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Chapter 1
Introduction

Model-based statistical inference primarily deals with parameters estima-
tion. Under the usual assumption of data being generated from a fully
specified model belonging to a given family of distributions Fy indexed by
a parameter ¥ C © € RP, inference on the true unknown parameter 9, can
be easily performed by maximum likelihood. However, in some pathological
situations the maximum likelihood estimator (MLE) is difficult to compute
either because of the model complexity or because the probability density
function is not analytically available. For example, the computation of the
log—likelihood may involve numerical approximations or integrations that
highly deteriorate the quality of the resulting estimates. Moreover, as the
dimension of the parameter space increases the computation of the like-
lihood or its maximisation in a reasonable amount of time becomes even
more prohibitive.

In all those circumstances, the researcher should resort to alternative
solutions. The method of moments or its generalised versions (GMM),
Hansen (1982) or (EMM), Gallant and Tauchen (1996), may constitute fea-
sible solutions when expressions for some moment conditions that uniquely
identify the parameters of interest are analytically available. When this is
not the case, simulation—based methods, such as, the method of simulated
moments (MSM), McFadden (1989), the method of simulated maximum
likelihood (SML), Gouriéroux and Monfort (1996) and its nonparametric

7



8 CHAPTER 1. INTRODUCTION

version Kristensen and Shin (2012) or the indirect inference (II) method
Gouriéroux et al. (1993), are the only viable solutions to the inferential
problem. Jiang and Turnbull (2004) give a comprehensive review of in-
direct inference from a statistical point of view. Despite their appealing
characteristics of only requiring to be able to simulate from the specified
DGP, some of those methods suffer from serious drawbacks. The MSM,
for example, requires that the existence of the moments of the postulated
DGP is guaranteed, while, the IT method relies on an alternative, necessar-
ily misspecified, auxiliary model as well as on a strong from of identification
between the parameters of interests and those of the auxiliary model. The
quantile-matching estimation method (QM), Koenker (2005), exploits the
same idea behind the method of moments without imposing any conditions
on the moment finiteness. The QM approach estimates model parameters
by matching the empirical percentiles with their theoretical counterparts
thereby requiring only the existence of a closed form expression for the
quantile function.

All those approaches do not effectively deal with the curse of dimen-
sionality problem, i.e., the situation where the number of parameters grows
quadratically or exponentially with the dimension of the problem. Indeed,
the right identification of the sparsity patterns becomes crucial because
it reduces the number of parameters to be estimated. Those reasonings
motivate the use of sparse estimators that automatically shrink to zero
some parameters, such as, for example, the off diagonal elements of the
variance—-covariance matrix. Several works related to sparse estimation
of the covariance matrix are available in literature; most of them are re-
lated to the graphical models, where the precision matrix, e.g., the inverse
of the covariance matrix, represents the conditional dependence structure
of the graph. Friedman et al. (2008) propose a fast algorithm based on
coordinate-wise updating scheme in order to estimate a sparse graph using
the least absolute shrinkage and selection operator (LASSO) ¢;—penalty of
Tibshirani (1996). Meinshausen and Biithlmann (2006) propose a method
for neighbourhood selection using the LASSO ¢;—penalty as an alternative



to covariance selection for Gaussian graphical models where the number
of observations is less than the number of variables. Gao and Massam
(2015) estimate the variance—covariance matrix of symmetry—constrained
Gaussian models using three different ¢;—type penalty functions, i.e., the
LASSO, the smoothly clipped absolute deviation (SCAD) of Fan and Li
(2001) and the minimax concave penalty (MCP) of Zhang (2010). Bien
and Tibshirani (2011) proposed a penalised version of the log-likelihood
function, using the LASSO penalty, in order to estimate a sparse covari-
ance matrix of a multivariate Gaussian distribution. Sparse estimation has
been proposed mainly either within the regression framework or in the con-
text of Gaussian graphical models. In boh those cases, sparsity patterns
are imposed by penalising a Gaussian log-likelihood.

In this work we handle the lack of the model-likelihood or the exis-
tence of valid moment conditions together with the curse of dimensionality
problem within a high—dimensional non—Gaussian framework. Specifically,
our approach penalises the objective function of simulation—based inferen-
tial procedures such as the II method of Gouriéroux et al. (1993) and the
Method of Simulated Quantiles (MSQ) of Dominicy and Veredas (2013).
The II method replaces the maximum likelihood estimator of the model
parameters with a quasi-maximum likelihood estimator which relies on an
alternative auxiliary model and then exploits simulations from the original
model to correct for inconsistency. The MSQ instead estimates parameters
by minimising a quadratic distance between a vector of quantile-based sum-
mary statistics calculated on the available sample of observations and those
calculated on synthetic observations generated from the model. Of course,
there are many similarities between the two methods. MSQ only implies
to be able to simulate from the model, relaxing any assumption about its
analytical tractability or the existence of moments or any specification of
the quantile function. However, unlike II, MSQ only relies on appropri-
ately chosen functions of quantiles that drive information from data to the
parameters of interest, while II uses the likelihood of the auxiliary model

as a replacement to the intractable generative model likelihood. Another
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interesting property of MSQ estimates is that they inherits the robust prop-
erties of quantiles while retaining levels of efficiency comparable with the
IT estimators. Moreover, it is not trivial to identify appropriate quantile—
based statistics in the context of conditional models where the effect of
exogenous regressors or latent variables is also included. The II method
instead handles unconditional models as much as conditional ones because
it relies on the statistics of the auxiliary model. Those reasons motivate
our solution to extend the MSQ to a multivariate non—Gaussian framework
where data are assumed to be independently and identically distributed as
the postulated parametric model. As concerns the II method, instead, we
also consider conditional univariate and multivariate models.

The multivariate Method of Simulated Quantiles (MMSQ) and its sparse
counterpart (S-MMSQ) are introduced in Chapter 3. We establish consis-
tency and asymptotic normality of the proposed MMSQ estimators under
mild conditions on the underlying true data generating process. Few il-
lustrative examples detail how we calculate all the quantities involved in
the asymptotic variance—covariance matrix are provided. The asymptotic
variance—covariance matrix of the MMSQ estimators are helpful to derive
their efficient versions.

The sparse II method (S—II) instead is addressed in Chapter 4. The or-
ganisation of the chapter follows along the same lines as Chapter 3. Specif-
ically, we first introduce the penalised Indirect Inference method and then
we derive the asymptotic properties of the proposed estimator under mild
conditions on the data generating process.

The proposed methods can be effectively used to make inference on the
parameters of large-dimensional distributions such as, for example, Stable,
Elliptical Stable, Skew—Elliptical Stable, Copula, Multivariate Gamma and
Tempered Stable. Among those, the Stable distribution allows for infi-
nite variance, skewness and heavy-tails that exhibit power decay allowing
extreme events to have higher probability mass than in Gaussian model.
For a summary of the properties of the stable distributions see Zolotarev
(1964) and Samorodnitsky and Taqqu (1994), which provide a good the-
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oretical background on heavy-tailed distributions. Univariate Stable laws
have been studied in many branches of the science and their theoretical
properties have been deeply investigated from multiple perspectives, there-
fore many tools are now available for estimation and inference on param-
eters, to evaluate the cumulative density or the quantile function, or to
perform fast simulation. Stable distribution plays an interesting role in
modelling multivariate data. Its peculiarity of having heavy tailed proper-
ties and its closeness under summation make it appealing in the financial
contest. Nevertheless, multivariate Stable laws pose several challenges that
go further beyond the lack of closed form expression for the density. Al-
though general expressions for the multivariate density have been provided
by Abdul-Hamid and Nolan (1998), Byczkowski et al. (1993) and Matsui
and Takemura (2009), their computations is still not feasible in dimension
larger than two. A recent overview of multivariate Stable distributions can
be found in Nolan (2008). Chapter 2 is devoted to the Elliptical Stable
and Skew Elliptical distribution previously introduced by Branco and Dey
(2001) as an interesting application of the MMSQ.

As regards applications to real data considered in Chapter 5, we first
consider the well-known portfolio optimisation problem, where the perfor-
mances of the ESD and SESD distributions are compared to those obtained
under alternative assumption for the underlying DGP. Portfolio optimisa-
tion has a long tradition in finance since the seminal paper of Markowitz
(1952) that introduced the mean—variance (MVO) approach. The MVO
approach relies on quite restrictive conditions about the underlying DGP
that are relaxed by the assuming multivariate Stable distributions. Fur-
thermore, the assumption of elliptically contoured joint returns has impor-
tant implications about the risk—measures than can be considered in the
portfolio optimisation problem. The usual consequence of the elliptical as-
sumption is that Value-at—Risk and variance are coherent risk measures,
see Artzner et al. (1999). However, since Stable distributions do not have
finite second moment, we consider a portfolio allocation problem where the

expected return is traded—off against higher Value-at—Risk profiles that
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make investment less attractive. Portfolio optimisation under Stable dis-
tributed asset returns has been first considered by Fama (1965), and, more
recently, by Gamba (1999), Meerschaert and Scheffler (2003), Ortobelli

et al. (2004).



Chapter 2

The multivariate Stable

distributions

2.1 Introduction

Stable distributions have been introduced in many fields such as hydrology,
telecommunications, physics and finance as a generalisation of the Gaus-
sian distribution to model data that exhibits a high degree of heterogeneity.
Stable distributions allow also for infinite variance, skewness and heavy-
tails that are characterised by power decay allowing extreme events to have
higher probability mass than in Gaussian model. For a summary of the
properties of the Stable distributions see Zolotarev (1964) and Samorod-
nitsky and Taqqu (1994), which provide a good theoretical background on
heavy-tailed distributions. The practical use of heavy—tailed distributions
in many different fields is well documented in the book of Adler et al.
(1998), which also reviews the estimation techniques. In finance, the first
studies on the hypothesis of Stable distributed stock prices dates back to
the pioneering works of Mandelbrot (2012), Fama (2012), Fama and Roll
(1968) and Fama (1965). They propose Stable distributions and give some
statistical instruments for the inference on the characteristic exponent. The
empirical evidence from financial markets motivates in Brenner (1974) the

use of Stable distributions as innovations terms in dynamic models for sta-

13



14  CHAPTER 2. THE MULTIVARIATE STABLE DISTRIBUTIONS

tionary time series of stock returns. In the related context of financial
risk modelling Stable distributions have been used by Bradley and Taqqu
(2003) and Mikosch (2003). The works of Mittnik et al. (1998) and Rachev
and Mittnik (2000) provide a complete analysis of the theoretical and em-
pirical aspects of the Stable distributions in finance. In survival models,
Qiou et al. (1999) model the heterogeneity within survival times of a pop-
ulation through common latent factors which follow Stable distributions.
Stable distributions are also used to model heterogeneity over time and
non-linear dependencies exhibited by the data. For an introduction to
time series models with Stable noises, see Ravishanker and Qiou (1998)
and Mikosch (2003).

Theoretical properties of univariate Stable laws have been deeply inves-
tigated from multiple perspectives, therefore many tools are now available
for estimation and inference on parameters, to evaluate the cumulative
density or the quantile function, or to perform fast simulation. Different
estimation methods for Stable distributions have been proposed in the liter-
ature. Buckle (1995) earlier proposed a Bayesian approach, while the max-
imum likelihood estimator has been proposed along with the asymptotic
theory by DuMouchel (1973). More recently, Godsill (1999) considered
a Monte Carlo Expectation Maximisation (MCEM) approach with appli-
cation to time series with symmetric Stable innovations. A full Bayesian
approach accounting also for the selection of number of components in mix-
ture models has been proposed by Salas-Gonzalez et al. (2009).

However, Stable distributions play an interesting role even in modelling
multivariate data. Nevertheless, multivariate Stable laws pose several chal-
lenges that go further beyond the lack of closed form expression for the
density. Although general expressions for the multivariate density have
been provided by Abdul-Hamid and Nolan (1998), Byczkowski et al. (1993)
and Matsui and Takemura (2009), their computations is still not feasible
in dimension larger than two. A recent overview of multivariate Stable
distributions can be found in Nolan (2008).

Despite its characteristics, estimation of parameters has been always
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challenging and this has limited its use in applied works requiring a simulation—
based methods. Quite a few papers deal with parameters estimation in large
dimensions: Nolan (2013) makes use of projection methods to compute the
likelihood, Dominicy et al. (2013) introduce a measure of co—dispersion to
estimate the covariation function of Elliptical Stable distributions, while
Lombardi and Veredas (2009) consider indirect inference method, while
Tsionas (2013), Tsionas (2016) approach the problem from a Bayesian per-
spective.

The remainder of this Chapter is organised as follows. In Section 2.2
we recall the definition and the main properties of the multivariate Ellipti-
cal Stable distribution (ESD) already considered by Lombardi and Veredas
(2009), while in Section 2.3 we consider the Skew Elliptical Stable distribu-
tion firstly mentioned by Branco and Dey (2001). In particular, as another
interesting contribution we work with a parameterisation similar to that
employed by Azzalini (2013) and provide many theoretical results, such as
the closure with respect to linear combination and marginalisation and the

cumulative distribution function.

2.2 Multivariate Elliptical Stable distribution
A random vector Y € R™ is elliptically distributed if
Y =’ ¢+ RTU, (2.1)

where £ € R™ is a vector of location parameters, I' is a matrix such that
Q =TT’ is a m x m full rank matrix of scale parameters, U € R™ is a

random vector uniformly distributed in the unit sphere
S ! ={ueR™ : vu=1} (2.2)

and R is a non—negative random variable stochastically independent of U,
called generating variate of Y.
If R = VZ1\/Zy where Z; ~ X2 and Zy ~ Sa (§,w,0) is a positive
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Stable distributed random variable with kurtosis parameter equal to 5 for
a € (0,2], location parameter £ = 0, scale parameter w = 1 and asymmetry
parameter § = 1, stochastically independent of x2,, then the random vector
Y has Elliptical Stable distribution, denoted as follows

Y ~ ESD,, (a,€,9Q), (2.3)
with characteristic function

Yy (t) = E (exp {it'Y})
= exp {it'€ — (t'Qt)%} : (2.4)

See Samorodnitsky and Taqqu (1994) for more details on the positive Stable
distribution and Nolan (2013) for the recent developments on multivariate
elliptically contoured stable distributions.

Among the properties that the class of elliptical distribution possesses,
the most relevant are the closure with respect to affine transformations, con-
ditioning and marginalisation, see Fang et al. (1990) and Embrechts et al.
(2005) end McNeil et al. (2015) for further details. Simulating from an ESD
is straightforward, indeed let w, = (cos %)2, then Y ~ ES8D,, (o, &, Q) if
and only if Y has the following stochastic representation as a scale mixture

of Gaussian distributions
Y =€+ (X, (2.5)

where ¢ ~ Sa (0,@a, 1) and X ~ N (0, 2) independent of ¢. Following the
Proposition 2.5.2 of Samorodnitsky and Taqqu (1994), the characteristic
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function of Y is

E (exp {it'Y})
_E (exp {it’ﬁ + z'g%t'x} | g)

_E (exp {z’t’& - Ct;ﬂt} | g)
— oxp {wg - (%) * wan) } o atl (26)

which is the characteristic function of an Elliptical Stable distribution with

Py (t)

N
[N]l)

scale matrix /2. The last equation follows the fact that the Laplace
transform of ¢ ~ Sa (0,04, 1) with 0 < <2is

¢ (A) = E (exp{-AC})

exp{—gsﬁ/l%}, a#1 27)
eXp{%T"‘Alog(A)}, a=1. .

The Elliptical Stable distribution is a particular case of multivariate Sta-
ble distribution so it admits finite moments if E[(P] < oo for p < a.
For a € (1,2), E (C%> < 00, so that by the law of iterated expectations
E(Y) = &, while the second moment never exists. Except for few cases,
o =2 (Gaussian), @ = 1 (Cauchy) and o = § (Lévy), the density function
cannot be represented in closed form. Those characteristics of the Sta-
ble distribution motivate the use of simulations methods in order to make
inference on the parameters of interest. In particular we concentrate our in-
terest on the use of the multivariate method of simulated quantile to make
inference on the Elliptical Stable distributions since alternative likelihood—

based or moments—based methods are not analytically available.
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2.3 Multivariate Skew Elliptical Stable distri-

bution

The skew extension of the multivariate Elliptical Stable distribution has
been briefly introduced by Branco and Dey (2001) as a special case of a
more general class of multivariate Skew Elliptical distributions. The class
of Skew Elliptical distributions has been further examined by Lachos et al.
(2010) with emphasis on model fitting, while Kim and Genton (2011) ob-
tain the characteristic function for this class and other related distributions.
For a general and up to date introduction to Skew Elliptical distributions,
we refer to the book of Genton (2004) and to chaper 6 of Azzalini (2013).

Here, we follow the approach of Azzalini (2013) and we consider a
slightly different parameterisation from Branco and Dey (2001). Our pa-
rameterisation of the SESD has the interesting property that the diagonal
elements of the scale matrix do not affect the overall skewness of the distri-
bution. This property is highly appealing for the purposes of the present
paper.

As for the Elliptical Stable considered in the previous Section 2.2 that
can be obtained as scale mixture of Normal distributions, the Skew—Elliptical
Stable distribution can be obtained as a scale mixture of Skew Normals.
In what follow we first introduce the definition of multivariate Skew El-
liptical Stable distribution, then we provide a stochastic parameterisation
which is useful to deal with simulation of random variates and we consider
the expression of the cumulative density function which is useful to evalu-
ate the quantiles. Furthermore, we provide an expression for the moment
generating function and we exploit it to get the characterisation of linear
transformations of SESD random variable which are particularly useful in

our applications.

Proposition 1. Let (X'.Y)" be a Normal random vector of dimension

(d+1) conditional on ( ~ Sa (W4, 1,0), with W, = (Cos %)%, a € (0,2),
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1.€.
X
o1 ¢~ Nawr (0.0 2:8)
Q 5 . , _ .
where s = 5 1 and €2 is a proper correlation matriz, symmetric and

positive definite with |o;;| < 1, for i,7 = 1,2,...,d and i # j, then the
distribution of the variable Z = (X |Y > 0) is Skew Elliptical Stable dis-
tributed, i.e., Z ~ SESD, (a, Q, )\) with density

A'x
V<

where ¢q (+) and Py (-) denote the density of the multivariate Normal dis-

f (3,00, 2, A) = 2 /0+°O¢d(x,o,gn)q>1( )h(g)dg, (2.9)

tribution and the cumulative density function of the univariate Normal dis-
tribution, respectively, and h (C) is the density of the mizing variable. The

shape parameter X is defined as

A= (1 - <s’sT15>_5 Q715 e R (2.10)
6= (1+ XQA)‘% QX e [-1,1]". (2.11)
Proof. See Appendix A. ]

Remark 2. Let X ~ SESD, (a, 0,Q, )\), then the random variable X has
a stochastic representation in terms of a scale mixture of Skew Normals,
i.e., X = (2Z where Z ~ SN4(0,Q, ) and { ~ Ss (@a, 1,0), with @, =

(cos %)%, a€(0,2).

Remark 3. Let X ~ SESD, (a, 0, €, )\) , then the transformation’ Y = £+
wX where diag{wy,ws,...,wq} is Y ~ SESD, (a, &, Q, N), with density

—+00

fY (Y7 OK,E, Q? A) =2 ¢d (Y7€7 CQ) (I)l <

0

Nw ! (y —§)

= o

(2.12)

where & € RY is a d-dimensional vector of location parameters, = wQw
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is a positive definite square matriz of dimension d, and A € R? is the shape

parameter.

The following proposition provides a stochastic representation of the Skew—
Elliptical Stable distribution which becomes extremely relevant to effi-

ciently simulate random variates.

Proposition 4. Let X ~ SESD, (a,ﬂ,)\), then X has the following

stochastic representation

U it Up>0
X = ! 0= (2.13)
U, it Uy<o,

with
U

Uo

] ~ E8D i1 (0, ), (2.14)

and Qs is defined as in Proposition 1.

The next proposition provides an easy and intuitive way to calculate the
SESD cumulative density function in terms of the cumulative density func-
tion of the ESD and it extends previous results on the cumulative density
function of the Skew Normal and Skew Student—t distribution, see Azzalini
(2013).

Proposition 5. Let X ~ SNy (0, Q, }\) then the distribution of the ran-
dom vector Y = € + wy/(X, with w = diag{w;,ws,...,wq} and { ~
Sa (Wa, 1,0), is Skew-Elliptical Stable, i.e., Y ~ SESDq (a,&,Q2, X). The
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multivariate Skew Elliptical Stable cdf can be calculated as follows

Fy (y,0,&,Q,0) =P (Y <Yy)
:P<§+w\/ZX<y>
=P (VX <wl(y-¢))
:IP’<\/ZU§w_1(x—£)\UO>O>
 P(VU<w ! (x—¢),Uy>0)
n ]P)(Uo>0>
:2<P U S(wl(y—@))
~Up 0
=2(Pf 40y (01,0,0,95)), (2.15)

where ®G, (-) denotes the multivariate ESD cdf of dimension d 4 1, with

u = [w_l (v - 5)] . Q= (2.16)

0 -4 1

Q —5’]

In the univariate case the Skew ESD cdf in equation (2.15), reduces to
Fy (y,0,&w,8) = 205 (u{,a,O,ﬂ*_(;), where uj = (yw;g,O)/ and Q5 =

1 -6
-5 1

Now we introduce the moment generating function of the SESD which is
exploited to characterise the distribution of linear combinations of SESD.
Before we introduce the expression for the moment generating functions of

univariate and multivariate Skew Normal distributions.

Lemma 6. Let X ~ SN (&, w, \) be a univariate Skew Normal distribution,
and X ~ MSN (&,Q,X) be a d-dimensional Skew Normal distribution,
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then the MGF of X and X are respectively

2,2

My (t) = 2exp {ft + tTw}  (dwt) (2.17)
t'Qt

Mx (t) = 2exp {t'{ + } P (d'wt), (2.18)

where & has been defined in equation (2.11) and Q = wQw.
Proof. See Bernardi (2013) and Azzalini (2013). O

Lemma 7. Let Y ~ SESD, (o, &,€2, A) be a d—dimensional Skew Elliptical
Stable distribution, then the MGF of Y is

My (t) = /000 2 exp {t’£ + @} P (ﬁd’wt) h(¢)d¢
_ /0 " (VEE) h(o)dc. (2.19)

where & has been defined in equation (2.11), Q = wQw and Mx (\/Zt) 5
the mfg of the multivariate Skew Normal distribution defined in equation
(2.18).

Proof. See Appendix A. n

For the purposes of the present paper it is important to establish the clo-
sure property of the Skew Elliptical Stable distribution with respect to
marginalisation. As stated in the following proposition, the closure of the
SESD with respect to marginalisation follows immediately from the mo-

ment generating function defined in equation (A.7).

Theorem 8 (Closure of the SESD with respect to marginalisation).
Let X be a d—dimensional Skew FElliptical Stable distribution, i.e., Y ~
SESD, (o, €, A), and assume that the random vector Y is partitioned
into Y = [Y}, Y}, where Y, and Yy are of dimension dim (Y,) = d;
and dim (Ys) = dy = d — dy, respectively. The location vector &, the scale
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matriz @ and the shape parameters X and 6 are partitioned accordingly to

& _ M S
ol o B ) e

where §2;; for j = 1,2 are positive definite matrices. Then

Qll 912
Q) Qo

Y1 ~ S(C/’SDdl (oz, 61, Ql, A;) s

with
AL+ Q5 QA
= T et (2.21)
07 = 0, (2.22)
where 5y = Qoy — Q/12Q;119127 on partitioning Q similarly to Q.
Proof. See Appendix A. ]

In some applications, such as portfolio allocation, we are interested in find-
ing the distribution of linear combinations of Skew Elliptical distributions.
The following proposition characterises the closure of the SESD with re-

spect to linear combinations.

Theorem 9 (Linear combinations of multivariate Skew Elliptical
Stable distributions). Let X be a d-dimensional skew normal, i.e., X ~
SESDy (o, €,2, N), and assume d € R? be a vector of real coefficients and
C be a full rank matriz of dimension k X d with k < d, then the linear
combination Z = d + CX has density function

Z ~ SESDk (O&,Ez,QZ;AZ)7
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where

§,=d+C¢ (2.23)

Q, = CQC' (2.24)
—1

A wzty Cwd (2.25)

Z = )
V1 - 6wCn, Cws

1

with 6 ; = wgled, where wy = (Qz © 1,)2 and ® denotes the Hadamart

component—wise multiplication.
Proof. See Appendix A. n

As for the Elliptical Stable distribution the multivariate Skew Elliptical
Stable distribution admits finite moments if E [(?] < oo for p < «. For
ae(1,2),E (é) < 00, 50 that if Y ~ SESD, (o, £, 2, A) then by the law
of iterated expectations E (Y) = € + wE (§%> E(X), with E(X) = \/25,

while the second moment never exists.



Chapter 3

The Method of Simulated

Quantiles

3.1 Introduction

This Chapter focuses on the method of simulated quantiles (MSQ) recently
proposed by Dominicy and Veredas (2013) as a simulation—-based extension
of the quantile — matching method (QM), see Koenker (2005) for an up
to date reference. As any other simulation—based methods, the MSQ esti-
mates parameters by minimising a quadratic distance between a vector of
quantile-based summary statistics calculated on the available sample of ob-
servations and that calculated on synthetic observations generated from the
model. Specifically, we extend the method of simulated quantiles to deal
with multivariate data, originating the multivariate method of simulated
quantiles (MMSQ). The extension of the MSQ to multivariate data is not
trivial because it requires the concept of multivariate quantile that is not
unique given the lack of a natural ordering in R" for n > 1. Indeed, only
very recently the literature on multivariate quantiles has proliferated, see,
e.g., Serfling (2002) for a review of some extensions of univariate quantiles
to the multivariate case. The MMSQ relies on the definition of projec-
tional quantile of Hallin et al. (2010) and Kong and Mizera (2012), that is

a particular case of directional quantile. This latter definition is particu-

25
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larly appealing since it allows to reduce the dimension of the problem from
R™ to R by projecting data towards given directions in the plane. More-
over, the projectional quantiles incorporate information on the covariance
between the projected variables which is crucial in order to relax the as-
sumption of independence between variables. An important methodological
contribution of this thesis concerns the choice of the relevant directions to
project data in order to summarise the information for any given parame-
ter of interest. Although the inclusion of more directions can convey more
information about the parameters, it comes at a cost of a larger number
of expensive quantile evaluations. Of course the number of quantile func-
tions is unavoidably related to the dimension of the observables and strictly
depends upon the specific distribution considered. We provide a general
solution for Elliptical distributions and for those Skew—Elliptical distribu-
tions that are closed under linear combinations.

We also establish consistency and asymptotic normality of the proposed
MMSQ estimator under weak conditions on the underlying true DGP. The
conditions for consistency and asymptotic Normality of the MMSQ) are sim-
ilar to those imposed by Dominicy and Veredas (2013) with minor changes
due to the employed projectional quantiles. Moreover, for the distributions
considered in our illustrative examples, full details on how to calculate all
the quantities involved in the asymptotic variance—covariance matrix are
provided. The asymptotic variance—covariance matrix of the MMS(Q esti-
mator is helpful to derive its efficient version, the E-MMSQ.

The remaining of this Chapter is organised as follows. In Section 3.2.1
the basic concepts on directional and projectional quantiles are recalled.
Section 3.2.2 introduces the method of simulated quantiles, while in Section
3.2.3 we establish consistency and asymptotic normality of the proposed
estimator. In Section 3.3.1 we introduce an important methodological con-
tribution that deals with the curse of dimensionality problem. Specifically,
the objective function of the MMSQ is penalised by adding a SCAD ¢;—
penalisation term that shrinks to zero the off-diagonal elements of the scale

matrix and of the Cholesky factor of the postulated distribution proposing
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two different algorithms. The one related to the scale matrix is a similar
to those proposed by Bien and Tibshirani (2011). We extend the asymp-
totic theory in order to accommodate sparse estimators, and we prove that
the resulting sparse-MMSQ estimator enjoys the oracle properties of Fan
and Li (2001) under mild regularity conditions. Moreover, since the chosen
penalty is a concave function, it is necessary to construct an algorithm to
solve the optimisation problem. This is done in Section 3.3.2 while Section
3.3.3 deals with tuning parameter selection and Section 3.3.4 deals with its
implementation. The MMSQ is illustrated and its effectiveness is tested
through several examples where synthetic datasets are simulated from well
known data generating processes for which alternative methods are known

to perform poorly in Section 3.4.

3.2 Multivariate method of simulated quan-

tiles

3.2.1 Directional quantiles

The MMSQ requires the prior definition of the concept of multivariate
quantile, a notion still vague until quite recently because of the lack of
a natural ordering in dimension greater than one. Here, we relies on the
definition of directional quantiles and projectional quantiles introduced by
Hallin et al. (2010), Paindaveine and Siman (2011) and Kong and Mizera
(2012). In this section we first recall the definition of directional quantile
given in Hallin et al. (2010) and then we introduce the main assumptions
that we will use to develop MMSQ.

Definition 10. Let Y = (Y1, Y5, ..., Y,,) be a m—dimensional random vec-

tor in R™, u € S™! be a vector in the unit sphere
S* ! ={ueR™ : vu=1} (3.1)

and 7 € (0,1). The Tu—quantile of Y is defined as any element of the
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collection II™ of hyperplanes

T = {Y . bTu/Y - un — O} ’

such that
(g™, b™) € {arg gﬂg U™ (¢,b) s.t. bu= 1} : (3.2)
where
U™ (g,b) = E|p, (WY — g) |, (3.3)

and p; (z) = 2 (T — L(—a00) (2)) denotes the quantile loss function evaluated

at z € R, g € R, b € R™ and E (-) denotes the expectation operator.

The term directional is due to the fact that the multivariate quantile defined

above is associated to a unit vector u € S™ 1.

Assumption 11. The distribution of the random wvector Y is absolutely
continuous with respect to the Lebesque measure on R™, with finite first

order moment, having density fy that has connected support.

Under assumption 11, for any 7 € (0, 1) the minimisation problem defined
in equation (3.2) admits a unique solution (¢™, b™), which uniquely iden-
tifies one hyperplane 7™ € I1™.

A special case of directional quantile is obtained by setting b = u; in
that case the directional quantile (a™,u) becomes a scalar value and it
inherits all the properties of the usual univariate quantile. This particular
case of directional quantile is called projectional quantile, whose formal def-
inition reported below is due to Kong and Mizera (2012) and Paindaveine
and Siman (2011).

Definition 12. Let Y = (Y1, Y5, ..., Y,,) be a m—dimensional random vec-

tor in R™, u € S™! be a vector in the unit sphere S™1, and 7 € (0,1).
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The Tu projectional quantile of Y is defined as follows.
Tu : \IITU '4
" e {arglggﬂg (Q)}7 (3.4)

where W™ (q) = V™ (¢, u) in equation (3.3).

Clearly the Tu—projectional quantile is the 7—quantile of the univariate
random variable w'Y. This feature makes the definition of projectional
quantile particularly appealing in order to extend the MSQ to a multivari-
ate setting because, once the direction is properly chosen, it reduces to the
usual univariate quantiles. Given a sample of observations {y;};_, from Y,

the empirical version of the projectional quantile is defined as
P ——
q

where U7 (q) = 157" [pT (uy; — q)} denotes the empirical version of

T on

the loss function defined in equation (3.3).

3.2.2 The method of simulated quantiles

The MSQ introduced by Dominicy and Veredas (2013) is likelihood—free
simulation—based inferential procedure based on matching quantile-based
measures, that is particularly useful in situations where either the density
function does is not analytically available and/or moments do not exist.
Since it is essentially a simulation—based method it can be applied to all
those random variables that can be easily simulated. In the contest of
MSQ, parameter are estimated by minimising the distance between an
appropriately chosen vector of functions of empirical quantiles and their
simulated counterparts based on the postulated parametric model. An ap-
pealing characteristic of the MSQ that makes it a valid alternative to other
likelihood—free methods, such as the indirect inference of Gouriéroux et al.
(1993), is that the MSQ does not rely on a necessarily misspecified auxil-

iary model. Furthermore, empirical quantiles are robust ordered statistics



30 CHAPTER 3. THE METHOD OF SIMULATED QUANTILES

being able to achieve high protection against bias induced by the presence
of outlier contamination.

Here we introduce the MMSQ using the notion of projectional quan-
tiles defined in Section 3.2.1. Let Y be a d—dimensional random variable
with distribution function Fy (-, 1), which depends on a vector of unknown
parameters 9 C © € R*¥ and y = (y1,¥2,...,¥n) be a vector of n in-
dependent realisations of Y. Let uy,...,ux € S™! be a set of direc-
tions and let g3 = (qg'™, g5 ™, ... ,q:;’“uk) be a s x 1 vector of projec-
tional quantiles at given confidence levels 7; € (0,1) with ¢ = 1,2,..., sy,
and k = 1,...,K. Let ®y = ®(qz""™,...,q5" ) be a b x 1 vector
of quantile functions assumed to be continuously differentiable with re-
spect to ¥ for all Y and measurable for Y and for all 9 C ©. Let us
assume also that ®4 cannot be computed analytically but it can be em-
pirically estimated on simulated data; denote those quantities by i); Let
qmete = (@M G L G ) be a s X 1 vector of sample projectional
quantiles and let ® = ® (@™, ..., q™%"K) be a b x 1 vector of functions
of sample projectional quantiles.

The MMSQ at each iteration j = 1,2,... estimate ®, on a sample
of R replication simulated from y; , ~ Fy (-, ﬁ(j)), forr =1,2,..., R, as
<i>§j = }%Zf:l @;j, where <i>:9j is the function ®,» computed at the r—th
simulation path. The parameters are subsequently updated by minimising
the distance between the vector of quantile measures calculated on the true
observations ® and that calculated on simulated realisations <i>§j as follows

¥ = argmin <<i> - @§>/W19 <<i> - @5) : (3.5)
9€O
where Wy is a b x b symmetric positive definite weighting matrix. The
method of simulated quantiles of Dominicy and Veredas (2013) reduces to
the selection of the first canonical direction u; = (1,0,...,0) as relevant
direction in the projectional quantile.
The vector of functions of projectional quantiles ®, should be carefully

selected in order to be as informative as possible for the vector of param-
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eters of interest. In their applications, Dominicy and Veredas (2013) only
propose to use the MSQ to estimate the parameters of univariate Stable
law. Toward this end they consider the following vector of quantile-based
statistics, as in McCulloch (1986) and Kim and White (2004)

b, — (%.95 + ¢o.05 — 290.5 G0.95 — G0.05
9 =

/
) »40.75 — q0.25, C]o.5) .
q0.95 — 40.05 qo.75 — q0.25

where the first element of the vector is a measure of skewness, the second
one is a measure of kurtosis and the last two measures refer to scale and
location, respectively. Of course, the selection of the quantile-based sum-
mary statistics depend either on the kind of parameter and on the assumed
distribution. The MMSQ generalises also the MS(Q proposed by Dominicy
et al. (2013) where they estimate the elements of the variance—covariance
matrix of multivariate elliptical distributions by means of a measure of co—
dispersion which consists in the in interquartile range of the standardised
variables projected along the bisector. The MMSQ based on projectional
quantiles is more flexible and it allows us to deal with more general dis-
tributions than elliptically contoured distributions because it relies on the
construction of quantile based measures on the variables projected along

an optimal directions which depend upon the distribution considered.

3.2.3 Asymptotic theory

In this section we establish consistency and asymptotic normality of the
proposed MMSQ estimator. The next theorem establish the asymptotic

properties of projectional quantiles.

Theorem 13. Let Y € R™ be a random vector with cumulative distri-
bution function Fy and variance—covariance matrix v . Let {yi}?zl be
a sample of iid observations from Fy. Let uj,uy,...,ux € S™ ! and
Z = u, Y be the projected random variable along uy with cumulative dis-
tribution function Fgz, , for k = 1,2,..., K. Let Tp = (Tik, Toks-- - Tsk)
where T € (0,1), g™ = (¢, g2k g7k ) be the vector of di-

rectional quantiles along the direction uy and suppose Var (Zy) < oo, for



32 CHAPTER 3. THE METHOD OF SIMULATED QUANTILES

k =1,2,...,K. Let us assume that Fyz_ 1is differentiable in ¢"*** and
Fy (q7#%) = fz, (¢7+%) > 0, for k = 1,2,...,K and j = 1,2,...,s.
Then

(i) for a given direction g, with k =1,2,... K, it holds

V(@ — g S A (0,7m)

as n — oo, where n denotes a (K x K) symmetric matriz whose

generic (r,c) entry is

Tr N\ Te — TrTe
e = T T ?
‘ ka (q muk) ka (q C’uk)

forr,e=1,... K;

(i1) for a given level T;, with j =1,2,...,s, it holds

Vi (@@ —q7) S N(0,n),

as n — oo, where q77 = (¢7™M ... ¢7UK),
_ i Fz,,2.(a7"" 2z, 2.) for r#c
_ F2r (679 ) f2.(477%) " f2 (0775 ) fz. (a7
e =) for r=c
Iz, (quur)% ’

and Xz, 7. denotes the variance—covariance matriz of the random
variables Z, and Z. and "¢ = (¢, q7%), forr,c=1,2,..., K;

(1it) given 1; and 7, with j,l =1,2,...,s and j # | and given u, and w,
with s,t =1,2,..., K and s # t, it holds

ATjUs TjUs ATU rugy
V(@Y — gt g — "M = N(0, 1),
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as n — 0o, where

73Tl FZs Zy ((quusw quut) ) ZZS Zt)
Nre = — ) : ) : ) fOT r % C.
f2.(q7) fz, (q™) fz,(q7) [z (q7)
(3.6)
Proof. See Appendix A. n

To establish the asymptotic properties of the MMSQ estimates we need the

following set of assumptions.

Assumption 14. There ezists a unique/unknown true value 99 C © such
that the sample function of projectional quantiles equal the theoretical one,
provided that each quantile-based summary statistic is computed along a
direction that is informative for the parameter of interest. That is

=109 & &=dy,.

N .
Assumption 15. 9 is the unique minimiser of <<I> = <I>§> Wy <<I> = @1}:) )

Assumption 16. Let Q be the sample variance—covariance matriz of P

and g be the variance—covariance matriz of ®y, then  converges to (y.

Assumption 17. The matriz Qg is non—singular.

Assumption 18. The matriz (%‘%W,g%) 18 mon—singular.

Under these assumptions we show the asymptotic properties of functions

of quantiles.

Theorem 19. Under the hypothesis of Theorem 13 and assumptions 6-9,

we have

Jn (ci> - %) 4 N (0,)
Vi (@5~ ®a) 5N (0,92),

0By, O
as n — 0o, where by = s (q

T1,U1 T2,U2

7q 7""qTK7UK)/7 fr’ ZS
the variance—covariance matriz of the projectional quantiles q defined in

oOPy _ 7: 0P 0P 0P
Theorem 18 and e = dzag{aqﬁ,u1  BqraE s g (-
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Proof. See Appendix A. n
Next theorem shows the asymptotic properties of the MMSQ estimator.

Theorem 20. Under the hypothesis of Theorem 15 and assumptions 6—10,

we have
3 d 1 TV
N (0 _ 0) 4 N (0, <1 n }—%) DﬁwﬁgﬂwﬂDQ ,

_ (OPy 0Py -1 OPy
as n — 0o, where Dy = (—319, W55 ) e -

Proof. See Appendix A. m
The next corollary provides the optimal weighting matrix W .

Corollary 21. Under the hypothesis of Theorem 13 and assumptions 6-10,

the optimal weighting matriz is
Wi = Q'

Therefore, the efficient method of simulated quantiles estimator E-MMSQ

has the following asymptotic distribution

. J 1\ (0®y 085\ "

as n — 0.

3.3 Handling sparsity

3.3.1 Sparse method of simulated quantiles

In this section the MMSQ estimator is extended in order to achieve sparse
estimation of the scaling matrix. Specifically, the smoothly clipped absolute
deviation (SCAD) ¢;—penalty of Fan and Li (2001) is introduced into the
MMSQ objective function. Formally, let Y € R™ be a random vector and
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¥ = (O'Z'yj)zjzl be its scale matrix and we are interested in providing a
sparse estimation of 3. To achieve this target we adopt a modified version
of the MMSQ objective function obtained by adding the SCAD penalty to
the off-diagonal elements of the covariance matrix in line with Bien and
Tibshirani (2011). The SCAD function is a non convex penalty function

with the following form

Al if [v] < A
p() =192 (el =3) -y ifa<y<ar B7)
—)‘Z(ZH) if aX < |y,

which corresponds to quadratic spline function with knots at A and aA.
The SCAD penalty is continuously differentiable on (—o0;0) U (0; c0) but
singular at 0 with its derivatives zero outside the range [—a);a)]. This
results in small coefficients being set to zero, a few other coefficients be-
ing shrunk towards zero while retaining the large coefficients as they are.
The sparse MMSQ estimator (S-MMSQ) minimises the penalised MMSQ

objective function, defined as follows

~

9 = arg mﬁin Q" (9), (3.8)
where

0 (9) = (&~ 5) Wy (&~ 85) 40X palloul)  (39)
i<j

is the penalised distance between ® and ®% defined in Section 3.2.2. As
shown in Fan and Li (2001), the SCAD estimator, with appropriate choice
of the regularisation (tuning) parameter, possesses a sparsity property, i.e.,
it estimates zero components of the true parameter vector exactly as zero
with probability approaching one as sample size increases while still being
consistent for the non-zero components. An immediate consequence of the

sparsity property of the SCAD estimator is that the asymptotic distribu-
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tion of the estimator remains the same whether or not the correct zero
restrictions are imposed in the course of the SCAD estimation procedure.

They call them the oracle properties.

Let 99 = (9},9)) be the true value of the unknown parameter 1, where
¥4 € R* is the subset of non—zero parameters and ¥ = 0 € R** and let
A={(i,7) : i < j,0i50 € 93}. The following definition of oracle estimator
has been formalised in Zou (2006).

Definition 22. An oracle estimator ﬁomle has the following properties:

(i) consistent variable selection: lim, . P (A, = A) =1, where

-An = {(Zvj) 11 < j? &ij € ﬁéracle}f'

(ii) asymptotic normality: /n (ﬁérade - '19(1)) LN N(0,%), as n — oo,

where X is the variance covariance matriz of 9}.

Following Fan and Li (2001), in the remaining of this section we establish

the oracle properties of the S-MMSQ estimator. We first prove the sparsity
property.

Theorem 23. Given the SCAD penalty function py (|o;|), for a sequence
of A\ such that \, — 0, and \/n\, — 00, as n — 00, there exists a local
minimiser 9 of Q* (9) in (3.8) with |9 — 9| = O, (n_%>. Furthermore,

we have
lim P («90 - 0) ~ 1. (3.10)
n—oo

Proof. See Appendix A. O

The following theorem establishes the asymptotic normality of the S-MMSQ
estimator; we denote by 19! the subvector of 19 that does not contain zero
off-diagonal elements of the variance covariance matrix and by 9! the cor-

responding penalised MMSQ estimator.
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Theorem 24. Given the SCAD penalty function py (|o;|), for a sequence
An — 0 and \/n)\, — oo as n — oo, then 9 has the following asymptotic

distribution:
A d 1\ [(0®y _ 0By "
Vn (01 - 195) SN <0, (1 + Tz) (W;’,Qﬂ;a—ﬂf) ) : (3.11)
as n — oo.
Proof. See Appendix A. O

3.3.2 Algorithm

The objective function of the sparse estimator is the sum of a convex func-
tion and a non convex function which complicates the minimisation proce-
dure. Here, we adapt the algorithms proposed by Fan and Li (2001) and
Hunter and Li (2005) to our objective function in order to allow a fast
procedure for the minimisation problem.
The first derivative of the penalty function can be approximated as
follows
/
[px (loi3]) ] = P (o) sen (035) ~ Zﬂﬂ%ﬁfb%’ (3.12)
when o;; # 0. We use it in the first order Taylor expansion of the penalty
to get

1) (loij0l) (02— 02,), (3.13)

pa (loij]) = pa (losj0]) + 2 Jouol —0

iJ 17,0
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for 0;; ~ 0,j0. The objective function Q* in equation (3.8) can be locally

approximated, except for a constant term by

AN L OPL L
Q" (9) ~ (q> - @30) W (q) - ¢§0> - W, (<I> - @30) (9 — )
,0R%  0®E n .
> o (8 = 00) + S0P (90) 9,
(3.14)

1
+§(19—190) Wj

|Uij,0|

where Py (9¢) = diag {0, [M;i > J,0450 € 19(1)}, for which the first or-

der condition becomes

oDk
a9 V0T 2 (9 — o) + nP () 9

00" (9) _ 0®f
09 09

+ nP)\ (’190) (’19 — ’190) + TLP/\ (’190) '190

O®E Ok
OW5—20 4 3 (9

g9 Wi gy 2 ()
+ Py (90) ¥

=0, (3.15)

= (9 — )

and therefore
~ ~ 1
811311;0 8@1}}0

00’ W@ 00 +nP>\ (’190)
0BE

Y

’19:190—

x W, (<i> . i»f}o) 4Py (90) B (3.16)
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The optimal solution can be find iteratively, as follows

-1

O®L oL
9 =90 — | —EEWy 22 4Py (90)
8<i>§(k) T R k k
X [— 5w, (q> - <I>0(k>> +nPy (99 9® | (3.17)

and if 19§k+1) ~ 0, then ﬂgkﬂ) is set equal zero. When the algorithm con-

verges the estimator satisfies the following equation

0PE L
— W (cI» - @50) + Py (99) 9o = 0, (3.18)

that is the first order condition of the minimisation problem of the S—
MMSQ estimator.

The algorithm used above and introduced by Fan and Li (2001) is called
local quadratic approximation (LQA). Hunter and Li (2005) showed that
LQA applied to penalised maximum likelihood is an MM algorithm. In-

deed, we define

1 p) (loijol)
Vo0l (ai]) = pa (Joijol) + §_A|a,,;| (07 — oi0) - (3.19)
7/]’

since the SCAD penalty is concave it holds

Uiosol (035]) = o (loigl) s Vi), (3-20)
and equality holds when |o;| = |03;0]. Then W, (|os;|) majorise py (|oi;1),
and it holds

Wiyl (035]) < Wio01 (loi501) = Pa (lois]) < pa(loijol) (3.21)

that is called descendent property. This feature allows us to construct an

MM algorithm: at each iteration k we construct ¥, w) (loi;]) and then
ij

minimize it to get 02(;7“), that satisfies py <|a§f+1)|> < Da <|al(]k)|> Let us
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consider the following
£ &R) £ &R
Sy (9) = (@ - %) W, (<I> - %) 0y 0w (loyl),  (3.22)
>

then Sy () majorise Q* (9); thus we only need to minimise Sy (1), that can
be done as explained above. Hunter and i (2005) proposed an improved
version of LQA for penalised maximum likelihood, aimed at avoiding to zero
out the parameters too early during the iterative procedure. We present
their method applied to S-MMSQ as follows

loij| oot B
P (o,
Pac (loi]) = pa (Jos]) — e/ P (oijol)
0

e+t
0: (9) = (& - &%) Wy (&~ &5) + 1Y prc (ou)
>
P (losjol)

\Ija-- € ijl) — € i _— 2 _ 452
loij,0l, (|0]|) P, <|O-J70|) + 2(€+ |Uz‘j,0|) (Uzj UzJ,O)

Ste (9) = (&= &) Wy (8- 8) +n >0, 0 (o).

1>7

where 9 is a consistent estimator of 9. They proved that as € | 0 the per-
turbed objective function QF (¥) converges uniformly to the not perturbed
one Q* () and that if 9. is a minimiser of Q* () then any limit point of

~

the sequence {196} is a minimiser of Q* (). This construction allows to
el0

0

Z7J

to choose the value of the perturbation € and suggested the following

define v, (loij]) even when o,/ ~ 0. The authors also provided a way
i

_ T : ). (0 }
min N IS N 0 3.23
¢ 2np), (0) ' {|Jw | %ij 7 ’ ( )

with the following tuning constant 7 = 1075.

3.3.3 Tuning paramenter selection

The SCAD penalty requires the selection of two tuning parameters (a, \).

The first tuning parameter is fixed at a = 3.7 as suggested in Fan and Li
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(2001), while the parameter A is selected using K—fold cross validation, in
which the original sample is divided in K subgroups T}, called folds. The

validation function is

OV (\) = inik (<i> - <i>§m) W, (ci> - ‘i’fﬁ’i,k) , (3.24)
k=1

where 1§,\7k denotes the parameters estimate on the sample (UfilTk) \ Ty
with A as tuning parameter. Then the optimal value is chosen as \* =
argminy C'V ()); again the minimisation is performed over a grid of values

for A.

3.3.4 Implementation

The symmetric and positive definiteness properties of the variance—covariance
matrix should be preserved at each step of the optimisation process. Pre-
serving those properties is a difficult task since the constraints that ensure
the definite positiveness of a matrix are non linear. Here we propose two
alternative solutions. The first solution relies on the approach of Levina
et al. (2008) that induces sparse estimation of the elements of the Cholesky
factor of the correlation matrix. The second solution instead considers a
sequential column—wise factorisation of the correlation matrix that natu-
rally preserves the positive definiteness of the matrix at each stage of the
optimisation procedure.

Let now briefly recall the hyper—spherical parametrisation of the Cholesky
factor introduced by Pourahmadi and Wang (2015) that maps the pairwise

correlations onto the space of angles. Let R be a correlation matrix and L
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the corresponding Cholesky factor, i.e., R = LL/, then

1 0 0 0 0
cos a1 sin 621 0 0 0
cosf3;1  cosf32sinf3 1 sin @3 2 sin 03 1 0 0
cosfs1  cosBy2sinby 1 cosf4,38in64,1sin04 2 H?:l sin 04 ; 0
cosfp,1 cosOposinl, 1 cosly3sinb, 1sinb, 2 cosblpa Hle sinf,; - Hle sin 6, ;

where 6, ; € (0,7). Unfortunately, the angles domain in equation (3.25)
does not include zero and, moreover, we should introduce a one-to—one
correspondence between zeros of the two parametrisations. Therefore, we

should introduce the following translation:

~ ™

ei,j — Hm- — 5, (326)

so that 9~” € (—g, g) and HNH = 0 < L;; = 0. The previous approach
sparsifies the Cholesky factor and, in general, does not induce a sparse
correlation matrix unless we are in the particular case of a decomposable
graphs.

Let us recall some basic definitions from graph theory in order to define
such graphs. A graph is defined as a couple (V, E) where V is a set of
vertices and £ C V x V be a set of edges. We assume that V' is finite. The
vertices u,v are adjacent if (u,v) € E. If all the vertices are adjacent to
each other then the graph is complete. Any path that begins and ends at

the same vertex is called a cycle.

Definition 25 (Zareifard et al. 2016, Lauritzen 1996). An undirected graph
15 said to be decomposable if any induced subgraph does not contain cordless

cycle of length greater than or equal to four.

Lemma 26 (Zarcifard et al. 2016, Paulsen et al. 1989). Let Q be an arbi-
trary positive definite matriz with zero restrictions according to decompos-
able graph G = (V, E), i.e., Q;; = 0 if (i,5) ¢ E. Then there exists an
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ordering of the vertices such that if Q = LL’ is the Cholesky decomposition

corresponding to this ordering, then for i < j

Hence the zero in € are preserved in the lower triangle of the corresponding

matrix L obtained from the Cholesky decomposition.

The previous Lemma tell us that if the optimisation returns a decompos-
able graph then we are also providing a sparse estimator of the correlation
matrix. However, if the graph is not decomposable we can consider a dif-
ferent implementation in the same spirit of the column—wise update of the

Graphical Lasso algorithm of Friedman et al. (2008).

We outline the steps of the algorithm below. Let €2 be a correlation matrix
of dimension n x n and partition € as follows

Q= (3.28)

/
wi, 1

Q wu]
)

where €2y is a matrix of dimension (n — 1) X (n — 1) and w5 is a vector

of dimension n — 1, and consider the transformation consider the transfor-
w12

1+a’12ﬂf116’12

Newton—-Raphson algorithm to wi, as follows

mation wi, — where w15 is obtained by applying a step of the

-1

0®f, 0L,
N _ B »
Wiz = W12 Dory Y B +n3) (wi2)
0B L
X [_ a 12 5o (‘I) — q)fm) —I—RE)\ (wlg) w12] .
012

(3.29)

Once we update the last column, we shift the next to the last at the end
and repeat the steps described above. We repeat this procedure until con-

vergernce.
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3.4 Synthetic data examples

In this Section we illustrate the performance of our methodology and com-
pare it with three alternative methods on concrete simulation examples.
We consider the ESD data generating process in Section 3.4.2 data gener-
ating process and the SESD 3.4.3 of different dimensions m = {2,5,12}.
For each model, we consider several sample sizes: T' = {500, 1000} for the
method of simulated quantiles and 7" = 200 for the sparse method of sim-
ulated quantiles. For each generated sample, we estimate the parameters
using the MMSQ (S-MMSQ) and three different alternatives: the Graph-
ical Lasso of Friedman et al. (2008) (GLasso), the graphical model with
SCAD penalty (SCAD) and the graphical model with adaptive Lasso of
Fan et al. (2009) (Adaptive Lasso).

To assess the performance of the MMSQ (S-MMSQ) we compute the Frobe-
nius norm, the Fj—score measure and the Kullback—Leibler divergence,

which are defined as follows

m m
22 lausl?

IAllr = (3.30)
i=1 j=1
2TP

Fy — = 1 31
| — score 2TP—|—FP—|—FN€[O’ ] (3.31)

1 1 o)
KL=~ |tr (Q T;QQ) —m—1o , 3.32
2 t g <|Qtrue|>] ( )

where TP, FP and F'N are the number of true positives, false positives
and false negatives, respectively, see
Before presenting our results we illustrate the method we employ to

select the relevant directions.

3.4.1 How to choose directions

An important issue related to the application of the MMSQ is the choice of
the directions which are relevant for the parameters of interest. Indeed, a

trivial approach would be to consider a grid of directions uniformly spaced
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on the unit circle. However, this solution would be computational expen-
sive in large dimensional settings thus we consider a different and more
effective approach. Specifically, we choose optimal directions u* according
to Definition 27 which allows to maximise the information contained in the

selected measures.

Definition 27. Let us consider a given parameter of interest 9 C 0, € R*
and consider the subset Y* = (Y, ..., Y, ..., Y}) of h variables of Y €
R™ assumed to be informative for the parameter 9*, and the projectional
quantile ¢ of Y* at a given T, with u € SP'.  An optimal direction
u* € St for Y* is defined as the vector whose i-th coordinate is

i

ot { Umax,l Zf Y; - Yz*

0 otherwise,

where Upax s the [-th coordinate of the vector

Upax € {arg max q”‘}. (3.33)

ueSh—1
If for example, h = 2, then the optimal direction is

*

u = (0,...,umax71,0,...,O,umaxyg,...,O),

where Umax,1 and Upay 2 are the i-th and j—th coordinate respectively, which
is informative for the covariances between Y; and Y;. The optimal solutions

defined in (3.33) are computed using the Lagrangian function as follows
L(u,A)=q" = A([lul| 1),
by solving
VL (u,\) =0,

where V stands for the gradient. This equation can be solved analytically,

for instance when m = h = 2 for ESD distribution as shown in section
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3.4.2, or numerically.

Let U* be a set of optimal solutions uj and let

* * * !
71,4 T2,u TK,U B
& (@5 LT a.”,¢;‘K) €R
~T,uf,R = m,ulR = TR, U, R ! B
(éﬁ Y RN % eR

A A Ti,ul A T2,ul ATKu}‘( /
@:(@’,@’,“W¢’ € RP,

9 =
~R
@19:

where K is the cardinality of U*, B = Zfil b; and b; is the dimension of
<I>:;“uf for o = 1,2,..., K, then the MMS(@) minimises the square distance
defined in equation (3.5) between & and <i>§ along the optimal directions
U*.

3.4.2 Elliptical Stable distribution

In this Section we consider simulation examples for the ESD distribution
Y ~ ESD,, (a, &,€2) as defined in section 2.2. In order to apply the MMSQ),
we first need to select the quantile-based measures which are informative
for each of the parameters of interest («, &, €2) where the shape parameter
a € (0,2) controls for the tail behaviour of the distribution, while £ € R™
and €2 denote the location parameter and the positive definite m xm scaling
matrix, respectively. Since the quantile-based measures should be infor-
mative for the correspondent parameter, we select for v a measure related
to the kurtosis of the distribution, for the locations the median and for the
elements of the scaling matrix we opt for a measure of dispersion, and all
the measures will be calculated along appropriately chosen directions, as it

will be discussed later in this section. Summarising, for kurtosis, location
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and scale parameters we choose respectively

~q0.95,u — 40.05,u
y=— "
q0.75,u — 40.25u

Mu = qo.5u

Su = qo.75,u — 40.25u;

where u € S™! defines a relevant direction. Next, we need to identify
the optimal directions. To this end we can consider the relevant prop-
erties of the ESD. Specifically, as shown for example by Embrechts et al.
(2005), the ESD is closed under marginalisation, i.e., Y; ~ E58D; (o, &, wii),
for i = 1,2,...,m, where w;; is the i—th element of the main diagonal of
the matrix €. By exploiting the closure with respect to marginalisation,
from definition 27 we conclude that the optimal directions for the shape
parameter «, for the locations &; and for the diagonal elements of the scale
matrix w;;, for i = 1,2,...,m are the canonical directions. It still remains
to consider the optimal directions for the off-diagonal elements of the scale
matrix w;;, with 7,7 = 1,2,...,m and ¢ # j. Again we exploit the clo-
sure with respect to marginalisation. Specifically, let Z;; = (Y;,Y]), then
Zi; ~ ESD, (a, i Qij), where

Wii  Wij
;= (6.8), Q= ( J) :
Wij  Wjj

Moreover, let u € S' and Zijn = WZ;; be the projection of Z;; along u,
then Z;;, ~ £S8Dy (a, u/Eij,u’Qiju), (see Embrechts et al. 2005), from
which we have the following representation of the projected ESD random

variable

Ziju = W&, + /U QjuZ, (3.34)
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where Z ~ £8D; («,0,1). Following Definition 27, in order to find the

optimal directions we need to compute

Upax = argimax un (Z’L]) ’ (335)

uest
where ¢™ (Z;;) is the projectional quantile of Z;;, i.e., the 7-th level quan-

tile of the random variable Z;;,. Exploiting representation (3.34), it holds

Upax = arg max u’ﬁ'ij + u’Qiju, (336)
uest

which is a quadratic optimisation problem that can be solved using the

method of Lagrangian multiplier, as follows

L(u,\) =u'§; +/uQju—A(|[ul| -1). (3.37)

The solution requires to set to zero the gradient of the Lagrangian VL (u, A) =
0, that is

oL _ (w?iul + wiju2) _ 2)\u1 —0
Ouy \/wfzu% + W35 + 2wijug ty
oL w? Uy + wiju

_ (wju2 jt) —2Xus =0
Oy \/wfzu% + W35 + 2wijuy ty
oL

and from the first two equations, we obtain

2 2
up (o7ur 4 wijus) — ug (wiug + wijug) =0
2 2
w2 — w?,
2 2 JJ 2
ul + uguy —— 2 =

wi]-
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By inserting the previous expression for uy into equation (3.38), we solve

for u,

1 w2 —w2. w2 —w2 \ 2 ?
1+Z _“ijj: (“TJJJ> +4

where the sign of u; depends on the sign of w;;. The optimal direction Upax
is then plugged into u* = (0,..., U1 max; - - -, U2max; - - -, 0) as explained in
Definition 27.

To illustrate the effectiveness of the MMSQ we replicate the simulation
study considered in Lombardi and Veredas (2009). Specifically, we consider
two dimensions of the random vector Y, m = 2,5 and, for each dimension,
we consider three values of the shape parameters a = {1.7,1.9,1.95}, while

the location parameter &€ is always set to zero and the scale matrices are

0.5 0.9
Qs = , 3.40
2 (0.9 2 ) (340)

for m = 2, and

025 0.25 04 0
025 05 04 0
@=104 04 1 0 0 |, (3.41)
0 2 255
0 255
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for m = 5. We also consider two different sample sizes n = 500, 2000 and
we fix R = 5. We also consider a simulation example of dimension m = 12,
with n = 500 and R = 5 where the location parameters are equal to zero,
as in previous examples, while the scale matrix €27, is that considered in
Wang (2015) and reported below

0.239 0.117 0 0 0 0 0 0.031 0 0 0 0
0.117 1.554 0 0 0 0 0 0 0 0 0 0
0 0 0.362 0.002 0 0 0 0 0 0 0 0
0 0 0.002 0.199 0.094 0 0 0 0 0 0 0
0 0 0 0.094 0.349 0 0 0 0 0 0 —0.036
0 0 0 0 0 0.295 —0.229 0.002 0 0 0 0
0 0 0 0 0 —0.229 0.715 0 0 0 0 0
0.031 0 0 0 0 0.002 0 0.164 0.112 —0.028 —0.008 0
0 0 0 0 0 0 0 0.112 0.518 —0.193 —0.09 0
0 0 0 0 0 0 0 —0.028 —0.193 0.379 0.167 0
0 0 0 0 0 0 0 —0.008 —0.09 0.167 0.159 0
0 0 0 0 —0.036 0 0 0 0 0 0 0.207
(3.42)
In order to show the results we introduce the following notation: let
s __ S \m
R}, = (pij);; (3.43)
the m—dimensional matrix defined as
s —1ls —1
O =D, 'R, D, (3.44)

where

D,, = diag {V/wy1, .-, VW | - (3.45)

In Table D.1, we report estimation results obtained over 1000 replications
for m = 2, for all the values of a with n = 500, 2000 while in Tables D.2,
D.3, D.4, we report results for m = 5, for the different values of the shape
parameter o = {1.7,1.9,1.95}. Specifically, each table reports the bias
(BIAS), the standard error (SSD) and the empirical coverage probability
(ECP) of the estimated parameters. Our results show that the MMSQ
estimator is always unbiased, indeed the BIAS is always less than 0.25 in

dimension m = 2 and less that 0.15 in dimension m = 5. The SSDs are
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always small, in particular for n = 500 it is always less then 0.5. The
empirical coverages are always in line with their expected values for all but
the diagonal elements of the scale matrix /w;; for i = 1,2,...,m for which
they display lower values than expected, which means that in those cases
the asymptotic standard errors are underestimated.

In Tables D.5, D.6 and D.7 we report the estimation results over 1,000
replications for m = 12 and o = 1.7, in Tables D.8, D.9, D.10 for m = 12
and a = 1.9 and in Tables D.11, D.12, D.13 for m = 12 and o = 1.95. The
columns contains the same informations listed before, that are BIAS, SSD
and ECP. The results show that the bias is always less then 0.2 in absolute
value and the sample standard error is always less then 0.3. The empirical
coverage probability is in general lower then the expected value, due to the
small sample size, and, as observed in the previous examples, the lowest

values correspond to the parameters /w;; for i =1,2,...,12.

3.4.3 Skew Elliptical Stable distribution

In this Section we consider simulation examples for the SESD distribution
Y ~ SESD,, (a, €,2,6) as defined in section 2.3. Specifically, we replicate
the simulation study considered in section 3.4.2. Again, let us start by
defining the quantile-based measures for the parameters of interest. For the
shape parameter «, the locations &; and scale parameters w;;, 1 = 1,2,...,m
we consider the same measures as before, i.e., (Ky, My, S,), while for the

skewness parameters §; we consider the following measure

~ G0.99,u + G0.01,u — 2Go.5,u
u — .
q0.99,u — 40.01,u

Then, as before, we need to identify the optimal directions for each pa-
rameter. Let us start by the locations. Due to the skewness, the median
computed along the canonical direction is not anymore a good measure for
the locations. Therefore, we consider a transformation of the data in or-
der to remove the skewness. By the properties of the skewing mechanism,
Y = -Y ~ SESD,, (a,&,92,—38) independent of Y, and by applying
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Theorem 9, it holds

Y +Y™
V2

which means that the variable Z is symmetric and, up to a constant, it has

Z ~ SESD,, <a, V2,9, o) , (3.46)

the same location parameter of Y. Therefore, we choose, as informative
measure for the locations, the median of the transformed variable Z in equa-
tion (3.46). In order to estimate the remaining parameters, we first consider
that, for Theorem 8, univariate marginal variables Y;, for i = 1,2,....,m
have Skew Elliptical stable distribution, i.e., Y; ~ SESD; («, &, wis, ;).
Therefore, the quantile-based measures for the shape, skewness and for
the diagonal elements of the scale matrix are computed along the canoni-
cal directions.

Now we need to identify the optimal directions for the off-diagonal ele-
ments of the scale matrix. To this end, as before, we consider the bivariate
marginal variables Z;; = (Yi,Yj)' for 1 <i < j < m. From Theorem 8 it
holds Z;; ~ SESD; (v, &5, ij, §i5) where §,; and ;5 are defined as before,
while d;; = (6;, 5j)/. Moreover, let Y;; ~ SESD; (o, &5, 45, —0;;) indepen-
dent of Y;; and let us consider the same construction introduced for the
locations, that is the random variable Z;; = Y”'\J/%Y“ , having distribution
Z;; ~ SESD, (a, \/§£ij, Q;5, O). Since Z;; is a symmetric variable we can
apply the same approach detailed in Section 3.4.2. Therefore, we choose

the optimal direction u* € S such that

u* = arg max \/u/€;;u. (3.47)

ucs!

As in Section 3.4.2 we consider three values of the kurtosis parameter,
a = {1.7,1.9,1.95} and set the locations to zero. We set the skewness
d = (0.9,0.9) and consider the scale matrix in (3.40) for the simulation
study in dimension m = 2. In the second example in dimension m = 5
we set the skewness = (0,0,0,0.9,0.9) and consider the scale matrix in
equation (3.41). The third example is in dimension m = 12 and we set
the skewness & = (0,0,0,6,0,0,0,0,0,0,0.6,0.6,0) and consider the scale
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matrix in equation (3.42).

In Tables D.14 we report the estimation results over 1,000 replications
for m = 2, in Tables D.15, D.16 and D.17 we report the estimation results
for m = 5 and il Tables D.18, D.19, D.20, D.21, D.22 and D.23 we report the
estimation results for m = 12. The columns contains the same informations

listed before, that are BIAS, SSD and ECP.
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o 1.70 1.90 1.95 2.00

Frobenius norm Dimension 12

12.7379 39739  3.0410  2.6243
(126.4986)  (2.7219)  (0.1621)  (0.0034)
12.7135 39622  3.0349  2.6385
(125.8675)  (2.6617) (0.1580)  (0.0033)
13.0401  3.9439  3.0348  2.6347
(147.5606)  (2.6404) (0.1631)  (0.0034)
1.3755 15232 1.5903  1.7177
(0.1930)  (0.2925)  (0.3687)  (0.3078)

Fi—score Dimension 12

0.1555 0.0000 0.0000 0.0000
(0.0673)  (0.0000)  (0.0000)  (0.0000)

0.3360 0.1705 0.1453 0.2634
(0.0701)  (0.0584)  (0.0384)  (0.0800)

02644 0.0526  0.0250  0.0284
(0.1281)  (0.0153)  (0.0075)  (0.0085)

0.9058 0.7489 0.7314 0.6626
5 MMSQ (0.0019)  (0.0120)  (0.0105)  (0.0166)
KL Dimension 12

117517 1.9744  1.6304  2.9770
(248.9867)  (0.5865)  (0.0321)  (0.0262)
11.7324 21747 17942 3.2730
(242.2986)  (0.6994)  (0.0371)  (0.0196)
127734 20221 16785  3.0782
(361.2139)  (0.5995)  (0.0361)  (0.0314)
0.8365  0.9974  1.0868  1.2585
(0.2147)  (0.4067)  (0.5500)  (0.4935)

GLasso
SCAD

Adaptive Lasso

S-MMSQ

GLasso
SCAD

Adaptive Lasso

GLasso
SCAD

Adaptive Lasso

S-MMSQ

Table 3.1: Frobenius norm, F1-Score and Kullbach-Leibler information between the
true scale matrix in equation (3.42) of the Elliptical Stable distribution and the matri-
ces estimated by alternative methods: the Graphical Lasso of Friedman et al. (2008)
(GLasso), the graphical model with SCAD penalty (SCAD), the graphical model with
adaptive Lasso of Fan et al. (2009) (Adaptive Lasso) and the S-MMSQ. The measures
are evaluated over 100 replications, we report the mean and the variances in brackets.
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a 1.70 1.90 1.95 2.00
Frobenius norm Dimension 12

GLasso 80.8238 10.5276 4.5713 2.6035

ass (5.9815%10%)  (1.0072%10%)  (52.0067)  (0.6127%1073)

SCAD 80.7741 10.5748 4.5493 2.6064

(5.9823%10%)  (1.0073%10%)  (51.8079)  (0.6048%1073)

Adantive Lasso 78.2717 10.0179 4.4925 2.6073

apt - (5.4857%10%)  (0.8584%10%)  (47.1308)  (0.6168+1073)

1.2175 1.2196 1.2184 1.2232

S-MMSQ (0.0306) (0.0303)  (0.0293) (0.0309)
F—score Dimension 12

Olasso 0.2572 0.0609 0.0278 0.0000

(0.1077) (0.0446)  (0.0193) (0.0000)

SCAD 0.3702 0.1320 0.1097 0.0750

(0.0946) (0.0593)  (0.0377) (0.0186)

Adaptive Lasso 0.3953 0.1067 0.0457 0.0000

p (0.1765) (0.0628)  (0.0321) (0.0000)

0.8396 0.8398 0.8395 0.8391

S MMSQ (0.0014) (0.0014)  (0.0014) (0.0014)
KL Dimension 12

GLasso 120.2312 10.3107 3.5421 3.0728

. (1.6762%10°)  (1.6178%10%)  (87.2424) (0.0044)

SCAD 120.3742 10.5506 3.5556 3.1799

(1.6758+10°)  (1.6171x10%)  (81.9598) (0.0041)

Adaptive Lasso 119.4011 9.3621 3.6616 3.1236

p "0 (1.6013%10%)  (1.2379%10%)  (95.5155) (0.0040)

0.6607 0.6640 0.6616 0.6656

SMMSQ (0.0246) (0.0241)  (0.0239) (0.0245)

Table 3.2: Frobenius norm, F1-Score and Kullbach—Leibler information between the true
scale matrix in equation (3.42) of the Skew — Elliptical Stable distribution and the ma-
trices estimated by alternative methods: the Graphical Lasso of Friedman et al. (2008)
(GLasso), the graphical model with SCAD penalty (SCAD), the graphical model with
adaptive Lasso of Fan et al. (2009) (Adaptive Lasso) and the S-MMSQ. The measures
are evaluated over 100 replications, we report the mean and the variances in brackets.
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Chapter 4

Sparse Indirect Inference

4.1 Introduction

Indirect inference (IT) methods (Gouriéroux et al. 1993 and Gallant and
Tauchen 1996) are likelihood—free alternatives to maximum likelihood or
moment-based estimation methods for parametric inference which are par-
ticularly valuable when a closed—form expression for the density is not
analytically available. Following the approach of Gouriéroux et al. (1993),

throughout the chapter we consider the following dynamic model

Yo =1 (Y1, Xp, ug, 9) (4.1)
u = ¢ (w1, €,9), Vi=1,2,...,T, (4.2)

where x; are exogenous variables whereas u; and ¢, are latent variables.
Concerning the process defined in equations (4.1)—(4.2), we assume that:
(i) x; is an homogeneous Markov process with transition distribution Fj in-
dependent of ¢; and uy; (7i) the process €, is a white noise whose distribution
Gy is known, and (i) the process {y:, x;} is weekly stationary. We further
assume that the joint density function of the observations {y;, xt}zzl is not
known analytically. The II method replaces the maximum likelihood esti-
mator of the parameter 9 in equations (4.1)-(4.2) with a quasi-maximum

likelihood estimator which relies on an alternative auxiliary model and then

o7
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corrects for misspecification inconsistency by simulating from the original
model. Specifically, let @ (y, X, 3) the auxiliary criterion function, which
depends on the observations {yt,xt}thl and on the auxiliary parameter
B € B C RY such that limy . Qr (y,X,3) = Qu (Fo, Go, %0, 3), a.s.,

where 1 is the true parameter of interest, then

A

B = arg max Q. X,B). (4.3)

Under the additional assumptions that the limit criterion is continuous in
B and has a unique maximum 3y, then the estimator B is consistent for
Bo, that is unknown since it depends on Fj and 19 that are unknown. To
overcome this problem, the II method simulates, for each value of ¥, H
paths ¥ for h = 1,2,..., H and computes the QML estimate 8" for the
auxiliary model in equation (4.3) and subsequently minimises the following

objective function

- (55 57) (0527
Y = arg min <ﬁ i ; G| QB i ;ﬁ , (4.4)
for an appropriately chosen positive-definite square symmetric matrix Q.
Moreover, indirect estimators are consistent and asymptotically Normally
distributed under mild regularity conditions, see Gouriéroux et al. (1993).
Among those assumptions, the most important refer to the bijectivity of

the binding function
b(F,G,9) = arg max ¢ (F,G,9,8), (4.5)

that maps the parameter space of the auxiliary model onto the parameter
space of the true model and the full-column rank of the matrix g—g (Fy, Go, *).

The remaining of this chapter is organised as follows. Section 4.2 intro-
duces the Sparse Indirect Inference (S—II) estimator. Asymptotic theory
of the proposed S-II estimator is presented in Section 4.3, while Section

4.4 details the algorithm. Section 4.5 concludes by applying the method-
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ology to a synthetic dataset from a linear regression model with Stable

innovations.

4.2 Sparse method of indirect inference

In order to achieve sparse estimation of the parameter 1, as for the method
of simulated quantiles considered in the previous chapter, we introduce the
Smoothly Clipped Absolute Deviation (SCAD) ¢;—penalty of Fan and Li
(2001) into the indirect inference objective function. The SCAD function

is a non—convex penalty function defined as

Al if [ < A
p() =19 (el =) - 5y ifA<y<ar  (46)
—/\Q(a;l) if aX < |y,

which corresponds to quadratic spline function with knots at A and aA.
The SCAD penalty is continuously differentiable on (—oc;0) U (0; 00) but
singular at 0 with its derivatives being zero outside the range [—al;a)].
This results in small coefficients being set to zero, a few other coefficients
being shrunk towards zero while retaining the large coefficients as they are.

The S—II estimator minimises the penalised II objective function, as follows

A

9 = arg mgnD (9), (4.7)
where
A TP S A
D(9) = (ﬂ—gZﬁh> Q<5_Ezﬂh) 0 p(dl), (48)
h=1 h=1 @

where  is a positive—definite square symmetric matrix. A similar ap-
proach in a different context has been recently proposed by Blasques and
Duplinskiy (2015).
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4.3 Asymptotic theory

As shown in Fan and Li (2001), the SCAD estimator, with appropriate
choice of the regularisation (tuning) parameter, possesses a sparsity prop-
erty, i.e., it estimates zero components of the true parameter vector exactly
as zero with probability approaching one as sample size increases while still
being consistent for the non—zero components. An immediate consequence
of the sparsity property of the SCAD estimator is the, so called, oracle
property, i.e., the asymptotic distribution of the estimator remains the
same whether or not the correct zero restrictions are imposed in the course
of the SCAD estimation procedure. More specifically, let 9y = (93, 99) be
the true value of the unknown parameter ¥, where 9} € R® is the subset
of non—zero parameters and 9) = 0 € R** and let A = {i: 9; € 9y}, we
consider the definition of oracle estimator that has been formalised in Zou
(2006).

Definition 28. An oracle estimator ’l§orac1e has the following properties:

(i) consistent variable selection:

lim P(A, = A) = 1, (4.9)

n—o0

where A, = { 9, € 19<>rac1e}>

(ii) asymptotic normality:
\/_ <,'9oracle - 1‘9(1)> i> N <O7 E) ) (410)

as n — oo, where 3 is the variance covariance matriz of 9}.

In the remainder the Section we establish the oracle properties of the S—II

estimator. To this end, the following set of assumptions are needed:

(i)

L@

H
&r =T (aQ (v, X, Bo) — Z
h:

5 (y ,X,ﬁ0)> , (4.11)

B
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is asymptotically Normal with mean zero, and asymptotic variance—

covariance matrix given by W = limy_,o, V (&7);

(i)

: 0Q .,
Tlg%ov (ﬁ% (y 7X,,30)) = I, (4.12)
and the limit is independent of the initial values 2%, for h = 1,2,..., H;

(iii)

) )
Jim_ Cov (ﬁ% (", X, Bo) ,ﬁ% ¥, X, 50)) =Ky, (4.13)

and the limit is independent of z{ and 2z} for h # I;

(iv)

plimp_, o, — a(:aQﬂ, (Y. X, 80) = —% (Fo, Go, 90, Bo) = Jo,
(4.14)
and the limit is independent of z;
(v)
lim Q= Q. (4.15)

T—o0

The next Theorem states that the estimator defined in equation (4.7) sat-
isfies the sparsity property.

Theorem 29. Given the SCAD penalty function py (-), for a sequence of
An such that N, — 0, and \/n\, — 00, as n — oo, there exists a local
minimiser O of D (9) in (4.7) with |9 — O] = O, (n_%). Furthermore,
we have

lim P (é“ - 0) ~ 1. (4.16)

n—oo



62 CHAPTER 4. SPARSE INDIRECT INFERENCE
Proof. See Appendix A. n

The following theorem establishes the asymptotic normality of the pe-
nalised SCAD II estimator; we denote by 9! the subvector of 9 that does
not contain zero elements and by 9 the corresponding penalised II esti-

mator.

Theorem 30. Given the SCAD penalty function py (|9;]), for a sequence
An — 0 and \/n)\, — oo as n — oo, then 9 has the following asymptotic

distribution:
NG (191 . 195) 4N (0, (1 n —> W) , (4.17)

as n — oo, where

1

W = (b/ (F07 G07 790)/ Qv (F()a GOa "-90)>_1 Wl (b/ (F07 GOa "-90)/ Qv (F07 G07 1'90))_ ’
and
W, =V (Fy, Go, %) QI (Tg — Ko) I 'Q (Fy, Go, Do), (4.18)

where b (Fy, Gy, 9g) = % is the first derivative of the binding func-
tion b (Fo, Go, 190)

Proof. See Appendix A. ]

4.4 Algorithm

The objective function of the sparse estimator is the sum of a convex func-
tion and a non convex function which complicates the minimisation proce-
dure. Here, we adapt the algorithms proposed by Fan and Li (2001) and
Hunter and Li (2005) to our objective function in order to allow a fast
procedure for the minimisation problem.

The first derivative of the penalty function can be approximated as
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follows

Py (|9
(190 = 4 (9D sen 0 ~ 200, g
when 9; # 0. We use it in the first order Taylor expansion of the penalty

to get

19 ([%iol)

2 _ 92
> 194 (97 — %) , (4.20)

pa ([9i]) = pa (|9i0]) +

for ¥; ~ 9;5. The objective function D in equation (4.7) can be locally

approximated, except for a constant term by
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where Py, = diag{p*”(‘ o:]) 90 € 19(1)}. Then the first order condition

becomes

0 0 LI
e ——Z ﬂ"“ﬂ( %Zﬂso)

— 0, (4.22)

therefore

—I— nf’;m

H 2 H 2
oBh . oph
[l 16190 QO— /6190 (,'9 _ 790) _

H 09 H oY
h=1

H 2h H
1 86190@ (B 1 3 ng) — nP,, Y (4.23)

H — 0 H P
and
H 45 H -1
1 By, 083}, _
’19—’190— Ei 8’19 Qﬁ: 8’19 +TlP)\n

. (4.24)
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The optimal solution can be find iteratively, as follows

H ~ -1
1 a,Bh o oA 1 /6 k
9k _ gk _ | L 9 >Q_ IPym) P
T2 09 "HZ2~ 99

0
8 [ﬁ gf? (ﬁ - Zﬁmm) — P "

h=1

(4.25)
_ / 19(1@)

where Pf\k) = diag {}%<<—5|)5 195“ # 0} and if 19§k+1) ~ 0, then 19§k+1) is
" 191

set equal zero. When the algorithm converges the estimator satisfies the

following equation

0 _
Z Bouy (6 - = Zﬁﬂo) — P, 9 =0, (4.26)

that is the first order condition of the minimisation problem of the SCAD
II.

The algorithm used above and introduced by Fan and Li (2001) is called
local quadratic approximation (LQA). Hunter and Li (2005) showed that
LQA applied to penalised maximum likelihood is an MM algorithm. In-

deed, we define

1P\ (|90
Vot (19:) = s (00 + 52 02— ). azm

since the SCAD penalty is concave it holds
Voo (10:) = pr (19), V]9, (4.28)

and equality holds when |9;| = [9u;|. Then ¥y, (|9;]) majorise py (|9;]),
and it holds

Yo ([9i) < Wiy, ([90i]) = pa (19:]) < pa([Dil) (4.29)
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that is called descendent property. This feature allows us to construct

9| (|’l91|) and then
minimize it to get 9" that satisfies py (]191(-’“1)]) < Pa (\195%)

Let us consider the following

H H
S (9) = (B - %;Bg) Q (B— %;Bg) 0D W0 (1),

(4.30)

an MM algorithm: at each iteration k we construct ¥

then Sy () majorise D (1¥); thus we only need to minimise Sy, (1), that can
be done as explained above.

Hunter and Li (2005) proposed an improved version of LQA for pe-
nalised maximum likelihood, aimed at avoiding to zero out the parameters

too early during the iterative procedure. We present their method applied
to SCAD II as follows

9] 7 ,191
Pae (19:]) = pa (|94]) —e/o p—A;'JF(; ) gy
o1 N L. 1 AL
D, (d) = (ﬁ - ﬁ2ﬂ$> Q (ﬁ - EZ@’;) +n) e (19i])
h=1 h=1 ]
/ ,192
Bt (91) = pae (190 + 2000 (92 92

H H
She (9) = <B - %Zﬁg) Q (B - %ZB@) +ny 00, (193]).
h=1 h=1 7

They proved that as € | 0 the perturbed objective function D, (1) converges

uniformly to the not perturbed one D (¥) and that if 9, is a minimiser of

D, () then any limit point of the sequence {195} is a minimiser of D ().
€l0
This construction allows to define ¥, _w (loij]) even when a,fl;) ~ 0. The
1,5 17 k
authors also provided a way to choose the value of the perturbation e and

suggested the following

_
= in {97 : 9% £ 0 4.31
= gy i {101 9 7 0} (4:31)
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with the following tuning constant 7 = 1075,

4.4.1 Tuning paramenter selection

The SCAD penalty requires the selection of two tuning parameters (a, A).
The first tuning parameter is fixed at a = 3.7 as suggested in Fan and Li
(2001), while the parameter A is selected using K—fold cross validation, in
which the original sample is divided in K subgroups 7}, called folds. The

validation function is
Ko A H
S (s ) a1 Em )
1 h=1

where 9, denotes the parameters estimate on the sample (UKL T) \ To
with A as tuning parameter. Then the optimal value is chosen as \* =
arg miny C'V (\); again the minimisation is performed over a grid of values
for A.

4.4.2 Alternative formulation

The indirect inference estimator can be formulated in several ways by
changing the objective function defined in equation (4.4). Here we con-

sider the formulation that involves the distance between scores, as follows

9 = arg IIllIl ( Z A ) Q (% i@%) ) (4.33)

where Vy = W is the score function of the auxiliary model and
=, dlogp(y|X,9)

9 = o0
the —th simulation path. The asymptotic theory related to this formulation

is the score function of the auxiliary model computed on

is similar to the one presented above. However, from a computational point
of view, this formulation of the objective function of the indirect inference
method is faster because it only requires the computation of the score of

the auxiliary model.
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The sparse version is obtained by adding the SCAD penalty:

19-argm1n< ZV1> Q (%Z@%) +anAn(|19j|)a (4.34)

Now we want to find the iterative algorithm derived for the other formu-
lation. To this end let F () be the objective function in (4.34) and apply

the first order Taylor approximation

o
1 =0V, ~ (1
T2 o0 Q(H@1
H wAA wAA
NP ) AN ) vl
Hﬁ_%)ﬁz o9 QE; 55~ (9= )
+59'Py, (80) 9. (4:35)

where P, (90) = diag{ ; pATﬁlﬁrl‘) Yoi € 191}
In order to solve the minimisation problem in (4.34) we compute the

first derivative of the objective function

a OV, <Ny
=53 e (5 )

H& 09 "H4< 09 (9 =)
n - n —
+ 5P, (90) (9 — o) + 5Py, (90) 9o = 0.
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Therefore, we get

~ —1

L OV, 1 e OV
0()— o4 P, (9

H,1 99 HZs 59 2 an (90)

1=

9 =9, —

xll Havﬂm( Zv >+ P, (%) | . (4.37)
-7 A (Po .
H = oy
Then we obtain the following iterative algorithm
—1
OV o 1 < OV n.—
k k 9k (k) k
o =9 - [ﬁ o g2 b (0F)
i=1 i=1
[ H 6V0(k ( ZV ) L "p (ﬁ(k)) 9"
Ir 9(k) An I
H = o
(4.38)
that when it reaches the convergence, it holds
N\ O
H &I;ik) (H Zvﬂ<k>> + PAn (™) 9" =0, (4.39)
=1

that is the first order conditions of (4.34).

4.5 Sparse linear regression model with Stable

innovations

Let y = (y1,%2,...,yr) be the vector of observations on the scalar response
variable Y, X = (x/,x},...,x%) is the (T x p) matrix of observations on
the p covariates, i.e., X;; = (x1,%;2,...,2,,) and consider the following

regression model

y =ty + X0 +e¢, (4.40)
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where ¢ is the T x 1 vector of unit elements, v € R denotes the parameter
related to the intercept of the model, 8 = (81, s, - - -, 8,) is the px 1 vector
of regression parameters. The innovation terms € = (g1, €9, ..., er) in equa-
tion (4.40) is assumed to follow a Stable distribution, i.e., g; ~ S, (A, 0, 0),
fori=1,2,...,n where S, (),0,0) denotes the a—Stable distribution cen-
tred at zero with characteristic exponent a € (0,2), shape parameter
A € (—1,1) and scale 0 > 0. We further assume that the elements of
the vector of innovations ¢; are independent, i.e., €;_ll &, for any j # k and
they are independent of x;, for [ = 1,2,...,p. As auxiliary distribution
we consider the Student—t regression model defined as in equation (4.40),
with the only difference that the error term follows a Student—t distribution
e ~ T (0,0% v). The metric we consider is the L, distance between the
score of the auxiliary distribution evaluated at the true y and simulated y
data. The next proposition provides the score and the hessian matrix of

the auxiliary Student—t regression model.

Proposition 31. The log-likelithood function of the auxiliary Student-t

regression model is

2 2 2

1 - 2
v+ log ( 1+ lye — pull3 ’
2 o2y

e (ye,7, B, 0,v) =logT’ (V - 1) — 11og (6%) —log (vm) —logT’ (K)

(4.41)

where py = v+ x;8. The score of the auxiliary distribution with respect
to the parameters 0 = (v,8,0,v) is Vy = (V,,Vg,V,,V,), where Vy =
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SSLL VY for 6 = {~,B,0,v} and

(v+1) (g — v — x,8)

o+ [lye — v — ;8|3
(v+1)x; (ye —v —x,0)
v+ |ly — v — X813

1 (w41 |lye—~ —x6]3

VI (y,X)=—— 4.44
t (y ) o +a3y—i—o'Hyt—’y—Xt,6H§ ( )

y 1 v+1 1 (v 1
Vt<y’X>—§¢( 2 >‘§¢(§>——

1 _ I 2
_ élog (1+ lye —~ Xt/6||2>

VI (v, X) = (4.42)

VP (y,X) = (4.43)

o2y

v+1 g —v — %8|
2v o+ |lyy — v — x 8]

(4.45)

where 1 (+) denotes the digamma function. Now we compute the Hessian
matriz of the auziliary univariate Student—t distribution. The Hessian ma-

trix for observation t =1,2,...,T s

AR /RS A v
I A A R G
t o B, 0,0 ov | ( )
VT Vet VT vy

ngy vtﬁ7’/ ngy V;”V
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where the diagonal elements are

oV (y,X)
vy

ov) (y,X)
B

=(v+1)

oVs (y.X) _

do

VY (y, X)
ov

— (v +lye —v = xB13) + 2|y — v — %8I3
(02 + [lye — v — x,8]13)°

—0*v + [lye — v — xiBl13

(020 + [lye — 7 — x,B8|3)°

—xx,0°v + xxillye — v — x; 8|3

(02 + llye =7 = x,B113)°
1 (w+1)Bo®v+llye — v —xBl3) llye — 7 — xiBI3
o? (o3v + ||y —’Y—XtBH%)Z

(v+1)

(v+1) (4.47)

(4.48)

(4.49)

- () -3 () +

i ly: —v —x83
2v (0?v + |lye — v — x.B3)
1 gy =%l
202 (0 + [ly: — v — xiB8113)
v+l |y =y —xBl507
2v (0% + ly — v = xiB3)"

(4.50)

Now we compute the off-diagonal elements with respect to the parameter y:

¥ P2, P 1))

ovi(y.X) _ v+ (0*v —llye =~ /XtﬁzHg) (451)
0B (v + ||y — v — x;8]3)
Y _ _ /

avt (ya X) _ —2VO' (l/ + 1) (yt 7 Xt/B/) — (452)
do (2v + |y — v — x,82)

oVi(y,X) __ y=y=xB o w+Dly—y=xiBl3
v o+ ly =y —xiBl3 (02w + ||y — v — x,8)12)

(4.53)

Now we compute the off-diagonal elements with respect to the parameter
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B:
B Py — v — X
6Vt (y,X) — 9% (V+ 1) X (yt Y Xtﬁ) " (4_54)
Jdo (o2v + ||y — v — x8]3)
ov; (y,X) _x =y —xi8) [lye — v — xiBl3 — UZJ. (4.55)

ov (0% + [ly — v = xB3)°

Now we compute the off-diagonal elements with respect to the parameter o:

OVE (X)) 2 =1 =) (0% + [ = — xBlo)
B o2 (02 + |y — v — x,8]13)°
o) lye — v — xtBl5x; (Y — v — )j?) 4
o (0% + |lye — v — xiB13)
/ _ _ /
I D €k Xf?) — (4.56)
(0% + |lye — v — x1813)
Vi (y.X) _ 1 ye—r—xBl3 v+1)o lye —v — xiBl13
ov oo’v+ |y — v — x8|3 (02v + Hyt—’y—xg,6||§)2’
(4.57)
and the off-diagonal elements with respect to v:
Vi (y.X) =y —xB)x;  (w+1)o®(p—v—x6)x
ap o +lye =y =xiBI3 (0% + |y — v — xi8]13)”
(4.58)
OV (y.X) 1 [y —v— %8I3
do oo+ |y — v —x83
_ I 2

5
(0%v + [lye — v — xi0]3)

4.5.1 Simulation experiment

In Table 4.1, we report the empirical inclusion probabilities of the regression
parameters obtained over 1, 00 replications of the a—Stable regression model
defined in equation (4.40), for two values of a = (1.70,1.95) with n = 250.
The true parameters are defined in the column (Par.) of Table (4.40), while
the scale parameter of the Stable distribution is held fixed at ¢ = 0.05. Our
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Par. True # of zero # of zero Par. True # of zero # of zero

a=170 «o=195 a=170 o=195

vl 0 0 By 0 07500  0.8378
B 1 0 0 Bis 0 08182  0.9459
Bo 2 0 0 Bz 0 07273 0.9189
By 3 0 0 B O 07955  0.9730
By 1 0 0 Bis 0 07273  0.8378
Bs 2 0 0 B O 07727 0.8919
Be 3 0 0 Bz 0 08182  0.9189
B 1 0 0 Bis 0 08636  0.9459
Bs 2 0 0 B 0 08636  1.0000
Bo 3 0 0 Boo O 0.8636  0.9459

B 0 06591  0.8919

Table 4.1: # of zero represents the number of time the corresponding parameter is
estimated as zero evaluated over 1000 replications for the regression parameters (y,3’)
of the a—Stable regression model defined in equation (4.40).

simulation results confirm that the sparse Indirect estimator perform well

in detecting zeros in linear non—-Gaussian regression models.



Chapter 5

Real data application

5.1 Introduction

The aim of this Section is to introduce some interesting real data exam-
ples where the ESD and its skewed extension SESD can be successfully
employed. The availability of a simple and effective likelihood—free method
to deal with parameters estimation in those circumstances where the den-
sity is not analytically amenable gives the chance to overcome traditional
deficiencies of standard approaches, that usually rely on the simplifying as-
sumptions of Gaussian or Student—t distributions, in order to account for
the presence of fat—tailed and skewed data. One of those examples regards
the allocation of wealth among different risky assets, a problem known in
mathematics and financial engineering as portfolio optimisation. The next
Section 5.2 deals with the problem of picking investment opportunities form
a basket of alternative risky assets in order to satisfy some optimality con-
ditions. Optimality criteria trade expected returns off the riskiness profile
of the alternative investment opportunities and deliver portfolios that are
characterised by the best risk—return profile, a strategy that dates back
to the seminal paper of Markowitz (1952). Markowitz (1952) portfolio
optimisation theory relies on the untrustworthy assumptions that either
asset returns be normally distributed or the investors’ utility functions be

quadratic in the portfolio weights. Both assumptions lead to the choice

75
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of the variance as the natural candidate risk measure in an optimisation
framework where investors maximise portfolios expected utilities under the
constraint of matching a fixed level of overall risk measuring the returns un-
certainty. The choice of the variance as measure of the risk associated with
the investments represents one of the main drawbacks of the Markowitz’s
mean-variance methodology that limit its reliability. Indeed, the variance
equally weights under and over performances, leading to optimal invest-
ment portfolios usually outperformed by other portfolios. Moreover, the
first two moments fully describe returns characteristics only within a Gaus-
sian world, whereas most recent empirical works document the inadequacy
of the Normal distribution to capture stylised facts frequently observed in
financial time series, see, e.g., McNeil et al. (2015). Recent financial lit-
erature have provided evidence that skewness and fat-tails strongly char-
acterise the probabilistic behaviuor of stock returns (see, e.g., Kraus and
Litzenberger 1976, Friend and Westerfield 1980, Barone-Adesi 1985). More-
over, the third and forth moments of asset returns play a relevant role also
in the portfolio selection process. To this end, Dittmar (2002) and Scott
and Horvath (1980) found that rational investors often prefer assets with
higher skewness and lower kurtosis and Jondeau and Rockinger (2009) have
reported empirical evidence that the mean—variance criterion may fail to
approximate the constant relative risk aversion expected utility when as-
sets are characterised by highly asymmetric and fat—tailed distributions.
Throughout the chapter, we make three main contributions to the exist-
ing literature on portfolio optimisation. First, we consider the multivariate
Elliptical Stable distribution as data generating process for the assets re-
turns. See also Aas and Haff (2006) and Paolella (2007) for a discussion of
the alternative set of distributions for modelling skewed and heavy—tailed
data. The second contribution concerns the inferential procedure that al-
lows for sparse estimation of the scale matrix of the returns distribution.
The third contribution instead consists to replace the variance by a down-
side risk measure, the Value-at—Risk (VaR), as measure of portfolio uncer-

tainty. The Value-at-Risk at a given confidence level A € (0, 1) measures
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the maximum loss in value of a portfolio with probability (1 — ) over a
predetermined time horizon. The Value—at—Risk can be calculated as the
(1 — A)—quantile of the portfolio distribution. This quantile-based shortfall
risk measure is commonly used and accepted in the financial literature, see,

e.g., Jorion (2006) and references therein.

5.2 Portfolio optimisation

Without claiming to be complete, here we first introduce and formalise
mathematically the portfolio optimisation problem we consider throughout
the section, then we briefly detail how to calculate the risk profile of the
investment portfolio followed by a description of the data employed. We
conclude the section by presenting our major empirical findings. For further
details about portfolio optimisation procedures we refer to the recent books
of Jondeau et al. (2007), Roncalli (2014) and McNeil et al. (2015).

5.2.1 Portfolio optimisation problem

At each time ¢ in the evaluation period, the investor’s portfolio decision is

based on the minimisation of the following loss function

arg ming, —E; (W, Y11) + rps (W)Y ¢41)
(5.1)
s.t. w; > 0, w;l =1,

where Y, € R™ is the vector of returns w; € R™ denotes the vector of
portfolio’s weights at time ¢ held by the investor over the period [t, ¢ + 1),
E; (w;Y:41) and p; (W, Y:41) are the one—step ahead portfolio’s expected
return and risk measure evaluated at time ¢, respectively, and x > 0 is the
investor’s risk aversion parameter. The investor objective function in equa-
tion (5.1) is a weighted average of the portfolio’s one-step ahead expected

return E; (w}; Y1) and the portfolio’s risk measured by the one-step ahead
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predictive risk measure p; (w;Y;1). This specification is close to the one
adopted by Ahn et al. (1999) and Berkelaar and Kouwenberg (2000), see
also Rockafellar and Uryasev (2000) for an alternative nonparametric ap-
proach based on Conditional Value-at-Risk. The two constraints for the
portfolio weights ensure a full investment of the available budget and ex-
clude short selling. Relaxing the constraint on short—selling can be expected
to enhance the opportunities over a long—only active equity portfolio. In
the empirical part, the short selling constraints on the weights w; will be

relaxed giving investors more flexible investment opportunities.

5.2.2 Portfolio risk measure

The portfolio’s risk measure we consider in our empirical application is
the Value-at-Risk, i.e., ps (W) Y1) = —VaR}) (W} Y11). The Value-at—
Risk for a risky asset at a given confidence level A is the (1 — A\) —quantile
of the distribution of the asset returns, and measures the minimum loss
that can occur in the (1 — X)100% of the worst cases, see Jorion (2006).
The Value—at—Risk measure provides useful insights on the probability of
observing large negative payoffs implied by the estimated observation dis-
tribution. More formally, let Z;.; = w,Y,.; be the scalar random variable
that characterises the portfolio’s return at time ¢ + 1, the Value-at—Risk
of Z,,1 at a given confidence level A, VaR;\ (Zi41), is defined as the small-
est number z; € R such that the probability that the portfolio’s return is
less than the threshold zj is not smaller than 1 — A, and it corresponds to

(1 — X)-level quantile of the distribution of Z;,4, i.e.

VaR} (Zi1) = inf {2z : P(Z11 < 20) > 1— A}
=inf{z €R: Fy,, (20) > 1—A}
=F;' (1-)), (5.2)

Zi41
where Fz, ., () is the cdf of Z; 4, FZ?H (-) is the inverse function of Fy, , (-)
provided one exists, and the last equality holds for continuous distributions.
Here, we assume that the risky assets Y; follow the ESD or the SESD dis-
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tribution, so that the closure property of those distributions with respect
to linear combination stated in Theorem 9 is helpful in order to derive
the VaR of the predicted portfolio returns. Moreover, Proposition 2.15
provides an easy way to evaluate the cdf of the SESD involved in equa-
tion (5.2). Specifically, Proposition 2.15 states that the cumulative density
function of the univariate Skew Elliptical distribution can be calculated as
the cumulative density function of a bivariate Elliptical Stable distribution
whose parameters are appropriately modified in order to account for the
skewness parameter of the original distribution. Proposition 2.15 extends
to the Skew Elliptical Stable distribution the result proposed by Azzalini
and Capitanio (2003) for the Skew Student—t distribution. Unfortunately,
even the cdf of the Elliptical Stable distribution is not analytically available
and we have to resort to numerical methods to integrate the latent Stable
factor using the fast Fourier transform, see, Paolella (2007).

Before moving on to the next Section concerning the empirical applica-
tion and results, it is worth mentioning that, in general, the Value—at—Risk
measure is not a coherent risk measure because of the lack of the sub—
additivity property, and, as a consequence, it does not incentive diversifi-
cation, see, e.g., Artzner et al. (1999) and Acerbi and Tasche (2002). The
lack of the sub—additivity property should discourage the use of the VaR in
portfolio allocation problems where diversification is the major concern, in
favour of alternative risk measures such as the Tail Conditional Expecta-
tion, that preserves that property, see, e.g., McNeil et al. (2015). However,
it can easily proven that the VaR is sub—additive for Elliptical distributions.
As concerns the Skew Elliptical Stable distributions the next proposition

states that the the sub—additivity property is satisfied.

Proposition 32. Without loss of generality, let us consider a bivariate

Skew FElliptical Stable distribution with location and scale matrix equal to

& = (61,&) =(0,0), Q=

p . .
, respectively, i.e.,
p 1

Y2 ~ S(C:SDQ (a, 52, QQ, Ag) . (53)
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A sufficient condition for the Skew FElliptical distribution to preserve the
sub—additivity property of the VaR is that

VaR, (Y*) < VaR, (Vi) + VaR, (V). (5.4)

where T € (0,1) is the VaR confidence level and Y* ~ SESD; (o, 0,1, 6*),

* i . AU . J— )\j S
5 = 5<1,+2p>’ Y; ~ SESD; (,0,1,6;), 6 W=t for j = 1,2. If
01 = 09 = 0, then the VaR is sub—additive.

Proof. See Appendix A. m

5.2.3 Empirical application and results

In our empirical application we consider a panel of MSCI European indexes.
The basket consists on weekly returns of seventeen indexes, covering the
period from January 6th, 1995 to November 25th, 2016. All the above men-
tioned return series have been downloaded from Datastream. Details about
indexes’ summary statistics over the whole sample are provided in Table
F.1. Except for Portugal and Greece that experienced a dramatic decline
during the global financial crisis and the subsequent European Sovereign
debt crisis, annualised average returns, over the whole period, are posi-
tive and significant, ranging between 0.28% and 12.604% while annualised
volatilities range between 21.174% and 35.733%. All the indexes are nega-
tively skewed, suggesting that crashes occur more often than booms. Kur-
tosis measures are between 5.742 for Poland and 18.814 for Austria, a range
that is not compatible with the Gaussian assumption. The dispersion of
the Kurtosis measures across sectors suggests that European Stoxx Indexes
are characterised by heterogeneous distribution patterns.The presence of
heavy-tails is confirmed by the 1% weekly VaR. Moreover, the Jarque—
Bera (JB) statistic confirms the departure from normality for all return
series at the 1% level of significance. Regarding temporal dependence, as
expected, we find no systematic evidence of serial correlation in market re-
turns, but squared returns are strongly correlated, which suggests temporal

variation in second moments. Turning to the multivariate characteristics of
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index returns, we notice that the correlation is the largest between France
and Germany (0.890), while correlation is the lowest between Greece and
Poland (0.359). From an unreported analysis, we also note that the cor-
relations between the considered indexes have been much higher over the
2007-2009 financial crisis and much lower during the period of financial sta-
bility prior to 2007. We also note that, on average, correlations changes,
on average, in a range of -31% to 25% between the two periods. Hence, the
naive strategy is likely to overstate the diversification ability of the stock
markets.

In order to perform our empirical analysis we estimated the ESD dis-
tribution using a rolling windows of n = 800 observations for the MMSQ
and of n = 200 for the Sparse-MMSQ. The optimal tuning parameters of
the SCAD penalty are selected by K—fold cross validation as described in
Section 4.4.1, with K = 5. Parameters are re-estimated every four obser-
vations (about one month). As regards the portfolio allocation exercise,
the forecasting horizon is set equal to A = 1, the VaR confidence level is
fixed at A = 0.99 and several levels of investors’ risk aversion are consid-
ered £ = {0.10,0.5,1.0,2.0,5.0,10.0}. For the sake of clarity results with
larger or smaller levels of risk aversion are not reported but they are nearly
indistinguishable from those corresponding to the corresponding nearest
reported value.

Now we turn to the description of our main findings about the empiri-
cal portfolio performance evaluation. To this end, we forecast the one—step
ahead conditional returns’ distribution over the whole sample period. The
sequence of predictive distributions delivered by the competing models, are
then used to build the mean—VaR optimal portfolios with an without the
short selling constraint described in Section 5.2.1. The main objective of
the portfolio application in neither to assess the validity of the ESD as-
sumption for the distribution of the returns against alternatives, nor to
gauge the effectiveness of the portfolio optimisation procedure that con-
sider the Value—at—Risk as risk measure. The aim of this empirical exercise

is instead that of comparing the results we obtain for the two estimation
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Figure 5.1: Mean—VaRg. g5 optimal portfolio results for the ESD distribution over the
out—of-sample period from April 30th, 2010 to the end of the sampling period, November
25, 2016. ESD parameters are estimated by means of the MMSQ. Figures 5.1a and 5.1b
plot the optimal portfolios cumulative returns with and without short selling constraints,
respectively, for different values of the risk aversion parameter k = 0.1 (red), kK = 0.5
(blue), k = 1 (green), Kk = 2 (black), K = 5 (yellow), kK = 10 (olive) in the top panel
and the optimal portfolio weights for x = 10 in the bottom panel. Figures 5.1¢ and
5.1d plot the optimal portfolio returns for £ = 0.1 (red), and £ = 10 (olive), with and
without short selling constraints, respectively. The dotted thinned brown line represent
the equally weighted portfolio cumulative returns which has been added for comparison.

methods, i.e., the MMSQ and the Sparse-MMSQ. To this end, Figures
5.1-5.2 depict the optimal portfolio decisions that are made over the last
part of the sampling period form April 30th, 2010 to the end of the sample
November 25, 2016. Figure 5.1 concerns the case where the model pa-
rameters are estimated by means of the MMSQ while Figure 5.2 presents
results for its sparse counterpart. Let us consider the optimal portfolios
with the short selling constraint, first. The most important evidence that

emerges by inspecting Figures 5.1a-5.2a, reporting the cumulative returns
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Figure 5.2: Mean—VaRg g5 optimal portfolio results for the ESD distribution over the
out—of-sample period from April 30th, 2010 to the end of the sampling period, November
25, 2016. ESD parameters are estimated by means of the Sparse-MMSQ. Figures 5.1a
and 5.1b plot the optimal portfolios cumulative returns with and without short selling
constraints, respectively, for different values of the risk aversion parameter k = 0.1 (red),
k= 0.5 (blue), K =1 (green), kK = 2 (black), K =5 (yellow), k = 10 (olive) in the top
panel and the optimal portfolio weights for k = 10 in the bottom panel. Figures 5.1c and
5.1d plot the optimal portfolio returns for £ = 0.1 (red), and £ = 10 (olive), with and
without short selling constraints, respectively. The dotted thinned brown line represent
the equally weighted portfolio cumulative returns which has been added for comparison.

for the MMSQ and the Sparse-MMSQ), is that, as the risk aversion coef-
ficient k increases from x = 0.1 to kx = 10, cumulative returns increase as
well. This evidence is stronger for the Sparse-MMSQ meaning that the
shrinkage effect induced by the estimation method have a positive impact
on the estimation of the scale matrix and, as a consequence, the portfolio
results greatly benefited from a better estimate of the dependence structure
among assets. The bottom panels of Figures 5.1a—5.2a plot the evolution

over time of the optimal weights. Optimal weighs for the Sparse-MMSQ
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are characterised by a marked heterogenous behaviour while those implied
by the MMSQ are flat and display lower levels of diversification. Figures
5.1c-5.2¢ plot the dynamic evolution of optimal portfolios returns for the
highest x = 10 and the lowest k = 0.1 levels of risk aversion. Although
not so evident, optimal portfolios returns that rely on parameters estimate
from the Sparse-MMSQ have slightly lower variance than those built us-
ing the MMSQ. Indeed, visual inspection of Figures 5.1d-5.2d reveals that,
when no short selling constraints are imposed the variability of optimal
portfolios that rely on Sparse-MMSQ is incomparable lower than the opti-
mal portfolio returns that rely on MMSQ), i.e., 0.34% versus 0.06%. Figure
5.2b concerning cumulative portfolio returns over the whole sample also

confirms previous evidence.
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Proofs of the main results
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Proof. Proposition 1.
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8§50 1x
Performing a simple change of variable, i.e., t = @J—M, we get
¢(1-5'2-15)
400 1 (9*5/971")2 400
i gy = / £) di
/0 \/27r§ (1-6'Q19) V=) vas ¢(®)
¢(1-8'21s)
dQ'x

¢<

:cp(ﬁ), (A2)

where the last equality follows by applying equation (2.10). Substituting
back equation (A.2) into (A.1), we obtain

2 oo d =0 1x A/X
S e %0 h(C)d, A3
Tl AR () TG

which completes the proof. O]

Proof. Lemma 7. The proof is similar to that in Branco and Dey (2001).
Without loss of generality, assume & = 0, then the moment generating

function of the random variable Y is equal to
My (t) =E [et’Y]

2 it |

+oo exp [y'Q ly — 2(t'y }}
_Z/Rd/ 2w>2 Q3

/7, —1
‘0, (A“’ y) b (C) dcdy.

+o00 )\/w—ly

V¢

6a(y.0.c) 0 (XY Y (0 dcay

Noting that

(y —CQt) Q7 (y — (Qt) = yQly + C2t/Qt — 2(ty, (A.4)
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then, after some algebraic manipulations and applying the Leibniz’s rule
for differentiation under the integral sign, the moment generating function

can be written as

Nw—ly
+oo t/Qt @1
wym =2 [ e {GEL [ <d v
0 2 )2 3

(27

xexp{—iw caty e (y - cm)}dydc
z+CQt)

—+00 Ct/Qt} (
—9 xp 4 22
A T nf it
rO—1
xexp{—zg Z}dzd(
Foo t’'Qt VN w IOt
) /O exp{ L }cpl ( \/1+Xw—19w—1}\’> h(C)de (A5)
too Ct'Qt VN Quwt
2 [ e e () O
—+o00 /
P /0 exp {CtQQt } ®, <\/Z<5’wt> h(C)dC, (A.6)

which completes the proof. Equation (A.5) has been obtained by applying
Lemma 5.2 of Azzalini (2013). O

Proof. Theorem 8. FEvaluating the moment generating function of Y in
equation (A.7) at t = (s/,0') gives the moment generating function of Y,

My, (s) = [ M, (Vs) () (A7)

where Mx, (\/Zs) denotes the moment generating function of the Skew
Normal distribution of the marginal vector X; on partitioning X as Y,
and Xy | ¢ ~ SNy (&, 11, A}) with A} defined in equation (2.21), see
Azzalini (2013). m
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Proof. Theorem 9. The moment generating function of the random variable

Z =d + CX is equal to
My (t) = exp {t'd} E [et’@x)}

= 2exp {t'd} /Rd exp {t' (Cx)}

+o0 w1 (x —
< [ baix.e.c) e, (%

0

) h(¢)d¢dx. (A.8)
Noting that

(y—&—CQCt) Q' (y—€-¢(QCt)=(y - &' Q' (y - ¢
+ Ct'CQC't — 2(t'C (y — &),
(A.9)

then, after some algebraic manipulations and applying the Leibniz’s rule
for differentiation under the integral sign, the moment generating function

can be written as

(YCQCt) [ (ATEO)
M(t>—2exp{ (d+Cg) + —}/ /R (2m)2 Q)33

xexp{—éay £ Ot QT (y € <QC't>}dyh<<>d<.
(A.10)

Rearranging terms, and considering the change of variable

u=Q7:(y—£-(QC't),
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we obtain

Mz (t) = 2exp {t’ (d+C¢) +

oo Qzu+CQCt>
S L
]R’i

V<

Ct'CQC't }
2

xexp{ x }dumc)dc
2%{)5
exp {t' d + C¢) + CtICQﬂ}

NQwC'/(t
0 ( \/1+>\’QA>h(OdC

= 2/+Oo exp {t’ (d+C¢) + @} o, (5’&)0'\/&) h(¢) dc,
0
(A.12)

(A.11)

which corresponds to the moment generating function of a SESD of di-
mension k with §; = w,'Cwé, where wy = (Qy ® ]h)% and by applying
equation (2.10) we get the expression for Az in equation (2.25). Equation
(A.11) has been obtained by applying Lemma 5.2 of Azzalini (2013). [

A.2 Chapter 3

Proof. Theorem 13.
(i) The proof of this result can be found in Cramér (1946).

(i) We prove this part in a more general framework. We consider two
confidence levels 71,7 and two random variables Z;, Z5 and com-
pute the asymptotic distribution of the vector of sample quantiles
(g%, ¢™%2). If we choose 71 = T2, Z; = u}Y and Z, = u)Y we get
the result of the theorem.

Under the hypothesis of the theorem, the sample quantiles %! and
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G™?2 admit the Bahadur representation
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where R2 | = o (£). The same holds for the variance of ™% — g™#2,
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Let us consider the covariance.
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Proof. Theorem 19. The function & is assumed to be continuously differ-

entiable, so Delta method applies

- 8‘1919
b ~P —(q — A.14
v + aq (q qﬁ) bl ( )
then
5 0Py .
Var <(I)> ~ Var ( 9 q)
aq’ﬂ ~ 3@19
= C A.15
aql ov (q) aq 1] ( )
where ¢ = (q™™,...,q""<) and qv = (qg'™, ..., qg"™"). O

Proof. Theorem 20. The first order condition of (3.5) is

o0d), 4 &
—Z W (% }-{Z 19> =0, (A.16)

where 19 is a consistent estimate of 9. Let us consider the first order Taylor

expansion around the true parameter 9

From this equation we get

. (0®,  0Bs\ 0By (i 1N
\/5(19—190>N<819W1980> 819‘7"0\/5(‘1’—52%0)’
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as n — o0o. From Theorem 19
SO 1
N <<I> -z Z %O) - N <0, (1 + }—%> Qﬁ) , (A.19)
r=1

as n — 00, and ®j converges to ®». Moreover since 9 is consistent the

matrix Wy converges to Wy. From these results we get

Vr (v (5 0)) = (1+ 1) [ 220 waagw, [ %]

(A.20)

as n — 00, where Hy = %%?Wga%. O

Proof. Theorem 23. We prove this theorem following Fan and Li (2001)
and Gao and Massam (2015). In the following we denote by of; and oy
respectively the zero and non zero off-diagonal elements of the variance
covariance matrix.

Let us consider a ball |9 — 9o|| < Mn~2 for some finite constant M. In
order to prove the result in equation (A.25), let us consider the first order

condition of equation (3.8) and its first order taylor expansion

00(0) 0%}

Wo («1: @ﬂ) v

09 819
0%, a%o 0®)y.
— 619 Wﬁ(q) (1)19) 8’[9/W 8’19 (19—190)+7”LV,

(A.21)

1

where v = (0;p (|oy;|) sgn (0;) ., < j). The first two terms are O, <n_2> :
Regarding the penalisation term, let us first consider the zero off-diagonal

clement o7;. For a given A, the first derivative p) (|oy;]) with respect to
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|oij] is given by

ph, (Joijl) = ¢ @nloull i\ < oyy| < ad, (A.22)
0 if a\, < |0ij|7
and it holds
. ph, (oyl)
1 L -~ =1. A2
|Ui§1|go )\n ( 3)

Then, for a generic a?j, the corresponding element in nv can be written as

P, (loi])

nA,sgn (0;;) 3 = nA,sgn (o;;) . (A.24)
We rewrite (A.21) as follows
99(9) _ A ANV — 0, (n72AY) ) (A.25)
09
A, (loi;1)

Since liminf,, . liminf|, |0 > 0 and \/n)\, — oo, the term nv

An
has asymptotic order higher that O, (n_'z)

1

and dominates the equation

(A.25). This means that the sign of aaQT@ is determined by the sign of
ij

0ij, i.e. for any local minimiser it holds &, ; = 0 with probability 1. Now

consider the case in which o;; is not a zero element, then using the Taylor
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approximation we can calculate the following
- ~ R\’ N ~R N ~ R\’ N ~R
Q(9)) ~ QD) = (& — B, ) Wy, (& &, ) — (&~ 3y) W, (&)
+n Y [pa (lof]) = pa (o))

1<j
~R
N Qajgo Wo, (& - &5, ) (9 90)
R ~R
+ (9~ 90)' |- 85{;7(’ W a§)§° =)
—n Y"1, (lo3]) sen (o) (o3 — o)
1<j
=03, (o) (03— 03)°,
1<j

where p} (|oy;|) stands for the second derivative. For n large enough the

summation term in equation (A.26) is negligible since o;; # 0 and

. / o
Jim py (Joyl) =0

lim 5, (|ovy) = 0. (4.26)
n—oo

The same holds for the fist term. The matrix

~ R ~R
0P 0P
—2 819‘30 9 850, (A.27)

is negative definite and for n large it dominates the other terms, therefore
Q (99) — Q (¥) < 0. This implies that there exist a local minimizer ¥ such
that |9 — 9 = O, (n’%>. O
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Proof. Theorem 24. Let us consider the first order Taylor expansion with

respect to 9§ of the first order condition computed in equation (A.26)

=R
QW)  0d, A
o = 25 I Wy (8- By ) + v
=R =~ R =R
0dy . .n 0dy 0Dy
2 B Wyy (& — @, ) +2 ((w?wﬂo t ) (9" — 0))
+ nvo + nPg (9" — 9;) =0, (A.28)

where v = (0;p (|oyj|)sgn (045) .7 < j) and v is v computed at the true
value of the variance covariance matrix; P = diag {0, p (|oy;]),i < j} and

Py is P computed at the true parameter of the variance covariance matrix.

- ~R
5 (8‘1%90 W, 5@190> (9" — 91) + nv + nP (9" — B})

09y 0 o
~R ~R
0P 0P
2 < Yo ‘Afﬁ(lJ 00) + nPO

~ R
W, (q’ ‘I’ﬂo> Vi o9V 9!

~ ~R
0%, od
2 ( 80‘1’;) Wi ﬁﬁ(’) +nP,
0,

AW/ (ci> _ <i>§0) 4N (0, 7%

8191

-1

x <9 — 9} +

=2

(A.29)

Since vy and Py vanish asymptotically, we apply the same argument of

Theorem 20 to complete the proof. O
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A.3 Chapter 4

Proof. Theorem 29. Let us consider a ball |9 — 9| = O, (n_%> where

m < 0o, and let us compute the first order condition of (4.7)

~ H
0D _ 15985 (é ! ZB,’;) +nv (A.30)
- ‘

where v; = agj (|9;]). Now we consider the taylor expansion
08l 1 - -
ok LICEE yE AN
' i=1
a8} a " 0By
- Z 6’190 H 8’190 (’19 — 190) + nvg (A?)l)
where v,y = ?9%3 (|9;|). From the asymptotic properties of the indirect

inference estimator, it holds that the first two terms are of order O, (n_%>
Looking at the penalisation term, let us first consider the zero elements

Y9 € 9°. For a given A, the first derivative p) (|;]) is given by

An if 9] < An
P, ([0i]) = § @zl i\ < (0] < ah, (A.32)
and it holds
/
U5
lim p—AnAﬂ D _y, (A.33)

Then for a generic 99 € 9° the corresponding element in nv can be written

as

P (19il)
A

n

= n\,sgn (9;) (A.34)
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Then we can write

g—g =n\, (Aﬁlvo -0, (Tf%)‘;l)> , (A.35)

Anuﬁ )

since the liminf, o lim inf g, 0 > 0 and \/n)\, — oo the term nwy

has asymptotic order higher than Op <n 5) and dominates the equation.
This means that the sign of g—g is determined by the sign of ¥;, then for
any local minimizer it holds that J; = 0 with probability one.

Now let us consider the case in which ¥; € 9!, that is ¥; is not a zero

element. Then, by using the taylor approximation, it holds
o1 L N
D (9) - D (9) = (6 - §2ﬁ50> Q (ﬁ - ﬁz;@’;o) -
(o mxa)a(e e
H &7 H &

+ nz (Pa, ([Yi0]) — P, (194])) =

H

2 8619hA
D (ﬂ——Z@%) (9 — o) —

2§~ 9Bay ¢, 2~ DBy

0= g2 5 Oy o (00—
h=1 h=1

—n Zp&n (19:]) sgn (9;) (9; — Gio)

—an (19:]) (9; — 9:0)?, (A.36)

for n >> 0 the last term is negligible because ||® — ¥o|| < Mn~2 and the
same holds for the first term. In the second term there is the following

matrix

H 2 H
2 3 OB, Qﬁ S Py (A.37)
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that is negative definite and for 7" >> 0, it dominates the other terms
therefore D (¥) — D () < 0. This implies that there is a local minimizer
9 such that ||9 — 9|| < Mn~2. O

Proof. 30 Let us consider the second Taylor expansion of the first order

condition of 4.7

] . 7
____Z ﬁﬂog(lg_%Zﬁgo)_}_

(96190
H o9 H e~ 09

[\
m
5
@Dt
>
=]
>
—_

(19—190)+HVO+7LPO(’19—’!90> =0
(A.38)

where vo; = py, ([Yoi]) and Po; = p)\ (|Poi]) sgn (J;). Let us rewrite the

above equation

35190 500
P,
Z H 299 o

o )W

(¥ — V)

_Zaﬁﬁm<

| = |

(A.39)

-1

+ TZPO X

2 & 3B§o§zi d 86?90
H o9 H — 09

[H 3 90; "0 (ﬁ——ZB,%)— 0] (A.40)

Since vg and Py vanish asymptotically the theorem comes from the asymp-

totic theory of indirect inference estimator developed in Gouriéroux et al.
(1993). O
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A.4 Chapter 5

Proof. In general, the VaR is sub—additive if and only if VaR, (Y; + Y3) <
VaR. (Y1) + VaR, (Y2). Then, by applying Proposition (8) and Proposi-
tion (9), we get the marginal distribution of Y; ~ SESD; («, 0,1, ;) with
d; = A for j = 1,2 and the distribution of the sum Y* = Y; + Y ~

V122

" . * __ 01402
SESD; (a,0,2(1 + p),6*) with 6* = 2(1+p)

VaR, (Y*) = \/2(1 + p)VaR, (a, M) (A.41)

2(1+p)
VaR, (Y1) 4+ VaR, (Y2) = VaR. (a,61) + VaR, (o, d2), (A.42)

where VaR; (a, d1) denotes the VaR at confidence level 7 of a standardised
univariate Skew Elliptical distribution with shape parameter § and char-
acteristic exponent . Assume marginals are equal, i.e., 9; = 05 = 4, then,
rearranging previous equations, the sub—additivity property is preserved if

and only if

VaR. (@.9) < NiET (A.43)
Since the SESD is a continuous distribution with strictly increasing cdf,
then VaR, (a,0) = Fx' (1,,6), where Fy' (7,,5) denotes the inverse
of the cdf of a univariate random variable X ~ SESD; («,0,1,4d). Let
Z1 ~ SESD, <a,0, 1, \/‘{%) and Zy ~ SESD; (,0,1,4), then equation
(A.43) becomes

V26 V26
—1 < -1 .
Fy <T,oz,\/m < \/mFZQ (1,0,9), (A.44)
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and after a simple change of variable, we get

T < Fy (ﬂFZ—;(a,é), , V20 ): VITP e (A.45)

oy —F— T,5
VIi+tp Vitp V25

where 775 = Fgz, <FZ_21 (e, 0), \/‘/1%). Observe also that if 7 < 0.5 and

0 > 0, then 7% < 7. This means that if § > 0, then /1 + p7% > V26T

and

VITp 7
VTP T ooy, A.46
\/55 = ( )

To complete the proof it is sufficient to prove that the SESD is well defined

if and only if the matrix
1 6 9
Q=106 1 p|, (A.47)
o p 1

is a proper positive definite correlation matrix. Therefore, 1 — §’Cd > 0
which implies 26?2 < 1 + p. O



Appendix B

SESD parameters initialisation

The parameters of the Skew Elliptical Stable distribution can be initialised
by using the quantile-based measures introduced in Section 3.2.2. In this
appendix we construct such initial estimates by following the same ap-
proach of McCulloch (1986).

Let Y ~ SESD,, (o, &,€2,8), we first assume m = 1, and then we consider
the case m > 2 as an extension. Let us consider the quantile-based measure

for the skewness and kurtosis parameters defined as

~ qo.95 + 90.05 — 2G0.5

vs(a,0) = B.1

( ) q0.95 — 40.05 ( )
d0.95 — 40.05

Vo (@, 0) = —————— (B.2)
qo.75 — q40.25

which only depend on the parameters of the SESD governing the skewness
and the kurtosis of the distribution. In order to initialise the parameters
(cr,0) of the SESD we consider a tabulation of the measure defined in
equations (B.1)—(B.2), over a grid of values of the parameters. Tabulated

values are reported in Tables B.3 and B.4. The empirical counterpart of

103
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equations (B.1)—(B.2) defined as

Do (a, 5) _ ?0.95 - ({0.05 (B.B)
do.75 — qo.25

: Py
D (a,8) = do.95 + qo.05 610.5’ (B.4)

q0.95 — 40.05

are consistent estimators of the corresponding theoretical measures. More-
over, v, (@, §) is a strictly decreasing function of v meaning that it identifies
the kurtosis parameter, while vg (o, d) is strictly increasing in § for each
«, meaning that it identifies the skewness parameter given the information
on a. Therefore, we can invert equations (B.1)-(B.2) in order to express
the parameters of interest as a function of the quantile-based measures, as

follows

a =Yy (Va, Vs) (B.5)
§ = 9 (Va, Us) - (B.6)

Consistent estimates of the parameters of interest can be obtained by con-

sidering the empirical counterparts of equations (B.7)—(B.8), as follows

& = 1 (Va, s) (B.7)
8 =1y (ﬁaa A5) . (B8)

Tabulated values of the parameters of interest a and § over a grid of values
of the corresponding quantile-based measures are reported in tables B.2
and B.1 so that it would be possible to retrieve consistent estimates by
linear interpolation.

Concerning the scale parameter o, we consider the following quantile—

based measure of dispersion

y, = qo.75 — C]o.257 (B.9)
o

which depends on both the kurtosis and the skewness parameters, i.e.,
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vy = ¢3(c,d). Table B.5 tabulates v, over a grid of skewness and shape
parameters («,d). Plugging the previous estimates of the characteris-
tic exponent and asymmetry parameters <d, 5) and the sample quantiles
(Go.25, Go.75), into the empirical counterpart of equation (B.9) we obtain the

initial value of the scale parameter o, i.e. As
do.75 — 61?25‘ (B.10)
03 (@)

As regards the location parameter, an initial estimate is computed as fol-

o=

lows. First, we see that, if
Y ~SESD (o, &, w, 6),
then
Y™ ~SESD (o, &, w, —0),

and the transformation

Y4V

V2

is a symmetric random variable. Therefore, we can consider the usual

7z ~ SESD (a, V2, w, o)

median rescaled by a constant factor as efficient estimator of the location
on the transformed data Z. The variable Z can be constructed by changing
the sign of a bootstrap sample from the original data Y.

Now we consider the case m > 2. From Theorem 8, the marginal

variables Y; have univariate Elliptical Stable distribution, i.e.,
Y, ~ SESD, (a,fuwz‘, 51‘) :

Therefore, the marginals parameters can be estimated using the procedure
detailed before. As concerns the off-diagonal parameters of the scale ma-

trix, they are estimated as follows. From theorem 8, for each couple of
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variables Y;; = (Y;,Y;) it holds
Yij ~ SESD, (06752']'7 Qija 5@']’) )

2
W Wi
! 23 . Now, let
Wiy wj

where §;; = (&,gj)’ and €;; =

Y, ~ SESD (v, &;;, 2y, —0y5)

and construct the transformed random variable
Y +Y
V2o

such that Z;; ~ SESD (a, \/§£ij, Q5. 0). Let us consider the standardised
variables X;; = (X;, X;)" where

Zi; (B.11)

Zi — 2% Z; — V2%

wZZ w]]

: (B.12)

(Xi7Xj> = (

_ _ 1 pii)
then X;; ~ SESD (a, 0, €2, 0) where €2;; = [ '01] . Using the Defini-
Pij

- /
tion 27, it turns out that the optimal direction for p;; is u = (\%, \%) .
Therefore, we project X;; along u and we obtain the variable X,, = u'X;;
such that Xy ~ SESD (, 0,1 + p;j,0), by applying Theorem 9. Now, since
Xy is a univariate random variable we can apply the previous method to

initialise the scale of a univariate SESD. Therefore

v, = do.75 — qo.257 (B.13)
L+ pyj
and by using the consistent estimates computed before we get a initial

estimate of the correlation parameter

~ 4075 — qo.25
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Vo 0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2.7 0.002 0.299 0.544 0.703 0.724 0.746 0.767 0.788 0.812 0.832
2.8 0.001 0.253 0.473 0.656 0.710 0.725 0.740 0.754 0.900 0.900
2.9 0.001 0.223 0.423 0.602 0.706 0.724 0.742 0.759 0.900 0.900
3.0 -0.001 0.200 0.387 0.555 0.699 0.725 0.750 0.775 0.800 0.850
3.2 -0.003 0.167 0.332 0.487 0.623 0.710 0.734 0.759 0.783 0.802
3.4 -0.003 0.155 0.313 0.459 0.593 0.703 0.722 0.741 0.760 0.900
3.6 -0.003 0.145 0.294 0.435 0.566 0.688 0.725 0.753 0.780 0.900
3.8 -0.001 0.137 0.279 0.414 0.543 0.661 0.718 0.746 0.774 0.818
4.0 -0.005 0.130 0.267 0.393 0.520 0.636 0.710 0.732 0.754 0.777
4.2 -0.006 0.123 0.254 0.379 0.500 0.612 0.706 0.735 0.764 0.793
4.4 -0.006 0.123 0.254 0.379 0.500 0.612 0.706 0.735 0.764 0.793
4.6 -0.008 0.118 0.243 0.363 0.478 0.590 0.699 0.725 0.750 0.775
4.8 -0.007 0.112 0.231 0.348 0.459 0.568 0.678 0.721 0.747 0.773
5.0 -0.007 0.112 0.231 0.348 0.459 0.568 0.678 0.721 0.747 0.773
6.0 -0.003 0.106 0.210 0.321 0.427 0.529 0.633 0.712 0.746 0.779
8.0 -0.001 0.092 0.184 0.282 0.380 0.474 0.574 0.675 0.729 0.768
10.0 -0.001 0.088 0.179 0.273 0.365 0.457 0.555 0.655 0.723 0.764
15.0 -0.002 0.075 0.151 0.232 0.319 0.403 0.489 0.585 0.689 0.749
25.0 0.002 0.067 0.136 0.206 0.286 0.362 0.442 0.533 0.638 0.732
35.0 0.000 0.065 0.130 0.195 0.266 0.340 0.417 0.502 0.608 0.719
45.0 0.003 0.060 0.120 0.183 0.252 0.322 0.393 0.475 0.575 0.699

Table B.1: Tabulation of the skewness parameter § as function of the quantile-based
measures vg and v,.

v 0.0 010 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
2.7 1728 1.730 1.742 1.763 1.763 1.763 1.763 1.763 1.727 1.727
2.8 1659 1.664 1.673 1.688 1.703 1.703 1.703 1.703 1.703 1.703
2.9 1606 1.608 1.619 1.636 1.651 1.651 1.651 1.651 1.550 1.550
3.0 1559 1.560 1.566 1.581 1.591 1.605 1.605 1.605 1.605 1.877
3.2 1481 1.482 1.489 1.494 1.512 1.527 1.527 1.527 1.527 1.445
3.4 1418 1419 1425 1.431 1438 1463 1.463 1.463 1.463 1.455
3.6 1364 1.365 1.367 1.377 1.383 1.394 1.406 1.406 1.406 1.349
3.8 1318 1.319 1.320 1.329 1.335 1.345 1356 1.356 1.356 1.168
4.0 1.277 1.277 1.279 1.281 1.292 1.301 1.311 1.311 1.311 1.311
4.2 1.240 1.240 1.242 1.243 1.253 1.261 1.269 1.269 1.269 1.269
4.4 1.206 1.207 1.209 1.210 1.220 1.227 1.235 1.235 1.235 1.235
4.6 1.177 1.177 1178 1.179 1.183 1.188 1.194 1.201 1.201 1.201
4.8 1.149 1.149 1.149 1.150 1.1563 1.158 1.163 1.168 1.168 1.168
5.0 1.125 1.125 1.125 1.126 1.128 1.133 1.138 1.143 1.143 1.143
6.0 1.025 1.024 1.023 1.024 1.024 1.027 1.028 1.030 1.030 1.030
8.0 0.895 0.895 0.894 0.893 0.893 0.891 0.890 0.887 0.884 0.884
10.0 0.815 0.815 0.814 0.812 0.810 0.807 0.804 0.798 0.793 0.793
15.0 0.697 0.697 0.696 0.695 0.692 0.689 0.689 0.684 0.678 0.671
25.0 0.590 0.590 0.590 0.588 0.588 0.584 0.580 0.575 0.567 0.560
35.0 0.535 0.535 0.535 0.535 0.533 0.530 0.525 0.520 0.512 0.505
45.0 0.498 0.498 0.498 0.498 0.496 0.493 0.493 0.489 0.485 0.479

Table B.2: Tabulation of the kurtosis parameter « as function of the quantile-based
measures v5 and V.



108 APPENDIX B. SESD PARAMETERS INITIALISATION

a 0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70
1.95 2475 2.475 2.474 2.475 2477 2480 2483 2492
1.90 2.516 2.515 2.515 2.515 2.519 2.520  2.525  2.539
1.85  2.561 2.561 2.560 2.560 2.564 2.567  2.573  2.590
1.80 2.611 2.613 2.612 2.610 2.620 2.624  2.632  2.651
1.75  2.671 2.672 2.671 2.674 2.680 2.689  2.699  2.722
1.70  2.735 2.739 2.742 2.745 2.754 2,763  2.778  2.806
1.65 2815 2.819 2.823 2.829 2.839 2.853  2.871  2.901
1.60 2912 2.913 2.916 2.922 2.939 2954 2976  3.013
1.55  3.020 3.022 3.026 3.036 3.052 3.072  3.102  3.140
1.50 3.145 3.149 3.155 3.166 3.182 3.207  3.238  3.285
1.45  3.292 3.294 3.303 3.315 3.336 3.359  3.393 3.445
1.40 3.461 3.464 3.472 3.485 3.509 3.532 3.574  3.625
1.35  3.654 3.660 3.667 3.683 3.705 3.729  3.777  3.828
1.30  3.880 3.883 3.892 3.901 3.930 3.961  4.004  4.057
1.25 4.139 4.138 4.150 4.159 4.188 4219 4.264 4313
1.20  4.438 4.440 4.452 4.458 4.480 4.517  4.559  4.610
1.15  4.792 4.791 4.796 4.802 4.823 4.860  4.905  4.943
1.10  5.206 5.205 5.202 5.211 5.225 5.260  5.302  5.331
1.05  5.702 5.695 5.686 5.696 5.703 5.737  5.760  5.783
1.00 6.292 6.288 6.272 6.275 6.282 6.299 6.304 6.314
0.95 7.010 6.993 6.981 6.977 6.973 6.972  6.959  6.949
0.90  7.886 7.876 7.858 7.845 7.818 7792 7.752  7.706
0.85  8.998 8.978 8.949 8.915 8.863 8.811 8731  8.654
0.80 10.414  10.391 10.336  10.265  10.185 10.102 9.950  9.831
0.75 12280 12.246  12.156  12.076  11.948 11.759 11.564 11.366
0.70 14.789  14.730  14.623  14.482  14.271 14.003 13.717 13.406
0.65 18.312 18.215 18107  17.856  17.539 17.154 16.645 16.182
0.60 23.391  23.358  23.153  22.697  22.196 21.583 20.831 20.166
0.55 31.201  31.190  30.795  30.116  29.265 28.298 27.222 26.253
0.50 44.112  44.009 43373  42.034  40.624 39.353 37.532 35.955
0.45 67.257 67.095 65.432 63.380  60.721 58.418 55.649 53.461
0.40 114.237 113.281 110.339 105.497 100.657 95.941 90.804 87.166

Table B.3: Tabulation of the quantile-based measures v, as function of the skewness
parameter ¢ and the kurtosis parameter .



Vs

o
1.95
1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
1.35
1.30
1.25
1.20
1.15
1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40

0.0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.10
0.004
0.010
0.018
0.026
0.033
0.040
0.045
0.049
0.055
0.060
0.065
0.069
0.074
0.078
0.082
0.086
0.090
0.090
0.094
0.098
0.103
0.109
0.114
0.117
0.129
0.133
0.141
0.149
0.153
0.169
0.178
0.197

0.20
0.009
0.020
0.036
0.052
0.067
0.079
0.090
0.100
0.110
0.120
0.129
0.137
0.145
0.152
0.159
0.165
0.174
0.182
0.191
0.198
0.207
0.217
0.223
0.235
0.250
0.263
0.275
0.292
0.309
0.326
0.348
0.383

0.30
0.016
0.033
0.054
0.077
0.100
0.118
0.135
0.152
0.166
0.180
0.191
0.204
0.215
0.224
0.235
0.246
0.258
0.267
0.280
0.292
0.306
0.318
0.329
0.345
0.361
0.378
0.395
0.418
0.447
0.469
0.504
0.545

0.40
0.026
0.048
0.076
0.109
0.138
0.165
0.188
0.207
0.225
0.243
0.260
0.275
0.289
0.305
0.317
0.331
0.346
0.359
0.374
0.389
0.405
0.421
0.438
0.455
0.474
0.497
0.524
0.551
0.580
0.610
0.647
0.692

0.50
0.040
0.068
0.104
0.144
0.180
0.213
0.240
0.266
0.287
0.309
0.328
0.347
0.365
0.383
0.400
0.420
0.437
0.454
0.472
0.490
0.508
0.528
0.546
0.566
0.588
0.613
0.638
0.667
0.698
0.729
0.768
0.806

0.60
0.058
0.093
0.137
0.183
0.225
0.264
0.299
0.328
0.356
0.382
0.405
0.427
0.447
0.468
0.489
0.509
0.529
0.549
0.568
0.586
0.607
0.625
0.645
0.667
0.690
0.715
0.740
0.766
0.793
0.823
0.854
0.884

0.70
0.086
0.128
0.179
0.235
0.286
0.329
0.367
0.401
0.434
0.461
0.487
0.510
0.535
0.557
0.580
0.601
0.620
0.642
0.664
0.685
0.704
0.725
0.746
0.767
0.789
0.810
0.833
0.855
0.877
0.901
0.922
0.942
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Table B.4: Tabulation of the quantile-based measures v5 as function of the skewness
parameter ¢ and the kurtosis parameter .
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v, o

« 0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70
1.95 1.349 1.345 1333 1.311 1.278 1.236 1.183 1.113
1.90 1.351 1.347 1.335 1.313 1.281 1.239 1.186 1.117
1.85 1.353 1.349 1.337 1.316 1.284 1.242 1.189 1.121
1.80 1.356 1.352 1.339 1.318 1.286 1.245 1.192 1.126
1.75 1.358 1.354 1.341 1.320 1.289 1.248 1.196 1.131
1.70 1.361 1.356 1.344 1.323 1.292 1.252 1.202 1.136
1.65 1.363 1.358 1.346 1.325 1.295 1.256 1.206 1.143
1.60 1.365 1.360 1.349 1.329 1.299 1.261 1.213 1.150
1.55 1.367 1.363 1.351 1.332 1.303 1.265 1.218 1.159
1.50 1.370 1.365 1.354 1.335 1.307 1.271 1.227 1.169
1.45 1372 1368 1357 1.338 1.312 1.278 1.235 1.181
1.40 1.375 1.370 1.360 1.343 1.317 1.285 1.244 1.194
1.35 1.377 1373 1.364 1.347 1.324 1.294 1.256 1.208
1.30 1.379 1377 1.367 1.353 1.332 1.304 1.268 1.226
1.25 1.383 1.380 1.372 1.360 1.341 1.315 1.283 1.246
1.20 1.387 1.384 1378 1.367 1.351 1.329 1.302 1.269
1.15 1.391 1.389 1.384 1.376 1.363 1.345 1.323 1.296
1.10 1.397 1.396 1.392 1.386 1.377 1.364 1.347 1.328
1.05 1.403 1.403 1.402 1.399 1.393 1.386 1.376 1.365
1.00 1.411 1.412 1414 1414 1.414 1.412 1.411 1411
0.95 1422 1.424 1.429 1.432 1.438 1444 1.453 1.464
0.90 1.437 1.439 1.446 1.454 1.467 1.482 1.502 1.529
0.85 1.454 1.458 1.467 1.481 1.502 1.530 1.563 1.606
0.80 1477 1.482 1.494 1.515 1.546 1.586 1.638 1.700
0.75 1.505 1.510 1.528 1.557 1.599 1.656 1.728 1.816
0.70 1.540 1.548 1.571 1.610 1.667 1.745 1.840 1.962
0.65 1.583 1.595 1.624 1.675 1.754 1.855 1.986 2.149
0.60 1.641 1.654 1.694 1.763 1.867 2.002 2.174 2.392
0.55 1.715 1.731 1.787 1.880 2.018 2.199 2.424 2.718
0.50 1.813 1.837 1.910 2.038 2.226 2.467 2.776 3.177
0.45 1.944 1.977 2.085 2.259 2519 2.853 3.286 3.842
0.40 2.126 2.176 2.326 2.586 2.957 3.438 4.083 4.896

Table B.5: Tabulation of the quantile-based measures v,, as function of the skewness
parameter ¢ and the kurtosis parameter «.



Appendix C

Numerical evaluation of the

SESD cdf

In this appendix we detail the procedure used to evaluate the cumulative
density function of the Skew Elliptical Stable distribution. From the basic

properties of the characteristic function, we have
ox (t) = / e dFy (z) = / e fx (z) dt, (C.1)

and the density function can be obtained by inverting the characteristic

function

fr (@) = / T ity (1) dt. (C.2)

—00

Therefor, the cumulative density function can be obtained by integrating

che density function

Fy (s) = / Oo fx (@) de = / OO / Ze—%x (t)dtde.  (C.3)

We are going to use these simple formula in order to get an approximation
of the density and cumulative function of the Skew Elliptical Stable Distri-

bution. However this approach is quite general thus it can be adapted to all
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those distribution whose characteristic function is known but whose den-
sity function is not analytically tractable. To this end we use Fast Fourier
Transform (FFT) that we briefly recall below. Let us start by introduc-
ing the Discrete Fourier Transform (DFT). Let g, be a continuous function

such that [*°_|g(t)| < oo, then the function

G(x)= /_00 e " g (t)dt, (C4)

o0

is called the Fourier transform of ¢ (t). The discrete version is given by
=
_ 2mitn
Gn:T;gte ™, n=0,1,...,7—1, (C.5)

where g; = ¢ (t) that can be evaluated by using the inverse discrete Fourier

transform
gi = Gpe T, t=0,1,...,7 —1. (C.6)

The FFT is the DFT computed in a smart way in order to reduce the
computational time. Below we report the main passages that lead to com-

putation of the FFT. Let 2y = e_%, we rewrite the DF'T of g, as follows

T-1 71 71
1 1 1
Gon=m ) 00 =5 g2 (G0 + 5D gon ()" =
T T T
t=0 t=0 t=0
12 () 4
_ on\t ZT on\t _
= T - got (ZT ) + T ; gott1 (ZT ) = Sl + SQ. (C?)

Thus we divided the the series in odd and even indexes. We observe that

z _2mi
ZT — (& T

Zh=e =1, (C.8)

N——
N
\
ml
3
<
I
|
—_
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then if we consider the n + %—th element of the DFT we get

T_4 T
2 2
1 nteINZ 1 g T 20+
G . .r=—= g (z 2) + = E g zp 2
n+§ 2t T 2t+1 T
T t=0 T t=0
. T ( n T> T
_ 2n T
=7 Got (ZT ZT E Got+1 ZT
t=0
,_1 Z_

) =8 — 8. (CY)

:_E 9ot ZTZT

Thus S; and S, have to be computed until % — 1 and this reduces con-
siderably the computational time. We us this result to approximate the
characteristic function, indeed as we have seen before, the characteristic

function is the Fourier transform of the density function. Then

N

-1

ox (s) = / e fx (x) dx = /z e fx (x)dr =y P,  (C.10)

—00

S
I
o

where P, = fx (z,) Az, x + n =+ nAzx and Az = T' Now we multiply
the formula above by e~

T-1 T-1
¢X (S) e—z‘sl ~ 6isacne—islpn _ Z eisxn—lpn _
n=0 n=0

T—1 T-1
eisA:EPn _ Z e27rintpn = g, (Cll)

n=0 n=0
where sAx = % We consider a T-length grid of values for s: s, = %
with ¢ = —|— 1,...,5—1, % As next step we apply the DFT to ¢,

in order to get Pn as follows

1 Titn
:Tthe_zT n=0,1,..., 7T — 1. (C.12)
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Since P, = fx (z,) Az, we easily get the density function. Now we can get
also an approximation of the cumulative distribution function, indeed we

consider the following

—00 l

N N
~ > fx(z) Az =) P, (C.13)
n=0 n=0

where o = [ and zy = x. Finally we can get the quantile by numerically

invert this formula.



Appendix D

Tables of simulated examples

D.1 Elliptical Stable
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n = 500 n = 2000
Par. True BIAS SSD ECP BIAS SSD ECP

a 1.70 -0.0075 0.0996 0.7970 -0.0041 0.0535 0.7650

& 0.00 0.0016 0.0443 0.9380 0.0013 0.0201 0.9500

& 0.00 0.0088 0.0841 0.9440 0.0021 0.0385 0.9590

wip 0.50 0.0112 0.2904 0.6030 -0.0046 0.0605 0.5330

woy  2.00 -0.0409 0.3599 0.6870 -0.0059 0.1439 0.6910

wie 090 -0.1044 0.2841 0.8090 -0.0369 0.1680 0.8280
Par. True BIAS SSD ECP BIAS SSD ECP

a 1.90 -0.0315 0.0876 0.8750 -0.0141 0.0626 0.8760
& 0.00 -0.0003 0.0444 0.9390 0.0010 0.0209 0.9440
& 0.00 0.0029 0.0891 0.9240 0.0005 0.0401 0.9510
wip 0.50 -0.0069 0.2040 0.6480 0.0045 0.4682 0.6120
wo  2.00 -0.0412 0.3563 0.7700 0.0002 0.4357 0.7380
wip 0.90 -0.1862 0.3717 0.7530 -0.1373 0.3110 0.7730
Par. True BIAS SSD ECP BIAS SSD ECP

a 1.95 -0.0628 0.0974 0.8580 -0.0310 0.0586 0.8580
& 0.00 0.0006 0.0436 0.9360 0.0047 0.1060 0.9490
& 0.00 0.0038 0.0862 0.9220 -0.0008 0.0645 0.9520
wyp 0.50 0.0111 0.5107 0.6270 -0.0014 0.2008 0.6310
we  2.00 -0.0688 0.4903 0.7650 -0.0272 0.3358 0.7580
wiz 0.90 -0.2227 0.4907 0.6980 -0.2181 0.4444 0.7190

Table D.1: Bias (BIAS), sample standard deviation (SSD), and empirical coverage prob-
ability (ECP) at the 95% confidence level for the locations & = (£1,&2), scale matrix
Q = {w;;}, with 4,5 = 1,2 and 7 < j and tail parameter a of the bivariate Elliptical
Stable distribution. The results reported above are obtained using 1000 replications for
three different values of oo = {1.70,1.90,1.95}.
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Wiy
Vwy,
Wss
Wyy
Vwss
P12
P13
P14
P15
P23
P24
P25
P34
P35
P45

n = 500 n = 2000
True BIAS SSD ECP BIAS SSD ECP
1.70 -0.0055 0.0613 0.7958 -0.0001 0.0352 0.8006
0.00 -0.0008 0.0281 0.9409 0.0010 0.0470 0.9376
0.00 0.0011 0.0406 0.9479 -0.0001 0.0625 0.9315
0.00 -0.0024 0.0533 0.9550 0.0021 0.0984 0.9406
0.00 -0.0055 0.0785 0.9409 0.0177 0.5072 0.9527
0.00 0.0023 0.1149 0.9389 0.0278 1.0030 0.9436
0.5000 -0.0047 0.0312 0.7688 -0.0015 0.0160 0.8187
0.7071 0.0040 0.0393 0.7678 0.0019 0.0214 0.7795
1.0000 -0.0058 0.0547 0.7247 -0.0033 0.0316 0.7402
1.4142 0.0022 0.0801 0.7337 0.0040 0.0479 0.7422
2.0000 -0.0091 0.1144 0.7047 0.0011 0.0681 0.7382
0.7071 -0.0171 0.1312 0.9650 -0.0080 0.0706 0.9778
0.8000 -0.0490 0.1764 0.9469 -0.0219 0.0983 0.9748
0.00 0.0124 0.1292 0.9269 0.0071 0.0657 0.9275
0.00 0.0178 0.1456 0.8859 0.0085 0.0724 0.8751
0.5657 -0.0167 0.1558 0.9289 0.0010 0.0841 0.9527
0.00 0.0103 0.1168 0.9109 0.0050 0.0708 0.8207
0.00 0.0252 0.1336 0.8749 0.0100 0.0723 0.8258
0.00 0.0101 0.1194 0.9600 0.0031 0.0648 0.9587
0.00 0.0119 0.1194 0.9660 0.0046 0.0619 0.9527
0.9016 -0.1466 0.2975 0.9489 -0.0253 0.0981 0.9778

117

Table D.2: Bias (BIAS), sample standard deviation (SSD), and empirical coverage prob-

ability (ECP) at the 95% confidence level for the locations & = (&1,&a, ...

,&5), scale

matrix @ = {w;;}, with 4,5 = 1,2,...,5 and ¢ < j, the off-diagonale elements p;; of
the matrix R defined in 3.43 and tail parameter « of the Elliptical Stable distribution
in dimension 5. The results reported above are obtained using 1000 replications for

a = 1.70.
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n = 500 n = 2000
Par. True BIAS SSD  ECP  BIAS SSD  ECP
Par. True BIAS SSD ECP BIAS SSD ECP

a 1.90 -0.0387 0.1539 0.9891 -0.0092 0.0571 0.7480

& 0.00  0.0030 0.0920 0.9659 -0.0007 0.0142 0.9540

& 0.00  0.0052 0.0768 0.9628 -0.0028 0.0192 0.9560

& 0.00  0.0123 0.3309 0.9566 -0.0012 0.0275 0.9580

& 0.00  0.0130 0.3594 0.9395 0.0029 0.1348 0.9570

& 0.00 0.0306 0.5551 0.9333 0.0000 0.2171 0.9410
Vw,, 0.5000 -0.0062 0.0297 0.7628 -0.0024 0.0160 0.8150
Wy, 0.7071 -0.0021 0.0375 0.7736 0.0000 0.0180 0.7790
Vwss 1.0000 -0.0063 0.0499 0.7271 -0.0034 0.0249 0.7420
Vw,, 14142 -0.0021 0.0779 0.7876 0.0017 0.0367 0.7520
Vwss 2.0000 -0.0123 0.1070 0.7426 0.0005 0.0523 0.7690
p12 0.7071 -0.0260 0.1174 0.9643 -0.0043 0.0577 0.9890
p1z 0.8000 -0.0751 0.1486 0.9271 -0.0155 0.0703 0.9870
p1a 0.00 0.0123 0.1158 0.9519 0.0056 0.0615 0.9600
p15 0.00 0.0266 0.1506 0.8992 0.0060 0.0669 0.8900
p23 0.5657 -0.0318 0.1193 0.9287 0.0018 0.0631 0.9750
p2a 0.00 0.0116 0.1151 0.9442 0.0010 0.0613 0.8920
pos 0.00  0.0182 0.1184 0.9240 0.0039 0.0634 0.8780
psa 0.00 -0.0013 0.1107 0.9674 0.0014 0.0538 0.9750
pss 0.00 0.0029 0.1103 0.9767 0.0014 0.0579 0.9740
pas 0.9016 -0.1425 0.2389 0.9659 -0.0208 0.0903 0.9950

Table D.3: Bias (BIAS), sample standard deviation (SSD), and empirical coverage prob-
ability (ECP) at the 95% confidence level for the locations & = (£1,&s,...,&5), scale
matrix @ = {w;;}, with 4,5 = 1,2,...,5 and ¢ < j, the off-diagonale elements p;; of
the matrix R defined in 3.43 and tail parameter « of the Elliptical Stable distribution
in dimension 5. The results reported above are obtained using 1000 replications for
a = 1.90.
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Wiy
Vwy,
Wss
Wyy
Vwss
P12
P13
P14
P15
P23
P24
P25
P34
P35
P45

n = 500 n = 2000
True BIAS SSD ECP BIAS SSD ECP
1.95 -0.0662 0.2190 0.9854 -0.0278 0.1222 0.9910
0.00 -0.0011 0.0284 0.9610 -0.0010 0.0140 0.9550
0.00 0.0012 0.0415 0.9463 -0.0029 0.0193 0.9565
0.00 -0.0051 0.0572 0.9382 -0.0019 0.0274 0.9475
0.00 -0.0162 0.2342 0.9431 -0.0025 0.0400 0.9520
0.00 -0.0221 0.4252 0.9496 -0.0094 0.0596 0.9385
0.5000 -0.0040 0.0293 0.7724 -0.0031 0.0136 0.8186
0.7071 0.0004 0.0416 0.7333 -0.0012 0.0184 0.7676
1.0000 -0.0005 0.0516 0.7561 -0.0033 0.0254 0.7481
1.4142 -0.0010 0.0728 0.7577 0.0012 0.0409 0.7271
2.0000 -0.0042 0.1085 0.7236 0.0021 0.0493 0.7661
0.7071 -0.0276 0.1349 0.9496 -0.0043 0.0602 0.9880
0.8000 -0.0783 0.1569 0.9154 -0.0231 0.0670 0.9835
0.00 0.0183 0.1326 0.9463 0.0044 0.0574 0.9550
0.00 0.0226 0.1373 0.8862 -0.0034 0.0548 0.9100
0.5657 -0.0339 0.1248 0.9171 -0.0064 0.0614 0.9805
0.00 0.0146 0.1123 0.9496 0.0019 0.0632 0.9220
0.00 0.0168 0.1233 0.9268 -0.0036 0.0684 0.9280
0.00 0.0068 0.1100 0.9659 -0.0006 0.0507 0.9805
0.00  0.0055 0.1053 0.9707 -0.0078 0.0524 0.9835
0.9016 -0.1245 0.1787 0.9447 -0.0416 0.0724 0.9910
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Table D.4: Bias (BIAS), sample standard deviation (SSD), and empirical coverage prob-

ability (ECP) at the 95% confidence level for the locations & = (&1, &, ..

., &5), scale

matrix @ = {w;;}, with 4,5 = 1,2,...,5 and ¢ < j, the off-diagonale elements p;; of
the matrix R defined in 3.43 and tail parameter « of the Elliptical Stable distribution
in dimension 5. The results reported above are obtained using 1000 replications for

o = 1.95.
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n = 500 n = 2000
Par. True BIAS SSD ECP BIAS SSD ECP

a 1.70 -0.0122 0.0377 0.9970 -0.0039 0.0222 1.0000

& 0.00  0.0024 0.0692 0.8989 -0.0010 0.0180 0.9577

& 0.00 0.0026 0.0771 0.9109 0.0044 0.0476 0.9296

& 0.00 0.0036 0.1834 0.9109 0.0032 0.0211 0.9859

& 0.00 0.0043 0.1726 0.9099 0.0002 0.0200 0.9155

& 0.00  0.0009 0.0584 0.9109 -0.0030 0.0213 0.9718

& 0.00  0.0043 0.0427 0.9149 0.0031 0.0208 0.9577

& 0.00 -0.0066 0.0939 0.9079 -0.0011 0.0311 0.9437

& 0.00 -0.0043 0.1197 0.9179 0.0004 0.0147 0.9859

& 0.00 -0.0057 0.2075 0.9199 -0.0032 0.0354 0.9014

o 0.00 -0.0058 0.0451 0.8969 -0.0038 0.0270 0.9155

&1 0.00  0.0050 0.0270 0.8769 -0.0001 0.0182 0.9296

&2 0.00  0.0052 0.1070 0.8989 0.0008 0.0182 0.9437
Vw,; 0.4889 -0.0135 0.0284 0.5175 -0.0009 0.0140 0.7042
Vw,, 1.2466 -0.0290 0.0607 0.5275 0.0010 0.0370 0.7324
Vws 4 0.6017 -0.0030 0.0330 0.5706 0.0026 0.0177 0.7324
Vw4 04461 -0.0115 0.0258 0.5596 0.0006 0.0125 0.8028
Vws 5 0.5908 -0.0063 0.0323 0.5475 -0.0020 0.0170 0.6761
Vwg 0.5431 -0.0130 0.0283 0.5586 -0.0018 0.0133 0.7887
Vwr; 0.8456 -0.0207 0.0432 0.5135 -0.0055 0.0230 0.6901
Vwgg 04050 -0.0153 0.0236 0.5235 -0.0037 0.0099 0.7606
Vg 0.7197 -0.0170 0.0373 0.4985 -0.0005 0.0207 0.7324
VWi 0.6156 -0.0144 0.0312 0.5305 -0.0023 0.0157 0.8169
Vwypqp 0.3987 -0.0057 0.0243 0.5736 -0.0026 0.0101 0.8169
VWig1e 0.4550 -0.0072 0.0249 0.5886 0.0006 0.0115 0.8451

Table D.5: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for tail parameter «, the locations
€ = (&,6,...,&2) and the scale matrix Q = {w;;}, with 4,5 =1,2,...,12 and i < j
of the 12—dimensional Elliptical Stable simulated experiment discussed in Section 3.4.2,
for a = 1.7 and sample size n = 500.

D.2 Skew Elliptical Stable
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n = 500 n = 2000
Par. True BIAS SSD ECP  BIAS SSD ECP

p12 0.1920 -0.1107 0.1626 0.6907 -0.0511 0.1709 0.8732
p1z 0.00 0.0031 0.0980 0.9009 0.0231 0.1152 0.8451
pra  0.00 0.0271 0.1001 0.7898 -0.0216 0.0856 0.8310
pis 0.00 0.0177 0.1045 0.8739 -0.0006 0.0959 0.8873
pie 0.00 0.0245 0.0955 0.8088 0.0092 0.1122 0.8310
piz 0.00 0.0122 0.1155 0.8969 0.0527 0.2451 0.6197
p1s 0.1566 -0.0141 0.1181 0.8468 -0.0214 0.1040 0.8451
pio 0.00 0.0125 0.1136 0.9049 0.0257 0.1460 0.7606
pri0  0.00 0.0285 0.1128 0.8569 0.0117 0.1741 0.8592
piin 0.00 0.0335 0.1184 0.8328 0.0299 0.1249 0.8310
pri2 0.00 0.0240 0.0947 0.7558 -0.0030 0.0820 0.7606
p23  0.00 -0.0235 0.1109 0.7858 -0.0090 0.1069 0.7606
p24 0.00 -0.0178 0.1282 0.7728 -0.0357 0.1477 0.6761
p25  0.00 -0.0059 0.1137 0.8038 0.0096 0.1473 0.7042
p26  0.00 -0.0207 0.1232 0.7357 0.0050 0.1325 0.7042
p27 0.00 -0.0267 0.1027 0.8408 -0.0035 0.1096 0.7606
p2s  0.00 -0.0057 0.1488 0.7708 -0.0305 0.1532 0.6056
p29 0.00 -0.0179 0.1057 0.8048 0.0042 0.0958 0.8028
p210 0.00 -0.0196 0.1093 0.8208 -0.0003 0.1087 0.6620
p211 0.00 -0.0151 0.1396 0.7528 -0.0327 0.1422 0.6338
p212 0.00 -0.0138 0.1342 0.7578 -0.0181 0.1279 0.7465
psa 0.0075 0.0132 0.1142 0.9129 -0.0292 0.1324 0.8310
pss 0.00 0.0037 0.0841 0.7918 -0.0221 0.0931 0.7183
p3e  0.00 0.0033 0.0962 0.8358 -0.0283 0.1299 0.7606
p37  0.00 -0.0189 0.1030 0.8729 -0.0184 0.2103 0.6479
pss 0.00 0.0218 0.1159 0.9309 -0.0092 0.1372 0.7887
pso 0.00 -0.0092 0.1000 0.8188 0.0279 0.1697 0.7887
p3i0  0.00 0.0111 0.0851 0.7648 0.0064 0.1293 0.6620
p3n 0.00 0.0088 0.1214 0.9219 0.0050 0.1942 0.7465
p312 0.00 0.0078 0.1109 0.9169 0.0217 0.1306 0.8310
pas 03567 -0.1125 0.1247 0.7387 -0.0364 0.0982 0.8451
pae 0.00 0.0332 0.1111 0.8769 0.0014 0.2494 0.9296
paz 0.00 0.0017 0.1188 0.9069 0.0758 0.2544 0.8169
pag 0.00 0.0645 0.1047 0.8288 -0.0049 0.1108 0.8732
pso 0.00 0.0188 0.1213 0.9259 0.0203 0.2027 0.7465
pa10  0.00 0.0388 0.1160 0.9129 0.0370 0.2248 0.8310
pann 0.00 0.0481 0.1080 0.8258 0.0161 0.1380 0.9155
pa12  0.00  0.0215 0.0935 0.8338 0.0019 0.1162 0.7606

Table D.6: Bias (BIAS), sample standard deviation (SSD), and empirical coverage prob-
ability (ECP) at the 95% confidence level for the off-diagonale elements p;; of the matrix
R defined in 3.43 of the 12-dimensional Elliptical Stable simulated experiment discussed
in Section 3.4.2, for « = 1.7 and sample size n = 500.
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n = 500 n = 2000
Par. True BIAS SSD ECP BIAS SSD ECP

pse  0.00 0.0033 0.0968 0.8388 0.0131 0.1406 0.8310
ps7 0.00  -0.0085 0.1079 0.8869 0.0558 0.2875 0.6338
pss  0.00 0.0327 0.1162 0.9510 -0.0063 0.0982 0.8732
pso  0.00 0.0019 0.1008 0.8559 0.0345 0.1175 0.8592
psi0  0.00  0.0115 0.0830 0.7818 0.0160 0.1255 0.8028
ps11 o 0.00  0.0250 0.1201 0.9359 -0.0151 0.1778 0.8873
psi12 -0.1339 0.0810 0.1064 0.8458 0.0038 0.1013 0.8310
pe7 -0.4896 0.1500 0.1010 0.8919 0.2298 0.2295 0.6620
pes  0.0091 0.1500 0.1010 0.5075 0.0128 0.1550 0.8451
peo  0.00 0.0518 0.1183 0.9199 0.0395 0.2633 0.7324
peio 0.00 0.0016 0.1128 0.8949 -0.0026 0.1208 0.8028
pe1n 0.00 0.0141 0.1024 0.8298 0.0130 0.1407 0.9577
pe12  0.00  0.0255 0.1184 0.9299 -0.0029 0.0980 0.8732
prs  0.00 0.0238 0.1043 0.9029 0.0273 0.1519 0.9859
pro  0.00 0.0213 0.1286 0.9760 0.0112 0.1849 0.9437
pri0 0.00  0.0059 0.0933 0.9489 0.0359 0.2611 0.9014
pr11 - 0.00  0.0088 0.0980 0.9590 -0.0110 0.1547 0.9718
pri2  0.00  0.0107 0.1226 0.9760 -0.0053 0.1277 0.9718
pso  0.3843 0.0148 0.1171 0.9700 -0.1328 0.2150 0.8873
psi0 -0.1123 -0.1470 0.1576 0.8268 0.0595 0.1942 0.8732
ps11 -0.0495 0.1179 0.1158 0.9760 0.0792 0.2163 0.8451
psi2 0.00  0.0689 0.1148 0.8849 0.0220 0.1813 0.8310
pPo1o -0.4356 0.1449 0.1112 0.6827 0.2272 0.2493 0.8592
po1 -0.3136 0.1843 0.1120 0.7017 0.1211 0.2324 0.8732
po12  0.00  0.0199 0.1193 0.9600 -0.0071 0.2032 0.8732
pon 0.6803 -0.1749 0.1185 0.8268 -0.2771 0.2994 0.9296
proa2  0.00  0.0542 0.1274 0.9439 0.0185 0.2285 0.9437
pia2 0.00  0.0811 0.1263 0.9299 -0.0152 0.2901 1.0000

Table D.7: Bias (BIAS), sample standard deviation (SSD), and empirical coverage prob-
ability (ECP) at the 95% confidence level for the off-diagonale elements p;; of the matrix
R defined in 3.43, of the 12-dimensional Elliptical Stable simulated experiment discussed
in Section 3.4.2, for a = 1.7 and sample size n = 500.



D.2. SKEW ELLIPTICAL STABLE 123

n = 500 n = 2000
Par. True BIAS SSD ECP BIAS SSD ECP

a 1.90 -0.0347 0.1139 0.9940 -0.0018 0.0239 1.0000
& 000 00002 0.0306 0.9113 -0.0044 0.0187 0.9351
& 000 -0.0031 0.0756 0.9173 -0.0014 0.0496 0.9351
& 0.00 00104 0.0366 0.9002 0.0108 0.0239 0.9091
& 000 00011 0.0272 0.9093 0.0043 0.0186 0.9481
& 000 00007 0.0346 0.9264 0.0014 0.0222 0.9481
& 0.00 00017 0.0329 0.9062 0.0021 0.0219 0.9481
& 000 -0.0048 0.0515 0.9163 -0.0028 0.0328 0.9481
& 0.00 00004 0.0253 0.9022 -0.0017 0.0155 0.9221
& 000 00010 0.0433 0.9123 0.0013 0.0314 0.9351
€o 000 -0.0076 0.0367 0.9062 0.0005 0.0259 0.9221
€1 000 0.0028 0.0245 0.9042 0.0008 0.0168 0.9610
Ve, 000 00021 0.0275 0.9204 -0.0039 0.0173 0.9481
Voy, 04889 -0.0123 0.0259 05323 0.0018 0.0131 0.7792
Viy, 12466 -0.0144 0.0608 0.4980 0.0001 0.0285 0.7662
gy 0.6017 0.0011 0.0309 05756 0.0044 0.0130 0.7662
Vi, 04461 -0.0100 0.0261 0.5423 0.0014 0.0123 0.8052
Vs 0.5908 -0.0064 0.0297 0.5655 -0.0008 0.0141 0.7922
Vg 0.5431 -0.0092 0.0284 0.5454 -0.0003 0.0136 0.7532
V., 0.8456 -0.0117 0.0417 0.5333 -0.0021 0.0262 0.6364
Vigs 04050 -0.0125 0.0233 0.5242 -0.0006 0.0109 0.7662
Vg 0.7197 -0.0158 0.0368 0.4980 0.0024 0.0162 0.8052
Vi 06156 -0.0116 0.0203 0.5323 -0.0011 0.0163 0.7662
Ve 03987 -0.0051 0.0224 0.5675 0.0003 0.0008 0.8442
V@is,s 04550 -0.0053 0.0257 0.5665 0.0002 0.0126 0.7792

Table D.8: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for the tail parameter «, the locations
€ = (&,&,...,612) and the scale matrix @ = {w;;}, with 4,5 =1,2,...,12 and i < j
of the 12—dimensional Elliptical Stable simulated experiment discussed in Section 3.4.2,
for « = 1.9 and sample size n = 500.
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n = 500 n = 2000
Par. True BIAS SSD ECP  BIAS SSD ECP

p12 0.1920 -0.0920 0.1656 0.7631 -0.0167 0.1454 0.8831
p1z  0.00 0.0010 0.1042 0.9032 0.0182 0.1415 0.7662
pra 0.00 0.0316 0.1087 0.7510 -0.0087 0.0864 0.8571
pis  0.00 0.0157 0.1077 0.8831 0.0057 0.1103 0.8312
pie 0.00 0.0151 0.0934 0.8317 0.0048 0.1209 0.7792
pi7 0.00 0.0036 0.1195 0.8599 0.0507 0.1600 0.7403
p1s 0.1566 -0.0112 0.1193 0.8377 -0.0516 0.0924 0.7662
pie 0.00 0.0112 0.1117 0.9113 0.0001 0.1207 0.7792
pr1i0  0.00 0.0189 0.1108 0.8841 -0.0041 0.1632 0.8961
piun 0.00 0.0333 0.1258 0.8216 -0.0069 0.0870 0.9091
pri2 0.00 0.0274 0.0994 0.7782 -0.0004 0.0777 0.8312
p23  0.00 -0.0293 0.1107 0.7782 -0.0438 0.1309 0.7532
p24 0.00 -0.0215 0.1322 0.7500 -0.0038 0.1147 0.7532
p25  0.00 -0.0212 0.1159 0.7742 -0.0138 0.0985 0.7792
p26 0.00 -0.0155 0.1317 0.7298 0.0050 0.1140 0.7273
p27 0.00 -0.0303 0.1011 0.8337 0.0026 0.0766 0.9091
p2s 0.00 -0.0072 0.1498 0.7692 0.0146 0.1239 0.8052
p29 0.00 -0.0242 0.1007 0.8125 0.0054 0.0863 0.8052
p210 0.00 -0.0228 0.1016 0.8034 0.0042 0.1153 0.7662
pa1 - 0.00 -0.0177 0.1428 0.7298 -0.0214 0.1469 0.7662
p212  0.00 -0.0165 0.1351 0.7601 -0.0083 0.1033 0.8182
psa 0.0075 0.0056 0.1162 0.9143 -0.0071 0.0855 0.9351
pss  0.00 0.0043 0.0846 0.8024 -0.0059 0.0732 0.7792
p3e  0.00 -0.0007 0.0985 0.8165 0.0009 0.0830 0.8571
p37 0.00 -0.0237 0.1070 0.8659 0.0452 0.1646 0.7792
pss 0.00 0.0114 0.1236 0.9153 -0.0192 0.0939 0.9091
pso 0.00 -0.0080 0.0991 0.8427 -0.0061 0.0981 0.8182
p310  0.00 0.0091 0.0820 0.8024 0.0086 0.0652 0.9091
p3nn 0.00 0.0038 0.1213 0.9345 -0.0241 0.0951 0.9091
p312 0.00 0.0063 0.1169 0.8972 0.0016 0.0922 0.8831
pas 03567 -0.0935 0.1276 0.7470 -0.0403 0.0873 0.8571
pae 0.00 0.0320 0.1124 0.9093 0.0651 0.2488 0.7792
paz 0.00 -0.0006 0.1221 0.8871 0.0348 0.2381 0.7273
pag  0.00 0.0660 0.1133 0.7984 -0.0122 0.0818 0.9091
pao 0.00 0.0157 0.1223 0.9224 0.0138 0.1548 0.8701
psio  0.00 0.0389 0.1225 0.9143 0.0246 0.1724 0.7922
pann 0.00 0.0602 0.1088 0.8357 -0.0234 0.0917 0.8571
pa12  0.00 0.0328 0.1045 0.8125 0.0051 0.0721 0.8831

Table D.9: Bias (BIAS), sample standard deviation (SSD), and empirical coverage prob-
ability (ECP) at the 95% confidence level for the off-diagonale elements p;; of the matrix
R defined in 3.43 of the 12-dimensional Elliptical Stable simulated experiment discussed
in Section 3.4.2, for « = 1.9 and sample size n = 500.
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Par.

P5.,6
Ps,7
P58
P59
P5,10
Ps5,11
P5,12
Pe,7
P6,8
P6,9
P6,10
P6,11
P6,12
P78
P79
P17,10
P11
P12
P89
P8,10
8,11
8,12
£9,10
9,11
9,12
P10,11
P10,12
P11,12

n = 500 n = 2000
True BIAS SSD ECP BIAS SSD ECP
0.00  0.0036 0.0986 0.8438 -0.0025 0.1236 0.8312
0.00 -0.0076 0.1112 0.8901 0.0199 0.1991 0.7532
0.00  0.0373 0.1272 0.9405 -0.0204 0.1208 0.8701
0.00  0.0065 0.1031 0.8669 0.0381 0.2042 0.7403
0.00  0.0187 0.0854 0.8266 0.0179 0.1157 0.8571
0.00  0.0322 0.1237 0.9355 0.0094 0.0875 0.9481
-0.1339 0.0763 0.1085 0.8468 0.0016 0.0973 0.8571
-0.4896 0.1313 0.0949 0.5948 0.1281 0.1835 0.7013
0.0091 0.0511 0.1225 0.9375 -0.0116 0.1063 0.9610
0.00  0.0117 0.1066 0.9284 0.0111 0.1607 0.8701
0.00  0.0172 0.0967 0.8629 0.0170 0.1836 0.7532
0.00 0.0324 0.1199 0.9315 -0.0168 0.0937 0.9610
0.00  0.0232 0.1083 0.8972 -0.0164 0.1106 0.9351
0.00  0.0152 0.1272 0.9657 0.0249 0.1489 0.9740
0.00 -0.0041 0.0978 0.9677 -0.0002 0.1557 0.9351
0.00  0.0059 0.1051 0.9597 -0.0174 0.1851 0.9091
0.00  0.0119 0.1298 0.9617 -0.0124 0.1221 0.9740
0.00  0.0031 0.1176 0.9677 0.0207 0.1586 0.9221
0.3843 -0.1229 0.1516 0.8619 -0.1415 0.1896 0.8571
-0.1123  0.1254 0.1269 0.8327 0.0303 0.2223 0.8442
-0.0495 0.1255 0.1164 0.7540 0.0506 0.1446 0.8571
0.00  0.0787 0.1233 0.8629 0.0692 0.1981 0.9091
-0.4356  0.1372 0.1027 0.7056 0.1518 0.2232 0.7922
-0.3136  0.1843 0.1157 0.6976 0.0917 0.1724 0.7922
0.00  0.0279 0.1220 0.9466 0.0002 0.1611 0.9351
0.6803 -0.1719 0.1204 0.8317 -0.1981 0.2618 0.9481
0.00  0.0569 0.1296 0.9567 0.0025 0.1785 0.9870
0.00  0.0886 0.1395 0.9365 0.0103 0.2176 0.9740

Table D.10: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the off-diagonale elements p;; of the
matrix R defined in 3.43 of the 12-dimensional Elliptical Stable simulated experiment
discussed in Section 3.4.2, for &« = 1.9 and sample size n = 500.

and empirical coverage
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n = 500 n = 2000
Par. True BIAS SSD ECP BIAS SSD ECP

a 1.95 -0.0805 0.2344 0.9837 0.0461 0.0263 1.0000
& 000 -0.0006 0.0309 0.9000 0.0003 0.0177 0.9730
& 000 -0.0055 0.0763 0.9173 0.0020 0.0491 0.9324
& 0.00 00085 0.0366 0.9153 0.0024 0.0247 0.9595
& 000 -0.0007 0.0267 0.9122 0.0040 0.0193 0.9324
& 000 00006 0.0355 0.9214 0.0005 0.0209 0.9730
& 0.00 00030 0.0328 0.9102 0.0032 0.0217 0.9459
& 000 -0.0054 0.0520 0.9000 -0.0011 0.0361 0.9324
& 0.00 00010 0.0253 0.9061 0.0011 0.0163 0.9595
€ 000 00025 0.0429 09143 0.0014 0.0300 0.9324
£o 000 -0.0059 0.0366 0.9071 -0.0015 0.0265 0.9189
€1 000 00027 00244 0.9041 0.0021 0.0172 0.9324
€ 0.00  0.0003 0.0277 0.9214 -0.0006 0.0194 0.9054
Voy, 04889 -0.0114 0.0259 0.5378 0.0033 0.0137 0.7027
Vioy, 12466 -0.0135 0.0605 0.5408 -0.0018 0.0395 0.5541
Vgs 0.6017 0.0029 0.0320 0.5510 0.0013 0.0138 0.7973
Vi, 04461 -0.0110 0.0247 05408 0.0017 0.0101 0.8514
Vs 0.5908 -0.0054 0.0296 0.5531 -0.0008 0.0169 0.7432
Vg 0.5431 -0.0079 0.0274 0.5439 -0.0018 0.0144 0.6892
V., 0.8456 -0.0108 0.0414 0.5378 -0.0022 0.0222 0.7432
Vigs 04050 -0.0121 0.0230 0.5173 -0.0016 0.0119 0.7703
Vg 0.7197 -0.0159 0.0355 0.4908 0.0003 0.0194 0.7297
Vo 06156 -0.0117 0.0285 0.5367 -0.0014 0.0147 0.7432
Ve 03987 -0.0049 0.0221 0.5806 -0.0014 0.0091 0.8919
Viipys 04550 -0.0045 0.0253 0.5622 0.0003 0.0110 0.8649

Table D.11: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for the tail parameter «, the locations
€ = (&,&,...,612) and the scale matrix @ = {w;;}, with 4,5 =1,2,...,12 and i < j
of the 12—dimensional Elliptical Stable simulated experiment discussed in Section 3.4.2,
for « = 1.95 and sample size n = 500.
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Par.

P12
P1,3
P14
P15
P16
P17
P18
P19
1,10
P1,11
P1,12
P23
P24
P25
2,6
P2,7
P28
P2,9
2,10
P2,11
P2,12
P34
P35
P3,6
3,7
P38
P39
P3,10
P3,11
P3,12
P45
P46
P47
P4,8
P49
4,10
Pa,11
Pa,12

n = 500 n = 2000
True BIAS SSD ECP BIAS SSD ECP
0.1920 -0.0909 0.1710 0.7602 -0.0190 0.1610 0.8784
0.00 -0.0064 0.1089 0.8827 0.0480 0.1898 0.6892
0.00  0.0283 0.1030 0.8031 -0.0245 0.0809 0.8108
0.00  0.0091 0.1067 0.8704 0.0071 0.1175 0.7432
0.00  0.0125 0.0934 0.8531 0.0441 0.1515 0.7027
0.00 0.0014 0.1186 0.8571 0.0241 0.2180 0.5946
0.1566 -0.0229 0.1209 0.8388 -0.0459 0.0872 0.8108
0.00 0.0137 0.1164 0.8888 0.0399 0.1791 0.7973
0.00  0.0219 0.1073 0.8908 -0.0033 0.1594 0.7027
0.00  0.0285 0.1260 0.8408 -0.0125 0.0674 0.9324
0.00  0.0165 0.0968 0.7867 -0.0009 0.0788 0.8243
0.00 -0.0310 0.1141 0.7827 0.0150 0.1124 0.8108
0.00 -0.0061 0.1423 0.7735 -0.0263 0.1328 0.6081
0.00 -0.0125 0.1189 0.7878 0.0019 0.1120 0.7162
0.00 -0.0043 0.1387 0.7347 0.0065 0.1412 0.7432
0.00 -0.0260 0.1069 0.8245 0.0080 0.0930 0.7162
0.00  0.0051 0.1555 0.7643 0.0139 0.1417 0.7297
0.00 -0.0172 0.1097 0.8306 0.0050 0.0936 0.7973
0.00 -0.0172 0.0998 0.8173 0.0162 0.1052 0.8108
0.00 -0.0093 0.1458 0.7612 0.0210 0.1235 0.7568
0.00 -0.0161 0.1356 0.7571 0.0213 0.1211 0.7568
0.0075 -0.0007 0.1175 0.9143 -0.0027 0.0928 0.8919
0.00 -0.0021 0.0824 0.8429 -0.0060 0.0658 0.8784
0.00 -0.0101 0.1002 0.8235 -0.0056 0.0957 0.8243
0.00 -0.0252 0.1098 0.8735 0.0279 0.1355 0.7568
0.00 0.0044 0.1214 0.9276 0.0094 0.0927 0.9324
0.00 -0.0161 0.1033 0.8367 0.0539 0.1940 0.7838
0.00 -0.0013 0.0840 0.7959 0.0011 0.0661 0.7297
0.00 -0.0039 0.1280 0.9000 0.0087 0.1048 0.8378
0.00 -0.0089 0.1174 0.9133 0.0130 0.0889 0.9324
0.3567 -0.1032 0.1305 0.7551 -0.0405 0.0710 0.8243
0.00  0.0330 0.1098 0.9143 0.0138 0.1905 0.7568
0.00  0.0084 0.1264 0.8857 0.0399 0.2155 0.7027
0.00 0.0674 0.1119 0.8245 -0.0204 0.0889 0.9189
0.00  0.0200 0.1215 0.9184 0.0164 0.1944 0.7973
0.00 0.0362 0.1217 0.9173 0.0147 0.1820 0.8243
0.00  0.0627 0.1136 0.8306 -0.0215 0.0803 0.9054
0.00  0.0328 0.0967 0.8408 0.0087 0.0720 0.9189

Table D.12: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the off-diagonale elements p;; of the
matrix R defined in 3.43 of the 12-dimensional Elliptical Stable simulated experiment
discussed in Section 3.4.2, for @ = 1.95 and sample size n = 500.

and empirical coverage
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n = 500 n = 2000
Par. True BIAS SSD ECP BIAS SSD ECP

pse  0.00 0.0007 0.0988 0.8378 0.0052 0.1081 0.8514
ps7 0.00  -0.0110 0.1131 0.8939 0.0444 0.1727 0.7297
pss  0.00 0.0388 0.1291 0.9327 0.0139 0.1192 0.9189
pso  0.00 0.0047 0.1044 0.8541 0.0410 0.1655 0.7568
psi0  0.00  0.0170 0.0880 0.8153 0.0014 0.0820 0.7973
ps11 - 0.00  0.0262 0.1196 0.9378 0.0106 0.1374 0.8649
psi12 -0.1339 0.0783 0.1133 0.8102 0.0321 0.0949 0.8108
pe7r -0.4896 0.1294 0.1007 0.6439 0.1291 0.1880 0.6757
pes  0.0091 0.0481 0.1270 0.9184 -0.0002 0.1228 0.9054
peo  0.00 0.0049 0.1095 0.9245 0.0316 0.2112 0.8108
pe10 0.00  0.0100 0.1017 0.8592 -0.0020 0.1551 0.8108
pei1 0.00  0.0242 0.1199 0.9480 0.0307 0.1140 0.9459
pe12  0.00  0.0135 0.1083 0.9214 -0.0042 0.1346 0.9459
prs  0.00 0.0194 0.1363 0.9724 0.0087 0.1219 0.9865
pro  0.00 0.0016 0.0942 0.9776 -0.0079 0.1735 0.9189
pri0 0.00  0.0096 0.1040 0.9704 0.0230 0.1575 0.9324
pr1n 0.00  0.0178 0.1354 0.9684 0.0134 0.1583 0.9324
pri2 0.00  0.0099 0.1258 0.9735 -0.0087 0.1776 0.9459
pso  0.3843 -0.1212 0.1638 0.8439 -0.1244 0.2053 0.8784
psi0 -0.1123  0.1288 0.1316 0.8510 0.0646 0.1509 0.8649
ps11 -0.0495 0.1280 0.1272 0.7531 0.0498 0.1478 0.8784
psi2  0.00  0.0774 0.1310 0.8735 0.0647 0.2082 0.8514
pPo10 -0.4356 0.1453 0.1283 0.7286 0.1621 0.2234 0.8108
po1 -0.3136 0.1822 0.1273 0.7306 0.0982 0.1659 0.7973
po12  0.00  0.0317 0.1372 0.9582 0.0049 0.1566 0.9324
pon 0.6803 -0.1694 0.1393 0.8367 -0.2226 0.2684 0.9054
proa2  0.00  0.0501 0.1396 0.9673 -0.0127 0.1506 1.0000
piz 0.00  0.0970 0.1546 0.9459 -0.0266 0.2943 1.0000

Table D.13: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for the off-diagonale elements p;; of the
matrix R defined in 3.43 of the 12-dimensional Elliptical Stable simulated experiment
discussed in Section 3.4.2, for &« = 1.95 and sample size n = 500.
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n = 500

n = 2000

Par. True

BIAS

SSD

ECP

BIAS

SSD

ECP

a 1.70
61 0.90
62 0.90
& 0.00
£ 0.00
w1 0.50
wy  2.00
pra 0.90

-0.0134
-0.0192
-0.0207
0.0007
-0.0001
-0.0012
-0.0059
-0.0849

0.0922
0.0534
0.0539
0.0233
0.0478
0.1047
0.4056
0.0944

0.8518
0.8998
0.9061
0.9885
0.9823
0.9238
0.9405
0.9885

-0.0002
-0.0175
-0.0164
0.0003
0.0014
-0.0053
-0.0172
-0.0731

0.0457
0.0263
0.0270
0.0120
0.0229
0.0496
0.2052
0.0630

0.8941
0.8971
0.9114
0.9837
0.9919
0.9521
0.9450
0.9827

Par. True

BIAS

SSD

ECP

BIAS

SSD

ECP

a 1.90
61 0.90
0o 0.90
& 0.00
& 0.00
w1 0.50
we  2.00
p12 0.90

-0.0309
-0.0326
-0.0318
0.0008
0.0009
-0.0200
-0.0585
-0.0758

0.0784
0.0684
0.0627
0.0217
0.0463
0.0938
0.3761
0.0811

0.9399
0.9695
0.9644
0.9868
0.9786
0.9389
0.9450
0.9980

-0.0087
-0.0177
-0.0177
0.0002
0.0014
-0.0110
-0.0431
-0.0491

0.0464
0.0276
0.0288
0.0112
0.0223
0.0511
0.2047
0.0503

0.9537
0.9698
0.9678
0.9839
0.9869
0.9547
0.9497
0.9960

Par. True

BIAS

SSD

ECP

BIAS

SSD

ECP

a 1.95
61 0.90
b2 0.90
& 0.00
& 0.00
wp;  0.50
we  2.00
p12 0.90

-0.0502
-0.0435
-0.0446
0.0006
0.0021
-0.0313
-0.1138
-0.0835

0.0693
0.0779
0.0754
0.0214
0.0457
0.0924
0.3671
0.0893

0.9458
0.9857
0.9847
0.9898
0.9806
0.9387
0.9479
0.9939

-0.0246
-0.0246
-0.0246
0.0001
0.0013
-0.0204
-0.0820
-0.0514

0.0380
0.0274
0.0274
0.0111
0.0221
0.0476
0.1861
0.0485

0.9629
0.9890
0.9809
0.9869
0.9880
0.9639
0.9578
0.9980
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Table D.14: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for the locations & = (£1, &2), scale matrix
Q = {w;;}, with 4,5 = 1,2 and 7 < j, the off-diagonale elements p;; of the matrix R
defined in 3.43, tail parameter o and skewness parameter § = (d1,d2) of the Skew
Elliptical Stable distribution in dimension 2. The results reported above are obtained
using 1000 replications for three values of v = {1.70,1.90,1.95}.
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n = 500 n = 2000
Par. True BIAS SSD ECP  BIAS SSD ECP

a 1.70 -0.0068 0.0690 0.9500 0.0013 0.0320 0.9500
6, 0.00 0.0048 0.0067 0.9400 0.0022 0.0010 0.1100
03 0.00 0.0048 0.0063 0.9500 0.0082 0.0016 0.0100
03 0.00 0.0040 0.0038 0.9100 0.0013 0.0005 0.0600
0, 090 -0.0116 0.1648 0.9700 0.0180 0.0185 0.8100
05 0.90 -0.0179 0.1649 0.9700 0.0167 0.0234 0.9200
& 0.00  0.0016 0.0365 0.9600 0.0032 0.0218 0.9400
& 0.00 -0.0029 0.0534 0.9700 0.0023 0.0286 0.9400
& 0.00 0.0093 0.0757 0.9400 0.0065 0.0393 0.9500
& 0.00 -0.0051 0.0703 0.9700 0.0041 0.0356 0.9500
& 0.00 -0.0059 0.1089 0.9200 -0.0040 0.0618 0.9400
wip 0.2500 -0.0126 0.0259 0.9400 -0.0027 0.0140 0.9800
wey 0.5000 0.0184 0.0596 0.9200 0.0003 0.0261 0.9400
w3z 1.0000 0.0038 0.0998 0.9700 0.0166 0.0538 0.9500
wyq 2.0000 -0.1397 0.3571 0.9300 -0.1571 0.1700 0.8800
wss 4.0000 -0.4342 0.6637 0.9100 -0.1142 0.3980 0.9600

p12 0.7071 -0.0438 0.1336 0.9400 -0.0345 0.1055 0.9100
p13 0.8000 -0.1043 0.1487 0.9200 -0.0173 0.1050 0.9800
p1a 0.00 0.0075 0.0256 0.9300 0.0018 0.0148 0.9400
p1s 0.00 0.0085 0.0445 0.9700 0.0040 0.0170 0.9400
po3 0.5657 -0.0851 0.1680 0.9300 -0.0323 0.1255 0.9700
p2s 0.00 0.0049 0.0306 0.9600 0.0032 0.0154 0.9200
pos  0.00 0.0076 0.0414 0.9300 0.0053 0.0172 0.9600
psa 0.00 0.0047 0.0277 0.9100 0.0022 0.0151 0.9300
pss 0.00 0.0100 0.0332 0.9500 0.0032 0.0151 0.9300
pas 0.9016 -0.0727 0.0785 0.8200 -0.0552 0.0573 0.9300

Table D.15: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for the locations & = (£1,&s,...,&5), scale
matrix @ = {w;;}, with 4,7 =1,2,...,5 and ¢ < j, the off-diagonale elements p;; of the
matrix R defined in 3.43, tail parameter o and skewness parameter § = (91,2, ..., 05)
of the Skew Elliptical Stable distribution in dimension 5. The results reported above
are obtained using 1000 replications for o = 1.70.



D.2. SKEW ELLIPTICAL STABLE

131

n = 500 n = 2000
Par. True BIAS SSD  ECP BIAS SSD ECP
a 1.90 -0.0194 0.0550 0.9100 0.0019 0.0307 0.9700
0 0.00 0.0010 0.0053 0.9400 0.0001 0.0002 0.9500
o 0.00 -0.0014 0.0080 0.9100 0.0004 0.0005 0.9200
03 0.00 0.0007 0.0059 0.9400 0.0001 0.0001 0.9600
04 0.90 -0.1184 0.3072 0.8700 -0.0029 0.0230 0.9400
05 0.90 -0.1307 0.3039 0.8700 -0.0019 0.0248 0.9600
& 0.00 -0.0038 0.0397 0.9500 0.0009 0.0191 0.9700
& 0.00 -0.0047 0.0563 0.9600 0.0040 0.0254 0.9600
& 0.00 -0.0103 0.0771 0.9500 0.0007 0.0374 0.9400
& 0.00 -0.0001 0.0778 0.9500 0.0007 0.0386 0.9400
& 0.00 0.0029 0.1028 0.9200 0.0079 0.0589 0.9300
wy; 0.5000 -0.0068 0.0293 0.9600 -0.0011 0.0156 0.9400
\/(;22 0.7071 0.0002 0.0562 0.9700 0.0029 0.0393 0.9700
wyy 1.0000 0.0657 0.1227 0.9200 -0.0097 0.0601 0.9600
wy, 14142 -0.1053 0.5032 0.8900 -0.0003 0.1924 0.9400
\/(;55 2.0000 -0.4325 0.9533 0.8700 0.1150 0.3819 0.9300
p1z 0.7071 0.0233 0.1612 0.9700 0.0015 0.1263 0.9200
p1s 0.8000 -0.0808 0.1602 0.9000 -0.0439 0.1816 0.9400
pua 0.00 0.0164 0.0521 0.9500 0.0108 0.0373 0.9500
p15  0.00 0.0103 0.0358 0.9400 0.0090 0.0315 0.9300
pe3 0.5657 -0.0445 0.1748 0.9300 -0.0301 0.1313 0.9400
pes 0.00 0.0132 0.0525 0.9500 0.0081 0.0280 0.9200
pos  0.00 0.0113 0.0389 0.9100 0.0107 0.0391 0.9500
psa 0.00 0.0137 0.0502 0.9500 0.0097 0.0389 0.9600
pss  0.00  0.0073 0.0352 0.9200 0.0108 0.0340 0.9400
pas 0.9016 -0.0894 0.0802 0.8300 -0.0394 0.0773 0.9800

Table D.16: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for the locations & = (£1,&s,...,&5), scale
matrix @ = {w;;}, with 4,7 =1,2,...,5 and ¢ < j, the off-diagonale elements p;; of the
matrix R defined in 3.43, tail parameter o and skewness parameter § = (91, d2,...,05)
of the Skew Elliptical Stable distribution in dimension 5. The results reported above
are obtained using 1000 replications for o = 1.90.
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n = 500 n = 2000
Par. True BIAS SSD  ECP BIAS SSD ECP

a 1.95 -0.0569 0.0476 0.8000 -0.0216 0.0229 0.8600
0; 0.00 0.0007 0.0048 0.9000 0.0001 0.0001 0.9100
d, 0.00 -0.0007 0.0066 0.9300 0.0003 0.0009 0.9800
d3 0.00 -0.0000 0.0071 0.9400 -0.0001 0.0013 0.9900
0, 090 -0.1477 0.3327 0.8400 -0.0152 0.0923 0.9900
d5 090 -0.1681 0.3285 0.8400 -0.0172 0.0928 0.9900
& 0.00  0.0013 0.0356 0.9600 -0.0004 0.0197 0.9500
& 0.00 -0.0006 0.0507 0.9400 -0.0036 0.0266 0.9300
& 0.00 0.0121 0.0700 0.9400 0.0016 0.0395 0.9500
& 0.00 -0.0118 0.0733 0.9300 0.0033 0.0333 0.9600
& 0.000 -0.0162 0.1173 0.9400 -0.0040 0.0587 0.9600
wy; 0.5000 -0.0109 0.0259 0.9500 -0.0012 0.0161 0.9400
Vw,, 0.7071 -0.0026 0.0504 0.9500 0.0002 0.0340 0.9600
wyg 1.0000 0.0584 0.1033 0.9300 -0.0244 0.0584 0.9300
w,, 14142 -0.1518 0.5501 0.8800 -0.0699 0.2097 0.9600
Vwgs 2.0000 -0.4465 1.0475 0.8500 -0.0296 0.3965 0.9800
p12 07071 -0.0120 0.1683 0.9800 -0.0147 0.1015 0.9400
p1z 0.8000 -0.0961 0.1402 0.9100 -0.0058 0.1633 0.9700
p1a 0.00 0.0051 0.0364 0.9400 0.0081 0.0330 0.9500
p1s 0.00 0.0178 0.0601 0.9500 0.0095 0.0295 0.9500
pa3 0.5657 -0.0742 0.1622 0.9300 -0.0153 0.1309 0.9400
p2a 0.00 0.0062 0.0436 0.9400 0.0070 0.0329 0.9600
p2s 0.00 0.0177 0.0604 0.9500 0.0122 0.0317 0.9300
psa 0.00 0.0022 0.0354 0.9400 0.0059 0.0317 0.9500
pss 0.00 0.0129 0.0543 0.9700 0.0075 0.0253 0.9400
pas 0.9016 -0.0984 0.0807 0.8400 -0.0564 0.0773 0.9900

Table D.17: Bias (BIAS), sample standard deviation (SSD), and empirical coverage
probability (ECP) at the 95% confidence level for the locations & = (£1,&s,...,&5), scale
matrix @ = {w;;}, with 4,7 =1,2,...,5 and ¢ < j, the off-diagonale elements p;; of the
matrix R defined in 3.43, tail parameter o and skewness parameter § = (91, d2,...,05)
of the Skew Elliptical Stable distribution in dimension 5. The results reported above
are obtained using 1000 replications for o = 1.95.
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n = 500 n = 2000

Par. True BIAS SSD ECP BIAS SSD ECP
a 1.70 -0.0159 0.0503 0.9500 -0.0060 0.0214 0.9600

6; 0.00 0.0067 0.0582 0.9900 0.0001 0.0001 0.8200

d2 0.00 0.0073 0.0658 0.9900 0.0005 0.0009 0.9900

03 0.60 -0.2108 0.3134 0.9900 -0.1617 0.2923 0.7000

6, 0.00 0.0189 0.1030 0.9700 0.0002 0.0004 0.9900

05 0.00 0.0109 0.0713 0.9800 0.0003 0.0003 0.9500

6 0.00 0.0122 0.0818 0.9800 0.0002 0.0004 0.9900

67 0.00 0.0010 0.0028 0.9600 0.0002 0.0001 0.4600

s 0.00 0.0144 0.0962 0.9800 0.0001 0.0001 0.8600

d9 0.00 0.0008 0.0035 0.9700 0.0002 0.0006 0.9800

010 0.60 -0.0610 0.2530 0.8300 -0.0957 0.2707 0.7900
611 0.60 -0.1717 0.3088 1.0000 -0.0913 0.2922 0.7600
012 0.00 0.0072 0.0636 0.9900 0.0002 0.0003 0.9900

& 0.00 -0.0003 0.0380 0.9700 -0.0037 0.0195 0.9600

& 0.00  0.0003 0.1024 0.9400 -0.0017 0.0494 0.9200

& 0.00 -0.0023 0.0440 0.9600 0.0033 0.0226 0.9300

& 0.00 0.0036 0.0331 0.9400 0.0038 0.0193 0.9700

& 0.00 -0.0022 0.0466 0.9400 -0.0008 0.0253 0.9700

& 0.00 0.0023 0.0442 0.9200 0.0005 0.0214 0.9400

& 0.00 -0.0017 0.0645 0.9200 0.0065 0.0358 0.9500

& 0.00 -0.0020 0.0312 0.9400 -0.0029 0.0145 0.9300
& 0.00 -0.0110 0.0534 0.9500 -0.0005 0.0325 0.9500
& 0.00 0.0009 0.0411 0.9600 -0.0018 0.0256 0.9500
&1 0.00  0.0018 0.0304 0.9100 -0.0024 0.0138 0.9700
&2 0.00 0.0060 0.0364 0.9400 0.0018 0.0177 0.9400
\/EH 0.2390 0.0118 0.0258 0.9500 0.0004 0.0132 0.9600
\/5212 1.5540 0.0038 0.1600 0.9600 -0.0398 0.0835 0.9600
\/E35 0.3620 -0.0234 0.0700 0.9700 -0.0184 0.0470 0.9500
\/5414 0.1990 0.0014 0.0233 0.9400 -0.0031 0.0106 0.9700
\/5515 0.3490 -0.0132 0.0350 0.9200 0.0102 0.0187 0.9200
\/5616 0.2950 -0.0017 0.0304 0.9600 0.0030 0.0161 0.9400
\/5717 0.7150 0.0281 0.0738 0.9300 -0.0008 0.0361 0.9400
\/5818 0.1640 0.0113 0.0199 0.9400 -0.0011 0.0093 0.9500
\/5919 0.5180 0.0015 0.0559 0.9700 0.0058 0.0307 0.9500
\/“710,10 0.3790 0.0145 0.0800 0.9300 -0.0041 0.0506 0.9500
Wiy 0.1590 -0.0084 0.0276 0.9500 0.0003 0.0211 0.9800
\/512712 0.2070 0.0096 0.0257 0.9600 -0.0045 0.0116 0.9200
p12 0.1920 -0.0266 0.2149 0.9400 0.0453 0.1629 0.9300
p1z 0.00  0.0079 0.1375 0.9400 0.0172 0.1068 0.9300
pia  0.00 -0.0517 0.1815 0.9000 0.0004 0.0995 0.9500
pis 0.00  0.0116 0.1596 0.9000 -0.0335 0.1749 0.9600
pe  0.00 0.0421 0.1613 0.9400 -0.0148 0.1045 0.9600
pirz 0.00 -0.0649 0.1821 0.8900 0.0241 0.2593 0.9400
prs 0.1566 -0.0539 0.1670 0.9400 0.0049 0.1011 0.9800
pro 0.00 -0.0406 0.2244 0.9200 0.0009 0.2168 0.9300
prao 0.00  0.0376 0.1915 0.9100 0.0014 0.1933 0.9600
pinn o 0.00 -0.0382 0.2085 0.9500 -0.0218 0.1196 0.9500
pr12 0.00 -0.0246 0.1994 0.9200 -0.0132 0.0851 0.9500

Table D.18: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the locations € = (£, &, . . ., £12), scale
matrix Q@ = {w;;}, with ¢, =1,2,...,12 and 7 < j, the off-diagonale elements p;; of the
matrix R defined in 3.43, tail parameter « and skewness parameters § = (91, da, ..., 012)
of the Skew Elliptical Stable distribution in dimension 12. The results reported above
are obtained using 1000 replications for o = 1.70.

and empirical coverage
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Par.

P23
P24
P25
P26
P27
P28
P2,9
2,10
P2,11
2,12
P34
P35
P36
P37
P38
P39
P3,10
3,11
3,12
Pas
P46
Pa7
P48
P49
4,10
Pa,11
P4,12
P56
P57
P58
P59
P5,10
Ps5,11
P5,12
Pe,7
P68
P6,9
£6,10
P6,11
P6,12
P78
P79
P7,10
P11
P7,12
8,9
08,10
8,11
P8,12
09,10
P9,11
9,12
P10,11
P10,12
P11,12

n = 500 n = 2000
True BIAS SSD ECP BIAS SSD ECP
0.00  -0.0105 0.1795 0.9100 0.0234 0.1599 0.9400
0.00 -0.0169 0.1946 0.9100 0.0542 0.1462 0.9300
0.00  0.0007 0.1957 0.9100 0.0419 0.1444 0.9300
0.00  -0.0165 0.1929 0.9300 0.0286 0.1115 0.9500
0.00 -0.0172 0.1815 0.9200 0.0152 0.1297 0.9400
0.00  0.0390 0.2026 0.9400 0.0600 0.1269 0.9100
0.00  0.0147 0.1834 0.9100 0.0170 0.1057 0.9400
0.00  0.0419 0.1403 0.9200 0.0468 0.0969 0.9000
0.00 -0.0288 0.2023 0.9200 0.0317 0.1141 0.9500
0.00  0.0354 0.1900 0.9400 0.0044 0.1443 0.9400
0.0075 -0.0010 0.1670 0.9100 0.0025 0.1236 0.9400
0.00 -0.0274 0.1688 0.9000 0.0156 0.1066 0.9100
0.00 -0.0237 0.1640 0.9300 0.0101 0.1124 0.9500
0.00  0.0024 0.1827 0.9400 -0.0398 0.2298 0.9500
0.00  -0.0050 0.1748 0.9200 0.0386 0.1506 0.9400
0.00  0.0180 0.1440 0.9000 0.0320 0.1783 0.9200
0.00 -0.0318 0.1876 0.9300 -0.0503 0.1701 0.9700
0.00 -0.0718 0.1811 0.9400 -0.0172 0.2102 0.9600
0.00  0.0207 0.1546 0.9400 0.0219 0.1212 0.9500
0.3567 -0.1032 0.1520 0.9300 -0.0624 0.0994 0.9200
0.00  0.0196 0.1824 0.9300 0.0531 0.1325 0.9500
0.00  -0.0489 0.1873 0.9400 -0.0270 0.3218 0.8900
0.00  0.0531 0.1754 0.9200 0.0233 0.2051 0.9400
0.00 -0.0043 0.1681 0.9600 -0.0077 0.2506 0.9100
0.00  0.0482 0.1740 0.9200 0.0323 0.2024 0.9400
0.00  0.0378 0.1811 0.9200 0.0163 0.1125 0.9200
0.00  0.0419 0.1402 0.9000 0.0440 0.0984 0.9300
0.00  0.0267 0.1981 0.9400 0.0360 0.1357 0.9700
0.00  -0.0269 0.1475 0.9400 -0.0229 0.2186 0.9300
0.00  0.0214 0.1678 0.9200 0.0315 0.0972 0.9300
0.00 -0.0103 0.1677 0.9200 0.0169 0.1878 0.9300
0.00  0.0341 0.1338 0.9000 -0.0102 0.0990 0.9300
0.00  0.0221 0.1602 0.9400 0.0285 0.1139 0.9300
-0.1339 0.0816 0.1486 0.9300 0.0691 0.1061 0.9200
-0.4896 0.2006 0.1852 0.8200 0.1638 0.2047 0.8500
0.0091 0.0595 0.1683 0.8800 -0.0068 0.1273 0.9500
0.00  0.0330 0.1702 0.9100 0.0073 0.1722 0.9200
0.00  0.0519 0.1300 0.9000 -0.0031 0.1453 0.9500
0.00  0.0631 0.1673 0.9300 -0.0160 0.1309 0.9500
0.00  0.0560 0.1740 0.9200 0.0176 0.1521 0.9400
0.00 -0.0517 0.2156 0.9000 0.0590 0.1520 0.9400
0.00  0.0255 0.1736 0.9200 -0.0013 0.1718 0.9300
0.00  -0.0258 0.1313 0.9500 0.0297 0.1596 0.9200
0.00 -0.0076 0.1327 0.9000 0.0537 0.1590 0.9200
0.00 -0.0555 0.1804 0.9600 0.0340 0.1239 0.9400
0.3843 -0.1052 0.1801 0.9300 -0.0929 0.1746 0.9000
-0.1123 0.0613 0.1531 0.9400 0.0361 0.1795 0.9300
-0.0495 0.0525 0.1673 0.9300 0.0496 0.1159 0.9400
0.00  0.0202 0.1745 0.9400 0.0427 0.1552 0.9300
-0.4356  0.2159 0.1607 0.8000 0.2032 0.2154 0.8000
-0.3136  0.1695 0.1696 0.8600 0.1573 0.1976 0.8900
0.00  0.0222 0.1477 0.9100 0.0536 0.1585 0.9400
0.6803 -0.1038 0.2065 0.9600 -0.1580 0.2559 0.8900
0.00  0.0490 0.1603 0.9300 -0.0005 0.1657 0.9200
0.00  0.0652 0.1588 0.9300 0.0381 0.1936 0.9200

Table D.19: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the off-diagonale elements p;; of
the matrix R defined in 3.43 with 4,7 = 1,2,...,12 and ¢ < j of the Skew Elliptical
Stable distribution in dimension 12. The results reported above are obtained using 1000
replications for a = 1.70.

and empirical coverage
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n = 500 n = 2000

Par. True BIAS SSD ECP BIAS SSD ECP
a 1.90 -0.0167 0.0385 0.9000 -0.0128 0.0223 0.9300

6; 0.00 0.0004 0.0006 0.9500 0.0000 0.0000 0.9800

d2 0.00 0.0005 0.0004 0.9000 0.0001 0.0000 0.0200

03 0.60 -0.0116 0.0665 0.9600 -0.0070 0.0750 0.9700

6, 0.00 0.0010 0.0016 0.9500 0.0003 0.0000 0.0000

05 0.00 0.0008 0.0008 0.8900 0.0000 0.0000 0.9800

6 0.00 0.0014 0.0010 0.9300 0.0002 0.0000 0.0200

67 0.00 0.0011 0.0012 0.9400 0.0004 0.0000 0.0000

s 0.00 0.0003 0.0006 0.9200 0.0005 0.0000 0.0000

d9 0.00 0.0001 0.0002 0.9700 0.0003 0.0001 0.0000

010 0.60 0.0184 0.0423 0.9300 0.0057 0.0654 0.9300
611 0.60 -0.0257 0.0930 0.9600 -0.0099 0.1292 0.9800
012 0.00  0.0008 0.0008 0.9100 0.0005 0.0000 0.0000

& 0.00 -0.0013 0.0375 0.9500 -0.0011 0.0189 0.9700

& 0.00  0.0051 0.0863 0.9600 0.0029 0.0529 0.9200

& 0.00 0.0072 0.0384 0.9400 0.0008 0.0229 0.9500

& 0.00 -0.0003 0.0340 0.9400 0.0001 0.0188 0.9700

& 0.00  0.0081 0.0469 0.9200 -0.0015 0.0235 0.9500

& 0.00 0.0043 0.0363 0.9300 -0.0015 0.0232 0.9500

& 0.00 0.0102 0.0610 0.9500 -0.0010 0.0324 0.9600

& 0.00 0.0050 0.0317 0.9300 0.0009 0.0164 0.9700
& 0.00 -0.0013 0.0492 0.9200 0.0043 0.0285 0.9500
o 0.00 -0.0017 0.0436 0.9700 0.0003 0.0206 0.9400
&1 0.00  -0.0006 0.0308 0.9400 0.0015 0.0137 0.9600
&2 0.00 0.0027 0.0363 0.9600 0.0027 0.0182 0.9400
\/EH 0.2390 0.0037 0.0265 0.9400 -0.0037 0.0123 0.9700
\/5212 1.5540 -0.0005 0.1499 0.9500 -0.0153 0.0907 0.9300
\/E35 0.3620 -0.0102 0.0430 0.9300 -0.0010 0.0202 0.9500
\/5414 0.1990 -0.0057 0.0211 0.9700 -0.0009 0.0110 0.9500
\/5515 0.3490 -0.0232 0.0342 0.9100 0.0100 0.0203 0.9400
\/5616 0.2950 0.0050 0.0338 0.9700 0.0054 0.0139 0.9400
\/5717 0.7150 0.0047 0.0662 0.9500 0.0016 0.0335 0.9600
\/5818 0.1640 0.0067 0.0153 0.9400 -0.0032 0.0093 0.9300
\/5919 0.5180 -0.0132 0.0543 0.9400 -0.0011 0.0286 0.9300
\/“710,10 0.3790 0.0083 0.0434 0.9600 0.0047 0.0211 0.9500
Wy 0.1590 -0.0028 0.0156 0.9700 0.0083 0.0082 0.8200
\/512712 0.2070 0.0100 0.0215 0.9300 -0.0046 0.0095 0.9200
p12 0.1920 0.0491 0.2273 0.9300 0.0556 0.1567 0.9200
p1z 0.00  0.0381 0.1821 0.9500 -0.0018 0.1902 0.9200
pra 0.00 -0.0338 0.2357 0.9600 0.0024 0.0760 0.9500
pis 0.00  0.0292 0.1585 0.9200 0.0161 0.1109 0.9700
pe  0.00 0.0979 0.1790 0.9100 0.0014 0.1010 0.9600
p1z 0.00 0.0381 0.1667 0.9400 -0.0091 0.2719 0.9500
prs 0.1566 0.0025 0.1662 0.9500 0.0273 0.0810 0.9600
pro 0.00 0.1187 0.1851 0.9100 -0.0315 0.2580 0.9300
prao 0.00  0.1147 0.1801 0.8800 0.0104 0.1979 0.9500
pinn o 0.00 -0.0443 0.1771 0.9600 0.0095 0.0802 0.9500
pi12 0.00 0.0025 0.1896 0.9700 -0.0107 0.0713 0.9400

Table D.20: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the locations € = (£, &, . . ., £12), scale
matrix Q@ = {w;;}, with ¢, =1,2,...,12 and 7 < j, the off-diagonale elements p;; of the
matrix R defined in 3.43, tail parameter « and skewness parameters § = (91, da, ..., 012)
of the Skew Elliptical Stable distribution in dimension 12. The results reported above
are obtained using 1000 replications for a = 1.90.
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Par.

P23
P24
P25
P26
P27
P28
P2,9
2,10
P2,11
2,12
P34
P35
P36
P37
P38
P39
P3,10
3,11
3,12
Pas
P46
Pa7
P48
P49
4,10
Pa,11
P4,12
P56
P57
P58
P59
P5,10
Ps5,11
P5,12
Pe,7
P68
P6,9
£6,10
P6,11
P6,12
P78
P79
P7,10
P11
P7,12
8,9
08,10
8,11
P8,12
09,10
P9,11
9,12
P10,11
P10,12
P11,12

n = 500 n = 2000
True BIAS SSD ECP BIAS SSD ECP
0.00  0.0416 0.1970 0.9200 -0.0117 0.1702 0.9500
0.00  -0.0403 0.2556 0.9600 0.0225 0.1574 0.9500
0.00  0.0012 0.2214 0.9500 0.0637 0.1328 0.9200
0.00  0.0243 0.2270 0.9300 0.0322 0.1647 0.9600
0.00 -0.0029 0.1941 0.9400 -0.0125 0.1499 0.9800
0.00 0.1173 0.2349 0.9500 0.0712 0.1664 0.9300
0.00  0.0914 0.2185 0.9200 0.0141 0.1082 0.9300
0.00  0.0393 0.1975 0.9300 0.0474 0.1371 0.9300
0.00 -0.1021 0.2491 0.9500 0.0762 0.1437 0.9400
0.00  -0.0157 0.2119 0.9500 0.0286 0.1656 0.9500
0.0075 -0.0095 0.2200 0.9300 -0.0025 0.1437 0.9300
0.00 -0.0266 0.2072 0.9200 -0.0029 0.0861 0.9300
0.00 -0.0367 0.2193 0.9400 0.0381 0.1026 0.9300
0.00  0.0730 0.1555 0.9400 -0.0311 0.1458 0.9400
0.00  -0.0400 0.2173 0.9700 0.0326 0.1860 0.9200
0.00 0.1141 0.1603 0.8600 0.0446 0.1242 0.9400
0.00  0.0735 0.1786 0.9500 0.0717 0.1586 0.9300
0.00  0.0076 0.2129 0.9700 0.0655 0.1704 0.9400
0.00  0.0117 0.1910 0.9400 0.0205 0.1358 0.9500
0.3567 -0.0210 0.1710 0.9500 -0.0462 0.0796 0.8800
0.00  0.0756 0.1886 0.9400 0.0574 0.1265 0.9400
0.00 -0.0728 0.1932 0.9100 0.0265 0.2138 0.9200
0.00  0.0255 0.2168 0.9500 0.0512 0.1220 0.9600
0.00  0.0510 0.1959 0.9500 -0.0849 0.2375 0.9300
0.00  0.0509 0.1746 0.9400 0.0360 0.1955 0.9500
0.00  0.0156 0.1952 0.9700 0.0091 0.1342 0.9600
0.00  0.0573 0.1798 0.9300 0.0541 0.1169 0.9200
0.00  0.0729 0.1640 0.9400 0.0135 0.0749 0.9500
0.00 -0.0214 0.1955 0.9500 0.0071 0.1431 0.9600
0.00  0.0107 0.1951 0.9500 0.0241 0.1154 0.9500
0.00  0.0097 0.1980 0.9700 -0.0021 0.1650 0.9500
0.00  -0.0111 0.1608 0.9500 0.0032 0.1038 0.9300
0.00  0.0480 0.1877 0.9500 0.0085 0.1114 0.9700
-0.1339 0.0746 0.1775 0.9200 0.0366 0.0923 0.9300
-0.4896 0.1275 0.1809 0.8900 0.0830 0.1416 0.9100
0.0091 0.0572 0.1795 0.9500 0.0067 0.1173 0.9400
0.00  0.0917 0.1932 0.9400 -0.0239 0.1559 0.9300
0.00  0.0587 0.1545 0.9600 0.0048 0.1454 0.9200
0.00  0.0669 0.1667 0.9200 0.0018 0.1219 0.9600
0.00  0.0827 0.1644 0.9000 0.0070 0.1110 0.9500
0.00 -0.0414 0.2054 0.9400 0.0681 0.1293 0.9400
0.00  -0.0044 0.1862 0.9400 0.0163 0.1273 0.9400
0.00  0.0001 0.1624 0.9700 0.0501 0.1307 0.9600
0.00  0.0193 0.1764 0.9500 0.0684 0.1191 0.9100
0.00 -0.0877 0.1852 0.9300 0.0452 0.1154 0.9600
0.3843 -0.0223 0.1890 0.9800 -0.0470 0.1690 0.9500
-0.1123 0.0656 0.1750 0.9200 0.0516 0.2261 0.9600
-0.0495 0.0813 0.1708 0.9300 0.0701 0.1407 0.9000
0.00  0.0429 0.1665 0.9400 0.0759 0.1356 0.9300
-0.4356  0.2543 0.1548 0.6500 0.1887 0.2082 0.8700
-0.3136  0.1633 0.1591 0.8200 0.0937 0.1621 0.9200
0.00  0.0196 0.1883 0.9500 0.0506 0.1239 0.9300
0.6803 -0.0181 0.1712 0.9300 -0.0029 0.1761 0.9500
0.00  0.0557 0.1726 0.9500 0.0211 0.1425 0.9400
0.00  0.0755 0.1720 0.9500 0.0189 0.2116 0.9400

Table D.21: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the off-diagonale elements p;; of
the matrix R defined in 3.43 with 4,7 = 1,2,...,12 and ¢ < j of the Skew Elliptical
Stable distribution in dimension 12. The results reported above are obtained using 1000
replications for a = 1.90.
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n = 500 n = 2000

Par. True BIAS SSD ECP BIAS SSD ECP
a 1.95 -0.0282 0.0321 0.8900 -0.0249 0.0169 0.7600

6; 0.00 0.0004 0.0004 0.7400 0.0000 0.0000 0.0000

d2 0.00 0.0006 0.0004 0.9200 0.0001 0.0000 0.0100

03 0.60 -0.0153 0.0446 0.9100 -0.0127 0.0633 0.9200

6, 0.00 0.0008 0.0011 0.9600 0.0003 0.0001 0.0100

05 0.00 0.0009 0.0006 0.9000 0.0000 0.0000 0.0000

6 0.00 0.0015 0.0009 0.7800 0.0002 0.0000 0.0300
67 0.00 0.0008 0.0011 0.9600 0.0004 0.0000 0.0000
s 0.00 0.0002 0.0003 0.9700 0.0005 0.0001 0.0000
d9 0.00 0.0001 0.0001 0.9400 0.0003 0.0001 0.0000
010 0.60 0.0175 0.0301 0.9400 -0.0296 0.1203 0.9800
611 0.60 -0.0356 0.0848 0.9600 -0.0117 0.0778 0.9100
012 0.00  0.0007 0.0004 0.6500 0.0005 0.0001 0.0000
& 0.00 0.0028 0.0365 0.9400 -0.0011 0.0190 0.9500
& 0.00 0.0003 0.0824 0.9200 0.0016 0.0495 0.9300
& 0.00 -0.0022 0.0357 0.9500 0.0011 0.0208 0.9300
& 0.00 -0.0020 0.0292 0.9500 0.0029 0.0187 0.9600
& 0.00  0.0030 0.0423 0.9400 -0.0007 0.0258 0.9500
& 0.00 -0.0013 0.0378 0.9500 0.0005 0.0214 0.9400
& 0.00 0.0052 0.0589 0.9300 0.0075 0.0323 0.9400
& 0.00 -0.0041 0.0288 0.9600 -0.0031 0.0131 0.9400
& 0.00 -0.0102 0.0537 0.9400 -0.0014 0.0303 0.9200
o 0.00 0.0014 0.0347 0.9500 -0.0019 0.0226 0.9500
&1 0.00  0.0026 0.0278 0.9400 -0.0019 0.0124 0.9300
&2 0.00 0.0067 0.0309 0.9100 0.0018 0.0184 0.9200
\/EH 0.2390 0.0081 0.0266 0.9200 -0.0013 0.0126 0.9500
\/5212 1.5540 -0.0159 0.1501 0.9600 -0.0233 0.0900 0.9400
\/E35 0.3620 0.0032 0.0382 0.9500 0.0023 0.0204 0.9400
\/5414 0.1990 -0.0048 0.0207 0.9300 -0.0034 0.0104 0.9600
\/5515 0.3490 -0.0145 0.0345 0.9500 0.0102 0.0175 0.9200
\/5616 0.2950 0.0010 0.0310 0.9400 0.0030 0.0136 0.9400
\/5717 0.7150 -0.0034 0.0737 0.9600 0.0030 0.0331 0.9200
\/5818 0.1640 0.0082 0.0183 0.9300 -0.0008 0.0090 0.9500
\/5919 0.5180 -0.0123 0.0471 0.9100 0.0051 0.0267 0.9600
\/“710,10 0.3790 0.0029 0.0423 0.9600 -0.0019 0.0213 0.9500
Wy 0.1590 -0.0041 0.0143 0.9200 0.0073 0.0078 0.8300
\/512712 0.2070 0.0093 0.0225 0.9400 -0.0052 0.0108 0.9300
p12 0.1920 0.0007 0.2094 0.9600 0.0253 0.2257 0.9600
p1z 0.00 -0.0067 0.1638 0.9800 -0.0207 0.1922 0.9200
pia  0.00 -0.0372 0.2198 0.9500 -0.0025 0.0827 0.9300
pis 0.00  0.0362 0.1670 0.9400 0.0437 0.1509 0.9600
pe  0.00 0.0958 0.1829 0.8900 0.0094 0.1358 0.9700
p1z 0.00 0.0878 0.2121 0.9400 -0.0080 0.2587 0.9300
prs 0.1566 -0.0103 0.1730 0.9600 0.0358 0.0749 0.9500
pro 0.00 0.1643 0.1978 0.8800 -0.0222 0.2573 0.9300
prao 0.00  0.1239 0.1721 0.8900 -0.0082 0.2029 0.9400
pinn o 0.00 -0.0534 0.1773 0.9300 0.0093 0.1046 0.9500
pii2 0.00 -0.0482 0.1884 0.9500 -0.0002 0.0769 0.9300

Table D.22: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the locations € = (£, &, . . ., £12), scale
matrix Q@ = {w;;}, with ¢, =1,2,...,12 and 7 < j, the off-diagonale elements p;; of the
matrix R defined in 3.43, tail parameter « and skewness parameters § = (91, da, ..., 012)
of the Skew Elliptical Stable distribution in dimension 12. The results reported above
are obtained using 1000 replications for a = 1.95.
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Par.

P23
P24
P25
P26
P27
P28
P2,9
2,10
P2,11
2,12
P34
P35
P36
P37
P38
P39
P3,10
3,11
3,12
Pas
P46
Pa7
P48
P49
4,10
Pa,11
P4,12
P56
P57
P58
P59
P5,10
Ps5,11
P5,12
Pe,7
P68
P6,9
£6,10
P6,11
P6,12
P78
P79
P7,10
P11
P7,12
8,9
08,10
8,11
P8,12
09,10
P9,11
9,12
P10,11
P10,12
P11,12

n = 500 n = 2000
True BIAS SSD ECP BIAS SSD ECP
0.00  0.0099 0.2368 0.9900 -0.0060 0.1218 0.9700
0.00 -0.0236 0.2403 0.9600 0.0653 0.1405 0.9300
0.00  0.0093 0.2666 0.9700 0.0614 0.1457 0.9600
0.00  0.0553 0.2437 0.9200 -0.0129 0.1614 0.9500
0.00  0.0099 0.2064 0.9600 0.0185 0.1217 0.9600
0.00  0.0541 0.2919 0.9600 0.0471 0.1644 0.9200
0.00  0.0982 0.2218 0.9300 0.0232 0.1360 0.9600
0.00  0.0335 0.2063 0.9600 0.0503 0.1258 0.9300
0.00  -0.0553 0.2535 0.9400 0.0562 0.1355 0.9600
0.00  -0.0392 0.2385 0.9600 0.0408 0.1475 0.9400
0.0075 -0.0088 0.1782 0.9200 -0.0372 0.1626 0.9300
0.00  0.0205 0.1989 0.9300 0.0163 0.1035 0.9600
0.00 -0.0674 0.2193 0.9300 0.0260 0.1160 0.9200
0.00  0.0958 0.1373 0.8600 -0.0481 0.1613 0.9700
0.00  -0.0639 0.2061 0.9500 -0.0255 0.1942 0.9100
0.00  0.0715 0.1683 0.9200 0.0321 0.1403 0.9500
0.00  0.0574 0.1536 0.9300 0.0453 0.1172 0.9100
0.00  -0.0292 0.1795 0.9400 0.0446 0.1944 0.9400
0.00  0.0093 0.1716 0.9500 -0.0098 0.1733 0.9300
0.3567 -0.0490 0.1461 0.9400 -0.0635 0.0916 0.8900
0.00  0.0644 0.1802 0.9400 0.0568 0.1324 0.9400
0.00  -0.0493 0.2022 0.9400 0.0199 0.2660 0.9300
0.00  0.0286 0.1529 0.9500 0.0473 0.1088 0.9100
0.00  0.0914 0.1821 0.9300 -0.0998 0.2579 0.9200
0.00  0.0596 0.1776 0.9400 -0.0138 0.1950 0.9300
0.00  0.0135 0.1632 0.9400 -0.0021 0.1379 0.9400
0.00  0.0357 0.1843 0.9500 0.0654 0.1059 0.9100
0.00  0.0141 0.1942 0.9500 0.0239 0.0857 0.9400
0.00  -0.0221 0.1929 0.9600 -0.0280 0.2037 0.9500
0.00  -0.0053 0.2052 0.9600 0.0131 0.1002 0.9500
0.00 -0.0248 0.1905 0.9700 -0.0048 0.1590 0.9600
0.00  0.0032 0.1572 0.9300 0.0042 0.0840 0.9300
0.00 -0.0140 0.1885 0.9300 -0.0016 0.1083 0.9500
-0.1339 0.0650 0.1542 0.9300 0.0590 0.1223 0.9300
-0.4896 0.1563 0.1890 0.8500 0.1076 0.1447 0.8800
0.0091 0.0973 0.1954 0.9200 0.0182 0.1292 0.9500
0.00  0.1200 0.1716 0.8900 -0.0565 0.1865 0.8900
0.00  0.1070 0.1657 0.8700 -0.0088 0.1514 0.9300
0.00  0.0392 0.1950 0.9500 0.0142 0.1166 0.9700
0.00  0.0880 0.2057 0.9200 0.0063 0.1285 0.9400
0.00 -0.0340 0.1872 0.9100 0.0723 0.1521 0.9300
0.00  0.0024 0.1840 0.9600 -0.0066 0.1401 0.9500
0.00  0.0100 0.1415 0.9700 0.0404 0.1464 0.9400
0.00  0.0363 0.1870 0.9300 0.0591 0.1249 0.9000
0.00 -0.1267 0.2059 0.9000 0.0294 0.1358 0.9600
0.3843 -0.0060 0.1654 0.9500 -0.1193 0.2174 0.9600
-0.1123 0.0923 0.1886 0.9100 0.0465 0.2441 0.9100
-0.0495 0.0834 0.1769 0.9300 0.0623 0.1629 0.9400
0.00  0.0433 0.1707 0.9500 0.0993 0.1734 0.9300
-0.4356  0.2419 0.1578 0.6800 0.2196 0.2023 0.8300
-0.3136  0.1518 0.1652 0.8200 0.0918 0.1629 0.9100
0.00  0.0228 0.1503 0.9500 0.0598 0.1404 0.9600
0.6803 0.0253 0.1527 0.9600 -0.0222 0.1926 0.9200
0.00  0.0852 0.1500 0.8800 0.0081 0.1722 0.9200
0.00  0.0911 0.1674 0.9100 -0.0183 0.2314 0.9300

Table D.23: Bias (BIAS), sample standard deviation (SSD),
probability (ECP) at the 95% confidence level for the off-diagonale elements p;; of
the matrix R defined in 3.43 with 4,7 = 1,2,...,12 and ¢ < j of the Skew Elliptical
Stable distribution in dimension 12. The results reported above are obtained using 1000
replications for a = 1.95.
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Figures of simulated examples

E.1 Elliptical Stable
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Figure E.1: Band structure of the true (left) and estimated (right) scale matrices through
S-MMSQ of the 12—dimensional Elliptical Stable simulated experiment discussed in
Section 3.4.2, for « = 1.70 and sample size n = 200.
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(d) SCAD, a=1.95 (e) Adaptive Lasso, a = (f) S-MMSQ, a =2.00

(g) GLasso, a = 2.00 (h) SCAD, a =2.00 (i) Adaptive Lasso, a = 2.00

Figure E.2: Band structure of the true and estimated scale matrices of the Elliptical

Stable distribution experiment discussed in Section 3.4.2, for o = (1.95,2.00) and sample
size n = 200.
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E.2 Skew Elliptical Stable
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Figure E.3: Images displaying the band structure of the true (left) and estimated
(right) matrices € through S-MMSQ of the Skew Elliptical Stable distribution in di-
mension 12 discussed in Section 3.4.3, for @ = 1.70 and sample size n = 200.
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Figure E.4: Band structure of the true (left) and estimated (right) scale matrices through
S-MMSQ of the 12—dimensional Skew — Elliptical Stable simulated experiment discussed
in Section 3.4.3, for « = 1.70 and sample size n = 200.
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Figure E.5: Band structure of the true and estimated scale matrices of the Skew—

Elliptical Stable distribution experiment discussed in Section 3.4.3, for a = (1.95,2.00)
and sample size n = 200.



Appendix F

Tables of real data examples

Summary Stat. DE PT NL AT BE DK FI 1E PL UK CzZ ES HU
Min -0.239  -0.190 -0.297 -0.360  -0.217  -0.238 -0.268 -0.377 -0.204  -0.234  -0.275 -0.241  -0.22 -0.350
Max 0.156  0.118 0.154 0174 0118 0128 0.161 0125 0183 0.135 0. 0.185
Mean 5.014 -0.299 5.052 0.769 10.231 3.605 3444 3484 5567 8298 12.604
Std Dev. 22.634 20.007 21.174 23894 20.740  19.632 27.066 16.991 23.360 23.172 23.071 30.231
Skew -0.672 -0.725 -1.281 -1.752 -1.209  -1.127 -0.149  -0.990 -0.707  -0.605  -0.954
Kurt 8.003  6.847 13.617  18.814 10.543 10.919 5742 13686  9.933 T7.228  T7.768 11.786
1% Str. Lev. (%) -8.814 -9.011 -8.899 -9.469  -8.841  -7.683 282 -10459  -6.256  -8.718 -8.538 -8.671 -11.185
L-B Q- test 9.643  2.176 6.683 5704 3975 12050 2638 24397 6.636 19.801 7.113 5160  7.839 18.958
ACF of r, -0.020  0.031 -0.019 0.003  0.022 -0.036 -0.014 -0.089  0.021  -0.065  0.006 -0.051 -0.040  -0.001
ACF of r? 0.179  0.246 0.062 0.159 0404  0.240 0.155 0136 0223  0.089 0103 0.133 0097  0.087
JB 1723.441 1527.060 1292.796 814.234 1581.625 5745.001 12636.697 3021.599 3264.712 542.900 11291.079 366.526 5689.300 2392.750 957.389 1165.347 3893.189
Correlations 1T FR DE PT EL NL AT BE DK FI 1E PL UK CZ ES SE HU
1T 1.000  0.835  0.787 0.640 0477  0.783 0.632  0.658  0.622 0.576 0.592  0.411 0.751 0.408 0818  0.704  0.515
FR 0.835 1.000  0.890 0.656  0.470  0.882 0.652  0.743  0.667 0.667 0.645 0477  0.856  0.456 0.815  0.809  0.530
DE 0.787  0.890  1.000 0.633 0452  0.851 0.631  0.716  0.671 0.649 0.630 0.506  0.815 0458 0.784  0.809  0.533
PT 0.640  0.656  0.633 1.000  0.473  0.589 0.546  0.527  0.531 0.487 0.466 0409  0.597  0.389 0.689  0.580  0.456
EL 0477 0470 0452 0473 1000  0.441 0445 0426 0408 0.327 0408 0359 0434 038 0491 0413  0.390
NL 0.783  0.882  0.851 0.589  0.441 1.000 0.632 0776 0.660 0.607 0.656 0434 0823 0420 0.761 0759 0512
AT 0.632  0.652  0.631 0546  0.445  0.632 1.000 0594  0.553  0.427 0.566  0.428  0.653  0.439 0.642  0.585  0.539
BE 0.658 : 0.716  0.527  0.426  0.776 0.594  1.000  0.589 0.457 0379 0.715 0372 0.655 0.6 0.429
DK 0.622  0.667  0.671 0.531 0.408  0.660 0.589 1.000  0.507 0375  0.673 0427 0.589 0.6 0.440
FI 0.576  0.667  0.649 0487  0.327  0.607 0427 0457  0.507  1.000 0415 0.617 0360 0.565  0.697  0.426
1E 0.592  0.645  0.630 0.466  0.408  0.656 0.566 5 0.560  0.440 0.368  0.638  0.384 0.571 0.571 0.442
PL 0.411 0477 0506 0.409  0.359  0.434 0.428 0.375  0.415 1.000 0454 0525 0440 0465  0.579
UK 0.751  0.856  0.815 0.597  0.434  0.823 0.653 0.673  0.617 1.000 0432 0.730  0.758  0.517
Cz 0.408 0456 0458 0389  0.386  0.420 0.439 0.427  0.360 0525 0432 1.000 0439 0441  0.568
ES 0.818  0.815 0.784 0.689 0491  0.761 0.642 0.589  0.565 0.440  0.730 0439 1.000 0.707  0.520
SE 0.704 0809 0809 0.580 0413  0.759 0.585 0.664  0.697 0.465  0.758 0441 0.707  1.000  0.517
HU 0.515  0.530  0.533 0.456  0.390  0.512 0.539 0.440  0.426 0.579  0.517  0.568  0.520  0.517  1.000

TABLE F.1: (Top panel): summary statistics of the weekly returns of the MSCI european
indexes, for the period form January 2nd, 1987 to March 3rd, 2015. The 7-th row,
denoted by “1% Str. Lev.” reports the 1% empirical quantile of the returns distribution,
while the last row, denoted by “JB” reports the value of the Jarque—Bera test—statistics.
(Bottom panel): empirical correlations among the European indexes.
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