m2

t̃2

+
∂ 2Z

∂m2
t∂m

2
t̃1

, (A.0.12)

f̃2 =
∂ 2Z

(∂m2
t̃2

)2
+

∂ 2Z

∂m2
t̃1
∂m2

t̃2

+
∂ 2Z

∂m2
t∂m

2
t̃2

, (A.0.13)

f̃3 =
1

m2
t̃1
−m2

t̃2

(
∂ 2Z

∂c22θt∂m
2
t̃1

+
∂ 2Z

∂c22θt∂m
2
t̃2

+
∂ 2Z

∂c22θt∂m
2
t

)
, (A.0.14)

f̃4 =
∂ 2Z

(∂m2
t̃1

)2
− ∂ 2Z

∂m2
t̃1
∂m2

t̃2

−
4 c2

2θt

m2
t̃1
−m2

t̃2

∂ 2Z

∂c22θt∂m
2
t̃1

, (A.0.15)

f̃5 =
∂ 2Z

(∂m2
t̃2

)2
− ∂ 2Z

∂m2
t̃1
∂m2

t̃2

+
4 c2

2θt

m2
t̃1
−m2

t̃2

∂ 2Z

∂c22θt∂m
2
t̃2

, (A.0.16)

f̃6 =
1

m2
t̃1
−m2

t̃2

(
∂Z

∂m2
t̃1

− ∂Z

∂m2
t̃2

)
−

2 s2
2θt

m2
t̃1
−m2

t̃2

(
∂ 2Z

∂c22θt∂m
2
t̃1

− ∂ 2Z

∂c22θt∂m
2
t̃2

)

+
8

(m2
t̃1
−m2

t̃2
)2

[
(1− 2 c2

2θt)
∂Z

∂c22θt
+ c2

2θt s
2
2θt

∂ 2Z

(∂c22θt)
2

]
, (A.0.17)

f̃7 =
1

m2
t̃1
−m2

t̃2

(
∂Z

∂m2
t̃1

− ∂Z

∂m2
t̃2

)

+
4

(m2
t̃1
−m2

t̃2
)2

[
(1− 4 c2

2θt)
∂Z

∂c22θt
+ 2 c2

2θt , s
2
2θt

∂ 2Z

(∂c22θt)
2

]
.

(A.0.18)
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Appendix B

Shifts to a different

renormalization scheme

In this appendix we list the shifts to the functions Fi, F , G, F̃i and D arising when the

parameters mt, m
2
t̃i

, θt and At in the top/stop contributions to the one-loop part of the

form factors are expressed in a renormalization scheme R other than DR. Recalling the

definition xDR = xR + δx, the shifts to the functions read

δF1 = −1

3

(
δm2

t̃1

m6
t̃1

+
δm2

t̃2

m6
t̃2

+ 8
δmt

m5
t

)
+ 4

δmt

mt
F 1`

1 , (B.0.1)

δF2 = −1

3

(
δm2

t̃1

m6
t̃1

−
δm2

t̃2

m6
t̃2

)
+

(
3
δmt

mt
+

δs2θt

s2θt

)
F 1`

2 , (B.0.2)

δF3 = −1

3

(
δm2

t̃1

m6
t̃1

+
δm2

t̃2

m6
t̃2

−
δm2

t̃1

m4
t̃1
m2
t̃2

−
δm2

t̃2

m4
t̃2
m2
t̃1

)

+

(
2
δmt

mt
+ 2

δs2θt

s2θt

)
F 1`

3 , (B.0.3)

δF =
1

6

(
δm2

t̃1

m4
t̃1

−
δm2

t̃2

m4
t̃2

)
+

(
2
δmt

mt
−

δm2
t̃1
− δm2

t̃2

m2
t̃1
−m2

t̃2

)
F 1` , (B.0.4)

δG =
1

6

(
δm2

t̃1

m4
t̃1

+
δm2

t̃2

m4
t̃2

+ 8
δmt

m3
t

)
+ 2

δmt

mt
G1` , (B.0.5)

and
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δF̃1 = −d
t
L + dtR

6

(
δm2

t̃1

m6
t̃1

+
δm2

t̃2

m6
t̃2

)
− dtL − dtR

12

[
2 c2θt

(
δm2

t̃1

m6
t̃1

−
δm2

t̃2

m6
t̃2

)

− δc2θt

(
1

m4
t̃1

− 1

m4
t̃2

) ]
+ 2

δmt

mt
F̃ 1`

1 , (B.0.6)

δF̃2 = −d
t
L + dtR

6

(
δm2

t̃1

m6
t̃1

−
δm2

t̃2

m6
t̃2

)
− dtL − dtR

12[
2 c2θt

(
1

m2
t̃1

− 1

m2
t̃2

)(
δm2

t̃1

m4
t̃1

−
δm2

t̃2

m4
t̃2

)
− δc2θt

(m2
t̃1
−m2

t̃2
)2

m4
t̃1
m4
t̃2

]

+

(
δmt

mt
+

δs2θt

s2θt

)
F̃ 1`

2 , (B.0.7)

δF̃3 = −(dtL)2 + (dtR)2

6

(
δm2

t̃1

m6
t̃1

+
δm2

t̃2

m6
t̃2

)
− (dtL)2 − (dtR)2

12[
2 c2θt

(
δm2

t̃1

m6
t̃1

−
δm2

t̃2

m6
t̃2

)
− δc2θt

(
1

m4
t̃1

− 1

m4
t̃2

) ]
+

(dtL − dtR)2

12[
s2

2θt

(
1

m2
t̃1

− 1

m2
t̃2

)(
δm2

t̃1

m4
t̃1

−
δm2

t̃2

m4
t̃2

)
+ c2θt δc2θt

(m2
t̃1
−m2

t̃2
)2

m4
t̃1
m4
t̃2

]
,(B.0.8)

δD =
dtL + dtR

12

(
δm2

t̃1

m4
t̃1

+
δm2

t̃2

m4
t̃2

)

+
dtL − dtR

12

[
c2θt

(
δm2

t̃1

m4
t̃1

−
δm2

t̃2

m4
t̃2

)
− δc2θt

(
1

m2
t̃1

− 1

m2
t̃2

)]
,

(B.0.9)

where δs2θt = 2 c2θt δθt and δc2θt = −2 s2θt δθt. If the parameters in the top/stop sector

are renormalized in the OS scheme, the shifts δmt, δm
2
t̃i

, δθt and δAt can be found in

appendix B of ref. [60].
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Appendix C

Extension to the NMSSM

In this appendix we describe how our results for the box form factor for Higgs pair

production in the MSSM can be extended to the case of the NMSSM. Instead of the

Higgs mass term µH1H2, which in the simplest realization of the NMSSM is forbidden

by a Z3 symmetry, the superpotential contains 1

W ⊃ λSH1H2 +
κ

3
S3 , (C.0.1)

where S is an additional gauge-singlet superfield. An effective µ term is generated by

the singlet VEV as µ = λ 〈S〉, and the CP-even parts Si of the neutral component of the

three Higgs fields – ordered as (H1, H2, S) – mix into three mass eigenstates which we

denote as ha,

ha = RS
ai Si , (C.0.2)

where RS is an orthogonal matrix. The decompositions of the triangle and box form

factors in eqs. (2.2.1)–(2.2.5) generalize to

F ha∆ = −TF RS
aiHi , F hahb� = −TF RS

aiR
S
bj Hij . (C.0.3)

The extension to the NMSSM of the results of refs. [52, 53,55] for the triangle form

factors of the MSSM has been presented, in the context of single Higgs production, in

ref. [98]. Concerning the box form factors, the terms H11, H12 and H22 coincide with

those obtained for the MSSM in section 2.2. The top/stop contributions to the remaining

1For consistency with the definition of µ in our MSSM results, here we adopt for the sign of λ the
opposite convention with respect to ref. [97] and most public codes for NMSSM calculations. We also
note that our normalization of the EW parameter, v ≈ 246 GeV, differs by a factor

√
2 from the one in

ref. [97].
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terms read

Ht13 =

√
2λ vmt

sinβ

[
1

2
mt µ cotβ s2

2θt F3 +
mt (At + 2µ cotβ)

m2
t̃1
−m2

t̃2

F

+m2
Z cos2 β s2θt F̃2

]
, (C.0.4)

Ht23 =

√
2λ vmt

sinβ

[
m2
t cotβ s2θt F2 +

1

2
mtAt cotβ s2

2θt F3 +
mtAt cotβ

m2
t̃1
−m2

t̃2

F

− m2
Z sinβ cosβ s2θt F̃2

]
, (C.0.5)

Ht33 = λ2 v2

[
1

2
m2
t cot2 β s2

2θt F3 +
m2
t cot2 β

m2
t̃1
−m2

t̃2

F

]
, (C.0.6)

where the functions F2, F3, F and F̃2 coincide with those entering the MSSM results, see

section 2.2 and appendix A. In the limit mb = θb = 0 there are no contributions to H13,

H23 and H33 from bottom/sbottom loops.

Finally, when the parameters entering the top/stop contributions to the one-loop

part of the form factors are expressed in a renormalization scheme other than DR, the

shifts to the form factors that were not already given in section 2.2.3 read

δHt13 =

√
2λ vmt

sinβ

[
1

2
mt µ cotβ s2

2θt δF3 +
mt (At + 2µ cotβ)

m2
t̃1
−m2

t̃2

δF

+ m2
Z cos2 β s2θt δF̃2 +

mt δAt
m2
t̃1
−m2

t̃2

F 1`

]
, (C.0.7)

δHt23 =

√
2λ vmt

sinβ

[
m2
t cotβ s2θt δF2 +

1

2
mtAt cotβ s2

2θt δF3 +
mtAt cotβ

m2
t̃1
−m2

t̃2

δF

−m2
Z sinβ cosβ s2θt δF̃2 +

1

2
mt δAt cotβ s2

2θt F
1`
3 +

mt δAt cotβ

m2
t̃1
−m2

t̃2

F 1`

]
,

(C.0.8)

δHt33 = λ2 v2

[
1

2
m2
t cot2 β s2

2θt δF3 +
m2
t cot2 β

m2
t̃1
−m2

t̃2

δF

]
, (C.0.9)

where the shifts δF2, δF3, δF and δF̃2 coincide with those defined in appendix B.
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