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Chapter 1

Introduction

Internet is defined by many as “The Network of Networks”. This is because
we can imagine it as an interconnection of many components. Their name is
Autonomous Systems (ASes) and they are networks connected to each other
under the control of a unique administrative authority. Some Autonomous
Systems offer Internet services directly to users or companies and they are called
Internet Services Providers (ISPs).

The main feature of an Autonomous System is that it communicates explicitly
to the rest of the Internet which networks are under its control and which
networks are reachable via its infrastructures. In the course of time, th Internet
has become “unbalanced”: Big portions of the Internet have became reachable
just by very big Autonomous Systems paid by smaller ones to provide them
access the rest of Internet – the “ Big Internet”.

In this context a special role is played by Internet eXchange Points, that
are infrastructures that give ASes the opportunity to directly connect each
other in order to exchange traffic without using other providers, thus reducing
distances and costs. IXPs play a crucial role in the development of the Internet,
encouraging ISPs to create a dense network of interconnections at low cost.
Some of them (e.g., DE-CIX, AMS-IX, and LINX) have a throughput of many
Tbit/sec. and are some of the most important building blocks of today’s Internet.

IXPs have also been studied as one of the causes of the evolution from a
traditional hierarchical Internet to a more “flattened” version with AS-path
getting shorter over time.

In this thesis, we deeply study Internet eXchange Points from a variety of
view points:

1
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2 CHAPTER 1. INTRODUCTION

• Recent trends say that major ISPs are canceling their peerings at IXPs
(de-peering). In several occasions they justified such decision in terms of
more efficient handling of IP traffic and improvement of the Quality of
Services (QoS). In this thesis we try to claim the opposite, performing
many measurements and showing how IXPs impact positively on Internet
performance keys. We also study whether IXPs are effective in preserv-
ing traffic locality, by checking which countries are traversed to reach
frequently visited Italian destinations from Italian sources;

• We comprehensively examine the evolution of IXPs over a long period of
time, characterizing its evolution and quantifying the impact they have on
end-to-end paths in particular with regards to the flattening phenomenon,
i.e., the reduction in the number of the as-level hops. We believe that
this analysis shed light on the impact over time of a critical Internet
infrastructure and how it has shaped the current Internet, as well as
estimates the impact of new IXPs in the Internet ecosystem;

• Very often, Route Server functionalities are mainly leveraged by small
providers and Content Delivery Networks since these players have strong
interests in connecting to many IXP members by just setting up a single
BGP peering with RS. On the other hand, big Internet players, with very
few exceptions, tend to not have BGP peerings with an RS. We argue
that this trend is the result of exposing an IXP member to a potential
violation of privacy in terms of BGP policies when peering with an RS.
We present a Route Server (RS) system that improves both the privacy
guarantees of confidential peering information and the security of the RS;

• Federated networks represent a collaborative operational way for Internet
Service Providers (ISPs) to increase revenues by sharing resources. One
of the main challenges in this architecture is finding a common physical
place where members can connect to each other. In this thesis we claim
and show how IXPs could play an important role in this sense, reducing
costs for network operators and offering them many opportunities. In
particular we present a Federated Network scenario where we use an IXP
as a common point for the federation and we rely on Software Defined
Network in order to address management and technological challenges in
a flexible and customizable way. Furthermore, starting from the idea of
Software Defined eXchange point(i.e. an IXP totally based on SDN) we
study the applicability of many approaches proposed in literature.
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We study the impact of peering at IXPs on common network key metrics by
collaborating with three medium-size ISPs, in order to actively control their
BGP announcements and force the traffic to take specific routes for useful
comparison. We perform experiments in which network paths between two ASes
either traverse IXPs or rely only on upstream providers. Such experiments help
us determine to which degree IXPs are actually beneficial for involved peers.
We perform measurements regarding the following network metrics: round-trip
time, hop count, packet-loss, and jitter.

We try also to have an historical view on IXP: fuelled by an increasing
demand for peering, IXPs grew in number, geographical scope and size, becoming
a critical element of the Internet structure. In this thesis we study their evolution
over a long period of time and quantify the disruptive impact of IXPs relying
on comprehensive historical datasets covering a decade of the Internet evolution.
We first study how the IXPs ecosystem has evolved. We then identify how
the dependence on transit providers has changed over time by looking at the
increasing reachability attainable by peering at existing IXPs. We show that
even though nowadays there is more than the double of IXPs than ten years
ago, the percentage of announced IPv4 addresses that can be reached through
them has increased less than 10%, from approximately 70% to nearly 80% -even
despite of the IPv4 exhaustion. Using this analysis as an starting point, we
then quantify the specific impact of the emergence and growth of IXPs. By
identifying IXPs in the historical traceroutes we quantify and characterize the
specific impact of IXPs on how the flattening phenomenon is conflated with the
stability in the average as-level path length.

Organizations that offer Internet-based services (Internet Service Providers,
Content Delivery Networks, etc.) join the Internet eXchange Points (IXPs)
in order to quickly and easily reach a number of other parties networks, and
gain the level of connectivity they need. Currently, IXPs offer a very useful
service, called Route Server (RS). An RS allows each member connected to an
IXP to easily exchange traffic with other members by establishing a peering
session with the RS, instead of having one peering with each other member
he wants to be connected to. Peering sessions are handled by the Border
Gateway Protocol (BGP), the standard interdomain routing protocol. Surely,
this functionality significantly reduces the effort needed by the IXP members
to connect to the Internet. However, such organizations are usually concerned
with business-critical aspects as privacy of the peering relationships, privacy of
routing policies and security of the network infrastructure (links, devices). We
present a Route Server system that improves both the privacy guarantees of
confidential peering information and the security of the RS. Our key idea is to
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4 CHAPTER 1. INTRODUCTION

prevent the RS from locally storing any BGP policies. Instead, the RS queries
routing policies in on-demand manner by means of a second communication
channel that we instantiate between the RS and each IXP member.

Internet eXchange Points can play an important role also in the future
of Federated Network. Federated networks represent a remunerable opera-
tional way allowing federated partners to increase their incomes through a
sharing resource process. They have been primarily used in the context of
cloud computing; nowadays they are also used to provide connectivity services,
like Virtual Private Networks. Federated networks represent a collaborative
operational way for Internet Service Providers (ISPs) to increase revenues by
sharing resources [GGT10]. A federated network can be defined as a network
in which federated partners or members (e.g. ISPs) share their own resources
with any other federated member in order to satisfy growing demands from
customers or possibly issue value-added services (e.g. services that could not
be provisioned without the federated network itself). A federated PoP is a
physical place in which all ISPs involved in a federation connect each other. In
general, establishing a federated PoP needs many steps, consisting of different
activities. For instance, there is the need of establishing connectivity (e.g.
by using dark fiber), as well as overcoming technical difficulties (e.g. due to
different physical layer technologies). Other steps regard the need of installing
and using new hardware (e.g. switches) that will be used by each ISP to
connect to each other and all equipments to monitor the services issued by the
federation. The network hardware in a federated PoP can be either hardware
owned by the provider itself or shared hardware owned by the federation. It
is easy to note that the federated PoP architecture strictly recall that of any
Internet eXchange Point (IXP), where providers are interconnected in order to
allow their customers to exchange traffic. Relying on Software Defined Network
and the idea of IXP as PoP for a federated network we present a SDN-based
framework. Our framework is completely based on SDN. We choose to rely
on that architecture since it brings flexibility in providing services and it also
makes the provisioning phase easier. Such a choice allows us to overcome the
challenges in current federated networks architecture. Indeed, we identify one
main problem in the architecture, namely the federated PoP. On one hand, such
an interconnection point brings several benefits (e.g. clear identification of a
place in which providers can federate and clear responsibilities assignment to
each federated provider). On the other hand, federated PoPs are duplicates of
IXPs, requiring further effort for federated providers in terms of expenses and
configurations (e.g. buying and managing devices used in the federated PoP).
We argue that being connected to an IXP is enough to create a federation and
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this requirement is easily satisfied by providers.

Often devil is in the details and also something that seems to be stable and
working for years can suddenly break as we add new components. The Address
Resolution Protocol (ARP) enables communication between IP-speaking nodes
in a local network by reconstructing the hardware (MAC) address associated
with the IP address of an interface. This is not needed in a Software-Defined
Network (SDN), because each device can forward packets without the need to
learn this association.We tackle the interoperability problem arising between
standard network devices (end systems, routers), that rely on ARP, and SDN
datapaths, that do not handle ARP packets natively. In particular, we propose
a general approach to handle ARP in a SDN, that is applicable in several
network scenarios, is transparent for existing devices, and can coexist with any
packet forwarding logic implemented in the controller.

A milestone in the research that combines Software Defined Network and
Internet eXchange Points is an approach proposed in [GVS+]. In order to
foster the deployment of SDN in the network edge, the paper identifies Internet
eXchange Points as a compelling place to start, given their central role in
interconnecting many networks and their growing importance in bringing popular
content closer to end users. It proposes an Internet eXchange Point totally
based on SDN, namely a Software Defined eXchange point. Despite the fervent
activity in the scientific community on devising novel network architectures and
services that take advantage of SDN, most papers validate their proposals on ad-
hoc testbeds, and little attention has been devoted to determining the practical
applicability of these approaches using currently available devices. On the other
hand, even if OpenFlow is now somewhat mature, vendors seem to lag behind in
terms of functionalities supported on their devices. Without precise indications
on which features are supported, network administrators interested in switching
to SDN may have a hard time trying to find the selection of SDN-enabled devices
that best fits their needs. Preserving this dual (scientific and technological)
perspective, we contrast a selection of the most important contributions in the
literature about SDN with publicly available documentation from device vendors,
highlighting the consequent applicability issues that scientific contributions may
incur. We define a methodology for testing the readiness of a device to operate
in an SDN-based infrastructure, combining existing OpenFlow conformance
test tools with other custom tests. In the end we draw a picture of the current
status of OpenFlow implementations by applying our methodology to many
devices.

The thesis is divided into five parts:
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6 CHAPTER 1. INTRODUCTION

• Part I introduces the reader to key definitions and concepts that are
essential to the understanding of the following chapters. We start with
preliminaries notions about the Internet. Then we focus on IXPs and on
their architectures. In this part we also introduce some definitions about
Software Defined Networking;

• Part II is devoted to the impact of IXP on the Internet both from a
qualitative and quantitative point of view;

• Part III focuses on Route Server (RS) and presents a solution for a RS
that guarantees security and privacy;

• Part IV combines IXP and Software Defined Network and presents a
solution that lets ISPs to construct a federated network dealing with
many problems (administrative and technological) related to this concept.
In this part we also present a solution that solves interoperability problems
related to the Address Resolution Protocol (ARP). Being SDN a novelty
in the industry we also analyze how research solutions deal with today
SDN network devices by testing them on recent proposed approaches;

• Part V is composed of two chapters. The first one focuses on additional
research activity that has little or no overlap with IXP but still yielded
interesting results and publications. The last one concludes our work
with a list of conference papers, and technical reports that were published
during the past three years. Each publication is the tangible result of a
research topic explored in one of the previous chapters of the thesis.
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Chapter 2

Internet eXchange Points

Internet eXchange providers play a crucial role in directly interconnecting
networks of many Internet Services Providers, allowing them to avoid the usage
of one or more third providers.

In this chapter we give a formal definition of Internet eXchange Point, we
analyze some possible architectures and we list some IXPs in the world and in
Italy.

2.1 Definition of an Internet eXchange Point

An Internet eXchange Point (IXP) is a physical infrastructure through which
Internet Service Providers (ISPs) and Content Delivery Networks (CDNs)
exchange Internet traffic between their networks (Autonomous Systems). It
allows ISPs to interconnect directly their Autonomous Systems, namely their
networks, that is to establish a peering between them, instead of using a third
party network (upstream).

Fig. 2.1 shows a simplified model of Internet: AS5 and AS6 most likely will
exchange their traffic using AS4 while AS2 and AS5 as well as AS3 and AS4 are
directly interconnected (i.e. they have a peering) and so they do not need to
send their traffic through another AS. As detailed in [CSFW] this is convenient
in terms of costs and performance. Indeed usually traffic that pass through
an IXP is not billed by any party.e On the contrary, traffic that goes through
an upstream is subject to standard Commercial Agreements. Furthermore, in
most cases, traffic paths that traverse IXPs are shorter than the ones that go

9
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10 CHAPTER 2. INTERNET EXCHANGE POINTS

Figure 2.1: A little Internet

through an upstream. This means shorter distance, lower number of traversed
devices and therefore benefits on the end user performance.

2.2 Architecture of an Internet eXchange Point

A typical IXP consists of one or more network switches, to which each of the
participating ISPs connect its router. Traffic exchange between participants is
facilitated by Border Gateway Protocol (BGP) routing configurations between
them. They choose to announce routes via the peering relationship - either
routes to their own addresses, or routes to addresses of other ISPs that they
connect to, possibly via other mechanisms. The other party to the peering can
then apply route filtering, where it chooses to accept those routes, and route
traffic accordingly, or to ignore those routes, and use other routes to reach those
addresses.

Fig. 2.2 shows a simplified topology of an IXP from two perspectives:
considering the topology at the Layer 1 (Physical) and Layer 2 (Data Link) and
then at the Layer 3 (Network). It is easy to see how the network level benefits
this topology having available potentially connections with all the participants
but using just one physical link.

Fig. 2.3 represents the topology of one of the biggest IXPs in the world,
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(a) Diagram of the Layer 1 (physical) and Layer 2 (Data Link) topology of
an Internet Exchange Point (IXP)

(b) Diagram of the Layer 3 (network) topology of an Internet Exchange Point
(IXP).

Figure 2.2: Diagram of an IXP from different perspectives (Layers)

DE-CIX. It clearly shows the redundancy applied to the aggregations level (e.g.
DE-CIX3 and DE-CIX6 are the redundancy of the core) and the distributed
architecture of this IXP (indeed DE-CIX1-4 and DE-CIX7 are the five points
of DE-CIX in the city of Frankfurt).

The entire infrastructure of an Internet eXchange Point could be located
in a single physical place (e.g. the Cairo Internet eXchange CAIX), in more
places in the same city (e.g. DE-CIX) or in the same region (e.g. the ECIX),
or it could be distributed globally (e.g. the Equinix Internet eXchange Point is
distributed in 19 locations spread in 17 different metropolitan areas). Moreover
some IXPs are made up by multiple geographically dispersed not-interconnected
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12 CHAPTER 2. INTERNET EXCHANGE POINTS

Figure 2.3: DE-CIX IXP architecture at Frankfurt in 2012

network infrastructures (i.e., an “IXP of IXPs”; e.g., Netnod in Scandinavia, or
AMS-IX in Amsterdam AMS-IX and its “branch” AMSIX HK in Hong Kong).

However, irrespectively of their size and architecture, IXPs typically deploy
a fully redundant switching fabric to provide an extra level of fault-tolerance
and house their equipment in facilities such as data centers that are known
for high levels of reliability (e.g., full UPS power backup, 99.999999% uptime),
power density (e.g., heating, ventilation, AC), and security (e.g., facility access
control and monitoring).

2.3 IXPs in the World

The growth of the number of Internet eXchange Points in the world has been
somewhere linear as shown in Fig. 2.4 by [ana]. Starting from about 50 IXPs in
1999 they became about 400 in 2011, with the highest concentration in Europe.

The highest concentration of IXPs in Europe can be also observed in Fig. 2.5
from [pch] that shows the geolocation of all IXPs in the world. Still [pch] shows
in Fig. 2.6 the distribution of IXPs in the world aggregated by nation (darker
blue tones indicate a greater number of IXPs). Table 2.1 [int] contains IXPs
with more than 100 members.
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Figure 2.4: Growth of IXPs in the year by region

Figure 2.5: Geolocation of IXPs in the world
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Figure 2.6: Geolocation of IXPs in the world

Continent Nation City Name # of participants
Europe Holland Amsterdam Amsterdam Internet Exchange 472
Europe England London London Internet Exchange 407
Europe Russia Moscow Moscow Internet Exchange 344
Europe Germany Frankfurt Deutscher Commercial Internet Exchange 325
Europe Holland Amsterdam Netherlands Internet Exchange 294
North America USA Los Angeles One Wilshire Any2 Exchange 216
Europe Poland Warsaw Polish Internet Exchange 204
Latin America Brazil St. Paul Ponto de Troca de Trafego Metro 167
Europe England London XchangePoint London IPP 166
North America USA Seattle Seattle Internet Exchange 151
Africa South Africa Cape Town Cape Town Internet Exchange 150
Europe Germany Frankfurt KleyReX Internet Exchange 138
North America USA New York New York International Internet Exchange 137
Europe France Paris Paris NAP 133
Europe Switzerland Zurich SwissIX 132
Asia-Pacific japan Tokyo Japan Internet Exchange 125
North America Canada Toronto Toronto Internet Exchange 116
Europe England London London Network Access Point 114
Europe France Paris Free-IX 106
Asia-Pacific Australia Sydney PIPE Networks Sydney 105
Europe Austria Vienna Vienna Internet Exchange 105
Asia-Pacific China Hong Kong Hong Kong Internet Exchange 104
Europe Italy Milan Milan Internet Exchange 102

Table 2.1: IXPs in the world with more than 100 members (2012).
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Chapter 3

Software Defined Networking

Traditional IP networks are complex and very hard to manage. It is both difficult
to configure the network according to predefined policies, and to reconfigure it to
respond to faults, load and changes. Software-Defined Networking (SDN) is an
emerging paradigm that promises to change this state separating the network’s
control logic from the underlying routers and switches, promoting (logical)
centralization of network control, and introducing the ability to program the
network. The separation of concerns introduced between the definition of net-
work policies, their implementation in switching hardware, and the forwarding
of traffic, is key to the desired flexibility: by breaking the network control
problem into tractable pieces, SDN makes it easier to create and introduce new
abstractions in networking, simplifying network management and facilitating
network evolution. [KRV+15]

3.1 The Idea of a Programmable Network

Software defined networking is a centralized routing paradigm. It divides
physically control plane and data plane. Control functions are centralized in a
server that is able to compute a path in the network for each traffic flow. It
allows the administrator of a network to have a fine control on each path.

As Fig. 3.1 shows, the difference between SDN and traditional routing,
is that while in standard networks the routing is computed in a distributed
manner, in SDN it is computed by a software executed on a machine. We can
sum up this concept as Code VS Configuration.

15
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16 CHAPTER 3. SOFTWARE DEFINED NETWORKING

Figure 3.1

Figure 3.2: Architecture of a Software Defined Network

3.2 Architecture of a Software Defined Network

SDN divides control plane and data plane, we have two main actors:

• Controller: it runs the control plane software. It could be executed on
general purpose hardware;
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• Switch (or Datapath): is functionalities are limited to packets forwarding.

Controller and datapaths can communicate using specific API. The separation
of the forwarding hardware from the control logic allows easier deployment
of new protocols and applications, straightforward network visualization and
management, and consolidation of various middleboxes into software control.
Instead of enforcing policies and running protocols on a convolution of scattered
devices, the network is reduced to “simple” forwarding hardware and the decision-
making network controller [NMN+14]. In the SDN model, the functional logic
of a network device, called datapath, is realized by a piece of software called
controller, while the device itself only performs packet forwarding based on a
set of match-action conditions called flow entries. When a datapath does not
know how to handle a packet, it submits it to the controller. The controller
may either ask the datapath to emit a copy of the packet out of a specific
interface, or install a new flow entry in the datapath’s flow table that instructs
the datapath about how to independently handle future packets belonging to
the same flow: such an entry watches certain bits of the header fields of received
packets while applying wildcards on other bits, and it executes an action on
matching packets (e.g., forward out of a port, drop). The most widely adopted
specification of SDN is OpenFlow [Ope13a] , which also defines a protocol for
controller-datapath communication.

3.3 OpenFlow

OpenFlow is a specification of a logical architecture for an SDN-enabled switch
(datapath) and of a protocol for the communication between such a switch and
a controller platform. It is by far the most widely adopted specification, to the
point that even vendors that developed alternative implementations of SDN
customized to support proprietary functions also offer OpenFlow support as a
compatibility plug-in. Several versions of the specification have been published
since its appearance in 2009, confirming that it has now reached a considerable
level of maturity: in this thesis we refer to the most recent version, 1.5.1. The
specification describes three key concepts: datapath ports, various kinds of
tables, and the datapath-controller communication protocol. The configuration
of a datapath often includes a declaration of the physical ports that operate in
OpenFlow mode, namely that are part of an instance of (virtual) OpenFlow
datapath. According to the specification, at least two kinds of ports are exposed
to an OpenFlow datapath instance: an abstraction of each physical port where
the port number, its features, and its status can be accessed via OpenFlow
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18 CHAPTER 3. SOFTWARE DEFINED NETWORKING

Figure 3.3: OpenFlow architecture

data structures and messages; and a set of reserved ports, that are used to
accomplish special actions or invoke OpenFlow-specific functionalities. Support
for some of the reserved ports is mandatory: for example, this is the case for
ports ALL (used to forward a copy of a packet on all the interfaces but the one
through which it was received) and CONTROLLER (used to send a packet to
the con- controller). Support for other reserved ports is optional: for example,
this applies to the NORMAL port. According to the specification, an OpenFlow
datapath must implement different kinds of tables: the standard flow tables,
a group table, and a meter table. It is possible to apply an arbitrary bitmask
to certain packet headers to match only a subset of the bits of a field value.
This is particularly useful, for example, when matching IP subnets. Moreover,
among the actions declared as mandatory by the specification, there is a “group
action”, which allows to perform several actions on multiple copies of the same
packet. Match conditions and actions can also operate on registers, called
“metadata”, that are used to pass information between flow tables. Flow entries
have a priority, and every flow table also has a lowest-priority special table-miss
flow entry, which determines the action that the datapath should undertake on
packets that were not matched by any of the entries in the flow table (in the
absence of a table-miss flow entry, packets should just be dropped). Each entry
in the flow table may have counters that determine how many packets and
bytes matched that entry. Although support for these counters is declared as
optional. Besides the flow tables, an OpenFlow datapath also maintains a group
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3.3. OPENFLOW 19

table, whose implementation is mandatory. This table is used to store groups
of actions that can be referenced in the action part of a flow entry. Depending
on the type of the group, all or only one the involved actions are executed on
matching packets. Finally, an OpenFlow datapath also maintains a mandatory
meter table, that defines per-flow meters usable for classifying, rate limiting, or
dropping different types of traffic.
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Part II

IXP’s Impact on the Internet

21
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Chapter 4

Through the Lens of IXPs: A
Decade of Internet Evolution

Internet eXchange Points (IXPs) have been a key element reshaping the Internet
over the past decade: While previous works have provided punctual evidence
of the relevance of IXPs, there is no comprehensive study and there is very
limited analysis on the temporal evolution of this critical infrastructures. This
work comprehensively examines the evolution of IXPs over a long period of
time, characterizes its evolution and quantifies the impact they have on IPs
reachability. We believe that this analysis shed light on the impact over time of
a critical Internet infrastructure and how it has shaped the current Internet, as
well as estimates the impact of new IXPs in the Internet ecosystem.

4.1 Introduction

With the growth of traffic and increasing demands of quality and performance,
IXPs emerged as a switching facility where networks interconnect through
peering links. Fuelled by an increasing demand for peering, IXPs grew in
number [AKW09], geographical scope [CCGF14] and size [ACF+12], becoming a
critical element of the Internet structure [GILO11b,BCT+16,CSFW15,CDA+16,
RSF+14a]. While previous works provided a limited punctual analysis, in this
work we provide a comprehensive study of IXPs and its evolution over a long
period of time and quantify the disruptive impact of IXPs. This work, thus
provides a fine-grained understanding of the impact and temporal trajectory of
IXP’s critical infrastructure, quantifying the consequences of its massive spread.

23
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INTERNET EVOLUTION

With IXPs being an ideal vantage point [CSB+13], we rely on comprehensive
historical datasets covering a decade of the Internet evolution. We first study
how the IXP ecosystem has evolved. We then identify how the dependence on
transit providers has changed over time by looking at the increasing reachability
attainable by peering at existing IXPs. We show that even though nowadays
there is more than the double of IXPs than ten years ago, the percentage of
announced IPv4 addresses that can be reached through them has increased less
than 10%, from approximately 70% to nearly 80% -even despite of the IPv4
exhaustion. Note that we do not consider in this study IPv6, as its impact has
become tangible only in the last few years [CAZ+14].

The main contributions of this work are:

• an analysis of the the evolution of IXPs.

• a quantification of the impact of IXPs on the Internet ecosystem.

• a forecast of the potential impact of new IXPs.

4.2 Related Work

While the academic community slowly acknowledged the relevance of IXPs
in terms of the number of facilities [AKW09], its geographical scope [CCGF14],
size [ACF+12], structural impact [GILO11b] and relevance [BCT+16,CSFW15,
CDA+16, RSF+14a], little has been explored with regards to its temporal
dynamics.

While some works have taken a look at the Internet evolution as a whole [DD11,
LIJM+10], little is know about the specific role of IXPs over time. Cardona et
al. [CRS12a] is probably one of the few exceptions, though the work refers just
to one specific IXP and to its internal temporal dynamics and it is not possible
to expand those insights to the overall IXP ecosystem.

Aligned with the rising relevance of IXPs, large networks expanded their
geographical coverage [KMS+09] and increased peering, typically at IXPs,
allowed networks to circumvent transit providers [LIJM+10].

While these factors have pointed to a flattening of the Internet topol-
ogy [GALM08], the Autonomous System (AS)-level path length has remained
stable [DD11].

In understanding peering dynamics and IXPs, PeeringDB [LLD+14] has
been shown to be a reliable data source, which we also use in this work.
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Figure 4.1: Number of IXPs per PeeringDB snapshot

Similarly, and despite of its limitations [MRWK03], traceroute repositories, such
as iPLane [MIP+06], can provide a representative picture of the Internet [SW09].

4.3 Data

We rely on a large historical IXP membership dataset from PeeringDB [LLD+14]
that covers from 2008 to the present. We obtained the years 2008 and 2009
using the Way Back Machine 1, from 2010 to 2016 from CAIDA 2, and we
obtained 2017 directly from the PeeringDB site. In Figure 4.1 we show the
number of IXPs for each PeeringDB snapshot. It is clear how their growth
follows a linear trend. Starting from about 200 IXPs in 2008 we reach more
than 600 in 2016. The same is shown in Figure 4.2 where results are aggregated
per region. We have obviously the same trend, while is interesting to see how
IXPs have been always more in Europe and only in the last few years we get

1http://archive.org/web/
2http://data.caida.org/datasets/peeringdb-v1/
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a sensible growth in South America and Africa. Moreover, in the Midlle Est,
and in Australia, we find a more reasonable number of them just in the last
few years.

We also leverage the information of PeeringDB on the ASes willingness
to peer to give a more realistic picture. ASes declare in PeeringDB whether
they have a peering policy which is open (willing to peer with any network),
selective (peering only takes place if some conditions are met), or restrictive
(only peering with specific networks). To identify IXPs in Internet paths, we rely
on the historical iPlane dataset [MIP+06] and we use Maxmind IP-geomapping
datasets from the Wayback machine for each corresponding year.

4.4 Internet eXchange Points’ rechability

Firstly, we define the reachability of an IXP as the set of unique IP addresses
that are reachable through customer links in such IXP, i.e., the IPs announced
by the IXP members and their customer cones. This metric informs of which
share of the address space could be potentially reached if an AS would colocate
at such IXP and peer with all its members.

We consider a global view of the Internet to deal with the disparity of perspec-
tives that different vantage points provide. In particular, use the ASes’customer
cones as computed by CAIDA [LHD+13]. We also consider the reachability of
an AS as the the set of IPs reachable through the prefixes announced by such
AS any of its customers. Note that while operationally wise, ASes would rather
reach a given IP via the most specific prefix, we are interested in feasibility
rather than in operational correctness.

4.5 Transit dependence

Because tier 1 ASes are regarded as the ultimate guarantors of universal
reachability, i.e., all announced address space are supposed to be reachable
through Tier 1 ASes (T1), we discard the T1 from the IXP customer cone. We
regard as T1 the clique of the AS graph, i.e., the set of ASes that have only
peering relationships with each other, no providers, and whose joint customer
cone is the announced address space. More specifically we use the clique as
inferred in [LHD+13]. As peering has been an alternative interconnection mode
allowing ASes to bypass transit providers (including tier 1), we are particularly
interested in how dependent are ASes on tier 1s, i.e., what is the percentage of
the address space that is unreachable via IXPs.
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Figure 4.3: Cumulative reach of T1 networks per year

We now depict the reachability from IXPs perspective with reachable IPs
as a function of IXP presence (i.e., number of IXPs in the x-axis and number
of unique reachable IPs in the y-axis). IPs are sorted in terms of “accumulated
reachability”: the first IXP, is that one IXP with the largest reachability in
terms of IP address, followed by the IXP adding most new IPs. We do this
recursively until we exhaust the set of existing IXPs. As a result we can observe
in Figure 4.5 both how much of the address space reachable through a tier-1
can be reached through IXPs, how many IXPs are needed to maximize such
reachability, and how this has evolve over time.

Comparing Figure 4.3 with Figure 4.5 it is trivial to see how just a little
portion of the whole Internet Ecosystem is still reachable just through T1s. It
also easy to imagine that it consists exactly of space belonging directly to T1s
Autonomous Systems.

In Figure 4.4 we have reachability through IXPs including T1s networks.
Compared with Figure 4.3 it shows how the final value for reachability is the
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Figure 4.4: Cumulative reach of IXPs incuding T1 networks

same. This means that we do not have IPs reachable only through IXPs.

Interestingly, the percentage of destinations reachable through IXPs (relative
to the total number of IPs reachable through T1s) has not steadily increased
over the years, as portrayed in Figure 4.5. For instance, in 2011 a greater share
of the public Internet was reachable through IXPs than in ulterior years, being
2016 the only exception. The reason is rather in the dynamics of IXPs than
in abrupt changes in T1’s reachability: as Figure 4.3 demonstrates, the total
number of destinations reachable through the T1 has been constantly increasing,
though not steadily. For example, the earlier of years of the analysed period,
witnessed a greater yearly increase in the reachability of the T1 than later years,
a natural phenomenon if we take IPv4 exhaustion into account. The top level
exhaustion started on early 2011, when Number Resource Organization (NRO)
announced that the free pool of available IPv4 addresses is now fully depleted.
Soon after the Internet Assigned Numbers Authority (IANA) allocated the
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Figure 4.5: Cumulative reach of IXPs without T1 networks

remaining IPv4 blocks to the 5 Regional Internet Registry (RIR) 3

4.6 Conclusions

In this work we showed how IXPs have been a key element reshaping the
Internet in the last ten years. We comprehensively studied and analyzed their
temporal evolution and their impact on the reachability of the whole Internet
ecosystem. Moreover we depicted a forecast of the potential impact of new
IXPs.

We believe that with this work we took a snapshot of the Internet and we
shed light into the impact over time of a critical Internet infrastructure.

3https://www.nro.net/ipv4-free-pool-depleted/
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Chapter 5

Is it Really Worth to Peer at IXPs?

Internet Exchange Points (IXPs) play a crucial role in the Internet ecosystem.
However, existing literature fails in quantitatively assessing the advantage for
an Internet Service Provider (ISP) to peer at an IXP. We give a contribution to
bridge such a gap by collaborating with three medium-sized ISPs in Italy to
compare key performance indicators (round-trip delay, hop count, packet loss,
and jitter) as measured from several vantage points in presence and absence of
IXP peerings. Our findings are that IXP-based paths exhibit better and more
stable performance, whereas avoiding IXPs introduces performance deterioration
and higher variability. Moreover, our measurements confirm that IXP-based
paths tend to preserve the locality of traffic.

5.1 Introduction

Internet eXchange Points (IXPs) are infrastructures used by Internet Service
Providers (ISPs) to exchange traffic between their Autonomous Systems (ASes).
An IXP allows ISPs to interconnect their ASes directly, i.e. to establish peerings
between them, rather than through third-party networks (upstreams). IXPs
play a crucial role in the development of the Internet, encouraging ISPs to
create a dense network of interconnections at low cost. Some of them (e.g.,
DE-CIX, AMS-IX, and LINX) have a throughput of many Tbit/sec. and are
some of the most important building blocks of today’s Internet [ACF+].

Despite the importance of IXPs, scientific literature lacks extensive studies
that show the impact of peering at IXPs on common network key metrics.
In [CSFW], e.g., the authors claim that having peerings at an IXP is efficient

31
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in terms of performance, but their assumption is not backed by real data. The
main limitation lies in the fact that thorough studies need to directly compare
the performance of traffic flowing through an IXP as opposed to that through
upstream providers.

In our work we make a first attempt to fill this gap by collaborating with
three medium-size ISPs, in order to actively control their BGP announcements
and force the traffic to take specific routes for useful comparison. More in
detail, we perform experiments in which network paths between two ASes either
traverse IXPs or rely only on upstream providers. Such experiments help us
determine to which degree IXPs are actually beneficial for involved peers. We
perform measurements regarding the following network metrics: round-trip
time (rtt), hop count, packet-loss, and jitter. Our study is focused on Italy,
meaning that both the source ASes and the target ASes of our measurements
are located in Italy. We concentrate our attention on the two most famous
Italian IXPs: MIX and NaMeX. Our study stems from recent news [dep] on
major ISPs canceling their peerings at IXPs (de-peering). In several occasions
they justified such decision in terms of more efficient handling of IP traffic and
improvement of the QoS. As a second topic of interest, we also study whether
IXPs are effective in preserving traffic locality, by checking which countries are
traversed to reach frequently visited Italian destinations from Italian sources.
This is a security issue of concern for many nations. In particular, given the
recent espionage cases of network traffic [dat], a nation might be interested to
see if its own citizens, to reach Internet services that are considered critical,
have to cross ISPs of different countries or even of different continents [rus].

This chapter is organized as follows. Section 5.2 discusses the state of the
art in the analysis of IXPs. In Section 5.3 we describe the different experiments
that we conducted to assess the role of IXPs on the Italian Internet ecosystem.
Section 5.4 details the results of our analysis. Finally, Section 5.5 presents our
conclusions and hints for future work.

5.2 Related Work

A survey by Chatzis et al. [CSFW] lists three main reasons for an ISP to
establish peerings at an IXP: saving money, improving the QoS, and meeting the
requirements of big players (e.g. Google, Netflix) that incentivize other networks
to connect at IXPs to obtain peerings with them. However, no experiments
have been performed by the authors to support the claim on the QoS. The
work also examines the diversity of IXPs around the world, highlighting the
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non-profit nature and the potential for innovation of European Exchange Points
as opposed to standard commercial offers in North America. [CRS12b] analyses
data on the peerings at Slovak IX, observing that many of them carry only little
traffic and therefore their existence would not be economically viable outside
of an IXP. Recent research work [ACF+,CSB+] proves that large IXPs host
thousands of peerings between heterogeneous network that carry petabytes of
traffic on a daily basis. Further, the analysis of traffic logs leads to interesting
findings about trends in the Internet ecosystem, e.g. about content delivery
networks and about the impact of IXP pricing models on the nature of peerings.

The discovery of IXP-based peerings is a related topic that has traditionally
caught the attention of researchers for its implications in other areas, e.g. the
study of the correspondence between IP addresses and ASes. Recent techniques
(see, e.g., [AKW]) prove that most of such peerings cannot be found by simply
mining traditional, “static” data sets like BGP routing data and Internet registry
statistic files.

IXPs have also been studied [GILO11a,MHC] as one of the causes of the
evolution from a traditional hierarchical Internet to a more “flattened” version
with AS-path getting shorter over time.

The renewed interest in the topic is confirmed by recent research work that
aims at expanding the potential of traditional IXPs. Kim et al. [KSF14] used
logs of a large European IXP to study the status of IPv6 traffic during and
after the World IPv6 Day in 2011 and the World IPv6 Launch in 2012. Gupta
et al. recently introduced a prototypical software-defined Internet Exchange
that enables expressive and highly customizable routing policies [GVS+].

Despite of this large amount of investigation, a quantitative analysis on the
impact of IXPs on key performance indicators like rtt, jitter, hop count, and
packet loss is missing. In [AG], the authors compare the rtt of a path between
two points in the Internet when the path traverses an IXP and when it does not.
Differently from us, their non-IXP path is simulated, by concatenating pieces of
paths coming from several traceroutes. Namely, they find a common provider C
of the source AS S and the destination AS D, and then find a S − C −D path
in a traceroute graph computed from public traceroute datasets, such that an
IXP is not traversed. Their conclusions are that the non-IXP paths have lower
latency, which is in contrast with our results. In [GCF+], the role of African
IXPs is studied. Among other measurements, they perform traceroutes from 17
local probes towards fixed targets. They discover that many African ISPs do
not have peerings at local IXPs, making local traffic paths often detour through
Europe. They compute the improvement in rtt that would result by following a
simulated path through an IXP. The simulation is done by replacing the detour
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part of a path with a direct link through an IXP or between pairs of local IXPs,
for which they estimate the latency. Their conclusions are that African users
would benefit from a higher connectivity between providers in African IXPs.

To our knowledge, all existing works that assess the effectiveness of IXPs by
comparing key performance indicators use, at least partially, simulated data.
The reason is that it is difficult to collect both a path traversing an IXP and
one traversing only upstreams between a pair of hosts in a real-life network,
where no direct control is possible. Supported by several ISPs, we fill this gap
by comparing key performance indicators of real IXP and non-IXP paths.

5.3 Methodology

The IXPs that are central to our study are the two oldest and most popular
Italian IXPs, namely, MIX and NaMeX. MIX [MIX] is the largest in terms of
peers: at the time of writing, its Website reports that 151 ISPs have peerings
there, of which 106 flagged as “Italian”. We executed the procedure described
in Section 5.4 to determine the nationality of the ISPs declared to be Italian
by MIX, and it confirmed the correctness of such declaration. NaMeX [NaM]
currently serves 58 ISPs, as reported on their website. They are not classified
based on their nationality, therefore we executed the aforementioned procedure
and conclude that 47 of them are Italian. The number of peerings at MIX and
at NaMeX is not publicly available. Executives at MIX kindly provided an
estimation of more than 5, 000 peerings in their IXP, while executives at NaMeX
kindly disclosed an estimation of 438 peerings, i.e. 31.78% of the theoretical
upper bound of 1378.

In our study we exploited the distributed infrastructure of RIPE Atlas [atl],
which is a Internet measurement network based on thousands of devices, called
probes, that are deployed in different types of networks (home, business, aca-
demic, etc) all around the world. Probes are connected to the Internet and can
be remotely activated to schedule and perform standard network measurements
(i.e. ping, traceroute, DNS resolution) towards arbitrary Internet targets. Each
probe is labeled with its approximate location. We leverage RIPE Atlas to
perform traceroute and pings from probes located in Italy and directed at a
number of targets in Italy. The location of the probes used in our experiments
is shown in Fig. 5.1. Several alternatives for distributed active network measure-
ments are available nowadays. Examples include CAIDA’s Archipelago [ark],
Measurement Lab [mla], and SamKnows [sam]. However, the first two have
very few probes in Italy, while the probes of the last are allocated to specific
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Figure 5.1: Maps showing the location of probes used in our experiments.
MIX and NaMeX are marked with letters M and N, respectively.

commercial targets and are not publicly available for research purposes.

Experiment CIS: Crucial Internet Services

In our first experiment we engineered network tests aimed at producing a
plausible snapshot of the QoS associated to crucial websites commonly ac-
cessed by Italian users, with the goal of classifying the results according to the
usage/non-usage of IXP peerings. As a first step, we selected two sets of Internet
websites that can be considered crucial for Italian users. The first contains
services related to critical infrastructures and the second contains popular sites.
The first set, called Critical, has been selected according to the taxonomy
in [Hom] and contains 46 websites belonging to the following categories: on-line
banking, insurance companies, public administrations, energy companies, legal
courts, travel companies, health portals, and webmail providers. The second
list, called Visited, contains the 100 Italian websites most visited by Italian
users, according to the ranking published by Alexa [Ale]. We mapped each
domain name belonging to our lists to an IP address as follows. We scheduled
ping measurements from all Italian probes targeted at each domain, once every
10 minutes for four hours and specifically forced probes to resolve the domain
before each ping by querying their local DNS. We have then filtered the obtained
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IP addresses by keeping only those located in Italy according to the heuristic
described in Section 5.4. The IP addresses obtained in this way are 53 for the
first list and 94 for the second one. In the latter case we have fewer IP addresses
than websites because some websites share the IP address. For each list, the
test of Experiment CIS consists of 5 traceroutes, performed by each probe
at intervals of 10 minutes, for a total duration of 40 minutes. We intentionally
performed few traceroutes in order to limit the total duration of the experiment,
thus reducing the probability of measuring noise due to routing changes. Based
on the collected traceroute data, for each traceroute, we computed four values:
rtt, hop count, and two boolean flags telling whether MIX and NaMeX were
traversed. To compute such flags we preliminarily collected all IP addresses
used at the two IXPs for the establishment of peerings, by directly asking
representatives of the IXPs. With such information at hand, we were able to
flag all traceroute paths passing through either of the two IXPs.

Experiment SBA: Selective BGP Announcements

In our second experiment we focused on discovering routing alternatives involving
either IXPs or upstreams used by Italian ISPs to reach Internet services, in order
to directly compare their performance. To do so we partnered with Mc-link,
Seeweb and Unidata, three medium-sized Italian ISPs. In preparation for our
experiment, we asked each partner ISP to reserve one IP subnet and one server
in its data center. Each server was assigned an IP address falling within the
reserved IP subnet. Also, it was configured to correctly handle and answer
ICMP echo requests sent with pings and traceroutes. For each ISP we executed,
at different times, the steps described below. We asked the ISP to announce
a predetermined sequence of 5 BGP updates involving its reserved IP subnet.
Each update had a lifetime of 4 hours, for a total of 20 nonconsecutive hours
per test. The list of BGP updates was crafted to selectively distribute routes
to different subsets of the available peers, adhering to the following scheme.
1) “UPSTREAM”: announce only to transit ASes. 2) “IXPS”: announce only to
MIX and NaMeX peers. 3) “MIX”: announce only to MIX peers. 4) “NAMEX”:
announce only to NaMeX peers. 5) “ALL”: announce to all peers. During
each interval we ran traceroutes and pings from all Italian probes to the IP
address of the server. For each interval we started one hour before the BGP
announcement and ended one hour after the end of the interval. We performed
one ping per minute and one traceroute every 10 minutes. The measurements
ran before the first BGP announcement was performed, in order to assess the
reachability and the performance stability of each target. The great majority of
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the intervals (not all of them because of technical constraints of one provider)
were located during the daytime hours, to avoid any time-of-day effect on the
measures [GM]. Finally, at the end of each period, we filtered out all ping and
traceroute measurements that took place near the 5 BGP announcements. More
precisely, given the exact timestamp logs of BGP announcements, we identified
4 time intervals spanning one hour and centered at each of the timestamps,
and removed each ping and traceroute falling within any of the intervals. We
did so to account for potential instabilities and route flapping caused by the
BGP announcements. For each probe-target-interval tuple, where an interval
is one between “UPSTREAM”, “IXPS”, “MIX”, “NAMEX”, and “ALL”, we
computed the average rtt, the average hop count, and the boolean flags. Observe
that, while in Experiment CIS we took into account raw measured data, in
Experiment SBA we considered average values. This was done to compare the
performance of a probe-target pair measured in the different intervals. Further,
from ping data, we computed both the packet loss, measured as the sum of all
the ratios between the number of packets that received no answer and the total
number of sent packets, and the jitter, computed as the standard deviation of
all rtt values. Unidata and MC-link have one data center each, located in Rome.
Seeweb has two data centers, respectively located in Milan and Frosinone, so
Seeweb reserved for us two servers, one in each data center and we targeted the
measurement to both.

5.4 Analysis

Experiment CIS

The actual number of probes that were used for Experiment CIS is 91
for the measurements towards targets in dataset Critical, and 104 for the
measurements towards targets in dataset Visited.

Figure 5.2 contains graphs that give a high level overview of how performance,
as measured by Atlas probes, depend on the presence of IXPs in the traceroute
paths. The performance indicators used to generate the graphs are the rtt and
the hop count, respectively. Each graph contains two plots, one for all the
traceroutes that use paths traversing one of MIX and NaMeX (blue) and the
other for traceroutes that do not see any of the two IXPs in the traceroute
paths (red). Each plot is a CDF showing the distribution of measured values
for the selected performance indicator. Fig. 5.2a is for dataset Critical, while
Fig. 5.2b is for dataset Visited. For brevity we omit the figure on rtt of
Visited and the figure on hop count for Critical which exhibit exactly the
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Figure 5.2

same pattern. The plots show that, in general, probes traversing IXPs have
better indicators. For example, referring to Fig. 5.2a, about 70% of probes that
choose IXPs have average rtt of 30ms or less, while only 20% of those that do
not traverse IXPs have the same performance. However, such results must be
considered very carefully, because of the following three reasons: 1. The two
CDFs of Fig. 5.2a (the same holds for Fig. 5.2b) refer to disjoint sets of probes,
since each probe either passes through an IXP or not. In principle, it is possible
that a probe currently passing through an IXP could have a better performance
when forced, in some way, to pass through an upstream (or vice-versa). 2. Rtts
and hop counts refer to the last hop that replied to our measurements, which
quite often is not the actual target (40 cases out of 53 for dataset Critical,
and 59 cases out of 94 for dataset Visited). 3. A router in an IXP might
answer to a traceroute using an interface that is not on the peering lan, leading
to a misclassification of the corresponding traceroute. Also, the data on hop
count could be affected by the presence of tunnels (e.g. transparent MPLS
tunnels [CDP13]). On the other hand this might happen both to packets that
traverse IXPs and to packets that do not. However, these graphs help us draw
a first positive impression on the impact of IXPs. Observe that Experiment
SBA does not suffer of the problems pointed out in items 1–3.

Next we study how Atlas probes distributed their traffic between paths
including or excluding IXPs during Experiment CIS. Figure 5.3b shows, for
each target, the percentage of probes that reached it through an upstream.
These graphs show that most targets are reached preferably through upstreams.
In particular, in Fig 5.3a, 40 targets over 53 were reached through an upstream
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Figure 5.4: % of paths traversing foreign ASes when an IXP is used or not.

by more than 50% of probes, and, in Fig 5.3b, 60 targets over 94 were reached
through an upstream by more than 50% of probes.

Finally, the data collected in Experiment CIS can be analyzed in terms
of security issues associated with the traffic targeted at crucial Web services.
Indeed, recent cases of network traffic espionage [dat] solicited governments
to check if the traffic generated by their citizens and targeted to critical Web
services remains or not inside the countries [rus]. It is perfectly clear that
this type of locality does not give security guarantees on such a traffic, but it
is equally clear that, nowadays, governments are very sensitive to this issue.
Therefore, we measure how frequently using an IXP to reach an Italian target
from an Italian source permits to avoid the transit through a foreign upstream.
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That is, we quantitatively check whether MIX and NaMeX are effective in
keeping the local traffic local. In order to determine the country of an AS
X, we query the RIPEStat [rip] service asking for the prefixes announced by
X, along with the country of each of these prefixes. If the returned prefixes
are all associated to the same country, then we assume that it is the country
of X. Otherwise, to determine its country, we manually retrieve metadata
on X looking, e.g., at the website of the corresponding provider. Fig. 5.4
illustrates our results in terms of locality. The statistics are computed as
follows. First, the ASes traversed by paths in Experiment CIS are labeled as
non-Italian and/or non-European if the nation detected by the aforementioned
heuristic is non-Italian and/or non-European. Also, the source-target pairs of
the experiment are split into two groups, based on the presence of IXPs in their
paths. Finally, each detected non-Italian and non-European AS is associated
with the source-target pairs that traverse it. Fig. 5.4 shows the results of the
computation. As an example, abscissa 3356 of Fig. 5.4(a) shows that 80% of
the source-target pairs not passing through an IXP pass through AS3356 (that
is not Italian) while no one of the source-target pairs passing through an IXP
traverse it. In most cases, a foreign AS is traversed only when an upstream is
used, or in great prevalence when an upstream is used, which confirms that IXPs
are effective in preserving the locality of traffic. A few exceptions are ASes 8928
(INTEROUTE), 8220 (COLT), 34419 (VODAFONE), 20940 (AKAMAI), and
6939 (HURRICANE). We have detected, by checking the traceroute paths, that
INTEROUTE, COLT and HURRICANE have peerings at IXPs, so that is the
reason for their high values in the IXP cases of Fig. 5.4. VODAFONE, instead,
receives traffic from the Italian Vodafone AS, so it is a case of traversed foreign
AS that cannot be avoided by using IXPs. AKAMAI is an interesting case,
since in our experiments it receives traffic from BT Italia, which contains one of
the targets of Experiment CIS, and then sends it back to the same AS. Our
guess is that AKAMAI, as a content provider, has some network infrastructure
inside the data centers of BT Italia, and it possibly hosts some targets of our
measurements.

Experiment SBA

For Experiment SBA we started by selecting the subset of probes, called
multi-choice, that were able to reach the target during both the “UPSTREAM”
interval and during at least one of the “MIX” and the “NAMEX” intervals
(see Section 5.3). These probes allow to measure the differences between the
connectivity offered by IXPs and that offered by upstream providers. The actual
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number of multi-choice probes amounts to 83 for the Seeweb Milan target, 81
for the Seeweb Frosinone target, 74 for MC-link, and 80 for Unidata.

Fig. 5.5 shows the distribution of performance indicators on all multi-choice
probes. Fig. 5.5a shows the rountrip delays measured during the experiment
with Seeweb, Fig. 5.5c shows the hop count measured during the experiment
with MC-link, and Fig. 5.5e shows the jitter measured during the experiment
with Unidata. Because of space limitations we omit figures showing other
combinations of performance indicators and ISPs, since they show analogous
trends.

As an example, Fig. 5.5a contains 4 plots that show the distribution of
the average rtt for the two Seeweb targets, in both cases when the target was
reached through an IXP or through an upstream. Consider that in this and in
all the following figures the plots involving paths through IXPs show the “best”
option, i.e. for each performance indicator and for each probe that reached
the target during both the “MIX” and “NAMEX” intervals, it is shown the
smallest value between the two options. Observe that about 50% of multi-choice
probes reach both targets with an average rtt of at most 15ms when using
IXP connectivity, compared to only about 30% of them in case of upstream
connectivity. The measurements towards the Milan target and the Frosinone
target exhibit comparable performance.

Figs. 5.5a, 5.5c, and 5.5e highlight that paths traversing IXPs always give
performance that are better or at least equal to those traversing upstreams, for
each provider among Seeweb, MC-link, and Unidata, and for each considered
performance indicator among average rtt, average hop count, jitter, and packet
loss. The latter is the only metric for which IXPs and upstreams exhibit about
the same performance, with negligible differences, and its graphs are omitted
for brevity.

During the experiments we noticed that paths through the upstreams ex-
hibited quite different values of performance indicators depending on the spe-
cific traversed upstream. So, looking at the traceroutes gathered during the
“UPSTREAM” interval, we found the upstreams of each of our providers and
deepened the analysis for all of them. Here is the list of upstreams that we found:
1. MC-link (AS3257, AS12874, AS174, AS3356, AS35612, AS57329); 2. Seeweb
(AS3257, AS174, AS3549, AS3356); and 3. Unidata (AS3257, AS12874, AS16004,
AS24796, AS20836). Figs. 5.5b, 5.5d, and 5.5f show the main outcome of the
analysis. As an example, Fig. 5.5b contains the same data of Fig. 5.5a restricted
to the Milan target and to the probes that reached the target through AS174
(COGENT). The IXP plot is restricted to those probes too. Observe that the
plot has exactly the same trend of Fig. 5.5a. It follows that the paths traversing
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Figure 5.5: Comparison of performance indicators between upstream and
IXP connectivity, as measured in Experiment SBA. For each of our three
partner ISPs, one performance indicator is shown. The same data is also plotted
restricted to a specific upstream.
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Figure 5.6: Difference in performance based on the AS classes of the probes.

AS147 are the principal factor that makes the average upstream performance
lower than the IXP performance. Similar arguments apply to Figs. 5.5d and 5.5f.
In the first one, AS3356 (LEVEL3) is shown as the upstream with the largest
difference from the IXP alternative among all the upstreams of MC-link. In
the second one, AS3257 (TINET) exhibits a behavior similar to the plot of
Fig. 5.5e.

We argue that the performance obtained from upstream connectivity heavily
depend on the choice of a specific upstream.

As a next step, we consider the classification of ASes in [DD]. Our goal is to
identify different trends in the improvement of performance indicators based on
the type of AS that hosts a probe. ASes are assigned to 3 classes: 1. Customers
represent various organizations, universities and companies at the network edge
that are mostly users of the network. 2. Transit are ISPs that provide Internet
access and transit services. Transit aim to maximize their customer base in
their geographical area and to reduce their upstream transit costs through
selective peering with ISPs. 3. Content/Access/Hosting Providers (CAH) are
ISPs that offer Internet access and/or server hosting. Their access customers
can be residential users or enterprises with no AS numbers, while their server
hosting customers are content/service providers with no AS numbers. Figure 5.6
presents two graphs, respectively based on average rtt and average hop count
for the Seeweb Milan target during Experiment SBA. Each graph contains
3 plots, each corresponding to one AS class. A plot is a CDF that shows the
distribution of performance gaps derived from the comparison of performance
indicators between paths traversing IXPs and paths avoiding them, as seen by
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Figure 5.7: Comparison of routing choices made in the “ALL” phase of
Experiment SBA that lead lower performance than alternative routing choices.
The measurement are performed towards (a) Seeweb target in Milan and (b)
MC-link target.

each probe. Graphs show that Customer ASes hosting probes in Italy are the
ones that benefit the most from the availability of IXPs. For example, about
50% of probes in Customer ASes see an improvement in the average rtt of at
least 10ms when traversing IXPs, as opposed to about 20% and about 40% for
probes in CAH and Transit ASes, respectively. Similarly, about 62% of probes
in the first class has path lengths reduced by at least 5 hops, while the other
two classes only reach about 25% and about 38%.

Next, we leverage data collected during the execution of Experiment SBA
to understand how many probes picked the “wrong” path to the destination
when all options were available (i.e. during the “ALL” interval), based on the
comparative analysis of performance indicators. By “wrong”, or “incorrect”,
we actually intend that a path is suboptimal from the point of view of one of
the performance indicators we have considered, while a different path would
have had better performance. Obviously, an ISP may have motivations that go
beyond our metrics for choosing a path instead of another. Fig. 5.7 presents
two graphs based on average rtt and average hop count, measured respectively
towards the Seeweb Milan target and the MC-link target. Each graph contains
two plots, one for probes that incorrectly preferred upstreams over IXPs (in
red), and one for probes that incorrectly preferred IXPs over upstreams (in
blue). Each plot is a CDF that on the x axis has performance gap values for a
given metric, computed as metrica−metricc where c and a are respectively the
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current path traversed by a probe and the alternative path that was available.
One between c and a traverses an IXP, while the other does not. Only negative
gaps are shown, so the graphs represents those probes that made a “wrong”
choice between traversing an IXP or an upstream to reach the target. For
a given performance gap g, on the y axis there is the percentage of probes
with a gap less or equal to g over all probes with a “wrong” choice. More
informally, the CDFs gives a quantitative overview of “wrong” choices based on
how much the performance indicators would really improve by switching routing
options (i.e. traversing IXPs for the red curve, and avoiding them for the blue
curve). The analysis of both graphs reveals that a relevant percentage of “wrong”
upstream transits actually lead to non-negligible performance degradations,
whereas “wrong” transits through IXPs generally correspond to much less
negative effects. For example, referring to Fig. 5.7a, about 30% of probes that
choose upstreams would reduce their average rtt by at least 5ms by switching
to an IXP, while no single switch in the opposite direction would give the same
tangible effect.

5.5 Conclusions and Future Work

We investigated the role played by IXPs in the Italian Internet ecosystem. Our
experiments highlight that peerings exploiting IXPs have a positive effect on key
performance indicators such as latency, hop count, packet loss, and jitter. Also,
they reduce the number of foreign ISPs traversed by the traffic between Italian
citizens and critical Internet services like Banks and Public Administrations.
We conclude that if an ISP motivates a de-peering through an IXP in terms of
performance improvements it makes a statement that is at least questionable.

It would be interesting to extend our experiments considering more per-
formance indicators. Unfortunately, the measurement network used in our
experiments, although technically ready for measuring more parameters (e.g. for
bandwidth measurement), adopts a conservative approach to limit the impact
of experiments on users that host probes. Further, we plan to cooperate with
ISPs and IXPs in other countries to reproduce the experiments, compare the
results, and generalize the methodology. Another direction for extending our
experiments would be to consider full QoE issues. However, this would imply
application level measurements which are even harder to perform on common
measurement networks.
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Chapter 6

PrIXP

Internet eXchange Points (IXPs) serve as landmarks where many network service
providers meet to obtain reciprocal connectivity. Some of them, especially the
largest, offer route servers as a convenient technology to simplify the setup of a
high number of bi-lateral peerings. Due to their potential to support a quick
and easy interconnection among the networks of multiple providers, IXPs are
becoming increasingly popular and widespread, and route servers are exploited
increasingly often. However, in an ever-growing level of market competition,
service providers are pushed to develop concerns about many aspects that are
strategic for their business, ranging from commercial agreements with other
members of an IXP to the policies that are adopted in exchanging routing
information with them.

Although these aspects are notoriously sensitive for network service providers,
current IXP architectures offer no guarantees to enforce the privacy of such
business-critical information. We re-design a traditional route server and propose
an approach to enforce the privacy of peering relationships and routing policies
that it manages. Our proposed architecture ensures that nobody, not even
a third party, can access such information unless it is the legitimate owner
(i.e., the IXP member that set up the policy), yet allowing the route server to
apply the requested policies and each IXP member to verify that such policies
have been correctly deployed. We implemented the route server and tested our
solutions in a simulated environment, tracking and analyzing the number of
exchanged control plane messages.

49
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6.1 Introduction

Organizations that offer Internet-based services (Internet Service Providers,
Content Delivery Networks, etc.) join the Internet eXchange Points (IXPs) in
order to quickly and easily reach a number of other parties networks, and gain
the level of connectivity they need [DDdS15]. However, such organizations are
usually concerned with business-critical aspects for which IXPs do not currently
provide any technical solutions. These aspects include, among the others:
(i) privacy of the peering relationships, which are an evidence of the existence of
commercial agreements; (ii) privacy of routing policies, which determine what
kind of traffic can flow between peering partners; (iii) security of the network
infrastructure (links, devices), that might be traversed by sensitive traffic.

Currently, IXPs offer a very useful service, called Route Server (RS). A
RS allows each member connected to an IXP to easily exchange traffic with
other members by establishing a peering session with the RS, instead of having
one peering with each other member he wants to be connected to. Peering
sessions are handled by the Border Gateway Protocol (BGP), the standard
interdomain routing protocol. Surely, this functionality significantly reduces
the effort needed by the IXP members to connect to the Internet.

Ensuring the privacy and correctness of Internet peering policies is a desired
requirement for many Internet entities as this information reflects business
relationships, such as commercial agreements, which must comply with stringent
Service Level Agreements (SLAs). Very often, RS functionalities are mainly
leveraged by small providers and Content Delivery Networks (e.g. [AMS16,
LIN16,FRA16,MIX16]) since these players have strong interests in connecting
to many IXP members by just setting up a single BGP peering with RS. On the
other hand, big Internet players, with very few exceptions (e.g. Google [AMS16]),
tend to not have BGP peerings with a RS. We argue that this trend is the result
of exposing an IXP member to a potential violation of privacy in terms of BGP
policies when peering with a RS. In fact, each peering policy would be stored
within appropriate data structures at the RS and, potentially, these can be
altered by a malicious software. As a result, most Tier-1 ISPs require their peers
to sign Non Disclosure Agreements (NDAs) when peering with them [Pee12].

In this thesis, we present PrIXP, a RS system that improves both the
privacy guarantees of confidential peering information and the security of
the RS. Our key idea is to prevent the RS from locally storing any BGP
policies. Instead, the RS queries routing policies in on-demand manner by
means of a second communication channel that we instantiate between the
RS and each IXP member. Namely, each time the RS performs a routing
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operation, it leverages this extra channel to retrieve from each member its routing
policies such as the set of member neighbors that should receive certain routing
information and the local preference over routes of each member. To guarantee
the correct execution of the BGP routing protocol at the RS, we leverage Intel
proprietary Software Guard eXtensions (SGX) technology [MAB+13], which
allows external entities to attest that a remote software has not been tampered
by a malicious attacker. Finally, to enable incremental deployment, we discuss
a BGP compatible mechanism that can be used in place of the extra channel,
thus requiring no hardware modifications at the IXP member side.

The rest of the chapter is organized as follows. In Sec. 6.2, we provide an
overview of a common real-world architecture of a route server deployed inside
IXPs. In Sec. 6.3, we describe our system in detail, presenting a complete
example of an interaction between the route server and the IXP members
connected to it. In Sec. 6.4, we address the security issues associated with
peering with a traditional RS by describing our solution for allowing any IXP
member to check the integrity of the RS. In Sec. 6.5, we evaluate our system by
using a real-world trace of BGP updates from one of the largest IXP worldwide.
In Sec. 6.6, we review the most relevant contributions related to Internet routing
privacy and security. Finally, we draw conclusions and future work in Sec. 6.7.

6.2 Background: Route Server Architecture

In this section, we describe the typical architecture of a RS service offered
to the members of an IXP (e.g. [RSF+14b]). To the best of our knowledge,
many large IXPs such as DE-CIX, AMS-IX, and NYIIX are currently using RS
implementations based on that architecture.

Before entering into the details, we introduce terminology and definitions
that will be largely used throughout the chapter. We define the RS-software as
the piece of software implementing the RS functionality and the RS-machine
as the physical hardware that runs the RS-software. We also define the peering
LAN as the local network managed by the IXP where its members connect and
establish BGP peerings among themselves and with the RS-software.

In a standard scenario, each member of an IXP establishes a number of
bi-lateral BGP peerings with all the members with whom it has agreed to
exchange network traffic for certain IP prefix destinations. Such bi-lateral
peerings usually correspond to commercial agreements between the involved
parties. In contrast to this approach, many IXPs provide RS services as a
convenient alternative for their members to simplify the setup of peerings while
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Figure 6.1: Reference architecture of route server.

optimizing the operation of the BGP control plane. Indeed, RSes reduce the
configuration effort required by network operators to join and manage many
bi-lateral BGP sessions at large IXPs, since having a single BGP peering with
the RS is enough to be connected with the other members.

We now describe the set of operations that an IXP member should perform
in order to make use of RS services. First, the IXP member establishes a
single BGP peering towards the RS-machine with the RS-software, which is
responsible for forwarding any BGP announcements according to the routing
policies configured by the members. The above scenario is denoted as a multi-
lateral peering, where the RS acts as the center of a star topology where the
members are called clients.

The architecture of a RS-software is shown in Fig. 6.1. In this figure, AS1,
AS2, AS3, and AS4 are members of the IXP, each of them connected to the IXP
using a BGP-speaking router, where the dashed lines labeled B1, B2, B3, and
B4 represent BGP peering sessions. Each of these routers independently keeps a
routing table that stores the IP prefixes coming from its own network, as well as
those received from its multi-lateral peers through the RS. The rounded dashed
box labeled “RS-software” represents an instance of the RS routing software,
where the contents of the box depict the most important data structures that
are maintained by the software and the channels used to move data among
these structures. We now describe each basic component represent in the figure.
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Tables. The basic data structures maintained by a RS are BGP tables. A
BGP table contains a set of routing entries, each of them consisting of an IP
prefix and the BGP message announcing that prefix. Multiple entries for the
same prefix may exist, though only one of them is marked as the best one that
should be propagated to the other members. For each member, a RS-software
keeps a distinct table that stores all the routes that are announced towards
that client from other clients. In order to support the exchange of routing
information among these tables, the RS also maintains a single master table,
which usually aggregates all the routes received from all the client-specific
tables.

Protocols. The RS software leverages different communication channels for
transferring information among tables, called protocols. BGP routes are ex-
changed between a client and one of the member-specific tables inside the
RS-software through a BGP session (lines B1, B2, B3, B4 in Fig. 6.1). The
routes learned from these sessions can then be propagated between the different
tables using a RS-specific protocol, which corresponds to the links among the
BGP tables (thick lines P1, P2, P3, and P4 in Fig. 6.1).

Filters. In order to support arbitrary routing policies, it is also possible to define
filters. A filter is typically a fragment of code, possibly written in a specific
programming language, that supports evaluation of arithmetic expressions,
conditional statements, etc. Filters are applied on each BGP announcement
ever time they are exchanged through BGP sessions or RS-specific protocols.
A filtering operation can have three possible outcomes: (1) forwarding the
announcement, (2) modifying some attributes in the announcement before
forwarding it, and (3) dropping the announcement. Filters can be statically
configured within the RS software by the IXP operators. This practice is
commonly adopted for limiting the risk of IP-prefix hijacking. The common
way to perform filtering is encoding the set of members to whom a routing
announcement must be sent via specific BGP attributes that are attached to the
announcement itself, i.e., via BGP communities, where each BGP community
simply consists of a pair (x, y) of values. We define a whitelist export policy as
the set of members (AS_1, . . . ,AS_N) encoding all members that are allowed
to receive a BGP announcement. A whitelist is expressed by a sequence of
community values starting with a special community (0 : IXP_id), followed by
a sequence of other community values (IXP_id,AS_i), for each i = 1, . . . , N
representing all members to which forward the announcement. In the same way,
we define a blacklist export policy as a sequence of community values encoding
the set of ASes (AS_1, . . . ,AS_N) that should not receive a BGP announcement.
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A blacklist always starts with a special community (IXP_id : IXP_id) and it
is followed by a pair (0,AS_i), for each member that is denied to receive the
announcement.

Best Route Selection and Propagation. Unless filters enforce restrictions,
the adoption of a specific internal protocol, as explained before, causes all BGP
routes to be copied between the tables it links, retaining all their attributes and
including non-best routes. Each best route for a member is computed using
the information gathered in its specific member routing table. This strategy
allows IXP operators to overcome the well-know problem known as path hiding,
which arises whenever filters are applied [JHRB16,RSF+14b]. This is a well-
known problem that might affect members if the RS-software acts as a standard
BGP router, where a single master route table is used to collect all the route
announcements and to compute a unique best route for all the customers. For
example, consider the case in which there are four members (AS1, AS2, AS3, and
AS4) connected to a RS-machine through a multi-lateral peering. An IP prefix π
is announced by AS1 and AS2 and the latter one defines a restricted policy that
prevents AS3 to receive the announcement containing π. Also, suppose that the
RS-software runs the best route process only considering the routes contained
in the master table and that computation selects the route passing through AS2
as the best one. In this case, this route is only advertised to AS4, leaving AS3
without any route towards π, even though a route passing through AS1 exists.
Breaking down the master table into per-member tables makes possible to run
independent best route computation on each member table, preventing the
above situation to happen. Although the BGP configuration language allows
routes to be ranked based on the local preferences of each member, today’s
RSes do not support this mechanism and the best route is computed based on
a global ranking, as defined in [RLH06].

Configuration Example

We now show an example of typical route server configuration, based on best
practices that are documented in [GZ13] and that were confirmed during a
discussion with the authors of [RSF+14b]. In this description we omit most
technical aspects and focus solely on the filters. Consider the case, depicted
in Figure 6.1, in which 4 clients connect to the RS, and assume that AS1 is a
provider network and AS2, AS3, and AS4 are its customers. Also assume that
ASx owns IP prefix 100.x.0.0/16, x = 2, 3, 4, and that each prefix aggregates
any other address spaces owned by lower-level customers of AS2, AS3, AS4.
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First of all, the configuration of AS1’s BGP routers will likely apply an inbound
filter to discard all prefixes except those announced by the customers, namely
100.2.0.0/16, 100.3.0.0/16, and 100.4.0.0/16. Moreover, it may also apply
outbound filters to restrict announcements sent to customers to the sole default
route 0.0.0.0/0.

Configurations on the RS side have the same structure for all RS clients:
essentially, they filter out BGP announcements that carry foreign prefixes and
selectively propagate each announcement to other clients depending on the
BGP communities it carries. In particular, the RS applies on each BGP peering
B1, B2, B3, B4 a generic import filter that discards “martian” routes (that is,
private, multicast, and reserved address spaces, as well as IP subnets whose
netmask length is out of the standard 8-24 range). The export filter simply
cleans outgoing BGP announcements by stripping any BGP communities that
are used inside the RS to tag routes that must be exported to other clients.
On the other hand, filters applied on pipes are more restrictive. Import filters
usually apply some checks to verify the consistency of each BGP announcement
(e.g., whether the announcing router concides with the next hop), and accept
from each client only those announcements that carry expected IP prefixes
originated by expected AS numbers (the origin is determined from the last AS
in the AS path): only such announcements will be inserted in the master table.
Export filters first of all handle well-known communities, like NO_EXPORT or
NO_ADVERTISE (see [CTL96]). In addition, they restrict exporting of entries
from the master table to the table of a client x only to those routes that are
tagged with x’s AS number. Exportable routes may be additionally tagged
with a custom community value that is used internally by the RS to prevent
from re-importing them in the master table. All the above described filters are
summarized in Table 6.1

To complete the example, we now briefly summarize the processing steps
that are applied to a BGP announcement for 100.2.0.0/16 originated by
AS2, assuming that this announcement is tagged with a community value 2:1.
First of all, AS2 applies its own export policies which, being a customer, filter
outgoing announcements to prevent traffic in transit: since 100.2.0.0/16 is
originated by AS2, it passes this filtering step. After that, the announcement
reaches the RS, which applies the import filter of the bgp protocol, accepting
the announcement only if it does not carry martian routes. Assuming that
this is the case, an entry is then added to AS2’s routing table inside the RS.
Then, the RS applies an import filter for the pipe that connects this table to
the master table: at this step, the announcement is checked for consistency
and accepted only if it carries known IP prefixes (in this case 100.2.0.0/16)
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Table 6.1: Overview of the filters that are applied by the route server in
commonly adopted configurations.

Protocol Import filters Export filters

bgp No martians
Strip BGP communi-
ties used to tag ex-
ported routes

pipe

Check consistency +
Accept well-known
prefixes & origin
ASes

Export routes depend-
ing on communities

originated by legitimate ASes (in this case AS2). Since both conditions apply
in this case, an entry for this announcement is added to the master table. At
this point, the RS considers every other client (AS1, AS3, AS4) and looks at
the community value 2:1 that is carried by the announcement. This value does
not match the AS numbers of AS3 and AS4, therefore the announcement is
not propagated to their routing tables: this is correct, considering that AS2 is
supposed to be reached by these two customers via its provider AS1. Instead,
the community indicates AS1 as correct recipient of the announcement, therefore
the latter is exported to AS1’s routing table inside the RS. Afterwards, the RS
select a best route for 100.2.0.0/16 among those in AS1’s routing table (in
this example there is only one available), strips from this entry any community
values applied for internal use by the RS itself, and sends a BGP announcement
to AS1. Finally, the latter applies its own import policies, which are supposed
to accept 100.2.0.0/16 because it is a legitimate customer IP prefix.

Although a RS-software has a complex architecture, it does not provide any
privacy mechanisms allowing each member to protect its policies.

6.3 Enforcing Privacy of Routing Policies

In this section, we describe how PrIXP improves the level of privacy for the
members’ routing policies within a RS-machine. In our system, each member
can easily leverage the RS’s functionalities (e.g. BGP routes dispatch based on
export policies and local-preference tools) while minimizing the risk of leaking
any confidential information. Our system does not propose an entirely new
cryptographic protocol, but leverages well-established techniques (e.g., TLS,
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SGX) to secure channels and performing remote attestation. Those techniques
can be replaced by any equivalent technology.

We observe that current RSes designs (described in Sec. 6.2) require IXP
members to disclose their export policies. In fact, any peering relationships
among the IXP members can be reconstructed by simply looking at the client-
specific routing tables stored in memory or on disk. In fact, the table of a
member ASx contains all the routes received by other ASes, thus revealing what
are the export policies of each member towards ASx. Moreover, any enhanced
RS service that allows the IXP member to rank their available routes based on
their specific local preferences would raise additional privacy concerns. In fact,
such services would require each member to disclose their ranking policies to
the IXP.

We now describe the security assumptions and the threat model on which
our system is based. First, we assume that the attacker does not have visibility
of data traffic. Namely, an attacker cannot eavesdrop the packets sent through
the peering LAN of the IXP in order to infer the peering relationship among
the members. Second, we assume that the attacker operates on the RS-machine
during a short time interval in which he tries to take a snapshot of as much
information as possible from the content stored in the route server system,
possibly tampering the RS-software itself.

Our system is based on the following principles. The only information that
is stored within the PrIXP RS is the one needed to maintain the established
BGP sessions with the IXP members and, for each announced prefix, the set of
members that have a route towards it. The routing policies of the IXP members
are never permanently stored by the RS-software inside the RS-machine so as to
minimize the risk of privacy breaching. In contrast, these policies are asked to
the members in response to the reception of a BGP announcement that has to
be dispatched. We make use of an extra communication channel for retrieving
this information, which can be set up using standard techniques (e.g. SSL/TLS).
We observe that, in order to minimize the modification required at the member
side, it would be worth to investigate how to implement this channel by tweaking
the BGP protocols. The idea is to leverage Conditional Route Advertisement,
a BGP route dissemination feature that allows to conditionally announce one
or more prefixes upon the reception of some specific routes. Such a feature is
currently supported by important vendors, as shown in ( [Sup16,Tec16]).

The extra communication channel is used by the PrIXP RS to query each
member for the following information: (i) the export policies of a routing
announcement (e.g. the set of members to whom a route should be propagated)
and (ii) the local preferences over routes of each BGP member that is entitled to
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Figure 6.2: The architecture of an IXP infrastructure.

receive a BGP message. We now provide a detailed description of the operations
performed by the PrIXP.
A Complete Example. A simplified scenario that we use to illustrate how our
system works is depicted in Fig. 6.2. The RS-machine is placed in the middle
of the drawing, while the three members (M1, M2, and M3) are connected
to the IXP physical infrastructure. For our convenience, we assume that
M1, M2, and M3 are also the identifier of the three members, respectively.
The rounded rectangle containing the whole drawing represents the peering
LAN and we assume that the peering LAN consists of a single switch. Each
dashed line represents a BGP session, whereas dotted lines represent the extra
communication channel used by PrIXP to query each member. To make use
of the RS’s functionalities, each member establishes a BGP session with the
RS-software. Each member can still establish bi-lateral BGP sessions with the
other members as in traditional RSes.

Once all the BGP connections are established, members can use them to
exchange routing information among each other. For instance, suppose that M1
and M2 send an announcement towards an IP prefix π to the RS-software, which
is responsible for dispatching it according to the members’ routing policies.
Upon receiving this message, PrIXP asks M1 for the export-policy. Member M1
replies to this request by communicating a set of BGP communities encoding a
policy that allows the RS-software to advertise the announcement to M3. After
delivering the message, the RS-software stores in its memory that it received a
route for π from M1, but it deletes any other additional information (e.g. the
export policies and the BGP attributes contained in the announcement).
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Now, suppose that also M2 sends an announcement towards π to the RS-
software. When the RS-software receives that message, it checks whether
there exist other routes announced towards π. Then, it asks each member
that announced a route towards π (M1 and M2) for the export policies of
their announcement using the extra communication channel. Member M1
communicates again that its announcement must be announced to M3, while
M2 instructs the RS-software to propagate its message to both M1 and M3.
Upon receiving the export policies, the RS-software knows which routes can
be exported to each member. In order to select the best one, the RS-software
asks each member with at least two available routes for the local-preference
of each route announcement. In our case, the RS-software asks M3 to provide
the ranking over the routes announced by M1 and M2. Once M3 provides its
local preference, the best route is sent to M3. As for M2, the only route that is
available to be exported to it is the one through M3, which is then propagated
accordingly. Note that, this last step is performed over the BGP peering.
After that computation, the RS-software discards all the information used to
propagate the routes, except for the mapping between routes and members
who announced them. This operations allows us to minimize the risk of leaking
routing policies whenever an attacker can observe the state of the RS-software
for a short interval of time. Note that having a single BGP decision process for
each member makes our RS-software not affected by the path hiding problem.

6.4 Discussion on Security Issues

In this section, we describe some security considerations, addressing the problem
of how a member can verify that the RS-software has not been tampered
or replaced by another malicious software. To minimize the risk of leaking
confidential information, we assumed in Sec. 6.3 that each member is connected
to a trusted execution of the PrIXP RS-software. Under our threat model,
we assume that the attacker may quickly replace the RS-software to collect
confidential information that can be read by the attacker next in the future. For
this reason, we also define a RS security architecture, depicted in Fig. 6.3, which
is based on recent advancements in remote attestation protocols. A trusted
authority issues a certified version of the RS-software that each member can
verify on its local machine, implemented according to the description of the
PrIXP system in the previous system, represented by a triangle in the picture.
Unfortunately, to allow all the IXP members to be able to check that at any time
the RS-software is behaving as expected, having just a certified version of the
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Figure 6.3: Architecture for checking the integrity of the RS software.

RS-software is not enough, because a member does not have any tools to attest
at any time that exactly the certified version of the software is running. Indeed,
an attacker can suitably replace that certified version of the RS-software. To
solve this problem, we rely on the recent advancements on Remote Attestation,
which allows changes to the RS-software to be detected by authorized parties.
Intel Security Guard eXtension (SGX) [MAB+13] is an example of a technology
that allows programmers to implement remote attestation procedures.

Each SGX program needs a proof to be executed on a SGX-enabled machine.
In our architecture, the trusted authority provides to the RS-machine an SGX
program and a proof P , respectively depicted by the circle and the lock in
Fig. 6.3.

The integrity check works as follows. First, the RS-machine, which has an
SGX processor, sends to trusted authority a request to obtain the RS-software,
the SGX program and the proof P. This is represented as the step 1 in the figure.
Upon receiving this request, the trusted authority sends back to the RS-machine
the RS-software, the SGX program and the proof P . This is step 2 in the figure.
At this point, the RS-machine owns all the necessary pieces to correctly run
the verified RS-software. This task is accomplished by the SGX program that
can run if and only if the proof P has been verified (step 2.1). In order to
guarantee that the RS-machine will run the correct version of the RS-software,
the SGX-program will check that the hash of the RS-software to be executed
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corresponds to the one that is hard coded in the SGX-program retrieved from
the central authority (step 2.2). At this point, whenever a member wants to
check the integrity of the RS-software, it asks the trusted authority for the
proof P , which is denoted as step 3 in the figure. Upon receiving the proof P ,
a member performs a remote attestation against the SGX program running at
the RS-machine by using the proof P (steps 4 and 5 in the picture).

Since the proof P used by a member for the remote attestation is the same
used by the SGX program at the RS-machine to run the RS-software, the
operation succeeds. If an attacker aims at replacing the RS-software, he must
also replace the SGX program, otherwise the hash-check would not allow him
to run its own RS-software. This implies that a new proof P must be provided
to the SGX-machine in order to run the malicious SGX-program. At this point,
if the attackers succeed in running its malicious SGX-program and RS-software,
the remote attestation performed by any member using the proof P would fail,
as the SGX-machine would alert the user the SGX program is not the legitimate
one.

In this work, we do not propose any new cryptographic protocol, but we
leverage well-established techniques (e.g. TLS for the extra communication
channel and SGX for remote attestation). Those techniques can be replaced by
any equivalent technologies without altering the PrIXP functionalities.

6.5 Experiments

To assess the effectiveness of PrIXP, we simulated our system (available
at [Uni16]) using a trace of BGP updates from one of the largest IXP worldwide
with several hundreds of members whose name cannot be disclosed in this
thesis. Our simulation aims at estimating how much overhead our methodology
introduces in terms of BGP control plane messages. We do not measure CPU
overhead or memory utilization, since we do not expect both of them to be a
bottleneck as PrIXP only uses simple access to data structures and stores less
information than traditional RSes.

First, we implemented a prototype RS-software written in Python, as de-
picted in Fig. 6.4, including a decision process acting according to the route
dispatching mechanism described in Sec. 6.3. To easily manipulate BGP mes-
sages within the RS-software, we relied on ExaBGP [EN16], a software tool for
easily interfacing and managing BGP sessions in a convenient JSON format.
The input of our simulation is a dump of all the routes announced inside a big
European IXP in a one hour time interval. We ran two different experiments:
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Figure 6.4: Architecture of our RS-software prototype implementation.
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Figure 6.5: CDF of the number of messages issued by the RS-software.

the first one using a traditional RS-software that does not guarantee any privacy,
and the second one using PrIXP. During each experiment, we collected the
number of exchanged messages to quantify the communication overhead due to
the extra channel communication. To put ourselves in the worst-case condition,
we assumed that each member is willing to send its route announcements to
any other member.

The percentage of members that received at least a certain amount of BGP
announcements from the RS-software is depicted in Fig. 6.5. The red line refers
to the standard RS-software, whereas the black one represents the CDF for
our methodology. We see that in PrIXP around 95% of the members received
roughly 5000 BGP announcements more that with respect to the standard
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Figure 6.6: CDF of the number of messages issued by members.

RS-software, which is an overhead by a factor of 1.5. We argue that this amount
of overhead is affordable for a member, considering the time interval taken into
account. The number of messages sent by each member to the RS-software is
depicted in Fig. 6.6. Note that the red line is now very close to the leftmost
part of the graph, showing that only a few members announce many routes,
while the vast majority of the IXP members are not involved in sending many
BGP routes. In this case, we observe a significant increase in terms of number
of messages, since that amount includes the messages exchanged on the extra
communication channel in order to ensure privacy at the RS-software, which is
not guaranteed in the standard approach. We argue that it is due to the fact
that the PrIXP does not store in memory any routing information at the RS,
thus forcing the members to send them when required.

To allow members to verify the integrity of the RS-software, we used
OpenSGX ( [JDK+16,Ope16b]), an open source implementation of SGX. This
experiment aims at verifying that the remote attestation mechanism described
in Sec. 6.4 behaves as expected. We produced a hash value of the PrIXP imple-
mentation. Then, we wrote an SGX program that executes the RS-software
only if the hash of the RS-software corresponds to the one of the precomputed
hash. To generate the proof P of the SGX program, we used a key issued by the
trusted authority, according to Fig. 6.3. We ran the SGX program on a virtual
machine acting as RS-machine. After checking the checksum of the RS-software,
our SGX program successfully executed it. At that point, we tried to perform
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a remote attestation from an external client towards the SGX program running
on the RS-machine. To do that, we provided the trusted proof P from the
external machine to the SGX one, and in that case, the remote attestation
succeeded. After that, we altered the code of the RS-software, and the SGX
program detected the change as it did not run the malicious RS-software. As
the final step, we executed on the RS-machine a malicious SGX program with
a proof P ′ generated using a malicious key, with an altered version of the
RS-software. The member detects that the RS-software was tampered since the
remote attestation fails.

6.6 Related Work

In this section, we overview the most relevant work to ours along two dimensions:
(i) securing the Internet routing computation and (ii) preserving the privacy of
the routing policies on the Internet.
Security of Internet routing. Several attempts have been made by the
Internet community in order to secure the Internet routing from malicious
activity such as IP-prefix hijacks and similar attacks. The set of techniques
developed to curb these malicious activities range from Resource Public Key
Infrastructure (RPKI) [BA13], which is used to verify whether the originator of
a BGP announcement is the legitimate one, to Secure BGP (S-BGP) [KLS00],
which allows any entity to verify the authenticity and authorization of BGP
control traffic. We note that, beyond large-scale deployment issues with these
techniques, none of them can actually be used to guarantee the IXP network
will correctly propagate the BGP announcements. The IXP operator can still
(i) do not propagate a BGP route or (ii) select any of its known routes as the
best one. Nevertheless, an implementation of a RPKI-based route server is
in [KK14].

Several efforts have been made to improve the level of security offered by
RPKI and S-BGP. These efforts include the most closely related work to ours,
SPIDER [ZZG+12], which devised a distributed mechanism that allows the
peers of a network to verify a number of nontrivial properties of its interdomain
routing decisions (such as adherence to the BGP protocol) without revealing
any additional information (beyond those revealed by the underline protocol,
i.e., BGP). When casting this mechanism in the IXP setting, SPIDER allows
each IXP member to verify that the IXP is not deviating from the BGP protocol
(i.e., sending non-best routes), but it requires the IXP members to disclose their
routing policies to the IXP operator.
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Privacy of Internet routing. In [GSP+12] and [CDC+16], Secure MultiParty
Computation (SMPC) techniques have been used in order to compute Internet
routing paths without revealing to any party the routing policies of the Internet
entities. SMPC is a branch of cryptography that studies the problem of
computing a function over their inputs while keeping those inputs private. As
the authors themselves recognize [GSP+12], the main drawback of using SMPC
lies in the inherent difficulty of scaling it to a large number of participants, as
the computational and communication complexity easily becomes a bottleneck,
especially when the SMPC function is required to be robust against malicious
attackers.

Kim et al. [KSH+15] make extensive use of Intel SGX to preserve the
privacy of ISPs’ policies and to guarantee the correct propagation of BGP
announcements. SGX is a proprietary hardware-based mechanism that allows
programmers to create enclaves of memory by means of special processor’s
instructions. In order to limit our dependency with a proprietary building block,
we use SGX to remote attestation only, providing the privacy of routing policy
in a distributed manner.

6.7 Conclusions and Future Works

During the last decade, IXPs emerged as economically advantageous solutions
for interconnecting multiple Internet entities. While RS services have been
deployed at IXPs to ease the operators from the burden of managing hundreds
of BGP sessions, the usage of such services have been hindered by the privacy
concerns regarding the disclosure of the members’ routing policies to external
commercial parties such as the IXP.

In this work, we designed PrIXP, a RS service that allows to redistribute
BGP routing information according to the import/export policies specified by
the IXP members while minimizing the risk of leaking that information to any
curious or malicious entity. We demonstrated that PrIXP has little message
overhead compared to traditional non-secure RSes and it requires only minor
modifications at the members’ side.

In the next future, we plan to pursue the following directions. First, we intend
to improve our prototype implementation, aiming at reducing the control plane
overhead introduced by the current version and assessing the computational
overhead in our system. Second, we will extend our experimental setup to in
order to gather information about other relevant metrics such as the time spent
by a member to receive the legitimate routes. Finally, we will devote our efforts
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towards eliminating any hardware modification at the members side in order to
ease the deployment of PrIXP at any IXP by tweaking the BGP protocol.
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Chapter 7

SDN, Federated Networks and
Internet eXchange Points

Federated networks represent a remunerable operational way allowing federated
partners to increase their incomes through a sharing resource process. They
have been primarily used in the context of cloud computing; nowadays they
are also used to provide connectivity services, like Virtual Private Networks.
However, providing such a service by using standard technologies in federated
networks requires a non negligible effort from different points of view (e.g.
configuration effort).

In this chapter we propose an SDN-based framework aiming at overcoming
limitations in currently best practices adopted to issue Virtual Private Networks
in federated networks. Relying on the SDN architecture, we propose a method
allowing federated providers to quickly and easily create federated networks,
reducing unneeded costs (e.g. new hardware), as well as a way for customers to
fast access federated services, without any explicit actions from providers. We
evaluate our framework by using SDNetkit [ML+17]. We focus on analyzing
the impact of our implementation on both control and data plane, in terms of
number of control messages exchanged in the network and size of the forwarding
tables, respectively.

7.1 Introduction

Federated networks represent a collaborative operational way for Internet Service
Providers (ISPs) to increase revenues by sharing resources [GGT10]. A federated

69
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network can be defined as a network in which federated partners or members
(e.g. ISPs) share their own resources with any other federated member in
order to satisfy growing demands from customers or possibly issue value-added
services (e.g. services that could not be provisioned without the federated
network itself).

One of the most relevant benefits of such a network is the increase of providers’
incomes. On the other hand, there are critical steps that must be carried out
in order to join a federated network, like identifying, defining cost models, and
agreeing on standard operational tasks (e.g. monitoring). Those examples are
just a short list of needed steps, but they give the idea that creating a federated
network is not so trivial. At the beginning, federated networks were defined to
operate in the context of cloud computing. Nevertheless, the promising benefits
brought by them encouraged ISPs to provide other services. During the years,
several projects arose, like GÉANT [gea17a] and Beacon [bea17], with different
aims while sharing the same idea of federation.

After discussing with several Italian ISPs, we asked ourselves whether the
benefits of federated networks could be exploited to issue other services (e.g.
connectivity). One of the most used connectivity service in today’s networks
are Virtual Private Networks [RR06] (VPNs). Issuing that service in a network
directly managed by a single ISP is not trivial, since many protocols must
cooperate in order to set up a VPN. Also, the provisioning of that service is
expensive at least in terms of time. As a consequence, it is even more challenging
to span a VPN over two or more networks, that are managed by different ISPs
by definition of federated network. Actually, such a service is provisioned in a
federated fashion by GÉANT [gea17b]. One of the strong points they specify in
describing their VPN service is the ability to fast deliver it: “5 days are needed”.
Thus, our question is: Is there a way to reduce such a provisioning time?

In this work we propose a framework allowing federated ISPs to quickly and
easily: 1) create a federated network; 2) set up a VPN service; and 3) allow
customers to join or leave from the service autonomously, namely without any
direct actions (e.g. configuration activity) performed by the ISPs. We define
such a service federated VPN, namely a VPN allowing customers connected to
different federated ISPs’ network, but in the same VPN, to exchange traffic
with each other. Our framework relies on SDN and is built on top of [dLRB16]
and [MLB+17]. The main contributions of this work can be summarized in:
1) providing a configuration language that allows each federated ISP to easily
define a federated network as well as quickly configure and provision a federated
VPN; 2) providing a set of primitives that allow customers to join or leave from
federated VPNs on-demand, thus reducing both actions of their ISPs and time
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required to set up or down the federated VPN; and 3) providing an interaction
with the application level (e.g. DNS system) that allows each ISP to keep
unchanged any IP address plan previously assigned to its customers.

Our framework does not have any significant impacts on the ISPs’ networks.
Indeed, it is completely agnostic with respect to any forwarding strategy adopted
by the ISP (e.g. IP or MPLS). Also, our framework does not have any impact
over any existing configuration: federated VPNs built exploiting our framework
coexist with standard VPN set up by using legacy technologies. A customer
can be simultaneously served by a federated VPN and a standard one without
any limitations. We claim that a strong added-value of our framework, and
– consequently – of federated VPNs, is that we allow communication among
customers sharing the same IP address plan.

The rest of the chapter is organized as follows. In Sec. 7.2 we review the state
of the art. In Sec. 7.3 we discuss today’s best practices for federated networks.
In Sec. 7.4 we show our framework and how it can be used to tackle the most
common problems in today’s federated networks. In Sec. 7.5 we present our
configuration language and our primitives, explaining how they allow a fast
delivery of the service. In Sec. 7.6 we show a complete example, illustrating
how SDN interacts with the DNS. In Sec. 7.7 we summarize the benefits of our
framework. In Sec. 7.8 we discuss the results of our experiments. Finally, in
Sec. 7.9 we draw conclusions and future research perspectives.

7.2 Related Work

In this section, we review the most relevant literature proposing SDN as the
architecture to support the provisioning of federated services in federated
networks. Also, we compare with proposals to set up VPNs over different ISP’s
networks.

Federated networks are widely used for cloud computing [cfl12, GGT10,
KGK15]. Over the years, several aspects have been addressed, starting from
analyzing architectures for federated networks. In [cfl12] authors present a
layered architecture in order to provide cloud services (IaaS, PaaS, and SaaS).
Such services are provisioned exploiting a collaboration among providers that
share their resources, aiming at increasing their incomes.

Providers are interested in federating and providing services in a feder-
ated manner because the business model behind such a collaborative network
promises costs reduction and remuneration increase. In [GGT10], authors
discuss models to guarantee specific levels of remuneration for federated cloud
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services. Also, toolkits for modeling and simulating cloud services have been
discussed in [CRB+11]. Attempts of using SDN to issue federated cloud services
have been made, as reported in [KGK15], where authors propose an architecture
in which a software agent handles shared resources used to issue the cloud service.
Meantime, several research projects, like GÉANT [gea17a] and Beacon [bea17],
arose. They build federated networks in which federated services (e.g. VPNs)
are issued by sharing resources owned by each federated ISP, investigating the
potential of such a model in terms of performance and costs effectiveness.

We argue that other services (e.g. connectivity) beyond cloud computing can
take advantages from the federated network model. Indeed, GÉANT network
also offers federated VPN services [gea17b] to its customers. In order to provide
such a service, they rely on VLANs to cross multiple ISP’s network. As they
admit, the provision of a VPN in their network requires a non-negligible amount
of time (order of days). In [SF14] authors propose a mechanism based on the
LISP protocol [FFML13] to span a VPN in a multi-provider network. The main
drawback is that each ISP must use LISP.

We believe that the SDN architecture is a key component in dealing with
current challenges for federated networks [FBP+10] and for providing new
services. In [dLRB16] we proposed a mechanism based on SDN to support end-
to-end connectivity spanning several ISP’s networks and in [MLB+17] we built on
top of that paper a mechanism based on the DNS to simplify the communication
among end-hosts. In this work, we extend [dLRB16] and [MLB+17] by providing
a framework to easily subscribe to federated VPN services, avoiding delays
introduced by provisioning issues. Unfortunately, federated networks still have
to deal with challenges [FBP+10] that make the provisioning of federated
services difficult and costly, both in terms of money and human resources.
Relying on SDN, we address those challenges, proposing a framework that is a
first but complete step for today’s federated network issues.

7.3 Best Practices for Federated Networks

In this section, relying on the GÉANT project [gea17a], we describe the typical
architecture and the best practices adopted to create a federated network.

The main idea behind the GÉANT federated network is what they call
federated PoP [PGP+]. A federated PoP is a physical place in which all ISPs
involved in a federation connect each other. In general, establishing a federated
PoP needs many steps, consisting of different activities. For instance, there is the
need of establishing connectivity (e.g. by using dark fiber), as well as overcoming
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technical difficulties (e.g. due to different physical layer technologies). Other
steps regard the need of installing and using new hardware (e.g. switches) that
will be used by each ISP to connect to each other and all equipments to monitor
the services issued by the federation. The network hardware in a federated
PoP can be either hardware owned by the provider itself or shared hardware
owned by the federation. It is easy to note that the federated PoP architecture
strictly recall that of any Internet eXchange Point (IXP), where providers are
interconnected in order to allow their customers to exchange traffic.

Surely, federated PoPs allow each ISP to clearly identify a specific way to
join a federated network, as well as to isolate the federated network traffic from
the standard one; on the other hand, a federated PoP introduces costs for both
installing and maintaining (also including configuration effort) the devices used
in that place. Moreover, a non trivial agreement process has to be carried out
in order to clearly define operations and responsibilities among federated ISPs
in the federated PoP. Once a provider connects to a federated PoP and agrees
on the policies, it can start to share resources with other providers and to
issue services. Even if this model has been recognized to become the standard
architecture for federated networks, it also introduces challenges [FBP+10],
like: 1) management, namely the need of collaboration in standard network
operations, like configuration, troubleshooting, and monitoring; 2) technological
differences, namely the lack of well defined standards could originate problems
due to different ways to realize the forward traffic at physical layer; and 3) user
view, namely the absence of a common interface clearly describing how to access
federated services, hiding the collaboration among providers to the final users.

We argue that the aforementioned challenges involve not only technological
aspects. On one hand, coordination activities must be carried out in order to
plan the architecture (e.g. protocols or components needed to issue services).
On the other hand, identifying responsibilities inside the federation itself and
agreeing on costs (e.g. federated service prices and the level of remuneration
for each provider, possibly based on the resources it shares in the federation) is
a task that needs to be accomplished by non-technical staff inside the provider.
This observation might have a strong impact especially when a new service is
issued for the first time.

Our framework relies on an architecture proposing several mechanisms
that solve those problems, making the creation of a federated network, as
well as the subscription to and the provisioning of the federated VPN service
straightforward and easy. We argue that avoiding the need of having federated
PoPs allows federated ISPs to reduce time spent in coordination activities as
well as technological and management issues.
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7.4 SDN-based Federated Networks

In this section, we present a SDN-based framework dealing with the main
problems related to the implementation of federated networks. By relying on
the SDN architecture, we argue that our solution is able to address all challenges
reported in Sec. 7.3 (and discussed in [FBP+10]), namely: 1) management
problems; 2) technological differences problems; and 3) absence of a unified user
view.

Of course, Internet can be perceived as the biggest federated network, since
providers collaborate with each other in order to provide services to their
customers. However, such a collaboration is not based on resource sharing,
making Internet different from federated networks built on top of that concept.
Also, through the adoption of federated networks, providers are able to issue
value-added services, like VPNs spanned over two or more ISPs’ networks.
Nevertheless, federated networks based on traditional technologies lead to many
challenges [FBP+10].

Our framework is completely based on SDN. We choose to rely on that
architecture since it brings flexibility in providing services and it also makes the
provisioning phase easier. Such a choice allows us to overcome the challenges in
current federated networks architecture. Indeed, we identify one main problem
in the architecture described in Sec. 7.3, namely the federated PoP. On one hand,
such an interconnection point brings several benefits (e.g. clear identification of
a place in which providers can federate and clear responsibilities assignment to
each federated provider). On the other hand, federated PoPs are duplicates of
IXPs, requiring further effort for federated providers in terms of expenses and
configurations (e.g. buying and managing devices used in the federated PoP).
We argue that being connected to an IXP is enough to create a federation and
this requirement is easily satisfied by providers.

Our framework relies on this observation. By doing so, we preserve all
benefits of a federated PoP (e.g. clear identification of responsibilities) and save
addictive costs due to new hardware. Removing the idea of having a federated
PoP, combined with the centralized approach offered by SDN, allows us to
address and solve the aforementioned challenges. Before going in deep, we
present a reference scenario.
Reference Scenario - A reference scenario for our framework is depicted in
Fig. 7.1. We assume that each partner of the federated network is an Internet
Service Provider (ISP) offering connectivity to a set of customers. The federated
network of Fig. 7.1(a) has exactly three partners whose networks are called ISP1,
ISP2, and ISP3, respectively. Such networks run IP-based routing protocols
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(a) Overview of a federated network including three ISPs connected through an IXP
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Figure 7.1: Reference scenario for SDNS.
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inside their backbones (e.g. OSPF for intra-domain routing and BGP for inter-
domain routing). Routers R1, R2, and R3 are border routers establishing a
BGP peering as in traditional networks not involving federations.

More generally, a federated network can have several partners. We assume
that each of them has a border router peering with the border routers of the other
partners. As we already said in this section, Internet eXchange Points (IXPs)
are a natural place for establishing such peerings, therefore IXPs are convenient
premises for setting federated networks. We represent the IXP connecting the
federated ISPs through a dashed circle with a light grey background. In the IXP,
we assume – without loss of generality – that all ISPs are connected through
a legacy (no-SDN) layer 2 switch S. Exploiting the IXP itself, each ISP can
also reach Internet. In our scenario, we assume the somewhere in Internet there
are (at least) two name servers: 1) a root name server and 2) an authoritative
name server for the ISPs’ domains.

Routers PE1, PE2 and PE3 are Provider Edges (PEs) and collect the traffic
coming from the customers attached to the IPS’s network. Each ISP in Fig. 7.1(a)
has one customer (Customer1, Customer2 and Customer3, respectively). Each
customer is connected to the ISP’s network through an IP-speaking router
acting as a Customer Premise Equipment (CPE); those devices are CPE1
for Customer1, CPE2 for Customer2, and CPE3 for Customer3. Each of those
routers is, in turn, connected to an SDN-enabled device, more specifically an
OpenFlow-enabled switch (OF1 for Customer1, OF2 for Customer2, and OF3 for
Customer3); placing such devices between the CPEs with the PEs allows us to
take the control of all traffic generated by each customer.

Figs. 7.1(b) and 7.1(c) depict the internal architecture of an ISP and of a
customer, respectively. Referring to Fig. 7.1(b), each ISP has a public IP subnet
used to allow the communication over the Internet and it has a public domain
name (isp1.it for ISP1). The same happens for ISP2 and ISP3, even if we do
not report in this thesis a specific drawing. Inside each ISP’s network, there is
an SDN-controller (cnt.isp1.it) having in charge the management of each SDN-
enabled device. We assume that each ISP belonging to the federated network
has an SDN-controller in order to provide the service. Even for SDN-controllers,
the same happens for ISP2 and ISP3.

In this thesis we do not address problems related to robustness in case
of controller failures. SDN-controllers have one public IP address used to
exchange traffic with each other, and they can reach the SDN-enabled devices
by relying on routing protocols running inside ISP’s networks. We argue that
our architecture is agnostic with respect to all routing protocols running on
each ISP’s network.
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With respect to the internal architecture of a customer (Fig. 7.1(c)), we
assume that it has a private IP address subnet used for internal purposes. Also,
there is a local name server (NS1 with domain name ns1.c1.isp1.it). The same
happens for Customer2 and Customer3, even for the internal IP address subnets:
indeed, we allow communication among end-hosts possibly sharing exactly the
same IP address. The local name servers might be placed in a publicly accessible
portion of the network. If this is the choice, each machine inside the customer
must be re-configured pointing to such an external device. Leaving the local
name servers inside the local networks, there is no need of this extra effort.
Also, placing the those servers behind the SDN-enabled switch allows us to take
the control over the DNS traffic generated by the customers.

Referring to Fig. 7.1, when H1 (residing in Customer1) wants to exchange
traffic with H2 (residing in Customer2), we say that those customers join a
federated VPN allowing them to send traffic each other. This operation is
steered by the SDN-controllers of each federated ISP, that undertake specific
operations in order to set up the federated VPN. Note that by using standard
technologies (e.g. Layer 3 [RR06] or Layer 2 VPNs [KR07]), this service cannot
be provided, since IP addresses overlap is forbidden. Note that Customer1 can
be part of any other VPN provided by ISP1 using standard technologies, as
for example MPLS VPN. Also, each ISP can still provide services that are not
SDN-based without any restrictions.

In the rest of the section, we address one by one problems related to
mangement, technological differences, and unified user view, explaining how we
address each of them and which solutions our framework implements.
Management Problems – Management problems happen when common
network operations, such as monitoring activities, have to be carried out.
Such operations need a strong coordination among members of the federated
PoPs [FBP+10] and agreeing to reach that goal might not be a trivial process.
It is easy to see that if the federated network is built exploiting a federated PoP,
those activities might involve working teams belonging to different providers.
Also, systems used to carry out such activities should include the policies of all
federated members, leading in an increase of complexity.

Our framework does not introduce any further connection point, except the
IXP which each provider is already connected to. By doing so, each federated
ISP carries out performance and monitoring activities independently by each
other federated provider, reducing both hardware and human resources costs.
In addition, as all customers are forced to send traffic passing through SDN-
enabled devices (as shown in Fig. 7.1), tracking the traffic belonging to the
services provided by the federation is also easy. This is not the only benefit
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that our framework brings. Indeed, each provider is able to autonomously
accomplish the task related to the recognition of responsibilities, since thare
are not shared interconnection points (e.g. federated PoPs) and each federated
ISP only manages its own network, keeping costs unchanged.
Technological Difference Problems – Technological problems arise when
ISPs adopt different protocols to interconnect each other [FBP+10]. A pre-
liminary step consists in agreeing on shared choices (e.g. in terms of routing
protocols), allowing each ISP to interconnect to each other. Unfortunately, there
is no a standard interface to access a federated network [FBP+10], resulting in
a complication when a service has to be issued.

Our framework does not impose such constraints, since each federated ISP
comes with its own infrastructure that is completely independent from each
other, allowing providers to choose protocols to use in their network, preventing
coordination activities needed by the federated PoPs. The only interconnection
point, as we said, is the IXP, where each provider is already connected to in
order to access Internet and exchange traffic. Our framework requires to have
several SDN-enabled switches, autonomously managed by each providers. Thus,
SDN-controllers take the control over the traffic generated by the customers
and it is very simple to achieve with SDN.
Unified User View Problems – Unified user view problems occur when a
customer does not perceive the federated network as a single one. An example
of this problem is the following: consider the case in which a customer wants to
join a federated VPN. That customer asks to its provider to set up the federated
VPN allowing it to exchange traffic with another customer connected to the
network of a federated partner. If such a request takes a non negligible amount
of time for being accomplished (e.g. order of hours or days), a customer might
perceive that its provider is not able to issue that service autonomously, but it
needs to collaborate with other ISPs, making the federated network visible to
the users.

A solution to this problem consists in providing a unified way to access
federated services that allows each federated ISP to accomplish on-demand
customer requests. Also, after receiving such requests, each federated ISP must
act as much as possible independently, consequently reducing the collaboration
in order to gain in terms of both amount of involved human resources (e.g.
technical staff for devices configuration) and required time to provision the
service. This is what our framework does. It makes available a set of primitives
that each customer uses to access a federated service. By doing so, each ISP
has a unified and standard way to accept the customer requests and to start a
collaboration with one or more federated ISPs in order to issue the service. In
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our framework such a task is carried out by the SDN-controllers, that cooperate
with each other after a primitive has been received. This collaboration leads on
exchanging information related to the federated service and does not require
strict constraints, except the reachability among the SDN-controllers (e.g. by
exposing them on Internet using public IP addresses).

7.5 Subscribing to a SDN Federated VPN Service

In this section we describe a configuration language for supporting federated
networks and VPN services and a set of primitives allowing customers to join
or leave such services.

Our configuration language is simple and it just contains information about
federated networks and the federated VPN service, without any impact on
any existing configuration. The configuration, written with our configuration
language, is located at the SDN-controller, and it does not require any additional
configuration over standard IP-speaking routers. In particular, our configuration
language includes a set of static information (e.g. which are the federated
networks the provider belongs to and all information about the SDN-controllers
of other federated ISPs) and a set of dynamic ones (e.g. list of federated
VPNs), that are updated based on the customer requests performed by using
our primitives.

Federated VPN is a collaborative service. Therefore, all SDN-controllers
must have the configuration for that service always updated and consistent.
To support this requirement, each SDN-controller has a public IP address,
allowing it to exchange information with each other SDN-controller in the
federation. We also define a set of primitives used to keep the configuration
consistent; they are used by customers that want to join (or leave) the service
at any time. This makes our proposal more flexible and scalable with respect
to standard VPN services, that require changes in the configuration files of
the network devices in order to support such an on-demand feature. We argue
that our framework makes the whole provisioning process more agile. For sure,
the decision of federating with other providers requires a set of agreements
that must be carried out (e.g. cost models) and they are not address by our
framework. Nevertheless, our framework provides several mechanisms to make
the creation of federated networks and the provisioning of federated services
easier.

In the rest of the section we present two building blocks of our framework:
the configuration language and the primitives. First, we show our configuration
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language, as it provides constructs to define information about the federated
network as well as the federated VPNs service. Second, we illustrate our
primitives. We choose this order of presentation since the usage of primitives
changes the content of the configuration at the SDN-controllers. We argue that
our configuration language and our primitives, together with the SDN-based
architecture of our framework, represent our solution for solving problems
discussed in Sec. 7.4.
A Configuration Language for Federated Networks and Federated
VPNs Services – Our configuration language is XML-based. The goal is to
specify a set of parameters used to easily set up both federated networks and
federated VPNs, without modifying any existing configurations. Our choice
of relying on XML does not restrict the adoption of any other formats (e.g.
JSON), as long as the semantic stays unchanged. The configuration is the input
of the SDN-controller, that – based on its content – allows or denies a customer
to access the service. The configuration has the following structure:
|<federations>|
| <federation name="federation_name">|
| <myself></myself>|
| <isps></isps>|
| <vpns></vpns>|
| </federation>|
|</federations>|

The root of the XML tree is the element |<federations>|, containing all
federated networks the ISP belongs to. Indeed, each partner can participate in
more federated networks at the same time and each customer can join multiple
federated VPNs belonging to different federated networks. We define the element
|<federation>| as a child of the root element and it contains information about
the ISPs in the federated network. We assume that each federated network has
a name that is globally unique. Basically, the element |<federation>| represents
a federated network and it is added to the configuration after two or more ISPs
agree in setting up a federated network. Such an element instantiates the will
of joining a federation after the whole process of agreements has been carried
out. Inside this element we identify three subtrees: 1) |<myself>|, containing
all information about the SDN-controller of the ISP’s network in which this
configuration is deployed; 2) |<isps>|, containing the list of all the other SDN-
controllers belonging to the federated network; 3) |<vpns>|, containing the list
of all federated VPNs defined inside the federated network and information on
customers belonging to each VPN. We now discuss each subtree in order to
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show which information belongs to each element and which are the pieces of
this configuration that the SDN-controllers have to exchange with each other.

In the |<myself>| element, the network operator specifies some basic pa-
rameters for the controller. This element has the following structure:
|<myself>|
| <isp id="isp_id" name="isp_name">|
| <controller name="ctrl_name" ip="public_ip" />|
| <nat fake="fake_ip_subnet" public="public_ip_subnet" />|
| </isp>|
|</myself>|
Each ISP is easily recognizable inside a federated network starting from the
pair formed by an id, that must be unique inside the federated network itself
(e.g. the AS number of the ISP’s network) and a name. Element |<controller>|
contains some basic information about the SDN-controller, consisting in a name
and an IP address that must be public in order to guarantee the reachability
of the machine. The element |<nat>| contains two subnets used to NAT the
packets.

Intuitively, the fake_ip_subnet is used in scenarios where hosts sharing the
same IP address need to exchange traffic, as reported in Fig. 7.1. For this pool
of addresses there are no requirements. They can be either private or public
IP addresses and they can be used elsewhere in the federated VPN. Indeed,
IP addresses in the fake_ip_subnet are used as a temporary replacement of
the actual destination IP address. The public_ip_subnet is used to translate
private addresses into public ones, as in standard NAT implementation. Note
that, by doing so, any forms of tunneling are avoided, resulting in the full MTU
being kept available. Note that if the ISP belongs to multiple federations, the
|<myself>| element must be declared once for each federation. Indeed that
element cannot be promoted as child of the root element |<federations>| since,
in general, an ISP participates to different federated networks using different
values for the |<nat>| element’s parameters.

The element |<isps>| is populated with information about all SDN-controllers
belonging to the federated network, except what is already written in the |<my-
self>| element. Each of those pieces of information is enclosed inside the |<isp>|
element, as shown in the following:
|<isp id="isp_id" name="isp_name">|
| <controller name="ctrl_name" ip="public_ip" />|
| <nat public="public_ip_subnet" />|
|</isp>|
This part of the configuration is very similar to what is inside |<myself>| subtree,
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except that the element |<nat>| does not contain the fake_ip_subnet, since
it is used from the SDN-controller of the ISP’s network in which the end-host
that starts the communication resides. We clarify this choice in Sec. 7.6.

To better illustrate the semantic of our configuration language, we now
provide a configuration example in accord with Fig. 7.1; at the moment, we set
aside the |<vpns>| subtree, since it includes information about the federated
VPN service for a specific federated network. We focus our attention on the
SDN-controller of ISP1, namely cnt.isp1.it.

|<federations>|
| <federation name="ISP1-ISP2-net">|
| <myself>|
| <isp id="1" name="isp1.it">|
| <controller name="cnt.isp1.it" ip="100.100.100.1" />|
| <nat fake="192.168.0.0/24" public="100.200.0.0/24" />|
| </isp>|
| </myself>|
| <isps>|
| <isp id="2" name="isp2.it">|
| <controller name="cnt.isp2.it" ip="200.200.200.1" />|
| <nat public="200.150.0.0/24" />|
| </isp>|
| </isps>|
| </federation>|
|</federations>|
By giving this configuration as input, the ISP1’s SDN-controller learns that it
is part of a federated network called ISP1− ISP2− net and a federated partner
is a provider called isp2.it whose SDN-controller is cnt.isp2.it with IP address
200.200.200.1. It is important to note that such a configuration is static, namely
it is manually configured by each ISP after reaching agreements with other ISPs
on creating a federated network. We point out that having such an information
in the configuration is enough to establish the federated network.

The last element is |<vpns>| and it contains all information about all
federated VPNs in the federated network set up in order to allow customers to
exchange traffic. Inside this subtree, a list of |<vpn>| elements can be specified.
Each of them has following structure:
|<vpn id="vpn_id" name="vpn_name">|
| <isp id="isp_id" name="isp_name">|
| <customer name="customer_name">|
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| <site name="site_name" timestamp="time">|
| <datapath|
| ip="ip_address" in_port="port_number"|
| out_port="port_number" />|
| <subnet private_network="ip_subnet" />|
| <ns domain="domain" ip_address="ns_ip" />|
| </site>|
| </customer>|
| </isp>|
|</vpn>|
This element contains many details. The first one is composed by generic data
representing a way to uniquely identify a federated VPN starting from an id
and a name. The element |<isp>| groups information about which customer
(potentially, more than one) joins the VPN. Each customer is identified by a
globally unique name. Information about where its traffic comes from and goes
out are expressed in the |<datapath>| element. In this piece of configuration it
is possible to declare which is the private_network used by the customer and
information about its local name server, namely the domain whom it is the
authority and, optionally, its ip_address.

Still referring to Fig. 7.1, we now provide an example of |<vpns>| element
configuration in the case in which both Customer1 and Customer2 ask to join a
federated VPN. Such an action is accomplished by each customer by using the
primitives we are going to discuss in the rest of the section. We always refer to
the configuration of ISP1’s SDN-controller.
|<vpns>|
| <vpn id="1" name="C1-C2-vpn">|
| <isp id="1" name="isp1.it">|
| <customer name="c1.isp1.it">|
| <site name="s1.c1.isp1.it" timestamp="0">|
| <datapath ip="100.0.0.123" in_port="1" out_port="2" />|
| <subnet private_network="10.0.0.0/16" />|
| <ns domain="ns1.c1.isp1.it" ip_address="10.0.0.3" />|
| </site>|
| </customer>|
| </isp>|
| <isp id="2" name="isp2.it">|
| <customer name="c2.isp2.it">|
| <site name="s1.c2.isp2.it" timestamp="0">|
| <subnet private_network="10.0.0.3" />|
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| <ns domain="n2.c2.isp2.it ip_address="10.0.0.3" />|
| </site>|
| </customer>|
| </isp>|
| </vpn>|
|</vpns>|
By reading this piece of configuration, ISP1’s SDN-controller learns several
information related to the federated service. First, a VPN called C1− C2− vpn
(such a federated VPN has also an id that we assume to be unique in the
federation) exists. Second, two customers are interested in exchanging traffic
with each other. In particular, those customers are: 1) Customer1 connected
to the ISP1’s network; those information are taken from elements |<isp>| and
|<customer>|. The customer is connected to the ISP1’s network through an
SDN-enabled switch whose IP address is 100.0.0.123; its traffic comes from
SDN-enabled switch port number 1 (the SDN-enabled port connecting OF1
and CPE1) and goes out from SDN-enabled switch port number 2 (the SDN-
enabled port connecting OF1 and PE1). Those information are provided by the
|<datapath>| element. The subnet used by the customer is reported in the
|<subnet>| element, whereas information about which is the local name server
for that customer are found in the |<ns>| element and 2) Customer2 connected
the ISP2’s network; those information are still taken from elements |<isp>| and
|<customer>|. In the case in which the customer is a remote one, namely is not
directly connected to network of the ISP (ISP1 in this example), information
about the SDN-enabled switch are not provided, since the ISP1’s SDN-controller
does not manage that switch. Even in this case, the subnet used by the customer
is reported in the |<subnet>| element, whereas information about which is the
local name server for that customer are found in the |<ns>| element. In contrast
with the information enclosed inside |<myself>| and |<isps>| subtrees, the
content of the |<vpns>| element is dynamically generated. Indeed, federated
VPNs’ parameters are reported in the configuration exploiting several primitives
allowing customers to easily access federated VPN.
Primitives to Join Federated VPN Services – Each ISP belonging to a
federated network makes available to all its customers a set of primitives that
they can use to join or leave the federated VPN service. Those primitives are
received by the SDN-controller, that performs checks in order to allow (or deny)
a customer to join the service. For example, referring to Fig. 7.1, every primitive
sent by Customer1 will be forwarded to and checked by ISP1’s SDN-controller.

We define three main primitives: Insert, Update, and Delete. The Insert
primitive is used by a customer to join a federated VPN. Using this primitive, the
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customer specifies several parameters. With the Update primitive, the customer
can ask the SDN-controller to modify the parameters previously declared by the
Insert primitive (e.g. by adding or removing information). Finally, using the
Delete primitive, a customer exits the federated VPN. By using those primitives,
a customer can specify policies in order to allow or deny other customers to
exchange traffic with it. Such policies are verified by all the SDN-controllers in
the federated network and the result of such an operation is sent back to each
customer. We now describe the semantics of these primitives.
Insert – By using this primitive, a customer asks its provider to join the federated
VPN service. Insert takes as input four parameters: 1) Customer that is the
name of the customer; 2) Description is a set of parameters describing in detail
information about the customer. In this set, a customer specifies its subnet,
and (optionally) the IP address of a local name server. Those information are
translated into the element |<site>| contained in the subtree |<vpn>| of the
configuration. Note that the information about the |<datapath>| element can
be inferred by the SDN-controller exploiting proper data structures defined
by the OpenFlow protocol; 3) VPN is the ID of the federated VPN which the
customer joins. By looking at this parameter, the SDN-controller can properly
identify the |<vpn>| subtree to update. Indeed, there are many VPNs in the
federated network, each of them containing different customers. After choosing
the federated VPN, the customer can also express a set of policies, declaring
the set of customers inside the federated VPN which it is available to exchange
traffic with; 4) Time contains information about how much time a customer
wants to use the federated VPN service. After that time, the customer is
no longer part of the service. This information is stored as the value of the
parameter |timestamp| of the subtree |<site>|.

Referring to Fig. 7.1, an example of the primitive Insert sent by Customer1
to ISP1’s SDN-controller is the following:
| Primitive: INSERT|
| Customer:|
| + Name: c1.isp1.it|
| + Site: s1.c1.isp1.it|
| Description:|
| + Customer IP subnet: 10.0.0.0/16|
| + Local Name Server:|
| + URL: ns.c1.isp1.it|
| + IP Address: 10.0.0.3|
| VPN: C1-C2-vpn|
| Time: 0|
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To create the federated VPN, Customer2 has to send a primitive to ISP2’s
SDN-controller similar to the previous one.

Upon receiving the Insert primitive, each SDN-controller undertakes a set of
operations cooperating with all other SDN-controllers in the federation in order
to guarantee the access to the federated VPN service to its customer. Referring
to the previous example, after receiving the Insert primitive sent by Customer1,
ISP1’s SDN-controller exploits the information contained in the primitive to
populate the configuration as previously shown in this section. After that,
it sends a copy of this primitive to ISP2’s SDN-controller, namely the SDN-
controller of the federated partner for the federated network ISP1− ISP2− net.
We now go in deep explaining how each SDN-controller dynamically populate
its configuration. Note that, only the |<vpns>| element of our configuration
language is involved in this process.

First, ISP1’s SDN-controller checks whether a federated VPN having the
name reported in the Insert primitive corresponding to the key VPN already
exists. If it is not the case, then the SDN-controller creates a new |<vpn>|
element assigning to it an id automatically generated and the name reported in
the primitive, namely C1− C2− vpn. Second, the SDN-controller starts to add
information about the customer. In particular, it knows that the customer who
sent the primitive is one of its customers, so it takes from |<myself>| subtree
information about itself. By doing so, it is able to create the element |<isp
id="1" name="isp1.it">| as child of the element |<vpn id="1" name="C1-C2-
vpn">|.

After that, the SDN-controller starts to add the information related to
the customer. Based on the information associated to the keys Customer
and Time reported in the primitive, new elements are added to the configura-
tion, namely the element |<customer name="c1.isp1.it">| and its child |<site
name="s1.c1.isp1.it" timestamp="0">|. At this point, the SDN-controller
also adds the |<datapath>| element; such an information is inferred by in-
specting the traffic coming from the SDN-enabled switch, which the traffic
generated by each customer is forced to pass through. Finally, customer’s
information are included in the configuration, by creating the elements |<subnet
private_network="10.0.0.0/16" />| exploiting the key CustomerIPsubnet of the
element Description carried by the primitive and |<ns domain="ns.c1.isp1.it"
ip_address="10.0.0.3" />| exploiting the keys URL and IPAddress of the sub-
element LocalNameServer contained in the primitive. We point out that in
case the federated VPN already exists, those steps are skipped, since those
information are already in the configuration. ISP2’s SDN-controller perfomrs
the same operation.
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After performing those checks, ISP1’s SDN-controller sends the primitive
received by Customer1 to ISP2’s SDN-controller, as well as ISP2’s does the
same with the primitive received by Customer2. Once that message reaches
the destination SDN-controller, it undertakes several operations over its con-
figuration based on the content of the receipt message. Considering ISP1’s
SDN-controller, it does the following. First, based on the VPN value of the prim-
itive, it selects the right federated VPN browsing the |<vpns>| element. After
selecting the right |<vpn>| element ( |<vpn id="1" name="C1-C2-vpn">|
in this example), it adds the |<isp>| element for the federated partner. That
information is inferred by observing the source of the message. In the example,
ISP1’s SDN-controller writes in the configuration the following element: |<isp
id="2" name="isp2.it">|. Note that this information are already enclosed in
the subtree |<isps>|, collecting all federated ISPs of the federation. Finally,
the SDN-controller is able to populate the remaining information, namely the
|<customer>|, |<site>|, |<subnet>|, and |<ns>| elements by simply browsing
the content of the received Insert primitive. Note that the same happens at the
ISP2’s SDN-controller. At this point both the SDN-controller have the needed
information to provide the federated VPN services.

We highlight that no human resources have been involved in this procedure
and the service is provisioned without any delay potentially introduced by the
federated nature of the network. By adopting our framework, the collaboration
among providers in order to set up a federated network, as well as to provision
a service, is completely delegated to the SDN-controller by means of a point-to-
point communication.
Update - By using this primitive, a customer can modify what declared in the
Insert primitive. Indeed, Update takes as input the same parameters of Insert.
Also, this primitive is used by an SDN-controller to keep the information of its
customers updated with all other SDN-controllers in the network. Basically,
each SDN-controller processes such a primitive as it was an Insert, changing
values in the configuration if required.
Delete - By using this primitive, a customer can leave the federated VPN before
the Time parameter declared in the Insert primitive expires. Delete takes three
parameters as input: Customer, Description, and VPN. They have the same
semantic described for the Insert primitive. Upon receiving this message, the
SDN-controller sends it to all other SDN-controllers in the federation, in order
to make them aware of the intention of the customer to leave the federated VPN.
By receiving this primitive, every SDN-controller can update its configuration for
the federated VPN specified as a parameter, making the information consistent.

In this thesis, we do not consider security and authentication issues that can
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be tackled using any standard application level security protocol. For instance
we suppose that all the exchanged information flows using either Secure Socket
Layer (SSL) or Transport Layer Security (TLS) technologies.

7.6 A Complete Example

In this section we provide a complete example of our framework. We are going
to show the whole interaction between two end-hosts belonging to two different
customers connected to different ISPs’ network. Referring to Fig. 7.1, we show
an example of traffic exchange between two hosts residing in different customers
connected to different ISP’s networks, but sharing the same IP address. We
suppose that host H1, whose domain name is h1.c1.isp1.it and its IP address is
10.0.0.1, resides in Customer1 and host H2, whose domain name is h2.c2.isp2.it
and its IP address is 10.0.0.1, resides in Customer2. Consequently, we call H1
source and H2 destination. We divide the example in three steps: 1) federated
VPN access request performed by source and destination; 2) domain name
resolution undertaken by the source; and 3) IP traffic sent by the source towards
the destination.
1) Accessing the Federated VPN Service – As described in Sec. 7.5, the
first operation carried out by customers that want to join the federated VPN
service is to require the access to the service itself. It is done by sending to
the SDN-controllers the Insert primitive, that is handled accordingly to the
description reported in Sec. 7.5. After this step, each SDN-controller has a
suitable configuration, allowing it to provision the service.
2) Name Resolution Process – It is very common in the Internet establishing
a communication between end-systems starting from the destination URL. Our
framework includes a SDN-steered name resolution process that works as follows.

When the source wants to exchange traffic with the destination starting
a domain name, it sends a recursive DNS request message to its local name
server. In our example, H1 starts a recursive DNS lookup by sending a DNS
request to NS1, in order to obtain the H2’s IP address (in this example we
concentrate on A resource record, but the interaction is analogous to any other
type of resource records). According with the DNS name resolution process,
that we report for reader convenience, after receiving the recursive DNS request
message from H1, NS1 performs a set of iterative DNS queries to obtain the
IP address of the destination. The name resolution process undertaken by NS1
starts by contacting the root name server, and it finishes when the authoritative
name server for the destination issues a DNS answer message containing the
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destination’s IP address. It is easy to see that in our example such interaction
cannot take place: if IP address overlap occurs, we cannot exclude that the
local name servers NS1 and NS2 have exactly the same IP address. If this is
the case, when NS1 tries to send a DNS request message to NS2, that packet
will never exit Customer1’s network. A very simple solution is to move out the
local name servers from the private network of the customers. This operation
consists in changing the IP address of the name servers from a private IP address
to a public one. However, such a choice has a non negligible impact on the
configuration (e.g. reconfiguration of the end-hosts is also needed) and it is
unclear that the customer wants to make public its local name server.

We propose a mechanism relying on SDN to allow local name servers with IP
addresses in the same subnet (potentially having exactly the same IP address)
to exchange DNS traffic. By observing the DNS traffic, the SDN-controllers
can manipulate it in a suitable way, that is transparent for the end users. Our
proposal does not require to place any DNS daemon (e.g. BIND [bin17]) at the
SDN-controller. This prevents to introduce any other configuration effort. We
only need that the whole traffic generated by customers passes through the
SDN-enabled switch, in order to be (possibly) forwarded to the SDN-controller.
Our proposal is based on two main steps: 1) We determine which is the IPS’s
network hosting the destination and acquire the IP address of the authoritative
name server for the domain of the destination; 2) We resolve the destination’s
domain name. The second step requires a communication among the SDN-
controllers (cnt.isp1.it and cnt.isp2.it in our reference example). In rest of the
section we assume that H1 has domain name h1.c1.isp1.it whereas the domain
name associated to H2 is h2.c2.isp2.it.
Determining the IP Address of a Name Server – Since the SDN-controller has
to interact with local name servers placed in private networks with private IP
addresses, it needs two important information: the first one is the customer’s
network in which that name server resides, and the second is the IP address
of that name server. To achieve this, we propose two different approaches,
and we exploit the configuration described in Sec. 7.5. Indeed, the element
|<site>| contains the whole needed information. The difference between these
two approaches resides in the fact that in the first one the IP address of the
customer’s local name server is in the configuration of the SDN-controller,
whereas in the second it is not, as described in Sec. 7.5. We call these two
different scenario Full and Partial configuration, respectively. The interaction
among network devices and machines are depicted in Fig. 7.2.

The interaction depicted in Fig. 7.2(a) refers to the Full configuration
scenario and it is the simplest one. Indeed, once H1 starts the recursive name
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(a) Interaction among OpenFlow switch, name server, and SDN-controller in case of
Full configuration scenario.

(b) Interaction among OpenFlow switch, name servers, and SDN-controller in case of
Partial configuration scenario.

Figure 7.2: Determining the IP address of a Local Name Server.
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resolution process, the iterative query issued by NS1 is intercepted by OF1
and it is sent to the controller. By browsing its configuration, the ISP1’s
SDN-controller is able to determine the IP address of the name server that
is authority for the destination (h2.c2.isp2.it). By recalling what we said in
Sec. 7.5, that information is in the configuration file (see [MLB+17] for further
details).

The Partial configuration scenario is more interesting to address, even if the
interaction among network devices and machines (e.g. name servers and SDN-
controllers) is more complex, as shown in Fig. 7.2(b). In Sec. 7.5, we argued
that the specification of the IP address of the local name servers is optional.
Such a choice is motivated by two reasons. First, it simplifies the configuration.
Second, since local name server typically has a private IP address, a customer
could change it without notifying the ISP, leading to possible misconfiguration
problems among the SDN-controllers. Hence, we define a technique to retrieve
this information, avoiding such an issue.

At the beginning, H1 sends a recursive DNS request message to NS1, which
starts the iterative part of the name resolution process by querying the root
name server. With respect to the first approach we discussed, the SDN-enabled
switch forwards this packet in the ISP1’s network without sending it to the
SDN-controller, so that it can reach the root name server. Upon receiving that
DNS request message, the root name server answers with a DNS answer message
containing information about the authoritative name server for that domain.
Upon receiving the DNS answer message coming from the root name server, OF1
forwards this packet to ISP1’s SDN-controller. Since we are assuming that the
authoritative name servers of all the customers are private, the SDN-controller
inspects the content of the DNS answer, aiming at verifying whether it contains
some information on the authoritative name server for the destination’s domain.
If it is not the case, the SDN-controller sends that packet to OF1, by instructing
that device to forward the DNS answer to NS1. This process carries on until a
DNS answer containing information about the IP address of NS2 (reported as a
glue record of a NS DNS record) reaches the SDN-enabled switch, allowing ISP1’s
SDN-controller to understand which is the IP address of NS2. In this case, the
DNS answer message is not forwarded to NS1, preventing it to exchange traffic
with a name server potentially having the same IP address, but residing in a
different network (we recall our assumption that customers residing in different
IPS’s networks might share the same IP subnet without any restrictions).

There are differences between the two approaches we presented. First, in
the Full configuration approach there are no other name servers involved in the
communication except NS1. Also, the SDN-controller looks at the DNS request
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messages produced by NS1. Second, in the Partial configuration approach,
other name servers are involved in the communication and the SDN-controller
inspects the DNS answer messages sent by those name servers. In summary,
in the Partial configuration approach, we observe a higher number of DNS
and, consequently, OpenFlow messages with respect to the Full configuration
approach. Reducing the amount of information in the configuration impacts
the number of messages, but such an impact does not affect the scalability (our
framework does not introduce additional DNS messages).
Resolving Domain Names in Presence of IP Addresses Overlap – Up to now, we
described how a SDN-controller determines the IP address of the authority name
server for the destination and information about which is the ISP’s network
hosting that name server. Now, we can describe in detail how our SDN-based
technique performs the name resolution process. With respect to the standard
DNS name resolution process, in our approach the communication between NS1
and NS2 is mediated by the SDN-controller of the source, namely cnt.isp1.it in
our example. Note that this mediation is needed, since the IP address of NS2
is in the same subnet of NS1, so if NS1 tries to directly send a DNS request
message to NS2, that packet will never leave Customer1’s network.

Once ISP1’s SDN-controller acquires the IP address of NS2 (the authority
name server for the destination), it issues a DNS request message Q directed to
that name server based on the DNS request message produced by the source
and it sends that DNS message to ISP2’s SDN-controller by using a dedicated
communication channel. This is possible because the public IP address of each
SDN-controller in the federated network is part of the configuration. Upon
receiving Q, ISP2’s SDN-controller forwards it to the correct name server (this
information is part of the configuration), which replies with H2’s IP address.
Such a DNS answer reaches ISP2’s SDN-controller (it passes through OF2).

After receiving the DNS answer message issued by NS2, ISP2’s SDN-
controller sends that DNS message to ISP1’s SDN-controller. Consider that,
before forwarding the DNS answer message to NS1, ISP1’s SDN-controller must
check whether the destination host has an IP address that is in the same subnet
of the source. Such a check is mandatory, since we allow the communication
with a potentially fully overlap of IP addresses, and in this case H1 and H2
exactly share the IP address 10.0.0.1. Hence, ISP1’s SDN-controller has to
change the IP address contained in the DNS answer message, preventing H1
to send traffic inside its network, or to itself. To do that, each controller owns
a set of fake IP addresses to use for this purpose, that are declared in the
configuration as shown in Sec. 7.5. ISP1’s SDN-controller picks an IP address
from the fake set and replaces the original H2’s IP address with the fake one,
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keeping this association in suitable internal data structures. At the same time,
it sends to the SDN-enabled switch a set of rules to forward the traffic according
to this IP address replacement action. In this way, H1 is not aware of the fact
that it is sending traffic to a destination with an IP address in the same subnet.
It is interesting to note that, by using this technique, also NS1 and NS2 can
share the same IP address, since the interaction between these two name servers
is mediated by the SDN-controllers. At this point, H2’s domain name has been
resolved and H1 is able to send traffic.
3. Sending IP Traffic to the Destination – Once the source acquires the
IP address of the destination, it starts to send traffic. Since the communication
is being established between end-hosts with private IP addresses, translation
strategies are needed. We now describe the Network Address and Port Transla-
tion (NAPT) strategies that we apply to support communications between hosts
in different customer sites within a federated network. These strategies are used
to alter the IP addresses (and, possibly, the TCP/UDP ports) of exchanged
packets in such a way that traffic between hosts with private addresses can
be routed on a public IP network. Our approach differs from the standard
usage of NAPT [SH99] for at least two aspects: 1) we alter both the source
and the destination IP address and port of outbound packets (rewriting the
private source IP address is not strictly required, but we still do it in order to
prevent packets with private addresses from traversing a public network), and
2) we allocate resources from the pool of public IP addresses and ports using
various different strategies. Address translations are performed by SDN-enabled
switches according to packet manipulation rules in their SDN flow tables. As
soon as the source emits a packet to establish a TCP/UDP connection towards
the destination, the SDN-controllers install on OF1 and OF2 suitable translation
flow entries to support the communication between the hosts. We describe three
strategies, called: 1) Client Port Preservation (CPP); 2) Client Announces Port
Selection (CAPS); and 3) Lazy Address and Port Selection (LAPS). In the rest
of the section, we present the CPP strategy (the description of the CAPS and
LAPS can be found in [dLRB16]) and we refer to specific OpenFlow messages,
whose definitions are in [Ope14b].
Client Port Preservation – This NAPT strategy is inspired by the “port preser-
vation” approach in [AJ07]: for this reason we call it Client Port Preservation
(CPP). According to this approach, the internal (private) source TCP/UDP
port number of an outbound packet should be kept untouched, as long as this is
possible: only if two hosts use the same source port number, then they should
be mapped to two different public IP addresses. We describe the CPP strategy
exploiting the sequence diagram in Fig. 7.3.
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Figure 7.3: Messages exchanged to support communication between H1 and
H2, for different translation strategies.

The horizontal arrows in the figure represent messages exchanged among OF1,
ISP1’s SDN-controller, ISP2’s SDN-controller, and OF2 to support such a connec-
tion. Black arrows represent messages that are common to all our address trans-
lation strategies, whereas gray arrows represent those that are required only by
some of them. The CPP strategy works as follows. Each controller has a pool of
public IP addresses that can be used to perform address translation, as reported
in Sec. 7.5. Before any packet exchanges takes place, all the SDN-controllers in-
volved in the federated VPN mutually exchange messages (IP_Map) carrying in-
formation about their private address space: thus, every SDN-controller becomes
aware of the existence and location of every IP subnet in the federation. After
that, assume that a packet for a new TCP/UDP connection is received by OF1.
We indicate with src[pvt_IP :pvt_PORT] the private IP address and TCP/UDP
port of the packet’s source host (H1), and with dst[pvt_IP :pvt_PORT] the
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private IP and port of the packet’s destination host (H2). OF1 buffers the
received packet and forwards a copy of it to ISP1’s SDN-controller (PacketIn
message). It picks from its own pool an available public IP address src[pbl_IP]

to be associated with src[pvt_IP], keeping port src[pvt_PORT] untouched, then
it notifies the binding between src[pvt_IP] and src[pbl_IP] to ISP2’s SDN-
controller (Bind_Signaling message). ISP1’s SDN-controller also asks ISP2’s
SDN-controller for a public IP address and port to be used to contact the
destination host (Map_Request message). At this point, ISP2’s SDN-controller
associates a public IP address dst[pbl_IP] from its own pool to dst[pvt_IP], and
an available port dst[pbl_PORT] to dst[pvt_PORT], and sends FlowModifications
to OF2 to install two packet manipulation rules. One rule applies to packets
going from OF1 to OF2 and performs the following address translations (left
side represents matched fields whereas right side represents how they are rewrit-
ten): src[pbl_IP :pbl_PORT], dst[pbl_IP :pbl_PORT]→ src[pvt_IP :pvt_PORT],
dst[pvt_IP :pvt_PORT] (note that src[pbl_PORT]=src[pvt_PORT]). This rule
restores the original private source and destination IP/port of a packet when
it reaches Customer2, so that the packet can correctly reach the destination
host and any source-based traffic engineering policies can be applied. The
other rule applies to response packets for the same TCP/UDP connection that
go from OF2 to OF1, and accomplishes the opposite translations. Next, a
BarrierRequest is issued by ISP2’s SDN-controller, which waits for OF2 to con-
firm the installation of the above rules using a BarrierReply. At this point, ISP2’s
SDN-controller replies to ISP1’s SDN-controller with a Map_Reply message,
informing that host dst[pvt_IP :pvt_PORT] can be reached by sending pack-
ets to dst[pbl_IP :pbl_PORT]. ISP1’s SDN-controller sends FlowModifications
to OF1 to install the following rules affecting packets going from OF1 to
OF2: src[pvt_IP :pvt_PORT], dst[pvt_IP :pvt_PORT]→ src[pbl_IP :pbl_PORT],
dst[pbl_IP :pbl_PORT], and similar rules for packets from OF2 to OF1. Fi-
nally, the installed rules are applied to the packet buffered at OF1, which is
eventually forwarded: since all its IP addresses are public, it can successfully
traverse the backbones of ISP1 and ISP2 (and, possibly, the Internet) to reach
OF2, where the original source and destination addresses are restored.

7.7 Takeaway

By relying on the SDN architecture and proving both a configuration language
and a set of primitives, we built a framework that is able to make the process
of creating federated networks and subscribing to a federated VPN service
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simple and straightforward. Our framework aims at reducing the effort of
providing federated VPN services, as well as simplifying the creation of a
federated networks. Recalling the main challenges of today’s federated networks
introduced in Sec. 7.3, we now summarize how we solve those issues.

Management Problems – Avoiding additional interconnection points, each
federated providers is still able to manage its network as it prefers, without
any constraints in terms of collaboration with other federated partners. Our
choice to delegate to the SDN-controllers the task of handling the federation
and every federated service issued relying on such a network allows us to be
independent from any kind of collaboration, having benefits for many operations,
e.g. monitoring.

Also, agreeing on remuneration coming for the federated VPN service is very
simple, since that traffic is easily recognizable starting from the IP addresses
used during the translation phase. A strong point in favor of such a choice is
that each provider acts independently from each other in order to decide which
public IP addresses are used for that purpose. Remember that such choices are
exchanged among federated ISPs at the beginning, allowing them to be aware
about which traffic belongs to the federation.

Technological Differences Problems – As our framework does not require
any ad-hoc place to interconnect, except the IXP that has a well defined
interface for exchanging information (e.g. BGP protocol), each provider can
use any routing protocol or transmission technology without coordinating
with other federated partners. Also, the SDN architecture plays a key role.
Indeed, being able to take centralized decision and sharing them among SDN-
controllers exploiting a dedicated communication channel allows us to easily
reach interoperability. Also, the choice of using NAT strategies to realize
VPNs allows the SDN-enabled switches to issue IP packets, making the traffic
forwarding completely independent from specific data plane protocols used in
the backbone (e.g. MPLS).

Unified User View – We argue that our configuration language and primitives
represent a solid way to provide a standard interface to access the federated
VPN service. Furthermore, delegating the coordination activities to the SDN-
controllers reduces the amount of time needed for provisioning the service. By
relying on our framework, we argue that users perceive the federated VPN
service as issued by a single provider, keeping hidden the collaboration among
ISPs.
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7.8 Evaluation

To validate the effectiveness of our framework, we implemented a prototype SDN-
controller by relying on the Ryu framework [ryu17] and OpenFlow 1.3 [Ope14b].
We focus our evaluation activity on both control and data plane, analyzing how
many messages (OpenFlow and DNS) are exchanged in the federated network
and which is the impact on each OpenFlow-enabled switch of setting up a
federated network. We run our experiments on SDNetkit [ML+17], an SDN-
enabled enanchement of Netkit [net17], a widely used network emulator. Within
SDNetkit, we used BIND [bin17] to implement name server functionalities and
OpenVSwitch [ovs15] to implement OpenFlow devices.

We run our SDN-controller on topologies reflecting the reference scenario
depicted in Sec. 7.4. Our implementation is composed by three main components:
1) Primitive Handler, which handles primitives sent by customers; 2) DNS
Handler, which handles DNS messages; and 3) Routing Handler, which computes
the routing. Those components cooperate in order to allow customers to quickly
and easily join a federated VPN and exchange traffic with each other participant
of the VPN.

In our experiments, we focus on considering three different coordinates:
1. number of ISPs in the federated network, 2. number of customers per ISP,
and 3. number of VPNs in the federated network. We run several simulations on
different topologies, that are built according to the following criteria. First, we
build a federated network consisting of two ISPs. In such a federated network,
we connect to each ISP a number of customers varying in the range [1, 4]. Then,
we set up a number of VPNs varying in the range [1, 4]. Also, we assume that
a customer can be part of a single VPN. Hence, the number of VPNs has to be
determined according to the number of customers per ISP (e.g. with a single
customer per ISP, we cannot create more than one VPNs, with two customer
we can set up at most two VPNs, and so on). Each customer consists of a host
and a local name server, authority for that host. Second, we did the same in a
federated network consisting of three ISPs. During each simulation, we perform
DNS resolution and standard ping among any pair of hosts belonging to the
same VPN, in order to issue the maximum number of DNS queries. We now
briefly describe which is the impact of our SDN-controller on both control and
data plane.
Control plane impact – To evaluate the impact of our implementation on the
control plane, we measure the amount of DNS and OpenFlow packets exchanged
in the network in order to allow a source (e.g. H1 residing in Customer1)
to exchange traffic with a destination (e.g. H2 residing in Customer2). To
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(a) Number of DNS packets exchange in
the Full configuration scenario.
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(b) Number of DNS packets exchange in
the Partial configuration scenario.

1

2

3

4

1

2

3

4

0

200

400

600

800

Number of 
customers

Number of 
VPNs

N
u
m

b
e
r 

o
f 
O

p
e
n
F

lo
w

 p
a
c
k
e
ts

(c) Number of OpenFlow packets exchange
in the Full configuration scenario.
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(d) Number of OpenFlow packets exchange
in the Partial configuration scenario.

Figure 7.4: Control plane impact in a federated network consisting of two
ISPs.
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the Partial configuration scenario.
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(c) Number of OpenFlow packets exchange
in the Full configuration scenario.

1

2

3

4

1

2

3

4

0

500

1000

1500

2000

Number of 
customers

Number of
VPNs

N
u
m

b
e
r 

o
f 
O

p
e
n
F

lo
w

 p
a
c
k
e
ts

(d) Number of OpenFlow packets exchange
in the Partial configuration scenario.

Figure 7.5: Control plane impact in a federated network consisting of three
ISPs.
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(a) Federated network with four cus-
tomers per ISP. (b) Federated network with a single VPN.

Figure 7.6: Number of queries in the federated network.

accomplish such an evaluation, we count the number of DNS and OpenFlow
packets on each interface of each OpenFlow-enabled switch in the network,
namely OF1, OF2, and OF3. With respect to the OpenFlow packets, we point out
that we only consider PacketIn, PacketOut, and FlowModification messages, since
our implementation affects those types of messages (e.g. OpenFlow handshake
and keepalive messages are independent by any controller implementations).
Also, we consider both Full and Partial configuration scenarios, as discussed in
Sec. 7.6.

Fig. 7.4 shows the total number of DNS (Figg. 7.4(a) and 7.4(b)) and
OpenFlow (Figg. 7.4(c) and 7.4(d)) messages exchanged in a federated network
with two ISPs. We observe that the number of messages (both DNS and
OpenFlow) grows with respect to the number of customers connected to each
ISP, while it decreases when the number of VPNs increase. We ascribe this
behavior to the fact that the number of messages strictly depends on the
number of queries in the network. Indeed, if more queries are performed by
many sources, more DNS packets are issued in order to get the IP address
of each desired destination. Regardless from which scenario (Full or Partial
configuration) we are considering, our SDN-controller has to interact with such
DNS packets, implying an increasing number of OpenFlow messages. Those
considerations are validated by looking at Fig. 7.6. Indeed, we observe that the
number of queries grows with respect to the number of customers (Fig. 7.6(b)),
while decreases with respect to the number of VPNs (Fig. 7.6(a)). This is due
to the fact that increasing the number of VPNs means reducing the number of
destinations per VPN, reducing the total number of queries, and - consequently
- the total number of messages.
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The same considerations are valid in the case of a federated network consist-
ing of three ISPs. The total number of DNS and OpenFlow messages exchanged
in the network is depicted in Fig. 7.5. Of course, in this case we observe a greater
number of messages (almost 2000). Such an increase with respect to Fig. 7.4
has to be ascribed to the fact that adding a new ISP in the federated networks
results in increasing the number of customers belonging to the federated network
itself and, consequently, the total number of destinations. Since we already
discussed how the number of destinations affects the number of queries and
which is their impact on the total number of messages exchanged in the network,
those results are perfectly aligned with what we expect, also considering results
shown in Fig. 7.6. It is worth to observe that the scalability of our framework
is the same of the DNS service. Indeed, we do not add any DNS messages to
the name resolution process, as in the Partial configuration scenario. Rather,
in the Full configuration scenario, we prevent several DNS messages (e.g. DNS
messages directed to the root name servers) to be forwarded in the network.
On one hand, having the IP address of a local name server in the configuration
saves a lot of DNS and OpenFlow messages. On the other hand, retreiving
that information from the DNS resolution process is a plus from a configuration
point of view (see Sec. 7.6), but it represents a cost considering the number of
exchanged messages, that is – in any cases – the same of any DNS service.
Data plane impact – By default, our prototype SDN-controller installs two
rules: one for ARP packets and another one for DNS packets. Indeed, all
traffic belonging to those classes needs to be processed by the SDN-controller in
order to allow the SDN-enabled switches to exchange traffic with the neighbor
routers (ARP packets) and to allow the DNS Handler to properly steer the
name resolution process (DNS packets).
Primitive Handler – This component has in charge the task of processing
primitives sent by customers. After analyzing the content of each primitive,
it writes proper information in the SDN-controller configuration, as shown in
Sec. 7.5. Basically, this component does not have any impact on the data plane.
DNS Handler – This component is in charge of steering the name resolution
process. After resolving a domain name, the DNS Handler installs a rule to send
IP traffic toward the destination to the controller. This rule is needed, since it
triggers the Routing Handler, whose task is to act as shown in Sec. 7.6. Note
that, for each possible destination, one rule is needed, resulting in a number of
rules that is linear with respect to the number of destinations in the federated
VPN.
Routing Handler – Routes in the networks are computed by this component.
In particular, for each pair of end-hosts, it installs two rules. The first handles
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the traffic directed to the destination, whereas the second allows the traffic to
come back from the destination to the source. Thus, the number of the rules
is quadratic with respect to all possible combinations among end-hosts. Since
this situation is not so common in computer networks (destinations are less
than sources), the number of rules is linear with respect to the number of pair
〈source,destination〉. Optimizations might be carried out attempting to reduce
that amount of rules.

7.9 Conclusions and Future Work

In this work, we propose a framework enabling fast creation of federated
networks. We show that the today’s federated network architecture can be
simplified by adopting SDN. Also, we demonstrate that our framework does
not impact any existing configuration, as well as any existing architecture. It
does not require architectural changes, except the adoption of SDN-controllers,
that is a reasonable assumption.

As research perspectives, we intend to go deeply in improving our current
implementation, providing a more complete software enabling federations to
use it in order to issue federated services. We believe that in a world where
IPv4 address exhaustion is being a problem – also due to the slow IPv6 adop-
tion [goo17, rip17] – our solution represents a valid alternative that allows ISPs
to provide value-added services to their customers, without introducing any
scalability issues.
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Chapter 8

When details make the difference:
How to handle ARP in a Software
Defined Network

The Address Resolution Protocol (ARP) enables communication between IP-
speaking nodes in a local network by reconstructing the hardware (MAC)
address associated with the IP address of an interface. This is not needed in
a Software-Defined Network (SDN), because each device can forward packets
without the need to learn this association. We tackle the interoperability
problem arising between standard network devices (end systems, routers), that
rely on ARP, and SDN datapaths, that do not handle ARP packets natively.
In particular, we propose a general approach to handle ARP in a SDN, that
is applicable in several network scenarios, is transparent for existing devices,
and can coexist with any packet forwarding logic implemented in the controller.
Our approach reduces ARP traffic by confining it to the edge of SDNs and
requires a minimal set of flow entries in the datapaths. We argument about
its applicability and confirm it with experiments performed on SDN datapaths
from a range of different vendors.

8.1 Introduction

Software Defined Networking (SDN) is a recently affirmed architectural approach
to computer networking. It physically separates the control plane of a network
device, implemented by a dedicated software (controller), from the data plane,
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which is realized by switches (datapaths) that are only capable of forwarding
packets and performing basic manipulations. According to OpenFlow [Ope15b],
one of the most adopted specifications of SDN, each datapath forwards packets
according to match-action rules (flow entries) contained in a flow table: the
match condition selects incoming packets based on their headers, whereas the
action can forward, manipulate, or drop matched packets. When a datapath
has no matching rule to handle a packet, it sends a message to the controller,
asking for the action to undertake. The controller can either choose to install
new rules in the datapath’s flow table or ask the datapath to send (forward or
generate) a single packet.

Like many other groundbreaking approaches, SDN is conceived to inter-
operate with existing technologies, provided that appropriate software in the
controller allows SDN datapaths to talk with standard network devices. This
also applies to the Address Resolution Protocol (ARP) [Plu82]: in fact, in an
IP network ARP is required to reconstruct the association between a packet’s
destination IP address and the corresponding hardware (MAC) address, so
that the subsequent IP node along a network path can correctly receive and
process the packet. On the other hand, SDN datapaths do not need to learn
this association (consequently, they do not need ARP), because their hardware
is designed to accept, process, and forward packets based only on the headers
appearing in match conditions of OpenFlow rules. Filling this gap is especially
important considering that, while many operators have already accomplished
or are at least considering a migration to SDN-based infrastructures and most
vendors have refreshed their product offers with OpenFlow-compliant devices,
the vast majority of end systems will continue to use IP for a reasonably long
time. Some SDN controller frameworks already implement basic handling of
ARP packets. However, these implementations often just reproduce the stan-
dard behavior of the ARP protocol (possibly including the ARP cache) with
OpenFlow, thus inheriting the associated scalability issues.

We propose a general approach to handle ARP traffic in a network that
consists of a mixture of legacy and SDN-enabled devices. In particular, we
design an ARP component for an SDN controller that has the following features:
it reduces ARP traffic by confining it to the edge of a SDN, thus limiting
its impact and improving scalability; it can be applied in several scenarios,
including of course partial SDN deployments as well as networks involving
multiple IP subnets; it is transparent for existing IP devices; it can coexist with
any additional packet forwarding logic implemented in the controller; and it
requires a minimal set of rules on the datapaths. To our knowledge, this is
also the first time that a general method to handle ARP packets in a SDN is
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specified in detail.

The chapter is organized as follows. In Section 8.2 we review the related
work. In Section 8.3 we discuss current SDN-based ARP implementations
and describe our design for an ARP-aware SDN controller. In Section 8.4 we
argument on the applicability of our approach, confirming it by experimental
tests. Conclusions and lines for future work are in Section 8.5.

8.2 Related Work

The OpenFlow specification gives no guidelines about handling ARP traffic in a
SDN, therefore various ad-hoc approaches have been proposed in the literature.
A recently published patent [TS14] claims a method for implementing an
OpenFlow controller that is able to handle ARP requests and cache IP-MAC
associations. This controller basically re-implements the traditional ARP traffic
handling, with the associated scalability issues and without taking advantage
of SDN. The authors of [XLZ15] and [KAK14] propose methods to limit the
distribution of broadcast packets by propagating them along a pre-computed
spanning tree or according to host location information learned by the controller.
Although these methods are applied also to ARP requests, such packets still
need to be carried across the network. In [CKL15] the authors propose to
maintain on the controller a complete IP-to-MAC table for all the virtual
machines in a data center: the controller can therefore reply to ARP requests
without forwarding them to the target node. However, this approach is only
applicable in a data center network, where the IP-to-MAC table is known from
static management information and is updated by accessing a virtual machine
state manager. Similar approaches are proposed in [MNG14,KS13]. The Open
Networking Foundation, which releases the OpenFlow specification, started
a project to foster migration of existing network services to SDN, but the
documents produced so far (e.g., [Ope14a]) describe general guidelines and omit
most technological details. Most notably, all the above contributions focus on
a well-defined scope of application, consisting of a single broadcast domain,
namely a single IP subnet. Our approach overcomes this limit, as it can be
applied in a SDN spanning multiple IP subnets, and is also compatible with
additional functions (e.g., ICMPv6 neighbor discovery) executed by the end
systems.
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8.3 Handling ARP in a Software Defined Network

Before describing our general architecture for an ARP-aware SDN controller,
we discuss some simple approaches to handle ARP in a SDN with currently
available technologies.

The simplest solution consists in proactively installing on the datapaths
a flow entry that instructs them to process ARP packets using the standard
networking stack. However, this approach has some drawbacks: it requires
datapaths to support the NORMAL reserved output port [Ope15b] as a flow
entry action, which the OpenFlow specification declares as optional; it requires
broadcasting ARP traffic over a potentially large SDN; and it introduces a
dependence on legacy technologies, which pure OpenFlow datapaths cannot
satisfy. Some SDN controller frameworks [ryu17, flo15, et 15,MRF+13] offer
readily usable basic ARP handling features. Since learning IP-MAC address
associations and learning the location of end systems are closely related functions,
both of them are usually implemented inside a backward learning module of
the controller: this module looks at the source MAC address sha of packets
received by a datapath dpid and builds a correspondence between sha, the
packet’s source IP (if applicable), dpid, and the port from which the packet was
received by dpid. In order to better describe the ARP functions offered by such
a module, we refer to the scenarios in Fig. 8.1. In this figure squares represent
switches (S1, S2, ...) and routers (R1, R2), circles represent end systems (hosts
H1, H2, ...), lines represent physical connections (possibly involving standard
switches), and labels neti represent IP subnets. Nodes enclosed in gray clouds
are SDN-enabled datapaths, and we assume that they are managed by a single
logical controller, while the other nodes represent IP devices.

Most ARP handling approaches in the literature, as well as implementations
in the controllers, consider the scenario in Fig. 8.1a, in which multiple inde-
pendent SDNs exist and each of them handles ARP traffic only for a single IP
subnet. In particular, in this setting most backward learning modules handle
ARP in a way similar to [TS14]. On the other hand, Fig. 8.1b illustrates a
scenario in which a single SDN supports traffic exchange among multiple IP
subnets, a commonly overlooked scenario which is supported by our approach.

Using Fig. 8.1a as a reference, we first briefly describe the ARP handling
mechanism available in Ryu [ryu17], a controller framework with a wide and
very active community of users and developers (other frameworks adopt a
similar approach). Assume that the flow tables of all datapaths are empty,
and suppose H1 sends an ARP request asking for the MAC address of H5.
Upon receiving the packet, datapath S2 forwards it to the controller using an
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(a) Scenario where each SDN handles
ARP traffic for a single IP subnet.
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(b) Scenario where a SDN handles all
ARP traffic regardless of the IP address-
ing plan.

Figure 8.1: Our reference scenarios, comprising switches (S1, S2, ...), routers
(R1, R2), and hosts (H1, H2, ...). Devices enclosed in gray clouds are SDN-
enabled.

OpenFlow message. The controller then performs the backward learning and
instructs S2 to flood the packet (i.e., send it out of all the ports), without
installing flow entries. The packet reaches S1 and S3, which again are instructed
by the controller to flood it. The process continues until the packet reaches H5,
which sends an ARP reply to S3. Since S3 has no flow entries that match the
packet, it sends it to the controller. The latter performs the backward learning
and, based on the location of H1, which it has learned along the path from H1
to H5, it installs a flow entry on S3 to send the packet out of a single port. In
the same way, flow entries are installed on other datapaths to forward the ARP
reply along a single path computed by the controller. Any subsequent unicast
ARP requests issued by H1 for H5 will also be forwarded along a single path,
based on the location of H5 that the controller has learned and on the flow
entries it correspondingly installed.
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This mechanism has several shortcomings. First, ARP packets are trans-
ported all the way to the target host, thus limiting the extent of the SDN to a
single IP subnet: a packet directed to a different subnet must either reach an IP
router and then enter another SDN (like in Fig. 8.1a), or reach an SDN datapath
that accomplishes the tasks of a router. Second, ARP requests are broadcast
over a potentially large topology, introducing a forwarding overhead. To miti-
gate this, the backward learning module of some controller frameworks [et 15]
also learns IP-MAC associations, so that the controller can immediately reply
to ARP requests for known hosts, similarly to an ARP cache. However, this
still works for a single subnet. Third, the illustrated mechanism does not work
in the presence of loops, because broadcast packets would cycle forever. Some
frameworks [et 15] prevent this by computing a spanning tree and blocking
selected ports, but such ports may then be unable to send any packets. Our
approach is free from all these issues because it keeps ARP traffic confined to
the edge of the SDN.

An SDN Controller Component for Handling ARP Traffic

We now illustrate our proposed architecture for an SDN controller that supports
ARP traffic exchange with legacy IP nodes in a variety of scenarios. In order to
better isolate its functions, the controller consists of the following modules.

Backward learning – As described above, it is triggered for every packet
that a datapath forwards to the controller, and it maintains an association
between the MAC address of a node (host or router) and the datapath and port
it is connected to.

ARP processing – It handles every ARP packet received by edge datapaths,
namely those that are directly connected to IP nodes. To support this module,
a flow entry must be installed on edge datapaths instructing them to forward
all ARP packets to the controller. This module accomplishes two tasks: the
first is to learn associations between IP and MAC addresses based on the
information carried by ARP packets (both requests and replies). The second is
to immediately respond to ARP requests from IP nodes by forging ARP replies.
Since SDN datapaths do not need to know the recipient’s MAC address to
forward a packet, the forged ARP replies specify a fixed fake MAC address M :
this is enough to make a host start sending data packets, while the recipient’s
MAC resolution is accomplished in background by the discovery module. M
can be chosen arbitrarily, and will never be seen by any other IP nodes except
the one that sent the ARP request. The controller’s MAC address or a reserved
MAC address such as ff:ff:ff:ff:ff:fe are reasonable conflict-free choices.
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This ARP responding functionality confines to edge datapaths all the ARP
requests coming from IP-speaking nodes.

Discovery – It tracks the location of IP addresses, namely the datapath and
port to which each IP-speaking node is connected. Such information is partially
gathered by the ARP processing module, and partially derived from:1) passive
traffic monitoring (e.g., by looking at the first packet of each flow, which is
always delivered to the controller), 2) static configuration, indicating which IP
subnets are connected to each datapath, and 3) probing mechanisms such as
ICMPv6 Neighbor Unreachability Detection (NUD), which refresh the visibility
status of each host. This module also takes care of reconstructing the MAC
address of a destination IP node (required to make the node accept the received
packets), by issuing ARP requests either from a single datapath, if the recipient’s
location is known, or from the datapaths that are attached to the recipient’s IP
subnet (known by configuration). Note that also this ARP exchange is confined
to edge datapaths. ARP requests can use M as the source MAC address and
an arbitrary IP (e.g., the controller’s IP to avoid collisions) as the source IP
address. We verified that, despite these manipulations, hosts successfully reply
to such ARP requests.

Routing – Once ARP exchanges are completed and a source IP node starts
sending data packets to a destination IP node, this module computes a path
from the datapath to which the source is connected to the datapath to which the
destination is connected. Appropriate packet forwarding rules are installed on
all the involved datapaths. The routing path is based on the network topology
(which is automatically reconstructed by the controller) and on information
acquired by the discovery module, and is selected based on arbitrary routing
policies or any other forwarding logic implemented in the controller.

With this approach, ARP packets are confined at the edge of the SDN and
traffic is correctly forwarded even if the source and destination nodes are in
different IP subnets.

Example of ARP Traffic Processing

We now run through a complete example of how ARP packets are handled by
our controller, using the diagram in Fig. 8.2 as a guide to follow the sequence
of message exchanges. We consider Fig. 8.1b as a reference scenario, in which
R1 and R2 are SDN switches representing the separation between multiple
subnets. At a first stage, when all the flow tables are empty and before any
traffic is exchanged, flow entries are installed on all the datapaths (gray band
A in Fig. 8.2), instructing them to send ARP packets to the controller. Now,
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C 
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A 

H1 S2 Controller R1 R2 S4 H7 

ARP Request (R1’s IP) 

ARP Reply (fake MAC M) 

Data packet 
IP: H1  H7 
MAC: H1  M PacketIn [Data pkt] 

ARP Request (H7’s IP) 

ARP Reply (H7’s MAC) 

PacketOut [ARP Req.] 

PacketIn [ARP Reply] 

FlowMod [Send ARP to Controller] 

PacketIn [ARP Req.] 

PacketOut [ARP Reply] 

FlowMod [fake MAC M  H7’s MAC] 

• Controller retrieves H7’s location (by configuration) 
• Controller computes a path to S4 (to which H7 is attached) and installs data packet forwarding flow entries on datapaths along this path 

Data packet 
IP: H1  H7 
MAC: H1  M 

Some intermediate 
hops are omitted 

Data packet 
IP: H1  H7 
MAC: H1  M Data packet 

IP: H1  H7 
MAC: H1  M Data packet 

IP: H1  H7 
MAC: H1  H7 

Figure 8.2: Sequence of messages exchanged in order to support ARP traffic
in the SDN in Fig. 8.1b using our approach. ARP messages, indicated in bold
face, are evidently confined to the edge of the SDN.

suppose host H1 in subnet net1 wants to send traffic to host H7 in subnet net2.
H1 sends an ARP request asking for the MAC address of its default gateway R1
(gray band B in Fig. 8.2), which allows the controller to record H1’s location and
IP-MAC association. H1’s ARP request is not forwarded any further, since the
ARP processing module in the controller instructs S2 to immediately send back
an ARP reply specifying the fake MAC M . At this point H1 can start sending
traffic. Once the first IP packet from H1 is received by S2, the controller can
determine that the destination IP of this packet is H7’s (note that this piece of
information could not be derived from ARP packets). Based on configuration
information, the controller knows the location of H7’s subnet net2. Therefore, it
can install on selected datapaths flow entries that carry packets from H1 to S4
along a path that is computed by the Routing module (gray band C in Fig. 8.2).
In the meantime, the controller also asks S4 to broadcast an ARP request
asking for H7’s MAC address (gray band D in Fig. 8.2). Once H7 replies with
its physical address, the Discovery module records this piece of information and
the last forwarding rule is installed on S4: this rule also replaces the fake MAC
M in packets traversing S4 with H7’s actual MAC, thus supporting delivery of
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traffic to H7 (gray band E in Fig. 8.2). For convenience, the controller may also
install rules to support traffic flowing in the opposite direction, from H7 to H1.
We point out that only datapaths S2 and S4 are reached by ARP traffic.

8.4 Applicability: Considerations and Tests

Application Scenarios – We showed that our controller can handle ARP
traffic in the presence of a single IP subnet (Fig. 8.1a) or multiple IP subnets
(Fig. 8.1b). As an easy extension, our approach also works with partial SDN
deployments. For example, if in the scenario of Fig. 8.1a host H1 wanted to
communicate with host H7, we could still apply our ARP handling approach
independently for each SDN area: this would require every controller instance
to know the address of a proper next hop IP router (e.g., R1’s), which however
is needed irrespective of whether our ARP handling approach is used or not. As
an ultimate adaptation, even if the traffic needed to cross several Autonomous
Systems (ASes) in the Internet, each AS could run an independent instance
of our controller to handle ARP, regardless of whether neighboring ASes use
SDN or not and without the need of any communications among controllers of
different ASes.

As a side note, using a fixed fake MAC address M in the presence of legacy
switches is not a problem either, because they will just forward packets on
the interface where the latest ARP reply (carrying the fake MAC) has been
received.

Scalability – We argue that our approach scales well with the size of
the network. In fact, our controller installs few rules on edge datapaths to
operate: one for sending ARP packets to the controller and one for each
destination IP address, which replaces the fake MAC address M with the
actual recipient’s MAC (current controllers usually need a pair of rules for
every pair of communicating hosts). No rules for handling ARP are installed in
any other datapaths, and no ARP packets are ever received by the controller
from those datapaths (unlike other controllers). If flow table capacities are
constrained, MAC rewriting rules can be moved from edge datapaths to any
other datapaths along the path between two hosts. ARP broadcasts are still
required to locate IP nodes, but their scope can be limited using approaches
such as [XLZ15], [KAK14], or even [ICA+11].

The scalability of our approach can also be assessed in terms of amount
of ARP traffic it allows to save. In a traditional IP network, the number of
links traversed by broadcast ARP requests is the total count of edges of all the
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traversed LANs:
LIP
B =

∑N

i=1
|Ei| =

∑N

i=1
|Vi|2 (8.1)

where Vi and Ei are the sets of nodes and links belonging to LAN i, and N is
the number of LANs in which subsequent ARP requests are triggered until the
destination host is reached. On the other hand, with our approach the number
of links traversed by broadcast ARP requests decreases to:

LSDN
B = 1 + |Hd| (8.2)

where Hd ⊂ Vd is the set of hosts in the LAN that contains the destination
node d. Regardless of the LANs traversed in computing LIP

B , it is obviously
always LIP

B > LSDN
B .

Even more easily, in a traditional IP network unicast ARP packets (including
both ARP replies and gratuitous ARP requests) will traverse at least the
following number of links:

LIP
U =

∑N

i=1
|Pi| (8.3)

where Pi ⊆ Vi is a set of vertices along the shortest path from the source of the
ARP packet to its destination. On the other hand, using our approach, just
2 links are involved in such a traffic (i.e., the links connecting the source and
destination hosts to the respective SDN switches), and of course LIP

U ≥ 2.
Traffic Engineering and Network Dynamics – The fake MAC M ap-

pears as the destination MAC in all data packets sent by IP nodes. Therefore,
by replying with different fake addresses to ARP requests coming from different
IP nodes, it is possible to exploit M as a label that drives traffic engineering
decisions along a packet’s routing path. Moreover, mechanisms such as ICMPv6
NUD can be exploited by the controller to keep IP-MAC associations and node
location information up-to-date as nodes are connected or disconnected.

Experimental Testbed and Results

We implemented a prototype SDN controller according to the design in Sec-
tion 8.3 using the Ryu framework [ryu17]. We then ran experiments using
hardware switches from 3 different vendors with about a decade of experience in
manufacturing network devices (an NDA prevents us from explicitly mentioning
them). The switches were compliant with OpenFlow 1.3. Our experiments were
aimed at assessing the compatibility of our controller with the switches as well
as the interoperability between SDN switches and IP hosts. We therefore consid-
ered a simple linear topology: host1 — dp1 — dp2 — host2. We instantiated
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dp1 and dp2 with all the possible combinations of the available switches. host1
and host2 were Ubuntu 14.10 machines with IP addresses in different subnets
(10.0.0.0/24 and 20.0.0.0/24). Each host used an arbitrary IP address in its
own subnet as default gateway. Controller-switch communication was realized
out of band. We used ff:ff:ff:ff:fc:ac as fake MAC address M .

We verified the correct handling of ARP traffic by the controller by running
a simple ping between host1 and host2 immediately after setting up the network
(experiments involving other protocols are omitted since our approach only
addresses handling of ARP traffic). In our tests, we successfully checked
that:1) ARP requests generated by host1 were sent to the controller; 2) datapaths
correctly delivered forged ARP replies containing the fake MAC address M to
the requesting host; 3) ARP caches of the hosts were populated with the fake
MAC; 4) ARP packets were kept confined to the edge of the SDN; 5) datapaths
correctly installed flow entries for the forwarding of ICMP traffic, and these
entries were correctly matched; 6) datapaths correctly installed entries to
replace the fake MAC address with the recipient’s one, and the destination
MAC addresses of ICMP packets were actually rewritten as expected; 7) hosts
exchanged ICMP packets.

Based on these observations we conclude that, even in the presence of devices
from multiple vendors and in a scenario involving different IP subnets, our
approach for handling ARP traffic is effective and transparent for the end hosts.

8.5 Conclusions and Open Problems

We describe the design of an SDN controller that handles exchange of ARP
packets in the presence of SDN switches and IP devices. Our approach confines
such packets to the edge of the SDN, works in a variety of scenarios also involving
multiple IP subnets, is transparent for IP nodes, and is compatible with any
packet forwarding logic already realized by the SDN controller. Functional tests
on a range of SDN switches from different vendors confirm the viability of our
approach.

Consolidating our proposed design requires further investigation on several
aspects. As a first step, our prototype controller implementation can be improved
and further tests can be performed on more complex network topologies. As
discussed in Section 8.4, fake MAC addresses could be exploited to distinguish
traffic classes and route them distinctly throughout the SDN. Our approach could
be extended to support the IPv6 counterpart of ARP (i.e., neighbor discovery), as
well as other ICMPv6 features (e.g., router renumbering). Interoperability with
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other well-known mechanisms used in IP networks poses interesting challenges:
for example, path MTU discovery is difficult to implement with plain OpenFlow.
Some network configuration information (e.g., the IP subnets attached to each
datapath) could be derived from routing protocols (e.g., OSPF), that may
already be in use to support in-band communication between the switches and
the controller.
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Chapter 9

On the Practical Applicability of
SDN Research

Software-Defined Networking (SDN) is an evolving, yet de-facto established
approach that separates the packet switching functions of a device from its
operational logic, which is controlled by a piece of software. Due to its potential
for realizing new network architectures and services and to the associated
challenges, a whole stream of scientific literature is devoted to SDN and its most
widely adopted incarnation, OpenFlow. However, little attention has been put
in verifying the applicability of the proposed approaches on current hardware:
we argue this is as a considerable overlook.

We therefore bring the following contributions: i) a critical review of key
contributions in the field of SDN in terms of applicability issues stemming
from publicly documented limitations of OpenFlow implementations; ii) a
methodology for testing the readiness of devices for operating in a Software-
Defined network, which comprises an OpenFlow compliance test as well as
custom tests; iii) an application of the methodology to a range of devices
from different vendors, which unveils lots of anomalous behaviors that network
operators should consider when selecting SDN devices.

9.1 Introduction

Software-Defined Networking (SDN) has been the future of network architectures
for a few years, promising unmatched infrastructure scalability, supporting
improved flexibility of management, ensuring vendor independence, and boosting

115
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RESEARCH

the design of novel network services. Now that it is the present, it continuously
feeds multiple research areas with unprecedented challenges and it is adopted
by almost all device vendors.

In the SDN model, the functional logic of a network device, called datapath,
is realized by a piece of software called controller, while the device itself only
performs packet forwarding based on a set of match-action conditions called
flow entries. When a datapath does not know how to handle a packet, it
submits it to the controller. The controller may either ask the datapath to emit
a copy of the packet out of a specific interface, or install a new flow entry in the
datapath’s flow table that instructs the datapath about how to independently
handle future packets belonging to the same flow : such an entry watches certain
bits of the header fields of received packets while applying wildcards on other
bits, and it executes an action on matching packets (e.g., forward out of a port,
drop). The most widely adopted specification of SDN is OpenFlow [Ope15b],
which also defines a protocol for controller-datapath communication.

Despite the fervent activity in the scientific community on devising novel
network architectures and services that take advantage of SDN, most papers
validate their proposals on ad-hoc testbeds, and little attention has been devoted
to determining the practical applicability of these approaches using currently
available devices. On the other hand, even if OpenFlow is now somewhat
mature, vendors seem to lag behind in terms of functionalities supported on
their devices. Without precise indications on which features are supported,
network administrators interested in switching to SDN may have a hard time
trying to find the selection of SDN-enabled devices that best fits their needs.

Preserving this dual (scientific and technological) perspective, in this work
we bring the following contributions:1) we contrast a selection of the most
important contributions in the literature about SDN with publicly available
documentation from device vendors, highlighting the consequent applicability
issues that scientific contributions may incur; 2) we define a methodology for
testing the readiness of a device to operate in an SDN-based infrastructure,
combining existing OpenFlow conformance test tools with other custom tests;
3) we draw a picture of the current status of OpenFlow implementations by
applying our methodology to commercially available devices manufactured by
7 major vendors, and compile a catalog of observed anomalies that confirm
the above mentioned applicability issues and can serve as a useful reference for
prospective SDN adopters when selecting network devices. We believe that the
ensemble consisting of the documented implementation limitations and of the
operational issues we revealed in our tests can be a key element for ensuring
practical applicability of future research results.
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The rest of the chapter is organized as follows. In Section 9.2 we review
vendor-declared limitations and discuss their impact on the applicability of
approaches in the SDN literature. Section 9.3 summarizes the basic concepts of
OpenFlow. In Section 9.4 we introduce our methodology for determining the
readiness of a device to operate in an SDN-enabled scenario. The results of the
application of our methodology to a range of commercially available datapaths
are documented in Section 9.5, while the observed anomalies are illustrated
in Section 9.6. Section 9.7 reviews related work in the field of SDN devices
testing, while Section 9.8 draws conclusions and ideas for future extensions of
our contributions.

9.2 A Review of SDN Literature with an Eye on User
Manuals

At the time of writing, all the major vendors have been including SDN-enabled
switches in their device offer for quite a long time, usually adhering to the
OpenFlow specification. However, despite the fact that OpenFlow has been
around for at least 5 years, vendors still explicitly declare the existence of
limitations in their implementations, because of the involved technical difficulties
and because new versions of the specification are released at a somewhat rapid
pace. To the extent of our knowledge, the level of awareness of such limitations in
the literature about SDN is still modest. We argue that the lack of a deployment
on real devices induced several authors to overlook many restrictions imposed
by vendors that can have a non-negligible impact on the applicability of some
groundbreaking approaches. In this section we review these restrictions based
on public documentation and discuss their impact on some of the most relevant
contributions about SDN.

We identified a selection of top OpenFlow switch vendors that declare imple-
mentation limitations in user manuals. In random order, they are: HP [Hew14],
Dell [Del15], Brocade [Bro15], Arista Networks [Ari15], and Extreme Net-
works [Ext15]. We highlight that this selection of vendors is not necessarily
related with the selection of devices considered in the compliance tests de-
scribed in Sections 9.5 and 9.6. We isolated the most relevant and frequently
occurring limitations and associated them with the vendors declaring them.
The results are in Table 9.1. The capacity of flow tables often depends on
hardware constraints, but may be further restricted due to fixed partitioning
schemes of the internal memory used to implement them. Some vendors support
a single flow table, thus limiting scalability and making it more difficult to
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Table 9.1: Common limitations in OpenFlow implementations and vendors
declaring them.

Limitation HP Dell Brocade Arista
Networks

Extreme
Networks

Limits on the size of the
flow tables • •

Only a single flow table
supported • •

Restrictions in the struc-
ture of match conditions • • •

Lack of MPLS support • • •
OpenFlow and L2/L3 pro-
tocols cannot coexist on
the same port

• •

Lack of support for the
NORMAL reserved port • •

match a packet’s inner headers (e.g., IP) after popping outer headers (e.g.,
MPLS). Most notably, match conditions are often restricted to comply with
predefined patterns (e.g., matching on MAC addresses may not be permitted
when considering ICMP packets) and memory consumption highly depends on
their structure (e.g., only a limited number of flow entries that do not match
the input port may be installed). Support for MPLS is often minimal or absent,
limiting the possibility to implement related network services. The coexistence
of OpenFlow and traditional layer-2/layer-3 protocols on the same ports may
be prohibited, and the NORMAL reserved port (used to process a packet using
the traditional non-OpenFlow networking stack) may be unsupported: the lack
of these two features poses significant limits on realizing in-band communication
between the datapaths and the controller.

We now analyze the impact of the above limitations on contributions from
the literature. First of all, there is a class of papers [KLRW13,KHK13,YRFW10,
CMT+11,IMS13,NSBT14] that addresses limitations in the capacity of TCAMs,
where flow entries are typically stored. These papers aim at reducing the size of
flow tables by replacing the flow entries installed on the datapaths with more
compact, equivalent entries. However, these papers omit to consider both the
restrictions imposed on the structure of match conditions (see, e.g., [Ext15])
and the additional space consumption caused by the usage of wildcards [Del15].
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In more detail, [KLRW13] and [NSBT14] propose, respectively, a flow entry
placement algorithm and a formulation of an optimization problem to compact
flow entries, ignoring vendor-imposed dependencies between the matched fields:
flow entries resulting from compaction may therefore be impossible to install
on the datapaths. In [YRFW10,CMT+11, IMS13] the authors propose methods
for massively compressing flow tables using wildcards. However, the potential
of these approaches is restricted by the fact that wildcards consume a lot
of hardware resources, reducing the capacity of flow tables by one or two
orders of magnitude (see, e.g., [Del15]). The flow table decomposition approach
proposed in [KHK13] pursues the opposite strategy, because match conditions
are manipulated to reduce the number of wildcard bits, however it is not
immune from potential violations of vendor restrictions. Some of the above
mentioned contributions cope with NP-hard theoretical problems: it would
be interesting, although out of the scope of this work, to analyze whether the
computational complexity of these problems is reduced by the introduction of
vendor constraints.

Unlike the aforementioned works, in [NHL+13] the authors evaluate their ap-
proach using hardware switches. They discuss the diverse memory requirements
of exact
matches as opposed to wildcards and, not surprisingly, suggest usage of the
former whenever possible.

Another relevant class of papers [GVS+14,LRVB15,DPSBM13] addresses the
practical problems involved in deploying SDN in specific application scenarios.
In [GVS+14] the authors propose a solution for deploying SDN inside an Internet
eXchange Point (IXP). They define a fully SDN-based architecture where each
network connected to the IXP can independently specify high-level routing
policies that are translated into flow entries. Some of these entries are used to
forward traffic based on the destination MAC address, and they do not pose
scalability issues (see, e.g., [Del15,Ext15]). Instead, flow entries that support
control traffic match on layer-4 fields, implying a drastic reduction in the number
of installable flow entries. Despite this limiting factor, this solution may still
be considered deployable under the realistic assumption that an average-sized
IXP does not have more than 500 participants. In [LRVB15] the authors
propose a pure SDN approach for realizing Virtual Private Networks (VPNs)
based on Multi-Protocol Label Switching (MPLS). They describe how VPN
configurations, expressed in a centralized high-level specification, are translated
into flow entries which make heavy use of MPLS-specific operations for traffic
forwarding. According to Table 9.1, this choice makes the approach compatible
only with devices from selected manufacturers.
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Both [GVS+14] and [LRVB15] do not address how in-band communication
between the controller and the datapaths can take place. At least, this requires
support for the NORMAL reserved port and the possibility to run OpenFlow
and layer-2 (e.g., Spanning Tree Protocol) or layer-3 protocols (e.g. OSPF)
together on the same ports, further limiting the applicability of the proposed
solutions. Even in a wireless mesh network scenario [DPSBM13] that proposes
an OpenFlow-based architecture capable of reacting to network partitions, the
authors rely on support for hybrid OpenFlow/traditional operation mode as
well as the NORMAL port.

9.3 The OpenFlow Specification

OpenFlow is a specification of a logical architecture for an SDN-enabled switch
(datapath) and of a protocol for the communication between such a switch and
a controller platform. It is by far the most widely adopted specification, to the
point that even vendors that developed alternative implementations of SDN
customized to support proprietary functions (e.g., Cisco’s onePK [Cis]) also
offer OpenFlow support as a compatibility plug-in.

In this section we summarize the fundamental elements of the OpenFlow
specification that are useful to understand our device testing methodology.
Several versions of the specification have been published since its appearance in
2009, confirming that it has now reached a considerable level of maturity: in
this summary we refer to the most recent version, 1.5.1 [Ope15b].

The specification describes three key concepts: datapath ports, various kinds
of tables, and the datapath-controller communication protocol.

The configuration of a datapath often includes a declaration of the physical
ports that operate in OpenFlow mode, namely that are part of an instance of
(virtual) OpenFlow datapath. According to the specification, at least two kinds
of ports are exposed to an OpenFlow datapath instance: an abstraction of each
physical port where the port number, its features, and its status can be accessed
via OpenFlow data structures and messages; and a set of reserved ports, that are
used to accomplish special actions or invoke OpenFlow-specific functionalities.
Support for some of the reserved ports is mandatory: for example, this is the
case for ports ALL (used to forward a copy of a packet on all the interfaces
but the one through which it was received) and CONTROLLER (used to send
a packet to the controller). Support for other reserved ports is optional: for
example, this applies to the NORMAL port.

According to the specification, an OpenFlow datapath must implement
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different kinds of tables: the standard flow tables, a group table, and a meter
table. We already illustrated the basic operation of flow tables in Section 9.1,
but we omitted a few additional features that are useful for our tests. First of all,
it is possible to apply an arbitrary bitmask to certain packet headers to match
only a subset of the bits of a field value. This is particularly useful, for example,
when matching IP subnets. Moreover, among the actions declared as mandatory
by the specification, there is a “group action”, which allows to perform several
actions on multiple copies of the same packet. Match conditions and actions can
also operate on registers, called “metadata”, that are used to pass information
between flow tables. Flow entries have a priority, and every flow table also has
a lowest-priority special table-miss flow entry, which determines the action that
the datapath should undertake on packets that were not matched by any of
the entries in the flow table (in the absence of a table-miss flow entry, packets
should just be dropped). Each entry in the flow table may have counters that
determine how many packets and bytes matched that entry. Although support
for these counters is declared as optional, the outcome of the tests we executed
on the datapaths (see Section 9.4) never depended on their values. Instead,
we often exploited the counters (if available) during troubleshooting sessions
to inspect whether the expected flow entries were being matched. Besides
the flow tables, an OpenFlow datapath also maintains a group table, whose
implementation is mandatory. This table is used to store groups of actions that
can be referenced in the action part of a flow entry. Depending on the type of
the group, all or only one the involved actions are executed on matching packets.
Groups are therefore used during our tests to check the ability of a datapath to
forward copies of a packet out of multiple ports. Finally, an OpenFlow datapath
also maintains a mandatory meter table, that defines per-flow meters usable for
classifying, rate limiting, or dropping different types of traffic.

Concerning datapath-controller communication, we only need to recall one
feature: the controller can issue an OFPT_BARRIER_REQUEST message to wait
for completion of certain operations (e.g., the installation of flow entries), which
is notified by the datapath in the form of an OFPT_BARRIER_REPLY message.

9.4 Device Testing Methodology

Limitations in vendor implementations, discussed in Section 9.2, are not the
only aspect that must be taken into account for the deployment of novel SDN-
based architectures. As described in Section 9.6, some devices may exhibit
undocumented behaviors that can further impair practical adoption of SDN. In
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this section we define a device testing methodology that can be systematically
applied to any datapaths. The methodology consists of two main phases: a deep
test of compliance with the OpenFlow specification, and the verification of the
availability and correct operation of several additional features that improve the
maintainability or even enable the deployment of SDN-based network scenarios.

OpenFlow Compliance Test

As anticipated in Section 9.3, OpenFlow is a continuously evolving specification:
since its introduction in 2009 up to the time of writing this work, at least
13 different versions of the specification have been published by the Open
Networking Foundation. It is therefore expected that vendors can implement
the latest specifications only after some time since their publication. While most
devices are declared to comply with the earliest OpenFlow 1.0 specification,
an increasingly larger number of vendors is adopting more recent versions.
In particular, OpenFlow 1.1 is an important milestone, considering that it
introduced the ability to define multiple flow tables and to define bitmasks
on MAC and IP addresses, it improved handling of VLAN tags, and it added
support for handling MPLS labels, a set of features that are important for most
practical applications. In practice, most hardware manufacturers and controller
developers left behind a gap in the sequence of implemented OpenFlow versions,
skipping from OpenFlow 1.0 directly to OpenFlow 1.3. Therefore, we refer our
compliance test to OpenFlow version 1.3 [Ope13b].

Testing the level of compliance with OpenFlow is a rather cumbersome
task, given the extension of the specification. Fortunately, there exist software
tools that automate this job. For the purpose of our evaluation we used the
OpenFlow switch test tool included in the Ryu controller framework [Ryu15],
shortly referred to as “Ryu test suite” in the following (other testing tools
are reviewed in Section 9.7). During internal communications, some vendors
confirmed that they also use Ryu to check the compliance of their devices. We
used version 3.18 of Ryu, which includes as many as 991 different test cases
that span the OpenFlow 1.3 specification. Running the Ryu test suite involves
3 different devices connected according to the topology in Figure 9.1:

a target datapath, namely the switch that is currently subject to the Ryu
test; a tester datapath, namely a separate OpenFlow switch that is used to
generate test packets to be sent to the target datapath, and to recollect any
packets forwarded by the target datapath; and a server machine, where the
Ryu test suite is being executed. While the test is running, Ryu acts as an
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server
(controller)

target datapath

tester datapath

OpenFlow

OpenFlow

target_recv_port
target_send_port_1
target_send_port_2

tester_recv_port_2
tester_recv_port_1
tester_send_port

Figure 9.1: Network topology required in order to run the Ryu test suite.

OpenFlow controller connected to both the target and the tester switch. The
typical actions performed to execute a test case are as follows:

1) Ryu sends an OFPT_FLOW_MOD message to the target datapath, to install a
flow entry that matches packets entering a specific port (target_recv_port
in Figure 9.1) and with specific headers. This flow entry usually ap-
plies a single action, which is to forward matching packets out of a tar-
get_send_port_1. In addition, it may apply manipulations to packet headers
(e.g., push/pop of VLAN tags, TTL alteration, etc.). Moreover, Ryu also
sends an OFPT_FLOW_MOD message to the tester datapath, to install a flow
entry that matches packets entering port tester_recv_port_1 and sends
them to the controller.

2) Ryu sends an OFPT_PACKET_OUT message to the tester datapath, soliciting
it to produce a test packet to be sent to the target datapath.

3) The tester datapath sends the requested test packet out of its tester_send_port
to the target datapath.

4) The flow entry on the target datapath is matched, and the packet is forwarded
out of target_send_port_1.
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5) The tester datapath receives the test packet through tester_recv_port_1.
The flow entry installed at step 1 matches the packet, and the tester datapath
sends an OFPT_PACKET_IN message to Ryu, enclosing the test packet.

6) Ryu checks whether the headers and contents of the received (and, possibly,
altered) copy of the test packet coincide with the expected ones, and reports
the outcome of the test case accordingly.

Test cases in the Ryu test suite are fully specified in the JSON format
(see [Ryu15]), making them easy to understand and customize. Considering
the extension of the test cases included in the standard Ryu distribution, we
had no need to add or modify any of them. The only change we applied was to
turn statically specified port numbers into parametric ones, so that they could
conveniently be changed from the Ryu command line to match the OpenFlow
port numbers exposed by the target and tester datapaths.

The Ryu test suite considers four classes of test cases:
[action] – Tests in this class install on the target datapath flow entries that

perform simple packet forwarding and various types of packet modification (e.g.,
TTL alteration, push/pop of VLAN and MPLS headers).

[group] – For these tests Ryu installs on the target datapath flow entries that
forward a copy of the test packet out of multiple ports, thus testing support
for group actions; this test class requires the additional target_send_port_2 on
the target datapath and the corresponding tester_recv_port_2 on the tester
datapath.

[match] – The flow entries installed on the target datapath to perform these
tests consider an extensive assortment of match conditions applied to various
header fields, exploit multiple flow tables, apply bitmasks on the matched fields,
and alternatively forward packets out of a port or directly to the controller.

[meter] – To perform tests in this class, the meter table of the target datapath
is suitably populated, then Ryu emits packets from the tester datapath at a
configured rate and checks if the target datapath withstands a certain packet
transfer throughput.

In order to check the ability of the target datapath to apply or miss certain
match conditions, every test case is repeated multiple times (typically between
3 and 4) with test packets that have a different set of headers (for example,
MPLS or VLAN) or transport different protocols (for example, ARP, IPv4, or
IPv6).
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Table 9.2: A sample of the custom tests that we defined and the functionalities
they verify.

Functional tests
ct_normal Support for the NORMAL reserved port as a

flow entry action
ct_multi_ctrl How the datapath behaves with multiple config-

ured controllers
ct_hidden Whether the datapath maintains hidden flow

tables with default entries
Targeted versions of selected Ryu test cases
ct_group Operation of group actions
ct_mask Operation of bitmasks applied on matched

header fields
ct_vlan Support for pushing/popping single and multi-

ple VLAN headers
ct_mpls Support for pushing/popping single and multi-

ple MPLS headers (and determination of limits
on the size of the label stack)

ct_metadata Support for metadata in match conditions and
actions

Performance tests
ct_perf_switch Whether the size of the flow table affects switch-

ing performance
ct_cpu Whether the CPU is involved in flow entry

matching and packet switching processes
ct_flow_insert Time required by the datapath to install entries

in the flow table

Custom Tests

The Ryu test suite is more than enough to determine the OpenFlow features
supported by a datapath. However, we believe a few additional tests are
required to construct a more complete picture of the readiness of a device to
operate in an SDN-based network architecture. We defined a set of custom
tests, some of which are listed in Table 9.2, that we executed both to verify
additional datapath features required to exploit the full potential of SDN, and
to investigate deeper in the causes of failures reported by the Ryu test.
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For example, we exploited test ct_normal to determine the ability of a
datapath to communicate in-band with the controller, namely on the same
network links that are used to switch data packets using OpenFlow. There
are at least two prerequisites to achieve this: support for hybrid mode (i.e.,
standard and OpenFlow packet switching on the same device), which can be
checked in the documentation, and support for the NORMAL reserved port,
which is optional by the specification and can be verified by this test. Test
ct_multi_ctrl is meant to assess robustness and manageability: it verifies
whether a datapath sends a copy of the received packets to all the configured
controllers (implying consistence problems in the controller design) or just to a
single one, considering the others as backups. Finally, test ct_hidden verifies
whether a datapath maintains a set of default flow entries that are not normally
visible in any flow tables and yet influence its behavior.

We defined targeted tests for a small subset of the Ryu test cases, which we
used to investigate the cause of reported failures. These tests simply consist in
repeating the applicable test case in a controlled environment, namely using
a simplified flow entry on the target datapath that is enough to trigger the
problem (e.g., matching only the VLAN tag) and using a network sniffer for
monitoring the test packets entering and exiting that datapath. This helped
us reveal that certain Ryu test cases failed just because the test flow entries
mixed unsupported features with other features that would be supported if
used alone, or because the value of a header field was off by one unit, which we
do not consider to be detrimental for the deployability of SDN.

We also carried out performance tests, aimed at establishing how well a
datapath performs in the presence of flow tables of varying size. For the
ct_perf_switch test we connected 10GbE ports on the target datapath to
create two loop topologies, as shown in Figure 9.2. Correspondingly, we installed
very simple flow entries matching on the input port and forwarding packets
along the loops. For each topology, we first used OFPT_PACKET_OUT messages to
make the target datapath inject as many test packets in every loop as required
to saturate the bandwidth of the involved ports. We used small IPv4 packets
with a payload of 46 bytes as test packets, in order to increase the frequency
of lookups in the flow table. Once 100% port usage was steadily reached, we
started adding a progressively increasing number of entries to the flow table:
each of these entries simply matched a different non-existent IP address, and its
action was to forward packets out of a random port. As entries were installed,
we checked whether switching performance was affected, which we consider an
evidence of the overhead of matching flow table entries. We are aware that one
or two loops are extremely far from saturating the capacity of a switch, but even
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target datapath

external half of the loop (physical cable)
internal half of the loop (flow entry)

target datapath

Loop topology #1 Loop topology #2

Figure 9.2: Network topologies used during the performance tests.

with this simple experiment we could experience performance drops beyond a
certain flow table size. Once the datapath reached 100% port usage we also
monitored the amount of consumed CPU on the target datapath, to determine
whether packet forwarding was hardware accelerated (test ct_cpu). Finally, for
the ct_flow_insert test we cleared the flow table of the target datapath and
then measured the time required to install a fixed number of flow entries. Each
flow entry matched IP packets with randomly chosen IP addresses (duplicates
were avoided) and had a single action, CONTROLLER. The measurement was
accomplished by sending an OFPT_BARRIER_REQUEST message immediately after
each OFPT_FLOW_MOD and by assessing the time elapsed between adding the
first flow entry and receiving the last OFPT_BARRIER_REPLY. We repeated this
measurement for an increasingly higher number of installed flow entries, in
order to determine whether each tested datapath had a breakdown point.

9.5 Outcome of Device Tests

We applied the methodology in Section 9.4 to perform an extensive session of
tests on a range of hardware datapaths. In this section we describe the results
of these tests, which largely confirm the limitations discussed in Section 9.2 and
unveil additional ones.

Devices Under Test

We considered 7 hardware datapaths manufactured by 7 major vendors. Due to
NDA constraints, we are unable to declare the model of the tested switches and
the name of the involved vendors, therefore in the following we address them
as S1, S2, . . . , S7. All the datapaths were equipped with a forwarding ASIC.
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Table 9.3: Main features of the tested datapaths.

ID 10GbE
Ports

Switching
Fabric
Capacity

CAM OpenFlow
version

OVS-
based

S1 8 about 2 Tbps CAM 1.3 No
S2 128 about 2 Tbps TCAM 1.3 No
S3 64 about 1 Tbps n/a 1.3, 1.4 Yes

S4 4 about 500
Gbps TCAM 1.3 No

S5 4 about 500
Gbps TCAM 1.3 No

S6 72 about 1 Tbps n/a 1.3 No

S7 40 about 500
Gbps n/a 1.3 Yes

OVS n/a n/a (software
switch) No 1.x Yes

Some of them ran a customized version of Open vSwitch (OVS) [ovs15] under
the hood, associated with drivers for hardware accelerated forwarding, whereas
others had a proprietary OpenFlow implementation. The main features of the
datapaths we considered are specified in Table 9.3. As a term of comparison,
we also executed our tests (except performance tests) on OVS, which is known
to have a very good level of compliance with the OpenFlow specification (see
also [Ryu16]).

Test Setup

We performed the OpenFlow compliance tests as described in Section 9.4,
connecting each target datapath as specified in Figure 9.1. As the sole exception,
we could not connect the target_send_port_2 of S2, which prevented us from
running some classes of test cases (e.g., group and meter). Moreover, we could
not execute any performance tests on this datapath.

We used OVS version 2.3.90 as the tester datapath, run on top of a server
equipped with an Intel i7 3.50GHz CPU, 32GB of RAM, and 4 10GbE SFP+
network interfaces (we only used 3 of them). Since OVS is one of the most stable,
feature-rich, and standards-compliant software datapath implementations, this
choice ensured that our tests were not biased by implementation bugs in the
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tester datapath. We ran the Ryu test on a virtual machine with 2 Intel Xeon
Sandy Bridge processors allocated from the hosting server, 2GB of RAM, and
one 100Mbps network interface. We used Ubuntu Server Linux 14.04.2 LTS as
the operating system on both servers. The control channel between Ryu, the
tester datapath, and the target datapath was realized by a dedicated 100Mbps
management network.

Before being able to execute the Ryu test suite, we had to reconstruct
for every datapath the OpenFlow port numbers associated with the physical
interfaces that connected the target and the tester datapath. This task was
particularly important considering that OpenFlow port numbers may be assigned
based on arbitrary conventions (see, e.g., [Ext15]) and not necessarily in the
same order as the corresponding physical interfaces. We then assigned the roles
of the ports according to Figure 9.1 and passed the selected port numbers to
Ryu.

We executed every run of the Ryu test multiple times, in order to make
sure that the obtained results were reproducible (due to a firmware bug, we
experienced non-deterministic outcomes on at least one of the datapaths). For
those cases in which a suspiciously low count of passed tests was reported, we
performed the following actions: we launched a reduced set of test cases, to
verify the operation of at least basic functionalities, we installed simple flow
entries in the target datapath to support a simple ping test, and we executed
the custom tests in Section 9.4 to delve further into the problem. In this
way we could at least rule out fundamental flaws in the various OpenFlow
implementations.

Test Results

In Figure 9.3 we show the count of test cases that Ryu reported as passed for
each considered datapath, distinguishing between tests that verify mandatory
features in the OpenFlow specification (e.g., support for matched fields, actions,
etc.) and those that verify optional features. The dashed horizontal line is a
threshold that corresponds to the total count of test cases (276) for mandatory
features comprised in the Ryu test suite. The plot evidently shows that, besides
OVS, only datapaths S3 and S7 passed more than 300 tests. Interestingly, these
two datapaths are OVS-based. Other proprietary OpenFlow implementations
typically barely reached 100 passed tests. Even more surprisingly, the count of
passed tests for mandatory features never approached the threshold, not even
for OVS, which however passed the highest number of tests. The gap for S6 in
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Figure 9.3: Count of passed Ryu tests.

this plot as well as the following ones is due to a subtle bug in the OpenFlow
implementation, that we analyze in the final part of this section.

In order to have a more clear view of the functionalities supported by each
datapath, we broke down the total number of passed tests according to the test
classes defined in Section 9.4. Figure 9.4 shows, for each class, the percentage
of tests passed by each datapath with respect to the total number of tests in
that class. In accordance with the format of Ryu test reports, we moved in
a separate class set-field those test cases that apply modifications to existing
packet headers (e.g., rewrite L2/L3 addresses). It can be immediately noticed
that test cases on the meter table were not passed by any datapaths: in all
cases, the request to add meters was simply rejected by the datapath. Test
cases concerning the group table and group actions were only passed by 3
datapaths (excluding OVS), despite the fact that this is a mandatory feature in
the specification. Moreover, restricting to the action and group classes, datapath
S3 performed better than any other datapaths, including OVS, even though it
ranked second in terms of the total count of passed test cases (see Figure 9.3).
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Figure 9.4: Percentage of passed OF 1.3 Ryu tests per test class.

However, no datapaths reached 60% of passed test cases per class.
To gain an even better understanding of the supported functionalities, we

also classified the test cases according to the protocol headers used in the
test packets sent to the target datapath, generating the plot in Figure 9.5.
In particular, Ryu repeats each test case multiple times: tests focusing on
functionalities that deal with layer 2, meters, and action groups are repeated
with test packets carrying an IPv4, IPv6, or ARP header, whereas tests focusing
on functionalities that concern layers 3 and 4 as well as ARP are repeated with
test packets carrying a plain Ethernet (Eth), VLAN, MPLS, or PBB header1.
For example, the MPLS class in Figure 9.5 represents test cases that verify the
ability of the target datapath to process layer 3/4 headers in test packets that
carry an MPLS header (note that this is different from saying that MPLS is the
class of tests that verify support for MPLS-related functionalities). From the

1PBB (Provider Backbone Bridge) is a standard acronym for indicating IEEE 802.1ah, a
variation of QinQ.
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Figure 9.5: Percentage of passed OF 1.3 Ryu tests for test packets carrying a
specific protocol.

figure it is pretty evident that basically all datapaths were unable to accomplish
any operations on packets carrying MPLS or PBB headers, thus impairing their
usage in the related fields of application. As a confirmation of the observations
made in Figure 9.4, if we exclude OVS, datapath S3 always performed better
than any others, with the sole exception of the Eth class, where S7 remarkably
exceeded 90% of passed tests.

We now describe the results obtained during the performance tests. Dat-
apaths S3 and S5 are those that exhibited the best performance during the
ct_perf_switch test: even after saturating link capacities on the loops, the
datapaths continued forwarding packets at a steady rate even with 200 addi-
tional entries installed in the flow table. For S1 and S4 the test could not be
completed because installing additional flow entries after reaching saturation
resulted in the anomalous behaviors described in Section 9.6. S6 was so flawed
that we could not reliably exploit the installed flow entries to realize the loops
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in Figure 9.2. Finally, S7 exhibited a very low throughput (around 18Mbps)
since the beginning of the test, due to the fact that firmware limitations forced
us to disable hardware accelerated packet forwarding. For the ct_cpu test we
used the CLI of each target datapath to collect statistics about CPU usage
while the ct_perf_switch was running. For the aforementioned reasons, we
do not have CPU load results for S2 and S6, but for all the other datapaths
the CPU was not involved in the packet switching (therefore, the flow table
matching) process at all. Figure 9.6 shows the outcome of test ct_flow_insert,
namely the time it took to install increasingly large sets of flow entries on the
target datapath starting from an empty flow table. This time highly depends
on the internal processing operations accomplished by the datapath to store
flow entries into high-performance memory areas: as described in Section 9.4,
we used flow entries with a very simple structure to limit this bias. The plot,
whose X axis is in logarithmic scale, shows outstanding differences between
the datapaths, especially beyond 500 installed flow entries. S1, S3, and S7
handled the installation process very efficiently (even though they may be
subject to the OFPT_BARRIER_REPLY reliability problems discussed in [KPK15]).
S4 exhibited an almost exponential increase in the insertion times, while S5
started to saturate beyond a certain flow table size, and did not even install
all the requested flow entries due to hardware limitations. Even worse, S6 just
dropped the connection with the controller beyond 50 installed flow entries.

9.6 A Catalog of Experienced Issues

While running the tests described in Section 9.5, we experienced a number of
unexpected behaviors that we consider useful to document here. We debugged
these issues with the help of the targeted tests described in Section 9.4, which
we executed using a set of custom minimal controllers that performed basic
operations (e.g., clearing the flow table, installing a single flow entry, sending
an OFPT_PACKET_OUT message).

Functional Bugs Some of the unexpected behaviors were due to missing
or improperly implemented features. In some cases such issues were solved
with firmware upgrades (or even downgrades). For example, on one datapath
every flow entry was automatically removed soon after being installed, and
on another datapath setting the table-miss flow entry to send packets to the
controller had no effect (but an entry in a standard flow table did). In other
cases we were just stuck with unusable sets of features. In particular, we often
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Figure 9.6: Flow entry insertion performance.

observed packets that were inconsistently matched by the flow entries: for
example, some entries only worked if the match condition included the Ethernet
type; other entries matching the VLAN VID only worked if their action was
CONTROLLER; in one case, matched flow entries did not apply the action
“push VLAN header”; in another case, matched entries did not forward packets
as supposed to, apparently because of additional matched fields besides the
packet’s input port. We suspect that these behaviors could be due to improperly
handled TCAM entries, but also argue that such situations should be avoided
by prohibiting flow entry installation altogether. In extreme cases, we saw the
same set of flow entries non-deterministically matching or missing the same
test packets (causing the Ryu tests to succeed only on a fraction of the runs),
and we witnessed a single packet matched by multiple flow entries (instead of a
single one) pre-installed in a hidden flow table and missed by a custom flow
entry that it was supposed to match.

By monitoring the packets exchanged between datapaths and controller
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during our custom targeted tests, we could reveal a couple of very subtle
bugs: on S1, OFPT_PACKET_IN messages generated by a flow entry with action
CONTROLLER always had the “reason” field incorrectly set to OFPR_NO_MATCH,
meaning that all the flow entries were missed. On S6, the “length” value of
the “match” field carried by OFPT_PACKET_IN messages (which contains the
datapath port through which a packet was received) was always incorrectly
computed, causing OFPT_PACKET_IN messages to be malformed. As a side note,
on one datapath the counters of packets and bytes matched by each flow entry
were available but only correctly updated for those rules that had at least one
match condition (i.e., different from all-wildcard).

We are aware that implementation flaws may occur as more recent versions of
the specification are released, but we argue that at the current level of maturity
of the OpenFlow specification certain basic functionalities are expected to work
out of the box.

Violations of the Specification Other misbehaviors were evidence of viola-
tions in the implementation of the OpenFlow specification. As such, they caused
some Ryu tests to fail, but their severity was indeed much more moderate,
because they did not impair the datapath operation.

For a couple of datapaths we observed that flow table IDs were not assigned
starting from 0: for S2 this was due to the fact that lower IDs were reserved for
flow entries with a specific structure, while S6 just adopted the convention to
assign IDs starting from 1. While this does not affect the datapath operation,
it is likely to cause mismatches for example when watching counters associated
with flow entries.

According to the OpenFlow specification, when pushing a new header (e.g.,
VLAN, MPLS) on a packet, the values of some fields in the pushed header
should be inherited from existing headers, or initialized to 0 if no matching
headers exist. For one datapath we observed failing Ryu tests because the value
of the IP TTL was unexpectedly decremented by 1 unit when copying it to a
freshly pushed MPLS header. Even more, an MPLS header pushed on top of
an ARP packet (which misses the TTL) had its TTL set to 64. Interestingly,
these issues did not occur when pushing an MPLS header on top of an existing
MPLS header. Last, an MPLS header pushed on top of an IPv6 packet had
its label erroneously initialized to 0x02, and popping the MPLS header off an
IPv6 packet improperly changed the Ethernet type to 0x0800 (IPv4) instead of
0x86dd (IPv6).

In the presence of VLAN headers, the OpenFlow specification states that
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a match condition on the Ethernet type should consider the type of the first
non-VLAN (i.e., innermost) header. All the datapaths we considered followed
this rule except S4, which always picked the type carried in the Ethernet header.

Issues Revealed Under Stress There is a variety of additional weird con-
ditions that we could discover only while carrying out performance tests.
OFPT_PACKET_OUT messages were processed at a surprisingly low rate by S6
and, even though test packets were matched by the flow entries supporting
the loop, no incoming packets were observed on any interfaces, invalidating
the experiment. For other datapaths, after reaching 100% usage of network
interfaces during ct_perf_switch, we saw that installing new flow entries that
were not supposed to match any packets caused the test packets to be unex-
pectedly drained from the loop. On S4 this happened even without reaching
100% interface usage. On S1, we observed a consistently reproducible behavior:
installing even a single extra flow entry while packets were looping caused any
existing flow entries with higher priority to have their match counters reset
and to temporarily stop matching any packets; (the table-miss flow entry was
applied instead). We believe such a condition is at least as dangerous as the
inconsistent forwarding states observed in [KPK15].

During test ct_flow_insert, not all the datapaths could keep the pace
with OFPT_FLOW_MOD messages: one of them only installed a randomly selected
subset of the requested flow entries, and from time to time it lost connection
with the controller, causing new random subsets of flow entries to be cyclically
installed every time a connection retry succeeded.

Additional Considerations We conclude the section with a few additional
advices about implementation-specific choices that, although not disruptive,
in our opinion should be taken into account when considering a datapath for
production use.

First of all, we ascertained that not all datapaths are capable of handling
IPv6 with OpenFlow (actually, only 3 out of the 7 we tested): this can impair
the applicability of SDN on modern network architectures.

The default action undertaken by the table-miss flow entry (i.e., drop or
send to controller) may vary across vendors, potentially resulting in lost packets
if not set in advance to the intended value. Moreover, losing connection with
the controller may result in the flow table being cleared (and no emergency
flows being installed).
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Some datapaths require carefully planning the amount of installed flow
entries in advance, because their TCAMs need to be partitioned to reserve a
space for the flow tables. Since partitioning schemes are typically constrained to
predefined profiles, and every flow entry may consume several hardware entries
in the TCAM, choosing the optimal setup may not be an obvious task. As an
additional restriction, on some devices TCAM memory blocks are allocated to
specific types of flow entries (e.g., matching L2 or L3 fields only), and some
network modules may not support mixing these types.

As a side note, usually no more than 2 or 3 controllers can be configured for a
single datapath, thus imposing limits on scalability and redundancy. Moreover,
a secure (e.g., SSL) communication channel may only be supported for a subset
of the configured controllers.

9.7 Related Work

Assessing the level of compliance of a device with the OpenFlow specification
is a useful piece of information for the research community, but is a priority
especially for device manufacturers. For this reason, several efforts are being
devoted to the development of automated systems that accomplish this task.
We review here the most important ones, classifying them according to the
coordinates in Table 9.4.

Ryu [Ryu15], which we thoroughly described in the previous sections, is
a very active and feature-rich community effort to build an SDN controller
framework that includes a device testing tool. Indeed, to our knowledge it is
the open source project offering the highest number of test cases, which are
specified in JSON format and therefore easy to customize. The development
community has also published at [Ryu16] the results of compliance tests run
on a small set of devices. However, they are not complemented by a deep
investigation of their outcome. oftest [Pro16] offers a much more limited set of
test cases and, differently from Ryu, it requires root privileges to be executed,
because test packets are generated (using the packet manipulation tool Scapy)
and monitored on the same machine on which the test is executed. Supporting
additional test cases is also not immediate, because it requires writing Python
code. In July 2013 the Open Networking Foundation (ONF) launched an
OpenFlow conformance test program [Ope15a], specifying a number of test
cases comparable to oftest. A conformance test for OpenFlow 1.0.1 is currently
available at [Ope13a], approved SDN testing laboratories have been set up,
and a freshly updated list of certified products is available at [Ope16a], but
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Table 9.4: Comparison of currently available OpenFlow compliance test suites.

Test suite OpenFlow
version(s) Test cases

Ryu [Ryu15] 1.3, 1.4 991 (Ryu 3.18)

oftest [Pro16] 1.2, 1.3, 1.4
in the works About 200

ONF OpenFlow 1.0.1 confor-
mance test [Ope13a] 1.0.1 208

Open SDN network virtualization
test [SOL] N/A <100

Ixia IxANVL OpenFlow test
suite [Ixi15] 1.0.1, 1.3.2 >194 (OF 1.0); 528

(OF 1.3)
OFLOPS [RSU+12] 1.0 <50
Veryx ATTEST OpenFlow con-
formance test [Ver14]

1.0.0, 1.3.1,
1.3.2, 1.3.3 400

Spirent TestCenter OpenFlow
compliance test [Spi16] 1.0.1, 1.3, 1.4 >950 (OF 1.3);

>100 (OF 1.4)

we are not aware of any publicly available associated test software. The test
specification for OpenFlow 1.3 is planned to comprise as many as 1100 test cases
but, as of January 2015, it is still under development. The Open SDN Network
Virtualization Test [SOL] focuses on performance rather than functionality.
The project team has also published the results of tests conducted during a
one-shot event that took place in 2013, but there seems to have been no further
activity since then, and the used test tools are not publicly available. As
an evolution of [SOL], Ixia includes in its commercially available Automated
Network Validation Library (IxANVL) comprehensive test suites for OpenFlow
1.0 and 1.3 [Ixi15], consisting of a regularly updated set of more than 500 test
cases and comprising test cases from oftest. OFLOPS [RSU+12] is an effort
to define a modular architecture for a testing tool. The authors developed 14
readily usable modules, but they consider few basic functionalities, and the
application of the tool documented in [RSU+12] is only focused on performance
aspects (e.g., flow table update rate). The Veryx ATTEST Conformance Test
Suite for OpenFlow switch [Ver14] supports pure OpenFlow as well as hybrid
switches and has a rich set of test cases. However, it is exceeded by the Spirent
TestCenter OpenFlow compliance test suite [Spi16], which comprises more than
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950 tests for OpenFlow 1.3, updated on a quarterly basis.
A very recent contribution [KPK15] analyzes the performance of flow table

updates in a sample of 3 hardware switches. Similarly to our work, it includes
a discussion of interesting findings about anomalous behaviors that the authors
discovered during their tests.

We are not aware of any other contributions that analyze the readiness of
network devices to operate in an SDN scenario from a functional point of view
with the same accuracy that we pursue in this work.

9.8 Conclusions and Future Work

In this work we raise two important questions: one is that, besides flow table
capacities, research in the SDN field is largely unaware of several restrictions
encountered when it comes to deploying a proposed architecture on real devices.
The other is that network architects should choose network devices very carefully
if they aim at switching to an SDN-based infrastructure. We address these
questions with a review of publicly available documentation from various vendors,
with a device testing methodology, and with a comprehensive set of tests
executed on a range of heterogeneous devices, that revealed several anomalous
behaviors.

As an obvious continuation of this work, our testing methodology can be
applied to additional devices. However, we also plan to extend our set of
custom tests to comprise additional functionalities. Also, considering that
the test specification format we used internally is very similar to the one
adopted in [Ope13a], we would like to publicly release this specification. On the
methodological side, we will be considering how existing SDN-based architectures
such as [LRVB15] can be fit to comply with vendor-imposed restrictions.
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Chapter 10

Other Research Activities

This chapter presents additional research activities that took place during the
doctorate program. The following sections are not part of the previous chapters
of this thesis because they have little or no overlap with the topic of Internet
eXchange Points. Nonetheless, they describe interesting approaches all related
to the Software Defined Network topic, a topic strongly present also in this
thesis. Moreover many of the solutions presented in this chapter played an
important role for the development of works previously presented in this thesis.
For these reasons we think they could be interesting for the reader.

10.1 SDNetkit: A Testbed for Experimenting SDN in
Multi-Domain Networks

Mininet is the de-facto standard simulation environment for experimenting with
SDN enabled networks based on the OpenFlow protocol. Although Mininet is
powerful and not resource hungry, it has a strong limitation: it is not possible
to use it for networks in which both OpenFlow and standard distributed routing
protocols (e.g. Open Short Path First, OSPF) simultaneously run.

In this work we present SDNetkit, an enhanced release of the widely used
Netkit network emulator that overcomes the limitation imposed by Mininet.
We improved Netkit by adding all needed software to run OpenFlow based
networks (e.g. OpenVSwitch and the Ryu framework). We show two use cases
in which OpenFlow and standard protocols coexist. In particular, we address
interoperability problems by presenting one use case in which OpenFlow nodes
interact with standard ones (e.g. OSPF routers) in multi-domain networks,

143
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as well as one use case in which the OpenFlow protocol and OSPF run on
the same machine, discussing some problems related to specific configurations.
We believe that having the possibility to experiment SDN also in presence of
interoperability scenarios results in opening to new research perspectives.

Researchers and practitioners interested in SDN need systems to perform
experiments with OpenFlow [MAB+08] and, over the years, Mininet [min15]
was the leader among those systems. The majority of the experiments on SDN,
in particular based on the OpenFlow protocol, have been carried out on top of
that light and easy to use simulation environment, that provides a very simple
interface to the final users. Nevertheless, Mininet is not the only SDN-ready
simulator: many others exist, like [Jur13,WCY13,LO15,WDS+14,AS13,min17],
even if Mininet is one of the most popular and supported ones. By using Mininet,
it is possible to create arbitrary topologies, as well as running several OpenFlow-
enabled devices, connecting them at will and run customized SDN controllers
written by exploiting any available SDN framework (e.g. Ryu [ryu17]).

To provide OpenFlow functionalities, Mininet relies on OpenVSwitch [ovs15]
that is a software switch equipped with an implementation of the OpenFlow
protocol. Mininet can be seen as an orchestrator of OpenVSwitch instances,
taking care of creating suitable connections among them according to what the
user declares in the definition of the topology. However, it suffers from two
strong limitations. First, with Mininet it is not possible to test topologies where
legacy devices (e.g. IP-speaking routers running traditional routing protocols)
coexist with OpenFlow-enabled devices. Second, it assumes that the controller
is back-to-back with each device in the network.

We argue that these two weaknesses pose severe limitations in experiment-
ing interesting scenarios, like interoperability among SDN-enabled and legacy
devices, as well as how the communication among controller and SDN-enabled
devices is affected by network changes (e.g. failures). For simplicity, we call the
latter scenario network control.

It is reasonable to think that no currently operating provider will fully
migrate its network to an SDN-enabled one in just a single step. As it often
happens, an incremental process will take place, in which SDN-enabled and
legacy devices will coexist for a certain amount of time. Hence, when emulating
networks involving multiple ISPs, where each of them is at an intermediate step
of the migration process towards SDN, it is crucial to have the possibility to
emulate networks composed both by SDN-enabled devices and by legacy ones.
This results in the interest in experimenting interoperability scenarios that,
at this moment, cannot be emulated by any freely available SDN/OpenFlow
simulator. On the other hand, the assumption that the SDN controller is
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directly connected to every SDN-enabled device in the network might not be
always satisfied for several reasons. Having a management network connecting
among them an SDN controller and devices leads to interesting experiments,
like reactivity to failures in the network and which is the impact of those failures
on the communication among controllers and SDN-enabled devices in terms of
how much time the controller spends in producing a new data plane.

In this work, we present SDNetkit, an emulator built on top of the widely
used Netkit network emulator [net17]. We enhanced Netkit by adding SDN
functionalities. More specifically, we added OpenFlow software that makes
Netkit SDN-ready. With SDNetkit is possible to overcome the limitations
imposed by Mininet. In SDNekit it is possible to set up topologies in which
legacy and SDN-enabled devices coexist, that is not feasible with most used
simulation systems. Also, it is possible to simultaneously run the OpenFlow
protocol and standard routing protocols (e.g. by using Quagga) on the same
device. SDNetkit opens to the possibility of having SDN controllers and SDN-
enabled devices not directly connected, giving the opportunity to test both
interoperability and control network scenarios. To the best of our knowledge,
SDNetkit is the first freely available emulator providing such functionalities.
For the first release of SDNetkit, we provide basic software for SDN capabilities.
Essentially, with SDNetkit is possible to run OpenVSwitch instances to set up
OpenFlow devices and use the Ryu framework [ryu17] as the controller. We
point out that this is just an initial choice. Indeed, there are no limitations
in adding other software to provide SDN/OpenFlow functionalities (e.g. it is
possible to add other SDN frameworks for implementing custom controllers,
other SDN-enabled switch implementations, or general software for testing
SDN).

10.2 Supporting End-to-End Connectivity in Federated
Networks using SDN

Federated networking is a promising approach to resource sharing that supports
cost-effective services involving multiple parties. Research in this field largely
focused on architectures and cost models, making limited progress on the
technological side. On the other hand, the widely adopted Software-Defined
Networking (SDN) model found its most successful application in data centers,
exhibiting very little penetration in other scenarios.

We leverage the unexplored potential of SDN on the edge of a network to
introduce an approach that supports end-to-end connectivity among different
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federated partners. Our approach is based on simple Network Address and
Port Translation (NAPT), making it applicable in standard IP networks. It
is also very flexible, because it exploits SDN, and scalable, because address
translations are performed on Customer Premises Equipment, where SDN is
being progressively supported by device vendors. We define various alternative
NAPT strategies and evaluate their effectiveness with simulations as well as
emulated scenarios.

A federated network is an ensemble of independent but collaborating partners
that share resources in order to optimize their usage, improve the quality of
services, and reduce provisioning costs. While some design principles date
back to 2008 [HEY08], federations have recently emerged in the field of cloud
computing [cfl12], and their benefits in terms of cost effectiveness [GGT10]
and performance [CRB+11] are being largely investigated also in the context
of research projects (e.g., GÉANT’s Future Network Research1, BEACON2).
Despite the interest of the research community in federated networks, limited
progress has been done on technologies for realizing them.

We introduce an end-to-end connectivity service among the networks of
federated partners which is based on applying ad-hoc Network Address and Port
Translation (NAPT) strategies both to the source and to the destination IP
address and port of packets exchanged by the partners. In this way, such packets
can be routed on a standard IP network (including the Internet) without the
need for encapsulation. Supporting this scenario requires a level of coordination
among the involved parties which we accomplish by leveraging Software-Defined
Networking (SDN) on the network edge, where it has been marginally exploited
so far. A similar technique has been used in [SVR15], although with a different
goal (inbound traffic engineering) and applied solely to the packets’ source
addresses. The choice of SDN makes our approach flexible and scalable, since
very little signaling information needs to be exchanged to negotiate end-to-end
connections and address translations are performed by Customer Premises
Equipment (CPE). While a similar connectivity service can be implemented
using, e.g., IPsec Virtual Private Networks (VPNs), our approach is much
simpler to deploy, does not introduce any technological dependencies, and, if
required, can be combined with additional services such as encryption. Its
feasibility is confirmed by the progressive introduction of SDN-capable CPE
devices on the market (see, e.g. [Nov16]). We define various alternative NAPT

1http://geant3.archive.geant.net/Research/Future_Network_Research/Pages/
FederatedNetworkArchitectures.aspx

2http://www.beacon-project.eu
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strategies and evaluate their effectiveness using simulations as well as tests
inside emulated network scenarios.

10.3 SDNS: Exploiting SDN and the DNS to Exchange
Traffic in a Federated Network

Federated networks have primarily emerged to support cloud computing services,
in order to reduce costs for providers, as well as to increase their incomes. Up
to now, the research activity has been mostly focused on architectures and cost
models, setting aside technological aspects.

In this work, we propose SDNS, an SDN-system that opens the application
fields of federated networks to federated connectivity services. By exploiting the
centralized architecture offered by SDN and relying on the OpenFlow protocol,
the most adopted enabler for SDN, we propose a way to easily interact with the
Domain Name System (DNS) traffic in order to allow communication among
multiple customers connected to different providers in presence of any type
of IP address plan. We tested the scalability of our approach in a prototype
implementation based on Netkit, a widely adopted simulation environment.
We measured several control-plane overhead metrics, like the number of DNS,
OpenFlow, and SDNS messages exchanged in the network. Our experiments
show that the scalability of our method is essentially the same of the DNS
service.

A federated network is composed by two or more independent, but collabo-
rating, members that share their resources in order to provide services, aiming
at enforcing the quality of the services themselves, reducing provisioning costs
and increasing revenues. For simplicity, but without loss of generality, we can
assume that each member of a federated network is an Internet Service Provider
(ISP), making its own resources available to the federation (e.g. storage, network
devices, etc.). In the past years, several federated networks arose and started to
issue services. Example of those networks are GÉANT [gea17a], Beacon [bea17],
and NATO federated network [nat]. The common idea behind those networks
is to easily provide different federated services to their customers.

Federated networks are widely used for cloud computing, where an entity,
acting as a broker, handles resources in order to provide services to customers.
After discussing with several national ISPs and analyzing with them some
requirements, we argue that other services, like connectivity, can take advantage
from the adoption of ISPs’ federations. One of the most critical problems in
providing connectivity services to customers is to ensure that no overlaps in the
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IP addresses (typically private addresses) occur. This is obviously enforced by
a single ISP, since it can carefully assign IP addresses to its customers avoiding
overlaps, but this condition is no longer guaranteed when more ISPs join in a
federation. Thus, a mechanism allowing point-to-point communications in the
presence of multiple independent customers connected to different providers in
such a situation is needed.

On the other hand, Software Defined Networking (SDN) is an architecture
opening new perspectives for federated networks. By exploiting a centralized
entity having the control of the entire network, together with the ability of
programming the routing logic, SDN is able to enforce flexibility, as well as re-
duction in terms of configuration complexity, in providing services. In [dLRB16]
a method for enabling connectivity services in federated networks relying on
SDN is presented.

In this work, we build on [dLRB16] a system allowing ISPs to easily span
Virtual Private Networks (VPNs) services over multiple networks handled
by different providers. Achieving this goal is not trivial by using standard
technologies and typically requires a lot of effort. Since we are addressing
such a problem in federated networks, we call such a service Federated VPN.
We leverage DNS for unique resource identification, with no changes on the
operation of end hosts. Also, we do not require any changes to the organization
of DNS servers (e.g. authoritative information). Our proposal is completely
transparent for network devices (which continue to process standard IP packets)
and we do not introduce any MTU restrictions, since we do not use any tunnels.

We present SDNS, an SDN-based method enabling federated VPN serivces.
Our system allows customers to have any IP addressing plan. To achieve
this goal we exploit the DNS, involving multiple SDN controllers in the name
resolution process. Using the centralized approach offered by SDN, we can easily
interact with all traffic exchanged in the network, including all DNS packets
generated by each end-host. By looking at that traffic, we inspect the content
of the DNS requests and answers and, in the case of IP addresses overlaps, we
manipulate the content of the DNS packets overcoming undesired situations and,
by using suitable Network Address Translation (NAT) techniques, we generate
a set of rules that make the routing consistent with the original IP addresses.
SDNS allows ISPs to provide novel features, like on-demand federated VPNs
set up for a pre-defined amount of time.

SDNS relies on the Ryu framework [ryu17] and the OpenFlow protocol
version 1.3 [MAB+08], the most adopted protocol enabling SDN in the networks.
Our proposal requires a minimum set of configurations related to the federated
connectivity service that is placed at the SDN-controller, without any impact on
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existing configurations, like routing protocols configurations. We argue that this
enables SDNS to be easily deployed in production networks, also considering
that it does not require any technological dependencies.

10.4 Leveraging SDN to Monitor Critical Infrastructure
Networks in a Smarter Way

In critical infrastructures, communication networks are used to exchange vi-
tal data among elements of Industrial Control Systems (ICSes). Due to the
criticality of such systems and the increase of the cybersecurity risks in these
contexts, best practices recommend the adoption of Intrusion Detection Systems
(IDSes) as monitoring facilities. The choice of the positions of IDSes is crucial
to monitor as many streams of data traffic as possible. This is especially true
for the traffic patterns of ICS networks, mostly confined in many subnetworks,
which are geographically distributed and largely autonomous. We introduce a
methodology and a software architecture that allow an ICS operator to use the
spare bandwidth that might be available in over-provisioned networks to forward
replicas of traffic streams towards a single IDS placed at an arbitrary location.
We leverage certain characteristics of ICS networks, like stability of topology
and bandwidth needs predictability, and make use of the Software-Defined
Networking (SDN) paradigm. We fulfill strict requirements about packet loss,
for both functional and security aspects. Finally, we evaluate our approach on
network topologies derived from real networks.

ICSes are the core of critical infrastructures. They are composed by many
elements that interact by means of a communication network, which we call
ICS network. Main elements of an ICS are embedded devices that control
actuators or gather data from sensors. Special servers are in charge to collect
data from these embedded devices, show them to the control room operators,
record them in a database, change settings according to operators requests,
etc. While the data that flow in an ICS network are very specific, standard
networking technologies can be adopted for its implementation.

In the past decade, a growth of cyber-attacks directed toward ICSes has been
observed [cscertcssp11]. For the security of the ICS networks, best practices
suggest to deploy network-based IDSes [SLP+15]. In regular networks it is
acceptable to observe traffic in a small number of relevant points. However,
for reliability reasons, in ICSes, Supervisory Control And Data Acquisition
(SCADA) servers are close to sensors and actuators, hence, traffic is mostly
local. Further, attacks to ICSes are potentially carried out by organizations
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(e.g., governments, intelligence agencies, terrorist groups) that can have insiders
and that can carefully design attacks so that they pass unobserved by sparsely
deployed IDSes. Tapping traffic close to all embedded devices and servers can
easily lead to prohibitive costs. Certain solutions [nex11] make possible to route
traffic replicas using the same ICS network towards one, or a few, IDSes, but
they are not able to guarantee the successful delivery of critical ICS traffic in
all cases.

In this work, we present a methodological approach and an architecture
to (i) allow an operator to choose which traffic has to be observed within an
ICS network without installing new hardware, (ii) enable the use of the spare
bandwidth in the network to forward the traffic to be observed toward an IDS,
while avoiding packet loss for regular traffic, and (iii) guarantee that the IDS
receives all the traffic that the operator configured to be observed in order not
to introduce false negatives due to packet loss. Our solution takes advantage of
the fact that topology and bandwidth usage are quite stable in ICS networks
(see for example [TCB08]), allowing us to assume in advance knowledge of ICS
network’s traffic, since it derives from ICS design, and to perform a global
off-line optimization of switching paths. Furthermore, we support the usage
of the ICS network for additional and occasional traffic, which are always
considered potentially dangerous. We assume that this traffic can be served
with a best-effort approach while maximizing the endeavor in observing it. We
propose an architecture that exploits the Software-Defined Network (SDN)
approach as prescribed by the OpenFlow specifications [Spe13]. We evaluated
our methodology against four network topologies, derived from real topologies
and augmented with realistic networks in the domain of electrical distribution.
Our experiments show that our optimization problem can be easily solved for
those scenarios in reasonable time and our approach makes efficient use of the
bandwidth when the topology allows it.
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