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State Channels for Blockchain Scalability: Capabilities,
Limitations, Perspectives

Abstract: Proof-of-work blockchain, as originally conceived by the pseudony-
mous creator of the Bitcoin protocol Satoshi Nakamoto, does not scale. Three
different approaches are been explored to make the blockchain scale: 1. data
sharding; 2. alternative consensus mechanisms; 3. off-chain solutions. This work
contributes to the last approach by focusing on state channels. A state channel is
a two-party ledger, unanimously updated, that resorts to the blockchain to resolve
possible disputes (lack of unanimous consensus) that may arise during the off-chain
interaction between channel endpoints. Transactions stored in the two-party ledger
are unloaded from the underling public blockchain where only a succinct summary
of the off-chain interaction is finally stored. This work focuses on state channels
defined by means of smart contracts supported by a Turing-complete language (as
offered for example by the Ethereum platform) and presents five main contributions:
1. the definition of the propose/accept scheme as a formalization of the off-chain
interaction between channel endpoints; 2. the introduction of Inextinguishable
Payment Channels, a protocol to allow hot-refill of and hot-withdrawal from a
running payment channel thus preventing a skewed channel to be closed if involved
parties still need to use it; 3. the introduction of Fulgur, a hybrid trustless wallet
supported by a FulguHub, a centralized trustless payment hub; 4. the definition of
µ and µ̄ agreement classes, a categorization that reflects the inherent characteristic
of an agreement (implemented as a smart contract or as a state channel) to be
resolved at any time with or without satisfaction for involved parties; 5. the
introduction of Smart Channel, a protocol that equalizes performance (in terms
of number of required transactions) between µ̄-agreements implemented as state
channels and standard on-chain interaction (i.e., directly intermediated by a smart
contract), in case of irrational attacks, and maintains privacy for involved parties
in case of perfect cooperation.

Keywords: blockchain, off-chain solutions, state channels, micropayment
channels, inextinguishable payment channels, smart channels, fulgur
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Chapter 1

Introduction

The blockchain technology realizes a distributed ledger firstly introduced to sup-
port Bitcoin, a peer-to-peer digital payment system. The blockchain stores value
transactions among participants of the network and leverages economic friction and
incentives to ensure security and correct system operation.

Due to its strongly multidisciplinary character it attracted the attention of many
research fields: networking and distributed systems, cryptography, game theory.
The way its deployment can influence daily life of people in the mid/long term
involves economical, legal, political and sociological aspects.

Despite the increasing interest, blockchain remains a technology in its early stage
of development. Nevertheless, it proved itself to work in practice, being able to
overcome, at least until now, bans by national governments and central banks: the
use of Bitcoin has been officially prohibited in several countries (e.g. China, Russia,
Thailand, Vietnam, Taiwan, Colombia, Ecuador, Bolivia, Bangladesh, Kyrgyzstan)
since its permissionless and distributed nature makes it difficult to impose regulatory
compounds as a government may want to do on a currency that circulates on the
territory of its jurisdiction.

Micropayment channels have been introduced in the Bitcoin ecosystem to tackle
with the limited scalability offered by the blockchain technology. Replication of
distributed ledger is supported by a synchronization mechanism that limits the
maximum rate of transaction the network can process, making difficult to scale up
to the hundreds of thousands of transactions per second required to support the
peak of world-wide fiat money transactions.

Micropayment channels allow the two involved parties, the endpoints of the
channel, to move funds back and forth, up to the amount blocked at the beginning
of the interaction. Transactions that occur in the channel remain private to the
participants and are not broadcast to the blockchain. Only a final settlement is
required to reconcile the off-chain transaction history with the blockchain. The
blockchain is therefore unloaded from the burden of all the transactions that take
place on a channel.

Smart contracts leverage the blockchain technology to allow for the execution of
arbitrary code that conveniently can manipulate account balances according to easily
definable custom logic. The Ethereum platform has been the first implementation
of such a technology. It broaden the possibilities offered by the blockchain and open
the door for new applications that 1) require value exchange subjected to specific
conditions, 2) rely on the trustless execution of critical fragment of code where
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correctness of the output is guaranteed, 3) need the integrity protected storage
and/or notarization of (small amount of) data, 4) a mix of the previous.

While Bitcoin’s payment channels only support transactions that alter balance of
the involved parties, enhanced expressivity of smart contracts enables state channels
to handle an arbitrary data structure. Payment channels defined on top of smart
contracts as a state channels (payment state channels) are more flexible and easy to
handle than original micropayment channels introduced for the Bitcoin blockchain.
They enable new possibilities to be explored and are the focus of part of this work.

Question 1 How to prevent a skewed payment channel from being closed and
reopened if the off-chain interaction between parties has still reason to exists?

When payments are sent mainly in one direction, the party that pays more fre-
quently may run out of balance and therefore being obliged to close the channel and
reopen it. Channel open and close procedures require time and involve transaction
fee costs. To this end, in Chapter 4 it is introduced the detach/attach interaction
scheme that allows for moving funds to and from a payment state channel with
no alteration for the regular channel activity. By avoiding the unnecessary closing
of a channel, the underling blockchain is further relieved from closing/reopening
on-chain transactions.

Question 2 How to maximize utility of funds locked in a channel?

Involved parties of a payment channel actually pays the opportunity cost of
blocked collateral funds. This cost is reduced if funds locked in a channel can be used
to several purposes instead of only support payments to and from the counterparty
of the channel.

Payment networks enable this possibility by defining a mechanism for multi-hop
payments. Once a payment route has been identified with enough capacity on each
intermediate hop, the mechanism allows to atomically enforce payment execution.
However this solution, to be actually viable, requires a network of payment channels
to be deployed. Furthermore at least one route in between the payer and the payee
with enough capacity to accommodate the payment amount must exist, condition
ensured by a well connected network. Beside the development stage of the software
needed to support payment network solutions, the creation of a well connected
network that ensure connectivity among every source and destination point may
take long time.

In Chapter 5 an extend version of the detach/attach scheme is presented to sup-
port a fast deployable solution: a hub-and-spokes architecture for hybrid payments.
Off-chain payments toward hub-connected nodes are routed through the central hub
while off-chain balances can be used as source and destination of funds for outbound
and inbound payments where the counterparty is a standard on-chain account of
the network.
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Question 3 Can state channels support any kind of agreement?

To enter in a channel with a counterparty implies to take some commitments and
therefore the existence of a mutual agreement between parties. The agreement can
be explicit and simple to elicit and understand, like in the case of payments, or
implicit.

In Chapter 6 is presented an analysis of state channels in relation to the type
of agreement they require or imply. The analysis results in a partition of the space
of agreements based on the existence of a mapping function between any interme-
diary state and a satisfying closing one. Furthermore, it turned out that under an
irrational passive aggressive attack, a specific class of “channelized” agreement un-
derperforms with respect to the standard on-chain interaction, nullifying the benefit
of the off-chain approach. Smart channels are an extension to the state channel
construction proposed to level on-chain and off-chain performances in such a case.

The remainder of this work is organized as follows. Chapter 2 provides the nec-
essary background on blockchain and smart contracts. Chapter 3 introduces the
state channel construction. Chapter 4, Chapter 5 and Chapter 6 answer research
questions 1, 2 and 3, respectively. Finally, Chapter 7 contains conclusive remarks.





Chapter 2

Background on blockchain and
smart contracts

Contents
2.1 Principles of operation . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Bitcoin and the UTXOs model . . . . . . . . . . . . . . . . . 6

2.1.2 Ethereum and smart contract advent . . . . . . . . . . . . . 9

2.2 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Distributed consensus meets e-cash systems . . . . . . . . . . 12

2.2.2 Anatomy of a blockchain . . . . . . . . . . . . . . . . . . . . 13

2.3 Open issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Distribution and permisionlessness . . . . . . . . . . . . . . . 14

2.3.2 Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Incentive scheme . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Network layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.5 Immaturity of smart contract languages . . . . . . . . . . . . 17

This chapter provides the background on blockchain and smart contract execu-
tion platforms required to understand the reminder of this work.

Background on blockchain is provided according to a historical perspective. The
reader that wanted to access low level details of the protocol and the ecosystem
developed around the blockchain technology, is referred to documentation available
on the Bitcoin website [1] and to extensive and detailed works such as [2, 3, 4, 5, 6].

2.1 Principles of operation

An overview of the mechanisms supporting the distributed permissionless ledger is
presented with reference to the first blockchain introduced, the Bitcoin one, whose
purpose was to support a peer-to-peer electronic cash system.

The double spending problem The critical problem an electronic cash system
has to addresses is the avoidance of the “double spending” of digital coins. Since
electronic cash is represented as informative units (string of bytes) they can be easily
copied, as it can be done for any digital asset, e.g. digital pictures or videos.
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The blockchain solution The solution offered by the blockchain protocol con-
sists in providing every node of the peer-to-peer system with a copy of the whole
transaction history. The recipient of a payment can therefore check the ledger to
verify that received coins have not been sent to any other, or double spent. The
blockchain solution is acknowledged to expose a peculiar characteristic: permission-
lessness. A node is free to join and participate in the network, neither authorization
nor identification process is required.

2.1.1 Bitcoin and the UTXOs model

Bitcoin’s blockchain (alike any other introduced afterwards) strongly relies on asym-
metric cryptography. The pseudo-identity of a node is associated with his/her pair
of private/public keys. A payments encompasses an unlock/lock procedure. Payer
unlocks his/her own coins and re-locks them so that only the receiver is subsequently
able to unlock them. Although several complicated and powerful payment struc-
tures have been introduced over time, for simple payments, the locking part involve
a derivation of the public key of the receiver called “address”, while the unlocking
part involves a digital signature that attests the ownership of the private key related
to the public one used to lock the coin.

Figure 2.1: Bitcoin transaction.

Transaction structure Figure 2.1 show the anatomy of a very simple Bitcoin
transaction. It allows for many inputs and many outputs. Locking and unlocking
script are expressed in a language called Script, which is a Forth-like reverse-polish
notation stack-based language. Every input corresponds to the locked output of a
previous transaction. Every node can independently verify that an input is rightfully
used by the transaction by concatenating the unlocking script with the locking one
relative to the previous output that has to be unlocked. The resulting code string
has then to be executed. A transaction is deemed valid if all the unlocking scripts
correctly unlock the output they depend on. Once an input is unlocked the freed
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value is available to be assigned to one or more outputs of the transaction. Each
output is finally locked in such a way that only the receiver of the payment can
unlock it. The sum of the value of unlocked inputs is usually greater then the
outputs locked one. The difference constitutes a transaction fee.

According to this model, coins are represented by unspent transaction outputs
(UTXOs). The balance of an account correspond to the sum of all the unspent
transaction outputs that can be successfully unlocked and therefore spent. A client
may (and is suggested to) own several private keys to which the owned UTXOs are
locked to (possibly derived from a single master one according to a scheme called
Hierarchical Deterministic Wallet1). A Bitcoin wallet is the software that stores and
manages all the private keys owned by client.

Transaction replication Once a transaction is ready, i.e., it has been provided
with the needed signatures to unlock the inputs and each outputs has been secured to
be unlocked only by the receiver, it is broadcast to the peer-to-peer network. Peers
receive the transaction and check its validity. If the transaction results patently
invalid it is ignored. Instead, if it is well-formed and not manifestly invalid, it is
temporarily stored in a special structure called “mempool”, waiting to be confirmed,
or “ordered”.

Transactions order Although every node owns a whole copy of all transactions
ever made, the double spending issue is not resolved. The missing piece is the
imposition of a order on transactions. It is a required condition to resolve the
case when an entity create two different transactions that consume that very same
unspent output but lock with different locking script.

The imposition of a total order on transactions resolve the situation dictating
that only the first one can rightfully consume the output. The second one is therefore
rejected as invalid.

previous block header hash: 
timestamp: 2013-12-27 22:57:18
difficulty: 1180923195.26
nonce: 4215469401
height: 277315
merkle root:

previous block header hash: 
timestamp: 2013-12-27 23:11:54
difficulty: 1180923195.26
nonce: 924591752
height: 277316
merkle root:

transactions transactions

pr
ev

io
us

 b
lo

ck
 h

ea
de

r

ne
xt

 b
lo

ck
 h

ea
de

r

Figure 2.2: Bitcoin blockchain.

1https://en.bitcoin.it/wiki/Deterministic_wallet

https://en.bitcoin.it/wiki/Deterministic_wallet
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The Bitcoin’s blockchain achieves he imposition of this order in a permissionless
way. Miners are the special players that accomplishes this task. Miners collect and
order transactions in a data structure called block. Each block is unambiguously
linked to the previous one, realizing a chain of blocks. The system is self-regulating
in such a way that at least one miner is statistically able to produce a block every
ten minutes.

Figure 2.2 exemplifies the blockchain data structure. A block is constituted by
the transactions it contains and by a block header.

Every miner can autonomously decide which transactions to include in a block,
and in which order. A block, to be accepted by all the other nodes, must show
the solution of cryptographic puzzle. When a miner “close” a block, it can collect
the transaction fees of all the transaction it decides to include in the block and it
is also credited with a block reward, i.e., a fixed amount of coins. Therefore, it
is strongly preferable for a miner to not include invalid transactions inside a block
since it would be rejected by other nodes for this reason, and the miner would lose
block reward and transaction fees it could have earned instead.

Blocks confirmation The solution of the cryptographic puzzle that seals the
block is found as result of a useless computation: the application of the SHA256
hashing function to the block header. The nonce field of the block header can
be altered by the miner to the purpose of obtaining a hash value below a fixed
threshold2 (which the protocol adapts dynamically to maintain the block emission
rate as constant as possible: one every ten minutes). The output of the hashing
function is not predictable, the mechanism resembles a lottery drowning. A miner,
to take advantage over other miners can only buy more lottery tickets, which means,
out of metaphor, to increase the its hashing rate.

Forks A miner that resolves the puzzle, broadcast the block along with the found
solution. A fork of the chain may happen when two competing miners found a
solution for a block of the same height (a block that links back to the same previous
one). The protocol states that the longest chain is the correct one, therefore the
actual transaction order depends on which competing block the next successful
miners decide to link back to new ones.

Permissionlessness The right to order transaction is granted to a pseudonym
identity that is able to show to have enough computation power to resolve the
puzzle before others. This mechanism is called “Proof of Work” (PoW). The system
self-adjust the complexity of the puzzle in such a way that the total hashing power
of the network is able to find a puzzle solution about once in ten minute. Nowadays
difficulty is so high that a miner has to rely on special high electric consumption
hardware to have reasonable probability to succeed in the generation of a proof of

2The nonce field is only 32 bytes long, therefore miners usually exploit also other (parts of)
fields that are free to be altered since they do not contain significant information
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work. Nevertheless, the production of a proof of work is the only action required to
be entitled to confirm a block. No further authorizations are needed. In this sense
the system is considered to be permissionless: an entity that wants to participate
in the mining process, and therefore earns the reward and collect fees, only has to
succeed in the generation of proof of work before competing miners.

Incentive scheme Security of the system is provided by the economic incentive
scheme behind the construction. To participate in the mining process requires an
investment of fiat money: the want-to-be miner has to buy the ad hoc hardware and
pay the electric bill to run it. The return of investment consist of block reward and
transaction fees it collects when it confirms a block. To attack the network would
imply a deprecation of the coin value (with respect to fiat money) that would make
the investment unprofitable.

Emerging consensus Having enough computational power the whole history can
be rewritten. Immutability of past transaction order is guaranteed by the difficulty
of the puzzle. To alter the history would imply for a miner to found several solutions
to the puzzle to achieve the longest chain, starting from the forking block. Honest
miners, however, keep doing their job, being incentivized by the profit the could
earn and therefore the chain of blocks keep growing. As long as the hashing power
is enough equally distributed among several independent miners, the probability
that a fork successfully become the longest chain decreases as the distance of the
forking point to the tip of the chain increases. It means that old blocks are more
immutable than emerging ones, that may possibly change. Blocks, and therefore
transactions order, “crystallize” with the appending of new blocks to the tip of the
chain. This mechanism defines a type of consensus that emerges with the passing
of time.

2.1.2 Ethereum and smart contract advent

Nowadays there are hundreds of blockchains deployed. Many of them are very similar
to the Bitcoin’s one (even sharing the same codebase). Others, instead, introduced
interesting innovations. One remarkable breakthrough in the field has been brought
by Ethereum [7]. It realizes a platform to the self-enforcing execution of smart
contracts. A smart contract, in this context, is a piece of source code written in
a Turing complete language3. Several high level languages has been introduced to
specify contract code. One of the most used is called Solidity4. Its syntax is similar
to that of JavaScript, and probably from this derives its widely adoption.

3Although the instruction set is actually Turing-complete, the gas-based execution model
adopted by the Ethereum platform imposes tight constraints both on storage and computation
capabilities. Those constraints establish a practical obstruction to the execution of heavy pro-
grams leaving open the question on the effective Turing-completeness of smart contracts.

4http://solidity.readthedocs.io/en/develop/index.html

http://solidity.readthedocs.io/en/develop/index.html


10 Chapter 2. Background on blockchain and smart contracts

Architecture The overall architecture is similar to the Bitcoin one: a peer-to-peer
network supports transaction broadcast and an incentive-driven mining mechanism
secures the system5. Although analogously stored in a blockchain, transactions have,
instead, a completely different structure and purpose.

Account model As opposed to the UTXO model of Bitcoin, Ethereum is based
on the so-called account model. A balance tracks the amount of coins owned by an
account, which is represented by an address related to a private key used to sign
transactions. A value transaction, whose execution is atomically enforced, has the
effect of decrease the balance of the sender and increase the balance of the receiver.

Smart contract lifecycle Smart contract are the code unit whose correct exe-
cution is guaranteed by the platform. If written using a high level language like
Solidity, a smart contract offers a constructor and several methods. In a parallel
with oject oriented programming, a smart contract is a class that has to and can be
instantiated several times. The instantiation process consists in deploying contract
code on the blockchain, such that every peer knows about its existence. As for an in-
stantiated object, a deployed contract gains the possibility to store a state described
by a data structure defined inside the contract itself. Merkle Patricia Tree6 is the
fully deterministic cryptographically authenticated data structure that supports the
data storage in the form of (key, value) pairs.

Methods of a deployed contract can be invoked. Methods invocation allows for
arguments to be passed, according to method signature. An Ethereum transaction
serves the purpose of deploying a contract or invoking one of its methods, passing
in invocation parameters, and possibly taking some coins to the contract. Value
transactions for account model can be thought of as the invocation of method of a
predefined contract that only moves coins from one account to another, updating
relative balances.

Execution model Solidity code is required to be compiled into a low level byte-
code that the Ethereum Virtual Machine (EVM) is able to execute. The virtual
machine runs in each node of the network and processes transactions (contract de-
ployments or method invocations) to verify their correctness. As for Bitcoin, a fee
is associated to each transaction. Each opcode deriving from the compilation of
the high level language has a “gas” cost associated. This is also true for opcodes
that permanently store data in blockchain. The total gas cost can be multiplcated
by a factor, called “gas price”, to establish the actual fee to send along with the
transaction, which will be colleted by the miner that first includes it inside a block.
Gas cost, hence, transaction fee, and block reward are expressed in Ether (ETH),
the cryptocurrency natively supported by the platform. This supports economic in-

5Even though Proof of Work is planned to be replaced in future stages of the project with the
less expensive and more scalable Proof of Stake.

6https://github.com/ethereum/wiki/wiki/Patricia-Tree

https://github.com/ethereum/wiki/wiki/Patricia-Tree
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centive scheme consistency: miners mint new Ethers that sell to transaction issuers
to pay for transaction fees.

Redundant self-enforcing execution Although the fee is collected only by the
miner that includes the transaction in a block, every node can verify the correct-
ness of a transaction by executing the invoked contract code parameterized with
arguments passed through the transaction. This process is analogous to what in the
Bitcoin’s UTXOs model is the verification of the correct unlocking of an unspent
output consumed by a transaction.

Once deployed, a smart contract is uniquely associated with an address (similar
to the one provided to an account) and therefore can receive coin and invoke methods
of other contracts. Code of the deployed instance of a contract is not modifiable,
which might also constitutes a drawback from an applicative point of view. If not
explicitly forbidden by the coded logic, anyone can indiscriminately invoke a method.
Standing the congruency between transaction and method invocation, the economic
incentive scheme that in Bitcoin guarantees value transactions, here ensures contract
methods execution.

Smart contract execution platforms Ethereum has been the first project to
introduce self-enforcing execution of code. Similar projects are being deployed.
Tezos [8], for example, aims to provide a solution to the governance issues (briefly
discussed below) commonly suffered by blockchain related projects. EOS [9], on
the other hand, focus on vertical scaling of decentralized applications (the name
commonly used to refer to those applications that exploit storage and computation
power offered by the decentralized execution platform of smart contracts). EOS
development team claims it can process thousands of transactions per second, as
opposed to Ethereum that in its current development stage can only process up to
hundreds of transactions per second.

The remainder of this work strongly relies on a distributed architecture for self-
enforced execution of code. In what follows it is referred to as “Ethereum-like smart
contract execution platform”.

2.2 Origins

The concept of blockchain, a distributed replicated ledger of transactions, organized
in blocks that are chained one another, has been first introduced in 2008 to support
the Bitcoin [10] system. In this work Satoshi Nakamoto, a pseudonym that hides an
unknown person or group of people, outlines the architecture of a system that allows
for a “purely peer-to-peer version of electronic cash”. A community of developers
gathered around the proposed solution, started to develop and actively maintain the
code base of the Bitcoin client. Nowadays, several hundreds of blockchains has been
deployed. The software ecosystem grew enormously also driven by the enormous
amount of capitals that are channeling into the crypto-economy.
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2.2.1 Distributed consensus meets e-cash systems

Blockchain technology emerges from the intersection of at least two research lines:
challenges of e-cash systems and distributed consensus are addressed simultaneously
resorting to cryptography and game theory principles. In fact, blockchain arises
when the central trusted entity deputed to prevent double spending of coins in early
electronic cash systems was replaced with a special kind of distributed consensus.

E-cash systems In 1983 David Chaum in [11] introduced a blind signature
scheme suitable for common public key signing scheme (e.g. RSA [12]) to support
exchange of digital money. The blind signature scheme is exploited to provide un-
linkability between spend and withdrawal transactions. A trusted central entity,
a bank, intermediates payments to ensure coins are not double spent. Coins fun-
gibility is also pursued by fixing coins denomination (or a predefined set of fixed
denominations, say 0.5, 1, 5, 10, 50, 100 Dollars for example) to avoid payment
traceability thought the payment amount.

This blind signature supported scheme was the trailblazer of a branch of research
in the direction of identifying a viable digital electronic money scheme. The need for
a trusted central intermediary to prevent the double spending of coins, however, has
only been overcome with the advent of the blockchain technology. The significant
contribution of the Chaum’s work is the replacement of the real world identity with
a non-repudiable digital signature in economic transactions, an innovation directly
borrowed by the blockchain technology.

The quest for distributed consensus Research on distributed consensus is
mainly due to the necessity of providing a reliable log replication mechanism among
multiple instances of the same database. Data redundancy, in fact, is the obvious
way to achieve resilience, a crucial characteristic for a database management system.
Since machine failures can’t be excluded from the discussion because they do actually
happen, fault-tolerant approaches have to be addressed. State machine replication
is the commonly adopted approach. One fault can be easily detected is at least three
copies can be compared, and one (the faulty one) results different from the other
two. Consensus come into play when the order of inputs has to be established, so
that, by processing same inputs in the same order, each machine reaches the very
same state.

Although in 1985 it has been demonstrated [13] the impossibility to have deter-
ministic fault-tolerant consensus protocol that can guarantee progress in an asyn-
chronous network (like Internet, where message rounds are not triggered by a central
clock), due to possibility of nontermination of the protocol in presence of even one
faulty process, several advancements have been achieved in the field.

In 1989 (even though only published long after, in 1998) Laslie Lamport intro-
duced Paxos [14], proving that n = 2f + 1 processes suffices to detect f faulty ones.
Paxos ensures consistency and the conditions that could prevent it from making
progress are difficult to provoke. It only addresses technical faults, or fail-stops,
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as opposed to Byzantine failures [15], which includes arbitrary failures of the par-
ticipants (lying, fabrication of messages, collusion with other participants, selective
non-participation, etc.).

In 1999 it has been shown a protocol for “Practical Byzantine Fault Tolerance”
[16] that, provided at most bn−13 c replicas are faulty out of n, exhibits liveness under
certain constraints.

Several Byzantine fault tolerance (BFT) approaches emerges afterwards, among
them Fast Paxos [17] by Lamport again, and Tangaroa [18], a BFT version of Raft
[19], which, in turn, is a consensus algorithm born as an answer to concerns about
the complexity of Paxos, and therefore designed to be easily understandable.

In 2008, the “Nakamoto consensus”, introduced in [10], completely changed the
rules of the game. As opposed to previous approaches, where replicas are known
and limited in number, the Bitcoin’s permissionlessness nature requires BFT solu-
tion to operate in a public network, where new nodes can join any moment with
no authorization. Therefore it is mandatory for the system to be resistant to sibyl
attacks [20]. In such an environment in fact it would be impossible to count faulty
and properly operating replicas. Proof of Work serves this purpose: establish a
(quasi-)continuous metric space for faulty replicas that allows the system to cor-
rectly reach consensus as long as the majority of the hashing power of the network
is owned by entities that abide by the protocol. As reported before, this consensus
mechanism has a probabilistic foundation, also because leverages economic friction
and incentives. The block emission rate (one every about ten minutes) defines a
quasi-synchronous system where, as shown in [21] in 2016, performances decreases
(more that the simple majority of hashing power is required to converge to consen-
sus) as network synchronization worsens.

Over time different signature rights grant mechanisms than PoW appeared. Al-
though PoW proved itself practically viable, the energy consumption [22] of the
PoW-based mining process has attracted many criticisms and stimulated the re-
search of analogous mechanisms which do not involve the resolution of cryptographic
puzzle. Proof of Stake (PoS) [23, 24, 25, 26], which actually represents a whole
panorama of different approaches, is one of the most interesting solution. Signature
rights are gained in proportion to the amount of coin owned by the signing entity
that as in PoW, also defines which transactions are included into the block. This
constitutes an incentive to not behave maliciously by including invalid transactions
into the block since it would imply a decrease of the market value of the coin (owned
in quantity) by the signer.

2.2.2 Anatomy of a blockchain

Six fundamental aspects characterize a full-fledged blockchain.

Replication Any node who is allowed to operate transactions can also read the
whole ledger. Relevant for fault tolerance and accountability.
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Integrity Nodes can verify that data structure is integral and has not been tam-
pered with. This is achieved with authenticated data structures.

Authenticity Cryptographic signatures provide authenticity and non-repudiation
for any change committed to the ledger.

Publicity Network can be open for any party to join. If not, it is “permissioned”
blockchain a registration/identification policy or process is required before
accepting new nodes.

Consensus How nodes reach consensus on the ledger. Public open networks rely
on PoW (or variants such as PoS). Private networks usually have multiple
validators.

Governance Governance and authority over codebase and protocol. Usually
trusted upon known individuals or companies.

2.3 Open issues

Blockchain is a young technology. Many issues have been identified over time. Some
of them are critical, others can be conceived as development fronts to be explored
in the near future. Scalability and interoperability are two examples that belong
to the latter category. Scalability issue [27] has to deal with the limited number of
transactions that the blockchain can process and store in the unit of time due to
synchronization mechanism it relies upon. Interoperability addresses the possibility
of moving coins between different blockchains in a secure and trustless fashion.

In what follows, instead, are collected some of the most critical open issues for
the blockchain technology along with the currently known answers or counteracting
practices, when available. Most of them are specifically related to the Bitcoin system
which is the first and most studied blockchain.

Despite soundness and severity of presented issues, blockchain proved itself to be
practically resilient until now: it always succeeded in recover from attacks mounted
in the past, even though the solution required awkward maneuvers from the com-
munity that, to the purpose of quickly resume correct operation, in some cases did
not care to violate basic principles of the technology.

2.3.1 Distribution and permisionlessness

Beside the trustlessness, achieved via ex-post verification of transactions, the most
important feature of the blockchain is its permissionlessness nature. The permission-
less extent of the specific blockchain ultimately depends on the absence of central
authorities and therefore on the distribution of the system. In general, however, dis-
tribution and permissionlessness can’t be considered binary properties or absolute
features: they depend on several aspects. The blockchain in fact is a technology
that succeeds in containing centralization and in this sense it exhibits a high degree
of permissionlessness.
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In [28] it has been shown that they do exist centralization forces in the Bitcoin
blockchain ecosystem mainly concerning the governance of the protocol (decision
making, mining, incident resolution processes, etc.) and it has also been demon-
strated that third-party entities can unilaterally decide to devalue any specific set
of Bitcoin addresses (a process called “coin tainting”) therefore altering the fungi-
bility of those coins. The fungibility issue can be tackled via intermediary services
that mix coins from several transactions making them unlinkable (e.g. [29] proposes
a trustless scheme named TumbleBit) or turning toward blockchains with greater
privacy-preserving gurantees (e.g. Monero7 or Zcash8). The governance issue is
discussed in the following paragraph.

2.3.2 Governance

The highlighted Bitcoin’s governance issues are also reported in [30] where the re-
sulting highly technocratic power structure is stated to derive from the dichotomy
between the governance by the infrastructure (achieved via the Bitcoin protocol)
and the governance of the infrastructure (managed by the community of developers
and other stakeholders). The governance is integral part of the protocol and a cen-
tralized governance process, to some extent, implies a centralization of the protocol
itself and therefore a reduction of the permissionlessness of the system as a whole.

The Bitcoin blockchain, with respect to other blockchains, has the unique char-
acteristic to have been established by a pseudonym subject, Satoshi Nakamoto, that
disappeared short after (with the exception of sporadic contributions in the mailing
lists), leaving the governance exclusively in the hands of the community. To not
have a authoritative reference figure is beneficial for governance decentralization.

On the other hand a central reference figure can be crucial in the case a rapid
authoritative decision is required. An emblematic case was the fork happened to the
Ethereum blockchain as a consequence of theDAO incident [31]. Vitalik Buterin,
the reference figure for the Ethereum community, rapidly made community converge
on the fork decision and the potentially fatal incident has subsided quickly.

However, systemic solutions to the governance issues begin to appear. It is the
case for example of the Tezos blockchain [8], where developers are incentivized to
propose bug fixes and protocol enhancements in the form of deployable code patches
that can be voted to be accepted and integrated. If so the proposing developer earns
a reward. It is an open question whether this approach is definitive or partial, it
clearly represents a further barrier to centralization.

Difficulty to evolve In [32] is pointed out that governance issues arising from
the duality of a technology that needs to evolve but has immutability at its heart,
creates a friction for the evolution of the technology itself. Hence, application-level
innovation is deem as the most suitable type of innovation. The proposed solution
makes use side chains where it would be possible to introduce enhancements to the

7https://getmonero.org/
8https://z.cash/

https://getmonero.org/
https://z.cash/
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protocol of any sort, being guaranteed that possibly bugs would not afflict the main
chain. Unfortunately a modification of the Bitcoin protocol is needed to have such
a system not relies on trusted third parties.

2.3.3 Incentive scheme

Incompletness As pointed out by Emin Gün Sirer in [33], the incentive scheme
underling the Bitcoin blockchain doesn’t cover all aspects. He highlighted fourteen
cases where the altruism of a node is crucial to ensure correct protocol operation.

Instability The incentive scheme at the base of the Nakamoto’s protocol pre-
scribes that miners are rewarded for their work with a fix amount of coins for each
mined block. They can also collect the fee from every transaction included into the
block. In [34] it is questioned that this situation will lead to instability once, because
of the halving process (the block reward amount halves every 210.000 mined blocks
to control coins issuance), the amount of collected fee will be greater than the block
reward. In fact a miner could be incentivized to not include part of the transactions
into the block it is currently mining with the purpose to push other miners to mine
on top of his own block (therefore ensuring its earning) being they able to collect
fee from left out transactions. This open issue is addressed by assuming that the
value of the Bitcoin will constantly grow in time and since the protocol allows to
increase the decimal precision halving process might never stop, so that the block
reward will be always greater than the transaction fees collectable in one block.

Selfish mining This is the name of an attack described in the first instance in
[35], whit which miners owning a strict minority of the computing power each may,
by colluding, earn a revenue larger than their fair share. Rational miners will prefer
to join the malicious group until the computational power owned by the attacking
group becomes a majority, therefore decreeing the Bitcoin system as decentralized
currency.

Several solutions has been proposed to mitigate this attack, in the form of brand
new blockchains based on different protocols (e.g. [36]) but also as slightly modi-
fication to the original Nakamoto’s one. Unfortunately due to the aforementioned
governance issues it is very unlikely that those protocol improvements might seen
the light anytime soon.

2.3.4 Network layer

Being strongly dependent on the peer-to-peer communication, network attacks can
be very harmful for the blockchain. The one known as “Eclipse attack” [37] in
particular allows an adversary controlling a sufficient number of IP addresses to
monopolize all connections to and from a victim node. The attacker can then
exploit the victim for attacks on bitcoin’s mining and consensus system, includ-
ing N-confirmation double spending, selfish mining, and adversarial forks in the



2.3. Open issues 17

blockchain. Although proposed countermeasures can make more difficult to mount
such an attack, they do not provide total shielding.

2.3.5 Immaturity of smart contract languages

According to the distributed execution model introduced by Ethereum smart con-
tract, the low level bytecode is executed by the Ethereum Virtual Machine (EVM)
that runs on each node of the peer-to-peer network. Despite the hype around this
technology several issues has been exploited over time to mount dangerous attacks
[38] and only recently a rigorous formalization of the EVM executable semantics has
been proposed [39].

High level languages have been proposed to save developers to directly facing the
bytecode. The most adopted, Solidity9, owes its success to its easy of use. Behind
the familiar syntax hides a different programming model and dangerous pitfalls with
it. The syntax may result ambiguous in some circumstances [40]. Bugs have been
and continue to be reported and fixed [41]. It is a strict design requirement that it
must not be possible to alter the execution code of smart contract. Therefore the
only known approach to remedy to a contract that contains a bug in it, is to stop
to use it and, if possible, replace it with an amended version.

Despite the multitude of high level contract languages, most of them seem to ad-
dress syntax, in an effort to keep it simple, or similar to other well-known languages,
rather than to ensure the required security guarantees.

Formal verification tools have been introduced (e.g. Securify10 for Ethereum
smart contract) to cope with this insidious language drawbacks.

9https://github.com/ethereum/solidity
10https://securify.ch/

https://github.com/ethereum/solidity
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This chapter introduces the state channel construction retracing the important
developing steps that have brought the technology to its current state and provides
some practical examples.

3.1 Principles of operation

State channels are one of the proposed solution to the blockchain scalability issue.
State channels are only implemented at application level and therefore they do
not require any change of the underling blockchain protocol and are immediately
deployable. They achieve scalability by moving some transactions off-chain. The
blockchain results unloaded from the burden of processing and storing off-chain
transactions. A comparison between the on-chain and off-chain interaction model
is shown in Figure 3.1.

A private association The off-chain interaction model dictates that (at least)
two entities enter in a private association and, beside an initial and conclusive inter-
action with the blockchain, they directly exchange messages between them. Those
direct messages correspond to transactions that are not sent to and not processed
by the distributed network of peers, and consequently not stored on the distributed
replicated ledger.
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Figure 3.1: Differences between the on-chain and off-chain interaction model.

Consensus mechanism In its most simple form the off-chain association involves
two parties and from here derives the name channel commonly adopted to refer to
these constructions. Since only two parties are involved the most simple consensus
mechanism can be applied: everyone agrees on everything. Both parties are in fact
required to explicitly agree on the exact sequence and validity of the transactions
issued on the channel. Mutual agreement is expressed by means of a digital signa-
ture. As long as asymmetric cryptography assumptions hold, a signature work as a
not disownable mark of acceptance for the signed data.

Succinct summary To actually pursue scalability, the conclusive interaction with
the blockchain has to take to the blockchain only a “succinct summary” of what hap-
pened during the off-chain interaction between parties. It must be succinct to not
burden the blockchain, while at the same time contain enough information to recon-
cile the off-chain history with the on-chain one. Therefore the mutual agreement is
actually expressed on the outcomes of a transaction rather than on the transaction
itself. In the payment use case, for example, parties mutually agree on their balances
after each payment transaction. Each party signs and locally stores a data struc-
ture containing the current balance of both parties. This data structure actually
describes the current state of the channel.

Channel opening At opening time, parties interact with the blockchain to record
the starting point from which the off-chain interaction branches. This operation
often (always in case of a payment channel) involves the locking of funds. In this
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case it can be considered as a collateralization of the channel. At closing time those
funds will be reallocated according the off-chain interaction.

Channel closure The underling blockchain knows nothing about the off-chain
interaction. At closing time, the off-chain history has to be reconciled with the on-
chain one. The last off-chain state, signed by both parties, therefore not repudiable
by none of them, can be presented to the blockchain to settle respective positions.
To allow the underling blockchain to deterministically recognize the correct last
state agreed upon during the off-chain interaction, even in case one party decide to
cheat presenting an old and possibly more favorable state, both parties must have
the opportunity to independently declare which state they consider the last one.
Provided that, the blockchain makes the verdict. To minimize the on-chain trans-
actions number, under the optimistic assumption that parties want to collaborate
and save on-chain transaction costs, a simple scheme that involve a grace period is
adopted. This scheme allows to further unload the blockchain, by saving one on-
chain transaction in case of both parties behave honestly. The scheme is articulated
as follows: one party makes its assertion, the other has a time window to possibly
rebut with its own declaration. An honest party that agree with the first assertion
have nothing to do but wait until the grace period expires. Nevertheless the second
statement can also be malicious and it is up to the blockchain to deterministically
decide the conclusive state.

State order The blockchain decision on which state is the rightful one is based
on a total order relation which has to be established and agreed on the sequence
of off-chain states. This fundamental feature is achieved differently according to
the storage model and language expressivity of the underling blockchain. For the
UTXO model, it is achieved exploiting timelocks, i.e., the capability to “susped”
a transaction by making it valid only after a certain time (or block height) in the
future. Considering two transaction that consume the same UTXOs, the order
between them is established, by assigning to the newer one a lock time lower than
the old one. Being valid before the old one, the newer one consumes the UTXO that
will be not available later on when the old one becomes valid.

For blockchains with Turing-complete scripting languages, a sequence number
can be conveniently inserted in the agreed upon data structure along with the in-
formation actually describing the channel state.

Disincentive to cheat Similarly to the underlying blockchain, whose security
highly relies on an economic incentive scheme, state channels may benefit from the
introduction of such a structure. In fact, knowing that a punishment may result
from broadcasting a wrong state, a rational attacker abstains from cheating. This
disincentive scheme allow to save additional transactions to be broadcast since, in
absence of malicious behaviors, arguing on-chain transactions are not required.
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A possible, and often adopted, punishment consists in assigning all the funds
blocked in the channel to the honest party depriving the malicious one of all its
funds, regardless the assignment stated by the last state.

Again, the mechanism adopted to ascribe blame depends on the specific
blockchain model: it relies on explicit and easy-understandable data structures when
the underling blockchain is supported by a Turing-complete scripting language, con-
trarily it requires a complex scheme based on trees of pre-signed transactions in case
of UTXOs non-Turing complete blockchains.

A two party ledger A state channel can be, therefore, thought of as a two-party
ledger where each party stores the current state and possibly previous double signed
ones (for the UTXO non-Turing-complete blockchains) to counteract malicious be-
haviors. Signatures of both parties are essentials to prove not repudiable mutual
agreement on a specific state.

Advantages of state channels The off-chain simple consensus mechanism does
not involve miners: no transaction fee are needed and therefore no confirmation
time has to be waited. Furthermore, the off-chain interaction is only known to the
involved parties until the closing of the channel. Hence, if the specific use case
is suited for a point to point and continuous interaction, the adoption of a state
channel instead of directly relying on the blockchain results in cheaper, faster, and
more private transactions.

Security model These advantages come at the cost of a radically different security
model with respect to the blockchain one. In particular, while for the blockchain
to securely store private keys associated with the account suffices in abiding by
the security requirements to guarantee no one can lose funds, for state channels a
continuous monitoring activity must be endured along the whole life of the channel.
A party, in fact, has to constantly observe the blockchain to rapidly detect the
counterparty maliciously closing of the channel. Once detected, the honest party
has also to make a move: it has to broadcast the correct state within the closing
grace period. To fail in this monitor-and-react activity may imply a loss of funds
since in the absence of different information, the blockchain takes for good the last
state assertion of the malicious party.

3.2 System model

State channels are designed within the context of a decentralized blockchain that
supports the trusted execution of smart contracts according to the Ethereum-like
smart contract execution model.

Blockchain The blockchain is considered as an integrity protected and immutable
root of trust. It is the decentralized database that contains a global view of account
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and their balances as result of their transactions. Each account in the ledger is
controlled by its own private key. Only the owner of the account knows the relative
private key that uses to authorize transactions from its own account. Without the
knowledge of the private key, no authorization can be granted on transactions that
originate from an account. Authorized transactions modify the distributed ledger
and are available to other accounts after a block is generated, on average every
predetermined blocktime T . Finally it is assumed that a transaction inserted into a
block b is permanently stored in the ledger after R blocks are generate on top of b,
i.e., the probability of a chain reorg that comprises more than R blocks is assumed
to be 0.

Smart Contracts State channels also require a smart contract execution envi-
ronment in addition to primitive ledger transactions that transfer balance from one
account to another. Ethereum-like smart contract are allowed to hold a balance in
the ledger, and control it according to their code. The code of a deployed smart
contract is assumed to be not modifiable. Furthermore, a result obtained in explicit
violation of the contract code is not accepted on the global ledger.

Communication Network The availability of reliable, integrity protected com-
munication network (e.g. TCP connection) is assumed to support off-chain end-to-
end interaction of the parties involved in a channel.

3.3 Usability concerns

There are two fundamental concerns about the usability of state and payment chan-
nels.

The first one regards the opportunity cost of funds blocked in the channel. The
opportunity cost is paid since an amount of capital is locked in the channel instead
of being invested somewhere else, where it can have more chances to return an in-
terest. If a channel is prematurely closed due to the uncooperative behavior of one
party, the opportunity cost of locked funds during the closing grace period is com-
pletely wasted. Although negligible in value for one unsuccessfully interacting (or
for a few of them) the economic loss related to several repeated abortive interac-
tion can become considerable. For this reason it is advisable to open channels with
counterparts whose reliability is reputable.

The second critical aspect addresses the necessity to constantly monitor the un-
derlying blockchain to detect a malicious or fraudulent attempt to close a channel. It
calls for a radically change of the behavior of a node with respect to the blockchain
security model. A node involved in a channel has to actively and continuously
monitor the blockchain, even if it has no operation to perform. This establish an
obstruction in usability since, for example determines a limitation in the develop-
ment of mobile trustless solutions. Mechanisms to support the trustless delegation of
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this monitor-and-react activity have to be studied in the next future, possibly driven
by some form of economic incentive or friction to cheat for the delegate entity.

3.4 Micropayment channels for UTXO-blockchain

Micropayment channels are the first example of off-chain architectures to have been
introduced in an attempt to have cheaper and faster transaction on the Bitcoin
blockchain, while at the same time increase its transaction throughput.

The very fist appearance of payment channel was by Jeremy Spilman [42], that
propose a viable scheme to back them in a discussion on “Anti DoS for tx replace-
ment” in April 2013. As detailed in the resulting article on BitcoinWiki1, the use
case is about a client of a cafe that wants to use the untrusted WiFi access point
(AP) to connect to the Internet. In the proposed example the client is willing to
pay 0.001 BTC per 10 kilobytes of usage, without opening an account with the cafe.

Provided that transactions can be “paused” until a certain time in the future by
means of the nLockTime field, the aforementioned use case can be easily supported
by this interaction: as the client keep using more and more kilobytes from the AP, it
signs and broadcasts a transaction that consumes the same UTXO (or set of UTXOs)
but with decreasing nLockTime. Each transactions of this series, with respect to
the previous one, credits more coins to the AP and less to client as change. All the
broadcast transactions remain in mempool (the replicated data structure holding
valid but still not confirmed transactions) until the first nLockTime expires. Last
broadcast transaction has the shortest nLockTime and therefore is the only one to
be confirmed. Following transactions are invalid since the output has already been
spent by the last one and are therefore invalid.

Unfortunately, to keep time-locked transaction in mempool makes the network
vulnerable to DoS attack and therefore in 2013 this behavior has been changed.
Spilman introduced the very first micropayment channel in an attempt to support
anyway this specific use case even after the modification of the nLockTime behavior.

Short time later, in June 2013, Mike Hearn announced [43] to have implemented
the Spilman’s approach in the BitcoinJ2 library. Described channels are unidirec-
tional: a payer can make server payments toward a payee up to the initially locked
amount, but not receive payments. Full duplex micropayment channels have been
introduced almost simultaneously in [44] and [45].

In [44] the construction is supported by a pair of unidirectional channels, one
for each direction. Each party sees one inbound and one outbound channel, to
receive and send payment, respectively. When the outbound channel is depleted
and the payer is unable to perform any further payment even though its balance
on the inbound channel is higher than zero, the structure can be reset. The reset
procedure involves only an off-chain interaction and makes available the inbound

1https://en.bitcoin.it/wiki/Contract, Example 7: Rapidly adjusted micro payments to a
pre-determined party.

2https://bitcoinj.github.io

https://en.bitcoin.it/wiki/Contract
https://bitcoinj.github.io
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amount to the outbound one, so that further payments are again enabled. This
operation is supported by a data structure called invalidation tree, that ensures
that only one path from the root of the tree is first valid by means of timelocks.

In [45], instead, a different approach is adopted to enable duplex channels. In this
case the structure relies on the possibility of revoking commitment gave on a previous
transaction. Transactions are deemed invalid when other signed transactions exist
to “steel” inputs from maliciously broadcast transactions, actually punishing the
misbehaving party.

The complex structures required to support duplex micropayment channels are
a direct consequence of the UTXO model.

3.4.1 Network of micropayment channels

Both full duplex channel solutions [44, 45] are defined in the perspective of realizing
a network of micropayment channels where multihop payments enable a node to pay
a not directly connected one, as long as a path with enough capacity can be found
from the source to the destination.

Atomicity of the payment is ensured by Hash Time Locked Contracts (HTLC).
An HTLC bind a payment to the knowledge of the preimage of a hash function. The
payment path is established from the destination back to the source. Only then the
source reveals the preimage to the destination that pull funds from the path. Each
node pulls from the previous one revealing the preimage. This atomically enforce
the payment. In fact, each pair of nodes involved in the payment path can either
cooperatively update the channel by invalidating the HTLC based transaction and
replace it with a commitment one of the same amount, or, in case the counterparty
should not cooperate, closing it. In the latter case, the knowledge of the preimage
ensures the enforceability of the HTLC and therefore that no party loses funds.

3.5 Channels for arbitrary state

The innovation introduced by the Ethereum platform on the blockchain ecosystem
has also affected the channel construction. With respect to the UTXO model, the
account model and the enhanced expressivity of smart contracts to control accounts’
balances lead to the definition of channels easier to deal with and that borrow some
properties of the underling technology. As opposed to the UTXO model, where
unspent outputs have to be singularly unlocked, the capability of smart contracts
to execute any custom logic allows for the off-chain handling of an arbitrary data
structure, or a “state”, and from this the common name adopted for this construction:
state channels.

3.5.1 Propose/accept scheme

The need for signatures of both channel participants on each state update results in
an off-chain interaction scheme that in this work has been named propose/accept.



26 Chapter 3. State channels

The scheme is rather simple: one party propose an update of the arbitrary data
structure, sending the signed updated state to the other. The recipient, after a
validity and correctness check, sends back its signature to testify non-disownable
acceptance of the proposed update. At the end of the process both parties holds
the signature of the counterparty on the last state.

The software client that supports off-chain interaction implements the pro-
pose/accept scheme by offering two endpoints. They can be conveniently named
propose and accept (possibly with a suffix or a prefix). With the former one the
client listen to new state update proposals from the counterparty, the latter, instead,
is to receive its acceptance on a previously proposed update.

3.5.2 Challenge/reply scheme

Security of the channel construction is ensured by the fact that the ultimate root
of trust, the underling blockchain, can correctly determine which is the last state
parties agreed upon. This is supported by a grace period at the end of the off-
chain interaction during which each party can independently state from its own
perspective which state it considers the last one. While this ensures security for
the payment use case, when an arbitrary data structure is supported, this scheme
may not suffice. Arbitrary state implies arbitrary behavior of the channel (actually
arbitrary agreement between parties, as shown in Chapter 6). To this end, a tool to
enforce the counterparty to accept or propose a state is required.

The challenge/reply scheme serves this purpose. It is triggered when one party
issue a challenge by broadcasting an on-chain transaction along with some data
useful to instruct the practice. A reply period is also associated with the issuance
of a challenge: if the challenged party fails to reply on-chain within this period, it
can be punished and the channel closed.

Since the smart contract knows nothing about the off-chain interaction, the
challenge can also be issued maliciously. In this case the issuer that can be punished
if the honest challenged party presents a proof to allow the blockchain to ascribe
blame to the issuer within the reply period. A couple of practical examples are
provided underneath to clarify the scheme in greater detail.

In-depth analysis of the informational asymmetry among involved parties, i.e.,
channel endpoints and supporting smart contract, may benefit from a rigorous for-
malization. A staring point has been identified in [46], where a model for interactive
unawareness is proposed, but further investigation on these aspects are certainly
needed.

3.5.3 Example 1: state channels for payment

In what follows is outlined how a payment channel can be implemented on a state
channel backed by a smart contract executed by an account based blockchain with
Turing-complete scripting language.
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The channel is opened between Alice A and Berto B. The state is represented
by a tuple of three elements: < i, βAi , β

B
i >, where the first element is the sequence

number of the state, the second element is the current balance of A and the third
one is the current balance of B. Signatures (σ) are represented as subscripts of the
signed data structure. Superscripts specify the endpoint (A or B) and subscripts
indicate which state update number a symbol refers to.
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Figure 3.2: Example of cooperative behavior in a payment state channel.

Figure 3.2 shows how the protocol proceeds. After the two parties join the
channel sending the amount they want to lock to the supporting smart contract, a
first off-chain interaction must occur and the current state of the channel become
< 1, 1, 1 >(σA,σB). If one party refuses to accept this first state update proposal,
a smart contract method closeNoOffChainInteraction allows to collect injected
funds, possibly applying punishment to the unresponsive party.

Then two payments are performed according to the propose/accept scheme.
Going into deep for the first one, with the propose_send_payment A sends
< 2, 0.5, 1.5 >(σA) to B, which accept the payment by answering with his signa-
ture of the proposed update σB2 . At the end of this interaction both A and B own
< 1, 0.5, 1.5 >(σA,σB).

The second payment in the example, which is also the last one, possibly after
a series of n, is triggered by A to receive an amount of 0.2. Hence, it is actually a
request of payment, a possibility enabled by the propose/accept scheme. Interaction
proceeds similarly to the first payment and once accomplished both parties own
< n, 0.7, 1.3 >(σA,σB). Note that the total balance of the channel is a state invariant
and can be regarded as a integrity check.
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With instruct_channel_closure A triggers channel closing. She takes the
correct last agreed upon n-th state represented by < n, 0.7, 1.3 >(σA,σB). The grace
period starts in this moment and since B has nothing to argue can simply wait for
the grace period to expire. After that the smart contract allows A to collect 0.7 and
B to collect 1.3.
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Figure 3.3: Example of malicious behavior in a payment state channel.

Figure 3.3 shows the same interaction just described but A try to close the chan-
nel bringing an old state more favorable for her: < 1, 0.5, 1.5 >(σA,σB). Therefore,
within the grace period, B has to inform the smart contract about the existence of
the more recent state < n, 0.7, 1.3 >(σA,σB). Since A signed the n-th state update,
she can not disown she agreed on that state. By comparing the sequence numbers
of the two states, the smart contract punishes A and assigns all the channel balance
to B immediately.

IOUs flow in channels It is worth noting that during the off-chain communi-
cation parties do not exchange coins. They actually exchange promises of coins,
fulfilled after the closure of the channel. Those promises are often called IOU (from
the sound of the sentence “I owe you”). Security guarantees of the channel construc-
tion ensure that an involved actor that diligently abides by the protocol is sure to
see those promises fulfilled at the closure of the channel.

3.5.4 Example 2: state channel with arbitrary state

The off-chain state shared between parties involved in a state channel can be any
arbitrary data structure. There are some peculiar differences with respect to the
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payment channel example described above that is worth to highlight. In what follows
is shown how to exploit a general purpose state channel backed by a smart contract
that runs on account based blockchain with Turing-complete scripting language to
play a tic-tac-toe game 3. Two players put their symbols (◦) and (×) on a three by
three grid representing the game board. The game proceeds in alternate turns. The
first player who aligns three symbols of his own wins the game. The ◦ always starts
with the first move. In the example the two players (◦) and (×) bet coins on the
outcome of the game. They inject the same amount of funds in the contract, play
the game interacting off-chain and, once the game is ended, the contract assign the
whole amount to the winner, or redistribute it in case of draw.

Although some of the contract methods described below can be merged together,
they are left separated for the sake of clarity. The objective here is not to optimize
transaction cost or minimize on-chain transaction number but provide an example
to understand operation and pitfalls of off-chain constructions. Furthermore, for
the sake of clarity the off-chain version of the tic-tac-toe game is introduced starting
from a completely on-chain version of the same game.

The on-chain version The supporting smart contract, in this case must provide
the following methods: join, to join the game and bring the amount to bet; move, to
make a move, the contract only receive the move if it is a valid one, i.e., the player,
in its own turn, put its own symbol in a empty board slot; check_victory to let the
contract verify the victory of one party and consequently assign funds; withdrawval
to withdraw funds from the contract; check_opponent_dropout to check is a player
has abandoned the game once a move timeout has expired. Furthermore, a data
structure that store a serialized version of the game board and some variables to
track the state of the game are involved.

join

jo
in

move

mo
ve

...

check_victory

withdrawal

mo
ve

move

Figure 3.4: Tic-tac-toe example: on-chain cooperative behavior.

Figure 3.4 shows how a cooperative on-chain interaction might proceed, from the
joining of the parties until the withdrawal of the winning one. After both parties
have joined, they make moves until a player wins. The winner makes the contract
acknowledge the victory and withdraws the won amount (player ◦ in the example).

3The reader not aware of the rules of the game is refered to the relative Wikipedia article:
https://en.wikipedia.org/wiki/Tic-tac-toe.

https://en.wikipedia.org/wiki/Tic-tac-toe
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Every interaction correspond to the invocation of a contract method by means of
one on-chain transaction.
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Figure 3.5: Tic-tac-toe example: on-chain uncooperative behavior.

Figure 3.5 outlines instead how the interaction proceeds when one party ceases
to collaborate, player × in the example. Every move has a timestamp from which
a dropout_timeout start counting. Since Ethereum-like smart contract are only
reactive, the check on the timeout expiration is actually done ex-post, when the
active player invokes the check_opponent_dropoutmethod. The abandoning player
is acknowledge as the loser by the contract and the active one is finally allowed to
withdraw funds.

The off-chain version The client that handles the off-chain version of the tic-tac-
toe game offers the following endpoints to support direct communication between
players: propose_move, to propose a move to the counterparty; accept_move, to
provide the signature to the counterparty and therefore accept the proposed move.
Those endpoints could have been implemented as one single endpoint, exploiting
the response to a proposal to reply with the signature. However, to clearly show the
interaction, it has been preferred to separate responsibilities.

The off-chain state is represented by the tuple < n, s1, . . . , s9 >(σ◦
n,σ

×
n ,)

which
contains the sequence number n, a serialization of the game board slots, s1, . . . , s9,
and signatures of both players.

The supporting smart contract is more complicate than the one that backs the
on-chain version. The on-chain state of the game is described by the following
variables: uri_o and uri_x, to store endpoint physical address and therefore allow
for a direct communication4; bet_amount, to specify the amount parties are re-
quired to bet on the specific instance of the contract; challenging_grace_period
and closure_grace_period, to store grace periods duration; game_state, to
track the game state (Init, Unmatched, Running, Challenging, Ended, Aborted);
withdrawer, to store who is entitled to withdraw funds, the winner or the at-

4It is obvious that a production version of this contract should also provide management meth-
ods, for example to modify an endpoint physical address, conversely overlooked in what presented
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tacked honest party, if punishments have been applied to the malicious one;
challenge_data, to store details about the last challenge issued and possibly non
resolved yet;

The off-chain game is backed by the following methods: join, to join
the game bringing the amount to bet; challenge_start, to challenge an in-
active player to make the first move; reply_start, to cooperatively reply to
a challenge_start; error_propose, to report counterparty proposed an in-
valid move; challenge_propose, to challenge the counterparty to propose its
next move; reply_propose, to cooperatively reply to a challenge_propose,
providing the next move; report_challenge_propose, to report a maliciously
issued challenge_propose; challenge_accept, to challenge the counterparty
to accept the last proposed move; reply_accept, to cooperatively reply to
a challenge_accept, providing the signature on the last proposed move;
report_challenge_accept, to report a maliciously issued challenge_propose;
abort, to let the contract evaluate the effective expiration of a grace period and,
if so, abort the game; end, to let the contract evaluate a conclusive state, either a
victory or a draw one; withdraw, to withdraw fund from the contract;

Since the smart contract completely ignores off-chain interaction, proofs that
accompany a challenge method call generally include the last state on which both
parties agreed upon and information on the subsequent pending state which is the
actual reason of the challenge. The state checkpoint is needed to allow the chain to
evaluate the correctness of the pending state. However, one malicious party might
try to checkpoint an old state in an attempt to fork the off-chain history. The
attacked party that detects such an attack must report this behavior to the con-
tract (through report_challenge_propose or report_challenge_accept method)
showing the correct most recent state on which both parties agreed upon. As usual,
agreement is testified by a digital and un-disownable digital signature on the state
data structure.
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Figure 3.6: Tic-tac-toe example: off-chain cooperative behavior.

Figure 3.6 shows how a cooperative game should proceed. Parties join the game,
they interact off-chain through the propose/accept interaction scheme. One party
wins, informs the contract about its victory and withdraws the won amount.
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Figure 3.7: Tic-tac-toe example: off-chain uncooperative behavior.

Figure 3.7 shows what happens when a party definitively abandon the game.
In the example player × drops out after receiving a proposal of a new move from
player ◦. As opposed to what happens in the on-chain version, the timeout can’t
start autonomously and therefore an on-chain interaction is needed to mark an
instant from which start counting. The challenge_accepts issued by player ◦ serves
exactly this purpose. Once the grace period has expired, player ◦ can conclude the
game and withdraw the amount won by opponent abandonment.
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Figure 3.8: Tic-tac-toe example: off-chain challenge reply.

Should the opponent have not definitively abandoned the game but, for example,
only suffered from a technical fail that it managed to resolve within the challenge
grace period, it replies to the challenge via the reply_accept contract methods and
the interaction can continue off-chain until the end of the game, as shown by Figure
3.8.
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3.5.4.1 Security pitfalls

According to the presented off-chain scheme, a rational adversary is not able to
cause damage to an honest party that diligently abides by the protocol. The intrinsic
transaction costs associated with the issuance of a challenge along with the awareness
that the challenge scheme, when correctly followed by the honest party, will certainly
punish a malicious challenger, deter such a behavior. Conversely, if an irrational
adversary is assumed, security guarantees have to be relaxed. In fact, an irrational
adversary is willing to lose its money to the purpose of seeing the honest party
economically damaged. An example of irrational active behavior is obtained when
one party, after having proposed a new state update and also received the acceptance
from its honest counterparty, proceeds anyway to challenge it on-chain. The attacker
pay the transaction cost but the honest party is obliged to pay transaction cost as
well to take the signature it had already conveyed to its malicious counterparty
on-chain.

It has to be mentioned that also the underling PoW blockchain will fail to with-
stand an attack mounted by a hypothetical irrational adversary that controls enough
computational power. This situation is extremely expensive to be realized nowa-
days, at least on the most capitalized blockchains (Bitcoin, Ethereum) therefore the
economic loss of the irrational attacker would be huge and, hence, it constitutes
a strong disincentive. Unfortunately, for state channel, this quantitative argument
doesn’t hold. If an endpoint of a state channel behaves irrationally, it may cause an
economical damage to the honest one. Nevertheless, the honest party may be paid
back by the allocation of the whole channel balance, if punishments are applied.

Irrational passive aggressive behavior A special and extremely harmful case
of irrational behavior is the one defined passive-aggressive. According to [47] in fact,
while an aggressive behavior leaves some proofs on the ground and, therefore, simple
to detect and punish and consequently to be discouraged, the passive behavior is
the most difficult to detect and disincentive.
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Figure 3.9: Tic-tac-toe example: off-chain passive aggressive behavior.
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With reference to the tic-tac-toe game example provided before, Figure 3.9 de-
picts how player × should act to exhibit an irrational passive aggressive behavior.
The irrational attacker, player ×, remains passive and forces the honest party, player
◦, to challenge him on-chain and player × wait until the very last moment before
to issue the on-chain reply. Then the attacker returns passive and wait until player
◦ issues an on-chain challenge to stimulate the state update proposal by player ×,
which remain passive until the very last moment before to reply on-chain. This
sequence of events may be repeated in loop, therefore determining the most harmful
situation for state channel. Player ◦ may not prefer to close the channel since, as
in many games, she anticipates the outcome of the game and estimates herself in
an advantageous position. Hence, the attacker is forcing the honest party to pay
more and wait longer than he was not mounting the attack. Even worst, due to the
propose/accept protocol that requires two interactions to progress of one move, the
honest party is being penalized in terms of costs and time also with respect to the
plain on-chain interaction.

The smart channel protocol introduced in Chapter 6 of this work tackles with
this drawback of state channels by enabling the honest party to require a seamlessly
migration of the off-chain interaction toward the on-chain interaction model, which,
being mediated by a smart contract, is immune to the irrational attack.

3.5.5 Deterrent code

It is worth noting that a very peculiar kind of source code emerges from the imple-
mentation of smart contracts that support state channels. In this work it has been
defined deterrent code. It is a code that best fulfills its function when it is never
executed. To not have it in the code base means a tremendous security breach,
but once it is there, it is never used. Method report_challenge_propose and
report_challenge_accept introduced before are two practical example of deter-
rent code. They are useful to report a malicious challenger that tries to fork the
off-chain history by issuing a challenge from a past off-chain state. If those meth-
ods were not implemented, those attempts would remain unpunished and a rational
attacker would not be discouraged to mount such an attack. But since they exist,
the attacker is aware that the diligent honest party will argue her reasons and the
contract will punish him. Hence deterrent code, enhances the security level by pro-
moting the threat model from rational to irrational: only by assuming an irrational
adversary, deterrent code is called into question and may be executed. In case of a
rational adversary assumption, instead, the deterrent code is never executed and its
purpose is nothing but its existence.
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This chapter describes a practical construction to achieve payment channels that
can be hot-refilled and from which funds can be hot-withdrew. With the hot-refill
procedure one endpoint can arbitrarily decide to inject more funds into his side of the
channel. Hot-withdrawal, on the other hand, is the dual procedure of hot-refill that
allows one party to independently pull out funds from a channel. These procedures
do not introduce any halt or delay with respect to a standard payment channel
workflow in the cooperative scenario. The proposed architecture prevents a skewed
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channel to be closed and reopened, therefore saving all the on-chain transactions
needed for those purposes.

Inextinguishable channels rely on the detach/attach scheme which allows to de-
tach (or isolate) part of the balance of an account into a token. The token can be
later on attached (or merged) to the account’s balance. The scheme can be used
to move funds from an off-chain balance to an on-chain one. The hot-refill and the
hot-withdrawal of funds is realized by selecting the source balance other than he
destination balances, i.e., on-chain and off-chain or vice-versa.

The solution is defined at application level and is suited for blockchains with by
Turing-complete scripting language, since it requires enough expressivity to support
the interactive challenge schemes that settle possible off-chain disputes.

The remainder of this chapter is articulated as follows. Section 4.1 introduces the
motivations behind inextinguishable payment channels. Section 4.2 reports about
related work. Section 4.3 provides details about the proposed interaction scheme.
A security analysis is presented in Section 4.4 and details on system usability are
discussed in Section 4.6. An overview of the proof of concept implementation is
provided in Section 4.5. Finally, Section 4.7 outlines future developments.

4.1 Motivations

A payment channel can become skewed preventing one party to make any further
payment. As pointed out in [44], this situation is especially likely to happen at the
edge of a payment network where, due to the characterization of the players, that
can be merchant or customer, the majority of payments flows in one direction. In
this scenario, inextinguishable channels pursue blockchain scalability and payment
channel usage optimization. In fact, if a frequent payer is able to refill a channel
and similarly a party that often receives payments can pull out some funds from it
any moment, the necessity to close and reopen the channel vanishes. In this way
several on-chain transaction can be saved, namely: i. old channel closing (1 tx); ii.
residual funds withdrawal (1 or 2 txs, depending on the particular implementation);
iii.channel opening (1 tx); iv. new channel funding (1 or 2 txs, depending on the
particular implementation). Furthermore, a skewed channel that needs to be closed
and reopened also entail a the waiting of a closing grace period before the parties can
regain possess over their locked funds. This implies one of the two followings: 1) the
opening of the new channel has to be postponed until the end of the closing grace
period of the old channel; or 2) parties have to sustain capital advance to fund new
channel with funds different from those locked into the old channel. These drawbacks
are avoided by using an inextinguishable payment channel, since parties continue to
use the very same channel and refill and withdrawal operations seamlessly interleave
with payments.
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4.2 Related work

Inextinguishable payment channels are in line with previous advancements in the
fields. Since their introduction, solutions have been proposed to avoid the unnec-
essary closing of a channel, provided that the relation between the endpoints is to
continue. Preventing the superfluous closing results in an extension of the channel
lifetime. As reported in Section 3.4, originally channels were exclusively unidirec-
tional. [44, 45] introduced the possibility to have bidirectional payment channels,
while contextually a way to maximize the usefulness of locked funds, i.e., payment
networks, that relying on multi-hop payments allow to send payments to recipients
not directly connected. In [48] is proposed a solution to find closed loops in payment
networks to be rebalanced. If perfect cooperation holds among rebalancing parties,
the process does not require any on-chain transaction and ensures further off-chain
interaction for rebalanced channels. [49] introduces virtual channels, i.e., channels
whose collateral is locked from off-chain balance already locked in a channel and not
from on-chain balance.

4.3 The detach/attach scheme

The attach/detach scheme offers a smooth way for an endpoint of a payment state
channel to move funds from his on-chain balance toward his off-chain one and vice-
versa. The smoothness is ensured as long parties are collaborative and no disputes
arise off-chain. Should parties not converge to an agreement on the off-chain op-
erations, an interactive challenge scheme, that involves the underling blockchain,
guarantees that no one is afflicted by any loss of funds.

Being defined as an extension for state channels, inextinguishable payment chan-
nels share the same system model, introduced in Section 3.2.

For the following explanation it is assumed that Alice (A) and Berto (B) have
established a payment state channel between them.

4.3.1 Principles

The “detach/attach” name synthesizes how the scheme works. Part of the balance
is detached from one kind of balance (the on-chain or off-chain one, depending on
the direction of the transfer) and segregated into a token. A token of this sort,
along with the relative signature, represents a proof of detachment and serves two
purposes: 1) to be attached back into the other kind of balance of the token creator
with respect to the one it was detached from, realizing the seamless transfer of
funds; 2) to be used as evidence during the on-chain interactive challenge scheme
that ensures no honest party can be defraud of owned funds. Hot-refill is realized
when a token is detached from the on-chain balance of an endpoint and attached
back to the off-chain balance of the same party. The effect of a hot-refill is to move
funds from the on-chain balance toward the off-chain balance of a party, refilling
party’s channel balance. On the other hand, hot-withdrawal is characterized by an
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off-chain token detachment, followed by an on-chain token attachment. The effect
of a hot-withdrawal is to move fund from the off-chain balance toward the on-chain
balance of a party, pulling-out funds from party’s channel balance.

4.3.2 Data Structures

Here follows the description of the data structures required by the detach/attach
scheme in order to realize the hot-refill and the hot-withdrawal to and from an
inextinguishable payment channel.

Token A token is a tuple < j, α, ID(owner) >, where j is a sequence number,
α corresponds to the amount of funds represented by the token and ID(owner)

indicates the owner of the token (e.g. the account address in the Ethereum realm).

Off-chain Channel State With respect to the off-chain state tuple described in
Section 3.5.3, the detach/attach scheme requires two optional extra fields. The off-
chain state is then described by the tuple < i, βAi , β

B
i ,H(tknj), [D|A] >, where the

fourth optional element is the hash1 of the token j and the fifth optional element
is one of the two symbols D or A. When D appears, it indicates the detachment of
the token j; when it is the case of A, it symbolizes the attachment of the token j.

Proofs If parties involved in an inextinguishable payment channel do not agree on
the order or on the amount of detached and attached tokens, the party that believes
to be cheated can resort to the underling smart contract presenting or asking for a
proof to reveal and punish the malicious behavior of the counterparty. Therefore it
is required to generate a proof for each step of the detach/attach scheme, namely a
Proof of Detachment (PoD) and a Proof of Attachment (PoA). PoDs and PoAs can
be generated both on-chain and off-chain as the detachment and the attachment of
a token can take place both on-chain and off-chain. Here follows a description of
each proof required by the scheme.

On-chain PoD The smart contract permanently stores on the blockchain the
hash H(tknj) of each token j successfully detached from the on-chain bal-
ance of each party. The party that intents to demonstrate she has success-
fully detached a token have to submit to the smart contract the token tuple
< j, α, ID(owner) > so that the contract can compute again the hash and
execute a membership test on the set of on-chain detached tokens it holds.

Off-chain PoD It is generated through an off-chain state update. The detach-
ment of the token j is wired into the new state and accepted by means

1Generate with a collision resistant hash function applied on a standard serialized form of the
token tuple. A valid procedure would be to apply the SHA3-256 algorithm on a marshaled version
of the tuple, where each field is prefixed with its byte length. Although this implies an upper
bound for the number of allowed refills, this number can be chosen arbitrarily large.
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of a signature by the counterparty. For example, being the state i de-
scribed by the tuple < i, βAi , β

B
i , . . . >(σA,σB) (dots means that it does not

matter if a token has been detached or attached at this point), the de-
tachment of a token < j, α, ID(A) > entails a state update of the form
< i+ 1, βAi − α, βBi ,H(tknj),D >(σA,σB), which also represents the PoD. The
signature of B on the state update testifies to the smart contact his undeniable
acceptance of the token j off-chain detachment operated by A.

On-chain PoA The smart contract permanently stores on the blockchain the hash
H(tknj) of each token j successfully attached to the on-chain balance of each
party. The smart contract can therefore autonomously verify if a token has
already been attached on-chain or not, thus avoiding any reply attack on token
attachment.

Off-chain PoA It is generated through an off-chain state update. The attachment
of the token j is wired into the new state and accepted by means of a signature
by the counterparty. For example, being the state i described by the tuple
< i, βAi , β

B
i , . . . >(σA,σB), the attachment of a token < j, α, ID(A) > entails a

state update of the form < i+ 1, βAi + α, βBi ,H(tknj),A >(σA,σB), which also
represents the PoA. The signature of B on the state update testifies to the
smart contact his undeniable acceptance of the token j off-chain attachment
operated by A.

4.3.3 Hot-refill

Say that A is the channel party that is performing the hot-refill. The operation
is then achieved by 1) detaching the refilling amount from the on-chain balance
of A and 2) attaching it back to the off-chain balance of A. The output of these
two operations is a couple of proofs: an on-chain generated PoD and an off-chain
generated PoA, respectively. Those proofs have to be used in case a dispute arises.
In particular, PoD is needed by A to show that a certain amount of its on-chain
balance has been token-segregated in the case B should refuse to attach it back to
A’s off-chain balance. PoA, instead, is useful for B to show that he has already
provided his consent to the off-chain attachment of the specific token, should A

maliciously challenge B on-chain. The process is summarized in Figure 4.1 and
detailed in the next paragraphs.

On-chain Proof of Detachment generation This step is labeled as 1 in Fig-
ure 4.1. It consists of an action required from A toward the smart contract to
generate a token j and to store into the blockchain its hash H(tknj).

To thwart any malicious attack from B, A must store the token tuple until B
has signed a state updated where the token is attached, as detailed in the next
paragraph.

It is worth noting that an identifier of the channel is omitted, for the sake of
readability, from the above description and from all the constructions of Figure 4.1:
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Figure 4.1: Hot-refill procedure for inextinguishable payment channel.

the state updates i, i+1 and the token. However, it is of pivotal importance to avoid
that a PoD or a PoA could be used in a different channel joined by same parties
with the same pseudo-identities (addresses). The same holds for the next paragraph
and for Figure 4.2.

Off-chain Proof of Attachment generation This second step, labeled as 2 in
the Figure 4.1 produces an off-chain PoA. It can be used afterwards by B to answer
a challenge maliciously issued by A pretending to have never seen its token attached
back to ts off-chain balance. Since this reply attack can be mounted by A any
moment, B must store the PoA until the channel is closed.

To attach the token back to the off-chain balance, i.e., to generate the PoA
means, for the attaching party, to get her off-chain balance incremented by the
token mount α. The attaching party is therefore incentivized to propose the state
update where the PoA is generated.

4.3.4 Hot-withdrawal

The hot-withdrawal can be conceived as the hot-refill dual process. Figure 4.2
depicts how it works. Say that A wants to withdraw part of her balance locked in
her side of the payment channel with B. The withdrawal is achieved by 1) detaching
the withdrawing amount from the off-chain balance of A and by segregating this
amount into a token and 2) attaching it back to the on-chain balance of A. The
output of these two operations is a couple of proofs: an off-chain generated PoD
and an on-chain generated PoA, respectively. The PoD is used by A to certify to
the blockchain that B agreed on the withdrawal. The PoA, permanently stored by
the blockchain, makes it impossible to A to redeem the same token more than once.

Off-chain Proof of Detachment generation A generates a token of a certain
amount α out of the channel state by proposing a state update where its balance
is decreased by the same amount it is reported that this particular token has been
detached (operation labeled as 1 in Figure 4.2). This particular state updated signed
by B represents an off-chain generated PoD.
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Figure 4.2: Hot-withdrawal procedure for inextinguishable payment channel.

There is no need for A to store this off-chain generated PoD after it has been
replaced by a newer state update. In fact, the hot-withdrawal last step, namely,
the on-chain token attachment, described in the next paragraph, only requires an
interaction with the blockchain and can’t be by tampered by B.

On-chain Proof of Attachment generation This second step, labeled as 2 in
the Figure 4.2 produces an on-chain PoA. A presents the PoD to the smart contract
that permanently store the hash H(tknj) of the token j only if it has not been
already redeemed. This prevents any further token attachment attempts by A.
Since the proof is stored by the blockchain, there is no need for A and B to store it
off-chain.

4.3.5 Continuous operation

As long as the parties are collaborative, the proposed approach does not require
any halt of the channel operativity during hot-refills and hot-withdrawals. Once
separated from the original balance (either the on-chain or the off-chain one) and
segregated into a token, the amount that has to be refilled or withdrew not interfere
with the payment channel anymore and payments can be issued without concerns
for the pending token.

In particular, the on-chain attachment operation required by the hot-refill pro-
cedure is perfectly compliant with a standard payment operated on the channel
according the propose/accept scheme. It comprises a proposal of a state update
from the refiller and the acceptance of the counterparty (A and B respectively in
the previous example).

A tricky condition is configured when there are several pending tokens, i.e.,
tokens that have been detached but not attached yet, and one party requires to
close the channels. This situation is detailed in the next Section.
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4.4 Security analysis

The detach/attach scheme is designed as an extension to be applied to a viable
implementation of a payment state channel. The smart contract that supports the
state channel is addressed to resolve disputes that may arise off-chain.

In what follows it is shown that additional parts with respect to state channel
implementation, namely the hot-refill and the hot-withdrawal procedures, do not
change the security model of a state channel: an honest party that diligently follows
the protocol is able to protect itself from losing its funds.

Since resorting to the blockchain to resolve off-chain originated disputes implies
transaction costs that depend on executed instructions and stored data, the chal-
lenge scheme is designed to minimize those costs and only requires the very minimal
amount of information to be taken on-chain in case of disputes.

4.4.1 Threat model

The adversary is considered to occupy one endpoint of the channel and its objective
is to damage the honest counterparty whose private keys are however correctly and
securely stored and not accessible to the adversary. The adversary is considered
irrational in the sense that to pursue the objective of damaging the honest party
it is willing to lose its funds, partially or even totally. The kind of damage such
an adversary can cause is to make the honest party to lose its funds, partially or
totally.

4.4.2 Guarantees for honest parties

Under the aforementioned adversarial assumptions, an hones party that carefully
follows the protocol does not incur any loss of funds. As for a standard payment
channel, in case of an attack, what is lost is the opportunity cost of the locked
capital. In fact, malicious counterparty behavior compels the honest party to close
the channel waiting for the closing grace period to expire. However, the capital
opportunity cost is often considered negligible also by virtue of the small amount
of funds that is suggested to lock in channel with an unknown, and possibly not
trusted, counterparty.

4.4.2.1 Balance conservation

This property holds if every rightfully detached token is attached back exactly once.
This main property is ensured by the following ones.

4.4.2.2 Token attaching enforceability

The enforcement of the token attachment is only required in the hot-refill procedure,
since the attachment procedure involves an interaction with the counterparty that
may refuse to sign the state updated where the token is reported as attached. In
the hot-withdrawal procedure, on the contrary, the attachment is performed by
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the blockchain itself, and, as long as the withdrawer owns a valid PoD, it can
autonomously proceeds and an adversary can not interfere in any way.

Focusing on the hot-refill procedure, if the counterparty refuse to collaborate
by signing the state update that attaches back the token, theoretically the refiller
may enforce the adversary to attach the token by challenge it on-chain. In practice,
however, the refiller that detects non-collaborative behavior from the counterpart
may prefer to close the channel despite still having even if it still has a pending token
to attach. The scheme guarantees that even in this case the honest party does not
suffer any fund loss. Details on this specific situation are provided underneath.

As for standard payment channel, to lose a challenge may imply that all the
channel balance is awarded to the winning party as a form of punishment for the
loser and simultaneously as a disincentive to issue wrong or invalid challenges that
can be most likely lost.

Pending tokens at channel closure Once the channel closing procedure is trig-
gered by any one of the two parties, a grace period starts in order to allow possibly
pending tokens to be redeemed directly on-chain. A transaction has to be issued
to take a pending token on-chain. This clearly involves transaction fees to be paid
and determines an intrinsic economic incentive to contain the number of pending
tokens. Ideally hot-refill and hot-withdrawal operations should be purely sequential:
a new one should be triggered once the previous is completed, resulting in only one
pending token at a time.

Channel closure attack The granted possibility to redeem pending token on-
chain during the channel closing grace period may be used by an adversary to
mount an irrational attack. It could exploit this time window to present on-chain
a number of already off-chain attached tokens (i.e., token generated to fulfill an
hot-refill) pretending to not having redeemed them yet. Without any precaution,
the honest party may be obliged to reply to each challenge, wasting the relative
transaction costs. To tackle with this attack after the first lost challenge of this kind
the attacker is punished losing all the balance in the channel, that is automatically
closed.

4.4.2.3 Token re-attaching immunity

Hot-refill case Should the adversary propose to attach back a token which has
been already attached previously, the honest party must refuse to sign the proposed
state update. If the attacker try to challenge the honest party on-chain by exploiting
the token attaching enforceability property described above, then the honest party
must reply to the challenge producing the PoA it owns.

It implies that all the PoA produced during an hot-refill procedure must be saved
by the counterparty and kept ready to be presented in case of a malicious on-chain
challenge. An analysis of the required storing spaces is provided in Section 4.6.1.
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Hot-withdrawal case In this case the adversary tries to withdraw the same token
multiple time, by presenting it several times to the blockchain. Since at the first
successful withdrawal attempt the blockchain permanently stors the token hash,
and for each withdrawal request a test is performed to verify if the token has been
already redeem or not, all the subsequent malicious attempts beside the first one
are rejected.

4.4.2.4 Malformed token immunity

A malformed token is one that contains an amount different from the one subtracted
from the balance at creation time. To attach a malformed token would obviously
result in a violation of the balance conservation property. Malformed token are not
considered a threat in this context. In fact the token generation is a supervised pro-
cess either in the case of a hot-refill and hot-withdrawal. In the first case the token
is generated out of the off-chain balance and has to be signed by the counterparty
that must only consent to the detachment after a validity check of the proposed
state update and the related detached token amount. In the second case, it is the
blockchain itself that generates the token and, assuming that the smart contract
does not contain errors, a malformed token is impossible to be generated.

4.5 Proof of concept implementation

Proof of concept implementation is based on the Ethereum platform. The smart
contract that support the inextinguishable payment channel construction is written
in Solidity language exploiting the Truffle2 framework. Clients for channel endpoints
are implemented in Node.js.

4.5.1 Overview of contract methods

Listing 4.1 shows the data structures and the signatures of the methods adopted for
the smart contract that implements the inextinguishable payment channel.

contract InextiguishablePaymentChannel {

enum MEMTEST {
ABSENT , PRESENT

}

enum TokenPurpose {
DETACH , ATTACH

}

enum State {
INIT , RUNNING , CHALLENGING , CLOSING , CLOSED

}

2http://truffleframework.com

http://truffleframework.com
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struct Endpoint {
address addr;
string uri;
uint balance;

}

struct StateUpdate {
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose , tokenPurpose

}

struct StateCheckpoint {
uint timestamp;
StateUpdate stateUpdate;

}

struct ChallengeData {
uint timestamp;
StateUpdate stateUpdate;

}

/* ********* */
/* channel */
/* ********* */

bytes32 channelId; // =: contract address

Endpoint A;
Endpoint B;

mapping (address => mapping (bytes32 => MEMTEST)) PoDs;
mapping (address => mapping (bytes32 => MEMTEST)) PoAs;

uint refillNonceCounter;

StateCheckpoint stateCheckpoint;
ChallengeData challenge;

uint challengeGracePeriod;
uint closingGracePeriod;
uint tokenArguingGracePeriod;

mapping (address => uint) drainableAmounts;

/* ************* */
/* constructor */
/* ************* */

function InextiguishablePaymentChannel (
uint challengeGracePeriod ,
uint closingGracePeriod ,
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uint tokenArguingGracePeriod
) {}

/* ***************** */
/* payment channel */
/* ***************** */

function join (string uri)
payable isInit {}

/* ************ */
/* hot -refill */
/* ************ */

function hotRefill ()
payable onlyEndpoints isRunning {}

function challengeAttach (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature ,
uint tokenNonce ,
uint tokenAmount

) onlyEndpoints isRunning {}

function replyAttach (
bytes signature

) onlyEndpoints isChallenging {}

function replyAttachOldState (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature

) onlyEndpoints isChallenging {}

function replyAttachReplay (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature

) onlyEndpoints isChallenging {}

/* **************** */
/* hot -withdrawal */
/* **************** */
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function hotWithdraw (
uint tokenNonce ,
uint tokenAmount ,
bytes tokenSignature

) onlyEndpoints isRunning {}

function challengeDetach (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature ,
uint tokenNonce ,
uint tokenAmount

) onlyEndpoints isRunning {}

function replyDetach (
bytes signature
bytes tokenSignature

) onlyEndpoints isChallenging {}

function replyDetachOldState (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature

) onlyEndpoints isChallenging {}

function replyDetachReplay (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature

) onlyEndpoints isChallenging {}

/* ********* */
/* closing */
/* ********* */

function close (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature

) onlyEndpoints isRunning {}

function closeNoOffChainInteraction () onlyEndpoints isRunning {}
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function replyClosure (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature

) onlyEndpoints isClosing {}

function redeemPendingRefillToken (
uint tokenNonce ,
uint tokenAmount ,

) onlyEndpoints isClosing {}

function argueRedeemPendingRefillToken (
uint seqNum ,
uint balanceA ,
uint balanceB ,
bytes32 tokenHash ,
TokenPurpose tokenPurpose ,
bytes signature

) onlyEndpoints isClosing {}

function redeemPendingWithdrawalToken (
uint tokenNonce ,
uint tokenAmount ,
bytes tokensignature

) onlyEndpoints isClosing {}

function drain () onlyEndpoints isInitOrClosed {}

/* ********** */
/* fallback */
/* ********** */

function () { throw; }

/* ******* */
/* utils */
/* ******* */

function getTokenHash () internal {}

function verifySignature () internal {}
}

Listing 4.1: Solidity contract interface for inextinguishable payment channel.

One instance of the contract supports one inextinguishable payment channel.
Hence, the address of the contract can be adopted as channelId and used both in
state and token tuple to avoid the discussed reply attack.
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Funds are injected into the channel in the first place by the payable3 join
method. As it is implemented to work with native Ethereum currency, ETH, the
amount injected is the transaction value. Future implementations that require to
deal with ECR-20 compliant tokens must introduce an explicit parameter to indicate
the amount of funds injection. The hotRefill method is also payable and represent
the only additional way to inject funds into the channel.

Both hotWithdrawal and drain allow to extract funds from the channel, the
first as the result of a hot-withdrawal process, the second after the channel is closed
or in the case the counterparty never joins.

To pass a state update to a method the following parameters are required
seqNum, balanceA, balanceB, tokenHash, tokenPurpose, signature. signature
is the counterparty signature. It is the only one required to be explicitly provided,
since the issuer signature is provided along with transaction itself. A token is passed
using tokenNonce and tokenAmount parameters. The nonce for refill tokens is gen-
erated by the chain as an incremental number through the refillNonceCounter.
Conversely, it is responsibility of the withdrawer to avoid nonce collision for with-
drawal token as it is the withdrawer itself that generates the nonce off-chain.

The methods named hotRefill and hotWithdraw trigger the hot-refill and the
hot-withdrawal of the channel. The refill procedure generate a PoD, while the with-
drawal generates a PoA. They are stored on-chain in the data structures called PoDs
and PoAs respectively, to be available afterwards in case the smart contract is called
to resolve off-chain disputes. The gas model impose an efficient implementation
for the lookup to check if a token relative to a PoA has already been redeemed
on-chain, that in absence of precaution may be extremely expensive in terms of gas
and, therefore, of transaction fee. For this reason a mapping type is chosen. It is a
dynamically sized array, that can be thought of as a hash table and therefore allows
for an efficient lookup and insertion of a not-predefined number of new elements.
Only the key field of the key → value mapping is used for the purpose.

Most of the aforementioned security guarantees are obtained through interactive
challenge schemes. Two different schemes are implemented: hot-refill off-chain to-
ken attachment and hot-withdrawal off-chain token detachment. Those schemes are
triggered by challengeAttach and challngeDetach respectively. To lose a chal-
lenge results in the loss of the whole channel locked amount for the loser. These
challenge scheme is an example of deterrent code. In fact the party that does not
see his off-chain intent respected by the counterparty would most likely close the
channel. However, a rational player, may result disincentivized to misbehave by the
certainty of the punishment ensured by the challenge mechanism. This not applies
in case of an irrational attacker that remains passive off-chain while still replies to
on-chain challenges regardless the transaction cost they imply, therefore, obliging
the honest one to take the burden of the challenge transaction costs. It is worth
noting that challengeDetach is only accepted if the token is not already redeemed.

3A payable contract method is allowed to receive coins. Received coins are subsequently con-
trolled by the contract logic.
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replyDetach and replyAttach represent positive and collaborative answer to
the challenge. Challenged party provide his signature or signatures to accept the
proposed state update and detached token (only in the case of detaching procedure).

replyDetachOldState, replyAttachOldState, replyDetachReplay,
replyDetachReplay serve to report malicious challenges and are good exam-
ples of deterrent code (see Section 3.5.5).

replyDetachOldState, replyAttachOldState are to be used to report a ma-
licious challenge from an attacker that tries to fork the state update sequence by
challenging the counterparty to attach or detach a token from an old state. The
reply must show the signature of the attacker on a more recent state update (higher
seqNum).

replyAttachReplay has to be invoked with a PoA testifying the token argument
of the challenge has already been attached previously. replyDetachReply is to be
used in the very particular case when the malicious challenger has detached a token
but never withdrew it and challenge the honest party to detach that token again.
The relative PoD presented to the chain resolves the dispute.

The closing procedure, triggered by the closemethod, create a checkpoint of the
last state taken by the closer. The closingGracePeriod allows the counterparty
to reply with a possibly newer state update. If the counterparty has a pending
withdrawal token once the closing procedure has begun, it can be redeemed through
redeemPendingWithdrawalToken method. redeemPendingRefillToken method, to
redeem a refill token, must admit a tokenArguingGracePeriod, shorter than the
closingGracePeriod, within which the argueRedeemPendingTokenRefillToken
must be called by the counterparty to show a PoA of the very same token. The addi-
tional balance relative to the pending token is directly added to the state checkpoint
balance.

Although not mandatory, for the sake of simplicity, the proof of con-
cept implementation only allows one pending token at time (expressed by the
hasRedeemedAfterClosing field of the endpoint structure).

Finally, the drain method allows counterparty to drain residual funds from the
channel and closeNoOffChainInteraction allows one party to close the channel
when the other one never signed a single off-chain state. replyClosure also coun-
teracts malicious invocations of closeNoOffChainInteraction.

4.5.2 Overview of the client APIs

Inextinguishable payment channel construction is implemented as an extension of a
payment state channel supported by an Ethereum smart contract. According to the
propose/accept scheme (cfr. Section 3.5.1), client APIs is composed by a propose
and an accept endpoint.

Although the proof of concept implementation only offers a minimal set of func-
tionalities, the client is of pivotal importance for the adoption of this approach in
the real world. The client must implement the execution of predefined policies that
help in preserving the selected level of trust the user wants to adopt toward the
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counterparty and therefore preserving the opportunity cost of locked funds. For
example, the client may automatically triggers the closure of the channel when it
observe the counterparty asks for a withdrawal of more than a threshold percentage
of the total balance.

4.6 Usability

Off-chain solutions always require a certain degree of trust between involved parties.
Although negligible if channels are collateralized with modest amounts, the cost op-
portunity of locked funds are always paid when an unresponsive counterpart obliges
the honest one to close the channel and wait for the expiration of the closing grace
period. For this reason, leaving untouched the security guarantees of the presented
solution that prevents any involved honest party to lose its funds, it is however
advisable to open an inextinguishable payment channel with a counterparty whose
reliability is reputable.

Inextinguishable payment channels allows an interesting use case where a channel
can be opened with an unknown and untrusted counterparty blocking a very small
amount of funds. Collateral can be subsequently increased as the off-chain relation
between party proceeds correctly and the mutual trust between parties increase as
well.

4.6.1 Storage requirements

Whenever A performs an hot-refill of the channel, B must keep a copy of the re-
lated PoA until the definitive closure of the channel to possibly present it should
A issue a malicious on-chain challenge or try to mount a channel closure at-
tack (see Section 4.4.2.2). With reference to the proof of concept implementation
presented in Section 4.5, the amount of space required to store a PoA is com-
puted by the following expression. A PoA is composed by a state update tuple
< i, βAi , β

B
i ,H(tknj), [A|D] > along with the counterparty signature. Considering a

signature of 65 bytes, unsigned integers of 32 bytes to store the first three fields of
the token tuple, 32 bytes to store the token hash (the fourth element of the tuple)
and overlooking the last field since only PoAs have to be stored, the size of a PoA
sums up to 213 bytes4. 100MB of off-chain storage are therefore enough to secure
more than 460K PoAs. This storage requirement is negligible if compared with the
dimension of the whole Bitcoin blockchain (more than 127GB on October 2017).

4.6.2 Performance analysis

Performance analysis of inextinguishable payment channels are to be measured both
from a systemic perspective and from the point of view of the endpoint of a channel.

4This size also contains 20 bytes for the channel id (the contract address) not shown in previous
examples for the sake of clarity.
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In a cooperative scenario, if a skewed channel has to be unnecessarily closed and
reopened, a plain implementation requires a total of five on-chain transactions: one
to instruct the closing, two for the withdrawal of funds (one for each party) once the
grace period expires and finally two to open and fund a new channel. Sophisticated
implementations may reduce this number by collapsing the withdrawals to only one
on-chain transaction. Inextinguishable payment channel ensures the channel can
continue to operate with only one on-chain transaction to perform the hot-refill
for the depleted side. A second on-chain transaction could also be performed to
withdraw funds realizing a configuration similar to the one obtained after a closing-
and-reopening process. In this case three transactions can be saved to be processed
by the underling blockchain.

An endpoint that, due to the depletion of its side of the channel, results unable
to make further payments also benefits from the possibility of the hot-refill. It can
save up to two transactions. In fact, in the closing-and-reopening process, it would
be required to issue three on-chain transactions, one to instruct the closing of the
channel, one to withdraw residual funds and a last one to join a new channel. On
the contrary, an hot refill only require one on-chain transaction.

On the other hand, the hot-withdrawer saves one on-chain transaction, since the
closing instruction is most likely in charge of the payer.

The on-chain transactions relative to the hot-refill and to the hot-withdrawal
procedure cost slightly more than standard on-chain payment transaction but com-
parable to on-chain channel closing transaction. This is due to the gas model, where
fee is paid for executed instructions and stored data, in conjunction with: 1) the
more complex logic, which is required to verify the correctness of the counterparty
signature on closing state, and 2) the storing of the hash of the token for on-chain
generated PoA.

4.7 Future directions

Some enhancements for inextinguishable payment channels are planned for the next
future. They are related to 1) the possibility of minimizing the storage requirements
for PoA and 2) to the introduction of different type of collateral for the channel.

The mandatory requirement for the counterparty of an hot-refiller of storing
the PoA can be overcome in the next future turning to a mechanism that provides
membership test in constant time and space. This mechanism should be integrated
in the state update as an additional field which is entitled to track PoAs produced
during the life of the channel. Such a mechanism has been identified in the one-way
accumulators [50, 51, 52, 53]. In their original formulation one-way accumulators
are based on RSA’s modular exponentiation scheme and therefore require the fac-
torization of the modulus to be unknown to the party that produce the proof of
membership. Therefore the application of this approach require two accumulators
to be integrated in the state update tuple of the channel: each party initialize an
accumulator and keep factorization private to itself. This enhancement would allow,
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once implemented, to get rid of the necessity to permanently retain PoAs and only
store the last state of the channel as for a standard payment channel.

For the sake of clarity, the detach/attach scheme has been presented taking for
granted that parties collateralize the channel with the same currency, i.e., sent and
received payments are denominated in the same way. The scheme however allows
party to collateralize the channel with any currency, even more than one. This
possibility is especially interesting for the Ethereum ecosystem where multitude of
different tokens are relentlessly been issued.
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In this chapter the detach/attach scheme (see Section 4.3) is extended to sup-
port a hybrid trustless wallet. Wallet architecture encompasses a central hub that
intermediates off-chain payments among its clients.

Trustlessness, conceived as the guarantee that no party can lose its own funds as
long as it diligently follows the protocol, is backed by the extended detach/attach
scheme that ensures atomicity for two-hops off-chain payments through the hub.

Hybrid payments allows new payment scenarios. Off-chain funds locked in a
channel can be exploited to pay an on-chain recipients, either connected to the
same hub or not (off-hub). Also the vice-versa is possible: the recipient of an on-
chain originated payment can use it as a hot-refill for a payment channel already
established.

This solution, as for payment networks, enhances the usefulness of locked funds
decreasing their opportunity cost. If broadly adopted, this approach avoids several
on-chain transactions, resulting in transaction fee saving for clients, and, from a
systemic point of view, in an increase of the blockchain scalability.

The system design and the proof of concept implementation addressed the
Ethereum platform. The presented solution, although discussed without any specific
reference to the underling blockchain, is intended for Ethereum-like smart contract
execution platform (cfr. 2.1.2).

This chapter is articulated as follows. Section 5.1 introduces the hybrid trustless
wallet scheme from a general point of view, discussing project goals, motivations and
related work. Section 5.2 goes into detail of the extended detach/attach scheme.
Section 5.3 provides a security analysis of the system. Section 5.4 describes protocol
usability. Finally, Section 5.5 reports about open issues and future directions.

5.1 Hybrid trustless wallet

Although a “wallet” is formally a software that manages private keys of a user, here
the word is used as a real-world metaphor and refers to the software construction
that helps in managing funds and making payments. The proposed solution does not
handle keys of the user and assumes a software API is available to sign and broadcast
transactions to the underling blockchain. Under these assumptions, the hybrid
trustelss wallet solution allows to perform different kinds of (or hybrid) payments
without the need to trust entities that intermediate the process.

Overall architecture Figure 5.1 shows the hub-and-spoke architecture of the
system. The whole construction is backed by a smart contract that manages on-
chain clients’ balances and supports payment channels. Clients are represented by
peripheral light gray point at the end of the spokes. Two clients, client A and client
B are finer detailed: the figure shows their active payment channels with the hub
and on-chain balances, the latter ones represented as gray circles encompassed in
the smart contract light gray area.
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Figure 5.1: Overall architecture of the system.

Hub The hub is supported by a trustworthy software that interacts with the un-
derling blockchain and smart contract. Since the central hub defines a single point
of failure, it should be redundantly deployed to the purpose of supporting reliability.

An entity that can fund a large enough number of clients’ channels, can decide
to run a Fulgur hub, incentivized by fees it earns for the offered brokerage service.
Entities with such availability of tokens are rapidly appearing in the cryptocurrency
ecosystem due to the ICO (Initial Coin Offering) phenomenon1.

Section 5.4.4 introduces the fee model. Fees are due to the hub by its clients on
a per-transaction basis and also to repay the capital advance the hub has to sustain
to fund channels. This second type of fee can be conceived as a subscription to the
hub brokerage services. It is collected according to a reactive protocol each time a
client perform an on-chain operation on the supporting smart contract (or through
an ad hoc contract method if no on-chain operations are performed by the client).
If a client has not settled its position since a predefined amount of time, the hub can
ask to terminate the relationship with that particular client. This is the only case
where the hub is entitled to trigger a channel closing. If the client is regular in its
payments or simply exploits on-chain hybrid payments, the hub can’t deliberately
close the channel.

Conversely the hub can decide to stop operating as a hub. In this case it notifies
its willing and clients has a predetermined, long enough (e.g. weeks) amount of time

1It is not uncommon nowadays to witness players that after a successful ICO collect huge
amount of funds from the offering of self-minted new kind of tokens. Since the initial offering is
often only partial with respect to the total coinbase generated, a great quantity of tokens remains
available to project owners. Those may be ideal candidates to run a Fulgur hub, since they can
earn from being in the position to sustain the required capital advance, as detailed in the next
sections.
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to close their channels. During this time, the hub must ensure regular support to
client operations.

Clients The relationship between a client and the hub can be thought of as a
“trustless subscription” of the client to the brokerage services offered by the hub. It
is supported by a software that interacts with the underling blockchain and smart
contract. Such a subscription involves a special inextinguishable payment channel
(as presented in the previous chapter) and allows a client to exploit hybrid pay-
ments. As detailed in Section 5.2 hybrid payments offer chap and fast off-chain
hub-intermediated payments toward other clients of the same hub and the possibil-
ity to use channel locked funds to make and accept payments to and from entities
which have not a subscription with the hub.

A client can end the trustless subscription to the hub services any time. In
particular it must be closed, along with the channel, as soon as a client detects
unresponsiveness from the hub, which can be read as a signal of uncooperative
behavior.

Smart contract The smart contract that supports the Fulgur architecture guar-
antees the trustless relationship between a client and the hub. In particular, it has
to be resorted to if something goes wrong in the off-chain relation between parties.
Furthermore, it has several accessory though important responsibilities, it handles:
1) the opening and closing of a client subscription, 2) hybrid payments that involve
on-chain and off-hub endpoints, 3) hub fee collection and 4) the end of activity of
the hub.

5.1.1 Design goals

In what follows are introduced the main design goals.

Trustless payments The essential requisite for a wallet is the certainty, ensured
by the protocol, that honest parties can not lose any funds. This guarantee is often
considered by the crypto-community to suffice in define the system as “trustless” (it
is adopted for example by the Lightning Network construction [45]). In this sense,
Fulgur does offer trustless payments, and diligent players that stick to the protocol
described underneath are never defraud of their funds.

Hybrid payments Hybrid payment is a concept that derives from Fulgur archi-
tecture. A central hub acts as a payment gateway. All the clients connect to this hub
through a payment channel. Every client is provided with two kind of balances, one
on-chain, managed and secured by the supporting smart contract, and one off-chain,
handled as a payment state channel. Figure 5.2 depicts hybrid payments capabili-
ties. Payments can originate from the off-chain balance or the on-chain balance of
a client of the hub and from an off-hub entity which is able to interact with the
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supporting smart contract. These three origin points can be also the destination of
a payment, determining the following eight types of hybrid payment:

1. on-chain _ on-chain payments,

2. off-chain _ off-chain payments,

3. off-chain _ on-chain payments,

4. on-chain _ off-chain payments,

5. on-chain _ off-hub payments,

6. off-chain _ off-hub payments,

7. off-hub _ on-chain payments,

8. off-hub _ off-chain payments.

Hot channel refill and withdrawal Provided that the interaction between a
client and the hub has to continue, the channel must not be closed only because it
is skewed and the depleted side can not make any further payment. An extended
version of the detach/attach scheme supports hot refills of and hot withdrawals from
the channel.

Reactive hub A strict client/server architecture is imposed to the system to the
purpose of preserving clients’ privacy. This choice implies that no information about
user location (client’s node IP address or URL) has to be shared with the hub. The
hub is then not able to directly contact any client but it can only reply to a request of
a client. A client node is not required to be always on-line but only contact the hub
when needed. Furthermore, if the secrecy of physical address is a major concern,
the node can avoid its disclosure by changing it at every interaction (relying for
example on proxy services or onion routing).

Application level It has to be possible to implement the system as an applica-
tion on top of existing technologies. The blockchain governance issues would make
impossible to include any modification of the underlying blockchain protocol. To
keep the design only at application level provides guarantees of the feasibility of the
proposed approach.

5.1.2 Motivations

Tackle with centralization at design time As detailed in Section 3.4.1, one
of the most promising solution to the blockchain scalability issue is commonly con-
sidered to be the deployment of an overlay network of (micro-)payment channels.
However, several concerns arose [54, 55, 56, 57] mainly about the unfeasibility of
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Figure 5.2: Capabilities of Fulgur hybrid payments.
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economic routing of multi-hop payments. Regardless of whether these positions will
be definitively proved as valid or not, what is certainly undeniable is the intrinsic
centralization power of capital forces. Since to open a channel requires to immobilize
funds the opportunity cost, of this action can be optimized by means of economies of
scale. In the next future it will be likely to witness a first phase for payment networks
where an initial hub-and-spoke topology will emerge anyway, precisely by virtue of
the aforementioned capital optimization forces. In the first place for a connectivity
argument: at the beginning the network will be represented by a disconnected graph
and a well connected hub will encourage the establishing of a payment route. In
the second instance, once the connectivity problem will be hopefully overcome, a
payment will result cheaper if only routed through a well connected hub (two hops
required, fee paid for each crossed node) instead of possibly pass trough several hops
of a payment route resulting from a network with not predefined topology. To have
centralization in mind at design time allows to tackle with the unwanted aspects of
centralization and at the same time to take advantage of the simpler architecture.

Hybrid payments to decrease opportunity cost of locked funds The ex-
tended detach/attach scheme plays the same role of Hash TimeLock Contracts
(HTLC) in multi-hop payments over payment networks: it ensures payment atom-
icity. With respect to HTCL, the proposed solution sacrifices some privacy to the
purpose of achieving hybrid payments which help to maximize the usefulness of
funds locked in a channel. In HTLC, in fact, payment enforceability is subject to
the knowledge of the preimage of the application of a hash function, which guaran-
tees payment untraceability. On the contrary, a detached token generated according
to the detach/attach scheme, clearly reports the recipient address.

5.1.3 Related work

The analysis of related work is conducted taking into account six dimensions: cen-
tralization, trustlessness, privacy preserving, versatility of locked funds and efficient
funding. They represent the most crucially aspects for a system that aims to support
electronic money with efficient structures like payment channels.

E-cash system by David Chaum [11], one of the very first attempt to define
electronic money, was a centralized trusted solution supported by a blind digital
signature scheme that makes payments untraceable by the central server (which
most likely had to be an institution like a bank for example).

In [58] a solution is proposed to conjugate benefits of the Chaum’s approach with
payment channels, exploiting blind signatures and efficient zero-knowledge proofs.
The resulting construction is trustless and privacy preserving. Multi-hop payments
are also allowed to enhance versatility of funds locked in channels. Unfortunately,
the channels securing mechanism adopted, inhomogeneous with respect to the un-
derlying blockchain, does not permit hot-refills and hot-withdrawals. Therefore a
channel has to be entirely funded at opening time and a skewed channel has to be
closed and reopened.
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Tumblebit [29] is an anonymous payment hub thought for the Bitcoin blockchain.
The centralized proposed approach offers anonymity properties similar to the E-cash
system with enhanced trustlessness. Users perform off-chain payment through the
hub without the need to trust it. A fair exchange protocol ensures atomicity of each
payment. The particular payment channel structure adopted is unidirectional and
have predefined lifetime since the protocols run in epochs.

CoinBlesk [59] is a bitcoin wallet that uses a central server to realize virtual
payments: realtime payments of small amount that originate from a balance the
client deposits at the server, which is also entitled to handle it in behalf of the
client. Albeit very useful, the adopted approach for virtual payments can not be
considered trustless.

An interesting economic incentive-driven centralized solution is been introduced
by Plasma [60]. It aims to scale transactions by creating side chains that only
interact with the main chain every once in a while. Centralization is tackled with
economic bond and secured ex-post by “fraud proofs”.

A solution for scalable funding of Bitcoin payment channels has been proposed
in [61]. Many parties can jointly block funds at the cost of only one on-chain trans-
action. These blocked funds can be used to collateralize all the possible channels
between a couple of blocking parties. Furthermore, as long as perfect cooperation
holds among all the involved parties, rebalancing of skewed channels can happen.
Although the solution produces great scalability, perfect agreement between parties,
especially if many of them are involved to support maximum scalability, may be a
not trivial condition to realize. Furthermore, no external funds can be injected once
the funding took place.

5.2 Extended detach/attach scheme

It is an extension of the approach presented in Section 4.3 where there are three
players involved. With reference to the overall architecture depicted in Figure 5.1,
they are the two clients, A (Alice), the issuer of the payment, B (Berto), the receiver
of the payment, and the hub H. The payment channel (A,H) is established between
A and H. Similarly (B,H) is the payment channel between B and H. As for the
plain version of the scheme, a Proof of Detachment (PoD) enforces that a payment
is fulfilled and a Proof of Attachment (PoA) guarantees that token attachment
procedure is executed only once. Balance conservation and payment atomicity, that
guarantee hub and clients against the loss of funds, are supported by PoD and PoA:
an interactive protocol that involves the supporting smart contract ensures that
exactly one PoA is produced for each PoD. The system model is same assumed for
state channels and described in Section 3.2.

On-chain data structures For each generic client C, and therefore for each
channel (C,H) of the hub, the supporting smart contract has to handle some specific
data structures: the on-chain balance βββC ; the current capacity of the channelCCC(C,H),
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which, in a non-transitory state, is the sum of the off-chain endpoints’ balances βC

and βH ; a registry RRRoff→on of tokens originated off-chain and attached on-chain; a
registry RRRon→off of tokens originated on-chain and attached off-chain.

Symbolism The following symbolism is adopted in the text. A state up-
date is described by a tuple of five elements enclosed in angle brackets, e.g.
< i, βAi , β

H
i ,H(tknj),D >. The first one represents the sequence number of the

state; the second and the third elements are the balances of the endpoints, possibly
referring a previous value as in the example βi−1A which represents the balance A
had at the state i− 1; the fourth element is the hash of a token which, as indicated
by the fifth element can be detached (D) or attached (A) in the current state.

A token is represented by a tuple of four elements, e.g.
< j, αj , ID(H), texp,OFF >(σA,σH). The first one is the token nonce, which
can be easily thought of as a sequence number; the second is the amount α isolated
inside the token; the third element is a verifiable id of the payment receiver (an
Ethereum address for example); the fourth element is the hash of a token which, as
indicated by the fifth element can be detached (D) or attached (A) in the current
state. The fourth element indicates the token expiration time; the fifth element
states the token type: whether it is redeemable off-chain (OFF), on-chain (ON)
or to be sent off-hub (EX, ÔFF, ÔN). The fourth and the fifth elements of the
token tuple, the id of the receiver and the token type respectively, ensure that the
supporting smart contract can correctly evaluate possibly pending token at channel
closing time.

Signatures are represented as subscript of the structure they seal. The expression
< i, βiA, β

i
H , . . . >(σA,σH) indicates that state update is signed by both A and H. Not

needed or obvious fields are possibly omitted.
For the sake of clarity, the hub id is permanently omitted, both from state

update and token tuple. However it is essential to avoid collision in PoA and PoD
generation, that in turn may affect the trustlessness of the whole system. As an
additional simplification of the notation, the fee that remunerates the hub for its
brokerage service is not mentioned. Section 5.4.4 provides details on the fee model.

5.2.1 Hybrid payments

Hybrid payments supported by the Fulgur wallet can be divided into three cate-
gories: homogeneous payments, mixed payments and external payments. The cat-
egorization is based on the combination of origin and destination balance types
(on-chain, off-chain or off-hub).

5.2.1.1 Homogeneous payments

Homogeneous payments originate from and are directed toward the same kind of
balance. Possible configurations are on-chain _ on-chain and off-chain _ off-chain.



64 Chapter 5. Fulgur: hybrid trustless wallet

On-chain _ on-chain payments This is the most simple configuration to han-
dle, since it is totally delegated to the supporting smart contract. Assuming that
the j-th payment originated by A is of an amount of αj , then the output of the
procedure is the update of the on-chain balances of both payer A and payee B. In
particular, βββAj = βββAj−1 − αj and βββBj = βββBj−1 + αj

Off-chain _ off-chain payments This configuration implies the generation of a
pair of PoD and PoA for the channel (A,H) and one for the channel (B,H). PoDs
and PoAs used in this case are slightly modified versions of the ones introduced in
the previous Chapter (see Section 4.3). In this version, it is H that actually pays B.
A, in turn, precommits to refund Has soon as a proof is shown to certify that the
payment from H to B has been accomplished. The steps of the payment protocol
are detailed underneath.

Payer off-chain token detachment The first PoD is produced on the (A,H)

channel. Let assume that < i− 1, βAi−1, β
H
i−1, . . . >(σA,σH) is the last valid state of

the channel (A,H) before the new payment begins. A detaches the amount she wants
to pay to B out of her off-chain balance on the channel (A,H). This action results
in an update of the state of the channel (A,H) and in the generation of a PoD. The
new state is described by the tuple < i, βAi−1 − αj , βHi−1,H(tknj),D >(σA,σH), while
the PoD is represented by the j-th token < j, αj , ID(B), texp,OFF >(σA,σH) signed
by both A and H. The detaching procedure is triggered by A that contacts the hub
which is listening for new incoming connections. It is worth noting that A’s balance
is decremented by the token amount while the hub’s one is not incremented yet:
part of the balance is detached from this channel and isolated in a token that can
be sent to the receiver.

PoD conveyance A’s PoD is sent by A itself to B, the receiver of the payment.
PoD conveyance has to take place over an out-of-band communication channel. This
means that the bytes describing the PoD can be post via any medium, from an SMS
to a handed off piece of paper on which bytes have been hand written. Although
relying on a RESTful API is the most convenient approach, once the sender has
generated and does own a PoD, no Internet connection is required for him to fulfill
this step.

Payee off-chain token attachment Once the payee has received the PoD
< j, αj , ID(B), texp,OFF >(σA,σH) generated by A, he has to check validity of
signatures and attach the token amount to his off-chain balance of the chan-
nel (B,H). To accomplish this task, B interacts with H proposing a new
state update. Being receiving a payment, B is economically incentivized to
trigger this phase of the protocol. Assuming the last agreed upon state on
the channel (B,H) was < k − 1, βBk−1, β

H
k−1, . . . >(σB ,σH), the new state becomes

< k, βBk−1 + αj , β
H
k−1 − αj ,H(tknj),A >(σB ,σH). This also constitutes a PoA of the
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token to B’s off-chain balance. The hub at this point is economically exposed but
owns a PoA from B that proves payment fulfillment to the supporting smart con-
tract (if a dispute arises). On the other hand, H needs also to show to A that the
payment toward B has been completed. Although PoA could serve this purpose as
well, this would entail to reveal the state on the channel (B,H) to A. To avoid this
information leak, a payment receipt (PR henceforth) is sent by B to H along with
the proposition of the state update that attaches the token. A PR is constituted by
a signature of B on the attached token and represents an undisownable proof that
the payment has been accepted by B. H can show a PR to A without disclosing
any information about the state of the channel (B,H).

It is worth noting that the payment is deemed final in the moment H receives
from B the PR along with the proposition of a state update where the token is
attached. The hub, at this point, owns a PR but has not provided its signature on
the updated state yet. A possibly uncooperative behavior of the hub configures a
security threat analyzed in Section 5.3.

Payment Receipt conveyance (optional) If B is completely cooperative
and a communication channel exists between B and A, B may decide to send back
to A a payment receipt (henceforth PR).

If a PR is returned back to the payer, the subsequent phases of the protocol
result simplified. This step, however, is not mandatory and the protocol succeeds
regardless the collaboration or the actual ability for the receiver of sending back a
PR, since also the hub owns the same receipt.

Hub off-chain token attachment The last phase of the protocol allows
the hub to rebalance its exposed position toward A. It can happen according two
different paths, depending on whether B has returned or not a PR to A. Regardless
of which path is actually chosen, the conclusive state for the channel (A,H) is going
to be < i+ 1, βBk−1 − αj , βBk−1 + αj ,H(tknj),A >(σA,σH), which also contains a PoA
of the j-th token useful for A to defend himself on-chain against a malicious behavior
of H.

Let assume the first scenario, the one where B has actually sent a PR to A.
In this case it is A itself that contacts the hub proposing the aforementioned state
update to conclude the payment process. A is not economically incentivized in an
explicit way to propose the conclusive state update to H. The hub is only reactive
to clients’ requests and therefore unable to trigger this phase by itself. However, the
hub, being in a exposed position, must refuse to fulfill any further request from A

until its exposed position is finally settled. If A decides to not settle despite owning
a PR by B, she is blocked and is not allowed to use her off-chain funds in any other
way. The only thing she can do is to close the channel, which already reports her
correct balance. Conversely, the balance of H is still missing the token amount,
but it owns a PoA from B which can present during the closing grace period of the
channel, thus avoiding to lose funds. Hence, it is not irrational for A to trigger this
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phase and settle the payment process with H and therefore being ready to perform
a new payment as soon as the need arises.

Assuming the second scenario, the one where B has not sent a PR to A, she can
behave in two ways. Assuming a collaborative behavior, she asks every now and
then to H whether B attached the token or not. She proposes to settle as soon as
the answer is positive and a PR is presented by H. Should the answer be negative
once the expiration time texp has passed, A can cancel the payment, as detailed in
the next paragraph.

Alternatively, A ignores the exposed position of the hub until the next inter-
action between them, i.e., a payment has to be received or sent. To proceed with
collaboration with the hub, she has to settle the previous pending payment with H.
This not implies that payments are sequential: the payer can have several detached
(also called pending) tokens even if she is obliged to attach them back as soon as
the hub answers to a request presenting a PR, otherwise she can’t count anymore
on hub’s collabouration in making any further payment.

The hub is only virtually exposed: funds are however locked in the channel(s)
and can not be stolen. To settle its position as soon as the payee attaches the
token or when the payer needs to send or receive a further payment is economically
indifferent for the hub, which is nevertheless guaranteed to not be defrauded of these
locked funds.

Payment cancellation The payer can cancel the payment and withdraw the
pending token. This require an interaction with H which only grants this possibility
to A if B has not already redeemed the token, working as a synchronization point
in between the payer and the payee. If B has already redeemed the token with the
hub, it owns the PR that presents to A and proceeds with the conclusive settle of
the payment. Furthermore, H must refuse a cancellation request also if the token
expiration time texp has not passed yet (as detailed in Section 5.2.4.2).

To cancel a payment the relative token must be attached back to the channel from
where it has been generated. Say for example that A decides to cancel the payment
associated with her j-th token. She proposes an update of the channel (A,H) to H
represented by the tuple < i+ 1, βBk−1, β

H
k−1,H(tknj),A >. Once mutually signed it

constitutes a PoA useful to counteract malicious on-chain challenges. The amount
of the canceled token results added back to the balance of A in the last state update
of the channel.

5.2.1.2 Mixed payments

Every clients C owns two kinds of balance: an off-chain (βC) and an on-chain one
(βββC). The mixed payment scheme enables two possibilities. It allows a client to 1)
send a payment from its on-chain balance to the off-chain balance of the receiver
(βββs _ βr) and 2) to have a payment originated from the off-chain balance of the
sender, conveyed to the on-chain balance of the receiver (βs _ βββr). The off-chain
balance is locked in the channel every client has opened with the hub. In order to
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move funds from and to this kind of balance a client has to interact with the hub,
which in turn has to check and agree on every clients’ off-chain operation in order to
guarantee its own security. The on-chain balance, on the other hand, is under the
exclusively control of the client, which can manage it by interacting with the smart
contract that supports the whole architecture.

Off-chain _ on-chain payments For this kind of payments the protocol requires
an off-chain detached token to be attached on-chain. This two-phase procedure is
detailed in what follows.

Payer off-chain token detachment This step is similar the homonym one
from the off-chain _ off-chain payment case. At the end of this step the channel
(A,H) is in the state < i, βAi−1 − αj , βHi−1,H(tknj),D >(σA,σH) and the j-th token
< j, αj , ID(B), texp,ON >(σA,σH) has been detached, which also constitutes the PoD
to convey to the receiver. As remarked by the last element of the tuple, in this case
the detached token is only redeemable on-chain.

On-chain token attachment A presents the token to the smart contract
that, after some validity and correctness checks, updates the interested data struc-
tures as follows. Capacity of the channel (A,H) is decremented by the payed
amount αj , CCC

(A,H)
j = CCC

(A,H)
j−1 − αj . The on-chain balance of B is incremented by

αj , βββBj = βββBj−1 + αj . The hash of the token is stored in the relative registry,
H(t̂knj) ↪→ RRRoff→on. Stored entry also represents the PoA. In fact, the smart con-
tract, before to attach the token, checks that RRRon→off does not already store the
token hash, aborting the payment otherwise2.

It is wort noting that the state of the channel (A,H), does not need any further
update. The last state on which both A and H agreed upon already report correct
balances for both parties: < j, αj , ID(B), texp,OFF >(σA,σH).

On-chain _ off-chain payments To realize on-chain _ off-chain payments, a
token is detached on-chain and attached off-chain.

Payer on-chain token detachment Since the payment originate from the
on-chain balance of A, the detachment procedure is performed on-chain. A provides
the smart contract with information required to generate the j-th token: the amount
αj and the id of the payee ID(B). The contract: 1) virtually assembles the token
tknj =< j, αj , ID(B),⊥,OFF >, where no expiration time is set; 2) stores the token
hash in the registry: H(tknj) ↪→ RRRon→off, which also constitutes the PoD; 3) updates
the on-chain balance of A such that βββAj = βββAj−1 − αj ; 4) updates the payee’s channel
capacity: CCC(B,H)

j = CCC
(B,H)
j−1 − αj .

2Efficient lookup for on-chain stored PoAs is implemented via a mapping type of the Solidity
language, analogously to what described for in Section 4.5.
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In this case, along with the hash of the token, also the payment amount and
the payee’s id are stored by the registry so that the payee learns about the pay-
ment observing the chain (which he is always monitoring according to the off-chain
architectures security model). No PoD conveyance is therefore required.

Payee off-chain token attachment This step proceeds similarly to the
corresponding off-chain _ off-chain case but the balance of the hub is not
touched by the update. Assuming the channel (B,H) was in the state
< k − 1, βBk−1, β

H
k−1, . . . >(σB ,σH), after the attachment procedure has been com-

pleted, it becomes < k, βBk−1 + αj , β
B
k−1,H(tknj),A >(σB ,σH).

5.2.1.3 External payments

This kind of payments allows for a client to send funds to and to receive funds
from outside the hub. A crucial features, granted by Ethereum-like smart contract
execution platform, is the possibilities for the smart contract to securely move funds
on-chain. For the sake clarity, as shown in the bottom part of Figure 5.2, the off-hub
sender or receiver of the payment is considered to be Carlo (C).

On-chain _ off-hub payments A (a client of the hub) wants to pay C (which
is not a client of the hub) from its on-chain balance. A informs the smart contract
about the amount of the j-th payment αj and address of the receiver ID(C). The
smart contract, atomically updates the on-chain balance of the payer such that
βββAj = βββAj−1 − αj and sends the amount to the payee. Relaying completely on the
smart contract, no additional security concerns arise in this situation.

Off-chain _ off-hub payments A (a client of the hub) wants to pay C (which
is not a client of the hub) from its off-chain balance. H is involved in the interaction
to initially detach the token. Details on the phases of the protocol are provided
underneath.

Payer off-chain token detachment This step is similar the homonym one
from the off-chain _ off-chain payment case. At the end of this step the channel
(A,H) is in the state < i, βAi−1 − αj , βHi−1,H(t̂knj),D >(σA,σH) and the j-th off-hub
token t̂knj = < j, αj , ID(B), texp, ÔN > has been detached. The token t̂knj,(σA,σH)

signed by the both channel endpoints constitutes the PoD to be taken on-chain to
execute the payment.

On-chain payment execution Payment execution starts when A presents
the PoD to the smart contract which: 1) creates a PoA by storing the token in a reg-
istry, H(t̂knj) ↪→ RRRoff→on; 2) decreases the channel capacity CCC(A,H)

j = CCC
(A,H)
j−1 − αj ;

3) sends the amount to C. The presence of the token hash inside the registry is
checked at insertion time to guarantee that a token can not be used more than once.
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Off-hub _ on-chain payments The smart contract completely backs this case.
The external payer C send an amount of αj and the on-chain balance of the receiver
B is updated consequently: βββBj = βββBj−1 + αj .

Off-hub _ off-chain payments Similarly to the on-chain _ off-chain payment,
the smart contract virtually creates a token which is later on attached off-chain by
the receiver of the payment.

On-chain token creation C sends the amount αj to the smart contract that
in turn: 1) virtually assembles the token t̂knj =< j, αj , ID(B),⊥, ÔFF >, where no
expiration time is set; 2) stores the token hash in the registry: H(t̂knj) ↪→ RRRon→off;
3) updates the payee’s channel capacity: CCC(B,H)

j = CCC
(B,H)
j−i − αj .

Also in this case the payee learns about the incoming payment monitoring the
blockchain.

Payee off-chain token attachment This step proceeds similarly to the
corresponding off-chain _ off-chain case but the balance of the hub is not
touched by the update. Assuming the channel (B,H) was in the state
< k − 1, βBk−1, β

H
k−1, . . . >(σB ,σH), after the attachment procedure has been com-

pleted, it is < k, βBk−1 + αj , β
B
k−1,H(tknj),A >(σB ,σH).

5.2.2 Channel closing conditions

Channel closing is the most critical aspect that needs to be carefully handled. In
fact, most of the security of the system depends on the correct conclusion of the in-
teraction between a client and the hub. A channel can be closed either cooperatively
or not.

For the cooperative case, two reasons may trigger the closing: 1) the client does
not longer need to use the channel; 2) the hub has signaled is going to shutdown, and
clients are moving away from the hub, which cooperates in closing all the channels.

Two reasons as well entail the closing of a channel with no cooperation between a
client and the hub: 1) a client has noticed unresponsiveness from the hub; 2) the hub
detects a client has not settled its subscription for an amount of time that exceeds
the agreed terms. This situation may occur if the client has neither performed any
on-chain operation in a while nor she has paid the due fees by explicitly invoking
the specific methods offered by the smart contract. Not cooperative channel closing
is clearly the most delicate case, that involves the checkpoint of the channel state on
the blockchain, with the possibility to rebut it, and the handling of possibly pending
tokens.

Pending tokens Once the closing of a channel has been triggered, it may be
the case that a client has some pending payments and the hub has some pending
positions. Client pending tokens can be of two kinds:
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payer pending tokens tokens that have been detached by the client herself but
not used yet;

payee pending tokens tokens received by the payee as an off-chain headed pay-
ment but not attached yet to his balance3.

A hub pending position derives from an off-chain _ off-chain payment for which
the hub has already paid the receiver, and thus owns the PR, but it is still exposed
toward the sender.

5.2.3 Smart contract requirements

The smart contract underling the Fulgur architecture has to implement the data
structures and methods previously introduced that support on-chain operations re-
quired by the extended detach-attach scheme. Operations such as on-chain balance
handling, on-chain token detachment and attachment are analogous to the related
ones presented in the previous chapter. Two critical interaction with the smart con-
tract are discussed underneath: state checkpointing and on-chain redeem procedure
for pending tokens.

5.2.3.1 Channel state checkpoint and rebuttal

As for a standard payment channels, a snapshot of the last state on which parties
agreed upon off-chain has to be checkpointed to the smart contract at closing time to
reconcile the off-chain with the on-chain history. If a client tries to cheat presenting
an old state more favorable to her, a closing grace period allows the hub to rebut
with the actual last state. The same holds also for a cheating hub that tries to close
the channel with a cheating state after the client’s subscription expires and the hub
can rightfully close the channel.

Contextually with the rebuttal that follows a malicious closing of a channel, the
smart contract assumes elements to ascribe blame to the cheating client or hub.
On the bases of those evidences it can punish the malicious party by allocating the
whole amount of funds locked in the channel by both parties to the honest attacked
one.

As a form of additional punishment, hence as a further deterrent mechanism, also
the on-chain balance of the client can be assigned to the hub in case of a malicious
behavior. The hub has not an on-chain balance and therefore the vice versa does
not apply4. Although it is true that a rational adversarial client would certainly
withdraw all the on-chain balance from the account before to mount the attack, it
would be the signal for the hub to put such a client under “special observation”.

3Inbound payments directed toward either an on-chain balance or off-hub are not an issue since
the smart contract (assumed secure and bug free) is entitled to handle them.

4This asymmetry is consistent with a client being the only one that can deliberately close a
channel. The hub, in fact, can only remove a client as a result of her lateness in paying the due
subscription.
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State checkpoint as single-party claim Once a party checkpoints a channel
state on the smart contract, she is implicitly stating that she is satisfied to withdraw
the balance that the checkpointing state assigns to her. In addition to this amount,
she can take to the smart contract some possibly pending tokens, as described by the
following paragraph. If no dispute arises on state checkpoint and pending tokens,
the smart contract recognizes to the other party the difference between the channel
capacity stated on-chain and the total amount notified by the closing party.

This approach is similar to a two-phase accounting system and can be there-
fore implemented as a single signed integer that reports the balance of only one
party, while the other one can be computed for difference from the channel capacity
reported (and keep updated) on the smart contract.

5.2.3.2 On-chain pending tokens redemption

The smart contract has to support the on-chain redeem procedure for pending tokens
to resolve the regrettable situation where a channel closing is initiated when one or
more pending tokens still exist. Since the contract knows nothing about the off-
chain interaction, an interactive scheme supports the procedure that may happen
only during the channel closing grace period.

Once a pending token has been presented to the smart contract, the counterparty
has an arguing period, that ends with the closing grace period, to possibly produce a
PoA for that token. If the PoA is not presented within the arguing period, the token
amount is considered withdrawable by the party who presented it. Conversely, if
a valid PoA is presented by the counterparty within the time constraint, the party
who maliciously tried to redeem the token is punished and all its funds blocked in
the channel are assigned to the other one.

While a payer pending token can be redeemed on-chain even after its expiration,
this is not true for a payer pending token. The smart contract only accepts a token
from the payee for on-chain redemption if it is not already expired.

Implementation remarks On-chain redeemed tokens are stored in an easy-to-
retrieve data structure as soon as they are presented to the smart contract. In this
way there is no need for a client to issue any further transaction to conclude the
on-chain redeem procedure. One final transaction is eventually required to drain
out client’s funds from the contract ( i.e., off-chain and on-chain residual balance
and the amount due to on-chain redeemed tokens).

The implementation of this logic in a smart contract requires trivial operations:
the counterparty signature verification, required when the last state is checkpointed
or a pending token is presented to be redeemed; the sequence number comparison
between two state, in case of a dispute arises on the actual last state of the channel;
the generation of the hash of a token, the counterparty signature verification on PoA
and the correspondence check in between the generated hash and the one reported
in the PoA presented to argue a pending token redeem process.
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On-chain pending token redemption invalidation via PR Also PRs can be
presented on-chain to testify that a payment has been correctly accomplished and
therefore to invalidate the on-chain redemption of a token. This is only allowed for
the hub and only in two specific cases.

In the first one, the payer conveyed a token to the payee and afterwards tried to
cancel the payment, but the hub did not collaborate. The payer closes the channel
and tries to redeem the token on-chain. If the hub actually paid the payee, it can
present the PR to halt the redeem procedure.

Alternatively, it can be the payer that despite the hub being collaborative, ar-
bitrarily decides to close the channel and redeem the token on-chain.

Since the smart contract is not in the position to ascribe blame to the payer or
the hub for this behavior, when a PR is presented by the hub, to nullify the on-chain
redemption of a token, no punishment can be applied.

5.2.4 Discussion

In what follows are discussed two peculiar aspects of the extended detach/attach
scheme, namely concurrent payments and token expiration timeout.

5.2.4.1 Concurrent payments

On-chain transaction fee has to be paid to trigger the on-chain redeem procedure
for pending tokens. This establishes a direct proportionality between the number
of pending token a client owns at channel closure time and the on-chin transaction
fees she has to pay to redeem all them. Since a token represents a payment in this
model, it emerges a relationship between concurrent payments and channel closing
costs in case the hub is not cooperative anymore. The more concurrent payments a
client wants to operate, the more she is exposed to the risk of paying a high on-chain
transaction fee to redeem all of them.

Fortunately, this argument only applies for outbound payments: the receiver
of the payment, in fact, only considers the payment final once he presents to the
hub the PoA and the PR. Until then he can ignore an inbound payment (it will be
responsibility of the payer to apply the cancel token procedure once the token will
expire). In this sense, off-chain _ off-chain payments are inherently sequential from
the payee’s point of view.

Concurrency for on-chain originated payments On the other hand, both
on-chain _ off-chain payments and off-hub _ off-chain payments configure the
dangerous situation where the payment can’t be cancelled, since the token is de-
tached on-chain. If the hub becomes uncooperative before the payee attaches the
token to his off-chain balance, he may have to pay the on-chain fee transaction to
receive it. In this case the inherent sequential character of inbound payments does
not hold anymore. If several payments of this kind are received and the hub becomes
uncooperative before the receiver attaches them to his off-chain balance, he has to
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close the channel trigger the on-chain redeem procedure for each one of them. How-
ever, it is to expect that such payments, which implies on-chain transaction costs
also for the payer, are not used for micro-payments. They are more likely exploited
for substantial payments and, in the eventuality that the hub becomes uncoopera-
tive before the payment is completed, it is worth to pay on-chain transaction fees
to redeem them. Nevertheless is it advisable for the payer to have some form of
nullaosta from the payee before to trigger the payment, since it could be expensive
for a receiver to close a channel with several pending tokens to redeem on-chain.

A major concern about concurrency of on-chain originated payments regards the
effect of a chain reorganization. The token sequence number of an on-chain detached
token is an input of the contract method that produces it on per-client basis as a
result of its invocation (only if all the parameters pass a validity check, including the
sequence number). The couple (transaction-nonce, tkn-seq-number) defines a
total order over the on-chain generated per-user token set. Once the transaction
is issued, if it has been deemed correct and included in a block by a miner once,
and if a chain reorganization occurs and the previous block is orphaned, it will be
included in a new block sooner o later. Nevertheless, it would be advisable to use
(spend) an on-chain generated token only after a reasonable number of blocks has
been mined after the one in which it has been generated, and the probability of an
on-chain reorganization is considered negligible.

Inherent sequential payments Ideally, however, payments have to occur se-
quentially: payer detaches a new token, thus initiating a new payment, only after
the previous one has been completed. To complete an off-chain payment only re-
quires order of milliseconds in a cooperative scenario. In fact, only five off-chain
interactions, i.e., five http requests/response, are required: 1) [payer ↔ hub] to-
ken detachment, 2) [payer ↔ payee] token conveyance, 3) [payee ↔ hub] token
attachment, 4) [payee ↔ hub] PR conveyance, 5) [payer ↔ hub] token attach-
ment. Concurrent payments are only required when, for any reason, the previous
payment slows down to such an extent that the payer can not delay any longer
the subsequent one. Therefore concurrency is somehow dependent on the resistance
that a payment may encounter, which has to be interpreted as a signal that some-
thing wrong or dangerous is happening and therefore it would be advisable to not
undertake any further payment, at least not toward the same recipient, or even to
cancel the pending one.

This sequential behavior is consistent with the inherent sequential nature of
transactions on the Ethereum platform, where a sequence number (called nonce)
given to each transaction issued from an account imposes per-account transaction
confirmation order.

5.2.4.2 Token expiration time

Token expiration time describes a moment in the future (or a future block number)
until which the payer can’t present the token to the smart contract to cancel it and
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contextually trigger the on-chain redeem procedure. It provides a form of synchro-
nization for the payment procedure defining the moment within which a successful
payment must end. A payee only has to redeem a token that gives him enough time
to evaluate hub collaboration and, if not so, redeem the token on-chain before its
expiration. With respect to the HTLC approach, it is the equivalent of the locktime
of the contract. The existence and the respect of the constraint imposed by the
token expiration time ensure the security guarantees of the system, analyzed in the
next section.

5.3 Security analisys

The proposed solution is designed to prevent any honest participant from losing its
funds despite an irrational attacker is assumed.

Critical conditions The analysis focus on those payments which in at least one
side involve an off-chain endpoint. When the payment is not generated off-chain
or not sent toward an off-chain balance, the security guarantees are backed by the
smart contract that supports the whole architecture, which is assumed bug-free and
vulnerability-free.

Directions for honest clients Every honest client is called to close the channel
as soon as she detects unresponsiveness from the hub. Furthermore, she has to
immediately trigger the on-chain redeem procedure for possibly pending tokens.

The accomplishment of an off-chain headed payment is subject to some activities
to be performed by the receiver side. Since the receiver might refrain to perform
these actions, no guarantee can be provided to the payer on the accomplishment
of such a payment. However, if the receiver is not collaborative in receiving an
off-chain headed payment within a bounded amount of time, the sender is granted
the possibility to cancel it.

Directions for a honest hub The hub has to constantly monitor the blockchain
to detect malicious behavior of its clients. It can have the form of: 1) an on-chain
checkpoint of a wrong state determined by a malicious attempt to close a channel;
2) a malicious attempt of a client to redeem a pending token on-chain. In the first
case the hub has to produce the correct final state of the channel; in the second
one, it has to present to the smart contract the PoA or the PR for the questioned
payment.

Fundamental properties The atomicity of payments and the absence of pending
tokens after channel closing ensure the conservation of balance for the hub and
correct execution of payments for clients. In what follows are analyzed the threat
configurations that may arises and shown that those two proprieties hold for honest
participants that diligently follows the protocol.
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5.3.1 Threat model

An irrational attacker is assumed, that is willing to lose its funds to the purpose of
seeing other parties economically damaged. Depending on the attack scenario, the
irrational attacker can control: 1) the payer, 2) the payee, 3) the hub or a coalition of
two of the previous, namely, 4) the payer colludes with the hub to attack the payee,
5) the payee colludes with the hub to attack the payer and 6) payer and payee
collude to attack the hub. In each one of the previous six deployment configurations
the adversary can be mount rational or irrational, aggressive or passive attacks.
The system guarantees that the honest party that diligently abides by the protocol
is immune to all of the mentioned attack scenarios and can not be deprived of its
funds.

5.3.2 Analysis of threat configurations for off-chain payments

In what follows is shown that the fundamental properties hold for honest parties
despite the irrational adversary takes control of one of the six aforementioned con-
figurations in the most critical scenario of homogeneous off-chain (off-chain _ off-
chain) payments. For each configuration are enumerated plausible threats and how
the proposed scheme counteracts or prevents them.

The adversary controls the payer

Payment attempt via expired token The payer tries to make a payment
conveying an invalid token to the payee. The token can be expired, cancelled or the
expiration time can be imminent, so that the payer can cancel it immediately after
the payee accepts it.

Solution. Token expiration time is reported in the token tuple. A honest payee
must check the token expiration time and refuse each payment made through token
which is about to expire. Obviously, any expired, invalid or cancelled token must
not be considered as vehicle of a valid payment.

Hub settlement prevention Once the hub has correctly forwarded a pay-
ment toward a payee and therefore it owns the PR for that payment, the malicious
payer refuses to settle the off-chain hub position by attaching the token on its side
of the channel between them.

Solution. The hub must stop collaborating with the malicious payer. As soon as
the channel will be closed, the amount of the unsettled payment will be recognized
to the hub thanks to the single-party claim mechanism for channel state checkpoint.
An irrational behavior for the payer would be to not immediately close the channel.
On the contrary, she can indefinitely pay the subscription to the hub services. She
can only exploiting those services that do not require cooperation from the hub (e.g.
on-chain _ off-hub payments). As long as the hub earns the subscription, it keeps
the client even if no collaboration is provided for off-chain interaction.
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Myriad of tokens generation The payer asks to detach a huge number of
tokens, then close the channel and try to redeem all of them on-chain.

Solution. Since the payer is legitimate to do such a thing, the hub as nothing to
argue on-chain and does not spend anything for on-chain transaction fees. After the
channel closing grace period has expired the payer will withdraw all the amount.
The hub has earned from this activity the off-chain transaction fee which is due at
token detaching time.

Discussion. This adversary behavior, if the number of token detaching requests
is beyond the capabilities of the hub, is more dangerous as a denial of service attack,
and has to be counteracted by the hub adopting common precautions.

Malicious pending token redemption attempt During the channel closing
grace period the payer triggers the on-chain token redeem procedure for a token
which has already been correctly exploited to accomplish a payment.

Solution. The hub own a PoA for this token that has to present to the smart
contract that in turn will punish the malicious payer.

Repeated malicious pending token redemption attempts The payer,
after having correctly accomplished several payments, close the channel and tries to
redeem on-chain a large number of already off-chain attached tokens.

Solution. The hub has to correctly reply only to the first malicious on-chain
redeem attempt. After that, the malicious payer is punished and all the other still
undecided on-chain redeem procedures are settled in favor of the honest hub.

The adversary controls the payee

Non-cooperation in payment reception The payee receives a valid token
that he deliberately decides to not redeem.

Solution. The payer can cancel the payment and withdraw off-chain the relative
token after it has been expired (as described in Section 5.2.1.1).

Malicious pending token redemption attempt During the channel closing
grace period the payee triggers the on-chain redeem procedure for a token which has
already been correctly attached to his off-chain balance.

Solution. This threat is similar to the homonym one from the malicious payer
configuration. Also in this case the hub owns a PoA relative to the attachment of
this token and must present it to the smart contract which punishes the malicious
payee.

Repeated malicious pending token redemption attempts The payee,
after having correctly accomplished several payments, close the channel and tries to
redeem on-chain a large number of already off-chain attached tokens.
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Solution. This threat is similar to the homonym one from the malicious payer
configuration and is analogously addressed.

The adversary controls the hub

Non-cooperation in token detachment The hub does not allow the payer
to detach a token to make a payment.

Solution. The payer closes the channel and redeems on-chain all the possibly
pending tokens she owns.

Non-cooperation in token attachment The hub prevents the payee to re-
ceive a payment by not cooperating in the off-chain attachment of the relative token.

Solution. The payee closes the channel and redeems on-chain all the possible
pending token he owns.

Ianus Bifrons attack In this attack the hub, that has received a PR along
with the proposal of a state update from the payee, becomes passive and does not
send back his signature on the proposed update. On the other side, it asks to the
payer to settle his position presenting the PR. The hub has therefore two different
behaviors (as the two faces of the Roman god Ianus Bifrons after which the attack
has been named): it is passive with the payee and aggressive with the payer.

Solution. The payee that detects unresponsiveness from the hub after he has
proposed a state update and has sent it the relative PR, must close the channel and
trigger the on-chain pending token redeem procedure before the token expires. The
payment is considered accomplished.

Non-cooperation in payment conclusion The payer performed a payment
and the payee correctly attached the token but did not send back the PR to the
payer. The hub owns the PR but has become passive toward A. When token expires,
A tries to cancel it interacting with the hub.

Solution. The payer closes the channel presenting the correct last state to the
smart contract. This state reports the correct balance for the payer, but not for
the hub which has not already attached the token amount to his off-chain balance.
However, according to the single-party claim for state checkpoint, the hub receive
the difference between the channel capacity and the balance claimed by the payer,
which is the fair treatment from the point of view of the hub.

The adversary controls the payer and the hub

No additional threats arise from the coordination of payer and payee with
respect to the configurations where the adversary controls only the payer or only
the hub.
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The adversary controls the payee and the hub

Also in this case no more dangerous threats are introduced by the coordinated
versions of those presented in the configurations where the adversary controls only
the payee or only the hub.

The adversary controls the payer and the payee

Uncooperative payer channel closing with many hub unsettled PRs
The payer detaches several tokens, passes them to the payee that attaches all of
them. Then the payer, before the hub settles its exposed position on the multitude
of executed payments, closes the channel presenting the last valid state of the channel
to the smart contract. This state reports the correct balance for the malicious payer
but a wrong one for the hub that due to the non cooperation of the payer, has
several pending PRs to settle.

Solution. The single-party claim for state checkpoint ensures that, after the
malicious payer closes the channel, the hub gets the right balance computed as
difference between the amount claimed by the payer and the channel capacity stored
on-chain.

Uncooperative payer token cancellation with many hub unsettled PRs
This is a variant of the previous threat scenario where the malicious payer, in addi-
tion to close the channel with several unsettled PRs for the hub, also tries to redeem
on-chain all the related tokens. To counteract on-chain redemption of a payer pend-
ing token, the hub has to present the relative PR to the smart contract which can
not ascribe blame and therefore halt the attack. If the irrational payer triggered the
redemption of a multitude of tokens, the hub has to pay the on-chain transaction
fee for each PR it presents.

Solution. The hub must contain the number of concurrent pending tokens al-
lowed for a payer. This number has to be agreed upon at the beginning of the
relationship between the hub and its clients and influences the subscription fee: the
more pending tokens a client wants to have granted, the more a client has to pay for
subscription, since the hub has to take into account the possibility of this irrational
threat scenario. To have a small number of pending tokens, however, is also in the
interest of an honest payer, which in this way reduces the on-chain transaction fee
she has to pay to redeem them if the hub becomes uncooperative preventing her to
cancel them on-chain (if necessary).

5.3.3 Remarks for mixed and external payments

Mixed and external payments that involve an off-chain endpoint can be divided into
two groups: 1) off-chain originated payment (off-chain _ on-chain and off-chain _
off-hub payments); 2) off-chain headed payment (on-chain _ off-chain and off-hub
_ off-chain).
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Mixed and external off-chain originated payments Since the smart contract
verifies the validity of the token used for the payment, threats for this configuration
are analogous to those reported in the previous analysis where the adversary controls
the payer.

Mixed and external off-chain headed payments In this case token detach-
ment is supervised by the smart contract and the payee learns about an inbound
payment by continuosly monitoring the blockchain. Once on-chain token detach-
ment has been accomplished, the payment is considered final and is up to the payee
to attach the token to his off-chain balance. Possible threats in this configuration
are analogous to those previously presented where the adversary control the payee.

Mixed and external on-chain payments For those payments that are com-
pletely supported by the smart contract, namely on-chain _on-chain payments,
on-chain _ off-hub payments and off-hub _ on-chain payments, security relies on
correctness of the smart contract and system model assumptions.

5.4 Usability

In this section are discussed the conditions under which Fulgur would be suitable
for use and which precautions are advisable to adopt.

A client has to instruct the cease of her subscription with the hub and conse-
quently the closing of the related payment channel as soon as she detects a not
cooperative behavior by the hub. Not cooperation of the hub consists in its refusal
to answer to client’s requests or in providing wrong answers.

The hub protects itself by constantly monitoring the blockchain to detect pos-
sibly malicious channel closings and pending token on-chain redeem requests it has
to reply withing the expiration of the grace period.

5.4.1 Token acceptability

A payee has to refuse a payment conveyed through a token with an imminent expi-
ration time. This is because, if the hub becomes not collaborative, the client has to
redeem the token presenting it on-chain before its expiration, otherwise it is refused
by the smart contract. There are two conflicting interests. The payer prefers a
short expiration time. In this way, if the receiver does not redeem the payment, she
can rapidly cancel it, thus minimizing the number of her pending tokens. The payee
prefers a long expiration time that ensures he has enough time to redeem it on-chain
should the hub become uncooperative. However, since it is the payee that decides
whether accept a payment conveyed by a token with a specific expiration time or
not, a payer that tends to adopt expiration times considered too short, sees all (or
most) of her payments ignored by payees. On those payments she pays anyway
the fees to the hub. She is therefore incentivized to set a correct expiration time,
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avoiding in this way to to get her payments rejected and her funds wasted in fees
paid to the hub for for unsuccessful payments.

Minimization of pending token number To the purpose of minimizing on-
chain transaction costs to redeem pending tokens at channel closing time, every
actor of the system has the interest of minimizing the number of pending tokens
in which he is involved. This interest is shared among rational actors: any clear
contravention of this principle has to be interpreted as a possible threat. The hub
act as a synchronization point for payments it intermediates. From the point of view
of a client, under normal and cooperative operation, payments have to be quickly
completed and sequential. The necessity of concurrent payments, and therefore, of
several pending tokens, must be read a warning signal.

5.4.2 Payment finality

A payment, according to the extended detach/attach scheme, is considered final
when one party owns the necessary cryptographic proof to oblige the other to behave
as expected, possibly closing the channel and resorting to the pending token on-chain
redeem procedure. All the steps of the scheme one party accomplished before the
reaching of this critical point can be undone.

The step in which a payment can be deemed final depends on the payment type.
For those types that involve an on-chain interaction, a payment is considered final
once the on-chain interaction has been correctly and successfully concluded.

For off-chain _ off-chain payments, payer deems the payment final as soon as
she receives the PR from the payee, or, if the payee does not convey the receipt,
as soon as the hub provides it. From the point of view of the payee an inbound
payment is considered final as soon as he sends the PR to the hub along with the
state update proposal to attach the token.

5.4.3 Payment anonymity

As long as no involved player reveal its off-chain interaction, the system inherits the
privacy preserving properties of state channels, thus privacy is guaranteed among
clients: each client only knows about transactions in which it is actually involved.
However, the hub in the position to know every transaction made by its clients.
Payment recipient pseudo-identity, namely the recipient address, is contained in each
detached token. Potential clients of the hub must keep in mind this privacy concern,
which determines an intermediate situation between the totally public approach of
the blockchain and the private solution offered by state channels, where off-chain
interaction is only known to the two channel endpoints.

The privacy sacrifice made in this first Fulgur proposal serves the purpose of
allowing the smart contract to easily resolve potential on-chain disputes that may
arise on pending tokens. The recipient address reported in a token can be replaced
with an interactive scheme supported by information asymmetry as for example
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the knowledge of the preimage resulting from the application of a hashing function.
Such an approach would slightly complicate the on-chain resolution of a dispute
but would preserve clients privacy in the case of perfect cooperation. Despite the
knowledge of the recipient identity, the current architecture, that strongly relies on
state channels, requires for the hub to intermediate a payment the precise knowledge
of the payment amount. Payment amount, therefore, allows the hub to link payer
and payee. Chaum’s e-cash system [11] addresses this problem by having payments
made by electronic coins each worth the same amount (or chosen among a fixed set of
predefined amounts). The exploration of this approach is left to future investigators.

5.4.4 Fee model

The entity of capital advance required for the hub to run its business is related to
the sum of its own funds blocked in channels opened with clients. Funds locked in
channels are to be thought as an operative cots for the hub, and may even be higher
that the cost the hub has to support in order to actually update the channel balance,
which involves the deployment and the maintenance of the technology infrastructure.
The hub is actually paying the opportunity cost for its locked funds.

For this reason the fee model distinguishes two different kinds of fee a client
can be charged by the hub: a financial fee, due to the capital advance the hub
has to sustain to operate the channel, and an informative fee, due to the actual
technological operative cost.

The existence of a financial fee introduces a cost related to the length of the
channel lifetime: the longer a channel is operative, the longer the funds are locked,
the longer the hub has to sustain costs induced by capital advance.

While technological operative costs can be estimated quite well given the aver-
age and peak loads, the capital advance required to profitably run a hub is direct
consequence of behavior and needs of the clients.

Hence, those are the concerns of the stakeholders: for the hub manager, to
establish an upper bound to the required capital advance; for clients, to lengthen
the life of channels and therefore avoid to close and re-open a skewed channel and
save on-chain transaction costs. The clients’ concern is congruent with the pursuing
of blockchain scalability by unload it using off-chain transactions as much as possible.

The financial fee is therefore to be paid by a client in relation to the extent
of hub’s locked funds required to ensure off-chain operation. The hub maximum
exposition corresponds to the total amount of incoming payments a client is able to
receive along the life of the channel. It can be integrally collected by the hub at the
channel opening time, being known and agreed upon the maximal amount of the
funds the hub has to block and for how long. Alternatively, it can be the client that
blocks some funds, from which the hub is allowed to collect financial fee as time
passes, according to an agreed fee collection rate. As long as the client wants to
keep the channel open, it has to ensure that funds to collect financial fee from are
available. This approach is comparable to a “subscription” to the hub services.



82 Chapter 5. Fulgur: hybrid trustless wallet

Furthermore the client may state a maximum amount, and actually require
the hub to block only portion of this amount, executing a channel refill when the
necessity arises (further discussed in the next Section 5.4.5). The actual fee collection
strategy put in place for a specific hub is up to the hub manager.

The concept of financial fee is radically different from the fee model of blockchain:
fee for on-chain standard payments are due in relation to the transaction “weight”
(expressed, for example, in terms of bytes for Bitcoin and gas usage for Ethereum).
Off-chain transactions re-introduce a relation typical of the fiat money world where
(often) the transaction fee is due proportionally to the transaction value.

On the other hand, informative fee is similar to the blockchain fee model and is
charged by the hub for each state update required by a client.

It is to expect that once deployed in production, the informative fee will be
negligible with respect to the financial one.

5.4.4.1 Financial fee collection

The financial fee due by a client is collected on the base of a reactive protocol.
Every time a client instructs an on-chain operation, her financial fee is settled until
the invocation time. If no client funds are available to settle her position, the
operation aborts; the client is required to fund the smart contract and re-invoke
the on-chain method. Since the channel closure is triggered via an on-chain method
invocation, this guarantees the settlement of a client position before she can close
the subscription with the hub.

This approach prevents the hub to pay on-chain transaction fees to collect fi-
nancial ones from its clients. It would be arguable if the collected fee is to be
immediately assigned to the hub or set aside until the closure of the channel to be
part of the funds the hub has to be punished on if caught misbehaving. The first
option has been preferred since it contributes to mitigate the economic pressure the
hub is exposed to. Furthermore, since the mechanism to handle skewed channels
(detailed in Section 5.4.5) put the client in the position to control the amount of
funds the hub has blocked on its side of the channel, the client herself can super-
vise this amount suffices in discouraging the hub to cheat, or take action on it by
initiating a channel rebalancing.

5.4.4.2 Usage costs

A client that connects to a hub has to pay a third kind of fee: the one due to the
miner of the underling blockchain to see her on-chain transaction inserted into a
block and confirmed.

Figure 5.3 summarizes for each type of payment supported, who has to pay
which kind of fee to whom. Since financial fee is collected in bulk, it is not reported
in the scheme, which focuses on per-transaction costs.

Light gray dots represents the informative fee possibly due by the payee to the
hub for the attachment of a token, i.e., to complete an inbound payment. It is to
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Figure 5.3: Per-transaction fee model.

expect that this fee is cheaper that the one applied to the payer, (represented with
black dots) or even (most likely) completely absent. Although the system supports
collection of payee fees, it will be responsibility of the hub manager to elaborate the
particular model that best suites his business needs.

Black dots in between parentheses for the off-chain _ on-chain payment repre-
sent the fee related to the on-chain transaction required to attach the token on-chain.
It is paid by the payer if the payment has been initially conceived to be attached
on-chain. Alternatively, the payee pays it if he triggered the alter token procedure
for an original off-chain _ off-chain payment.

5.4.5 Handling skewed channels

When a channel in between a client and the hub is skewed, it may be impossible
to handle a payment of an amount higher than the residual balance. In particular,
depending on which side the channel is skewed, it might be impossible to send a
payment (channel skewed toward the hub) or receive it (channel skewed toward the
receiving client). This condition has to be avoided since it goes against blockchain
scalability. To deal with this situation two mechanisms are defined.

5.4.5.1 Channel constant ratio rebalancing

At channel opening time, the client and the hub agree on the channel contribution
ratio. It is the ratio between the amount blocked by the client and the one blocked
by the hub. An high ratio is preferable for a frequent payer while a low ratio may
be suitable for a merchant, which is likely to receive more payments than it sends.

Following the scheme of an on-chain _ off-chain or off-hub _ off-chain payment
a client can trigger a channel refill. Similarly, using the scheme introduced for off-
chain _ on-chain or off-chain _ off-hub payments, a client can withdraw funds
from his side of the channel. Once the procedure is invoked by the client (the only
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entitled to trigger it), the channel is rebalanced according to the constant ratio. If
the client is refilling, some funds are freed for the hub and vice versa.

If an upper bound has been agreed upon for the economic exposition of the hub,
the procedure only succeeds if the procedure respects the limit.

Since a ratio is involved and smart contract execution platforms (Ethereum in
particular) do not support floating point arithmetic, the implementation introduces
a rounding that can lead to a negligible loss for one of the parties.

This procedure, along with the imposition of a maximum economic exposure of
the hub, allows to unburden the hub of the economic management of the channel
and therefore saving the on-chain related transactions.

5.4.5.2 Alter token procedure

If a client receive an off-chain payment but the channel is skewed and a refill is not
possible due to the reaching of the hub exposition ceiling, the alter token procedure
allow to change the off-chain token into a token redeemable on-chain. The alter
token procedure implies an on-chain transaction for the receiver of the payment. It
can be thought of as an off-chain _ on-chain payment where the detached token was
not meant for an on-chain redemption, and therefore it is the receiver that sustain
on-chain transaction cost. The alter token scheme proceeds akin an off-chain _
off-chain payment for the first part, while the last one resembles an off-chain _ on-
chain one. Details on the four steps required to accomplish the alter token procedure
are provided in what follows.

Payer off-chain token detachment The channel (A,H) is updated
to the state < i, βAi−1 − αj , βHi−1,H(tknj),D >(σA,σH) and the j-th token
< j, αj , ID(B), texp,OFF >(σA,σH) is detached, which also constitutes the PoD to
convey to the receiver.

PoD conveyance At the end of this step B owns the signed token
< j, αj , ID(B), texp,OFF >(σA,σH).

Token alteration As reported by the last element of the tuple, the token at this
point can be only attached off-chain, and the smart contract would refuse it, if pre-
sented. This is to prevent the race condition that would arise if B would try to attach
the token back both on-chain and off-chain. Therefore the hub has to agree on mak-
ing the token only redeemable on-chain. This procedure has been named token alter-
ation and is performed through an off-chain interaction between the payee and the
hub. The signed altered token t̂knj has the form < j, αj , ID(B), texp,ON >(σB ,σH).
Once altered, the standard token can not be redeemed off-chain anymore: the hub
would refuse to attach it off-chain. Furthermore, if B issues an on-chain malicious
challenge to force the hub to attach the token off-chain, the hub must present the
altered token signed by B to testify the previous intention of B to redeem it on-chain
and, consequently, win the challenge.
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Payee on-chain token attachment B presents the token to the smart con-
tract that, after some validity and correctness checks, updates the interested data
structures as follows. Capacity of the channel (A,H) is decremented by the payed
amount αj , CCC

(A,H)
j = CCC

(A,H)
j−1 − αj . The on-chain balance of B is incremented by

αj , βββBj = βββBj−1 + αj . The hash of the token is stored in the relative registry,
H(t̂knj) ↪→ RRRoff→on, which represents the PoA.

If the alter token procedure is put into effect by B, the channel (A,H) does not
need any further update to be settled. In fact, it already reports correct balances for
both parties: the payment amount has been subtracted from the off-chain balance
of A and the channel capacity has been updated consequently.

Notes on security The alter token procedure introduces an attack scenario that
has not been previously analyzed. The hub and the payee may cooperate to the
end of defraud A of her funds. With the cooperation of H, B may attach the
token both on-chain and off-chain. Owning the off-chain payment receipt, H may
also proceed to settle its alleged off-chain exposition on the channel (A,H). This
aggressive behavior of H, however, is easily detectable since its signature is present
both on the altered token t̂knj presented on-chain by B and on the last state update
of the channel (A,H), where the plain (not altered) version has been attached. This
constitutes a proof of misbehaving (PoM) that can be presented by A to the smart
contract to punish the hub by crediting the whole channel balance to her. It is worth
noting that no funds can be stolen by the hub since it is not able to autonomously
withdraw funds or trigger the channel closing.

5.4.6 Storage requirements

To counteract a malicious issued on-chain challenge both the hub and a generic client
have to store PoAs relative to tokens attached by the channel counterparty. A PoA is
composed by a channel state tuple along with a counterparty signature. Considering
an implementation based on Ethereum through the Solidity smart contract language,
the state tuple part of a PoA (e.g. < i, βAi , β

H
i ,H(tknj),A >) can be implemented

exploiting a data structure with the following fields:

1. i (sequence number) - type: uint, 32 bytes length

2. βAi (A’s balance) - type uint, 32 bytes length

3. βHi (H’s balance) - type uint, 32 bytes length

4. H(tknj (token hash) - type byte32, 32 bytes length

5. A (state function) - type custom enum, 8 bytes length

Assuming a 65 bytes length signature, the sizes of individual fields sum up to 201
bytes. Assuming no data compressing strategies are applied, these numbers allows
to secure one million payments with less than 200MB of local storage. Once the
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channel is closed and settled on-chain, relative stored data can be disposed with no
flaws for security.

The choice of 32 bytes length data structure for sequence number and balances
implies an upper bound for all of them. A variable length data structure with infix
size could have also been chosen. This, at the cost of a slightly more complex
implementation, would have introduced an optimization in storage usage, since only
strictly needed bytes are occupied.

This choice for sequence number and balances storing data structure implies
that: 1) after 232 state updates a channel has to be closed; 2) the maximum allowed
balance is 232. Those limited values are large enough to do not represent a practical
obstruction for the protocol.

5.5 Open issues and future directions

Being based on an extended version of the detach/attach scheme, Fulgur would
benefit from the same enhancements already discussed for inextinguishable payment
channels (see Chapter 4 and in particular Section 4.7). The introduction of a solution
to accumulate PoAs in a fixed length new element of the state tuple would limit
storage requirements for clients and hub. Furthermore, payment channels may be
collateralized with different denominations. Once the hub has fixed an exchange
rate, this solution would enable a client to use a coin denomination of its choice to
perform payments through the hub.

One big next step is the definition of a protocol to allow an off-chain payment
to be intermediated by more than one hub, therefore realizing a network of Fulgur
hubs. The extended detach/attach model already provides the guarantees required
for prevent loss of funds in such a scenario: two hubs may open a payment channel
in between them and behave as the first was a client of the second (or vice versa).
However, in absence of a solution to mitigate the entity of capital advance required
to the hub, it is not a viable solution. In fact, it might be the case that all the
clients of one hub require to pay the clients of the other hub. Therefore the channel
between hubs should guarantee enough capacity to accommodate all the payments.
It might imply a demand of a not affordable capital advance for hubs. A solution
for this issue is to be further investigated.
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A state channels is a two-party ledger updated off-chain that allows parties to
share an arbitrary state resorting to a smart contract to resolve possible disputes.
As soon as one party begins to believe the trust relationship has been violated by
the other one, it has to close the channel, presenting to the smart contract the last
off-chain state both parties agreed upon. In this chapter it is show that, for specific
cases and under particular attacks, the state channel solution underperforms with
respect to the on-chain interaction mediated by a smart contract, thus vanishing
typical advantages of the off-chain approach. This is imputable to the nature of
the agreement between parties, that in a standard on-chain interaction is wired into
the smart contract code, but remains implicit when parties are involved in a state
channel construction.
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In this chapter it is shown that opening a state channel always implies an agree-
ment between parties. A classification of these off-chain agreements is therefore
introduced. The Smart Channel protocol is defined to tackle with the most complex
of those categories, the one including an irrational adversary that can mount an
harmful attack. The objective of a smart channel is to perform comparably to on-
chain smart contract interaction in case of attack in terms of transaction costs and
execution time. Furthermore, an operative correspondence is established between
state channels, and the pioneering Szabo’s definition of smart contract.

This chapter is organized as follows. Section 6.1 recalls the required background.
In Section 6.2 is elicited the implicit agreement that stand behind a state channel and
a classification is provided for different types of agreements. Section 6.3 presents the
smart channel protocol. In Section 6.4 provides the security analysis of the protocol.
Finally, Section 6.5 reports about usability.

6.1 Backgound

In what follows is recalled the irrational passive aggressive attack that can be
mounted by a malicious party on a state channel. Furthermore, it is summarized
the pioneering work of Nick Szabo, that in the ’90 introduced the concept of smart
contract from a theoretical point of view. His definition, being free of the constraints
imposed by the technological concretization, comprised some features that are not
present in state channels but are exhibit by smart channels.

6.1.1 Irrational passive aggressive attack

Section 3.5.4.1 describes an example of irrational passive aggressive attack. Such an
attack can be successfully mounted by a channel adversarial endpoint that, to the
purpose of causing a loss of funds for its counterparty, does not care to suffer an
economic damage. The passive connotation implies an interactive scheme where the
attacker voluntarily suspend its interaction. The combination of irrational and pas-
sive behavior produces a dangerous attack scenario: irrationality makes the attacker
indifferent to economic incentives, while passiveness makes the attack difficult to be
detected. As reported in Section 3.5.4.1, if the attack is successfully mounted, the
off-chain interaction results more expensive in terms of on-chain transaction costs
and execution time than the standard on-chain interaction.

6.1.2 Szabo’s view on smart contracts

In 1997 Nick Szabo in his work entitled “Formalizing and Securing Relationship
on Public Networks” [62] extended the concept of smart contract he himself had
introduced three years before in [63]. The multitude of bright ideas introduced have
been (partially) materialized only fifteen years later thanks to the spurring that the
blockchain technology gave to the field.
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Szabo defined smart contract as a digital version of the real world “control proto-
cols”. Control protocols, to use Szabo words, “allow a quarrelsome species ill-suited
to organizations larger than small tribes to work together on vast projects like man-
ufacturing jumbo jets and running hospitals”.

A real world control protocol is composed by the formalization of a protocol, e.g.
a flow of forms, along with checks and procedures called “controls”, that serve the
same purpose of cryptographic protocol: integrity and authorization verification.

This smart digital version of standard contracts must exhibit three main fea-
tures. 1) Observability by principals: complete access must be granted for involved
parties since security guarantees derives from auditability of the contract and related
information. 2) Verifiability by third parties: involved parties must be able to prove
to an adjudicator that a contract has be performed or breached; reactive measures
strongly rely on verifiability. 3) Privity1 to contain information leak and reduce the
surface exposed to attacks: while observability dictates that involved parties must
have complete access to contract information, this possibility should not be granted
to external entities that may exploit them in some malicious ways.

The Ethereum platform renewed the concept of smart contract providing a work-
ing implementation. The reborn concept has an operative connotation, we know
what they are as a consequence of their operation. No theoretic definition or for-
malization has been provided. With respect to this recent, diffuse and accepted
concept, the Szabo’s definition presents significant differences. For the sake of clar-
ity, the Szabo’s formulation of smart contract is hereafter called “Szabo contracts”;
the operative version based on distributed ledgers, instead, is henceforth referred as
“Ethereum contract”. The most evident difference is the focus on privity for Szabo
contracts while Ethereum contracts rely on redundant contract code execution and
public accesses to contracts code, execution inputs and outputs, as a pivotal source
of information to ensure security guarantees.

6.2 Implicit agreements behind state channels

Every off-chain construction implies an agreement between parties, be it a payment
channel or a state channel that supports a complex turn-based game. A payment
channel, for example, implies a pretty simple agreement:

• a payment is sent from one party to the other;

• the amount of a payment is less or equal to the balance that the issuer owns
on her side of the channel at the moment of the payment;

• parties can use the channel as long as one party close it.

The construction guarantees that no party can lose its funds. Although channel
closing can be triggered for no reason, a rational endpoint is likely to close it only

1Szabo conducted a short etymological analysis on the unfamiliar term “privity”. Although some
differences stand, it clearly recalls the assonant and more common concept of privacy.
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for two reasons: 1) the channel is not needed any longer, there is no longer reason
to make frequent payments between parties or the channel is skewed and no longer
exploitable; 2) the trust bond between parties is not standing any longer, one party
is unresponsive or acted maliciously.

A payment channel allows to make off-chain payments. A state channel allows
to handle off-chain an arbitrary data structure2. Those extended capabilities are a
direct consequence of the enhancement of the blockchain capabilities introduced by
the Ethereum platform for the execution of smart contract.

However, the agreement implicitly accepted by the parties involved in the channel
is more important than the kind of data structure that can be shared and managed
by the channel. Data structure is just one part of the agreement, or even less: one
of the several possible instantiations. The “close-at-will” approach well suited for
payment channels, might not apply in case of a more complex off-chain agreement.

A clear, human readable description of the agreement, be it implicit or explicit,
should always go along with every self-enforcing piece of code (of which Ethereum
contracts are an example). Ricardian contracts [64] address this problem and repre-
sent one of the first experience in this area of intersection between computer science
and law which is attracting more and more interest.

6.2.1 (Un)satisfactory closing states

When backed by a smart contract defined through a Turing-complete language as in
Ethereum, a state channel may implement any control logic. The missing ring for a
state channel to provide to two parties what a smart contract (or better an Ethereum
contract) provides to n, is the ability to overcome the “close-at-will” characterizing
feature. In fact, it may be the case that parties want to agree to not close the
channel until the channel state is “satisfactory” for both of them. The example
of state channel that implements tic-tac-toe game provided in Section 3.5.4 offers
also a good example of off-chain agreement where the parties may not be willing
to conclude the interaction until the game state is clearly identifiable and therefore
satisfactory to conclude the interaction: one winner and one loser or a draw.

→→ →

Figure 6.1: Examples of satisfactory and unsatisfactory closing states.

Figure 6.1 shows examples of satisfactory and unsatisfactory closing states for
a tic-tac-toe game played on a state channel. The existence of off-chain states that
involved parties deem as not satisfactory to conclude the off-chain interaction further

2As long as the arbitrary data structure is small enough to be processed and/or stored on the
underling blockchain
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exposes the construction to the irrational passive aggressive attack. In fact, being in
an unsatisfactory state implies that some additional steps have to be taken before
to close the channel. If the malicious party remains passive, the propose/accept
scheme (cfr. Section 3.5.1) obliges the honest one to issue one on-chain challenge to
propose a state update and one on-chain challenge to accept a state update, thus
resulting in two on-chain interactions per step. Furthermore, the attacker can wait
for the whole grace period before to provide its on-chain reply (and therefore avoid
to see dropout punishment applied). This results in the honest party to wait for
(almost) a whole grace period in each step.

6.2.2 µ function

The µ function is defined as a generalization of the previous example of unsatisfac-
tory closing state on tic-tac-toe game.

si

µ

si

S: set of all possible states F: set of all satisfactory closing states 

Figure 6.2: µ function domain and codomain.

The µ function, as shown in Figure 6.2, is defined as follows µ : S → F where
S is the set of all possible valid off-chain states and F is the set of all satisfactory
ones. The function maps an element si in S to one element ŝi of F . It associates
an off-chain state, be it satisfactory or not, to a certainly satisfactory one.

⊥

Figure 6.3: Examples of µ function applications.

Figure 6.3 shows the results of three applications of a plausible µ function for
a tic-tac-toe game. Reasonable fund allocations are produced by the application
of the function for satisfactory closing states from Figure 6.1, while no result is
produced when the function is applied to an unsatisfactory closing state (last ex-
ample in figure). A further example for a chess game could be to have a µ function
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that reallocates bet funds in proportion to the weighted sum (with a priori defined
weights) of the remaining pieces on the board. Payment channels implicitly admit
the identity function as µ function.

6.2.3 µ-agreements and µ̄-agreements

The particular µ function adopted for an specific instance of a state channel only
depends on the agreement that the involved parties implicitly accept when they join
the channel. Two different instances of a state channel that serves the same purpose
may admit different µ functions. It is a clause of the agreement.

Depending on the nature of the µ function on which parties agreed upon, it is
possible to have µ-agreements and µ̄-agreements:

µ-agreement := ∃µi∀i ∈ S
µ̄-agreement := ∃i ∈ S s.t. @µi

For µ-agreements it holds that each off-chain state can be mapped to a satisfac-
tory closing state by applying the agreed µ function. For µ̄-agreements it exists at
least one off-chain state j which, as agreed by the parties, does not admit a valid µ
function, i.e. µ(j) = ⊥.

6.2.4 Szabo contracts and state channels

Since an agreement, be it explicit or implicit, underlies a state channel, it makes
sense to investigate the relationship between state channels and Szabo contracts.
The latter ones, in fact, seems to be much more similar to state channels than
to Ethereum contracts. Szabo contracts share more defining characteristic with
state channels than they do with Ethereum contracts: while both state channels
and Ethereum contracts exhibit observability and verifiability, the former is clearly
more privacy preserving then the latter, being the off-chain interaction completely
private and, as long as parties maintain a collaborative behavior, known only to the
involved parties.

Smart channels, presented underneath, impose constraints on channel closing
due to the cease of trust bond of involved parties and therefore constitute a further
step toward the realization of Szabo’s vision of smart contracts.

6.3 Privacy preserving channels for µ̄-agreements

Smart channels are introduced to allow off-chain handling of µ̄-agreements with
performance that, in case of an irrational passive aggressive attack, are not worst
than on-chain interaction with a smart contract (Ethereum contract). To achieve
this, a seamlessly migration from off-chain to on-chain interaction can be triggered
any time by any party. This approach allows parties to benefit of the off-chain
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advantages as long as they mutually trust each other. Although to fall back to on-
chain interaction entails a loss of privacy, this ensures the reaching of a satisfactory
closing state and therefore provide guarantees against an irrational passive aggressive
attack.

Smart channels are defined assuming the same system model adopted for state
channels (cfr. Section 3.2). In particular, the data structure describing the shared
state between endpoints has to be of a size compatible with the underling blockchain
processing/storing capabilities.

6.3.1 Protocol

The protocol steps in Figures 6.5, 6.6,6.7, 6.8, 6.9, 6.10, outline how the a smart
channel is expected to proceed. An involved node, in a perfect cooperative scenario,
is required to interact with the blockchain only to setup and close the channel.

To handle the µ̄-agreements where the current state is possibly not a closure one
and an irrational passive aggressive attack could be mounted by a malicious adver-
sary, a transition scheme allows to gracefully move the interaction from off-chain
to on-chain. The scheme allows for the issuance of a blind challenge, a particular
challenge where no additional information is leaked. In fact, in case of positive
reply to the challenge, i.e the counterparty is not malicious and, for example, ex-
perienced a technical fault from which it recovered before the grace period expires,
the interaction can proceed off-chain with no information leak.

In the following description is assumed that Alice (A) and Berto (B) are the
endpoints of a smart channel.

6.3.1.1 On-chain involved entities

In compliance with state channels’ system model, the blockchain is considered as
the root of trust and the output of the execution of the smart contract code as not
questionable auto enforcing statements.

The smart contract code needed to support the smart channel protocol can be
divided into functional units whose behaviors, adopting a metaphor of the real world,
resembles the responsibilities of a safe deposit box, a registrar and a judge. While
the safe deposit box and the registrar can be implemented in the same contract, to
maximize privacy of involved parties as described below, the protocol requires that
the judge is wrapped in a separated unit of code.

Safe deposit box This functional units locks funds of the parties that enter in
a private association by opening a channel. This special safe deposit box grants
the possibilities to be opened and therefore to recover locked funds only if a mutual
agreement exists between parties on the allocation of the funds. Deposit box accepts
opening instructions on how and when release funds only from the registrar and from
the judge.
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Registrar The registrar is the actual interaction point for involved parties. It
accepts proofs of agreement between them (e.g. an off-chain state signed by both
of them) or proof of misbehaving (PoM) that, in turn, it presents to the judge for
the emission of a verdict. Furthermore, if trust between parties falls, the registrar is
also responsible to enforce the migration from off-chain toward on-chain interaction.

Judge The judge evaluates proof of misbehaving presented by the registrar and
emits the final verdict. Moreover, once instructed by the registrar, it becomes the
intermediary of the on-chain interaction between parties that no longer trust each
other to persevere in an off-chain agreement.

6.3.1.2 Smart channel lifecycle

Figure 6.4 summarizes the lifecycle of a smart channel. Details about each step and
conditional branches of the lifecycle are provided underneath.

smart channel established, 
off-chian interaction

smart channel established, 
on-chian interaction

smart channel established, 
ongoing blind challenge

setup

one party aggressive behavior

cooperative closing

one party temporary 
unresponsiveness

positive resolution

challenged part fails to reply

seamlessly on-chain transition

channel closing

smart channel 
not established

definitive challenged party dropout

Figure 6.4: Smart channel lifecycle.

Setup (ex ante confidential judge selection) The first phase is the setup of
the smart channel. Either the safe deposit box and the registrar are implemented as
single or separated contract, they must have been deployed and ready to be invoked.

...

Alice

Berto

blockchain

safe deposit box

registrar

off-chain interaction

on-chain interaction

Figure 6.5: Smart channel setup interaction.
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Figure 6.5 shows how the interaction proceeds. Funds are locked by both parties
and, if implemented as separated contracts, an association is established between
specific safe deposit box and the registrar entitled to instruct the release of the box.

The critical part of this stage is the judge selection. The judge is entitled to
resolve disputes and/or intermediate the on-chain interaction once the parties no
longer trust each other to remain in an off-chain agreement. To pursue the privacy
concern, an indirection must be introduced between the setup of the registrar and
the judge selection. In fact, the code the realizes the judge contains the details
about the nature and the purpose of the agreement between parties. Therefore,
hiding which judge rules on which smart channel dramatically enhance the privacy
of the construction. It has to be mentioned, however, that parties pseudo-identities
(e.g. their addresses on the Ethereum platform) involved in a smart channel, are
known to the world, even though, at this point, it is not known the reason they have
made an agreement.

Ex ante confidential judge selection can be achieved on Ethereum-like smart
contract execution platforms by having the judge contract deployed in advance by a
third entity not linkable to the smart channel endpoints. Once deployed the address
a of the judge is known and can be hashed with salt s obtaining an obfuscated
version of the contract address ã by computing H(a� s) (where � is for example a
binary infix operator that returns the concatenation of its arguments). s, a and ã are
known to both parties. ã is actually conveyed to the registrar that stores it. Should
arise the need to call into question the judge, a party reveals the s and a to the
register which verifies that the hash correspond to the stored value by independently
computing ã. This simple scheme allows to inform the registrar to the actual judge
contract address once the obfuscated version is conveyed at setup time.

This approach, however, requires the judge contract to be deployed even though
in a cooperative setup it can be never invoked, not even once. Nevertheless, de-
ployment costs must be payed and some precautions have to be take to avoid easy
linkage of the judge contract deploying address to addresses of parties involved in
the channel. On the Ethereum platform, for example, an ad hoc account should
be used to deploy the judge contract. Furthermore, to maximize privacy, no direct
transaction paths should link smart channel endpoints and deployment address to
maximize privacy.

It is worth to mention a second possible way to obtain ex ante confidential judge
selection, called “counterfactual contract deployment” [65], that allows to deploy the
judge contract when and only if needed, therefore saving deployment transaction
costs and completely avoiding any privacy leaks. This approach exploits peculiarity
of the Solidity smart contract language, its scope of application is limited to the
Ethereum realm and is only doable until EIP86 will be deployed.

Cooperative closing In the optimistic and rational case where parties maintain
perfect collaboration until the closing of the channel, the interaction only occurs
off-chain and remain private to the parties.
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...

Figure 6.6: Smart channel cooperative closing interaction.

Figure 6.6 shows the interaction between smart channel endpoints and on-chain
entities to cooperatively close the channel. A final state signed by both participants
is sent to the registrar. After some validity checks the registrar instructs the safe
deposit box to release locked funds according to the provided signed state.

As long as parties succeed in maintain unlikability in between them and the judge
contract, especially for the contract deployment phase, this cooperative path does
not require any detail about the agreement to be publicly revealed, thus supporting
privacy of endpoints.

Aggressive counterparty behavior Should one party owns an off-chain gener-
ated proof of misbehaving testifying the aggressive malicious behavior of the coun-
terparty, she can present the proof to the blockchain.

blockchain

Alice

Berto

safe deposit box

registrar

... off-chain interaction

on-chain interaction

possible coins 
redistribution

...

judge

Po
M

Figure 6.7: Reporting an aggressive behavior.

Figure 6.7 outlines the interaction to report PoM to the judge. The suing party
interacts with the registrar, discloses the judge address and present the PoM. Since
the PoM is not arguable, the judge, after a correctness check of the proof, ascribes
blame to the dishonest party and decrees the punishment by instructing the safe
deposit box to allow the reporting party to collect all the locked funds.

As in the real world, when one party sues the other one, details of the breached
agreement becomes the public acts of the process and are revealed to the world.
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Assuming the smart channel has complete coverage of the malicious behaviors
that can originate off-chain and therefore each generated PoM is certainly punished
if reported to the chain, then a PoM can be only left on the ground by an irra-
tional party and the interaction to report aggressive counterparty behavior can be
categorized as deterrent code (cfr. Section 3.5.5).

Temporary counterparty unresponsiveness At any moment a party that de-
tects unresponsiveness from its counterparty may decide to issue a challenge. In the
optimistic assumption that the unresponsive part is experiencing a technical fault
and is not acting maliciously and therefore trusting in the possibility to recover an
off-chain interaction, the challenge scheme must preserve privacy. No information
has to be leaked about the judge contract until the malicious behavior of the unre-
sponsive party is confirmed. To this end, a special challenge scheme is introduced.
It is called “blind challenge”.

...

Alice

Berto

blockchain

registrar

off-chain interaction...
blind challenge

blind reply
blind reply audit

blind challenge audit

Figure 6.8: Cooperative interaction for a blind challenge.

Figure 6.8 show the interaction for a positively resolved blind challenge. Say that
A is the party that issues the blind challenge. She prepares data d that the judge
will be able to evaluate, but only sends a hash H(d)) of the data to the registrar.
Afterwards, she tries to inform B about the issued challenge by sending him an
off-chain audit containing challenge plain data d. If B is effectively cooperative, he
prepares data r for the reply and in turn only send an hashed version H(r) to the
registrar and send r to A. A verifies correctness of received data, by also matching
the hash publicly sent by B to reply to the registrar. If A is satisfied with the reply
of B, interaction can continue off-chain, still benefits of the off-chain advantages.
No information is therefore leaked to the public blockchain and privacy remains
preserved for this cooperative interaction.

Definitive counterparty dropout If B fails to provide the registry with H(r)

within the challenge grace period, he is definitively considered unresponsive and A
can proceeds to withdraw locked funds.

Figure 6.9 show this kind of interaction. It is worth noting that also in this case
no details about the nature of the agreement is leaked: the timeout can easily be
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Alice
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off-chain interaction
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blind reply
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Figure 6.9: Party dropout after blind challenge.

handled exclusively by the registrar that takes note of the time at which the blind
challenge has been issued and verifies the grace period expiration at the second
interaction of A.

On-chain seamlessly transition Should B not send the off-chain blind challenge
audit, or should the audit not pass correctness tests, A instructs the registrar to
trigger the on-chain transition. The judge is therefore disclosed and the interaction
between parties continue on-chain, intermediated by the judge that instantly verify
correctness of each transaction, as for a typical on-chain interaction of an Ethereum
contract.

...
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off-chain interaction
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Figure 6.10: Uncooperative interaction for a blind challenge.

Figure 6.10 depicts this situation. In the case a malicious blind challenge is
issued, the trust bond between parties needed for the off-chain interaction is cut,
and the interaction has to carry on on-chain as well. In this case, it is the challenged
party that instruct the migration. A detailed analysis of the scenarios that may arise
is reported in Section 6.4.2.
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6.4 Security Analysis

The smart channel protocol is designed to prevent any honest participant from losing
any funds despite strong adversarial assumptions. Security guarantees are however
function of the implementation of the specific agreement. The judge contract, that
applies punishments and manage the possibly on-chain interaction, and the client
used by the parties for the off-chain interaction, are considered secure for the purpose
of this analysis. The funds unlock process preformed by the safe deposit box is a
trivial verification of a digital signature. The join process and the grace period
expiration, supervised by the registrar, are analogous to a standard state channel.
The blind challenge process, that originates several possible paths, is the critical
part which is examined in detail in what follows.

6.4.1 Treat model

One of the reason for the introduction of smart channels is to enhance state channels
so that they can tackle with an irrational adversary, which is willing to waste its
funds to damage the attacked party. In particular, a smart channel is expected
to perform the same a smart contract do in terms of time and cost in handling
the case of an irrational passive aggressive attack (situation where a state channel
underperforms in case of a µ̄-agreement). A seamlessly migration from an off-chain
to an on-chain interaction equalizes performances of the two approaches, when such
an attack is mounted by an irrational adversary.

6.4.2 Blind challenge analysis

Once a blind challenge is issued, different scenarios may realize.

Figure 6.11: Analysis of the blind challenge scenarios.
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In the scheme of Figure 6.11 it is assumed that A has issued the challenge. The
first turning point is the behavior of B, the challenged party. He can either reply
within the grace period or not. If he does not reply, than the evidence is collected
by the registrar that punishes him by bestowing his funds to A. Conversely, if B
replies, he can reply either with valid or invalid data. Since the on-chain conveyed
data is blinded by the application of a hashing function, nor the chain neither A can
check the validity until B also proceeds with the off-chain audit, sending non-hashed
data directly to A.

First it is analyzed the case when B answers. He can send either consistent or
inconsistent data. In the first case A is satisfied and the interaction continues off-
chain. Alternatively, if the hash of off-chain sent data does not match the on-chain
stored reply, A compels the migration toward on-chain interaction mediated by the
judge contract. It is worth noting that the on-chain migration can be triggered
any moment by any party that considers the bond trust with the counterparty
consumed. In fact, there is no proof required to activate the migration. It would
be squandered, since the path [1, 2] of the scheme is always available to a malicious
party. Choosing to stay in an off-chain interaction is up to the parties: it is the
analogous of the closing procedure triggered in a standard payment (or in a state
channel implementing a µ-agreement) when the trusted bond is severed.

In the case B have maliciously answered on-chain with the hash of wrong reply
data, he again can opt to either conveyed or not the off-chain audit. If data is not
sent off-chain but the on-chain timeout has been stopped by the wrong reply, A
requires to continue the interaction on-chain, where the malicious behavior of B is
going to be detected. Conversely, if B conveyed wrong although consistent data
with the on-chain stored hash, this suffices in determining a proof of misbehaving
that A presents to the judge to punish the aggressive conduct of B.

6.4.2.1 Maliciously issued blind challenge

Blind challenge scheme, as for a standard challenge, can be used either honestly or
maliciously. It can be the issuer which in the first place triggers a non-needed or
wrong and malicious blind challenge. An honest party that detects such a behavior
has to trigger the on-chain migration since the trust bond between him and his
counterparty does not subsist anymore.

6.5 Usability

Although smart channels even performances of on-chain and off-chain interaction in
case of irrational passive aggressive attack, it is advisable to not incur in such an
eventuality by opening a channel with a party whose reliability is not reputable.
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6.5.1 Performance analysis

In what follows is presented a comparison of the expected cost and execution time
for three cases: case C1, a smart contract; case C2, a state channel; case C3, a smart
channel. It is assumed that:

1. all three cases implement the same µ̄-agreement involving two parties, Alice
A and Berto B;

2. the interaction is composed by n alternate steps, (n2 propose steps and n
2

accept steps for each party), as for a turn-base game. The first h steps are
honestly performed by both parties, in the remaining a = n−h, B mounts an
irrational passive aggressive attack;

3. despite the attack, B does not dropout, he always reply within the grace
period;

4. all the n steps are required to reach the first satisfactory closing state;

5. all the smart contracts run on the same Ethereum-like platform for smart
contract execution (cfr. Section 2.1.2);

6. honest interaction takes no time to the purpose of this analysis;

7. challenge grace period lasts tgrace and the attacker always successfully replies
to on-chain challenges in treply = tgrace − ε.

Case A smart contract Since in this case the interaction between parties is
mediated by a smart contract, it vanishes by design the possibility for B to mount
an irrational passive aggressive attack. This case is considered as a reference point to
evaluate performance of the other two. The grace period within which parties must
act to avoid dropout is ťgrace ' tgrace, and, during the attack phase, the attacker
always mange to reply in ťreply ' treply.

On-chain transaction counting: join: A _ 1 tx, B _ 1 tx; honest phase: A
_ h

2 tx, B _ h
2 tx; attack phase: A _ a

2 tx, B _ a
2 tx; closing: A or B _ 1

tx; withdrawal: A _ 1 tx, B _ 1 tx. Total transactions: h + a + 5. Total time:
a
2 ťreply (due to the a

2 attacking step from B).

Case B state channel The µ̄-agreement is implemented on a state channel ac-
cordig to the following logic: the smart contract that backs the state channel can
recognize satisfactory and unsatisfactory closing state and refuses to trigger channel
closing if instructed with an unsatisfactory one. Party are therefore obliged to reach
a satisfactory state before to trigger channel closing. Hence, during an irrational
passive aggressive attack, the honest party can only rely on on-chain challenges to
force the attacker to both accept and propose state updates until a satisfactory one
is reached. During the attack, one challenge is require to progress of one step. It
is worth noting that the expected time estimation has a certain level of uncertainty
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Table 6.1: Performance comparison for different implmentation of µ̄-agreements.
h is the number of steps honestly performed by both parties. a is the number of
attacking steps. treply is the time the attacker takes to reply to a challenge.

smart contract state channel smart channel
number of txs h+ a+ 5 2a+ 5 a+ 6

required time a
2 treply atreply

a
2 treply

because the actual reply time depends on how well the attacker can answer to the
challenge, balancing two opposed interests: the maximization of the treply and the
maximization of the probability to see his transaction mined before grace period
expires. The latter one is not completely under attacker’s control and one way to
maximize the related probability is to decrease treply. The real treply will be always
less then tgrace which constitutes an upper bound.

On-chain transaction counting: join: A _ 1 tx, B _ 1 tx; honest phase: only
off-chain interaction _ 0 tx; attack phase: A _ a

2 tx (challenge propose) + a
2 tx

(challenge accept), B _ a
2 tx (reply propose) + a

2 tx (reply accept); closing: A or
B _ 1 tx; withdrawal: A _ 1 tx, B _ 1 tx. Total transactions: 2a + 5. Time
time: atreply (due to the a challenges required).

Case C smart channel On-chain transaction counting: join: A _ 1 tx, B _ 1
tx; honest phase: only off-chain interaction _ 0 tx; attack phase - detection:
A _ 1 tx (blind challenge propose), _ 1 tx (blind challenge accept); attack phse
- on-chain transition: A _ 1 tx; attack phse - remaining interaction: A _
a
2 − 1 tx, B _ a

2 − 1 tx; closing: A or B _ 1 tx; withdrawal: A _ 1 tx, B _ 1
tx. Total transactions: a+ 6. Total time: treply + (a2 − 1 ' a

2 ťreply (due to the blind
off-chain challenge and the a

2 − 1 on-chain attacking steps from B).

Final considerations Table 6.1 summarizes the results of the previous analysis.
It is worth noting that the advantage to use a smart channel over a state channel
scale linearly with the length of the attack. Smart channel performs not worst than
an on-chain smart contract when under attack, while saves the honest on-chain
interaction.

6.5.2 Payment channels for economic µ-agreements

The definition of µ-agreements has an interesting implication. Since a µ function
exists for each possible intermediate state and parties mutually agreed on its defini-
tion, a payment channel suffices in supporting µ-agreements that have an economic
outcome, i.e., a reallocation of the locked funds of involved parties.

Rectangles in Figure 6.12 are composed by two parts. The upper one is the actual
payment channel state. Bytes in the lower one represent, instead, an arbitrary data
structure (whose definition in not needed to the purpose of this discussion). The
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Figure 6.12: Payment channel for µ-agreements.

state definition reveals that the example makes use of a smart contract to support
this payment channel. Nevertheless the discussion perfectly applies also to Bitcoin’s
payment channels.

The underlying blockchain has to be informed only about the existence of a
payment channel. The off-chain interaction to propose the i-th state update,
for example, by A to B, encompasses the exchange of both the signed state
si,σA =< i, βAi , β

B
i >σA , relative to the payment channel (the upper part of the

rectangles in figure), and the updated data structure di that describes the state
of the µ-agreement (the lower part of the rectangles in figure). The party that
receives the proposal verifies that the payment channel has been rebalanced as es-
tablished by the application of the µ function to the updated state of the agreement:
(βAi , β

B
i ) = µ(di). Only in this case B accepts the update and sends his signature

back to A.
If the proposed update does not comply with the result of the µ function, i.e.,

(βAi , β
B
i ) 6= µ(di), than the trust bond between parties is not holding any longer

and B closes the channel by broadcasting the last valid agreed upon payment state
si−1.

The µ function can be complex at will since there is no need to code its behavior
in a smart contract and it is only applied off-chain.





Chapter 7

Conclusion

State channels are a valuable tool to support blockchain scalability. Understanding
their capabilities and limitations is a fundamental requirement to see their broadly
deployment, without which significant blockchain scalability remains only a theoretic
possibility.

In this work two substantial aspects are explored that support the adoption of
payment state channels on large scale: 1) the extension of their lifetime when only
a technical hitch (namely the funds displacement) requires for closing; 2) the in-
crease in the number of ways for using funds blocked in a channel through hybrid
payment enabled by a central hub. Furthermore an analysis of the implicit con-
tractual consequences of the arbitrary state that can be agreed upon off-chain is
provided, along with a practical solution to counteract underperforming (with re-
spect to purely on-chain solutions) situations that may originate from attacks by
irrational adversaries.

Research field on state channels is, however, wide open and at the very beginning
of its path. No rigorous formalization or even a commonly accepted notation have
been defined yet. Proposed contributions only scratched the surface of a vast area
that is to be further investigated. In fact, despite being defined to address frequent
micropayments in the blockchain context, it is a strong belief of the author that
state channels (or their evolutions) will survive the blockchain technology. They
are of their own interest and blockchain is just the best settlement layer that can
be currently offered them. Future researches on this field should aim to decouple
channel implementation from a specific blockchain. One possible solution consists
in providing several interchangeable adapters and enabling one off-chain interaction
to produce multiple proofs, viable for multiple underling blockchains. This would
support the long searched blockchain interoperability, by means of different denom-
ination for channel collateral, as it is already possible nowadays by virtue of the
numerous tokens available on the Ethereum platform. Even blockchain itself can be
substituted with a whole range of solutions spanning from trusted hardware (TEE)
to traditional settlement system supported by standard legal/banking structures.

Furthermore, the totally private nature of the agreement between parties in-
volved in a state channel paves the way for an essential piece for the deployment of
a full-blown digital economy: the credit. A Fulgur hub, for example, can act as a
bank and credit one of its client to pay through itself when no collateral is blocked on
the client’s side. The same applies for an intermediate node of a payment network.
Credit, however, implies trust which is a sensible topic in the crypto-community.
State channels are acting as trailblazers also on this aspect. In fact, a certain
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amount of trust is required, to open a channel with a counterparty, where funds can
be blocked for a certain amount of time resulting in the loss of opportunity cost of
the collateral. Despite that, they are widely accepted, also by the most trust-adverse
figures of the community.
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