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The sphere upon which mortals come and go,

Has no end nor beginning that we know;

And none there is to tell us in plain truth:

Whence do we come and whither do we go.

Omar Khayyam
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Chapter 1

Introduction

1.1 Spintronics: Spin-transport electronics vision for the future

Spintronics, or spin-transport electronics, is the science of exploiting the electric spin in addition to the

electronic charge for the future electronics applications. The main goal of spintronics is to understand the

relationship between charge and spin degrees of freedom of carriers and to exploit such understanding

to develop new device functionalities. The advantage of using spin-charge based logic devices is that

they have substantially more capability and performance, compared to charge-based devices, and can be

used to increase data processing speed and memory storage, decrease electric power consumption and

make transferring data quicker. In contrast to classic electronics which is based on semiconductors, in

spintronics applications, both normal and ferromagnetic metals are important as well.

Historically the electric control of the non-equilibrium spin population was based on ferromagnetic

interactions. The idea is that the non-equilibrium spin polarization can be generated via paramag-

netic materials and then transferred through metallic materials. A typical example of magnetotransport

phenomena is the famous giant magnetoresistance (GMR) effect in thin-film structures composed of al-

ternating ferromagnetic and nonmagnetic conductance layers, which exploit the different conductivity

properties of the spin populations. The effect is observed by a change in the electric resistance due to the

change of the relative magnetization between the two different ferromagnetic layers. More precisely, the

resistance is lower when the magnetizations of adjacent ferromagnetic layers are parallel, but is higher

for antiparallel alignment. Notice that the magnetization direction of the ferromagnetic layers can be

controlled by an external magnetic field. The Nobel prize in 2007 was awarded to Albert Fert and Peter

Grünberg for the discovery of GMR [5]. As it is well known, the GMR effect currently has huge applica-

tions in electrical devices based on magnetic sensors, which are used in hard disc storage [67], biosensors

and micro-electromechanical systems and as well as in magnetoresistive random-access memory as a cell

that can store information (For more details, see Ref. [79]).

In addition to paramagnetic materials, the generation of spin-polarized currents can be achieved in

different ways such as electrical spin injection, through temperature gradient and many other ways. Tra-

ditionally, spin has been oriented by using the optical technique in such away that circular polarized
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photons transfer their angular momentum to electrons, and then polarized electron-hole pairs are pro-

duced with certain direction [107]. The reverse is also true when the polarized electron (holes) combine

with unpolarized holes (electron), polarized light is emitted. This is the principle of spin light emitting

diodes (spin LEDs) [61]. In semiconducting structures the spin population is also measured via optical

detection of the current-induced spin polarization [14, 42, 65, 93]. Roughly speaking, the optical ap-

proach could be specifically designed for detection, manipulation and injection of spin polarization, and

exploit the ability to precisely engineer the coupling between electron spin and optical photons. Indeed

the merging of electronics, photonics and magnetism will produce new spin-based multifunctional devices

such as spin-field effect transistors, quantum bits for quantum computation and communication.

In addition to ferromagnetic interactions, the control of the electric spin could also be obtained with

different mechanisms based on spin-orbit coupling (SOC), without the need for magnetic materials. SOC

is one of the key microscopic mechanisms to couple charge currents and spin polarizations. Among the

many interesting effects which arise from SOC, the two effects, known as inverse spin-galvanic effect

(ISGE) and spin Hall effect (SHE), are the focus of intensive experimental and theoretical research

both for their intrinsic interest and for their potential exploitation in the realization of new spintronic

functionalities. Indeed, the SHE and ISGE are deeply connected to each other [11], and we will focus on

the effect of ISGE. Through this present chapter, we will give an overview of ISGE, and then introduce the

essential tools and concepts that will be extensively used throughout this work. We refer the interested

reader to references [3, 32, 34, 95, 103] for details.

1.2 A brief description of inverse spin-galvanic effect

The spin-galvanic effect (SGE) and its inverse manifestation have been intensively investigated over

the past decade both for their intrinsic fundamental interest [34] and for their application potential in

future generation electronic and spintronics technology [3, 95]. The non-equilibrium generation of a

spin polarization perpendicular to an externally applied electric field is referred to as the ISGE in the

absence of external magnetic field as illustrated in Fig. 1.1, whereas the SGE is its Onsager reciprocal,

whereby a spin polarization injected through a nonmagnetic material creates a charge current in the

direction perpendicular to the spin polarization. As an all-electrical method of generating and detecting

spin polarization in nonmagnetic materials, both of these effects may be used for applications such as

spin-based field effect transistors [46, 84, 97] and magnetic random access memory [60, 110].

The ISGE, also known as the Edelstein effect (EE) or current-induced spin polarization (CISP), was

originally proposed by Ivchenko and Pikus [40], and observed by Vorob’ev et al. in tellurium [102].

Later, the ISGE was theoretically analyzed by Edelstein in a two-dimensional electron gas (2DEG) with

Rashba spin-orbit coupling (RSOC) [21] and also by Lyanda-Geller and Aronov [4, 38]. Notice that the

SGE in the spin-charge conversion is sometimes referred to as the inverse Rashba–Edelstein effect. The

SGE has been observed experimentally in GaAs quantum wells (QWs) by Ganichev et al. [31, 33], where

the spin polarization was detected by measuring the current produced by circularly polarized light. In

semiconducting structures, the ISGE can be measured by optical methods such as Faraday rotation, linear-
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Figure 1.1: Left: Inverse spin galvanic effect. The red lines stand for the direction of spin polarization

and the green one is the direction of the external electric field. Right: The parity transformation as a

reflection in a mirror. Arrows show the reflection of the components of polar vector Jx (black line) and

axial vector Sy (red line) by the mirror reflection through the yz-plane.

circular dichroism in transmission of terahertz radiation and time resolved Kerr rotation [30, 32, 34, 109].

Very recently, a new way of converting spin to charge current has been experimentally developed by Rojas-

Sánchez et al., where, by the spin-pumping technique, the non-equilibrium spin polarization injected from

a ferromagnet into a Ag/Bi interface yields an electrical current [83]. Successively, the SGE has also been

observed in many interfaces with strong spin-orbit splitting, including metals with semiconductor giant

SOC or insulators such as Fe/GaAs [15] or Cu/Bi2O3 [41]. Phenomenologically, the non-equilibrium

spin polarization can be linked to an external electric current by

Si =
∑
j

RijJj , (1.1)

Ji =
∑
j

QijSj , (1.2)

where Rij and Qij are second rank pseudo tensors. The first equation represents ISGE and the second

one is SGE. It is clear that both equations (1.1) and (1.2) linearly couple a polar vector with an axial

vector. More precisely, the key mechanism of the effect relies on the symmetry properties of gyrotropic

media. 1 In fact, the electrical currents and spin polarizations are polar and axial vector, respectively. In

centro-symmetric systems, polar and axial vectors transform differently and no SGE effect is expected.

In restricted symmetry conditions, however, polar and axial vectors components may transform similarly.

Consider, for instance, the case of electrons confined in the xy plane with the mirror reflection through

the yz plane, as shown in Fig. 1.1. Under such a symmetry operation, the electrical currents along

the x and y directions transform as Jx → −Jx and Jy → Jy. The spin polarizations transform as the

1See Ref. [34]. A system is called gyrotropic if in its point symmetry group some components of polar vectors and

components of axial vectors transform according to the same representation.
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components of angular momentum, and we have Sy → −Sy and Sx → Sx. Hence, one expects a coupling

between Jx and Sy or between Jy and Sx. Such a coupling is the SGE. For instance in QWs, under

C2V symmetry the only non-vanishing element of the pseudo tensor is Qxy in the restricted symmetry

due to the structure inversion asymmetry (SIA). However, in this case, the direction of spin polarization

depends not only on SIA, but also on the bulk inversion asymmetry (BIA) resulting in an anisotropy of

the current-induced spin polarization.

At a microscopic level, the strength of the coupling is due to the SOC. Usually, the SOC is classified as

extrinsic and intrinsic, depending on the origin of the electrical potential. The intrinsic SOC arises due to

the crystalline potential of the host material or due to the confinement potential associated with the device

structure. On the other hand, the extrinsic SOC is due to the atomic potential of random impurities, which

determine the transport properties of a given material. The majority of the studies on SGE/ISGE has

focused on the Rashba SOC (RSOC) for electrons moving in the xy plane, which was originally introduced

by Rashba [13] to study the properties of the energy spectrum of non-centrosymmetric crystals of the

CdS type and later successfully applied to the interpretation of the two-fold spin splitting of electrons

and holes in asymmetric semiconducting heterostructures [12]. RSOC is classified as being due to SIA,

which is responsible for the confinement of electrons in the xy plane. In addition, one may also consider

the SOC arising from BIA, which is usually referred to as DSOC [19]. Both RSOC and DSOC modify

the energy spectrum by introducing a momentum-dependent spin splitting. This can also be understood

quite generally on the basis of symmetry considerations. In a solid, the spin degeneracy for a couple of

states with opposite spin direction, comes from both time reversal invariance and parity (space inversion

invariance). By breaking the parity, as for instance, in a confined 2DEG, the spin degeneracy is lifted

and the Hamiltonian requires an effective momentum-dependent magnetic field, which is the SOC. As a

result, electron states can be classified with their chirality in the sense that their spin state depends on

their wave vector. In such a situation, scalar disorder, although not directly acting on the spin state,

influences the spin dynamics by affecting the wave vector of the electrons and holes. Spin relaxation

arising in this context is usually referred to as the Dyakonov–Perel (DP) mechanism. Extrinsic SOC

originates from the potential that is responsible for the scattering from an impurity. Spin relaxation due

to extrinsic SOC is usually referred to as the Elliott–Yafet (EY) spin relaxation [108]. In this case, the spin

relaxation time scales is as the momentum relaxation time. Therefore, when extrinsic SOC is present, the

scattering amplitude of electrons by impurities can be divided in the two different parts, spin-independent

and spin-dependent contributions. The spin-independent part yields the standard elastic scattering time,

whereas the spin-dependent one is responsible for the EY spin relaxation. As explained by Lifshits and

Dyakonov [52], the different combinations of the scattering amplitudes correspond to specific physical

processes. Through this present work, we will review it more carefully.

However all the recent publications on spin-charge conversion involve the different SOC mechanisms,

including the interaction between an external electric field and charged particles in semiconductor, this

conversion between spin and charge can also be demonstrated in cold atomic gases, both the bosonic and

fermionic as well as the mixture [1]. In cold atomic gases, the quantum states of atoms can interact with

the laser light in different ways depending. More precisely the motion of atoms in position-dependent laser
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configuration may give rise a spin-dependent gauge field potentials [54, 66, 81, 101, 111], which can lead

to an effective SOC in an atomic gases. Hence with a proper laser configuration, an effective SOC, e.g.,

Rashba and linear Dresselhaus SOC can be obtained by coupling atomic spin states to spatially varying

laser fields. The optically induced SOC in atomic gases is currently the focus of intensive experimental

and theoretical research both for a new possibilities of studying spintronics, e.g., spin relaxation [96],

Zitterbewegung [101] and SHE [53, 111]. The exploration of these systems are however beyond the scope

of the present work and we refer the interested reader to the literature cited before.

In this present work, we analyze some aspects of the interplay between the intrinsic and extrinsic

mechanisms focusing on the description of the of ISGE/EE and SGE/IEE in a 2DEG – we will how-

ever also discuss results valid in three-dimensional (3D) gases. To be explicit, as noted in [34], when

both intrinsic and extrinsic SOC are present, the non-equilibrium spin polarization of the ISGE will be

dependent on the ratio of the DP and EY spin relaxation rates. This was analyzed in [75] by means

of the Keldysh non-equilibrium Green function within an SU(2) gauge theory-description of the SOC.

Successively, a parallel analysis by standard Feynman diagrams for the Kubo formula will be carried out

in Chapter 4. We theoretically confirm that the ratio of DP to EY spin relaxation is able to tune the

value of the ISGE. Such tuning is also affected by the value of the spin Hall angle due to the fact that

spin polarization and spin current are coupled in the presence of intrinsic RSOC.

In particular, we will show that the interplay of intrinsic and extrinsic SOC gives rise to an additional

spin torque in the Bloch equations for the spin dynamics and affects the value of the ISGE. This additional

spin torque, which is proportional to both the EY spin relaxation rate and to the coupling constant of

intrinsic SOC, will be derived in Chapter 6 in the context of the diagrammatic approach of the Kubo

linear response theory. Although the Kubo linear response theory is a very powerful approach in the

understanding of the physical origin of this new torque, it is very useful to also show how the same result

can be obtained independently by using the SU(2) gauge theory formulation. One of the aims of this

work is to present the same physical phenomenon from different viewpoints. Each technique has its own

virtues and merits. The present work, by showing the same phenomenon with different techniques, helps

to clarify the connections between them. This may have a pedagogical value. In particular, we obtain an

analytical formula of the ISGE in the presence of the Rashba, Dresselhaus and impurity SOC. We will

show how the intrinsic and extrinsic SOC act in parallel as far as relaxation to the equilibrium state is

concerned. In order to compare with experimental results, we solve the Bloch equation numerically, and

then extend our results to the case of beyond the diffusive approximation in the QW systems. We will

see that the response function is modified.
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1.3 Theoretical tools for the description of spin-charge conver-

sion

One of the most obvious and compelling aspects of any system in the physical world is that it is

processed through out-of-equilibrium processes. They are ubiquitous in the physical world with many

different examples, some very simple, such as a system connected with different sources of temperatures,

electrons in conductor driven by an applied electromagnetic field or pumped by external forces and

irreversible processes in general. Indeed, the description of physical properties in an isolated system is

more often an out-of-equilibrium system. The general method available for gaining knowledge about

the dynamics of a system is the perturbation theory, which provides a set of approximation schemes

directly related to mathematical perturbation for describing a complicated quantum system in terms of

a simpler one. We do not discuss in general nonequilibrium statistical mechanics and refer the interested

reader to the fairly rich lectures [18, 77]. One of the approaches to deal with perturbed systems is the

quasiclassical formalism [69, 78]. Under certain physical assumptions, the Keldysh formalism can be

used within the quasiclassical approximation [43, 77]. The theory is expressed in a such a way that it

generalizes the standard perturbative approach typically from the equilibrium quantum field theory to

non-equilibrium problems. This idea historically stems from Martin and Schwinger (1959), and then

Schwinger [87] in 1961. Then, in 1964, Keldysh applied the quasiclassical technique to the derivation of

transport phenomena in electron-phonon systems that was already discussed by Konstantinov and Perel

(1960) in a diagrammatic technique. In fact, the quasiclassical was originally formulated by Kadanoff

and Baym [7], where the transport equations beyond perturbation theory for the case of interacting

electrons and photons are derived. The model was later extended, highly successfully, to deal with

superconductivity [78]. Currently the theory has a wide range of applications which go from particle

physics to solid state and soft condensed matter.

In particular, the purpose of the present work, is to give an account of the use of real time Green

function in transport theory and discuss the relevance of our results within current research. The theory

deals with different transport phenomena by deriving the appropriate kinetic equation, starting from

Dyson equations in their general form. The main assumption in this theory is that all energy scales

concerning the external fields, interactions and disorder must be small compared to the Fermi energy.

Another important assumption is its relying on perfect particle-hole symmetry. In other words, the

quasiclassical equations are obtained by neglecting the dependence on the modulus of momentum or

energy variable of the density of states and of the velocity, which are fixed at their values at the Fermi

surfaces. However, when the spin-orbit coupling is present, there are two Fermi surfaces and one needs

to be more careful about the precise relationships involved here. It is such phenomena that allow us

to generalize the quasiclassical approach to situations that the electron-hole symmetry is broken. More

precisely, we will use the quasiclassical approach to describe the effects of spin-orbit coupling in terms of

the SU(2) gauge field theory and derive a generalized Boltzmann equation concerning the charge and spin

distribution function. This method has advantages greater than the linear-response theory by allowing

non-linear situations to be considered.
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Although the SU(2) gauge field theory is a very powerful method, in our case, the linear-response

theory can be more convenient than quasiclassical Keldysh formula to attempt to elucidate more the

physical origin of the results, which in the SU(2) Keldysh formula derivation is not easy to grasp. The

linear response limit is a tremendous simplification compared with conditions, since the linear response

is uniquely determined by the equilibrium properties of the system. More generally though, when the

system is perturbed ever so slightly, its response function will be linear in the perturbation [77]. Among

the numerous applications of linear response theory, one can mention the diagrammatic standard Kubo

formula approach [48] to evaluate the response function with respect to the spin-current transport. How-

ever the Kubo formula generally is an equation which expresses the linear response of an observable

quantity due to a time-dependent perturbation.
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1.4 Outline

The layout of the present work is organized as follows:

Chapter 2 is dedicated to the SOC in solid state systems. We will explain how the effective Hamiltonian

arises due to the different SOC. Some additional details can be found in Appendix A.

In Chapter 3, we will introduce the central tools used in this present work: the Green functions,

the Keldysh technique and quasiclassical theory, and the diagrammatic Kubo formula approach. We

will develop the general formalisms dealing with the non-equilibrium situation. After introducing the

retarded and advanced Green functions, we develop the perturbation theoretic structure in terms of the

quasiclassical and diagrammatic approach. We provide a precise formula definition of our theory in terms

of the Kubo formula and Keldysh non-equilibrium Green functions. We recall the weak localization

corrections of a disordered system. At the end of the chapter, we will pay some attention to the full

scattering amplitude in the presence of SOC.

Chapter 4 is based on the work published in [75]. Here we will formulate the ISGE in a 2DEG.

Compared with previous work in [75], we consider both the Rashba and Dresselhaus SOC as well as the

SOC from impurity scattering. However in this Chapter, we will not consider the effect of two spin-

orbit split bands at the Fermi level in the EY mechanism. In evaluating the Kubo formula for the spin

polarization response to an electric field, we will explicitly take into account the side-jump and skew

scattering effects.

Chapter 5 is dedicated to the frequency-dependent ISGE when the interplay of SOC is present. In

particular, we will find that the size and form of the ISGE is greatly modified by the presence of the

various sources of SOC. We use a diagrammatic Kubo formula approach to evaluate the spin polarization

charge-current response functions. The main reason for using the linear response theory is to understand

the origin of additional spin torque in a situation which is technically simpler to treat with respect to the

SU(2) Keldysh technique.

In Chapter 6, the derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus

SOC. Our main result is to the identification of a spin-generation torque arising from EY scattering, which

opposes a similar term arising from DP relaxation. Such a torque, which to the best of our knowledge has

gone unnoticed so far, is of a basic nature, i.e. it should be effective whenever EY processes are present in

a system with intrinsic SOC, irrespective of further specific details. We also discuss the extension results

to the three dimensional electron gas, which may be relevant for the interpretation of experiments in thin

films.

Chapter 7 starts with a rather general discussion of the ISGE and gives a brief introduction of

experimental techniques based on Kerr rotation and spin pumping, and then moves to treat some aspects

of our results in connection with the experimental one. More precisely, this present chapter is based on

the work published in [64]. We will later numerically show that the non-equilibrium spin polarization

does not align along the internal magnetic field due to the spin-orbit coupling.

In Chapter 8, the ISGE will evaluate beyond the diffusive regime. In particular, we derive the

Eilenberger equation in the presence of a generic intrinsic spin-orbit field by using the quassiclassical
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Green function. Hence the Bloch equations governing spin dynamics of the carriers are evaluated in

the linear, cubic and both linear-cubic SOC. The quasiclassical approach allows us to study spin-charge

interconversion in the two different regimes, the diffusive and beyond the diffusive approximation. The

results also show numerically to make the comparison easier between the two approximations.

1.5 Publications

� A. Maleki Sheikhabadi and R. Raimondi. Inverse Spin Galvanic Effect in the Presence of Impurity
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� A. M. Sheikhabadi, R. Raimondi, and K. Shen. The Edelstein Effect in the Presence of Impurity

Spin-Orbit Scattering. Acta Physica Polonica A, 132(1):135–139, 2017
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Chapter 2

Spin-orbit coupling in solid-state

systems

Charge carriers in materials with structure inversion asymmetries experience a momentum-dependent

magnetic field in their frame of motion, even in the absence of an external magnetic field, which is the

so-called spin-orbit field. To show how the SOC appears in solid state systems, we start with its atomic

derivation in the non-relativistic limit of the Dirac equation [20]. Then we will show how it appears in

different semiconductor structures following the so-called k · p method [105], within the extended Kane

model [80]. Then we will use these techniques in the case of quasi-2D systems [6, 107]. At the end of this

chapter, we will derive the generic form of intrinsic Rashba-Dresselhaus [12, 13, 19] SOC and an extrinsic

one arising from the random scattering from impurities.

The exploration of SOC physics is currently at the heart of the new research field of spin-orbitronics,

which is a new branch of spintronics [57], focusing on the manipulation of non-equilibrium spin polar-

ization using SOC. Here is a brief recall of SOC in solid state systems, and for more details we refer the

interested reader to the literature cited before.

2.1 The origin of spin-orbit coupling: the Dirac equation

Before we discuss SOC in semiconductors, it is helpful to briefly review the origin of SOC following

the approach of the Dirac equation, i.e. the basic equation for describing electronic systems including the

electron spin and its relativistic behaviour. In principle, the SOC arises from the non-relativistic limit

of the Dirac equation. Assuming a time-dependent problem, the Dirac equation can be written in the

following form: (
β̂m0c

2 + cα̂ · p̂ + V̂
)
ψ = i~∂tψ, (2.1)

where

β̂ =

1 0

0 −1

 , α̂ =

0 σ

σ 0

 , V̂ = eΦÎ , p̂ = pÎ , ψ =

ψ1

ψ2

 . (2.2)
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The Dirac function is written based on a two-component spinor, ψ1 and ψ2, where ψ1 are the larger

components. We will derive the explicit form of ψ, when the V and cp are small compared with the Dirac

gap 2m0c
2 in the non-relativistic limit. Taking zero energy at m0c

2, the Dirac equation gives us

σ · pψ2 =
1

c
(i~∂t − eΦ)ψ1 (2.3)

σ · pψ1 =
1

c

(
i~∂t + (2m0c

2 − eΦ)
)
ψ2. (2.4)

Using the second equation and making an expansion in terms of 1/2m0c
2, we can easily show

ψ2 '
1

2m0c

(
1− i~∂t

2m0c2
+

eΦ

2m0c2

)
σ · pψ1. (2.5)

The probabilistic interpretation of the Dirac theory requires the normalization condition as∫
drψ†ψ =

∫
dr
(
ψ†1ψ1 + ψ†2ψ2

)
= 1. (2.6)

Therefore, this suggests that we can work with a new two-component wave function ψ̃ defined by

ψ̃ =

(
1 +

(σ · p)2

8m2
0c

2

)
ψ1. (2.7)

which satisfies 〈ψ̃|ψ̃〉 = 1 up to order 1/c2. The equation for ψ̃ from Eq. (2.3) reads

i~∂tψ̃ =

(
1− (σ · p)2

8m2
0c

2

)[
eΦ +

1

2m0
σ · p

(
1 +

eΦ

2m0c2

)
σ · p

](
1 +

(σ · p)2

8m2
0c

2

)
. (2.8)

Then the effective Hamiltonian up to terms of order 1/c2 reads

Heff = eΦ +
p2

2m0
− p4

8m3
0c

2
+
e~∆Φ

8m2
0c

2
+

e~
4m2

0c
2
σ · ∇Φ× p. (2.9)

The above equation can also be derived using Löwdin partitioning and invariants theory [28]. The

first two terms are equivalent to the classical non-relativistic Hamiltonian, whereas the third one is the

first relativistic correction to the energy and does not have a classical analogy. The fourth term is the

so-called Darwin term, and finally the latest one yields the SOC as

HSOC =
λ2

0

4
σ · (−i∇)×∇(eΦ), with λ0 =

~
m0c

(2.10)

where λ0 ' 10−10cm is the Compton wave length, which is very small compared to the characteristic

lengths. In solids, when we describe the SOC, one should consider the effective Compton wavelength,

which brings a big enhancement of the strength of the SOC. For instance in GaAs, the effective Compton

wavelength is ten times bigger than the vacuum one. At the atomic scale, the eΦ is the central field due

to the coulomb potential of the atomic core and to the screening electrons. In a crystalline solid, the

derivation is quite different, but we will derive the effective Hamiltonian such as that one presented in

Eq. (2.10). In the following sections, we will evaluate these effective terms according to the k ·p approach

and the Kane model.

2.2 The band structure and k · p approach

The main goal of this section is to describe the motion of charge carriers in terms of the effective

Hamiltonian in the semiconductor structures. In theoretical studies, the methods are based on the
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envelope function approximation, which allows us to develop a comprehensive description of electron- and

hole-like states. We can cope with the periodic crystal potential, as well as perturbations such as external

electric and magnetic fields, impurities and, more importantly, the SOC. Details of the underlying crystal

potential are included in terms of band structure. All these details are achieved within the framework of

the Luttinger-Kohn method, also known as the k · p model and the Kane model.

In the first step, we will treat the problem in the absence of any external fields and impurities, and

then we will show how to include them. The derivation of the k · p method is based on the Schrödinger

equation for the Bloch functions ψvk(r) described by the microscopic lattice periodic crystal potential

U(r),

Heffψvk(x) =

[
(−i~∇)2

2m0
+ U(r) +

λ2
0

4
∇U(r)× (−i~∇) · σ

]
ψvk(r) = εv(k)ψvk(r), (2.11)

where v denotes the band index, and m0 is the free-electron mass. From now on we will work with natural

units such that ~ = c = 1. The translational symmetry of the lattice requires that the wave function to

be of Bloch form, i.e.,

ψvk(r) = eik·ruvk(r) ≡ eik·r〈r|vk〉 (2.12)

with uvk(r) represents the periodic function of the lattice. In many solid state systems, like GaAs, the

minimum of the conduction band and the maximum of valence band are at the Γ point k = 0. 1 Therefore,

the eigenfunctions of Eq. (2.12) can be expanded in terms of the band edge Bloch function uv0(r), as

uvk(r) =
∑
v′

cvv′kuv′0(r) (2.13)

Now we multiply Eq. (2.11) from the left by 〈uv0| and using the eigenvalue equation for |uv′0〉 we can

obtain an algebraic eigenvalue problem for the dispersion εv(k)

[H0]vv′ = 〈uv0|H0|uv′0〉

=

[(
εv0 +

k2

2m

)
δvv′ +

1

m0
k · πvv′

]
, (2.14)

with εv0 the energy offset of the band at k = 0[
(−i∇)2

2m
+ U +

1

4m0
∇U × (−i∇) · σ

]
|uv0〉 = εv0|uv0〉, (2.15)

and

πvv′ = 〈uv0|(−i∇) +
1

4m0
σ ×∇U |uv′0〉 (2.16)

≈ 〈uv0|(−i∇)|uv′0〉.

One should notice that the p = −i∇ represents the atomic momentum associated with the rapid

oscillations of the lattice function uv0, whereas the k represents the slow crystal momentum at the

bottom of band. Therefore, we can neglect the spin-orbit term in Eq. (2.16) and clearly the spin-orbit

term only appears in diagonal terms εv0. For a real treatment, the expansion of Eq. (2.13) must be

truncated at the bands close to the gap. In this way, we will use the so-called 8× 8 Kane model based on

the two spin degenerate s-wave conduction and six p-wave valence band (shown schematically in Fig. 2.1).

1However, it is straightforward to evaluate uvk(r) to any other points with k 6= 0. For more details see [106].
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E

 ∆

Figure 2.1: Schematic of the band structure of a bulk semiconductor close to the Γ-point for 8× 8 Kane

model. The s-type conduction-band states separated by a direct band gap E0 from the p-type valence

band states. When SOC is present, the six p-like valence levels split into the light hole band (LH,

J = ±1/2) and heavy hole band (HH,J = ±3/2) at the Γ point, and both are separated in energy by the

so-called spin-orbit gap ∆0 from the split-off band (SO, J = 1/2) [106].

In the presence of the SOC, the six p-like bands partially split into two groups: the fourfold degenerate

levels, the light and heavy hole bands (with J = 3/2), and another one known as split-off levels (with

J = 1/2). Obviously the extended model to 14× 14 Kane model provides the more accurate description

of band structure. Nevertheless, the 8×8 Kane Hamiltonian provides a quite good description of SOC in

solid state systems and is more convenient. The envelope function approximation allows one to describe

the electron and hole state in the presence of perturbing potentials V –i.e. anything other than the crystal

potential U . Let us consider the Hamiltonian as

(H0 + V )ψ = εψ (2.17)

where V varies slowly as compared to U . Similarly to the derivation of the k · p approach, we can expand

the wave function in terms of band-edge Bloch functions |uv0〉 as follows

|ψ〉 =
∑
v

φv(r)|uv0〉 (2.18)

where φv(r) contains all information about low energy phenomena introduced by V , but its scale is much

bigger than the lattice potential. Then the equation of motion can be written as

Hvv′φv′(r) = εφv(r) (2.19)
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The envelope function approximation allows one to describe the systems in the more general case

of an applied electromagnetic field and to take the total non-crystal potential V , which can be caused

by impurities, confinement, strains, and more importantly, the driving electric field. By analogy with

Eq. (2.14), the matrix element Hvv′ is

Hvv′ = 〈uv0|H0|uv′0〉

=

[(
εv0 +

(−i∇+ eA)2

2m
+ V

)
δvv′ +

1

m0
(−i∇+ eA) ·Πvv′

]
(2.20)

We remark that, the offset energies εv0 are not modified because of the factorization Eq. (2.18) in terms

of the band edge. The final step is to obtain a lower-dimensional effective Hamiltonian for describing

the motion of electrons in the conduction band. The Hamiltonian obtained in Eq. (2.20) can be block-

diagonalized by using the Löwdin technique. Thus, the 8 × 8 Kane Hamiltonian can be written in the

matrix notation as 2

H

φc
φv

 =

Hc,2×2 Hcv,2×6

H†cv,6×2 Hv,6×6

φc
φv

 = ε

φc
φv

 (2.21)

where φc and φc are a two-dimensional and a six-dimensional spinor for conduction and valence band

states, respectively. Under the assumption that the energy gap, Eg, between the two groups of states is

the biggest energy scale, and they are weakly coupled to each other– i.e. Hcv, H
†
cv << Hv ∼ Eg. This

assumption allows one to write Eq. (2.21) in terms of a 2× 2 equation for the electrons of the conduction

band

H(ε)φ = εφ (2.22)

where

H(ε) = Hc +Hcv(ε−Hv)
−1H†cv (2.23)

with φ a renormalized condition band spinor. According to this way, when the Hamiltonian in Eq. (2.23)

is expanded for energies close to the minimum band and then inserted back into the Schrödinger equa-

tion (2.22), the effective eigenvalue equation for φ is obtained. This leads us to write the eigenvalue

equation in the presence of perturbed potentials V and an external electromagnetic field as(
(−i∇+ eA)2

2m?
+ V − g?µB

2
σ ·B +

λ2

4
∇V × [(−i∇) + eA] · σ

)
φ = εφ (2.24)

with µB the Bohr magnetic field and B = ∇×A the external magnetic field. One should notice that all

effects of coupling with the valence band are included into a renormalization of the effective mass m?, the

effective Compton wavelength λ and the g-factor g?. The explicit expression of each quantity is presented

in terms of the matrix elements of the Hamiltonian and its derivations are given in Appendix A. The

new quantity λ is one of fundamental importance for our purpose. In solid systems, its values can be

much bigger than the vacuum constant λ0, and in some cases like GaAs, it can be as much as six orders

of magnitude larger than λ0. For more clarity, here we show the value of this new parameter

λ2

4
'
(

1

E2
g

− 1

(Eg + ∆)2

)
(2.25)

2For details regarding the structure of each matrix see Appendix A.
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where ∆ is the spin-orbit splitting between the HH and LH valence bands. This simple Eq. (2.25),

together with Eq. (2.24), shows how the SOC can appear in conduction band as soon as this is subject

to a non-crystal potentials V . We will classify the SOC as extrinsic and intrinsic mechanisms depending

on the origin of the potential V . The extrinsic SOC arises due to the impurity potential, whereas

the intrinsic one can be arise due to the confinement potential associated with device structure and/or

to the crystalline potential of the host materials. We will talk about both the intrinsic and extrinsic

mechanisms.The Hamiltonian derived in Eq. (2.24) can be rewritten as follows

H =
k2

2m
+ V − b(k) · σ (2.26)

where

b(k)→ bext + b(k) (2.27)

with k = −i∇ + eA, and b(k) contains the information about the external magnetic field bext and k-

dependent effective magnetic field b(k). It is important to remark that the 8 × 8 Kane model describes

quite well the conduction band in semiconductors, as GaAs, InSb, GaSb, which have a zinc blend lattice.

In some materials like Platinum, where the symmetries of the crystal are different, we must change the

Hamiltonian. The material with a crystal structure like the ones presented here (8×8 Kane model) has no

inversion symmetry. There is a general argument connecting the spin degeneracy and inversion symmetry

in space and time. Both symmetry operations change the wave vector k to −k, where the time inversion

also flips the spin according to Kramers theorem. Hence, the combination of symmetry operations shows

a twofold degeneracy of the single-particle energies, E±(k) = E∓(k), ± ↔ spin up/down, i.e.,

E±(k)
T−→ E∓(−k)

S−→ E∓(k)⇒ E±(k) = E∓(k) (2.28)

where T and S are time and space reversal transformations. Thus, when the potential through which

the electrons move is inversion asymmetric, the spin degeneracy of the spin state is removed even in the

absence of external magnetic fields. In quasi-2D QWs and heterostructures, this spin splitting can be

consequences of a SIA of the confinement potential [13] or/and of a BIA of the underlying crystal (e.g. a

zinc blende structure [19]). In the case of 2DEG, the potential V given in Eq. (2.26) can be characterized

by an asymmetric confinement potential V (z). To lower the order in k, the SIA spin splitting in the

conduction band is given by the Rashba SOC term

b(k) · σ → bR(k) · σ = α(kxσ
y − kyσx) (2.29)

where p = (px, py) = p(cosφ, sinφ) is the vector of the components of the momentum operator, and α is

the relative strength of the Rashba spin splitting. In principle, α is a function of V (z) and can be tunable

via the gates. In the absence of disorder and any external electromagnetic fields, bext = 0, the Rashba

Hamiltonian reads

HR =
k2

2m?
− bR(k) · σ (2.30)

In a 2DEG, the solution of time-independent Schrödinger equation leads to

ψ±k(r) =
eik·r√

2A

 1

±ieiθk

 (2.31)
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with the dispersion energy

E±(p) =
p2

2m
± αp (2.32)

where θk is the angle between k and the x-axis, and A is the area of the two-dimensional quantum

well. Nevertheless, the schematic of the spin splitting is illustrated in Fig. 2.2, where the spins are

oriented perpendicular to the corresponding wavevector k. It is important to remember that an additional

mechanism which arises from BIA is also possible. The BIA-induced spin splitting already occurs in 3D

materials without an inversion center. For instance, let us consider with more precision, the 12×12 Kane

model for the zinc-blend crystal. Here the Dresselhaus term is obtained by an expansion in a power series

of k in the conduction band [20, 58]

b
(3D)
D · σ → C

[
(k2
y − k2

z)σxkx + (k2
z − k2

x)σyky + (k2
x − k2

y)σzkz
]

(2.33)

where C is a crystal dependent potential and 3D stands for three dimensional. For a quasi-2D system,

both the k-linear and k-cubic terms in the Hamiltonian are allowed. At low electron energies, the k-

cubic may be neglected compared with linear terms, whereas at higher wavevector corresponding to, for

instance, large momentum concentration or high temperature, the k-cubic one should be considered as

well. In the case of QWs grown in the crystallographic direction (001), the k-linear terms are regarded

first. The transition from H3D
D to H2D

D is possible by the replacement of kz and k2
z by their average values

〈kz〉 = 0 and 〈k2
z〉 ≈ (π/d)2, d being the width of wall. Hence, the k-linear Dresselhaus SOC reads

HD = blinD · σ = β1(−σxkx + σyky) (2.34)

with β1 ≈ C(π/d)2 is used to give its relative strength. Fig. 2.2 shows the distribution of spin orientations

for the 2D Fermi energy for different strengths of the k-linear BIA and SIA terms. Now the remaining

terms of Eq. (2.33) lead to the k-cubic Dresselhaus terms [39]

Hcub
D = bcub(k) · σ = β3(σxkxk

2
y − σykyk2

x). (2.35)

Now we are able to write the complete Dresselhaus contribution to bD(k) as [107]

HD = bD(k) · σ = (−β1cosφ− β3cos3φ)σx + (β1sinφ− β3sin3φ)σy (2.36)

with

β1 = Ck(〈k2
z〉 −

1

4
k2), β3 = C k

3

2
(2.37)

Here k2 = k2
x+k2

y, and tanφ = ky/kx. It is worthwhile to remark that, in the second case of SOC, the

BIA is essentially a fixed property of a given sample depending on the material density and geometry of

the system. On other hand, in the Rashba model, the SIA can be changed, for example by an external

gate [12], applied along the growth direction. Fig. 2.2 shows an overview of different band structures in

the case of just a k-linear SOC. The upper panel shows the band structure with (a) only one type of

SIA or BIA, and with (b) both types at equal strength values. If the two strength values of BIA and

SIA are close to each other, the 2D band structure consists of two paraboloids of revolution, as shown

in Fig. 2.2, symmetrically shifted in opposite direction with respect to k = 0 [82]. We assumed the
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Figure 2.2: Schematic 2D band structure with k-linear terms. The energy is plotted as a function of

k = (kx, ky) in (a) with only one type of BIA or SIA, and in (b) with equal strength values of the BIA

and SIA. The bottom panels represent the distribution of spin orientation in the xy-plane Fermi energy

for the different values of the BIA and SIA terms. Taken from [82].

positive coefficients as α, β > 0. The bottom panel shows the distribution function for the most common

communication with BIA and SIA.

As we have seen in Eq. (2.10) for the Dirac equation, the SOC appears as the gradient expansion of

the potential. This potential can arise from any type of inversion asymmetry, SIA and BIA, and also

of impurity potential, i.e. ∇U(r) → ∇V (r). This leads us to write the Hamiltonian in the absence of

intrinsic terms

Himp =
p2

2m
− λ2

4
σ ×∇V (r) · k + V (r) (2.38)

where the second term represents the extrinsic SOC with λ the effective spin-orbit wavelength (shown

in Eq. (2.25)). This new term affects the spin splitting through different mechanisms, such as EY spin

relaxation, side-jump and skew-scattering, which we will explain in more detail in the following Chapters.
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Chapter 3

Enter the formalism

Let us consider a generic system whose dynamics are controlled by a given Hamiltonian. We are

interested in studying what happens when we modify the Hamiltonian by adding a coupling with an

external field. As its title suggests, this chapter will provide the technical details. The main objects of the

discussion are the SU(2) gauge-field formalism and the diagrammatic Kubo formula of non-equilibrium

problems. We will recall the SU(2) approach for the intrinsic SOC to obtain the SU(2) Boltzmann

equation. Here we limit ourselves to recalling the key aspects of the approach to make this presentation

self-contained. After that we recall the impurities technique for disordered electron systems. Then we

will evaluate both spin and charge currents in a 2DEG with Rashba-Dresselhaus SOC using the SU(2)

techniques.

If the system is perturbed ever so slightly, the response function will be linear with respect to the

perturbation. Although this system is in a non-equilibrium regime, all the properties of system char-

acterizing its response can be inferred from its equilibrium state. This regime is known as the linear

response regime. Hence, the next step is to develop a general scheme of the linear response Kubo formula

to an external perturbation. Then we will derive the Kubo formula for a specific case of the transport

phenomena. At the end, the most important spin relaxation mechanisms are introduced in the different

regimes.

For this purpose, we consider various sections and refer the interested reader to the fairly rich litera-

ture [16, 18, 69, 70, 76, 77, 86, 89]. The basic background of interest to all readers is found in Ref. [18, 77].

For a recent pedagogical introduction, see Ref. [71].

3.1 Green functions and the quasiclassical approximation

In the method of quantum field theory, the Green functions or the propagator, is one of the most

useful analytical tools, which plays a fundamental role in the treatments of many particle assemblies. It

appears also in the theory of differential equations. This function is defined by

Gσσ′(x1, x2) = −i〈Ttψσ(x1)ψ†σ′(x2)〉, (3.1)

where Tt is the time-ordering operator defined on a time contour cK , as depicted in Fig. 3.1. For brevity,
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C1

C2

Figure 3.1: The representation of the Keldysh contour cK in the complex plane of variable t [77].

we used ψσ(x1) = ψσ(r1, t1) and ψσ(x2) = ψσ(r2, t2), where ψσ is the Heisenberg field operator with

the spin indices σ. The Schwinger’s closed time path cK , also called the Schwinger–Keldysh or real-time

contour [77], starts at time t = −∞ and proceeds to time t =∞, and then back again to point t =∞, as

illustrated in Fig. 3.1. Now we are able to describe the time-ordered Green functions in the Keldysh space.

In the Green function (3.1) the time t1 and t2 belong to one of the two parts of a contour ck (upper and

lower). For instance, if the both t1 and t2 belongs to the upper part, Eq. (3.1) defines the time-ordered

G11. Similarly when both t1 and t2 belong to the lower part, Eq. (3.1) defines the anti-time-ordered G22.

The G12 and G21 correspond to the situation when the two times belong to the different parts. Hence,

the contour-ordered Green function in Eq. (3.1) is mapped onto a 2× 2 matrix structure in the Keldysh

space

Ĝ =

Ĝ11 Ĝ12

Ĝ21 Ĝ22

 . (3.2)

We then define the generalized Green functions as

Ĝ11 = −i{θ(t1 − t2)〈ψ(x1)ψ?(x2)〉 − θ(t2 − t1)〈ψ?(x2)ψ(x1)〉} (3.3)

Ĝ12 = i〈ψ?(x2)ψ(x1)〉 (3.4)

Ĝ21 = −i〈ψ(x1)ψ†(x2)〉 (3.5)

Ĝ22 = −i{θ(t2 − t1)〈ψ(x1)ψ?(x2)〉 − θ(t1 − t2)〈ψ?(x2)ψ(x1)〉}. (3.6)

The various Green functions differ in the way the field operators are ordered since the field operators

have non-trivial commutation. A convenient way to simplify Eq. (3.2) was introduced by Larkin and

Ovchinnikov [50]

Ǧ→ 1√
2

[σ̂0 − iσ̂2]σ̂3Ĝ
1√
2

[σ̂0 + iσ̂2]. (3.7)

According to this matrix rotation, we get

Ǧ =
1

2

G11 −G12 +G21 −G22 G11 +G12 +G21 +G22

G11 −G12 −G21 +G22 G11 +G12G21 − Ĝ22

 . (3.8)

One should notice that the Green functions defined in Eqs. (3.3-3.6) are not all independent and can

easily show that there exists the relation

G11 +G22 = G12 −G21. (3.9)
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As a result, there exists three independent Green functions as [78]

Ǧ =

G11 −G12 G12 +G21

0 G11 −G21

 =

GR GK

0 GA

 , (3.10)

where the retarded GR, Keldysh GK and advanced GA components [77] are defined by

GR(1, 2) = −iθ(t1 − t2)〈{ψ(x1), ψ?(x2)}〉 (3.11)

GA(1, 2) = iθ(t2 − t1)〈{ψ(x1), ψ?(x2)}〉 (3.12)

GK(1, 2) = i〈[ψ(x1), ψ?(x2)]〉. (3.13)

One sees that the retarded and advanced Green functions are complex conjugates of each other. To grasp

the physical meaning of each component of the Green functions, let us consider the simple case of the

Fermi gas. In this case, the field operator is

ψσ(x) =
1√
V

∑
k

eik·re−iε(k)tckσ, (3.14)

where ckσ and c?kσ represent the creation and annihilation operators with the spin indices σ. Let us start

with the anticommutator on the right hand side of GR and GA components

〈{ψ(x1), ψ?(x2)}〉 =
1

V

∑
k1k2

eik1·r1−ik2·r2e−iε(k1)t1−iε(k2)t2〈{ck1σ1
, c?k2σ2

}〉 (3.15)

=
1

V

∑
kσ

eik·(r1−r2)e−iε(k)(t1−t2),

where the anticommutation relation of ckσ has been used. Since the systems are translationally invariant,

we recall the Fourier transform with respect to the space r1 − r2 and time t1 − t2

G(r1 − r2, t1 − t2) =
1

V

∑
k

eik.(r1−r2)

∫ ∞
−∞

dω

2π
e−iω(t1−t2)G(k, ω),

1

V

∑
k

≡
∫

dk

(2π~)d
(3.16)

with d as the dimensionality of the space where the particles move. In the limit of infinite volume,

the sum over the momentum reduces to an integral over the momentum. The Green functions of the

non-interacting Fermi gas are easily found by inserting Eq. (3.16) inside Eq. (3.11)

GR/A(k, ω) =
1

~ω − ε(k)± i0+
, (3.17)

where ε(k) = (k2/2m)−µ, with the chemical potential µ and the Fermi momentum pF . The antitrasform

of Eq. (3.16) possesses a problem due to the pole at ω = ε(k)/~. To make the integral over time, one has

to regularize the pole in the lower (or upper) of the complex plane for t > 0 (or t < 0). In principle, if

the pole is in the lower (upper) plane, the integral differs from zero only when t > 0 (or t < 0). Hence,

the regularization of the integrals corresponds to choosing a solution defined for ω. The superscript R

(or D) stands for “retarded” (or “advanced”) when the contour is in the lower (or upper) complex plane

for ω > 0 (or ω < 0). By performing a similar analysis for GK , we have

〈
[
ψ(x1), ψ†(x2)

]
〉 = δσ1σ2

δk1k2
(1− 2f(ε(k))) (3.18)
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Hence, the Keldysh Green function under the Fourier transform reads

GK(k, ω) =
[
GR(k, ω)−GA(k, ω)

]
(1− 2f(ε(k))) (3.19)

= −2πiδ(ω − ε(k)) (1− 2f(ε(k))) , (3.20)

In general, the GR and GA carry information about the spectrum of the excitation, while GK contains

the information of the statistical occupation. The equation of motion for Gk can be thought of as the

generalization of the Boltzmann equation. In the next section, we will briefly review the SU(2) approach

employed to build the kinetic equation in the presence of the RSOC and DSOC.

3.1.1 Quasiclassical approximation and SU(2) gauge-field approach

The ultimate goal of this section is to see how to compute the weak localization corrections of the

disordered Fermi gas in the presence of the Rashba-Dresselhaus SOC. In general, the transport coefficient

can classically be derived through the U(1) gauge-invariant kinetic Boltzmann equation. In a disordered

system, the semiclassical limit enters in the Boltzmann equation in the two main points, the distribution

function and the relaxation mechanism. The physical hypothesis is that there is a hierarchy of time and

length scales in the system. In the case of an external field, one assumes that the mean free path l is

much longer than the Fermi wave length λF , the characteristic wave length of quantum particle

λF << l (3.21)

The above inequality justifies the description in terms of the Boltzmann equation and also suggests how

one can find the correction to that limit. This idea can also be incorporated into the Keldysh formalism

in the quasiclassical limit. The first step is to determine the solution of the Dyson equation, i.e. the

equation of the motion for the Green functions. We recall the Dyson equation and its complex conjugate

in general form (
Ǧ−1

0 (x1, x3)− Σ̌(x1, x3)
)
⊗ Ǧ(x3, x2) = δ(x1 − x2) (3.22)

Ǧ(x1, x3)⊗
(
Ǧ−1

0 (x3, x1)− Σ̌(x3, x1)
)

= δ(x1 − x2) (3.23)

where we have used space-time coordinates x1 ≡ (t1, r1), etc., and quantities with a “check” (Ǧ−1
0 , Ǧ, Σ̌),

which are the matrices in Keldysh space (as shown in Eq. (3.10)). In the above equations, the symbol ⊗

implies integration over x3 and matrix multiplication both in Keldysh and spin spaces,

Ǎ(x1, x3)⊗ B̌(x3, x2) ≡
∫
dx3

AR AK

0 AA

 (x1, x3)

BR BK

0 BA

 (x3, x2). (3.24)

The self-energy Σ denotes the effects of the Hamiltonian interaction, which can arise from the electron-

electron, electron-phonon as well as disorders due to defects or impurities. In the next section, we will

introduce the self-energy in disordered systems. Now, in this part, we briefly review the SU(2) approach

employed to build the kinetic equation in the presence of the Rashaba-Dresselhaus SOC, where the k-

cubic terms are neglected compared to the k-linear SOC contributions. With the exception of the last

chapter, this work will deal with a general Hamiltonian in the presence of the electromagnetic field

H =
p2

2m
+ α(pyσx − pxσy) + β(pxσx − pyσy) + V (r)− λ2

0

4
σ ×∇V (r) · p, (3.25)
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A convenient way to deal with the RSOC and DSOC of the Hamiltonian of Eq. (3.25) is the SU(2)

approach, where the SOC is described in terms of a spin-dependent gauge field [36]. This formalism,

introduced in the context of quark-gluon kinetic theory [23, 104], was also recently extended to super-

conducting structures with SOC [9, 10]. For a recent pedagogical introduction, see Ref. [71]. Here we limit

ourselves to recall the key aspects of the approach to make this presentation self-contained. Neglecting

for the time being the extrinsic SOC, the RSOC and DSOC of (3.25) can be written in the compact form

of a spin-dependent vector potential and the Hamiltonian reads

H =
(p + eAaσa/2)2

2m
− eΨaσa

2
+ V (r), (3.26)

where V is the impurity potential, and we will describe it later in the next section. The only non-zero

components of Aa are

eAxx = 2mβ, eAyx = −2mα, eAxy = 2mα, eAyy = −2mβ. (3.27)

Relations 3.27 follow by comparing 3.26 with 3.25. In the Hamiltonian we have also included a Zeeman

term

HZ = −∆aσa

2
≡ −eΨ

aσa

2
, (3.28)

which can be seen as a spin-dependent scalar potential. In the above ∆ = gLµBBexter, gL is the

gyromagnetic factor, µB the Bohr magneton and Bexter the external magnetic field. In this way the

theory can be written in terms of a SU(2) gauge theory of electrons coupled to a d-potential gauge

field (Ψ,A), where each component of the d-vector is expanded in Pauli matrices. Notice that in this

description the standard scalar and vector potentials can be included as the identiy σ0 components. For

the sake of generality, we formulate the theory in d dimensions. Whereas our first motivation is the

description of the spin dynamics in a 2DEG, our conclusions apply also to the three-dimensional electron

gas. This is specially relevant in experimental situations where one deals with semiconducting thin films.

In the following formula, we make use of the compact (relativistic) space-time notations for the potentials,

Aµ = (Ψ,A), Aµ = (−Ψ,A), (3.29)

the coordinate and momentum,

xµ = (t, r), xµ = (−t, r), pµ = (ε,p), pµ = (−ε,p) (3.30)

and the corresponding derivatives

∂µ ≡ ∂

∂xµ
, ∂µ ≡

∂

∂xµ
, ∂µp ≡

∂

∂pµ
, ∂p,µ ≡

∂

∂pµ
. (3.31)

In this way the product pµxµ = −εt + p · r has the correct Lorentz metrics. We also introduce mixed

Wigner coordinates given by the center-of-mass coordinates (t, r) and energy-momentum variables (ε,p),

which are the Fourier-transformed variables of the relative coordinates. According to the analysis of [36],

a semiclassical Boltzmann kinetic equation can be derived from a microscopic Keldysh formulation in the

presence of non-Abelian gauge fields. The starting point is the subtraction of two Eqs. (3.22) and (3.23)[
Ǧ−1

0 (x1, x3)⊗, Ǧ(x3, x2)
]

=
[
Σ̌(x1, x3)⊗, Ǧ(x3, x2)

]
, (3.32)

22



Furthermore,

Ǧ−1
0 (x1, x3) = (i∂t1 −H) δ(x1 − x3), (3.33)

where H is the Hamiltonian operator (3.26). The self-energy Σ̌ appearing in the collision kernel (on

the right hand side of (3.32)) will be specified later. The key step, with respect to the standard way

of obtaining semiclassical transport theories à la Boltzmann from their microscopic counterparts, is the

introduction of a locally covariant Green function ˇ̃G(x1, x2) (to be defined in the following section). To

understand how the mechanism works, let us consider the convolution of two quantities

(A⊗B)(x1, x2) =

∫
dx3A(x1, x3)B(x3, x2), (3.34)

which can be equivalently expressed in terms of the center-of-mass and relative coordinates

(A⊗B)(x1, x2) =

∫
dx3A

(
x1 + x3

2
, x1 − x3

)
B

(
x3 + x2

2
, x3 − x2

)
(3.35)

=

∫
dx3A

(
x1 + x2 − x2 + x3

2
, x1 − x3

)
B

(
x1 + x2 − (x1 − x3)

2
, x3 − x2

)
,

By Taylor expanding A with respect to x1 − x3 and B with respect to x3 − x2, and after applying the

Fourier transform, we can show

A(x, p)B(x, p) +
i

2
(∂µA(x, p))(∂µpB(x, p))− i

2
(∂µpA(x, p))(∂µB(x, p)). (3.36)

Then the left hand side of Dyson equation (3.32) becomes

− i[Ǧ−1
0 , Ǧ] +

1

2
{∂µǦ−1

0 , ∂pµǦ}+
1

2
{∂µp Ǧ−1

0 , ∂µǦ}. (3.37)

From the Wigner transformed covariant Green function ˇ̃G(p, x) one can define the SU(2) covariant dis-

tribution function to obtain the SU(2) Boltzmann equation. The introduction of the covariant Green

function in the presence of non-Abelian gauge fields generalizes the well known shift in the momentum

dependence of the Green function when one wants to make it gauge invariant under U(1) gauge transfor-

mations [2, 49]. In the SU(2) case, as shown in Ref. [36], such a shift, due to the non commutative nature

of the symmetry group, can be carried out in terms of Wilson lines of the gauge field. The Hamiltonian

defined in Eq. (3.26) is invariant under a gauge transformation O(x) by defining the local rotation of the

spinor field

Ψ′(x) = O(x)Ψ(x), Ψ′†(x) = Ψ(x)†O(x), O(x)O(x)† = 1. (3.38)

The Green function, however, is not locally covariant. The reason is that its transformation depends on

two distinct space-time points

Ǧ(x1, x2)→ O(x1)Ǧ(x1, x2)O(x2) (3.39)

Now it is useful to define the locally covariant Green function as

ˇ̃G(x1, x2) = UΓ(x, x1)Ǧ(x1, x2)UΓ(x2, x) (3.40)

where

UΓ(x, x1) = P exp

(
−i
∫ x

x1

eAµ(y)dyµ

)
. (3.41)
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The line integral of the gauge field is referred to as the Wilson line. In Eq. (3.41) P is a path-ordering

operator. Since the Wilson line transforms covariantly under a gauge transformation O(x)

UΓ(x, x1)→ O(x)UΓ(x, x1)O†(x1), (3.42)

the covariant Green function ˇ̃G transforms in a locally covariant way

ˇ̃G(x1, x2)→ O(x) ˇ̃G(x1, x2)O†(x). (3.43)

To the lowest order in the gauge field, one may expand the exponential of the Wilson line. Then by

taking the Fourier transform with respect to the relative coordinate, one obtains

Φ̃(p, x) = Φ(p, x)− 1

2
{eAµ, ∂µ,pΦ(p, x)} , (3.44)

where Φ(p, x) is any quantity in the Wigner representation to which the shift can be applied. The inverse

transformation reads

Φ(p, x) = Φ̃(p, x) +
1

2

{
eAµ, ∂µ,pΦ̃(p, x)

}
. (3.45)

For our purposes, we assumed that the energy scale of the perturbation is small compared to the

Fermi energy, then we can perform the shift to lowest order in the gauge field. In the spirit of the

gradient expansion, we assumed ∂µ∂µ,p � 1 and eAµ∂µ,p � 1, and will do so throughout this work.

In order to obtain the SU(2) Boltzmann equation from the quantum kinetic equation we will apply the

transformation (3.44) to the Eq. (3.32) and to the matrix Keldysh Green function obtained in Eq. (3.10)

Ǧ =

 GR GK

0 GA

→ ˇ̃G =

 G̃R G̃K

0 G̃A

 , (3.46)

where as a result we get

G̃R − G̃A = −2πiδ(ε− εp), (3.47)

G̃K = −2πiδ(ε− εp) [1− 2f(p, x)] , (3.48)

where εp = p2/2m − µ measures the energy with respect to the chemical potential µ. Notice that the

SU(2)-shifted spectral density (∼ G̃R − G̃A) has no spin structure: the latter is all in the distribution

function f(p, x). The fact is that the locally-covariant G̃R,A does not depend on the gauge fields, which

is the great advantage of the approach that will appear later. Finally, the equation for ˇ̃G reads

V µ
[
∂̃µ

ˇ̃G+
1

2

{
eFµν , ∂νp

ˇ̃G
}]

= ˇ̃IK , (3.49)

where V µ = (1,p/m) is the d-current operator and we have introduced the covariant derivative

∂̃µ
ˇ̃G = ∂µ

ˇ̃G+ i
[
eAµ, ˇ̃G

]
(3.50)

and the field strength

Fµν = ∂µAν − ∂νAµ + ie [Aµ,Aν ] . (3.51)

An intuitive way to understand Eq. (3.49) is by noticing that the combination V µ∂µ is the ordinary

hydrodynamical derivative entering the Boltzmann equation, ∂t+ v ·∇r, written in the compact d-vector
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notation. Furthermore, in the case of the Abelian U(1) electromagnetic gauge field, the combination

V µFµν∂
ν
p yields the familiar Lorentz force. Eq. (3.49) representing its extension to the SU(2) scenario. In

the next section, the right hand side of Eq. (3.49) will be followed by applying the covariant transformation

to the Keldysh collision kernel, IK = −i [Σ, G]
K

and taking advantage of the unitarity of the Wilson line.

Let us set it to zero and we will go back to it in the next section. By taking the Keldysh component of

(3.49) and separating time and space components we get(
∂̃t +

p

m
· ∇̃r

)
f(p, r, t)− 1

2

{
F · ∇p, f(p, r, t)

}
= 0 (3.52)

where F is the spin-dependent force due to the SU(2) gauge fields

Fi = eF0i + e
pk
m
Fki = eEi + eεikj

pk
m
Bj . (3.53)

Here Ei = F0i and Bi = 1
2εijkFjk are the SU(2) electric and magnetic fields, respectively. Hence, we

have obtained a generalization Boltzmann equation in terms of the space-time covariant derivatives. The

density and current might be introduced by integrating over the momentum

ρ(p, t) =
∑
p

f(p, r, t), J(r, t) =
∑
p

p

m
f(p, r, t). (3.54)

Hence the integration over momentum in Eq. (3.52) leads to the continuity equation with the covariant

derivatives as

∂̃tρ(r, t) + ∇̃r · J(r, t) = 0. (3.55)

We will use the above equation later, where the Bloch equations governing the spin dynamics are evaluated

in terms of SU(2) approach. Now, in the next section, we will recall the impurities technique for disordered

electron gas. For this purpose, we will derive first the dressed Green function by impurities, and then

the Boltzmann collision integral in the Born approximation. At the end, we will derive the explicit

expressions for the particle and spin currents.

3.2 The standard model of disordered systems

In this section we describe the weak localization corrections of disordered electron systems in qua-

siclassical treatment of Eq. (3.21). We start with the Dyson equation, which is a summary of the

Feynman-Dyson theory in a particularly compact form. In that way, the exact Green function consists of

two terms, the unperturbed Green function G0 and all connected terms with the potential described by

the so-called self energy Σ. The corresponding analytical expression of the Dyson equation is given by

Gαβ(x1, x2) = G0
αβ(x1, x2) +

∫
dxdx′GoαΓ(x1, x)ΣΓµ(x, x′)Gµβ(x′, x2), (3.56)

where the Green function G is determined by the self energy Σ, and also Σ determined by G. According

to the standard model of disorder potential as illustrated in Fig. 3.2, the impurity potential V is taken

as the Gaussian random variable with zero mean and the variance given by

〈V (r)〉 = 0, 〈V (r)V (r′)〉 = niv
2
0δ(r− r′) (3.57)
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U(x) U(x’)

iε x x’

Figure 3.2: Lowest order self-energy in the Born approximation for before (top left) and after (top right)

averaging over the impurity distributions. The dashed line denotes the impurity average. The bottom

panel is illustrating the sequence of the rainbow diagrams selected by the self-consistent solution for the

Green function [18].

where ni and vi are the impurity density and scattering amplitude. Since the interaction is invariant

under transformation and the system is spatially uniform, we can find an algebraic expression of the

Green function in the momentum-energy space

G(p, ε) =
1

ω − ε(p)−Σ(p, ω)
, (3.58)

The Green functions, Go and G, are all diagonal in the matrix indices in the absence of the SOC. The

simple model potential given in Eq. (3.57) shows that only an even number of cross insertions are different

from zero. Hence, the lowest order impurity-average, the so-called Born approximation represented by

Fig. 3.2, plays an important role in the effective self-energy in the impurity technique. Let us consider

the retarded self-energy shown in Fig. 3.2

ΣR1 (p, ω) = niv
2
0

∑
p′

G0(p′, ω), (3.59)

To evaluate the above equation we have to pass from momentum to energy variable∑
p′

(· · · )→ N0

∫ ∞
−µ

dε(p′)(· · · )→ N0

∫ ∞
−∞

dε(p′)(· · · ) (3.60)

where N0 represents the density of states in the absence of perturbation. In the above equation, we

assumed that the biggest energy scale is the Fermi energy. In the large values of p′, the real part of

the integral divergence over p′, its values do not depend on ω and p. In fact, this is the consequences

of the simple model taken from the scattering potential. A more realistic model cures this problem by

introducing a cutoff frequency for the scattering process with a large momentum. In the following, we

will consider the imaginary part of the self-energy, since the real part has been absorbed in just a shift

of the chemical potential. By performing the integral, the imaginary part of the self-energy in the limit

of the Born approximation reads

ΣR1 (p, ω) ≡ − i

2τ0
, (3.61)

where τ0 = 2πN0niv
2
0 represents the elastic quasiparticle relaxation time. To proceed in the perturbative

expansion, one should consider the above result into the Green function and compute it again for the
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next iteration for Σ2. This leads to the replacement of the imaginary part of the integral G0. But as

the integral does not depend on its modulus, this yields a self-consistent solution of Dyson equation for

the Green function, as illustrated in Fig. 3.2. Hence, we can consider the Σ1 as a total self-energy Σ.

To evaluate the integral over the momentum, we assumed that the variation of the integrand, set up by

the position of the pole, is much smaller than the lower limit of the integral −µ. Here we confirm this

expression of the small expansion parameter

1

τ
<< µ ≈ εF → pF l >> 1, (3.62)

where l = vF τ is the mean free path. As shown in Eq. (3.58) for the Dyson equation, the disorder-dressed

Green functions becomes

GR/A(p, ω) =
1

ω − ε(p)± i/2τ0
. (3.63)

However, these results are obtained in the lowest order Born approximation, but we can go beyond that

order. At the end of the chapter, we will take care of the side-jump and skew scattering corrections, when

the extrinsic SOC is also present. What we have learned up to now is that the disorder effects can be

taken into account via the inclusion of the self-energies. Now we will obtain an explicit expression for the

collision integral describing the scattering from impurities. We recall the Boltzmann collision integral in

Eq. (3.52),

I ≡
∫

dε

2πi
IK = −

∫
dε

2π

[
Σ̌, Ǧp

]K
, (3.64)

Now we have to transform it to the locally covariant formalism according to the transformation of

Eq. (3.44). This procedure is the same with the transformation of the kinetic equation obtained in

the previous section. In particular, the covariant transformation of the Keldysh collision integral gives us

UΓ(x, x1)
[
Σ̌(x1, x3)⊗, Ǧ(x3, x2)

]
UΓ(x2, x) =

[
ˇ̃Σ(x1, x3)⊗, ˇ̃G(x3, x2)

]
(3.65)

after using the unitarity of the Wilson line by inserting

UΓ(x3, x)UΓ(x, x3) = 1

between the self-energy and the Green function. The locally covariant self-energy according to the shift

of Eq. (3.44) and Eq. (3.45) yields

ˇ̃Σ = niv
2
0

∑
p′

(
ˇ̃Gp′ +

1

2
{Aµ(∂p′,µ − ∂p,µ), ˇ̃Gp′}

)
= niv

2
0

∑
p′

ˇ̃Gp′ , (3.66)

where the derivative with respect to ε, cancels in the two terms. The derivative with respect to p,

vanishes and another one with respect to p′ can be neglected because it is constant after integrating.

Hence, the locally covariant self-energy has the same functional form as the original self-energy. The

Keldysh component of the collision integral has the form

ĨK = −i
[

ˇ̃Σ, ˇ̃G
]K

(3.67)

= −iniv2
0

∑
p′

(
(G̃Rp′ − G̃Ap′)G̃Kp − (G̃Rp − G̃Ap )G̃Kp′

)
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By using Eqs. (3.47-3.48) for the locally covariant Green functions, the Boltzmann collision integral for

the impurity scattering process yields

I[f ] = −2πniv
2
0

∑
p′

δ(εp − εp′)(f(p, r, t)− f(p′, r, t)). (3.68)

Now we are able to obtain the solution of the Boltzmann Eq. (3.52) in the diffusive approximation.

Notice that, by taking integration over the momentum p, the collision integral vanishes and reproduces

the continuity equation derived in Eq. (3.55) with the density and current defined in Eq. (3.54). In

diffusive approximation, the distribution function can be expanded in the spherical harmonic as

f(p, r, t) ≡ 〈f〉+ 2p̂ · f , (3.69)

where the terms kept up to the order of p-wave symmetry and 〈· · · 〉 denote the integration over the

momentum direction. Hence, the collision integral becomes

I(f) = −1

τ
2p̂ · f . (3.70)

We multiply both side of Eq. (3.52) by p̂ = (cos(φ), sin(φ)), and then take the integration over angle φ.

We get

− 1

τ
f =

p

2m
∇̃r〈f〉 −

e

2
〈{p̂E · ∇p, 〈f〉}〉 −

e

2m
〈{p̂(p×B · ∇p), 2p̂ · f}〉, (3.71)

where the U(1)× SU(2) fields are given by

E = −∂tA−∇rφ+ ie[φ,A], (3.72)

Bi =
1

2
εijkF

jk. (3.73)

The first term, according to Eq. (3.54) for the current term, is the diffusive contribution including the

covariant derivative with respect to the SU(2) gauge fields. Under uniform circumstance, this term differs

from zero due to the covariant nature of derivatives. The second term is the usual drift contribution due

to the external electric field, whereas the third one yields a Hall contribution. Then we get

f = − τp
2m
∇̃r〈f〉+

eτ

4
{E, ∂p〈f〉}〉+

eτ

2m
{B×, f}〉 (3.74)

where the gradient with respect to the momentum is replaced by∇p = p̂∂p−φ̂∂φ/p with φ̂ = (−sinφ, cosφ).

As shown in the definitions of density and current in Eq. (3.54), we can write the expression for the number

and spin components

n = Tr[ρ], J0 = Tr[σaρ] (3.75)

Sa =
1

2
Tr[σaρ], Ja =

1

2
Tr[σaJ]. (3.76)

Let us start with the drift term as

Jdrift =
∑
p

p

m

eτ

4
{E, ∂p〈f〉} = eN0

∫
dεpD(εp)

1

2
{∂εp〈f〉,E} = −e

2
{σ(µ),E}, (3.77)

where the diffusion coefficient is given by

D(εp) =
τ

m
εp, with εp =

p2

2m
(3.78)
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and µ = ρ/N0 is the spin-dependent chemical potential, and σ(µ) = N0D(µ). In equilibrium, the density

current is defined by ρeq = N0εF + N0Ψ. By expanding D(µ) around εF , we have D0 ≈ D(εF ) and

Da ≈ τSa/(N0m), and therefor

σ(µ) = N0D(εF )σ0 +
τ

m
Saσa. (3.79)

Hence, the particle and spin currents of drift term reads

J0
drift = −eN0D

0E0 − e

2
N0D

aEa, Jadrift = −e
4
N0D

0Ea − e

2
N0D

aE0. (3.80)

By taking the integration over momentum, the diffusion term becomes

Jdiff = −N0

∫
dεp∇̃r〈f〉 = −1

2
{D(µ), ∇̃rρ}. (3.81)

Then we get

J0
diff = −D0∇rn− 2Da[∇̃rS]a, Jadiff = −1

2
Da∇rn−D0[∇̃rS]a. (3.82)

By using the same procedure, we obtain the Hall terms as

J0
Hall =

eτ

m
B0 × J0 +

eτ

m
Ba × Ja, JaHall =

eτ

m
B0 × Ja +

eτ

4m
Ba × J0. (3.83)

Hence, the particle and spin currents in general, may be written as

J = −eN0D
0E0 − e

2
N0D

aEa −D0∇rn− 2Da[∇̃rS]a +
eτ

m
B0 × J0 +

eτ

m
Ba × Ja (3.84)

and

Ja = −e
4
N0D

0Ea − e

2
N0D

aE0 − 1

2
Da∇rn−D0[∇̃rS]a +

eτ

m
B0 × Ja +

eτ

4m
Ba × J0. (3.85)

In Chapter 6, we will use the above equations, together with the continuity-like equation derived in

Eq. (3.55) to analyze some aspects of the current-induced spin polarizations in a disordered Rashba-

Dresselhaus model, where we will consider the effect of extrinsic SOC as well. Although the SU(2) gauge

field is a powerful method, it is useful to show how the same results can be obtained in a different way. In

the next section we will introduce the diagrammatic Kubo formula for various spin transport coefficients.

3.3 Linear response theory

In this part we develop a general scheme of linear response theory. The idea is that the external

perturbation is small enough, which means that the system response would be a linear function of the

perturbation strength. We assume that the Hamiltonian consists of two different parts. The first part

is the time-independent Hamiltonian, H0, which describes the dynamics in an unperturbed system. The

second one is an additional time-dependent Hamiltonian, Hext(t), which is the perturbation due to the

external field. More precisely, the perturbation involves the coupling of an external field, UB(x′, t), with

an observable ÔB system. Then we are able to describe Hext as

Hext =

∫
dx′UB(x′, t)ÔB(x). (3.86)
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In general, we want to calculate the statistical average of any operator 〈ÔA〉, which we wish to measure

in the presence of the perturbation UB(x′, t). In the Eq. (3.86), the external field, UB(x′, t), is a function

of time, and so is the associated Hamiltonian. The exact state vector in the Schrödinger picture |ψσ(t)〉

satisfies the Schrödinger equation as

i~∂t|ψσ(t)〉 = (H0 +Hext(t))|ψσ(t)〉. (3.87)

Suppose that the perturbation started at t0 by turning on an additional time-dependent Hamiltonian.

We will use the interaction adiabatically, i.e. if t→ −∞, and Hext → 0, which means

|ψ(t0 → −∞)〉 = |ψ0〉. (3.88)

This leads us to write the state vector as

|ψσ(t)〉 = |ψσ(0)〉 − i
∫ t

−∞
dt′Hext(t

′)|ψσ(0)〉. (3.89)

All the physical information of interest is contained in the average of the Schrödinger picture operator

〈OA〉, i.e.,

〈OA〉 = 〈ψσ(t)|OA|ψσ(t)〉 = 〈ψ0|OA|ψ0〉+ i〈ψ0|
∫ t

−∞
dt′[Hext(t

′), OA]|ψ0〉 (3.90)

where only the linear terms of Hext(t) have been left. The first term is the average over the unperturbed

system, which is not of interest here, whereas the second one is the linear response of the ground-state

expectation value of the operator

δ〈OA(x, t)〉 = 〈OA〉 − 〈OA〉0

= −i〈ψ0|
∫ t

−∞
dt′[OA, Hext(t

′)]|ψ0〉

=

∫ ∞
−∞

dt′
∫
dx′RAB(x, x′, t− t′)UB(x′, t′), (3.91)

which gives the information of the perturbation on the average of the operator. Then the response

function is defined as

RAB(x, x′, t− t′) = −iθ(t− t′)〈ψ0|[OA(x, t), OB(x′, t′)]|ψ0〉 (3.92)

where θ is the step function. One should note that since H0 is time-independent, the response function

only depends on the time difference of the two Heisenberg operators. The above equation is the famous

Kubo formula, which expresses the properties of the perturbed system in the zero-temperature limit. In

the Fourier space, with respect to both space and time, the response function is rewritten as

RAB(x, x′, t− t′) =
1

v

∫ ∞
−∞

dω

2π

∑
p

e−iω(t−t′)eiq.x+iq′.x′RABqq′ (ω). (3.93)

We assumed that the unperturbed system is translationally invariant, which implies that the response

function only depends on the difference of the space argument. It is sufficient to write

RAB(x, x′, t− t′) = RAB(x− x′, t− t′) (3.94)

RABqq′ (ω) = RABq (ω)δq+q′ . (3.95)
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Hence, according to Eq. (3.93), the response function in momentum space can be defined as

RABq (ω) = −i
∫ ∞
−∞

dte−iωtθ(t)〈[OA(q, t), OB(−q, 0)]〉. (3.96)

Then Eq. (3.91) in the Fourier space has the form

δ〈OA(q, ω)〉 = RABq (ω)ÛB(q, ω), (3.97)

where ÛB(q, ω) represents the Fourier transform of the external potential. For uniform and static limit

of perturbing field, the response function is given by

χAB =
δOA
δUB

= lim
q→0

lim
ω→0

R̂ABq (ω). (3.98)

Now we are going to show a few remarkable properties of the response function. By using the identity∑
n |n〉〈n| = 1 between the two operators, we can easily show that

RABq (t) = −iθ(t)
∑
lm

[
〈m|ÔA(q, t)|l〉〈l|ÔB(−q, 0)|m〉 − 〈m|ÔB(q, 0)|l〉〈l|ÔA(−q, 0)|m〉

]
(3.99)

= −iθ(t)
∑
lm

(
e−iωlmtAml(q)B?ml(−q)− eiωlmtA?ml(q)Bml(−q)

)
,

where ωlm = (El − Em), and El represents eigenvalues of H0 in the set of eigenstates |l〉 and

Aml(q) = 〈m|ÔA(q)|l〉 (3.100)

B?ml(−q) = 〈l|ÔB(q)|m〉. (3.101)

Since the operators are hermitian and we have assumed the space inversion symmetry, we have

A?ml(q)Bml(−q) = Aml(q)B?ml(−q) (3.102)

where by exploiting the formula

−i
∫ ∞

0

ei(ω−ωlm+io+) =
1

ω − ωlm + io+
(3.103)

we can obtain the Fourier transform with respect to the time of the response function

RABq (ω) =
∑
lm

Aml(q)B?ml(−q)[
1

~ω − ~ωlm + i0+
], (3.104)

which is not analytic in terms of the complex variable ω. This is clear from the fact that the term on the

right hand side is an analytical in the upper complex plane of ω. Eq. (3.104) obeys the Kramers-Kronig

relation

RABq (ω) =
1

π

∫ ∞
−∞

dω′
ImRABq (ω′)

ω′ − ω − io+
, (3.105)

By means of the property
1

x− i0+
= P(

1

x
) + iπδ(x) (3.106)

the imaginary part reads

ImRABq (ω) = −π
~
∑
lm

Aml(q)B?ml(−q)δ(ω − ωlm). (3.107)
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From the expression in Eq. (3.107), together with Eq. (3.102), we see that

ImRAB−q (−ω) = −ImRABq (ω). (3.108)

Now we are able to transform θ function to the time-ordering operator Tt product as

PAB(x− x′, t− t′) = −i〈Tt[OA(x, t), OB(x′, t′)]〉. (3.109)

More precisely, in the Fourier space, the imaginary and real parts of the RABq (ω) according to Eq. (3.104)

are

ReRABq (ω) = RePABq (ω) (3.110)

ImRABq (ω) = sgn(ω)ImPABq (ω). (3.111)

Hence, the PABq and RABq contain the same information. The linear response theory of any operator OA

to an external perturbation couples to an operator OB that has been derived in terms of the response

function RAB . Now we will consider a specific case of linear response theory to an electromagnetic field

and gauge invariance.

3.3.1 The Kubo formula for transport phenomena

The explicit expression of linear response theory to an external perturbation has been obtained in

Eq. (3.109). Now we consider the linear response to an external electromagnetic field. As a specific case

in the Kubo formula, we consider a system with the positive charge e > 0 and the density operator

ρ̂ = −en̂(r) in the presence of external scalar φ and vector potential A. The corresponding Hamiltonian

is described by

Hext =
1

c

∫
dxAµ(x)Jµ(x), (3.112)

where the Greek indices µ are dedicated to time (µ = 0) and space indices (µ = 1, · · · , d) and we used

the compact notation of space-time x = (t, r). Here we adopt the relativistic notations for the lower

and upper indices, e.g. Jµ = (cρ̂,−J) and Aµ = (cφ,A). By using Eq. (3.92), the linear response to an

external electromagnetic field is given by

〈Jµ(x)〉 =
1

c

∫
dx′Rµν(x, x′)Aµ(x′) (3.113)

where the response Kernel is

Rµν(x, x′) = −i〈Tt[Jµ(x), Jν(x′)]〉, (3.114)

which contains both the current-current and density-density response function. Since the unperturbed

system is time-independent and translationally invariant, we can use the Fourier transform as

Rµν(x− x′, t− t′) =

∫ ∞
−∞

dω

2π

∑
k

eik·(x−x
′)e−iω(t−t′)Rµν(k, ω). (3.115)

In the limit of an infinite system, the sum is replaced by an integral over all spaces. By applying the

Fourier transform, Eq. (3.115) becomes local

Jµ(q) =
1

c
Rµν(q)Aν(q). (3.116)
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Figure 3.3: Feynman bubble diagram for the current-current response function.

where q = (ω,q). Since the electric field is derived by taking the time derivation of a time dependent

vector gauge E = −∂tA/c, the electrical conductivity reads

σµν(ω) = − lim
q→0

Rµν(k, ω)

iω
(3.117)

Now we are able to evaluate the conductivity according to the linear Kubo formula. In the following

equation, the charge current operator is expressed as bilinear forms of the field operators

J = −i e
2m

∑
σ

(
ψ†σ(x, t)∇ψσ(x, t)− (∇ψ†σ(x, t))ψσ(x, t)

)
− e2

m
Aψ†σ(x, t)ψσ(x, t). (3.118)

By inserting the current operator Eq. (3.118) in the response function of Eq. (3.114) and transforming in

the Fourier space, we obtain

Rµν(k, t− t′) = −i〈Tt[Jµ(k, t), Jν(−k, t′)]〉, (3.119)

where we considered the current Jµ caused by an external electric field oriented along the µ-axis and

coupled with the current Jν . In the mixed space (k, t), the expression (3.119) yields

Rµν(k, t− t′) = i(−e)2
∑
pk

pµ
m

qν
m
〈Tt(â?p−k/2,σ(t)âp+k/2,σ(t)â?q+k/2,τ (t′)âq−k/2,τ (t′))〉, (3.120)

where akσ and a?kσ represent the creation and annihilation operators. In order to evaluate the average

over four operators we recall the Wick’s theorem in zero-temperature limit

〈Tt(â?p−k/2,σ(t)âp+k/2,σ(t)â?q+k/2,τ (t′)âq−k/2,τ (t′))〉 = −〈Tt(âp+k/2,σ(t′)â?p+k/2,τ (t))〉〈Ttâp−k/2,τ (t′)â?p−k/2,σ(t)〉

(3.121)

which permits us to express the average in terms of the product of two single-particle Green functions.

At the end, after taking Fourier transform with respect to the t− t′, we obtain

Rµν(k, ω) = ie2
∑
p

∫ ∞
−∞

dε

2π
Tr[vµ(p)G(p+ k/2, ω + ε)vν(p)G(p− k/2, ε)] (3.122)

where vµ,ν = pµ,ν/m, and Tr is the sum over the spin states. As illustrated in Fig. 3.3, the Kubo response

function can be expressed through a bubble diagram, which can be the starting point for the perturbative

expansion.
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Figure 3.4: Feynman diagrams for the vertex corrections.

The ISGE is the appearance of a spin polarization produced by the action of a perpendicular external

electric field. Hence, the quantity we are interested in is to examine the spin polarization OA → S, and

the external perturbation is the charge current operator J = −ev̂. After applying the integral over ε, the

Kubo formula for the ISGE has the form

σµν =
(−e)
2π

∑
p

Tr[GR(p, ω)SµGA(p)Jν ], (3.123)

In the above equation, the Green functions are defined by the standard technique for disordered electron

systems (3.58). Therefore, we must also correct the bubble diagram with impurity insertions and make

the average over disorders. There are two ways to connect the different pairs of impurity, i.e. by dressing

the same Green function line and by attaching the upper Green function to the lower one with the vertical

and parallel impurity lines. At the leading order 1/(εF τ0) we can neglect the crossed impurity lines. This

leads to the so-called vertex correction, illustrated in Fig. 3.4. The vertex correction is applied here to

the spin vertex, of which the Dyson equation reads

Γρ =
σρ

2
+
∑
pp′

Sp′pG(p, ε+ ω)ΓρG(p, ω)Spp′ (3.124)

where ρ is the spin direction and Spp′ represents the scattering amplitude in the presence of extrinsic

SOC. The above equation can be solved in the perturbative way. In the following section, we will first

derive the full scattering amplitude Spp′ and then the evolution of the density matrix will study under

the scattering process.

3.4 Scattering amplitude in the presence of spin-orbit coupling

Extrinsic SOC originates from the potentials due to random scattering from the impurities. In this

case, before and after the scattering events, there is no direct connection between the wave vector and

the spin of the electrons. The scattering amplitude can be divided in two parts based on the expression

of the spin-independent and spin-dependent contributions [52]

fk,k′ = A(v) + B(v) k̂× k̂′ · σ̂, (3.125)

with k̂ and k̂′ representing the unit vector along the direction of momentum before and after the scatter-

ing, and v is the scattering angle. As mentioned in Ref. [52], the different combinations of the amplitudes
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A and B correspond to specific physical processes. Let us consider them in more details. We start with

the density matrix under the scattering process

ρk → ρk′ = Skk′ρkS
?
kk′ . (3.126)

In the following, we will proceed with a formal derivation of scattering amplitude Sk′,k relating to the

initial state (k) and the final state (k′)

Sk′,k =< k′|U + UGU + · · · |k > (3.127)

where Gk represents the Green function. The potential U , due to the impurity scattering in the presence

of SOC, is defined by

U(r) = V (r) +
λ2

4
σ · ∇V (r)× (−i∇), V (r) = v0δ(r). (3.128)

Thus the scattering amplitude in the Born approximation has the form

fk′k = 〈k′|U |k〉 = v0

[
1− iλ

2

4
k× k′ · σ

]
. (3.129)

By inserting the solution of the identity in Eq. (3.127), one gets

Sk′,k = fk,k′ +

∫
dk′′

(2π)2
fk′,k′′G(k′′)fk′′,k + · · · (3.130)

In order to obtain Eq. (3.130), it is convenient to write fk′,k in a 4-vector components

fk′,k = f0
k′,kσ

0 + f ik′,kσ
i (3.131)

and turn it into the matrix form. In a 2DEG, it is sufficient to write

f0
k′,k = v0 (3.132)

fzk′,k = −iλ
2

4
v0(k′ × k)z, (3.133)

where in-plane of wave vector k = (kx, ky), only z-component of f i remained. The sum of the series leads

to the self-consistent solution for the scattering amplitude

Sk′,k = fk,k′ +

∫
dk′′

(2π)2
fk′,k′′G(k′′)Sk′′,k. (3.134)

Hence, by inserting Eq. (3.132) and Eq. (3.133), we can find a solution in the form of

Sk′,k = S0
k′,kσ

0 + Szk′,kσ
z, (3.135)

if the two components, spin-independent S0 and spin-dependent scattering amplitude Sz, have the forms

S0
k′,k = v0 + v0

∫
dk′′

(2π)2
G(k′′)S0

k′,k − iλ2v0

∫
dk′′

(2π)2
G(k′′)(k′ × k′′)zS

z
k′,k (3.136)

Szk′,k = −iλ2(k′ × k)z + v0

∫
dk′′

(2π)2
G(k′′)Szk′,k − iλ2v0

∫
dk′′

(2π)2
G(k′′)(k′ × k)zS

0
k′,k.

To solve them we must make a guess about the momentum dependent terms. The Green function has

a pole at |k′′| = kF , therefore we have to worry only about the angle dependence. If we insert the first

approximation for Sz into the last integral of S0, we get the following angle integral∫
dΩ′′

2π
(k̂ × k̂′′)z(k̂′′ × k̂′)z = −1

2
k̂′ · k̂, (3.137)
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which means that S0
k′k contains the s-wave and p-wave harmonics terms. We can set

S0
k′k = ṽ0 + ṽ1k̂

′ · k̂, (3.138)

where ṽ0 and ṽ1 are independent of k and k′. By taking the momentum integration over k′′ in the second

part of Eq. (3.136), the first integral in Szk′k vanishes. The second angle integration in Szk′k may lead to

the correction to the p-wave part of S0
k′k∫
dΩ′′

2π
(k̂′ × k̂′′)z k̂′′ · k̂ =

1

2
k̂′ × k̂. (3.139)

Hence, we seek Szk′k with the form

Szk′k = ṽ2(k̂′ × k̂)z. (3.140)

By using the two coupled equations S0
k′k and Szk′k into Eq. (3.136) we get the system of equations in the

following forms

ṽ0 = v0 − iπN0v0ṽ0, (3.141)

ṽ1 =
1

2
(
λ2

4
)p2
F v0ṽ2, (3.142)

ṽ2 = −i(λ
2

4
)p2
F v0 +

1

2
(
λ2

4
)p2
F v0ṽ1. (3.143)

The self-consistent solution of each equation leads to

(
1 + (πN0v0)2

)
ṽ0 = v0 − iπN0v

2
0 , (3.144)(

1− (
λ2p2

F v0

8
)2

)
ṽ1 = − i

2

(
(
λ2

4
)p2
F v0

)2

, (3.145)(
1− 1

2
(
λ2p2

F v0

4
)2

)
ṽ2 = −i(λ

2

4
)p2
F v0. (3.146)

Up to the first order in λ2, we have

ṽ0 =
v0 − iπN0v

2
0

1 + (πN0v0)2
, (3.147)

ṽ1 ≈ 0, (3.148)

ṽ2 ≈ −i(λ
2

4
)p2
F v0. (3.149)

Hence, in the Born approximation and to the first order in λ2 and in v2
0 , the scattering amplitudes, A

and B, have the forms

A = v0 − iv2
0πN0, B = −i(λ

2

4
)p2
F v0. (3.150)

Now we can proceed with the formal derivation of the density matrix (3.126). After setting the scattering

amplitude fk′k (3.125) inside the density matrix ρp′ (3.126), we can obtain a system of coupled equations

for ρk′ as

ρk′ = ρ0
kσ

0 +

3∑
a=1

ρakσ
a, (3.151)

where, to evaluate the particle ρ0
k and spin polarization distributions ρak, we can use the following equations

ρ0
k′ =

1

2
Tr(Skk′ρkS

?
kk′), ρak′ =

1

2
Tr(σaSkk′ρkS

?
kk′). (3.152)
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Figure 3.5: Mott Skew Scattering and side-jump at attractive impurities. Shown are the classical trajecto-

ries (solid lines), impurities (black holes) and the spin quantization axis perpendicular to the momentum

plane. The dashed line represents the horizontal displacement arising from the side-jump effect.

Hence, we get from Eq. (3.151) and Eq. (3.152)

ρ0
k′ =

(
|A|2 + |B|2

)
ρ0
k + (AB? +A?B) n̂ · ρk, (3.153)

ρak′ = (AB? +A?B) ρ0
kn̂+ i (AB? −A?B) ρk × n̂+ |B|2 (2n̂(n̂ · ρk)− ρk) , (3.154)

where n̂ = k̂′×k̂. In the above equations, the combinations of the amplitudes, A and B, correspond to the

specific physical processes. The |A|2 + |B|2 describes the total standard scattering rate, where |A|2 and

|B|2 correspond to the spin-independent and EY spin relaxation rates, respectively. Interference terms

between the two amplitudes yield coupling among the currents. More in detail, AB∗ −A?B gives rise to

the side-jump [8] and swapping of spin currents [52, 90], whereas the combination AB∗ +A?B describes

the skew scattering [94], which is responsible for the coupling between the charge and spin currents, as

illustrated in Fig. 3.5. More precisely, when an electron scatters at an impurity potential, the scattering

cross section depends on the spin states. The effect also known as Mott skew scattering was originally

considered for high energy electrons. The effect does not appear in the order of Born approximation, and

needs to go beyond Born approximation at least in the order of v3
0 . In Fig. 3.5 (left), the SS is shown at

impurity site with strong SOC. This impurity acts as a potential landscape which makes the trajectories

of spin-up and spin-down electrons to different directions. At the order of the Born approximation, the

extrinsic SOC will also be effective in another mechanism (arised from |A|2 + |B|2), which is the so-called

side-jump (SJ). This mechanism affects the spin splitting by making the lateral displacement of the wave

function during the scattering events [8], see Fig. 3.5 (right). This displacement is the same for both the

spin-up and spin-down electrons but with opposite sign. Hence the total momentum is still conserved,

and then the SJ is an elastic event. The effect appears in the anomalous part of both the spin and charge

current. To understand the origin of this effect, from Hamiltonian (2.38) the equation of motion at a

semiclassical level has the form

ṙ =
i

~
[Himp, r] =

k

m
− λ2

0

4
∇V (r)× σ, (3.155)

k̇ = −∇V (r) +
λ2

0

4
(σ × k · ∇)∇V (r). (3.156)

To first order of λ2
0, the equation for r becomes

ṙ =
k

m
+
λ2

0

4
σ × k̇. (3.157)
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By integrating over time from −∞ to ∞, which is from before to after the scattering, the trajectory

acquires an extra contribution proportional to the transferred momentum upon scattering

∆r =
λ2

0

4
σ ×∆p (3.158)

This displacement is the so-called SJ effect. In the next Chapter 4, we will use the Kubo formula and

diagrammatic approaches to evaluate the SJ and SS contributions to the Edelstein conductivity.

3.5 Spin relaxation mechanisms and the relevant energy scales

Here we present the two main mechanisms contributing to the spin relaxation of the conduction

electron, the EY and DP spin relaxation [27]. In the case of the EY mechanism, the spin loses its

orientation due to the spin flip scattering, which is the consequence of the k-dependent admixture of the

valence band states with conduction band wave function. This admixture of the two states results in the

SOC induced by impurities. In principle, the spin relaxation due to the extrinsic SOC, which arises from

impurity potential, is usually refereed to as the EY spin relaxation.

Another possibility mechanism, which arises from the intrinsic SOC, is the DP spin relaxation, where

the spin precesses about the effective magnetic field between two collisions. Consider an electron with

momentum k. Its spin precesses with a rotation frequency ω along the axis given by b(k) (k-dependent

magnetic field arising from the intrinsic SOC). In this system we have ω = (e/2π)b(k). The electron

scatters into the different momentum k′, and so begins to process along the new direction b(k′), and

so on. The elastic scattering randomizes the travel direction, and then the precession direction and

frequency change their direction after each collision. This leads to loss of the memory of the initial

spin direction. Thus, the system acquires another characteristic time proportional to ωτ , where ω is the

typical precession frequency proportional to b(k). In the relationship between ω and τ , there exists two

different limits that can be useful to give the different physical meaning to the result that we will find.

The first one is the so-called dirty limit that describes the regime of high impurity concentration and we

consider ωLτ << 1, where ωl is the effective Larmor frequency at the Fermi energy at zero temperature.

In this limit, the precession frequency is high compared to τ , and its spin rotates very slowly compared

to τ . Many of these small rotations lead to the loss of memory of the initial spin direction. On the

other hand, when the electron scatters rarely and so the relaxation time τ is very long, we can consider

the case ωlτ >> 1. This limit is the so-called clean limit described in the regime of the low impurity

concentration. The table 3.1 below summarizes the relationships between the parameters of our model

Table 3.1: The range of parameters

metallic regime εF >> ~/τ

small spin-orbit effect εF >> ωL

clean limit ωLτ >> 1

dirty limit ωLτ << 1

According to these limits, we will define the two regimes, diffusive and beyond diffusive regimes, in

which we will study the transport properties of a disordered electron system.
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Chapter 4

The inverse spin-galvanic effect in

the presence of impurity spin-orbit

scattering

In this present Chapter, we will study the ISGE in the presence of the RSOC and DSOC as well as

SOC from impurity scattering. To understand the origin of this effect, we will first recall the Edelstein

result in the Rashba model. Then we will start with a general review of the problems in the second section,

where we immediately “get into the thick of it” by formulating the problem, providing its solution, and

highlighting certain experimentally relevant consequences. We base our discussion on physical arguments

only, and postpone the technical details substantiating our conclusions to the next Chapters 5-6.

For this purpose, in the end of this Chapter we will introduce the Kubo formula and evaluate the ISGE

in a 2DEG without considering the effect of the interplay between the SOC mechanisms. Compared to

previous treatments [86] in the Rashba model, we consider here both the Rashba and Dresselhaus SOC.

In evaluating the Kubo formula for the spin polarization response to an applied electric field, we explicitly

take into account the side-jump and skew-scattering effects. We show that the inclusion of side-jump and

skew-scattering modifies the expression of the ISGE. These results have been published in [88].

4.1 The inverse spin-galvanic effect

As maintained in Chapter 1, the ISGE is the appearance of a non-equilibrium spin polarization

produced by the action of an external electric field. Belonging to the same category of the physical

phenomena is the so-called SGE, in which an electric current is produced by a non-equilibrium spin

polarization in the direction perpendicular to the spin direction.

We can interpret these effects in the following manner. The external electric field induces a Zeeman

effective field through the SOC. This effective magnetic field is proportional to γ∆p, where γ represents

the strength values of the intrinsic SOC and ∆p is the shift of the Fermi sphere due to the external electric
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Figure 4.1: Fermi contour of the Rashba model is shifted by the application of an external electric field

along the x-direction, whose the spin polarization is along the y-direction.

fields. More precisely, this shift of the Fermi surface in the direction of the electron motion induces an

overpopulation of spins in the perpendicular direction of the electric field. In the concrete case of the

Rashba model in a 2DEG as shown in Fig. 4.1, the ISGE leads to the Edelstein result as [21]

Sy = −eN0τ0αEx, (4.1)

where the external electric field Ex produces a spin polarization Sy in a 2DEG. Phenomenologically,

the microscopic origin of the effect lies in the SOC. Usually the SOCs are classified as intrinsic when

due to the SIA (Rashba [12]) and/or BIA (Dresselhaus [19]), whereas extrinsic ones are due to random

scattering from impurities. The interplay between the two types of the SOCs depends on the ratio

of the two main spin relaxation mechanisms caused by each one. Spin relaxation due to SOC from

impurities is usually referred to as the EY mechanism and in this case the spin relaxation time scales

as the momentum relaxation time. Intrinsic SOC yields in addition the DP spin relaxation due to the

precessional mechanism, where the spin relaxation time scales as the inverse of the momentum relaxation

time. In the next section, we start with a general review of the problem, where we formulate the problem

providing its solution and highlighting certain experimentally relevant consequences. We show how the

size and form of the ISGE can modify by the presence of the various sources of SOC.

4.2 The problem and its solution

Consider an ensemble of carriers in a generic solid state environment, where the spin is not a conserved

quantity. In a homogeneous sample, in the presence of an exchange/Zeeman field ∆, the ensemble spin

polarization S will then obey the continuity (Bloch) equation

∂tS
a = −[∆× S]a + T a (4.2)

where here and throughout Latin superscritps stand for spin components a = x, y, z. The first term on

the r.h.s. describes precession around the field ∆, while T a is the a-th component of the torque acting
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on the spin polarization, responsible for relaxation to equilibrium. In a simple isotropic medium, it reads

T a = − 1

τs

(
Sa − Saeq

)
, (4.3)

where τs is the spin relaxation time – of whatever origin – and the equilibrium spin density Seq = χ∆

is given in terms of the Pauli spin susceptibility χ = 1
4∂n/∂µ which at zero temperature reduces to

χ = N0/2, with N0 the density of states per spin at the Fermi energy.

In the presence of intrinsic SOC a finite drift velocity v of the ensemble is associated with a non-

equilibrium spin polarization. Let us take a drift vx in the x-direction and RSOC for definiteness’ sake.

The non-equilibrium spin polarization then reads

Sy = χBy, (4.4)

with

By = 2mαvx (4.5)

an effective “drift field” felt by the moving ensemble. When the drift is caused by an electric field,

vx = −eτEx/m, Eqs. (4.4) and (4.5) describe the usual ISGE/EE [4, 21]. RSOC also leads to (anisotropic)

Dyakonov-Perel spin relaxation

1/τs → Γ̂DP =
1

τDP


1 0 0

0 1 0

0 0 2

 , (4.6)

with 1/τDP = (2mα)2D and D = v2
F τ/2 the diffusion constant. This suggests that we modify the Bloch

equations (4.2) to

∂tS
a = −[Ω× S]a + T aint, (4.7)

where Ω = ∆ + B is the full effective exchange/Zeeman field felt by the drifting carriers and (repeated

indices are summed over, unless otherwise specified)

T aint = −Γ̂abDP
(
Sb − χΩb

)
(4.8)

is the intrinsic torque, “intrinsic” meaning that spin-orbit effects from impurities are not yet included.

This torque has a spin-relaxation component, −Γ̂DPS, and a spin-generation one, Γ̂DPχΩ. The intuitive

form of Eqs. (4.7) and (4.8) will be rigorously justified in the section 4.3, and holds for any kind of intrinsic

SOC – e.g. RSOC + DSOC – with the appropriate form of Γ̂DP . It shows that the spin polarization

relaxes to a non-equilibrium steady-state value given by

Sneq ≡ χΩ = Seq + χB . (4.9)

What happens to this intuitive picture once extrinsic SOC is taken into account? This is the central

problem addressed in our work. While modifications to both the relaxation and the spin generation

torques are clearly expected, their precise form is a priori far from obvious. This is because extrinsic

SOC gives rise to several phenomena, such as side-jump, skew scattering, and Elliott-Yafet relaxation,
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which are not necessarily additive with respect to intrinsic SOC effects [75]. Let us start with the spin

relaxation torque, which acquires a contribution due to Elliott-Yafet scattering

Γ̂DP S→ [Γ̂DP + Γ̂EY ] S ≡ Γ̂ S, (4.10)

with Γ̂EY ∼ λ4
0. Unsurprisingly, spin-flip events at impurities, which are second order in the extrinsic

SOC constant λ2
0, provide a parallel channel for relaxation. However they also crucially affect the non-

equilibrium steady-state value Sneq the spins want to relax to. This is subtler, and highlights the difference

between a true equilibrium state and a non-equilibrium steady-state. Such state is determined by the spin

generation torque, which extrinsic SOC modifies in two ways: First, via side-jump and skew scattering,

which together add an extrinsic contribution θsHext ∼ λ2
0 to the intrinsic spin Hall angle, θsHint ∼ (α2, β2)

(this can have the same or the opposite sign as the intrinsic angle). Second, via Elliott-Yafet relaxation,

which yields a correction opposite to the non equilibrium part of the intrinsic spin generation term, i.e.,

the Γ̂χB part of Γ̂χΩ in Eq. (4.8):

Γ̂DPχΩ →
[
Γ̂DP + Γ̂EY

]
χ∆ +

[
Γ̂DP + Γ̂DP

θsHext
θsHint
− Γ̂EY

]
χB

≡ Γ̂ Seq + δΓ̂χB , (4.11)

where

Γ̂ = Γ̂DP + Γ̂EY , (4.12)

and

δΓ̂ = Γ̂DP + Γ̂DP
θsHext
θsHint
− Γ̂EY . (4.13)

The full Bloch equations thus become

∂tS
a = −[Ω× S]a − Γ̂ab(Sb − χ∆b) + δΓ̂abχBb. (4.14)

This is the main result that we are looking for. It shows that, while intrinsic and extrinsic SOC act in

parallel as far as relaxation to the equilibrium state is concerned–second term on the r.h.s. of Eq. (4.14)–

they compete for the more interesting non-equilibrium contribution–the spin-generation torque, described

by the third term on the r.h.s. of Eq. (4.14). In particular, the last term on the right hand side of Eq. (4.13)

describes an “Elliot-Yafet spin-generation torque”, which opposes the more familiar Dyakonov-Perel and

spin Hall terms.

Eq. (4.14) shows that the naive Bloch equation (4.8) is modified by extrinsic processes. While this

fact had already been recognized in Chapter 5 (and Refs. [75, 91]) some terms (third order in SOC: first

order in RSOC and second order in λ2
0) of the diagrammatic expansion had been neglected leading to an

incomplete form of δΓ̂, in which the last term on the right hand side of Eq. (4.13) was missing. 1

As a result, the numerical calculation of current-induced spin polarization must be reconsidered, hence

we will solve Eq. (4.14) numerically in the last Chapter 7. Indeed, Eq. (4.14) implies that the competition

between intrinsic and extrinsic torques can generate out-of-plane spin polarizations from in-plane spin-

orbit fields. Note that such a mechanism is very basic in nature, in the sense that it does not require

1Note that the terms here taken into account are beyond those considered in Ref. [47], where e. g. O(λ4
0) corrections are

neglected, and Ref. [98], where purely orbital mechanisms, not involving the spin of the carriers, are discussed.
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finer details such as band non-parabolicities or angle-dependent scattering [25] in order to be effective.

As such, it may have important consequences both in the analysis of existing experimental data [42, 93],

and in the design of novel setups.

The non-trivial modification of the ISGE/EE arising from Eq. (4.14) implies a corresponding modifi-

cation of the SGE/IEE, so as to fullfill Onsager relations. To be explicit, in the scenario reciprocal to the

one considered in Eqs. (4.4), (4.5), the charge current Jx generated by a non-equilibrium spin polarization

Sy − χ∆y acquires the correction

δJx =
2eατ

τEY
(Sy − χ∆y) . (4.15)

This ensures reciprocity between the spin response to an electric field Ex and the charge response to a

time-dependent magnetic field −∆y(t) [91]. A microscopic derivation of (4.15) in a more general context

is discussed in Ref. [99] and will not be pursued here.

In the following sections, we will extend the results of Ref. [75] to the case when both RSOC and DSOC,

as well as SOC from impurities, are present. Here the effect of the interplay between SOC mechanisms

is not considered. In contrast to what was done in Ref. [75], where the quasiclassical Keldysh Green

function technique was used, we adopt here the diagrammatic language and the Kubo formula, which

allows to identify the different physical contributions to the ISGE. We will derive the ISGE in a 2DEG

and show in particular that the contributions due to RSOC and DSOC can cancel each other for equal

RSOC and DSOC strengths. This is in agreement with Refs. [29, 35] when they concluded that the ISGE

in semiconductors can be strongly anisotropic due to the interplay of RSOC and DSOC in the presence

of impurity scattering [100].

4.3 Linear response theory at ω = 0

The model Hamiltonian for a 2DEG in the presence of the SOC reads

H =
p2

2m
+ α(pyσx − pxσy) + β(pxσx − pyσy)− λ2

0

4
σ ×∇V (r) · p + V (r), (4.16)

with p = −i~∇r the momentum operator and V (r) representing a short-range impurity potential. In

Eq. (4.16) m is the effective mass in the sample, σ = (σx, σy, σz) the vector of Pauli matrices, α and β

the Rashba and Dressehaus SOC constants. In the linear response theory, the spin polarization along the

y direction due to an electric field applied along the x direction is given by

Sy = σyxECEx (4.17)

where σyxEC is the frequency-independent Edelstein conductivity [21] given by Eq. (3.122) for the Kubo

formula [91]

σyxEC =
(−e)
2π

∑
p

Tr[GA
Γy
2
GRJx], (4.18)

where Γy is the spin vertex renormalized by impurity scattering derived in Eq. (3.124), and Jx is the

number current vertex. In the presence of RSOC and DSOC, the retarded Green function has a structure

in spin space, which can be expanded in Pauli matrix basis in the form

GRp = GR0 σ0 +GRx σx +GRy σy (4.19)
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Figure 4.2: Lowest order diagrams for the disorder-averaged self-energy. (a) The self-consistent Born

approximation for the spin-independent (Σ0) and spin-dependent (ΣEY ) selfenergies. (b) The extra

correction to the self-energy due to the interplay of RSOC and extrinsic SOC. The dashed line denotes

the impurity average and the cross denotes the SOC from the impurity potential.

where

GR0 =
GR+ +GR−

2

GRx = (αp̂y + βp̂x)
GR+ −GR−

2γ

GRy = −(αp̂x + βp̂y)
GR+ −GR−

2γ
. (4.20)

with GR± = (ε − p2

2m ∓ γp + i
2τ )−1, and it is clear that the advanced Green function is obtained via

the relation GA± = (GR±)∗. Here, γ2 = α2 + β2 + 2αβ(p̂xp̂y + p̂yp̂x) is the total spin-orbit strength and

depends on the direction of the momentum p̂x = cos(φ) and p̂y = sin(φ). Within the self-consistent Born

approximation, the self-energy is given by the diagrams of Fig. 4.2(a) and has two contributions due to

spin-independent and spin-dependent scatterings [21, 89]

ΣR = ΣR0 + ΣREY

= niv
2
0

∑
p′

GRp′ + niv
2
0(
λ2

0

4
)2
∑
p′

σzGRp′σ
z(p× p′)2

z

= −i
1

2τ0
− i

1

4τEY
= −i

1

2τ
, (4.21)

where 1/2τ is the total quasiparticle relaxation rate. Whereas the first term, to zero order in λ2
0, yields

the standard elastic scattering time, the second one, to second order in λ2
0, is responsible for the EY spin

relaxation. The standard expression for the spin-independent scattering and EY spin relaxation rates is

given by

1

τ0
= 2πniN0υ

2,
1

τEY
=

1

τ0

(
λ0pF

2

)4

, (4.22)

where N0 = m/(2π) and pF are the density of states and the Fermi momentum, respectively, of the

2DEG in the absence of SOC. In order to evaluate Eq. (4.18) we have introduced the matrix element of

the number current vertex Jx from state p′ to state p

Jx,pp′ = δpp′
(px
m
− ασy + βσx

)
+ δJx,pp′ . (4.23)

The latter term δJx,pp′ is responsible for the side-jump contribution to the Edelstein conductivity and

will be discussed further in Section 4.4. The renormalized spin vertex may be expanded in Pauli matrices

44



as Γy = ΣηΓηyσ
η and is obtained by summing ladder diagrams, as illustrated in Fig. 3.4. As a result

the vertex obeys an integral equation, which within the standard approximation, becomes an algebraic

one [85]

Γηy = δyη +
1

2

∑
µυi

IµυTr[σησµσiσυ]Γiy +
1

2

∑
µυi

JµυTr[σησzσµσiσυσz]Γ
i
y, (4.24)

where we have defined

Iµυ =
1

2πN0τ0

∑
p′

GRµG
A
υ , Jµυ =

1

4πN0τEY

∑
p′

GRµG
A
υ . (4.25)

Symmetry arguments in Eq. (4.24) indicate that, when both Rashba and Dresselhaus are present, the

renormalized spin vertex Γy is not simply proportional to σy, but acquires components on both σx and

σy. Upon the integration over the momentum in Eq. (4.24), some of the integrals Iµυ are zero and so the

equations simplify. As a result we finally obtainΓyy

Γxy

 =

 1− I00 + J00 −2(Iyx − Jyx)

−2(Ixy − Jxy) 1− I00 + J00

−11

0

 (4.26)

with

1− I00 + J00 ' τ(
1

τα
+

1

τβ
+

1

τEY
) ' τ

τt
, (4.27)

−2(Ixy − Jxy) ' 2τ

ταβ
. (4.28)

where the solution of each integral Iij can be found in Appendix B. In the diffusive approximation, for

instance, the DP spin relaxation due to RSOC can be defined as

1

τα
=

1

2τ0

(2τ0αpF )2

1 + (2τ0αpF )2
w (2mα)2D, (4.29)

where in the diffusive regime we assumed (2τ0αpF )2 � 1, which means that the many scattering events

are needed to erase the memory of the initial conditions. In the same regime, 1
τβ

w (2mβ)2D and

1
ταβ

w (2m)2αβD are the DP relaxation times due to DSOC and the interplay of RSOC and DSOC,

respectively. Once the renormalized spin vertex is known, the Edelstein conductivity from Eq. (4.18) can

be put in the form

σyxEC =
∑
η=x,y

ΓηyΠη, (4.30)

where the bare Edelstein conductivity without the contributions of the side-jump term and skew-scattering

mechanisms is given by

Πη =
(−e)
2π

∑
p

Tr[GA
ση

2
GRJx]. (4.31)

To derive the CISP, we rewrite Eq. (4.17) by using Eq. (4.30)

Sy =
(

Γyy Γxy

)Πy

Πx

Ex. (4.32)

By using the standard technique to evaluate the integration over the absolute value of the momentum,

the bare conductivities in Eq. (4.31) read

Πy = τSα〈
1

τγ
− 2

τγ

β2

γ2
〉, Πx = −τSβ〈

1

τγ
− 2

τγ

α2

γ2
〉 (4.33)
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where

Sβ = −eN0τβEx, Sα = −eN0ταEx (4.34)

and 〈...〉 denotes the average over the momentum directions. Then the ISGE, which is equivalent to

the stationary solution of the Bloch equation for spin dynamics, is derived by inserting Eq. (4.26) and

Eq. (4.33) into Eq. (4.32)

Sy =

 1(
1
τα

+ 1
τβ

+ 1
τEY

)2

−
(

2
τβα

)2

 〈Sβ 2

ταβ

(
1

τγ
− 2

τγ

α2

γ2

)
+ Sα

1

τt

(
1

τγ
− 2

τγ

β2

γ2

)
〉. (4.35)

In Eq. (4.35), 1/τγ = (2γpF τ)2/2τ is the total DP spin relaxation for Rashba and Dresselhaus SOCs

with “γ2 = α2 + β2 + 2αβsin(2φ)”. After taking the angular average of Eq. (4.35) we may write the

expression of the ISGE component along the y direction

Syint =

 1(
1
τα

+ 1
τβ

+ 1
τEY

)2

−
(

2
τβα

)2

(Sα(
1

τα
− 1

τβ
)(

1

τα
− 1

τβ
+

1

τEY
)

)
. (4.36)

We have added a suffix int to remind that we are only considering the intrinsic mechanism, which can

be defined as the term that survives when the extrinsic SOC (λ0) vanishes. One must however borne

in mind that this intrinsic term is modified by the presence of the extrinsic SOC via the appearance of

the EY spin relaxation time. The consideration of the extrinsic mechanisms, i.e. those terms which only

arise when the extrinsic SOC is present, will be done in the next section.

Eq. (4.36) generalizes to the presence of the DSOC the expression for the intrinsic contribution to

the Edelstein polarization presented in Eq. (36) of Ref. [75] and, indeed, reduces to it when β = 0.

Furthermore, when also λ0 = 0 it reproduces the Edelstein result for the Rashba model [21], as presented

in Eq. (4.1). We also note that, in the absence of the extrinsic SOC, the contributions due to the RSOC

and DSOC cancel each other when α = β. In this case indeed Eq. (4.36) predicts that the Edelstein

effect vanishes. The fact that the spin vertex Γy has both σx and σy components implies that there will

be spin polarization also along the x direction. By performing a similar calculation for the ISGE along

the x direction, we have

Sxint =

 1(
1
τα

+ 1
τβ

+ 1
τEY

)2

−
(

2
τβα

)2

(Sβ(
1

τα
− 1

τβ
)(

1

τα
− 1

τβ
+

1

τEY
)

)
. (4.37)

One should remember that the extrinsic SOC affects the ISGE not only through the EY mechanism, but

also through the two other mechanisms, side-jump and skew scattering. In the following sections, we will

show how the inclusion of the side-jump and skew scattering modifies the ISGE.

4.4 Side-jump and skew-scattering contributions

In this section we evaluate the side-jump and skew-scattering contributions to the Edelstein conduc-

tivity. The self-energies, to order λ2
0, in Fig. 4.2(b) are usually zero in the absence of intrinsic SOC due
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Figure 4.3: Diagrams for the side-jump contribution to the Edelstein effect. The solid lines are Green

function and dashed lines represent the average over the impurity potential. The cross denotes the SOC

from the impurity potential (a),(b) Side-jump type of diagrams originating from components proportional

to λ2
0 in the current vertices. (c)-(f) The extra corrections to the side-jump contribution due to the

extrinsic effect, where the right vertex is for the x component of the charge current.

to symmetry reasons. However, when RSOC and DSOC are present, they no longer vanish and, actually,

their contribution is crucial to get the full side-jump contribution to the Edelstein conductivity. Hence,

the diagrams we need to consider for the side-jump mechanism are those depicted in Fig. 4.3. Diagrams

shown in Figs. 4.3(a) and 4.3(b) correspond to the ordinary side-jump diagrams as those used to evaluate

the spin Hall conductivity and originate from the anomalous correction to the current vertex to order λ2
0

(see Eq. (4.23)). The other diagrams shown in Figs. 4.3(c-f) take into account the self-energy corrections

mentioned above. To keep the discussion as simple as possible, we confine first to the case when only

RSOC is present. The extension to the DSOC is straightforward.

The anomalous current vertex of Eq. (4.23) from state p to state p′ can be put in the form

δJxp,p′ = i
v0λ

2
0

4
(py − p′y)σz. (4.38)

By replacing the spin current Jxpp′ in Eq. (4.31) by δJxpp′ , the diagrams in Figs. 4.3(a) and 4.3(b) read

Πsj(a+b)
y = −i

ev2
0ni

2π

λ2
0

4

∑
pp′

(p′y − py)
1

2
Tr
[
GApσyG

R
p (GRp′σz − σzGAp′)

]
. (4.39)

The diagrams in Figs. 4.3(c) and 4.3(f) corresponding to the contributions from the self-energy renor-

malization of the Green functions are given by

Πsj(c+d)
y = i

eni
2π

v2
0

λ2
0

4

∑
pp′

Tr
[σy

2
GRp [GRp′(p

′ × p)zσz + (p× p′)zσzG
R
p′ ]G

R
p

px
m
GAp

]
, (4.40)

Πsj(e+f)
y = i

eni
2π

v2
0

λ2
0

4

∑
pp′

Tr
[σy

2
GRp

px
m
GAp [(p× p′)zσzG

A
p′ +GAp′(p

′ × p)zσz]G
A
p

]
. (4.41)

After performing the integration over the momentum p′ and using the expansion of the Green function
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in Pauli matrices, we obtain

Πsj(a+b)
y = i

e

4τ0

λ2
0

4

1

2π

∑
p

p
(
GA+G

R
− −GA−GR+

)
=

λ2
0p

2
F

4
S0 (4.42)

with S0 = −eN0ατ and

Πsj(c+d+e+f)
y = (4)(−i) e

4τ0

λ2
0

4

α

2π

∑
p

p2
xTr[σyG

R
pσyG

R
pG

A
p ]

=
λ2

0p
2
F

4
S0. (4.43)

By collecting the result of all the diagrams, one gets

Πsj
y = Πsj(a+b)

y + Πsj(c+d+e+f)
y = 2

λ2
0p

2
F

4
S0. (4.44)

Then, recalling that the side-jump spin Hall conductivity reads

σSHEsj = − e

2π

λ2
0p

2
F

4
, (4.45)

we finally obtain

σsjEC,yx = −2τsmασ
SHE
sj . (4.46)

The above term will then give the following contribution to the ISGE

Sy = −2mατsσ
SHE
sj Ex, (4.47)

with the total relaxation rate being 1
τs

= 1
τEY

+ 1
τα

. Note that by identifying the side-jump contribution

to the spin Hall current as Jzy = σSHEsj Ex, one obtains the same expression as in Ref. [75] as expected in

Sy when extrinsic contributions are explicitly taken into account.

In the following, for the treatment of the skew-scattering effect, we need the third moment of the

disorder distribution 〈V (r1)V (r2)V (r3)〉 = niv
3
0δ(r1 − r2)δ(r2 − r3). Now we proceed to evaluate the

diagrams responsible for the skew-scattering contribution to the bare conductivity. The diagrams in

Fig. 4.4 give

Πss(a+b)
y = −i e

2π
v3

0

λ2
0

4

∑
pp′p′′

Tr
[σy

2
GRp [GRp′ G

R
p′′
p′′x
m
GAp′′(p

′′ × p)zσz + (p× p′)zσzG
R
p′
p′x
m
GAp′G

A
p′′ ]G

A
p ].

(4.48)

Similarly to Eqs. (4.40) and (4.41), after taking the integration over p′ and p′′ and using the expansion

of the Green function, we can obtain

Πss(a+b)
yx = i

ev0p
2
F

4m
N0

λ2
0

4

∑
p

p
1

2
(GR−G

A
+ −GA+GR−). (4.49)

Finally the total skew-scattering contribution for a screened impurity potential gives

Sy = −2mατsσ
SHE
ss Ex, (4.50)

σSHEss = e
λ2

0

4
n
mv0

2
pF l, (4.51)
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Figure 4.4: Diagrams for the skew-scattering contribution to the Edelstein effect. The cross denotes the

correction to the Green function due to spin-orbit scattering.

where σSHEss is the spin Hall conductivity associated to the skew-scattering mechanism.

Similar to the side jump, the skew-scattering contribution can be included in the Edelstein conduc-

tivity, which amounts to say that σyxEC,sj can be replaced by the sum of both contributions

σyxEC,sj → σyxEC,sj + σyxEC,ss. (4.52)

The inclusion of the DSOC is straightforward, although the calculation is lengthy. However, the final

result can be guessed by carefully considering the results (4.36) and (4.37). In Eq. (4.36), for instance,

one sees that the SOC determines the form of the spin polarization in three respects. First, there is a

factor Sα reminiscent of the Edelstein effect in only the RSOC model. Secondly, the DSOC appears only

in the specific element of the inverse matrix of the scattering rates. Finally, the factor 1/τα − 1/τβ can

be interpreted as due to the intrinsic spin Hall conductivity σSHEint = (e/8π)(2τ/τα − 2τ/τβ). For Sx in

Eq. (4.37) there is a similar situation with the roles of RSOC and DSOC interchanged. Then, in order

to have the side-jump and skew-scattering contributions to the Edelstein conductivity, it is sufficient to

replace the intrinsic spin Hall conductivity with σSHEext = σSHEsj + σSHEss to read

Syext =

 1(
1
τα

+ 1
τβ

+ 1
τEY

)2

−
(

2
τβα

)2

(Sα(
1

τα
− 1

τβ
+

1

τEY
)
4π

eτ
σSHEext

)
(4.53)

and

Sxext =

 1(
1
τα

+ 1
τβ

+ 1
τEY

)2

−
(

2
τβα

)2

(Sβ(
1

τα
− 1

τβ
+

1

τEY
)
4π

eτ
σSHEext

)
(4.54)

The sum of Eqs. (4.36) and (4.53) gives the total expression for the Edelstein polarization along the

y direction. Similarly Eqs. (4.37) and (4.54) provide the corresponding expression for the polarization

along the x direction. The four equations represent then the main result of this chapter. One interesting

consequence of these equations is that, by invoking the Onsager reciprocity, along, say the y, direction,

should in principle yield a charge current both along the x and y directions, an effect which can be tested

experimentally.
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Chapter 5

The frequency-dependent inverse

spin-galvanic effect

As its title suggests, in this Chapter we will describe the frequency-dependent ISGE in the diffiusive

regime. Moreover, we will consider the effect of the interplay of the EY spin relaxation and the ISGE in

the presence of intrinsic Rashba-Dresselhaus SOC. Compared to what we did in the previous Chapter,

here we show first how two spin-orbit split bands due to the intrinsic SOC modify the EY mechanism

and then the frequency dependence of ISGE is considered. In particular, we will find that the size and

form of the ISGE is greatly modified by the presence of the various sources of SOC. Indeed, SOC affects

the spin relaxation time by adding the EY mechanism to the DP, and, furthermore, it changes the non-

equilibrium value of the current-induced spin polarization by introducing a new spin generation torque.

For this purpose, we will first formulate the ISGE (the SGE can be obtained similarly by using the

Onsager relations) in terms of the Kubo linear response theory. Then we will derive an expression for

the ISGE in the presence of the RSOC and extrinsic SOC. This case with no DSOC, which is important

by itself, allows the understanding of the origin of the additional spin torque in a situation which is

technically simpler to treat with respect to the general case when both RSOC and DSOC are different

from zero. We will extend our results to the general case when the both RSOC and DSOC, as well as

SOC from impurities, are present. We will show how our result can be seen as the stationary solution of

the Bloch equations for the spin dynamics. These results have been published in [56].

5.1 Linear Response Theory at ω 6= 0

In this section, we use the standard Kubo formula of linear response theory to derive the ISGE in

the presence of extrinsic and intrinsic SOC. The in-plane spin polarization to linear order in the electric

fields is given by

Si = σijECEj , i, j = x, y, (5.1)
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where Ei is the external electric fields with frequency ω and σijEC is the frequency-dependent Edelstein

conductivity [22] given by Eq. (3.122) for the Kubo formula [91]

σijEC(ω) =
(−e)
2π

∑
p

Tr[GA(ε+ ω)Υi(ε, ω))GR(ε)Jj ], (5.2)

where the trace symbol includes the summation over spin indices. We keep the frequency dependence

of σijEC(ω) in order to obtain the Bloch equations for the spin dynamics. In Eq. (5.2), Υi(ε, ω) is the

renormalized spin vertex relative to a polarization along the i-axis, required by the standard series of

ladder diagrams of the impurity technique [72, 85], as shown in Fig. 3.4. In the above Eq. (5.2), Jj are

the bare number current vertices. In the plane-wave basis, their matrix elements from state p′ to state p

read

Jx = δp,p′
(px
m
− ασy + βσx

)
+ δJx,pp′ , (5.3)

Jy = δp,p′
(py
m

+ ασx − βσy
)

+ δJy,pp′ . (5.4)

The latter term δJj,pp′ in equations (5.3) and (5.4), which depends explicitly on disorder, is of order

λ2
0 and originates from the extrinsic SOC. Such a term gives rise to the side-jump contribution to the spin

Hall effect [24, 26] due to the extrinsic SOC. The side-jump and skew-scattering contributions to the spin

Hall effect in the presence of RSOC have been considered in [73–75]. In fact, we have already evaluated

both contributions to the Edelstein conductivity in the previous Chapter 3 by using the standard Kubo

formula diagrammatic methods. A similar analysis has been carried out within the SU(2) gauge theory

formulation in Ref. [75]. For this reason, we will not repeat such an analysis here, where we concentrate

instead on the contributions generated by the first term on the right-hand side of equations (5.3) and (5.4).

To examine the problem of the interplay of the EY spin relaxation and the ISGE, let us recall the

self-energy derived in Eq. (4.21) within the Born approximation. The self-energy has two contributions

due to the spin-independent and spin-dependent scattering [22, 89]

ΣRtot(p) ≡ ΣR0 (p) + ΣREY (p)

= niv
2
0

∑
p′

GRp′ + niv
2
0

λ4
0

16

∑
p′

σzG
R
p′σz(p× p′)2

z, (5.5)

whereas the imaginary part of the first term gives rise to the standard elastic scattering time

ImΣR0 (p) = −i2πN0niv
2
0 = − i

2τ0
. (5.6)

The second one is responsible for the EY spin relaxation, which can be a function of the Fermi surfaces.

From the point of view of the scattering matrix introduced in the previous Chapter (cf. Eq. (3.125)), the

two self-energy contributions correspond to the Born approximation for the |A|2 and |B|2, respectively.

Given the self-energy (5.5), the retarded Green function is also diagonal in momentum space and has the

same structure with Eq. (4.19) except that the GR±(ε) = (ε − p2

2m ∓ γp + i
2τ±

)−1 is the Green function

corresponding to the two branches in which the energy spectrum splits due to the SOC. The factor

γ2 = α2 + β2 + 2αβ sin(2φ) with p̂x = cos(φ) and p̂y = sin(φ) describes the dependence in momentum

space of the SOC, when both RSOC and DSOC are present. Notice that inversion in the two-dimensional
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momentum space ((px, py)→ (−px,−py)) leaves the factor γ invariant, since it corresponds to φ→ φ+π.

As a consequence, Gx,y → −Gx,y, whereas G0 is invariant. This observation will turn out to be useful

later when evaluating the renormalization of the spin vertices. The advanced Green function is easily

obtained via the relation GA± = (GR±)∗. In the expression for GR±, 1
2τ±

is a band-dependent time relaxation

and plays an important role in our analysis. In order to obtain this term, we note that, after momentum

integration over p′ in Eq. (5.5), the imaginary part of the retarded self-energy reads

ΣR± = −i
1

2τ0
− i

(
λ2

0

4

)2
1

4τ0
p2
F p

2
± ≡ −

i

2τ±
. (5.7)

Above, we indicate with pF the Fermi momentum without RSOC and DSOC and with p± the γ-

dependent momenta of the two spin-orbit split Fermi surfaces. To the lowest order in the spin-orbit

splitting, we have

p± = pF (1∓ γ

vF
), (5.8)

where vF = pF /m. The momentum factors originate from the square of the vector product in the second

term of Eq. (5.5). The factor p2
F is due to the inner p′ momentum, which, upon integration, is eventually

fixed at the Fermi surface in the absence of RSOC and DSOC. More precisely, when evaluating the

momentum integral, one ends up by summing the contributions of the two spin-orbit split bands in such

a way that the α- and β-dependent shift of the two Fermi surfaces cancels out in the sum. However,

the outer p momentum remains unfixed. Its value will be fixed by the poles of the Green function in

a successive integration over the momentum. Then, the γ-dependent relaxation times of the two Fermi

surfaces read
1

τ±
=

1

τ
(1∓ τ

τEY

γ

vF
), (5.9)

where
1

τ
=

1

τ0
+

1

2τEY
, (5.10)

with the standard expression for the EY spin relaxation rates

1

τEY
=

1

τ0

(
λ0pF

2

)4

. (5.11)

In order to evaluate Eq. (5.2), we need the renormalized spin vertex Υi, whose explicit dependence

on ε and ω has been dropped for simplicity’s sake. In the absence of impurity scattering, this vertex

has its bare form in terms of Pauli matrices as expected for spin operators Υ
(0)
i = σi. The superscript

“(0)” indicates the bare character of the vertex. As shown before, multiple impurity scattering taken into

account by ladder diagrams yields the renormalized vertex Υi, which, in general, will be a matrix in spin

space and can then be represented by an expansion in Pauli matrices,

Υi =
∑

ρ=0,1,2,3

Υρ
i σρ.

For vanishing RSOC or DSOC, symmetry reveals that the renormalized spin vertices share the same

matrix structure of the bare ones Υi ∼ σi, i.e., in this case, the renormalized vertex differs by the bare

one just by a factor. This is the case in Eq. (5.16) below. However, when both RSOC and DSOC are

present, symmetry arguments again indicate that Υx and Υy are not simply proportional to σx and
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σy, but acquire both σx and σy components. By following the standard procedure in Eq. (5.12), after

projecting over the Pauli matrix components, the vertex equation reads [89]

Υρ
i = δρi +

1

2

∑
µυλ

IµυTr[σρσµσλσυ]Υλ
i +

1

2

∑
µυλ

JµυTr[σρσzσµσλσυσz]Υ
λ
i , (5.12)

where

Iµυ =
1

2πN0τ0

∑
p′

GAµ (ε+ ω)GRυ (ε), Jµυ =
τ0

2τEY
Iµυ. (5.13)

Once the spin vertices are known, the Edelstein conductivities from Eq. (5.2) can be put in the form

σijEC = Υρ
iΠρj , (5.14)

with the bare Edelstein conductivities given by

Πρj =
(−e)
2π

∑
p

Tr[GA(ε+ ω)
σρ
2
GR(ε)Jj ]. (5.15)

The bare Edelstein conductivities are those one would obtain by neglecting the vertex corrections

due to the ladder diagrams. It is useful to point that one could have adopted the alternative route to

renormalize the number current vertices and use the bare spin vertices. Indeed, this was the route followed

originally by Edelstein [22]. Since the renormalized number of current vertices in the DC zero-frequency

limit vanish [72], the evaluation of the Edelstein conductivity reduces to a bubble with bare spin vertices

and the current vertices in the absence of RSOC and DSOC.

5.2 Inverse spin-galvanic effect in the Rashba model

To keep the discussion as simple as possible, in this section, we confine first to the case when only

RSOC is present. We will derive the spin polarization, Sy, when an external electric field is applied along

the x direction. Then, in the next section, we will evaluate the Bloch equation in the more general case

when both RSOC and DSOC are present. In the case β = 0, the renormalized spin vertex Υy is simply

proportional to σy, which means that Υy = Υy
yσ

y. Upon the integration over momentum in Eq. (5.12),

only I00 is non-zero and the other eight possibilities of (µ, ν) in Iµ,ν are zero. The cases (0, x/y), (x/y, 0),

(x, y) and (y, x) vanish because of angle integration, whereas the two other cases (x, x) and (y, y) cancel

each other out after taking the trace in Eq. (5.12).

As a result, we finally obtain (in the diffusive approximation ωτ � 1)

Υy = Υy
yσ

y =
1

1− I00 + J00
σy =

1− 4iωτ
τ
τs
− iωτ

σy, (5.16)

where the integral I00 has been evaluated in Appendix B

I00 =

(
1− 3iωτ − τ

τα

1− 4iωτ

)(
τ

τ0

)
, (5.17)

with the total spin relaxation rate being 1
τs

= 1
τEY

+ 1
τα

. Here, 1/τα = (2mα)2D defines the DP spin

relaxation rate due to the RSOC. Notice that, in the absence of SOC, the vertex becomes singular by

sending to zero the frequency, signaling the spin conservation in that limit. One sees that the EY and DP
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relaxation rates simply add up. This then gives σyx = Υy
yΠyx. Physically, in the zero-frequency limit,

the factor Υy
y = τs/τ counts how many impurity scattering events are necessary to relax the spin. In the

diffusive regime τs � τ , i.e., many impurity scattering events are necessary to erase the memory of the

initial spin direction.

By neglecting the contribution from the extrinsic SOC in Eq. (5.3) for the current vertex, the bare

conductivity Πyx naturally separates in two terms Π
(A)
yx and Π

(B)
yx due to the components px/m and −ασy

of the number current vertex. The expression for Π
(A)
yx reads

Π(A)
yx = (−e) 1

2π

∑
p

Tr

[
GA(ε+ ω)

σy

2
GR(ε)

px
m

]
=

e

4πm

∑
p

p

2

[
GA+(ε+ ω)GR+(ε)−GA−(ε+ ω)GR−(ε)

]
=

e

4m

(
p+N+

−iω + 1
τ+

− p−N−

−iω + 1
τ−

)
. (5.18)

In the above p±, N± and τ± refer to the Fermi momentum, density of states and quasiparticle time in

the ±-band. To order α/vF , one has

p± = pF (1∓ α/vF ), N± = N0(1∓ α/vF ). (5.19)

By including the contribution of the quasiparticle time in the ±-band from Eq. (5.9), one gets

Π(A)
yx = S0

(
1− τ

2τEY
− iωτ

1− 2iωτ

)
, (5.20)

where S0 = −eN0ατ . The evaluation of Π
(B)
yx is more direct. It gives

Π(B)
yx =

eα

2π

∑
p

Tr

[
GA(ε+ ω)

σy

2
GR(ε)σy

]
=

eα

2π

∑
p

(
GA0 (ε+ ω)GR0 (ε)

)
= −S0

(
1− τ

τα
− 3iωτ

1− 4iωτ

)
. (5.21)

Combining both contributions with accuracy up to order ωτ gives

Πyx = Π(A)
yx + Π(B)

yx = S0

( τ
τα
− τ

2τEY

1− 6iωτ

)
. (5.22)

By combining the vertex correction Eq. (5.16) and the bare conductivity Πyx in Eq. (5.14), we get

the following contribution to the frequency-dependent spin polarization

(Sy)(1) =

(
1

τ
τs
− iωτ

)(
1− 4iωτ

1− 6iωτ

)
Sxα

(
τ

τα
− τ

2τEY

)
, (5.23)

with Sxα = −eN0ατEx. This is not the full story yet, as we are going to explain. What we have learned up

to now is that the momentum dependence of the EY self-energy on the two spin-split Fermi surfaces yields

an extra term to the Edelstein polarization. Such a momentum dependence can also modify the vertex

corrections–the integrals Jµυ in Eq. (5.13)–which lead to the renormalized spin vertex. To appreciate this

aspect, we notice that, in evaluating such integrals in the absence of the RSOC, the moduli of p and p′
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Figure 5.1: The diagram needed to evaluate the extra vertex correction to the ISGE due to extrinsic SOC.

The left and right vertices denote the spin vertex Sy and the component (px/m) of the number current

vertex Jx, whereas the crosses on the top and bottom Green functions line stand for −i(λ2
0/4)p′×p and

−i(λ2
0/4)p× p′, respectively.

are taken at the Fermi surface in the absence of spin splitting. We emphasize that taking into account

the momentum dependence on the Rashba-split Fermi surfaces one instead gets an extra contribution.

Consider the diagram of Fig. 5.1. After integration over p′, the left side of the diagram gives

− (λ2
0/4)2p2

F p
2

2τ0
τ = − τ

2τEY

p2

p2
F

.

If we set p = pF , we would recover the standard diagrammatic calculation in the absence of intrinsic

RSOC. By combining the above left side with the rest of the diagram, one gets an additional contribution

to the bare conductivity

(δΠ) = − τ

2τEY

(
− e

2π

∑
p

p2

p2
F

Tr

[
GA(ε+ ω)

σy

2
GR(ε)

px
m

])

=
−τ

2τEY
(

e

4mp2
F

)

(
p3

+N+

−iω + 1
τ+

−
p3
−N−

−iω + 1
τ−

)
. (5.24)

To this expression, we must subtract the one obtained by replacing p = pF , which is already accounted

for in the ladder summation. Hence, the extra vertex part (δΠ) modifies the spin polarization to give the

second contribution

(Sy)(2) =
1(

τ
τs
− iωτ

) (1− 4iωτ

1− 6iωτ

)
Sxα

(
− τ

2τEY

)
. (5.25)

Hence, by summing the above result with Eq. (5.23), the total spin polarization reads

Sy =
1(

1
τs
− iω

) (1 +
2iωτ

1− 6iωτ

)
Sxα

(
1

τα
− 1

τEY

)
≈ 1(

1
τs
− iω

)Sxα( 1

τα
− 1

τEY

)
. (5.26)

In the diffusive regime, terms in ωτ in the second round brackets on the right-hand side of Eq. (5.26),

which are responsible for higher-order frequency dependence, can be neglected. In the zero-frequency

limit, Eq. (5.26) has two main contributions described by the two terms in the last round brackets. The

first term is responsible for the Edelstein result [22] due to the intrinsic SOC, whereas the second one,

which arises to order λ4
0, is an additional contribution to the spin polarization due to the extrinsic SOC.

In the Rashba model without extrinsic SOC, only the first term is present, and, indeed, Eq. (5.26) reduces
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to it when λ0 = ω = 0. After Fourier transforming, the above equation can be written in the form of the

Bloch equation

∂tS
y = −

(
1

τα
+

1

τEY

)
Sy +

(
1

τα
− 1

τEY

)
Sxα. (5.27)

The terms on the right-hand side describe the various torques controlling the spin dynamics. The first

term, which includes DP and EY contributions, is the spin relaxation torque, whereas the second term

represents the spin generation torque. The above result coincides with that obtained in Chapter 4 (cf.

Eq. (4.36)) if the extra term (−1/τEY ) in the spin generation torque is not considered. In the next

section, we will generalize this result to the more general case when both RSOC and DSOC are present.

5.3 Inverse spin-galvanic effect in the Rashba-Dresselhaus model

As we have seen in the previous Section, the size and form of the ISGE is greatly modified by the

presence of the EY spin relaxation due to the extrinsic SOC. To analyze this fact more generally, we focus

here on the model with RSOC and DSOC as well as SOC from impurities. In order to evaluate Eq. (5.2)

for the Edelstein conductivity, we need the renormalized spin vertex Υi. For vanishing RSOC or DSOC,

the renormalized spin vertices share the same matrix structure of the bare ones Υi ∼ σi. However, when

both RSOC and DSOC are explicitly taken into account, Υx and Υy are not only simply proportional

to σx and σy, but also acquire components on both σx and σy. By following the procedure shown in

Eq. (5.12) and upon integration over momentum, the vertex equation for Υy reduces to 1− I00 + J00 −2(Iyx − Jyx)

−2(Ixy − Jxy) 1− I00 + J00

Υy
y

Υx
y

 =

1

0

 , (5.28)

while that forΥx is  1− I00 + J00 −2(Ixy − Jxy)

−2(Iyx − Jyx) 1− I00 + J00

Υy
x

Υx
x

 =

0

1

 , (5.29)

where

1− I00 + J00 '

(
−iω + 〈 1

τγ
〉+ 1

τEY

1− 4iωτ

)
τ (5.30)

−2(Ixy − Jxy) '
(

1− iωτ
1− 4iωτ

)(
1− τ

τEY

)
2τ

ταβ
,

where 〈. . . 〉 indicated the average over the momentum directions. The technical points of the calculation

in Eq. (5.30) are given in Appendix B. In the diffusive regime, 1
τγ

= (2mγ)2D and 1
ταβ

= (2m)2αβD are

the DP relaxation rates due to the total intrinsic spin-orbit strength and the interplay of RSOC/DSOC,

respectively. For vanishing DSOC, Eq. (5.30) reduces to the same expression in Eq. (5.16) as expected

in the Rashba model. However, with both RSOC and DSOC, spin relaxation is anisotropic and one

needs to diagonalize the matrix on the left-hand side of equations (5.28) and (5.29). Such a matrix then

identifies the spin eigenmodes. Having in mind to derive the Bloch equations governing to spin dynamics,

we rewrite Eq. (5.1) by using Eq. (5.14)Sx
Sy

 =

Υx
x Υy

x

Υx
y Υy

y

∑
j

Πxj

Πyj

Ej , (5.31)
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where, by virtue of equations (5.28) and (5.29),Υx
x Υx

y

Υy
x Υy

y

−1

=
τ

1− 4iωτ

−iω + 〈 1
τγ
〉+ 1

τEY
2
ταβ

(1− iωτ)

2
ταβ

(1− iωτ) −iω + 〈 1
τγ
〉+ 1

τEY

 . (5.32)

In the diffusive regime, we can safely neglect the factor ωτ with respect to unity in the denominator

in front of the matrix and in the off diagonal elements of the matrix. The quantities Πρj appearing on the

right-hand side of Eq. (5.31) can be evaluated by standard techniques. However, some care is required

when evaluating the momenta due to the extrinsic SOC at the spin-split Fermi surfaces. The final result

for the bare conductivities reads

Πxx =
−τSxβ

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

α2

γ2
〉, (5.33)

Πxy =
−τSyα

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

β2

γ2
〉, (5.34)

Πyx =
τSxα

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

β2

γ2
〉, (5.35)

Πyy =
τSyβ

1− 6iωτ
〈 1

τγ
− 1

τEY
− 2

τγ

α2

γ2
〉, (5.36)

with

Sxβ = −eN0τβEx, (5.37)

Syα = −eN0ταEy, (5.38)

Sxα = −eN0ταEx, (5.39)

Syβ = −eN0τβEy. (5.40)

We take the angular average over the DP relaxation rates in Eqs. (5.32-5.36)

2π∫
0

dφ

2π

1

τγ
=

1

τα
+

1

τβ
, (5.41)

(−2)(α2 or β2)

2π∫
0

dφ

2π

1

τγ

1

γ2
=
−2

τα
or
−2

τβ
, (5.42)

where 1
τα

= (2mα)2D, 1
τβ

= (2mβ)2D are the DP relaxation rates due to RSOC and DSOC in the

diffusive approximation. By inserting the above expression into Eqs. (5.33-5.36) and vertex correction

in Eq. (5.32) and using Eq. (5.31), we may write the expression of the ISGE components in a form

reminiscent of the Bloch equations−iω + 1
τα

+ 1
τβ

+ 1
τEY

2
ταβ

2
ταβ

−iω + 1
τα

+ 1
τβ

+ 1
τEY

Sx
Sy

 =

−Syα( 1
τα
− 1

τβ
− 1

τEY
)− Sxβ(−1

τα
+ 1

τβ
− 1

τEY
)

Sxα( 1
τα
− 1

τβ
− 1

τEY
) + Syβ(−1

τα
+ 1

τβ
− 1

τEY
)


(5.43)

Indeed, by performing the anti-Fourier transform with respect to the frequency ω, Eq. (5.43) can be

written as

∂tS = −(Γ̂DP + Γ̂EY )S + (Γ̂DP − Γ̂EY )
N0

2
B, (5.44)
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where B represents the internal SOC field induced by the electric current. The Γ̂DP and Γ̂EY are the

DP and EY relaxation matrix

B = 2eτ

 βEx + αEy

−(αEx + βEy)

 , Γ̂DP =

 1
τα

+ 1
τβ

2
ταβ

2
ταβ

1
τα

+ 1
τβ

 , Γ̂EY =

 1
τEY

0

0 1
τEY

 . (5.45)

Equation (5.44) is the main result of the present Chapter. It shows that the intrinsic and extrinsic

SOC act in parallel as far as relaxation to the equilibrium state is concerned, i.e., the DP and EY spin

relaxation matrices add up. However, as far as the spin generation torques are concerned, DP and EY

processes have opposite signs. One should notice that the spin generation torque due to SJ and SS

processes discussed diagrammatically in Eqs. (4.53-4.54) must also be taken into account. This is simply

obtained by multiplying the DP relaxation matrix Γ̂DP in the second term on the right-hand side of

Eq. (5.44) by the factor 1 + θsHext/θ
sH
int , where θsHext and θsHint are the spin Hall angles for extrinsic and

intrinsic SOC.

The extrinsic spin Hall angle can be derived from Eq. (4.52) for the SJ and SS contributions. To

develop some quick intuition, one may notice that again for β = λ0 = 0 and Ey = ω = 0, Eq. (5.43)

reproduces the Edelstein result for the Rashba model obtained in Eq. (4.1). Furthermore, when also

ω 6= 0, it reproduces the frequency-dependent spin polarization for the Rashba model as shown in the

previous section. When λ0 6= 0 and β = 0, we see that the ISGE, due to the interplay of the extrinsic and

intrinsic SOC, gets an additional spin torque, suggesting that the EY spin-relaxation is detrimental to the

Edelstein effect. The diagrammatic analysis reported here provides the following interpretation. The EY

spin relaxation depends on the Fermi momentum. When there are two Fermi surfaces with different Fermi

momenta, the one with the smaller momentum undergoes less spin relaxation of the EY type than the

one with larger momentum. On the other hand, the ISGE arises precisely because there is an unbalance

among the two Fermi surfaces with respect to spin polarization. For a given momentum direction, the

larger Fermi surface contributes more to the Edelstein polarization than the smaller Fermi surface. Hence,

the combination of these two facts suggests a negative effect from the interplay of Edelstein effect and

EY spin relaxation. By neglecting the EY relaxation, one sees that the DP terms can cancel each other

out if the RSOC and DSOC strengths are equal. This cancellation or anisotropy of the spin accumulation

has been obtained in Eqs. (4.36-4.37) for the Bloch equations in the absence of the interplay of EY spin

relaxation and the ISGE. As mentioned before, this cancellation could be used to determine the absolute

values of the RSOC and DSOC strengths under spatial combination of spin dependent relaxation.

In accordance with the experimental observations of Ref. [65], our results show that the current-

induced spin polarization does not align along the internal magnetic field B due to the SOC. According

to Eq. (5.44), this may occur due to the presence of the extrinsic SOC both in the spin relaxation torque

and in the spin generation torque. Indeed, when the extrinsic SOC is absent, the spin polarization must

necessarily align along the B field. Hence, our theory could, in principle, provide a method to measure

the relative strength of intrinsic and extrinsic SOC.
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Chapter 6

Theory of current-induced spin

polarizations in an electron gas:

SU(2) approach

In this Chapter, the derivation is based on the SU(2) gauge-field formulation of the Rashba-Dresselhaus

SOC. Our main goal is to identify a new spin-generation torque arising from EY scattering, which was

already derived in the previous Chapter 5 by using the diagrammatic Kubo formula. One of the aims to

use the SU(2) approach is to present the same physical phenomena from different view points. However

this method has advantages with respect to the linear response theory by allowing the non-linear situation

to be considered.

More precisely, according to our derivation in Chapter 3 concerning the kinetic equation in the presence

of RSOC and DSOC, we derive the Bloch equations when only intrinsic SOC is present. Then we present

a rigorous derivation of the Bloch equations, including the corrections arising from extrinsic effects. Here

we obtain the crucial new spin-generation torque arising from the EY process, and discuss its implications

for the ISGE/EE and SGE/IEE in specific experimental setups. Finer details concerning the calculation

of the collision integral are provided in Appendix C. These results have been published in [37].

6.1 The “intrinsic” Bloch equations

As shown in [36], the spin density and spin current density defined by

Sa(r, t) =
∑
p

Tr

[
f(p, r, t)

σa

2

]
,

Jai (r, t) =
∑
p

pi
m

Tr

[
f(p, r, t)

σa

2

]
, (6.1)

obey a continuity-like equation

∂̃tS
a + ∂̃iJ

a
i = 0. (6.2)
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which was already derived in Eq. (3.55). After making explicit the covariant derivatives according to

(3.50), the continuity-like equation (6.2) becomes

∂tS
a + εabceΨ

bSc +∇iJai − εabceAbiJci = 0. (6.3)

Here εabc is the fully antisymmetric Ricci tensor. The second term in Eq. (6.3) is the standard precession

term due to the Zeeman term (3.28). The last term of (6.3) can be made explicit by providing the

expression for the spin current Jai , where the lower (upper) index indicates the space (spin) component.

In Eq. (3.85) the expression of Jai was derived via a microscopic theory in the diffusive regime [36, 71].

The expression reads

Jai = viS
a −D(∇iSa − εabceAbiSc)−

eτn

4m
(Eai + εijkvjBak) (6.4)

where vi = − eτmEi is the average drift velocity of electrons driven by the external electric field. As

explained in Chapter 3, all the terms in Eq. (6.4) have a specific physical origin. The first is a drift term,

containing the spin density Sa carried by the electrons drifted by the electric field Ei. The second is a

diffusion term that contains two contributions: (i) the standard diffusion current proportional to ∇iSa,

and (ii) the contribution originating from the gauge-field part of the covariant derivative (3.50) acting on

the spin density. The third term corresponds the SU(2) drift current driven by the spin-dependent force

of Eq. (3.53). In particular the second contribution in this term yields the spin Hall coupling due to the

SU(2) magnetic field Bai .

Because of non Abelian nature of the SU(2) gauge group the corresponding magnetic and electric fields

can be nonzero even for spatially homogeneous potentials provided their components are not commuting.

In this important special case the SU(2) magnetic and electric fields are determined by the commutator

term in Eq. (3.51) (cf., also Eqs. (25-30) in [36])

εijkBak = −εabceAbiAcj , (6.5)

Eai = εabceAbiΨc. (6.6)

Using this representation for the fields and recalling the Einstein relation τn
m = D ∂n

∂µ ≡ 4Dχ one can

combine the gauge potential-dependent terms in Eq. (6.4) into a single item, and rewrite the expression

for the spin current in the following compact form

Jai = viS
a −D∇iSa +DεabceAbi (Sc − χΩc) (6.7)

where Ω is the total magnetic field introduced by

Ωa = eΨa − eAakvk ≡ ∆a +Ba. (6.8)

Here ∆ is the usual Zeeman field defined after Eq. (3.28) for the external magnetic field and B represents

the internal SOC field induced by the electric current (electric field)

Ba = −eAakvk =
eτ

m
eAakEk. (6.9)

Now the Bloch equation describing the global spin dynamics in the presence of intrinsic SOC can be

derived by assuming a homogeneous spin density (∇iS = 0) and substituting the spin current of Eq. (6.7)
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into Eq. (6.3). The resulting equation reads

∂tS
a = −(Ω× S)a − Γ̂abDP

(
Sb − χΩb

)
, (6.10)

where Ωa is given by Eq. (6.8) and the DP relaxation tensor Γ̂abDP is defined as follows

Γ̂abDP = e2DεafcεbdcAdiA
f
i = e2D

(
δabAciAci −AaiAbi

)
. (6.11)

Equation (6.10) generalizes Eq. (4.7) of Section 4.2 to the case of arbitrary intrinsic SOC. It is worth

noticing that in the present formalism the DP relaxation arises as the second order covariant derivative

(the covariant Laplacian). One needs to act twice with the gauge field to get the quadratic dependence

on the SOC in the spin relaxation matrix.

The second term on the right hand side of the Bloch equation (6.10) corresponds to the intrinsic torque

T aint for generic SOC. The part of T aint proportional to the internal SO field B (6.9) can be recognized as

the spin generation torque

T aint,sg = Γ̂abDPB
b = e4D

τ

m
Abi (AbiAak −AbkAai )Ek. (6.12)

The intrinsic spin generation torque T aint,sg is given by the covariant divergence of the spin Hall current,

that is the very last term proportional to Bk in Eq. (6.4). Therefore the spin generation torque vanishes

for the configurations of the gauge potentials with vanishing SU(2) magnetic field. These configurations

correspond to a so-called pure gauge SOC for which different space components of the SU(2) potential

are commuting and the intrinsic spin Hall effect is absent. Our results imply that in this situation the

current-induced spin polarization is also absent.

It is instructive to write explicitly the above general formulas for the specific form of the vector

potential of Eq. (3.27) corresponding to the Rashba-Dresselhaus SOC. In this case the SU(2) magnetic

field has only one nonzero component

eBzz = −eFaxy = (2mβ)2 − (2mα)2. (6.13)

As the SU(2) magnetic field determines the spin Hall coupling it can be expressed in terms of the spin

Hall angle for the intrinsic SOC defined by

θintSH = mτ(β2 − α2) =
eτBzz
4m

. (6.14)

The expression for the spin Hall angle has a suggestive interpretation by recalling the classical Hall

effect where the coupling between the mutually orthogonal charge currents is given by the product of

the cyclotron frequency and the scattering time ωcτ = eBexterτ/m. In the present case to get the spin

Hall angle (6.14) one needs to combine the SU(2) cyclotron frequency eBzz/(4m) with the scattering

time τ . An intuitive way to understand the origin of the factor of 4 in the denominator of the SU(2)

cyclotron frequency is the following. Let us imagine that spin up and spin down particles undergo the

ordinary Hall effect in opposite directions with a spin-dependent magnetic field, j↑y = (τ/m)B↑j↑x and

j↓y = −(τ/m)B↓j↓x. By defining the spin current as Jzy = (j↑y − j↓y)/2 and identifying B↑ = −B↓ = Bzz/2,

one immediately finds the ”SU(2)” cyclotron frequency eBzz/(4m).
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By introducing further an in-plane Zeeman field eΨx ≡ ∆x and eΨy ≡ ∆y, we find that the only

nonzero components of the SU(2) electric field are

eEzx = ∆x2mα+ ∆y2mβ (6.15)

eEzy = ∆x2mβ + ∆y2mα. (6.16)

In this case the total magnetic field Ω of Eq. (6.8) also has only in-plane components

Ωx = ∆x +Bx (6.17)

Ωy = ∆y +By (6.18)

with the internal SO field B (6.9) of the form

Bx = 2eτ(βEx + αEy) (6.19)

By = −2eτ(αEx + βEy). (6.20)

The general DP relaxation matrix Γ̂DP of Eq. (6.11) entering Eq. (6.10) simplifies as follows

Γ̂DP =


τ−1
α + τ−1

β 2τ−1
αβ 0

2τ−1
αβ τ−1

α + τ−1
β 0

0 0 2(τ−1
α + τ−1

β )

 (6.21)

where τ−1
α = (2mα)2D, τ−1

β = (2mβ)2D and τ−1
αβ = (2m)2αβD. One should remember that the above

equation has the same form with Eq. (5.45) for the DP spin relaxation rates.

Notice that for β = 0 the matrix Γ̂DP becomes diagonal, and τα reduces to the DP relaxation time

introduced in Eq. (4.6). Finally, the spin generation torque reads

Tint,sg ≡ Γ̂DPχB (6.22)

= −2mθintSH(−2eN0D)


−αEy + βEx

−βEy + αEx

0

 .

The above equation generalizes the spin generation torque introduced in Eq. (4.8) to the case of RSOC

and DSOC for arbitrary direction of the electric field.1 In agreement with the general discussion after

Eq. (6.12) the spin generation torque is proportional to the spin Hall angle. Therefore, it vanishes for

SOC giving θintSH = 0 which in the present case corresponds to the compensated RSOC and DSOC with

α = ±β.

The meaning of Eq. (6.10) is that, under stationary conditions, S = χΩ, provided the spin Hall angle

is nonzero. This implies that the spin polarization follows the total magnetic field and (for an energy-

independent scattering time [36]) there can be no out-of-plane spin polarization since Ω lays in the xy

plane. This is no longer the case when one considers the extrinsic SOC as will be shown in the following

Section.

1Notice that Tint,sg corresponds to γ in the notations of Ref. [65], however we will consider it in the next Chapter.
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Figure 6.1: Self-energy diagram in second order in the spin-orbit impurity potential, shown as a crossed

empty dot, contributing to the EY spin relaxation.

6.2 The effects of extrinsic SOC

The interplay of intrinsic and extrinsic SOC was investigated previously in [71, 73, 74, 89]. According

to the analysis therein Eq. (6.10) acquires two modifications. The first, to order λ2
0, is an additional

contribution to the spin Hall coupling in the third term in expression (6.4) for the spin current. This

arises from the inclusion of side-jump and skew-scattering effects due to the extrinsic SOC, as derived in

Chapter 4 and leads to a renormalization of the spin Hall angle in the expression of the spin generation

torque in Eq. (6.22)

θintSH → θSH = θintSH + θextSH . (6.23)

The second term, which arises to order λ4
0, is an additional contribution to the spin relaxation matrix

(the EY spin relaxation). In fact, there exists, to the same order λ4
0, a third new contribution, which will

be derived in detail in the following way.

To see how the new contribution arises, we focus on the term of order λ4
0 in the self-energy, whose

Feynman diagram is shown in Fig. 6.1 and whose expression reads

Σ̌EY (p) = ni
∑
p′

V̂p,p′Ǧp′ V̂p′,p, (6.24)

where V̂p,p′ is the spin-dependent part of the impurity scattering amplitude

V̂p,p′ = iv0(λ0/2)2(p× p′) · σ. (6.25)

Shifting the self-energy of Eq. (6.24) according to SU(2) shifts (3.44-3.45) yields the locally covariant EY

self-energy

˜̌ΣEY = ˜̌Σ
(0)

EY + ˜̌Σ
(1)

EY . (6.26)

In Eq. (6.26), we separated the term responsible for the EY relaxation

˜̌Σ
(0)

EY = ni
∑
p′

V̂p,p′
˜̌Gp′ V̂p′,p (6.27)

from that giving rise to the new contribution

˜̌Σ
(1)

EY =
ni
2

∑
p′

(V̂p,p′{Ak, ∂p′k
˜̌Gp′}V̂p′,p − {Ak, ∂pk V̂p,p′

˜̌Gp′ V̂p′,p}). (6.28)
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In the last equation the summation over the repeated index k is understood. Correspondingly, the

Keldysh collision kernel acquires two contributions to order λ4
0 and reads

δIK ≡ −i
[

˜̌ΣEY ,
˜̌G
]

= −i
[

˜̌Σ
(0)
EY ,

˜̌G
]
− i
[

˜̌Σ
(1)
EY ,

˜̌G
]
. (6.29)

The first term on the right hand side gives rise to the EY spin relaxation [74], and contributes an extra

relaxation channel on the right hand side of Eq. (6.10)

− 1

τEY


1 0 0

0 1 0

0 0 d− 2

 (S− χ∆) ≡ −Γ̂EY (S− χ∆) (6.30)

where we have introduced the dimensionality-dependent EY spin relaxation rate given by

1

τEY
=

4(d− 1)

d2

1

τ

(
λ0pF

2

)4

. (6.31)

In the above d = 2, 3 is the dimensionality of the space where particles move. The d = 2 case corresponds

to the 2-dimensional electron gas case, where we have concentrated our attention until now. The z

component of the spin is a constant of the motion and does not undergo relaxation in this case. However,

the peculiarity of the new term we are going to derive appears also, and more remarkably, in the d = 3

case. For this reason we keep the dependence on the dimensionality from now on.

The Keldysh (K) component of the second term in (6.29) reads

δIKK = −i
(
G̃R − G̃A

)
Σ̃

(1),K
EY − i

(
Σ̃

(1),R
EY G̃K − G̃KΣ̃

(1),A
EY

)
≡ δI(1) + δI(2), (6.32)

having used that G̃R,A ∼ σ0. In order to obtain the Bloch equation we need to sum over the momentum

as done for obtaining the continuity equation (6.2). The summation over momentum of the Boltzmann

collision integral2 is obtained as ∑
p

∫
dε

2πi
δIKK ≡ ∆I(1) + ∆I(2). (6.33)

By replacing G̃R, G̃A and G̃K with the expressions (3.47-3.48), one obtains

∆I(1) =
niπ

2

∑
p′p

δ(εp − εp′)
(
∂p′k V̂p,p′{Ak, (1− 2fp′)}V̂p′,p + ∂pk{Ak, V̂p,p′(1− 2fp′)V̂p′,p

)
, (6.34)

and

∆I(2) = −niπ
2

∑
p′p

δ(εp − εp′)
1

2

{
(∂p′k V̂p,p′2AkV̂p′,p + ∂pk{Ak, V̂p,p′ V̂p′,p}), (1− 2fp)

}
. (6.35)

In both of the above equations, the first term, after the delta function, has been obtained by an integration

by parts with respect to the momentum p′. As a result, the derivatives with respect to p′k and pk act on

the V̂p,p′ factors only. In Eq. (6.34) the dependence on the directions of the momentum p is restricted to

the V̂p,p′ factors only, so that one can perform at once the integration over the solid angle of p and then

2The Boltzmann collision integral is the Keldysh collision intgeral (6.29) integrated over the energy
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take the derivative with respect to p′. Appendix C provides some useful identities (see Eqs. (C.2-C.4))

on how to carry out these operations. Notice also that the second term in round brackets of Eq. (6.34)

vanishes, because the derivative with respect to p yields a linear dependence on p so that the solid angle

integral gives zero.

By reasoning in the same way, one sees that the first term in round brackets within the anticommutator

of Eq. (6.35) also vanishes. In the second term one can make at once the integration over the solid angle

of p′, again by using the results of Appendix C. As a result, after working out the Pauli algebra, one gets

∆I = πniv
2
0

(
λ0

2

)4
d− 1

d

∑
p′p

δ(εp − εp′)p2

[
d− 2

d− 1

(
σk {eAk, p′lf(εp′)}σl + σl {eAk, p′lf(εp′)}σk

)
− σi {eAk, p′kf(εp′)}σi + 2p′2 {eAk, pkf(εp)}

]
. (6.36)

In Eq. (6.36) the summation over repeated indices runs over x, y, z for d = 3. For d = 2, the last two lines

of Eq. (6.36) survive and only the i = z term remains. Then the sum over momentum of the Boltzmann

collision integral is 3

∆Ia =
1

2
Tr[σa∆I]

=
1

τ

(
λ0

2

)4

p2
F

(d− 1)

2d

∑
p

f0(εp)pi

(
eAai +

d− 2

d− 1
(eAia + eAnnδai).

)
(6.37)

This is zero as long as f0(εp) is isotropic, which is the case in a homogeneous system at equilibrium. Things

change as soon as an electric field is switched on and carriers have a finite drift velocity v = −eτE/m. We

then have the spin generation torque due to the interplay of intrinsic and extrinsic SOCs T aext,sg ≡ ∆Ia

T aext,sg = − N0

2τEY

(
eAai +

d− 2

d− 1
(eAia + eAnnδai)

)
vi

= Cai vi (6.38)

where we have introduced the extrinsic SOC torque tensor Cai . In d = 3 it is instructive to represent this

tensor as follows

Cai = − eN0

2τEY

[
Annδia +

3

2

(
1

2

(
Aai +Aia

)
− 1

3
Annδia

)
+

1

2

(
Aai −Aia

)]
(6.39)

by separating explicitly all irreducible tensor parts - the unit, the traceless symmetric, and antisymmetric

contributions. Comparing this with the similar representation for the plain Aak we see that the symmetric

(“Dresselhaus”) part has a contribution 3 times as large relative to the antisymmetric (“Rashba”) part.

Hence Eq. (6.39) shows that the value at which the spin polarization would like to relax to by EY processes

has a form different from the SOC internal field defined in Eq. (6.9) due to DP processes. The latter

has the same structure as the first term in the brackets of Eq. (6.38) but with an opposite sign. Three-

dimensional motion adds an entirely new term to the internal SOC field induced by the electric field.

Although when going to d = 3 the linear DSOC may not be appropriate anymore, the overall message

is that the interplay of extrinsic SOC and SU(2) intrinsic SOC is extremely rich. The exploration of the

consequences of this are however beyond the scope of the present subject.

3The corrections to the charge collision integral ∆I0, relevant for the reciprocal SGE/IEE case in e.g. spin pumping

setups, require considering higher-order terms and are discussed in [99].
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For d = 2 only the first term in the brackets of Eq. (6.38) survives, so that, by considering a = y for

RSOC (eAyx = −2mα), we have

T yext,sg = − 1

τEY
N0αmvx. (6.40)

Hence, the spin generation torque due to the interplay of RSOC and extrinsic SOC has the opposite

sign with respect to the corresponding term originating by the Dyakonov-Perel precessional relaxation

T yint,sg = 1/τDP (N0αmvx). We name this new term the Elliott-Yafet torque (EYT).

We can then write the Bloch equation in the final form

∂tS = −Ω× S− (Γ̂DP + Γ̂EY ) (S− χ∆) + Tsg, (6.41)

where the spin generation torque Tsg, in the presence of extrinsic SOC is given by

Tsg = Tint,sg + δTint,sg + Text,sg, (6.42)

where

Tint,sg = Γ̂DPχB (6.43)

δTint,sg =
θextSH

θintSH

Γ̂DPχB (6.44)

Text,sg = −Γ̂EY χB. (6.45)

Hence, the extrinsic SOC yields two additional spin generation torques (6.44) and (6.45) associated to

spin Hall effect (to order λ2
0) and Elliott-Yafet processes (to order λ4

0), respectively. The second torque

has the same form but opposite sign of the intrinsic torque, indicating that the EY spin-relaxation is

detrimental to the ISGE/EE as anticipated in Section 4.2. The Bloch equations (6.41) together with the

expressions of the various torques (6.42-6.45), the DP (Γ̂DP ) and EY ( Γ̂EY ) spin relaxation matrices

(6.21) and (6.30) and the definition of the total magnetic field Ω (6.17-6.18) are the main result of this

Chapter. In accordance with the experimental observations of Ref. [65], Eq. (6.41) shows that, in general,

the static non-equilibrium spin polarization will not be aligned along the internal effective magnetic field

Ω. To analyze the effect of this new spin generation torque in detail, in the following Chapter, we will

solve the Bloch equation (6.41) numerically.
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Chapter 7

The current-induced spin

polarization: Remarks on

experiments and theory

We now discuss some applications of the formalism developed in Chapters 5-6. To show how these

results can be manifest in the experiments, the Bloch equations for spin dynamics derived in the previous

Chapters solve numerically in the regime of the diffusive limit and then the relevant experiments present.

7.1 The inverse spin-galvanic effect in an anisotropic spin-orbit

field

Up to now, we have derived the ISGE by using the SU(2) gauge-field formulation of the Rashba-

Dresselhaus SOC and diagrammatic Kubo approach. We have derived the Bloch equations which govern

the spin dynamics of the carriers in the diffusive approximation. According to our results in the previous

Chapter 6, the Bloch equations for the vector of the spin components S = (Sx, Sy, Sz) can be written in

the form

∂TS = −(Γ̂DP + Γ̂EY )

(
S− N0

2
∆

)
− (∆ + B)× S + (Γ̂DP − Γ̂EY )

N0

2
B +

θextSH

θintSH

Γ̂DP
N0

2
B (7.1)

where at zero temperature the Pauli spin susceptibility reduces to χ = N0/2 with N0 as the density of

states per spin at the Fermi levels. In the above equation, ∆ is an in-plane externally magnetic field

coupling to the carriers via the Zeeman effect. The external in-plane electric field E = (Ex, Ey, 0) induces

the in-plane magnetic field B = (Bx, By, 0) via the SOC, as one derived in Eqs. (6.19-6.20). The matrices

Γ̂DP and Γ̂EY describe the spin relaxation due to the intrinsic Rashba-Dresselhaus SOC and extrinsic

SOC, respectively. In a 2DEG, the intrinsic DP spin relaxation Γ̂DP has been carried out in Eq. (6.21),
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while the Γ̂EY in the 2D can be derived via Eq. (6.31) as

Γ̂EY =
1

τEY


1 0 0

0 1 0

0 0 0

 ,
1

τEY
=

1

τ0

(
λpF

2

)4

(7.2)

In the equation (7.1), the first two terms describe the total relaxation towards the precession and the

applied external magnetic field around the total magnetic field, whereas the last two terms describe the

Rashba-Edelstein effect [4, 21, 40] due to the magnitude of SO splitting. In order to gain some physical

intuition, consider a case with zero extrinsic SOC and with zero external magnetic field. This leads to

a stationary solution for the Bloch equations (7.1) according to S = (N0/2)B, i.e. the non-equilibrium

spin polarization aligns, via susceptibility N0/2 with the internal magnetic field B. In this case, the DP

relaxation matrix becomes irrelevant, because the ΓDP appears in front of the spin vectors cancels with

the ΓDP in front of the internal field.

Such symmetry can be broken when the extrinsic SOC is present, as reviewed in the previous Chapters.

The EY mechanism affects the Bloch equation via the two ways. First, the EY mechanism appears in

the diagonal element of the spin relaxation rates, hence the total relaxation rate read Γ̂EY + Γ̂DP . The

second way is that the EY mechanism affects the Bloch equation via the term −Γ̂EY (N0B)/2. One should

notice that this term describes the interplay between EY relaxation and the ISGE. It arises because the

EY mechanism, which depends on the forth power of the momentum, is sensitive to the splitting of the

Fermi surface induced by the RSOC and DSOC. Its minus sign is appeared because the spins belonging

to the carriers at the larger Fermi surface are relaxed more efficiently than the spin of carriers at the

smaller Fermi surface. Finally the last term in Eq. (7.1) describes the contribution of the extrinsic spin

Hall effect to the Rashba-Edelstein effect. The extrinsic spin Hall angle θextSH contains the side-jump and

skew-scattering, whose specific structure has been carried out in Chapter 4. One should remember that

the introduction of the extrinsic SOC makes the ISGE and SO magnetic field non parallel, a feature

seen in experiments [55, 65]. In the rest of this section, we will analyze the consequences of the Bloch

equations (7.1) in some details.

7.1.1 Analysis of the Bloch equations in a 2DEG

The final form of the Bloch equations for the spin dynamics according to Eq. (7.1) can be written as

∂tS = −Γ̂tot

(
S− N0

2
Ωrel

)
−Ωpre × S, (7.3)

where

Γ̂tot = Γ̂DP + Γ̂EY (7.4)

describe the total relaxation matrix include both the DP and EY mechanisms, and the spin polarization

relaxes according to the effective total relaxation magnetic field

Ωrel = ∆ + Γ̂−1
tot

(
θSH
θintSH

Γ̂DP − Γ̂ext

)
B, (7.5)

whereas the precession is controlled by the total precessional magnetic field Ωpre ≡ Ω = ∆ + B. Finally

we have introduced the total spin Hall angle θSH = θintSH + θextSH . To proceed further, it is sufficient to
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introduce the reduced units. We can use the inverse Dresselhaus DP time τ−1
DP = (2mβ)2D as a unit

of energy. We measure also the spin polarization in the units of S0 = (N0/2)/τDP . We then define the

following dimensionless parameters

r =
α

β
(7.6)

δ = |∆|τDP

q =
τDP
τEY

b = 2eτβEτDP =
eE

k2
Fβ

sH =
θSH
θintSH

=
θextSH + θintSH

θintSH

and dimensionless matrices

γ̂tot =


1 + r2 + q 2r 0

2r 1 + r2 + q 0

0 0 2(1 + r2)

 , γ̂rel =


sH(1 + r2)− q 2r 0

2r sH(1 + r2)− q 0

0 0 2sH(1 + r2)


and dimensionless vector

δ =


δ̂x

δ̂y

0

 , b =


Êx + rÊy

−(rÊx + Êy)

0


with δ as the unit vectors along the direction of the applied magnetic field and (Êx, Êy, 0) corresponding

to the unit vector along the applied electric field. In reduced units, the Bloch equations reads

∂tS = −γ̂tot(S− δδ − bγ̂−1
tot γ̂relb)− (δδ + bb)× S. (7.7)

We define for convenience

ω = δδ + bb. (7.8)

In the absence of extrinsic SOC, when q = 0, γ̂tot = γ̂rel and sH = 1, one has S = δδ + bb, i.e.

the ISGE is always parallel to the total (internal plus external) magnetic field. Hence, there is no Sz

component even for finite applied magnetic field in the plane. In the general case, the static solution

satisfies the system


1 + r2 + q 2r 0

2r 1 + r2 + q 0

0 0 2(1 + r2)

+


0 0 ωy

0 0 −ωx
−ωy ωx 0




Sx

Sy

Sz

 (7.9)

= δ


1 + r2 + q 2r 0

2r 1 + r2 + q 0

0 0 2(1 + r2)



δ̂x

δ̂y

0

+ b


sH(1 + r2)− q 2r 0

2r sH(1 + r2)− q 0

0 0 2sH(1 + r2)



bx

by

0

 .

The third row of the system gives the expression for Sz

Sz =
1

2(1 + r2)
(ωyS

x − ωxSy). (7.10)
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By inserting the above expression in the first two rows, one obtains1 + r2 + q 2r

2r 1 + r2 + q

+
1

2(1 + r2)

 ω2
y −ωxωy

−ωxωy ω2
x

Sx
Sy


= δ

1 + r2 + q 2r

2r 1 + r2 + q

δ̂x
δ̂y

+ b

sH(1 + r2)− q 2r

2r sH(1 + r2)− q

bx
by

 . (7.11)

In the absence of the external magnetic field (δ = 0), one has in compact form(
µ̂+

b2

2(1 + r2)
ω̂

)
Sxy = bν̂b, (7.12)

where

Sxy =

Sx
Sy

 , b =

bx
by


and

µ̂ =

1 + r2 + q 2r

2r 1 + r2 + q

 , ω̂ =

 b2y −bxby
−bxby b2x

 , ν̂ =

sH(1 + r2)− q 2r

2r sH(1 + r2)− q

 .

The solution of (7.12) can be found in powers of b. Then

Sxy = S(1)
xy + S(3)

xy + . . .

S(1)
xy = bµ̂−1ν̂b

S(3)
xy = − b2

2(1 + r2)
µ̂−1ω̂S(1)

xy

S(2n+1)
xy = − b2

2(1 + r2)
µ̂−1ω̂S(2n−1)

xy , (7.13)

hence Sxy is an odd function of b.

When the extrinsic SOC dominates, we can observe sH ∼ β−2. Furthermore, q ∼ β−2 and b ∼ β−1.

Since the physical ISGE must be multiplied by N0τ
−1
DP ∼ β2, so that S

(1)
xy ∼ β−1 a feature seen in the

experiments [65]. Then Sz is an even function of b, starting with a term b2. In Fig. 7.1 we plot Sz as

function of the external magnetic field for different values of the ratio q between the DP and EY relaxation

times and fixed ratio of the total spin Hall angle to the intrinsic spin Hall angle sH = 5. Notice that

in principle when q = 0, the spin Hall angle should be sH = 1. However, in the top left Fig. 7.1, we

left sH = 5 even though q = 0 to emphasize the role of the extrinsic SOC in the spin relaxation and in

the spin Hall effect. When there is no EY relaxation, the Sz curve as function of the applied magnetic

field is odd and passes thorough the origin. When EY relaxation is present, the Sz curve has a finite

intercept that scales as the square of the applied electric field. In Fig. 7.2, we present the vector plot of

the ISGE (blue) and the internal SO field (yellow) for different values of the extrinsic SOC. In the top

right panel we have q = 0 and sH = 1, i.e. there is no extrinsic SOC. As expected from the equations, the

ISGE is parallel to the SO internal field, which is maximum along the [1, 1] axis. By increasing the EY

relaxation, the ISGE is no longer parallel to the SO internal field. When q = 4.5, the ISGE is maximum

along the direction [1,−1], a feature that seems to agree with the data [55]. In Fig. 7.3, we present the

vector plot of the ISGE (blue) and the internal SO field (yellow) for different values of the extrinsic SOC
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Figure 7.1: Sz as a function of the external magnetic field (applied along the [1, 0] axis) for r = 2, sH = 5,

E = 0.2 (blue), E = 0.4 (yellow), E = 0.6 (green), E = 0.8 (red). The DP-EY ratio is q = 0 (top left)

and q = 0.5 (top right), q = 0.9 (bottom left) and q = 4.5 (bottom right). Notice that the plots do not

pass through the origin. The intercept depends on the applied electric field along the [1, 0] direction.
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Figure 7.2: Vector plot of the in-plane polarization (Sx, Sy) (Blue) and (Bxso, B
y
so) (Yellow) for q = 0 (top

left) and q = 0.5 (top right), q = 1.5 (bottom left) and q = 4.5 (bottom right). The external magnetic

field ∆ = 0, the applied electric field E = 0.8 along the [1, 0] direction and r = 2.
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Figure 7.3: Vector plot of the in-plane polarization (Sx, Sy) (Blue) and (Bxso, B
y
so) (Yellow) for q = 0

(left), q = 0.5 (center) and q = 4.5 (right). The external magnetic field ∆ = 2 along the [1, 0] direction,

the applied electric field E = 0.8 along the [1, 0] axis and r = 2.

at fixed external magnetic field δ = 2 along the [1, 0] axis. Clearly the ISGE (blue) tends to align along

the direction of the external field. This is especially true when the SO internal field is lower. Whereas

in the previous Chapters we have considered the theory of the effect for a 2DEG, in the next section we

will concentrate on the relevant experiments.

7.2 Experiments

The first experimental demonstration of the ISGE was in quantum wells by measuring the current

produced by absorption of polarized light (IEE or SGE) [30, 32, 33]. By using spin pumping from

a ferromagnet, it has been shown that non-equilibrium spin polarization at a metallic Ag/Bi interface

yields an electrical current [83]. In this latter case, which is a manifestation of the inverse effect, one refers

also to the inverse Rashba-Edelstein effect. The latter has been also observed in ferromagnet-topological

insulator interfaces[59, 92] and in LAO/STO systems [51].
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Figure 7.4: Kerr rotation measures the component of SGE along the laser axis ẑ (a) InGaAs epilayer

(blue) is etched into cross shape with four electrical contacts on the GaAs substrate. (b) The direction

of applied electric field determine the drift momentum k at the angle φ with respect to the [100] crystal

direction. (c) The internal magnetic field due to the intrinsic SOC as a function of k with relative strength

(αβ ) with α > 0. (d) the angles between spin polarization and magnetic field.

(Taken from [65],© 2014 American physical society)

In semiconducting structures, the direct effect is measured via the optical detection of the ISGE [14,

42, 65, 93, 109]. The Faraday rotation spectroscopy has been used to determine the magnitude and

direction of the k-dependent spin splitting in strained InGaAs epilayers [64, 65]. In this way, the circular

polarized photons are oriented under the electron spins in the samples, which are controlled by the in-plane

external and spin-orbit (SO) magnetic fields. The experimental geometry is shown in Fig. 7.4(b), where

the InGaAs epilayer is etched into the cross-shaped channel with the four electrical contacts on the GaAs

substrate. When an electric voltage applies to the contacts, the electron drifted momentum varies along

each channel. Hence the electron spin precesses about the axis along the direction of the effective magnetic

field arising from the SO and external fields. Such a situation has been measured in Ref. [55] for GaAs

and InGaAs epilayers with varying Indium concentration and doping the densities, where a pump-probe

probe optical setup has been used for measuring the non-equilibrium spin polarizations. According to this

observation samples with higher Indium and carrier concentrations and lower mobilities were measured

to have larger the ISGE. Furthermore the crystal axis with the largest SO splitting had the smallest

ISGE and vise versa. This is consist with Fig. 7.2 where the spin polarization is completely opposed to

the internal magnetic field if the EY spin relaxation is strong enough. For different material parameters,

the relation between the ISGE and SO magnetic field can be either positive or negative depending on

the relative strength values of the SOCs. More precisely, a negative differential relation between the

magnitude of the ISGE and SO fields has been measured when the extrinsic SHE dominates. However

the positive one arises when the extrinsic effect is not strong enough. This observation is qualitatively

consist with our theory obtained in the previous Chapters (5-6) via the SU(2) gauge theory formalism

and diagrammatic Kubo formula approach.
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Chapter 8

The inverse spin galvanic effect in

quantum wells

As its title suggests, in this present Chapter we will evaluate the ISGE in a quantum well. In a

2DEG, we consider the intrinsic SOC due to the structure inversion asymmetry (RSOC) and/or bulk

inversion asymmetry (DSOC). In this system, the mechanism is developed for the case when both the

cubic and linear parts of the Rashba-Dresselhaus SOC are present. To describe this system, we first

derive the Eilenberger equation in terms of a generic SOC. Then we use it to derive the Bloch equations

governing the spin dynamics of carriers in the linear Rashba-Dresselhaus SOC. One of the advantages

of this method is to show how the ISGE can be derived beyond the diffusive approximation. Then we

analyze the Bloch equations analytically and also numerically in the two different models, the simplest

case of the Rashba model and then the Rashba-Dresselhaus model. We extend our model to the case

when the cubic Rashba and Dresselhaus SOCs are present. In this case, we will find that the ISGE does

not appear. However when both the linear and cubic SOC are present, several new terms can arise from

the interplay between the linear and cubic SOC.

8.1 The Eilenberger equation

The model Hamiltonian in the presence of a generic intrinsic SOC has the form

H =
p2

2m
+ b · σ + V (r), (8.1)

where V (r) and p = (px, py, 0) represent the impurity potential and the vector of the momentum operator

confined to the xy plane. In a 2DEG, the b can be defined as the effective magnetic field due to the

Rashba-Dresslhaus SOC. By following the standard procedure used in Ref. [78], the equation of the

motion for the Green function Ǧ has the form

∂tǦ+
1

2
{ p
m

+
∂

∂p
(b · σ),

∂

∂x
Ǧ}+ i[b · σ, Ǧ] = −i[Σ̌, Ǧ], (8.2)

where Ǧ is the dressed Green function by including the disorder and SOC effect. In the Wigner coordi-

nates, the Green function is described as Ǧ = G(p, x), where p is the Fourier transform of the relative
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coordinate and x is the centre of mass coordinate. We dropped the explicit dependence G(p, x) for

simplicity’s sake. The quasiclassical Green function is given by

ǧ =
i

π

∫
dξǦ, (8.3)

with ξ = p2/2m− µ as the energy with respect to the chemical potential µ in the absence of SOC. The

above equation guarantees that the ǧ does not depend on the modulus of the momentum p, but just

depends on the momentum direction p̂. For the Green function, following [70] we make the ansatz

Ǧ =

GR GK

0 GA

 =
1

2


GR0 0

0 −GA0

 ,

g̃R g̃K

0 g̃A

 (8.4)

where GR0 and gk are the retarded Green function in the absence of external perturbation and the

equilibrium Keldysh component of the Green function, i.e.

GR0 =
1

ε+ ξ − b · σ − ΣR
(8.5)

gK = tanh(
ε

2T
)(gR − gA) (8.6)

with ΣR the retarded self-energy due to the impurity potential, and the curly brackets in Eq. (8.4) denote

the anticommutator properties. The advanced Green function is obtained via GA0 = (GR0 )?. Since the

main contribution to the ξ-integral is related to the region near to zero, it is sufficient to expand b around

the small values of ξ. As a result, the Green function can be shifted according to

ˇ̃g = ǧ +
1

2
{∂ξb0 · σ, ǧ} (8.7)

ǧ = ˇ̃g − 1

2
{∂ξb0 · σ, ˇ̃g}. (8.8)

where ∂ξ is the partial derivative taken with respect to ξ. In the limit of the small |b| compared to the

Fermi energy, we have

b ≈ b0 − ξ
∂b0
∂ξ

(8.9)

|p±| ≈ pF ∓
|b0|
vF

, (8.10)

where the subscript “0” denotes the evaluation at the Fermi surface and the p± refers to the Fermi

momentum in the ±-bands. Assuming again that |b| � εF , we can easily show

ǧ± =
1

2
{1

2
± 1

2
b0 · σ, ǧ}, ǧ = ǧ+ + ǧ−. (8.11)

Notice that the locally covariant g̃R/A do not depend on the SOC and so have no spin structure, i.e.

g̃R = 1. Then, by using Eq. (8.8), we can easily show that gR = 1− ∂ξ(b0 · σ). Hence in equilibrium we

have

gK = tanh(
ε

2T
)(gR − gA) = 2tanh(

ε

2T
)(1− ∂ξ(b0 · σ)) = geq(1− ∂ξ(b0 · σ)). (8.12)

By integrating over energy and retaining terms up to the first order in |b|/εF , the Eilenberger equation

(8.2) can be rewritten as follows [70]∑
ν=±

(
∂tǧν +

1

2
{pν
m

+
∂

∂p
(bν · σ),

∂

∂x
ǧν}+ i[b · σ, ǧν ]

)
= −i[Σ̌, ǧ] (8.13)
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where ±-labels stand for the Fermi surfaces of the two spin subbands due to the effective magnetic field.

Finally, the self-energy Σ̌ appears in the collision integral (on the right hand side of the Eilenberger

Eq. (8.13)) and describes the spin independent scattering by disorder. The standard self-energy in the

limit of the self consistent Born approximation has the form

Σ̌ = − i

2τ
〈ǧ〉, 1

τ
= 2πN0niv

2
0 , (8.14)

where N0 = m/2π and ni are the density of states in the absence of the SOC and impurity concentration.

〈· · · 〉 denotes the angular average over the momentum direction. Finally the τ is the elastic scattering

time at the level of the Fermi’s golden rule. The Keldysh (K) component of the collision kernel can be

placed into the form

[Σ, g]K = (gR − gA)ΣK + (ΣRgK − gKΣA). (8.15)

Then the Keldysh components of the linearized Eilenberger equation according to Eq. (8.13) can be

written as [70]

(M0 +M1)gK = (N0 +N1)〈gK〉, (8.16)

where

M0 = gK + τ∂tg
K + vF τ p̂ · ∂xgK + iτ [b0 · σ, gK ],

1

τ
M1 = −1

2
{b0 · σ
pF

p̂− ∂p(b0 · σ), ∂xg
K} − i[∂ξ(b0 · σ), {b0 · σ, gK}]−

1

2τ
{∂ξ(b0 · σ), gK},

N0〈gK〉 = 〈gK〉,

N1〈gK〉 = {∂ξ(b0 · σ), gK}. (8.17)

In the presence of SOC, 〈gK〉 can be written as a system of four equations according to the spin structure

of the quasiclassical Keldysh Green function, i.e.

gK = gK0 σ
0 + gKi σ

i, i = x, y, z. (8.18)

The internal magnetic fields arising from the intrinsic Rashba-Dresselhaus SOC are obtained by the

expansion in the power series of the momentum as [44]

b = b
(N)
R + b

(N)
D = (b(N)

x , b(N)
y , 0) = pN

 αNsin(Nφ)− βNcos(Nφ)

−(αNcos(Nφ) + βNsin(Nφ))

 = b0b̂ (8.19)

with the N = 1, 3, 5, · · · corresponding to the linear, cubic and higher order of the k-dependent SOC. In

the above equation, the b̂ does not depend on the modulus of the momentum. Hence, the retarded and

Keldysh components of the Green function according to Eqs. (8.11-8.12) are derived by

gR = 1− N

2

b0
EF

b̂ · σ, (8.20)

gK =
(
1− N

2

b0
EF

b̂ · σ
)
2tanh(

ε

2T
). (8.21)

Now we will consider the Eilenberger equation in the presence of the external electric fields. In order to

evaluate an infinite system under the uniform condition but time-dependent electric fields, we can use

the minimal substitution

∂r → ∂r − |e|EÊr∂ε, with r = x, y (8.22)
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where |e| and E are the absolute values of electron charge and the applied electric fields, while Êr =

(Êx, Êy) = (cos(θ), sin(θ)) with θ the angle of the applied electric fields. Hence, we can go back to

Eq. (8.16) and solve it for the system under the influence of a uniform but time-dependent electric field

along the r direction as

M0g
K = (N0 +N1)〈gK〉+ SE, (8.23)

where, by using equations (8.17) and after some simple algebra, we obtain

M0 =


L 0 0 0

0 L 0 −ab̂y
0 0 L ab̂x

0 ab̂y −ab̂x L

 , N0 +N1 =


1 −cb̂x −cb̂y 0

−cb̂x 1 0 0

−cb̂y 0 1 0

0 0 0 1

 , SE = Ẽ


Ê · p̂

Ê · p̂N+1
2

b0
EF
b̂x − Ê·∂p

vF
bx

Ê · p̂N+1
2

b0
EF
b̂y − Ê·∂p

vF
by

0


(8.24)

with the terms

L = 1 + τ∂t, a = 2τb0, c = (N/2)(b0/EF ), Ẽ = −|e|vF τE∂εgeq. (8.25)

Hence, the equation (8.23) can be rewritten as

gK = M−1
0 SE +M−1

0 (N0 +N1)〈gK〉, (8.26)

where

M−1
0 SE =

Ẽ

L3 + La2b2


Ê.p̂
L (L3 + La2b2)

(L2 + a2b̂2x)(Ê · p̂N+1
2

b0
EF
b̂x − Ê·∂p

vF
bx) + a2b̂xb̂y(Ê · p̂N+1

2
b0
EF
b̂y − Ê·∂p

vF
by)

a2b̂xb̂y(Ê · p̂N+1
2

b0
EF
b̂x − Ê·∂p

vF
bx) + (L2 + a2b̂2y)(Ê · p̂N+1

2
b0
EF
b̂y − Ê·∂p

vF
by)

−b̂y(Ê · p̂N+1
2

b0
EF
b̂x − Ê·∂p

vF
bx) + b̂x(Ê · p̂N+1

2
b0
EF
b̂y − Ê·∂p

vF
by)


(8.27)

M−1
0 (N0 +N1) =

1

L3 + La2b2


1
L (L3 + La2b2) −cb̂x

L (L3 + La2b2)
−cb̂y
L (L3 + La2b2) 0

−c(b̂x(L2 + a2b̂2x) + a2b̂2y b̂x) L2 + a2b̂2x a2b̂xb̂y ab̂yL

−c(b̂y(L2 + a2b̂2y) + a2b̂y b̂
2
x) a2b̂xb̂y L2 + a2b̂2y −ab̂xL

0 −ab̂yL ab̂xL 1

 .

(8.28)

where b2 = b2x + b2y. To obtain the spin polarizations, we have to use

Si = −N0

4

∫
dε〈gKi 〉,

∫
dε∂εgeq = 4 (8.29)

Hence the equation (8.26) with the terms derived in Eqs. (8.27-8.28) represents the Eilenberger equation

in terms of a generic intrinsic SOC. In the following section, we will solve it in terms of the linear Rashba-

Dresselhaus SOC. One of the advantages of Eq. (8.26) is its ability to describe the ISGE beyond the

diffusive approximation.
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8.2 The inverse spin-galvanic effect: Beyond the diffusive regime

In this section, we will formulate the ISGE in the presence of the linear RSOC and DSOC. Compared

to our treatment in the previous Chapters, we will evaluate the Bloch equations beyond the diffusive

approximation. After deriving the Bloch equations, we will then solve them numerically in the different

strength values of the SOC. In a 2DEG, the effective magnetic field due to the combination of the linear

Rashba-Dresselhaus SOC reads [37]

b(1) = p


αp̂y + βp̂x

−αp̂x − βp̂y
0

 , (8.30)

where α and β describe the strength values of the linear Rashba and Dresselhaus SOC, respectively. The

spin generations SE due to the uniform electric field are derived by using Eq. (8.24)

SEx = −eExτ∂εgeq


vF p̂x

−2αp̂xp̂y − 2βp̂2
x + β

2αp̂2
x + 2βp̂xp̂y − α

0

 (8.31)

SEy = −eEyτ∂εgeq


vF p̂y

−2αp̂2
y − 2βp̂xp̂y + α

2αp̂xp̂y + 2βp̂2
y − β

0

 . (8.32)

By performing the angular average of Eq. (8.26) and under the uniform conditions, one gets

(1− 〈M−1
0 〉)〈gK〉 = 〈M−1

0 (SEx + SEy )〉. (8.33)

To evaluate the above equation, we have to identify the several integrals with respect to the momentum

direction, which are given in Appendix D. Under the uniform but time-dependent electric field, we have

〈M−1
0 〉 =

1

L3 + L(2τpF )2(α2 + β2)

M11 M12

M21 M22

 , (8.34)

where

M11 = M22 =

(
L2 +

(2τpF )2

2
(α2 + β2)

)
(

1√
1− C2

)− (2τpF )2αβ

C

(
−1 +

1√
1− C2

)
(8.35)

M12 = M21 = (2τpF )2
(α2 + β2

2C
)(
− 1 +

1√
1− C2

)
− (2τpF )2 αβ√

1− C2
(8.36)

with L = 1 + τ∂t. The generation torques, 〈M−1
0 SEx〉 and 〈M−1

0 SEy 〉, are given by

〈M−1
0 SEx〉 =

−eEτ∂εgeq(β2 − α2)Êx
L3 + L(2τpF )2(α2 + β2)

−β(2τpF )2

2
1√

1−C2 −
α
2 δ

−α(2τpF )2

2
1√

1−C2 −
β
2 δ

 (8.37)

〈M−1
0 SEy 〉 =

−eEτ∂εgeq(β2 − α2)Êy
L3 + L(2τpF )2(α2 + β2)

α(2τpF )2

2
1√

1−C2 + β
2 δ

β(2τpF )2

2
1√

1−C2 + α
2 δ

 , (8.38)
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where

δ = L2
( 1

(α2 + β2)C − 2αβ

)(
− 1 +

1√
1− C2

)
, (8.39)

C = (2τpF )2 2αβL

L3 + L(2τpF )2(α2 + β2)
. (8.40)

Finally, by using Eq. (8.29), we can rewrite Eq. (8.33) in the new form as follows

(
1− 〈M−1

0 〉
)Sx

Sy

 =
eEτN0(β2 − α2)Êx

L3 + L(2τpF )2(α2 + β2)

−β(2τpF )2

2
1√

1−C2 −
α
2 δ

−α(2τpF )2

2
1√

1−C2 −
β
2 δ

 (8.41)

+
eEτN0(β2 − α2)Êy

L3 + L(2τpF )2(α2 + β2)

α(2τpF )2

2
1√

1−C2 + β
2 δ

β(2τpF )2

2
1√

1−C2 + α
2 δ

 .

By inserting all the terms in the above equation as shown before in Eq. (8.34) for the DP spin relaxation

(1 − 〈M−1
0 〉) and also the terms in Eqs. (8.39-8.40), we may derive the Bloch equations beyond the

diffusive regime, when the k-linear Rashba-Dresselhaus SOC are present. To compare to the previous

results derived in the diffusive regime, as presented in the previous Chapters in Eq. (6.41) and Eq. (5.43),

we found the extra components, δ and C, which appear only when the interplay of the Rashba-Dresselhaus

SOC is considered beyond the diffusive approximation. To keep the discussion as simple as possible, we

will first solve Eq. (8.41) numerically for the case when only RSOC is present. The extension to the

DSOC is straightforward.

8.2.1 The inverse spin galvanic effect in the linear Rahsba model

In this section, we will solve the Bloch equations (8.41) numerically for the different strength values

of RSOC. After setting β = 0 in Eq. (8.41), the Bloch equations in the 2DEG Rashba model readSx
Sy

 =
1

2

Sα0 (2τpFα)2

L3 − L2 + (L− 1
2 )(2τpFα)2

Êy
Êx

 (8.42)

with Sα0 = −eEτN0α. The spin-charge interconversion can be readily seen from Eq. (8.42), where the

coupling between Jx ∼ Ex and Sy or between Jy ∼ Ey and Sx are clear. Such spin-charge conversion

can be understood phenomenologically by symmetry arguments. As mentioned in the first Chapter, the

electric current and spin polarization are polar and axial vectors. In centro-symmetric systems, the axial

and polar vector transform differently and the result has no spin polarization, however in the restricted

symmetry conditions the polar and axial vector transform similarly. Under such symmetry operation, one

can expect a coupling between Jx and Sy or between Jy and Sx. In the static limit when the frequency

is zero, i.e. L = 1, the spin polarization becomesSx
Sy

 = Sα0

Êy
Êx

 , (8.43)

which is in the full agreement with the Edelstein result [21]. In the following equation, we will consider

the frequency-dependent ISGE by inserting L = 1− iωτ inside Eq. (8.42). Hence, one getsSx
Sy

 = (
Sα0 (2τpFα)2

2
)

( 1
2 (2τpFα)2 − 2ω2τ2 + iωτ(1 + (2τpFα)2 + ω2τ2)

(−2ω2τ2 + 1
2 (2τpFα)2)2 + ω2τ2(1 + (2τpFα)2 − ω2τ2)2

)Êy
Êx

 , (8.44)
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Figure 8.1: Real (top right), imaginary (top left) and absolute values (bottom panel) of Edelstein con-

ductivity σyx as a function of the frequency for different values of (2τpF ) = 0.1, α = 5 (blue), and

(2τpF ) = 1, α = 1 (yellow), and (2τpF ) = 1, α = 2 (green), and (2τpF ) = 1, α = 3 (red). The results

are given in the units of Sα0 .

which means that the ISGE can be divided into the real and imaginary components, however the imag-

inary one vanishes when the frequency is zero. To analyze some aspects of the frequency behavior of

the ISGE, we will consider both of them. The real and imaginary components become zero, respectively,

when

|ωτ | =
1

2
(2ταpF ), (8.45)

|ωτ | = 0, i
√

1 + (2ταpF )2. (8.46)

Since the imaginary part of the ISGE vanishes, the real part dominates, and vice versa. Hence, in the

different values of the frequency, one can expect the different behavior of the ISGE. To examine the

transient response of the time, we can use

Si(t) =

∫ t

−∞

dω

2π
e−iωtSi(ω) (8.47)

where

Si(ω) = σijEC(ω)Ej(ω), i/j = x, y (8.48)

with σijEC(ω) as the frequency-dependent Edelstein conductivity [21], which can be found easily from

Eq. (8.42). As we saw from Eq. (8.44), the real and imaginary terms of the ISGE are odd and even
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functions with respect to ωτ . Hence, from Eq. (8.47), we have

S(t) =

∫ ∞
0

dω

2π
[2cos(ωt)Sr(ω) + 2sin(ωt)Si(ω)] (8.49)

where Sr(ω) and Si(ω) are the real and imaginary parts of the spin polarization (8.44). Notice that

when t = 0 just the real part of the spin polarization remains. In Fig. 8.1, we show the real, imaginary

and absolute components of the Edelstein conductivity σyx as a function of the frequency in the units

of S0 = −|e|τN0 for the different strength values of the Rashba SOC. In the early evolution of the

frequency, the σyx decreases from S0, as we expected from Eq. (8.48). By increasing the frequency, the

real and imaginary components become zero according to equation (8.45) and the significant amplitude

of the conductivity oscillation compared with its value at zero frequency happens when the frequency

is close to x = 2ταpF . One should notice that the values of the both real and imaginary of the spin

polarization depend on the strength values of SOC and by increasing the frequency, the spin polarization

has a significant amount if the strength values of x is big enough. This is because in the relation of

x2 there are two different regimes which are responsible for the different physical results. If we assume

x2 � 1, i.e. the Rashba SO splitting is small compared to disorder broadening. This limit is called the

diffusive regime and describes the regime of high impurity concentration. Eqs. (8.45-8.46) show that the

conductivity can increase when ωτ is close to x. In this regime the Rashba strength is not strong and

hence the frequency evaluation of Edelstein conductivity decreases by increasing the frequency. However

in the case of beyond the diffusive regime when x2 � 1, the frequency behavior of Edelstein conductivity

shows that the conductivity can increase by increasing the SOC strength. In this case, the conductivity

has a significant amount when x is near to ωτ . In the next section, we will extend our results to the case

when the Rashba and Dresselhaus SOCs are present.

8.2.2 The inverse spin-galvanic effect in the linear Rashba-Dresslhaus SOC

As we obtained in the previous section, the ISGE has different behavior with respect to the parameter

x = 2ταpF . In the beginning, we assumed that the Fermi energy εF is the largest energy scale as

εF >>
1

τ
, εF >> 2γpF (8.50)

where γ is the total SO strength due to the combination of the RSOC and DSOC, and depends on the

direction of the momentum. The above equations show that the SO splitting and the disorder broadening

are much smaller than the Fermi energy εF . In terms of the two small parameters γ/vF and 1/εF τ , we

can rewrite x as

x = 2τγpF = (
4γ

vF
)εF τ. (8.51)

In relation to x, there are two different regimes that can be used to give the physical meaning to our results.

The first is the so-called diffusive regime, which describes the regime of high impurity concentration, i.e.

x2 � 1. On the other hand the second one is called beyond diffusive regime, with x2 � 1 and sketches out

the opposite situation, i.e. low concentration of impurities. To analyze this fact more generally, we focus

here on a model with the linear DSOC as well as the linear RSOC. We will evaluate the ISGE in the two

different regimes based on the diffusive and beyond the diffusive regime. Then we show their numerical
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results in these two limits. In diffusive regime, we can assume (2ταpF )2 � 1 and (2τβpF )2 � 1, which

means that many impurity scattering are needed to erase the initial condition of the spin direction, hence

the impurity scattering variations are small. In this limit, we can neglect the terms with higher order of

the Rashba-Dresselhaus SOC, i.e.,

C2 =
4L2(2ατpF )2(2βτpF )2

(L3 + L(2τpF )2(α2 + β2))2
→ 0 =⇒ (1− 1√

1 + C2
) ≈ 0. (8.52)

However, when one of the Rashba and Dresslhaus SOC is absent, the C is automatically zero. Then the

terms in the Eilenberger equation (8.33) can be simplified as

δ ≈ 0 (8.53)

〈M−1
0 〉 ≈

1

L3 + L(2τpF )2(α2 + β2)

1− 2iωτ + 1
2 (2τpF )2(α2 + β2) −(2τpF )2(αβ)

−(2τpF )2(αβ) 1− 2iωτ + 1
2 (2τpF )2(α2 + β2)

 .

(8.54)

Notice that we kept the denominator of Eq. (8.54), because it will compensate with the numerator of

〈M−1
0 SEx〉. By inserting the above equations inside Eq. (8.41), we may find the spin polarization in a

form of Bloch equations in the diffusive limit

(−iωτ + Γ̂)S = T̂ E, (8.55)

where the DP spin relaxation Γ̂ and the spin generation torque T̂ are given by

Γ̂ =
(2τpF )2

2

α2 + β2 2αβ

2αβ α2 + β2

 , T̂ = S0
(2τpF )2

2
(β2 − α2)

−β α

−α β

 , (8.56)

with S0 = −eEτN0. Notice that in the diffuse approximation ωτ � 1, we kept just the first order of

ωτ . The above equation is exactly in agreement with the result of the previous Chapters in Eq. (5.43)

and Eq. (6.41), when the extrinsic effect does not consider in the Bloch equations. To develop some

quick intuitions, for β = 0, the equation (8.55) reproduces the results for the Rashba model in Eq. (8.42).

Furthermore, when also ω = β = 0, Eq. (8.55) reproduces the Edelstein result [21], as shown in Eq. (8.43).

Now we solve Eq. (8.55) numerically for the Edelstein conductivities (σyx and σyx) when the Rashba

and Dresselhaus are present. Fig. 8.2 shows the frequency evaluation of σyx and σxx in the diffusive

regime. In this limit, there is no peak in the frequency evolution of the conductivities, because the real

and imaginary parts of the Edelstein conductivities, as shown before in Eq. (8.44) for the Rashba model,

highly depends on the strength values of x and in diffusive regime, the Rashba and Dresselhaus SOC

are not strong enough. To evaluate the Bloch equations beyond the diffusive approximation, we have to

keep all the orders of x and ωτ . As we shown before in Eq. (8.41), in this regime the contribution to the

Bloch equations is highly modified by introducing several new terms. Fig. 8.3 shows the components of

Edelstein conductivities numerically as a function of the frequency beyond the diffusive regime. Compared

with diffusive regime, we found that the Edeldtein conductivities can be increased in the frequency by

increasing the strength of SOCs. Hence the Edelstein conductivity is found to have different behavior

with respect to the frequency. In the diffusive regime the conductivity rapidly decreased by increasing
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Figure 8.2: Different parts of the Edelstein conductivity (σxx, σyx) as a function of the frequency for

different values of α = 1 and β = 5 (yellow), α = 3 and β = 5 (blue), where (2τpF ) = 0.1 is fixed for all

values. The results are given in the units of Sα0 .
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Figure 8.3: The Edelstein conductivity (σxx,σyx) as a function of the frequency for different values of

α = 1 and β = 5 (yellow), α = 3 and β = 5 (blue), where (2τpF ) = 1 is fixed for all values. The results

are given in the units of Sα0 .
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frequency, however beyond the diffusive approximation the conductivity can increase when x is close to

ωτ . One should notice that in the case of the strong SOC, the cubic Rashba and Dresselhaus SOC become

important as well as the linear ones. In the following section, we will evaluate the ISGE in the presence

of the cubic Rashba and Dresselhaus SOC. We find that the cubic SOC does not have any effect in the

ISGE.

8.3 The cubic Rashba-Dresselhaus terms in a 2DEG

For the quantum well model the Hamiltonian contains p-cubic intrinsic SOC in addition to p-linear

intrinsic SOC [45, 68]. According to Eq. (2) from Ref. [63], the effective Hamiltonian of the structural

inverse asymmetry for the cubic order of the wave vector p yields

H
(3)
R = iα3

 0 (px − ipy)
3

−(px + ipy)3 0

 = b
(3)
R · σ (8.57)

with b
(3)
R as the internal magnetic field due to the cubic Rashba SOC. From Eq. (8.57), it is sufficient to

rewrite the effective magnetic field in the following alternative form

b
(3)
R = α3p

3


3p̂yp̂

2
x − p̂3

y

3p̂xp̂
2
y − p̂3

x

0

 = α3p
3


sin(3φ)

−cos(3φ)

0

 . (8.58)

The spin splitting given by Eq. (8.58) represents the cubic Rashba SOC in the plane of the quantum

wells. In asymmetric quantum wells, the Hamiltonian also contains the terms of the different symmetry

due to the bulk inversion asymmetry, i.e. the cubic Dresslhaus SOC [45]

H
(3)
D = β3

 0 −(px − ipy)
3

−(py + ipx)3 0

 = b
(3)
D · σ (8.59)

where

b
(3)
D = β3p

3


3p̂xp̂

2
y − p̂3

x

−(3p̂yp̂
2
x − p̂3

y)

0

 = β3p
3


−cos(3φ)

−sin(3φ)

0

 (8.60)

with p = p(p̂x, p̂y) = p(cos(φ), sin(φ), 0). Hence, the internal magnetic field due to the combination of

the cubic Rashba-Dresslhaus SOC is described by

b(3) = b
(3)
R + b

(3)
D = (b(3)

x ,b(3)
y , 0) = p3

 α3sin(3φ)− β3cos(3φ)

−(α3cos(3φ) + β3sin(3φ))

 = b
(3)
0 b̂(3) (8.61)

where b̂ does not depend on the modulus of the momentum direction. To linear order in the external

electric field, the spin generation torque SE according to Eq. (8.24) reads

SE = Ẽ


Ê · p̂

4
3c3Ê · p̂b̂

(3)
x − c3Ê · ŝ

4
3c3Ê · p̂b̂

(3)
y − c3Ê · ẑ× s

0

 (8.62)
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with the unit vector ŝ = (2p̂xp̂y, p̂
2
x − p̂2

y, 0) = (sin(2φ), cos(2φ), 0) and c3 = (3/2)(b
(3)
0 /EF ). As it was

obtained in Eq. (8.26), the Eilenberger equation has the form

gK = M−1
0 SE +M−1

0 (N0 +N1)〈gK〉 (8.63)

where

M−1
0 SE =

Ẽ

L3 + La2
3


Ê.p̂
L (L3 + La2

3)

c3[(L2 + a2
3b̂

2
x)( 4

3 Ê · p̂b̂x − ŝ · Ê) + a2
3b̂xb̂y( 4

3 Ê · p̂b̂y − ẑ × ŝ · Ê)]

c3[a2
3b̂xb̂y( 4

3 Ê · p̂b̂x − ŝ · Ê) + (L2 + a2
3b̂

2
y)( 4

3 Ê · p̂b̂y − ẑ × ŝ · Ê)]

c3a3L[−b̂y( 4
3 Ê · p̂b̂x − ŝ · Ê) + b̂x( 4

3 Ê · p̂b̂y − ẑ × ŝ · Ê)]

 (8.64)

M−1
0 (N0 +N1) =

1

L3 + La2
3


1
L (L3 + La2

3) −c3b̂x
L (L3 + La2

3)
−c3b̂y
L (L3 + La2

3) 0

−c3[b̂x(L2 + a2
3b̂

2
x) + a2

3b̂
2
y b̂x] L2 + a2

3b̂
2
x a2

3b̂xb̂y ab̂yL

−c3[b̂y(L2 + a2
3b̂

2
y) + a2

3b̂y b̂
2
x] a2

3b̂xb̂y L2 + a2
3b̂

2
y −a3b̂xL

0 −a3b̂yL ab̂xL 1


(8.65)

with a2
3 = α2

3 + β2
3 . By taking the integration over the momentum direction in Eq. (8.63), one gets

〈gK〉 = (1− 〈M−1
0 (N0 +N1)〉)−1〈M−1

0 SE〉 (8.66)

Under the uniform conditions and after inserting Eqs. (8.64-8.65) inside Eq. (8.66) and taking all the

integrals, we find

〈M−1
0 (N0 +N1)〉 =


1
L 0 0 0

0
L2+ 1

2a
2
3

L3+La23
0 0

0 0
L2+ 1

2a
2
3

L3+La23
0

0 0 0 L2

L3+La23

 , 〈M−1
0 SE〉 = 0 (8.67)

which means that the ISGE due to the cubic Rashba-Dresselhaus SOC does not exist. Notice that this

result also follows trivially from the diagrammatic approach. In this way, the vertex correction is exactly

zero because of a very simple reason. The vertex correction contains the first harmonics, while the Green

functions contain the only third one. Hence, the angle average is a product of different harmonics and

their overlap becomes zero as it has been noticed first by Murakami [62]. In the following section, we will

derive the ISGE in a general case when both the linear and cubic RSOC are present. We will find the

new terms caused by the interface between the linear and cubic RSOC.

8.4 The inverse galvanic effect in the presence of linear and

cubic Rashba SOC

As we have seen in the previous section, the ISGE does not exist in the cubic SOC case, indeed the

effect only happens in linear SOC case. In this section, we will evaluate ISGE in the presence of both the

linear and cubic RSOC. The main goal of this section is to see how the effect of the interplay between
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linear and cubic SOC modifies the ISGE. To keep the discussion as simple as possible, we limit ourselves

to the case when only Rashba SOC present. We will derive the spin polarization Sy when the external

electric field is applied along the x direction, indeed the spin polarization Sx goes to zero after integration

over momentum. In the case β = 0, the internal magnetic field in the presence of linear and cubic Rashba

SOC reads

bR =


p(α1sin(φ) + α3p

2sin(3φ))

−p(α1cos(φ) + α3p
2cos(3φ))

0

 (8.68)

where α1 and α3 are the strengths of the linear and cubic Rashba SOC, respectively. By replacing the

internal magnetic field bR in Eq. (8.13) for the Eilenberger equation, one gets

MgK = N〈gK〉+ SEx (8.69)

where

M =


L 0 0 0

0 L 0 −2τby

0 0 L 2τbx

0 2τby −2τbx L

 , SEx = Ẽ


vF cos(φ)

2p2
Fα3sin(4φ)− (p2

Fα3 + α1)sin(2φ)

−2p2
Fα3cos(4φ) + (p2

Fα3 + α1)cos(2φ))

0



N =


1 −c13α3sin(3φ)− α1sin(φ)

vF
c13α3cos(3φ) + α1cos(φ)

vF
0

−c13α3sin(3φ)− α1sin(φ)
vF

1 0 0

c13α3cos(3φ) + α1cos(φ)
vF

0 1 0

0 0 0 1

(8.70)

with c13 = 3pFm and Ẽ = |e|τE∂εgeq. After taking the integrals in Eq. (8.69), we have

(1− 〈M−1N〉)〈gK〉 = 〈M−1
0 SEx〉, (8.71)

where the terms 〈M−1N〉 and 〈gK〉 have the form

〈M−1N〉 =
1

L3 + L(a2
1 + a2

3)


〈M−1N〉11 0 0

0 〈M−1N〉22 0

0 0 〈M−1N〉33

 , 〈gK〉 =


〈gKx 〉

〈gKy 〉

〈gKz 〉

 (8.72)

with

〈M−1N〉11 = (L2 +
1

2
(a2

1 + a2
3))〈 1

1 + Γcos(2φ)
〉+

1

2
(−a2

1 + 2a1a3)〈 cos(2φ)

1 + Γcos(2φ)
〉 (8.73)

− 1

2
a2

3〈
cos(6φ)

1 + Γcos(2φ)
〉 − a1a3〈

cos(4φ)

1 + Γcos(2φ)
〉

〈M−1N〉22 = (L2 +
1

2
(a2

1 + a2
3))〈 1

1 + Γcos(2φ)
〉+

1

2
(a2

1 + 2a1a3)〈 cos(2φ)

1 + Γcos(2φ)
〉 (8.74)

+
1

2
a2

3〈
cos(6φ)

1 + Γcos(2φ)
〉+ a1a3〈

cos(4φ)

1 + Γcos(2φ)
〉

〈M−1N〉33 = L2〈 1

1 + Γcos(2φ)
〉 (8.75)
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where a1 = 2τpFα1 and a3 = 2τp3
Fα3. In the above equations, the Γ is defined as

Γ =
2La1a3

L3 + L(a2
1 + a2

3)
. (8.76)

Finally, the 〈M−1SEx〉 has the form

〈M−1SEx〉 =
Ẽ

L3 + L(a2
1 + a2

3))


0

〈M−1SEx〉y
0

 (8.77)

with

〈M−1SEx〉y =
α1

2

(
a2

1 − 3a2
3 + 2a1a3

)
〈 1

1 + Γcos(2φ)
〉 (8.78)

+
(
L2(α1 + p2

Fα
2) +

1

2
(a2

1α1 − a2
3p

2
Fα3) +

a1a3

2
(α1 + p2

Fα3)
)
〈 cos(2φ)

1 + Γcos(2φ)
〉

+ p2
Fα3

(
− 2L2 + a1a3 −

1

2
(a2

1 + a2
3)
)
〈 cos(4φ)

1 + Γcos(2φ)
〉+ α1a1a3〈

cos(6φ)

1 + Γcos(2φ)
〉

where L = 1− ωτ and the results of each integrals provided in Appendix D. Notice that when the cubic

Rashba SOC goes to zero, it reproduces the result of ISGE in the linear Rashba model, as derived in

Eq. (8.43). More precisely, when the cubic RSOC is absent, from Eq. (8.71) one gets(
1−

L2 + 1
2a

2
1

L3 + La2
1

)
〈gKy 〉 =

|e|τE∂εgeq
L3 + La2

1

(
α1

2
a2

1). (8.79)

In the zero limit of the frequency L = 1, we get

〈gKy 〉 = |e|τα1∂εgeqEx. (8.80)

One should remember that the spin polarization Sy is related to the Keldysh component of 〈gKy 〉 via the

relation

Sy = −1

4
N0

∫
dε〈gKy 〉 = −1

4
N0

∫
dεeτα1Ex∂εgeq = −|e|τα1Ex (8.81)

To evaluate the above equation, we used∫ ∞
−∞

dε∂εgeq =

∫
dε∂ε(2tanh(

ε

2T
)) =

∫
dε∂ε(2(1− 2f(ε))) = 4 (8.82)

with f(ε) as the distribution function. The above result is in agreement with the Edelstein results derived

in Eq. (8.43). However, the cubic RSOC does not have effect in the ISGE by itself, but when the linear

RSOC is considered as well, the ISGE is highly modified by introducing several new terms first in the

relaxation rates (DP spin relaxation matrix) and then in the spin generation torques.
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Chapter 9

Epilogue

To summarize, in this work we have considered the phenomenon of spin orientation induced by current

by analyzing the interplay of intrinsic (Rashba and Dresselhaus) and extrinsic SOC. This phenomenon,

known as the inverse spin galvanic effect or Edelstein effect, is the consequence of the coupling between

spin polarization and electric current due to the SOC. To do so, we have derived the Bloch equations gov-

erning the spin dynamics by identifying the various relaxation mechanisms and spin generation torques.

The results are valid at the level of the Born approximation and to first order beyond the Born ap-

proximation. They were obtained first by the standard diagrammatic techniques and then by the SU(2)

gauge-field formulation of the Rashba-Dresselhaus SOC. We have shown how the interplay of intrinsic

and extrinsic mechanisms modifies the ISGE in the 2DEG cases. We have also extended our results to

the 3D electron gas, which can be useful to the interpretation of experiments in thin films.

When we only consider the intrinsic Rashba-Dresselhaus SOC, the spin relaxation mechanism is just

the anisotropic DP spin relaxation rate, whose anisotropy is obtained by the relative strength between the

RSOC and DSOC. In Chapter 4, we have shown that the contributions due to the RSOC and DSOC can

cancel each other for equal RSOC and DSOC strengths and this leads to the cancellation or anisotropy

of the spin accumulation. In the presence of purely intrinsic SOC, the spin polarization follows the

internal effective magnetic field, whereas this no longer happens when the extrinsic spin-orbit is present.

More precisely, the extrinsic SOC affects the spin relaxation time by adding the EY mechanism to the

DP. Furthermore, it changes the non-equilibrium value of the ISGE by introducing an additional spin

torque. This additional spin torque has been derived in the context of the diagrammatic approach in

Chapter 5 and the SU(2) gauge-field formulation in Chapter 6. It describes the interplay between the EY

mechanism and the ISGE. The diagrammatic approach was very useful to understand the physical origin

of this new term. This new term shows that the precise relation between the spin polarization and the

Rashba-Dresselhaus internal field depends on the relative magnitude of the DP and EY spin relaxation

rates, as well as on the spin Hall angle. We have also investigated the side-jump and skew scattering

contributions due to the extrinsic SOC to the ISGE by using the standard Kubo formula diagrammatic

method in Chapter 4. These lead to the renormalization of the spin Hall angle in the expression of the

spin generation torque.
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In Chapters 5 and 6, we have shown that the behavior of the ISGE turns out to be more complex than

expected from the consideration of the internal Rashba and Dresselhaus fields alone. When the extrinsic

SOC is present, the symmetry of the ISGE does not necessarily coincide with that of the internal Rashba-

Dresselhaus field, and an out-of-plane component of the ISGE appears. The derivation of this component

has been shown in Chapter 7, which is in agreement with the recent experimental results [55, 65].

These results can be very useful in analyzing existing experiments on the ISGE/EE. They suggested

that the spin polarization and internal magnetic field may not be aligned if the EY is strong enough.

Motivated by recent experiments [55, 65], in Chapter 7 we have evaluated the ISGE numerically in order

to make the comparison between the theory and experimental results. Our theory, which is able to show

a negative differential relation between the ISGE and spin-orbit field, has been found to qualitatively

agree well with the recent experimental results [55].

In Chapter 6, we have shown that this new term in 3D is even more remarkable. In fact, in 3D the

linear SOC may not be appropriate anymore and one needs to consider the cubic SOC as well as the

linear one. We have proven that in 3D the interplay of extrinsic SOC and intrinsic Rashba-Dresselhaus

SOC is extremely complex. The exploration of the consequences of this have not been considered in this

work.

In Chapter 8, we have evaluated the ISGE in a quantum well. In this system, the mechanism is

developed for the case when the cubic and linear SOC are present. For this purpose, in Chapter 8 we

have investigated the ISGE in the presence of both the linear and cubic SOCs by using the method of

quasiclassical Green functions. We have derived the Eilenberger equation in the presence of a generic

spin-orbit field. Compared with our results in the previous Chapters 4-7, the results have been derived

beyond the diffusive regime. In this regime, we have found several new terms due to the interplay of the

RSOC and DSOC. By extending to the cubic SOC, we have found that all the spin generation torques

arising from the SOCs and electric fields become zero and there is no effect, while the cubic effect only

appears in the DP spin relaxation rate. Hence, when the linear and cubic SOCs are present, we can

expect the cubic and linear terms control the spin relaxation, whereas the linear SOC just provides the

effect. In this case, we have found several new terms due to the interplay of the linear and cubic SOCs.

However in the presence of the extrinsic SOC, the effect becomes more complex and still needs to be

considered.
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Appendix A

The extended Kane model and

matrix elements

In this appendix, the various quantities needed for evaluating the matrix element of Eq. (2.20) are

tabulated. In general, the form of the Kane Hamiltonian are described by the symmetries of system.

In this system, some linear combinations of ũi with the different uvo can be used as a basis. These

new basis transfer some particular symmetries to the Hamiltonian H, for instance the total angular

momentum J = L + S. In the language of group theory, ũi transform according to a certain irreducible

representation of the symmetry group of H, call Γi. By choosing a basis as |J,mj〉, shown in Table A.1,

the 8× 8 Kane Hamiltonian reads [17]

H =

[Hc]2×2 [Hcv]2×6

[H†6×2] [Hv]6×6

 (A.1)

yields

[Hc]2×2 =

V 0

0 V

 (A.2)

[Hcv]2×6 =

−1√
2
Pk+

√
2
3Pkz

1√
6
Pk− 0 −1√

3
Pkz

−1√
2
Pk−

0 1√
6
Pk+

2√
3
Pkz

1√
2
Pk−

−1√
3
Pk+

1√
3
Pkz

 (A.3)

[Hcv]6×6 =

(V − E0)1̂6×6 1̂4×2

0̂2×4 (V − Eg −∆)1̂2×2

 (A.4)

where

P =
−i
m0
〈S|px|X〉 =

−i
m0
〈S|py|Y 〉 =

−i
m0
〈S|pz|Z〉 (A.5)

∆ =
3

4m2
0

〈X|[∂yU∂x − ∂xU∂y]|Y 〉 (A.6)
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with k± = kx ± iky. In the above equation, U represents crystal potential, and V is the perturbing

potential. With these matrices, the renormalized mass m?, g-factor g?, and the SOC constant λ, as

shown in Chapter 2, read

1

2m?
=

(
1

E0 + ∆
+

2

E0

)
, (A.7)

g? =
2e

µB

P 2

3

(
1

Eg
− 1

Eg + ∆

)
, (A.8)

λ =
P 2

3

(
1

E2
g

− 1

(Eg + ∆)2

)
. (A.9)

with µB Bohr magneton.

ũi Γ |J,mj〉 uj,mj

ũ1 Γ6 | 12 ,+
1
2 〉 i|S〉|+ 1

2 〉

ũ2 Γ6 | 12 ,−
1
2 〉 i|S〉| − 1

2 〉

ũ3 Γ8 | 32 ,+
3
2 〉 − 1√

2
(|X〉+ i|Y 〉)|+ 1

2 〉

ũ4 Γ8 | 32 ,+
1
2 〉 − 1√

6
(|X〉+ i|Y 〉)| − 1

2 〉+
√

2
3 |Z〉|+

1
2 〉

ũ5 Γ8 | 32 ,−
1
2 〉

1√
6
(|X〉 − i|Y 〉)|+ 1

2 〉+
√

2
3 |Z〉| −

1
2 〉

ũ6 Γ8 | 32 ,−
3
2 〉 + 1√

2
(|X〉 − i|Y 〉)| − 1

2 〉

ũ7 Γ7 | 12 ,+
1
2 〉 − 1√

3
(|X〉+ i|Y 〉)| − 1

2 〉 −
1√
3
|Z〉|+ 1

2 〉

ũ8 Γ7 | 12 ,−
1
2 〉 − 1√

3
(|X〉 − i|Y 〉)|+ 1

2 〉+ 1√
3
|Z〉| − 1

2 〉

Table A.1: Basis of the 8 × 8 Kane model. |S〉 represents the s-like orbital, and |X〉, |Y 〉, |Z〉 are three

p-like orbitals. | ± 1
2 〉 are two-component spinors corresponding to the spin-up and spin-down. Here, Γ is

the irreducible representation of the symmetry group of the zincblende crystal.
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Appendix B

The integral of products of Green

functions

In this appendix, we evaluate the integral of products involving pairs of retarded and advanced Green

functions. To perform the calculations of the renormalized spin vertex in equation (5.30) and also in all

of the analysis, we encounter the following kinds of integrals, which are evaluated to the first order in

(γ/vF ) and ωτ as ∑
p

pnGR±(ε+ ω)GA±(ε) ≈ 2πN±p
n
±

1

−iω + 1
τ±

, (B.1)

∑
p

pnGR±(ε+ ω)GA∓(ε) ≈ 2πN0p
n
±

1

−iω ± 2iγpF + 1
τ

, (B.2)

where n = 0, 1. We can then evaluate the I00 integral as

I00 =
1

2πN0τ0

∑
p′

GA0 (ε+ ω)GR0 (ε) (B.3)

=
1

2πN0τ0

∑
p′

1

4

(
GA+(ε+ ω)GR+(ε) +GA+(ε+ ω)GR−(ε) +GA−(ε+ ω)GR+(ε) +GA−(ε+ ω)GR−(ε)

)
=

1

4N0τ0
〈 N+

−iω + 1
τ+

+
N−

−iω + 1
τ−

+
N0

−iω + 2ipF γ + 1
τ

+
N0

−iω − 2ipF γ + 1
τ

〉

≈ (
τ

τ0
)

(
1− 3iωτ − 〈 ττγ 〉

1− 4iωτ

)
,

and the same calculations for 2Ixy = 2Iyx yields

2Ixy =
2

2πN0τ0

∑
p′

GAx (ε+ ω)GRy (ε) (B.4)

=
2

2πN0τ0

(
−αβ
4γ2

)∑
p′

(
GA+(ε+ ω)GR+(ε)−GA+(ε+ ω)GR−(ε)−GA−(ε+ ω)GR+(ε) +GA−(ε+ ω)GR−(ε)

)
≈ (

4τ

τ0
)(

2τ

τγ
)

(
−αβ
4γ2

)
(

1− iωτ
1− 4iωτ

)

= − 2τ

ταβ
(

1− iωτ
1− 4iωτ

).
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Appendix C

An identity concerning angular

integration

In the text, we need to perform the integration over the solid angle of p∫ (
sin(θp)dθp

2

)d−2
dφp
2π

V̂p,p′ . . . V̂p′,p ≡ 〈V̂p,p′ . . . V̂p′,p〉. (C.1)

In the above the dots indicate any operator acting on the spin indices, but not depending on the momenta

p and p′. By writing explicitly the cross products in the V̂p,p′ factors one has

−v2
0

(
λ0

2

)4

〈
∑

ijklmn

εijkεlmnpip
′
jσ
k . . . plp

′
mσ

n〉 = −v2
0

(
λ0

2

)4 ∑
ijklmn

εijkεlmn〈pipl〉p′jp′mσk . . . σn

= −v2
0

(
λ0

2

)4
p2

d

∑
ijklmn

εijkεlmnδilp
′
jp
′
mσ

k . . . σn

= −v2
0

(
λ0

2

)4
p2

d

(
p′2σi . . . σi − (d− 2)p′ · σ . . .p′ · σ

)
(C.2)

where in d = 3 it is understood a summation over i = x, y, z and in d = 2, i = z. If the dots are replaced

by the identity in the spin space

〈V̂p,p′ . . . V̂p′,p〉 = −v2
0

(
λ0

2

)4
2p2p′2

d
σ0. (C.3)

Then the derivative with respect to p′k yields

∂p′k〈V̂p,p′ . . . V̂p′,p〉 = −v2
0

(
λ0

2

)4
p2

d

(
2p′kσ

i . . . σi − σk . . .p′ · σ − p′ · σ . . . σk
)

(C.4)
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Appendix D

Integrals over the momentum

direction

In this appendix, we evaluate the integral of products involving the momentum direction arising

beyond the diffusive regime. In order to evaluate these integrals, we encounter the following kind of angle

integrals, which are evaluated to the first order in (b/vF ) as follows

〈 1

1 + Csin(2φ)
〉 =

1√
1− C2

(D.1)

〈 sin(2φ)

1 + Csin(2φ)
〉 = − 1

C
(−1 +

1√
1− C2

) (D.2)

〈 cos(2φ)

1 + Csin(2φ)
〉 = 〈 sin(4φ)

1 + Csin(2φ)
〉 = 0 (D.3)

〈 cos(4φ)

1 + Csin(2φ)
〉 = − 1√

1− C
+

2

C2
(−1 +

1√
1− C∈

) (D.4)

In the presence of both the linear and cubic Rashba SOC, we have the following integrals

〈 sin(2nφ)

1 + Γcos2φ
〉 = 〈sin((2n+ 1)φ)

1 + Γcos2φ
〉 = 〈cos((2n+ 1)φ)

1 + Γcos2φ
〉 = 0, n = 0, 1, 2, · · · (D.5)

〈 1

1 + Γcos2φ
〉 =

1√
1− Γ2

(D.6)

〈 cos(2φ)

1 + Γcos2φ
〉 =

1

Γ
(1− 1√

1− Γ2
) (D.7)

〈 cos(4φ)

1 + Γcos2φ
〉 =

(
−2 1√

1−Γ2
+ Γ

(
Γ 1√

1−Γ2
− 2

)
+ 2

)
(Γ− 1)Γ2

(D.8)

〈 cos(6φ)

1 + Γcos2φ
〉 =

(
4

(
1√

1−Γ2
− 1

)
+ Γ

(
4− Γ

(
Γ + 3 1√

1−Γ2
− 1

)))
(Γ− 1)Γ3

(D.9)

〈 cos(8φ)

1 + Γcos2φ
〉 = −

(
8

(
1√

1−Γ2
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)
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(
Γ

(
−8 1√
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(
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)
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)
+ 8
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(D.10)

〈 cos(10φ)
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(
(Γ− 2)Γ

(
Γ

(
Γ2 + 5 1√

1−Γ2
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(
1√
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))
− 8

)
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(
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(Γ− 1)Γ5
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