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Abstract

We introduce a new solution concept for models of coalition formation, called the myopic stable

set. The myopic stable set is defined for a very general class of abstract games and allows for

an infinite state space. We show that the myopic stable set exists and is non-empty. Under

minor continuity conditions, we also demonstrate uniqueness. Furthermore, the myopic stable

set is a superset of the core and of the set of pure strategy Nash equilibria in noncooperative

games. Additionally, the myopic stable set generalizes and unifies various results from more

specific environments. In particular, the myopic stable set coincides with the coalition structure

core in coalition function form games if the coalition structure core is nonempty; with the set

of stable matchings in the standard one-to-one matching model; with the set of pairwise stable

networks and closed cycles in models of network formation; and with the set of pure strategy

Nash equilibria in finite supermodular games, finite potential games, and aggregative games. We

illustrate the versatility of our concept by characterizing the myopic stable set in a model of

Bertrand competition with asymmetric costs, for which the literature so far has not been able to

fully characterize the set of all (mixed) Nash equilibria.
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Introduction

Game theory provides general mathematical techniques for analyzing situations in which two or

more individuals make decisions that will influence one another’s welfare.

In particularly, game theory can be defined as the study of mathematical models of conflict

and cooperation between intelligent rational decision-makers (Myerson, 1991). This definition

suggests that game theory is divided into two branches, called the non-cooperative and coopera-

tive branches.

The two branches of game theory differ in how they formalize interdependence among the

players. In the non-cooperative theory, a game is a detailed model of all the moves available

to the players. By contrast, the cooperative theory abstracts away from this level of detail, and

describes only the outcomes that result when the players come together in different combinations.

It is interesting to note that, in principle, any social phenomenon can be studied using both

the approaches. An example is given by the game theoretic analysis of coalition formation. It

is well known, in fact, that coalition formation theory embodies many different settings such as

normal form games, networks, TU games and matching models (see Ray, 2007; Ray and Vohra,

2014).

In this paper, we consider a general class of abstract game which covers all of these settings

and many more.

An abstract game is a framework to model strategic interaction between individuals or groups.

An abstract game is the most flexible representation form of a strategic interaction. In fact, many

specific settings such as TU games, networks models, one to one matching models and normal

form games can be considered particular cases of abstract game.

The prodromic version of abstract game, also called social environment, can be founded in

games in effectiveness form (Rosenthal, 1972) and in the framework of social situation (Green-

berg, 1990).

To define an abstract game (Chwe, 1994), we need four ingredients: a finite set of individuals,

a preference relation for each individual, a state space and an effectivity correspondence that

model the feasible transitions from a state to another.

We impose very little structure on the state space and on the effectivity correspondence. In

particular, the state space is only required to be a non-empty and compact metric space. In

contrast to most of the literature, we allow the state space to be infinite. The state

space can encode different information in different settings. For instance, the network structure,
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the set of matchings or the set of outcomes in a characteristic function games. The effectivity

correspondence is closely linked to the idea of coalition formation. Given two states, it specifies

which individuals or coalitions are able to change a state into another state. Moreover, the

effectivity correspondence can be structured in many different ways. This allows to formalize

the interdependence the individuals adopting either a non cooperative approach or a cooperative

approach.

For this general class of abstract game with infinite state space, we define a solution concept,

the Myopic Stable Set . The Myopic Stable Set extend the idea of Pairwise Myopic Stability

(Herings et al., 2009) from finite network to a general class of abstract game that allow for

infinite state space.

The Myopic Stable Set has to satisfy three conditions, (i)myopic deterrence of external de-

viations, (ii)myopic external stability and (iii)minimality. Roughly speaking, the first condition

requires that for any state in the set, there is no profitable deviations from a state in the set to a

state outside the set. The second condition makes sure that from any state outside the set there

exists a sequence of profitable deviations which approaches the set. By the last condition, the

Myopic Stable Set is the minimal set which satisfies the first two conditions.

The notion of dominance is myopic in the sense that agents (or coalitions) do not predict how

their decision to change the current state to another one will lead to further changes by other

coalitions. Such a notion is natural in very complex abstarct games where the number of possible

states and possible actions is overwhelmingly large and agents have little information about the

possible actions other agents may take or the incentives of other agents. The myopic stable set

thereby distinguishes our approach from the ones in the literature that focus on farsightedness

(see among others, Chwe, 1994; Xue, 1998; Herings, Mauleon, and Vannetelbosch, 2004, 2009,

2014; Dutta, Ghosal, and Ray, 2005; Page, Wooders, and Kamat, 2005; Page and Wooders, 2009;

Ray and Vohra, 2015). On the other hand, our analysis is more in line with myopic concepts

like the Core and the von Neumann-Morgenstern Stable Set. As we will see in the application to

normal-form games, it is also intimately connected to the notion of Nash equilibrium.

In Theorem 1, we show that each abstract game contains at least one Myopic Stable Set.

Since the state space can be infinite, we have to introduce a notion of asymptotic dominance that

allows us to apply Zorn’s Lemma. Under a slightly stronger continuity assumption, the Myopic

Stable Set is also unique by Theorem 2. Our existence and uniqueness results differ from most

of the literature, where even for more special settings, well-known solution concepts do not have

these desirable properties. For instance, the Core could be empty (Bondareva, 1963; Scarf, 1967;

Shapley, 1967), the von Neumann Morgenstern Stable Set might fail to exist (Lucas, 1968) and is

also not always unique (Lucas, 1992) and the set of pure strategy nash equilibria could be empty.

We also provide several additional results that show more insights about the structure of an

MSS. For finite state spaces, we fully characterize the MSS as the union of all closed cycles, i.e.,

subsets which are closed under coalitional better replies. For infinite spaces, the union of all

closed cycles is found to be a subset of the MSS. This result is helpful in applications and in the

comparison to other solution concepts. For instance, any state in the core is a closed cycle and is

therefore included in the MSS. Next we define a generalization of the weak improvement property
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(Friedman and Mezzetti, 2001) to abstract games and we show that, under weak continuity

conditions, the weak improvement property characterizes the collection of abstract games for

which the MSS coincides with the core.

We demonstrate the versatility of these results by analyzing the relationship between the MSS

and other solution concepts in more specific social environments. In particular, we show that the

MSS coincides with the coalition structure core for TU games with coalition structure (Kóczy

and Lauwers, 2004) whenever the coalition structure core is non-empty; with the set of stable

matchings in the one-to-one matching model by Gale and Shapley (1962); with the set of the

set of pairwise stable networks and closed cycles in models of network formation (Jackson and

Watts, 2002), and the set of pure strategy Nash equilibria in finite supermodular games (Bulow,

Geanakoplos, and Klemperer, 1985), finite potential games (Monderer and Shapley, 1996), and

aggregative games (Selten, 1970). Finally, we illustrate the versatility of our results by char-

acterizing the MSS in a model of Bertrand competition with asymmetric costs. This model

is characterized by discontinuous payoff functions and has no pure-strategy Nash equilibrium.

Although Blume (2003) has shown the existence of a mixed-strategy Nash equilibrium, the liter-

ature has, so far, not been able to characterize the complete class of (mixed) equilibria for this

game.

The thesis is structured as follows: Chapter 1 is a review of the mathematical tools used

in the proofs of our main results. Chapter 2 provides the primitives of our general framework

of abstract game and discusses how it translates to settings with more structure. In Chapter

3 we introduce Myopic Stable Set and we prove that, under mild conditions, it exists and it is

non-empty and unique. Chapter 4 explores properties and predictions of the Myopic Stable Set

in different settings and relates it to other stability concepts. Chapter 5 concludes.
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Chapter 1

Preliminaries and basic

terminology

This chapter collects an essential list of mathematical definitions and theorems that we used in

the proofs of our main results.

1.1 Topological Spaces and Metrics

A topological space is a pair (X, τ) where X is a non-empty set and τ is a topology on X defined

as follows:

Definition 1 (Topology). A topology τ on a set X is a collection of subset of X which satisfies

the following conditions:

1. ∅, X ∈ τ

2. if U ∈ τ and V ∈ τ then U ∩ V ∈ τ , with U, V ⊆ X

3. for every index set I: if Ui ∈ τ for every i ∈ I, then
⋃
i∈I Ui ∈ τ

Any element of τ is called an open set of X.

A topological basis of τ is a collection B of open sets in τ such that all the other open sets

can be written as unions of the elements of B.

A metric space is a pair (X, d) where X is a set and d is a metric defined as follow:

Definition 2. A metric d is a map

d : X ×X −→ R

(x, y) 7−→ d(x, y)

d(x, y) ∈ R

which satisfies the following properties:
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1. Non-negativity : for all x, y ∈ X, d(x, y) ≥ 0.

2. Identity of Indiscernibles: for all x, y ∈ X, d(x, y) = 0 iff x = y.

3. Symmetry : for all x, y ∈ X, d(x, y) = d(y, x).

4. Triangle Inequality : for all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

Given a metric space (X, d), and x ∈ X and a ε > 0 we define Bε(x) := {y ∈ X : d(x, y) < ε}
the ε-open ball of x.

A set U ⊆ X is open in the topology induced by d if for every x ∈ U there exists an ε > 0

such that x ∈ Bε(x) ⊆ U .

If the collection of set B := {Bε(x) : x ∈ X, ε > 0} is a basis for τ we say that the metric d

on X generate the topology τ on X.

Definition 3 (Metrizable Topological Space). A topological space (X, τ)is metrizable if there

exists a metric d on X which generate the topology τ on X.

Definition 4 (Open Set). A subset U of a metric space (X, d) is open if for each x ∈ U there

exists an ε > 0 such that Bε(x) ⊆ U .

Definition 5 (Closed Set). A subset C of a metric space (X, d) is closed if its complement,

Cc := X\U , is open.

1.2 Sequences and Nets

Definition 6 (Sequence). A sequence in X is a function x : N −→ X. For every n ∈ N, we

usually denote x(n) by xn.

Definition 7 (Subsequence). A subsequence of (xn) is a sequence of the form (xnr ) where (nr)

is a strictly increasing sequence of natural numbers.

Definition 8 (Convergent Sequence). A sequence (xn) is said convergent in X if it approaches

some limit. Formally, a sequence (xn) converge to the limit y if and only if for every ε > 0 there

exists a positive integer N such that d(xn, y) < ε for every n > N .

Note that a sequence is indexed by a countable linearly ordered set N. We introduce the

notion of net that is obtained defined a sequence on an more general index set.

In particular, the index set of a net is a directed set D which is a set D equipped with a

direction � that is a binary relation on D with the property that each pair has an upper bound.

Formally:

Definition 9 (Directed Set). A directed set D is a pair (D,�) if �⊆ D×D is a binary relation

on D such which satisfies :

1. Reflexivity: ∀x ∈ D, x � x

2. Transitivity: ∀x, y, z ∈ D, x � y ∧ y � z ⇒ x � z
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3. Upwards Direction: ∀x, y ∈ D,∃z ∈ D s.t. x � z ∧ y � z

Definition 10 (Net). A net in X is a function x : D −→ X. For every d ∈ D, we usually denote

x(d) by xd.

Definition 11 (Subnet). A subnet of (xd)d∈D is a net of the form (yλ)λ∈Λ if there exists a

function φ : Λ −→ D such that:

• yλ = xφλ for each λ ∈ Λ, where φλ stands for φ(λ)

• for each d0 ∈ D there exists some λ0 ∈ Λ such that λ ≥ λ0 implies φλ ≥ d0

Definition 12 (Convergent Net). A net (xd) is said convergent in X if it approach some limit.

Formally, a net (xd) converge to the limit y if only if for every ε > 0 there exists an index d′ ∈ D
such that d(x, y) < ε for every d > d′.

1.3 Compactness

Definition 13 (Open Cover). Let (X, τ) be a topological space and let G be a subset of X. An

open cover of G is a collection C of element of τ such that G ⊆
⋃
U∈C U .

Definition 14 (Compactness). X is compact if for every open cover C of X there is a finite

subset F of C such that F is also an open cover of X.

• Theorem 2.31 (Aliprantis and Border, 2006)

For a topological space X the following are equivalent:

1. X is compact

2. Every net in X has a subnet converging in X

1.4 Order Theory and Zorn’s Lemma

Definition 15 (Partially Ordered Set). A partially ordered set is a pair

(P,�) where P is a set and � P × P is a binary relation satisfying the following properties:

• Reflexivity: ∀x ∈ P , x � x

• Transitivity: ∀x, y, z ∈ P , x � y ∧ y � z ⇒ x � z

Given the relation ⊇ we say that x is a maximal element of (P,⊇) if for all y ∈ (P,⊇) if y ⊇ x
then y = x.

Definition 16 (Totally Ordered Set). A totally ordered set is a pair

(T,�) where T is a set and �⊆ T × T is a binary relation satisfying the following properties:

• Completeness: ∀x ∈ T , x � y ∨ y � x

• Reflexivity: ∀x ∈ X, x � x

• Transitivity: ∀x, y, z ∈ T , x � y ∧ y � z ⇒ x � z
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Given a partially ordered Set (P,�), a chain of (P,�) is a proper subset T ⊂ P such that

(T,�) is a totally ordered set

Given the relation ⊇ and a chain of (P,⊇), x ∈ P is an upper bound of the chain (T,⊇) if

does not exist any y ∈ T such that y ⊇ x.

• Zorn’s Lemma

If a partially ordered set (P,�) has the property that every chain has an upper bound, then

the set P contains at least one maximal element.
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Chapter 2

Model Primitives and Specific

Settings

Let N be a finite set of individuals {1, ..., n}.
A coalition S is defined as a subset of N . Denote the set of all possible non-empty coalitions

by N := 2N\{∅}.
Let the state space be a metric space (X, d). We assume (X, d) to have the following properties:

Assumption 1 (Non-emptiness of X). X is non-empty.

Assumption 2 (Compactness of X). X is compact.

For all states x ∈ X and y ∈ X, the effectivity correspondence is defined in the following way

E : X ×X −→ N

(x, y) 7−→ E(x, y)

E(x, y) ⊆ N

The effectivity correspondence specifies the collection of coalitions E(x, y) ⊆ N that can change

the state x into the state y. If E(x, y) = ∅ then no coalition can change from x to y.

For each individual i ∈ N , we define a preference relation �i⊆ X × X as a binary relation

over the state space X which satisfies the following properties:

• Completeness: ∀x ∈ X, x �i y ∨ y �i x

• Reflexivity: ∀x ∈ X, x �i x

• Transitivity: ∀x, y, z ∈ X, x �i y ∧ y �i z ⇒ x �i z

For all i ∈ N , the vector {�i}i∈N represents all individual preference relations �i.
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Finally, we denote an abstract game by

Γ := (N,X,E, {�i}i∈N )

The state space (X, d) can be used to encode many information of a particular application.

To illustrate the generality of our setting, we provide four specific models that have been studied

extensively in the literature: TU games with coalition structure, one-to-one matching models,

networks, and non-cooperative normal-form games. For each of these examples we specify the

abstract game, i.e., the set of players N , the state space (X, d), the preferences {�i}i∈N , and the

effectivity correspondence E.
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2.1 Specific Setting 1: Tu Games with coalition structure

A TU game with coalition structure is a tuple (N, v, π) where N = {1, ...n} is the set of players

and v is the the characteristic function v of the following form:

v : 2N −→ R

S 7−→ v(S)

v(S) ∈ R

In words, v assigns to each coalition a number v(S), that is the coalitional value of S.

A coalition structure, or partition structure, is a partition π := {S1, ..., Sk, ..., Sm} of N which

satisfies the following properties:

• Sk 6= ∅ for all k

• ∪Sk∈πSk = N

• Sk ∩ Sl = ∅ for all k 6= l

The collection of all coalition structures is denoted by Π.

In a TU game with coalition structure a vector u = (u1, ..., un) ∈ Rn lists the payoff of each

individual under two conditions:

• Individual rationality: ui ≥ v({i}) ∀i ∈ N

• Feasibility:
∑
i∈S ui = v(S).

The outcome of a TU game with coalition structure is a pair (π, u) with π ∈ Π and u ∈ Rn .

To induce an abstract game by a TU game with coalition structure, first we define preferences

�i over the state space X by setting x �i y if and only if ui(x) ≥ ui(y), i.e., the payoff for

individual i in state x is at least as high as the payoff for individual i in state y.

Lemma 1. The function u(x) is continuous, i.e. if xi → x then u(xi)→ u(x)

Proof. The result follows from the continuity of the projection.

Moreover, we define the state space in terms of the set of all possible outcomes. Formally,

X :=

{
(π, u) ∈ Π× Rn

∣∣∣∣∣∀i ∈ N : ui ≥ v({i}) and ∀S ∈ π :
∑
i∈S

ui = v(S)

}

where π(x) denotes the projection of x onto its first component (the partition) and u(x) denotes

the projection of x onto its second component (the payoff vector). Moreover, given x ∈ X and

S ∈ N we denote πS(x) the restriction of π(x) to the coalition S ⊂ N and uS(x) := (ui(x))i∈S

the restriction of u(x) to the coalition S.
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We can define the metric on X in the following way,

d(x, y) = 1[π(x) 6= π(y)] + ‖u(x)− u(y)‖∞,

where 1[.] is the indicator function that equals one if the condition between parenthesis is

true and 0 otherwise and ‖.‖∞ is the maximum norm.

Formally, the indicator function is:

1 : Π(x)×Π(y) −→ {0, 1}

such that

1(π(x), π(y)) =

π(x) = π(y) 0

π(x) 6= π(y) 1

and the maximum norm is:

d(u(x), u(y)) := max(| ui(x)− ui(y) |)

For each pair (x, y), the effectivity correspondence E : X×X −→ N specifies which coalitions

can change a state into another. Thus, in this setting, a coalition formation process is a sequence

of state transformations.

In a coalition formation process we can discriminate between three groups of players. The

leaving players, the unaffected players and the residual players. The leaving players T are the

players that decide to leave their coalition(s) to create one or more alternative groups. This

event induces a change from a state say x to a new state y. The collection of coalitions that is

unaffected by this change is denoted U(x, S) and the set of players that is unaffected is denoted

by U(x, S). The set U(x, S) contains all coalitions T ∈ π(x) that are disjoint from S. Formally,

U(x, S) = {T ∈ π(x)|S ∩ T = ∅},

U(x, S) = ∪T∈U(x,S)T.

Moreover, we call the players in the set N \ (S ∪ U(x, S)) the residual players.

In literature there exist many different assumptions on the effect of the leaving players on the

entire partition structure and viceversa.

In principle, it is possible to capture different assumption just imposing more structure on

the effectivity correspondence.

As an example, it is possible to consider the so called coalitional sovereignty (see Ray and

Vohra, 2015) which means that a deviating coalition of players does not have the power to

influence of agents outside the coalition.

Coalitional sovereignty is then defined as follows:
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1. Non-interference: For every x, y ∈ X, if S ∈ E(x, y) and T ∈ U(x, S), then S ∈ π(y), T ∈
π(y), and uT (x) = uT (y).

2. Full support: For every x ∈ X, every S ∈ N , and every u ∈ RS such that for all

i ∈ S : ui ≥ v({i}) and
∑
i∈S ui = v(S), there is a state y ∈ X such that uS(y) = u and

S ∈ E(x, y).

Non Interference states that if a coalition remains together, all individuals in the coalition

keep the same payoff. Full Support guarantees that any coalition can achieve any feasible payoff

from their full support.

In a coalition formation process, one of the most controversial issues concerns the assumption

on the behavior of the residual players and their power to influence the leaving players. (see for

example Shubik, 1962; Hart and Kurz, 1983; Konishi and Ray, 1997; Ray and Vohra, 2014).

One notable and hypothetical requirements is represented by the γ-model (Hart and Kurz,

1983) which prescribes that the reaction of the residuals is to divide themselves into singletons.

This assumption is justified by the the idea that a coalition ca be viewed as a result of a unanimous

agreement among its members. In our setting, the γ-model can be formalized as follow:

(3) γ-model

For all x, y ∈ X and S ∈ E(x, y), if i ∈ N \ (S ∪ U(x, S)), then {i} ∈ π(y).
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2.2 Specific Setting 2: One-to-One Matching

We consider the two sided one-to-one matching model from Gale and Shapley (1962). The model

consists of a set N of individuals partitioned in two subgroups, (M,W ), and a strict preference

relation � over the set M ×W which gives to each player a complete and transitive preference

ordering.

A matching is an injection of the form:

µ : M ∪W −→M ∪W

m 7−→ µ(m)

w 7−→ µ(w)

satisfying the following properties:

1. For every m ∈M,µ(m) ∈W ∪ {m}.

2. For every w ∈W,µ(w) ∈M ∪ {w}.

In this setting, the state space X consists of the set of all possible one-to-one matchings,

typically denoted by M.

In particular we consider the following discrete metric:

d(µ, µ′) = 1{µ6=µ′}

Given a matching µ ∈ X, a player i ∈ N is said to be unmatched if µ(i) = i. Consequently,

a coalition S ⊆ N is said to be unmatched if µ(S) = S.

Each m ∈ M has a complete transitive strict preference relation �m over the set W ∪ {m}
and each w ∈ W has a complete transitive strict preference relation �w over the set M ∪ {w}.
We assume that the preferences of the individuals over the set X are induced by their preference

over their match, i.e., m prefers matching µ over µ′ if µ(m) �m µ′(m) and w prefers µ over µ′ if

µ(w) �w µ′(w).

Imposing restrictions on the effectivity correspondence allows us to study the consequences

of different hypothesis on the matching process. We introduce two common restrictions from the

literature on matching.

The first restriction requires that every (non-single) individual, m or w, is allowed to break his

link with his current partner. Doing this makes the individual and their former partners single.

Moreover all the other individuals remain with the same partner. Formally:

(1) For all i ∈ N and µ ∈ X with µ(i) 6= i, we have {i} ∈ E(µ, µ′) where µ′ ∈ X is such that

(i) µ′(i) = i,

(ii) µ′(µ(i)) = µ(i), and

(iii) for every j ∈ N \ {i, µ(i)} we have µ′(j) = µ(j).
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The second restriction requires than any m and w that are currently not matched to each other

can deviate by creating a link and thereby leaving their former partners single. Moreover all the

other individuals remain with the same partner. Formally:

(2) For all m′ ∈ M , w′ ∈ W , and µ ∈ X with µ(m′) 6= w′, we have that {m′, w′} ∈ E(µ, µ′),

where µ′ ∈ X is such that

(i) µ′(m′) = w′,

(ii) µ(m′) ∈W implies µ′(µ(m′)) = µ(m′)

(iii) µ(w′) ∈M implies µ′(µ(w′)) = µ(w′),

(iv) for every j ∈ N \ {m′, w′, µ(m′), µ(w′)} it holds that µ′(j) = µ(j).

Observe that these two conditions respect the γ-model of coalitional sovereignty.
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2.3 Specific Setting 3: Networks

We consider the model of social and economic networks by Jackson and Wolinsky (1996).

A network is defined as a tuple g := (N, E). N = {1, ..., n} is the finite a set of players and E is

the set of the undirected edges, where an undirected edge is a set of two distinct individuals. The

set of all possible links between the players is denoted by gN := {i, j|i, j ∈ N, i 6= g}. Moreover,

the set of all possible network is denoted by G := {g|g ⊆ gN}.
Two players are i, j ∈ N are linked in g if and only if i, j ∈ E . We often abuse notation and

we write ij ∈ g to indicate that i and j are connected under the network g. As the edges are

undirected, given some i, j ∈ N and g ∈ G, ij ∈ g is equivalent to ji ∈ g. For any network g let

N(g) = {i ∈ N |∃j ∈ N such that ij ∈ g} be the set of individuals who have at least one link in

g.

Let g+ ij be the network obtained from network g by adding the link ij and let g− ij be the

network obtained by deleting the link ij from g.

We define a value function v such that:

v : G −→ R

g 7−→ v(g)

v(g) ∈ R

where v(g) is the worth of the network g.

Let V be the set of all value functions. Given V , an allocation rule is a map Y such that:

Y : G× V −→ Rn

(g, v) 7−→ Y (g, v)

Y (g, v) ∈ Rn

thus Yi(g) ∈ R denotes the single payoff for every i ∈ g.

A network problem is given by (N,G, (Yi)i∈N ).

Such a network can be represented within our general framework of abstract game identifying

the state space X with the set of all possible networks G
Moreover, we endow the state space X with the following metric

d(g, g′) = 1{g 6=g′}

where 1{g 6=g′} is the discrete metric.

Every agent i ∈ N has a preference relation �i over the set X of all possible networks defined

by x �i x′ if Yi(x) ≥ Yi(x′).
We follow Jackson and Wolinsky (1996) by considering deviations by coalitions of size one or

two and by assuming link-deletion to be one-sided and link addition to be two-sided. One-sided
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link deletion allows every player to delete one of its links.

(1) For all individuals i ∈ N , all networks g ∈ X, and all links ij ∈ g, {i} ∈ E(g, g − ij).

Two sided link addition allows any two players that are currently not-linked can change the

network by forming a link between themselves.

(2) For all individuals i, j ∈ N , all networks g ∈ X with ij /∈ g, we have {i, j} ∈ E(g, g + ij).

It is straightforward to adjust the effectivity correspondence to incorporate models of network

formation where more than one link at a time can be changed by coalitions of arbitrary size

(Dutta and Mutuswami, 1997; Jackson and van den Nouweland, 2005) or where link formation

is one-sided (Bala and Goyal, 2000) into our framework. We refer to Page and Wooders (2009)

for a more extensive discussion of alternative rules of network formation.
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2.4 Specific Setting 4: Normal Form Games

A normal form game is a triple

G := (N, (Si)i∈N , (ui)i∈N )

where N is the set of players and (Si)i∈N is the set of strategies for all i ∈ N . The utility

function ui is a real value function such that:

ui : S −→ R

s 7−→ ui(s)

ui(s) ∈ R

where S := ×i∈NSi is the set of all strategy profile that can be chosen by the various players.

In particular, for each i ∈ N and for every si ∈ Si, we denote by (si, s−i) the strategy profile

where si is the strategy of player i and s−i is the list of strategy of every player except i, i.e.

s−i := (sj)j∈N\{i}

We can represent a normal form game by a general framework of abstract game as follows.

The state space consists of all strategy profiles, i.e., X = S.

Furthermore, we consider the following product metric:

d(s, s′) =

|N |∑
i=1

di(si, s
′
i)

For each individual i ∈ N , the preference relation �i is represented by ui : Si −→ R if

si �i s′i ⇔ ui(si) ≥ ui(s′i) for all si, s
′
i ∈ X.

To define the effectivity correspondence, first note that in such a non-cooperative game, each

coalition is a singleton {i}. Each coalition {i} can change a state from s = (si, s−i) to state s′,

i.e., {i} ∈ E(s, s′) if and only if s′ = (s′i, s−i) for some s′i ∈ Si.
In this example we stick to the standard interpretation of a normal-form game where only

individuals can deviate. By adjusting the effectivity correspondence, our framework can easily

accommodate deviations by groups of players as for instance considered in the concept of strong

Nash equilibrium introduced in Aumann (1959).
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Chapter 3

Solution Concept and General

Properties

In this section, first we introduce our notion of asymptotic dominance then we use this new notion

to define our solution concept, the Myopic Stable Set.

In the second part of this section, we establish existence, non-emptiness and uniqueness of

the solution concept.

We conclude providing some general characterizations.

3.1 Asymptotically Dominance

Intuitively, given two states x and y we say that a state y dominates x if there is a coalition which

can move from y to x and each member of the coalition is better off. This intuition is formalized

in the following definition:

Definition 17 (Dominance). A state y ∈ X dominates x ∈ X under E, y � x, if there exist a

coalition S ∈ N such that S ∈ E(x, y) and y �i x for every i ∈ S.

Furthermore, let us define the dominance correspondence

f : X −→ X

x 7−→ f(x)

f(x) ⊆ X

by

f(x) := {x} ∪ {y ∈ X|y � x}.

In words, f(x) is the subset of X which contains all states that dominate x and x itself.
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We define a composition f2 of two dominance correspondences by

f2(x) := f(f(x)) := {z ∈ X|∃y ∈ f(x) : z ∈ f(y)}.

Thus f2(x) is a particular subset of X which contains all the states that dominate x by a

composition of two dominance correspondences.

Extending the same idea, we define fk a subset of X which contains all states that dominate x

by a composition of dominance correspondences of length k ∈ N, i.e. y ∈ fk(x) if there is a z ∈ X
such that y ∈ f(z) and z ∈ fk−1(x). Observe that for all k, t ∈ N if k ≤ t, then fk(x) ⊆ f t(x).

We define the set of all states that can be reached from x by a finite number of dominations

by fN(x), where

fN(x) :=
⋃
k∈Nf

k(x)

Differing from most of the previous literature, we allow for infinite state spaces.

Thus, for our solution concept, we impose asymptotic dominance which is slightly weaker

than dominance.

In words, a state y asymptotically dominates x if starting from y one can get arbitrary close

to x in a finite number of steps.

The next defines formally our notion of asymptotic dominance:

Definition 18 (Asymptotic Dominance). A state y ∈ X asymptotically dominates x ∈ X under

E, if for all ε > 0 there exists an k ∈ N, and a y∗ ∈ fk(x) such that d(y, y∗) < ε.

Given x ∈ X, we define f∞(x) as the set of all the states y ∈ X that asymptotically dominate

x. Formally,

f∞(x) := {y ∈ X|∀ε > 0 ∃k ∈ N, y∗ ∈ fk(x) s.t. d(y, y∗) < ε}.

The definition implies that f∞(x) is the closure of (fN(x)):

f∞(x) := cl(fN(x))

Hence, given x ∈ X, f∞(x) is the smaller subset of X containing fN(x).
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3.2 The Myopic Stable Set

Let Ω be the collection of all abstract games Γ := (N,X,E, {�i}i∈N )

Definition 19 (Set-valued solution concept). We define a set-valued solution concept for abstract

game as a correspondence Φ such that

Φ : Ω −→ 2X

(N,X,E, {�i}i∈N ) 7−→ Φ(N,X,E, {�i}i∈N )

Φ(N,X,E, {�i}i∈N ) ⊆ 2X

In words, Φ assigns to each abstract game (N,X,E, {�i}i∈N ) ∈ Ω a collection of subsets of

X.

A solution of an abstract game, denoted by ϕ(N,X,E, {�i}i∈N ) ⊆ X, is an element of

Φ(N,X,E, {�i}i∈N ) ⊆ 2X , i.e. ϕ(N,X,E, {�i}i∈N ) ∈ Φ(N,X,E, {�i}i∈N ).

We now define our solution concept, the Myopic Stable Set:

Definition 20 (Myopic Stable Set). The set M ⊆ X is a Myopic Stable Set (MSS) if it closed

and it satisfies the following three conditions:

[1] Deterrence of external deviations: For every state x ∈ M and every state y ∈ X \M , we

have y /∈ f(x).

[2] Myopic External Stability : For every y ∈ X\M we have that f∞(y) ∩M 6= ∅.

[3] Minimality : @M ′ (M such that M ′ satisfies Conditions [1] and [2].

For any state inside the Myopic Stable Set, Condition [1] requires that there is no transfor-

mation to a state outside the set which is preferred by all members of the switching coalition.

By Condition [2], any state inside the Myopic Stable Set can be reached from a point outside the

set by a combination of dominance correspondences. Furthermore, Condition [2] implies that if

M exists then it is non-empty. Condition [3] requires M to be the minimal subset of X which

satisfies Conditions [1] and [2].

Denoting by ΦMSS the particular rule the assigns to each Γ := (N,X,E, (�i)i∈N ) a collection

of Myopic Stable Sets, we say that ΦMSS(N,X,E, {�i}i∈N ) is the collection of all Myopic Stable

Sets of a given Γ := (N,X,E, {�i}i∈N ).

For finite state spaces, it does not matter if one uses fN or f∞ in the definition of external

stability. On the other hand, for infinite state spaces, the asymptotic dominance relation f∞ is

the natural extension of fN.

Also when the state space is infinite, the Myopic Stable Set might fail to exist if one uses fN

instead of f∞ in the definition of external stability.

The following example highlights why a standard dominance criterion fail with a infinite state

space and why the asymptotic dominance is essential.
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Example 1. Consider the abstract game

Γ = ({1}, (X, d),�1),

where,

X =

{
1

k

∣∣∣∣k ∈ N
}
∪ {0},

and d is the usual metric on X, d(x, y) = |x− y|. As such, X is closed and limited. Preferences

�1 are defined by x �1 y if and only if x = y or y > x ≥ 0. The effectivity correspondence E is

defined by setting E(1/k, 1/(k + 1)) = {1} for every k ∈ N and E(x, y) = ∅ otherwise. It follows

that

f(1/k) = {1/k, 1/(k + 1)} .

Observe that 0 ∈ f∞(x) for every x ∈ X and that f(0) = {0}. It now follows easily that {0} is

an MSS.

Suppose we replace the requirement of external stability by the stronger notion that for all

states x /∈ M , fN(x) ∩ M 6= ∅. Since, for every k ∈ N, 0 /∈ fN (1/k) , the set {0} does not

satisfy external stability according to this stronger notion. Actually, we can show that there

is no closed set satisfying this stronger notion of external stability together with deterrence of

external deviations and minimality. Towards a contradiction, assume that the closed set M ⊆ X
satisfies these properties. Given that M 6= {0} and M is non-empty, there is k ∈ N such that

1/k ∈M . Moreover, let k be the smallest such number. It is possible to verify that the closed set

M ′ := M \ {1/k} satisfies deterrence of external deviations. and the stronger notion of external

stability. Now, since the closed set M ′ is a proper subset of M , M violates the minimality

property.
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3.3 Existence

In this section we prove that the Myopic Stable Set always exists.

First we provide the definition of Quasi Myopic Stable Set (QMSS):

Definition 21 (Quasi Myopic Stable Set). A set M ⊆ X is a Quasi Myopic Stable Set iff it is

closed and satisfies conditions [1] and [2].

Theorem 1 (Existence). For any abstract game Γ := (N,X,E, {�i}i∈), there exists at least one

Myopic Stable Set.

Proof. First observe that X is a Quasi Myopic Stable Set. Indeed, since it is compact, it is closed.

Moreover it trivially satisfies deterrence of external deviations and external stability.

Let Z be the collection of all Quasi Myopic Stable Sets that are contained in X. Observe

that Z is non-empty, given that X ∈ Z.

We will use Zorn’s lemma to show the existence of a minimal element in Z.

Let (Z,⊇) be a partially ordered set. We say that Zβ ∈ Z is a minimal element if Zα ⊇ Zβ

implies Zα = Zβ .

Let I be an index set and S := {Zα|α ∈ I} be a decreasing chain in Z, i.e. Zα ⊇ Zβ ⊇ ...
Moreover, let . and order on I such that for α, β ∈ I, we write α . β if Zα ⊆ Zβ .

We say that Zβ ∈ Z is a lower bound of S if Zβ ⊆ Zα for every Zα ∈ S.

In order to apply Zorn’s Lemma, we have to show that S has a lower bound. LetM = ∩α∈IZα.

Clearly M is a lower bound of S. First of all, observe that M is closed as it is defined as an

intersection of closed sets. Hence, we proceed by showing that M ∈ Z, i.e. we have to show that

M satisfies condition [1] and [2].

Deterrence of external deviations: Let x ∈ M and y /∈ M be given. Then there is α ∈ I
such that y /∈ Zα, since otherwise y ∈ Zα for all α ∈ I, which means that y ∈ M . Since x ∈ Zα

and Zα satisfies deterrence of external deviations, we obtain y /∈ f(x) as was to be shown.

External stability: Consider some y /∈ M . Then there is α ∈ I such that y /∈ Zα. As S is a

chain, it follows that for all β . α, we have y /∈ Zβ .

For every β . α, there is xβ ∈ Zβ such that xβ ∈ f∞(y), since Zβ satisfies external stability.

This defines a net {xβ}β.α. Given that X is compact, it follows by Theorem 2.31 of Aliprantis

and Border (2006) that this net has a convergent subnet, say {xβ′}β′∈I′ , where I ′ ⊆ I is such

that for all β ∈ I, there is a β′ ∈ I ′ such that β′ .β. Let x be the limit of this convergent subnet.

We split the remaining part of the proof in two steps. First, we show that x ∈ M . Second, we

show that x ∈ f∞(y).

Step 1: x ∈ M : Towards a contradiction, suppose that x /∈ M . Then, there exists γ ∈ I such

that x /∈ Zγ . In particular, given that Zγ is a closed set, there is ε > 0 such that Bε(x)∩Zγ = ∅.
Since S is a chain, we have that Bε(x) ∩ Zδ = ∅ for all δ . γ. Since x is the limit of the subnet

{xβ′}β′∈I′ , there is γ′ ∈ I ′ such that γ′.γ and xγ
′ ∈ Bε(x). Then we have xγ

′ ∈ Zγ′ , xγ′ ∈ Bε(x),

and Bε(x) ∩ Zγ′ = ∅, a contradiction. We conclude that x ∈M .
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Step 2: x ∈ f∞(y): We need to show that for every ε > 0 there is k ∈ N and x ∈ fk(y) such

that d(x, x) < ε.

Let some ε > 0 be given. The subnet {xβ′}β′∈I′ converges to x. As such, there exists γ′ ∈ I ′

such that d(xγ
′
, x) < ε/2. In addition, xγ

′ ∈ f∞(y), so there is k ∈ N and x ∈ fk(y) such that

d(x, xγ
′
) < ε/2. Then, by the triangle inequality, it holds that

d(x, x) ≤ d(x, xγ
′
) + d(xγ

′
, x) < ε.

Together with x ∈ fk(y), this concludes the proof, i.e., x ∈ f∞(y).

Having established existence of an MSS, in the next section we are going to analyze the

cardinality of such sets.
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3.4 Uniqueness

In this section, we establish uniqueness of the Myopic Stable Set under slightly stronger assump-

tions. In particular, we impose the following additional continuity assumption on the dominance

correspondence.

The first lemma derives a property of the MSS that will be used frequently in the following

proofs.

Lemma 2. Let Γ be an abstract game and let M be a myopic stable set of Γ. For all x, y ∈ X,

if x ∈M and y ∈ f∞(x) then y ∈M .

Proof. Let x ∈M and y ∈ f∞(x) and assume, towards a contradiction, that y /∈M . Given that

M is closed, there is ε > 0 such that Bε(y) ∩M = ∅. Also, by definition, there is k ∈ N and

z ∈ fk(x) such that z ∈ Bε(y), i.e. z /∈ M . Since z ∈ fk(x), there is a sequence z0, z1, . . . , zk of

length k such that

z0 = x, z1 ∈ f(z0), . . . , zk = z ∈ f(zk−1).

Let k′ ∈ {1, . . . , k} be such that zk
′

is the first element in this sequence with the property that

zk
′
/∈ M . Given that z0 = x ∈ M and zk = z /∈ M , such an element exists. It holds that

zk
′−1 ∈ M , zk

′ ∈ f(zk
′−1), and zk

′
/∈ M . This contradicts deterrence of external deviations for

M .

The following lemma shows that any two myopic stable sets cannot be disjoint.

Lemma 3. Let Γ be an abstract game and let M1 and M2 be two myopic stable sets of Γ. Then

M1 ∩M2 6= ∅.

Proof. Consider a state x1 ∈M1. If x1 ∈M2, then we are done. Otherwise, by external stability

of M2 we know that there is x2 ∈ M2 such that x2 ∈ f∞(x1). Lemma 2 tells us that x2 ∈ M1,

so x2 ∈M1 ∩M2.

The following example shows that uniqueness of an MSS cannot be demonstrated without any

additional assumptions.

Example 2. Consider the abstract game Γ = ({1}, (X, d), E,�1), where

X = {0, 1/2, 1} ∪
{

1
k | k ∈ N \ {1, 2}

}
∪
{

1− 1
k | k ∈ N \ {1, 2}

}
,

and the metric is d(x, y) = |x− y|.
The effectivity correspondence is such that the individual can move from both states 0 and

1 to state 1/2 and, for every k ∈ N \ {1, 2}, from state 1 − 1/k to state 1/k and from state 1/k

to state 1 − 1/(k + 1). The individual cannot make any other moves. The preferences of the

individual are such that

2
3 ≺1

1
3 ≺1

3
4 ≺1

1
4 ≺1

4
5 ≺1

1
5 ≺1 · · · ≺1 1 ≺1 0 ≺1

1
2 .
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Now, we claim that both {0, 1/2} and {1/2, 1} are myopic stable sets. It is easy to see that they

both satisfy deterrence of external deviations (notice that the individual cannot move from 1 to

0). For external stability, observe that for every k ∈ N \ {1, 2} it holds that 0, 1 ∈ f∞(1/k) and

0, 1 ∈ f∞(1−1/k). Moreover, it holds that 1/2 ∈ f(0) = f∞(0) and 1/2 ∈ f(1) = f∞(1). Finally,

for minimality, the sets {0} and {1} violate deterrence of external deviations since 1/2 ∈ f(0)

and 1/2 ∈ f(1). The set {1/2} violates external stability as 1/2 /∈ f∞(x) for any x ∈ X different

from 0, 1/2 and 1.

Although Example 2 shows that the MSS is not necessarily unique, we can restore uniqueness

by imposing the following mild continuity assumption on the dominance correspondence f .

Definition 22 (Lower Hemi-continuity of f). The dominance correspondence f : X → X is lower

hemi-continuous if for every sequence {xk}k∈N in X such that xk → x and for every y ∈ f(x)

there is a sequence {yk}k∈N in X such that for all k, yk ∈ f(xk) and yk → y.

In words, if there is a sequence of states converging to x and y dominates x, then it is possible

to find a sequence of states that converges to y such that each element in this sequence dominates

the corresponding element of the sequence that converges to x. Later on, we will show that this

condition is always satisfied if preferences are continuous and some continuity condition on the

effectivity relation is satisfied. The following technical lemma is helpful in proving uniqueness of

an MSS.

Lemma 4. If the dominance correspondence f : X → X is lower hemi-continuous, then the

asymptotic dominance correspondence f∞ : X → X is transitive.

Proof. Let x, y, z ∈ X be such that y ∈ f∞(x) and z ∈ f∞(y). We have to show that z ∈ f∞(x),

so we need to show that for every ε > 0, there is k′ ∈ N and z′ ∈ fk′(x) such that d(z′, z) < ε.

By assumption, z ∈ f∞(y), so there is k ∈ N and z1 ∈ fk(y) such that d(z1, z) < ε/2. In

addition, as y ∈ f∞(x), we know that for every ` ∈ N there is k` ∈ N and y` ∈ fk`(x) such that

d(y`, y) < 1/`. This generates a sequence {y`}`∈N that converges to y, i.e., y` → y.

Note that fk is lower hemi-continuous, since it is a composition of k lower hemi-continuous

correspondences. Given lower hemi-continuity of fk and the fact that z1 ∈ fk(y), we know that

there is a sequence {z`2}`∈N such that z`2 → z1 and z`2 ∈ fk(y`). Now, we have that y` ∈ fk`(x)

and z`2 ∈ fk(y`), which gives z`2 ∈ fk+k`(x).

Take ` large enough such that d(z`2, z1) < ε/2. Conclude that z`2 ∈ fk+k`(x) and

d(z`2, z) ≤ d(z`2, z1) + d(z1, z) < ε.

This completes the proof.

We are now ready to establish the uniqueness of an MSS whenever the dominance correspon-

dence f is lower hemi-continuous.
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Theorem 2. Let Γ be an abstract game such that the corresponding dominance correspondence

f is lower hemi-continuous. Then Γ has a unique MSS.

Proof. Suppose not, then, by Theorem 1 and Lemma 3, there exists an MSS M1 and an MSS

M2 such that M1 6= M2 and their intersection M3 = M1 ∩M2 is non-empty. Let us show that

M3 is a QMSS, contradicting the minimality of M1 and M2, and establishing the uniqueness of

the MSS. First of all, notice that M3, being the intersection of two closed sets, is also closed.

For deterrence of external deviations, let x ∈ M3 and, towards a contradiction, suppose that

y ∈ f(x) and y /∈M3. Then given that x ∈M1 and M1 satisfies deterrence of external deviations,

it must be that y ∈M1. Also given that x ∈M2 and M2 satisfies deterrence of external deviations,

it must be that y ∈ M2. This implies that y ∈ M1 ∩M2 = M3, a contradiction. Consequently,

M3 satisfies deterrence of external deviations.

For external stability, take any y /∈M3. There are three cases to consider.

Case 1: y ∈ M1 \M3: Then, by external stability of M2, there is x ∈M2 such that x ∈ f∞(y).

By Lemma 2, we have that x ∈ M1. This means that x ∈ M2 ∩M1 = M3 what we needed to

show.

Case 2: y ∈ M2 \M3: The proof is symmetric to Case 1 with M1 and M2 interchanged.

Case 3: y ∈ X \ (M1 ∪M2): We know, by external stability of M1, that there is x ∈ M1

such that x ∈ f∞(y). If x ∈ M3, we are done. If not, we know from Case 1 above that there

is z ∈ M3 such that z ∈ f∞(x). It follows from x ∈ f∞(y) and z ∈ f∞(x) that z ∈ f∞(y) by

Lemma 4.

The continuity condition of Theorem 2 is trivially satisfied when the state space X is finite.

As such, for all applications with a finite state space, we have uniqueness of the MSS.

The dominance correspondence f is defined in terms of the individual preference relations

(�i)i∈N and the effectivity correspondence E. It might therefore be difficult to verify lower

hemi-continuity of f directly. We therefore provide conditions on the primitives of a social

environment that imply lower hemi-continuity of f . As a first condition, we impose continuity of

the preferences.

Definition 23 (Continuity of Preferences). The preference relation �i of individual i ∈ N is

continuous if for any two sequences {xk}k∈N and {yk}k∈N in X with xk → x and yk → y and,

for every k ∈ N, xk �i yk, it holds that x �i y.

Our second condition is lower hemi-continuity of the effectivity correspondence E. Towards

this end, consider, for every S ∈ N , the correspondence GS : X → X defined by

GS(x) = {x} ∪ {y ∈ X | S ∈ E(x, y)}, x ∈ X,

which associates to every state x ∈ X the set of states coalition S can move to together with

state x itself.
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Definition 24 (Lower Hemi-continuity of E). The effectivity correspondence E is lower hemi-

continuous if for every coalition S ∈ N the correspondence GS : X → X is lower hemi-continuous,

i.e., for every sequence {xk}k∈N in X such that xk → x and for every y ∈ GS(x) there is a sequence

{yk}k∈N such that yk ∈ GS(xk) and yk → y.

Theorem 3 shows that continuity of preferences and lower hemi-continuity of E is sufficient

for the dominance correspondence f to be lower hemi-continuous.

Theorem 3. Let Γ be an abstract game such that the preferences (�i)i∈N are continuous and

the effectivity correspondence E is lower hemi-continuous. Then the dominance correspondence

f is lower hemi-continuous.

Proof. Let x, y ∈ X and sequences {xk}k∈N and {yk}k∈N in X be given. Let us first show that

if individual i ∈ N strictly prefers y to x, y �i x, then there is a number ` ∈ N such that for all

k ≥ `, yk �i xk. Suppose not, then for every ` ∈ N we can find k` ≥ ` such that xk` �i yk` . This

creates sequences {xk`}`∈N, {yk`}`∈N in X with xk` → x and yk` → y such that xk` �i yk` . By

continuity of �i, x �i y, a contradiction.

Let {xk}k∈N be a sequence in X such that xk → x ∈ X and consider some y ∈ f(x). Then

either y = x or y 6= x and there is a coalition S such that S ∈ E(x, y) and y �i x for all i ∈ S.

If y = x, take the sequence {yk}k∈N in X defined by yk = xk. We immediately have that, for

every k ∈ N, yk ∈ f(xk) and yk → y.

If y 6= x and there is a coalition S such that S ∈ E(x, y) and y �i x for all i ∈ S, we need

to show that there is a sequence {yk}k∈N such that for all k, yk ∈ f(xk) and yk → y. By lower

hemi-continuity of the correspondence GS , we know that there is a sequence {yk}k∈N such that

yk ∈ GS(xk) and yk → y. By the first paragraph of the proof, we know that for every i ∈ N
there is `i ∈ N such that yk �i xk for all k ≥ `i. Let ` = maxi∈S `i. Then, for every k ≥ ` and

every i ∈ S, yk �i xk and S ∈ E(xk, yk), which shows that yk ∈ f(xk). The sequence {zk}k∈N
defined by zk = xk if k < ` and zk = yk if k ≥ ` therefore has all the desired properties.

Combining Theorem 2 and Lemma 3 directly yields the following corollary which gives a

sufficient condition on the primitives of the model to obtain a unique MSS.

Corollary 1. Let Γ be an abstract game such that the preferences (�i)i∈N are continuous and

the effectivity correspondence E is lower hemi-continuous. Then there is a unique MSS.
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3.5 Characterization and Structure

In this section, first we introduce the notion of closed cycle. Then we characterize the Myopic

Stable Set by proving that the set of all closed cycles is contained in the Myopic Stable Set if the

state space is infinite and that it coincide with Myopic Stable Set if the state space is finite.

Furthermore, we characterize the Core in term of closed cycle and then we show that the

Myopic Stable Set is a superset of the Core.

We conclude the section introducing the definition of weak improvement property and by

showing that the Core coincides with the Myopic Stable Set if the abstract game exhibits this

property.

Definition 25 (Closed Cycle). A closed cycle of an abstract game Γ is a set C ⊆ X such that

for every x ∈ C it holds that f∞(x) = C.

Intuitively, a closed cycle is a subset of X which is closed under the asymptotic dominance

correspondence f∞. We denote the union of all closed cycles by CC, so CC contains all the

states that are part of some closed cycle. The following result characterizes the MSS for finite

abstract games as the union of all closed cycles and shows that this union is a subset of the MSS

for abstract game with an infinite state space.

Theorem 4. Let Γ be an abstract game and M be an MSS of Γ. It holds that CC ⊆ M . If X

is finite, we have CC = M .

Proof. Towards a contradiction, suppose there is a closed cycle C which is not a subset of M .

Let x ∈ C and x /∈M . By external stability there is y ∈M such that y ∈ f∞(x). As x ∈ C, we

also have that x ∈ f∞(y). By Lemma 2, it follows that x ∈M , a contradiction. Since the choice

of C was arbitrary, we have shown that CC ⊆M .

We show next that if X is finite, then CC = M . Since CC ⊆ M , we only need to show

that CC is a QMSS. The set CC satisfies deterrence of external deviations, since for all x ∈ CC,

f(x) ⊆ f∞(x) ⊆ CC. It remains to verify external stability of CC, i.e., for every state x /∈ CC,

f∞(x) ∩ CC 6= ∅.
Let x /∈ CC and define Y = f∞(x). Note that Y is non-empty sincex ∈ f(x), finite and that

f∞(y) ⊆ Y for every y ∈ Y . Let us represent the set Y and the dominance relation f on Y by a

finite directed graph D, i.e., (i) Y are the vertices of D and (ii) D has an arc from y to z if and

only if z ∈ f(y). By contracting each strongly connected component of D to a single vertex, we

obtain a directed acyclic graph, which is called the condensation of D. As the condensation is

finite and acyclic, it has a maximal element, say c. Observe that c represents a closed cycle C,

so Y ∩ CC 6= ∅.

A sink is a closed cycle which consists of only one state, i.e., f(x) = x. The union of all sinks

is called the core.

Definition 26 (Core). Let Γ be an abstract game. The core of Γ is given by

CO = {x ∈ X | f(x) = {x}}.
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It is well-known that the core may be empty for some abstract game. However, if it is not

empty, then it is always contained in the myopic stable set by virtue of Theorem 4.

Corollary 2. Let Γ be an abstract game and let M be an MSS. Then we have CO ⊆M .

The next definition is inspired by the finite analogue for normal-form games as presented in

Friedman and Mezzetti (2001).

Definition 27 (Weak (Finite) Improvement Property). An abstract game Γ satisfies the weak

finite improvement property if for each state x ∈ X, fN(x) contains a sink and the weak improve-

ment property if for each state x ∈ X, f∞(x) contains a sink.

The following provides a characterization for the MSS in abstract game with the weak im-

provement property.

Theorem 5. Let Γ be an abstract game and let f be lower hemi-continuous. Then, the MSS of

Γ is equal to the core if and only if the abstract game satisfies the weak improvement property.

Proof. Assume that Γ has the weak improvement property. By Corollary 2, CO ⊆ M . We will

show that CO is a QMSS. By minimality, it then follows that CO = M .

In order to see that CO is closed let {xk}k∈N be a sequence in CO, i.e., for all k, {xk} = f(xk).

Now assume that xk → x and x /∈ CO. This means that there is y 6= x such that y ∈ f(x). By

lower hemi-continuity of f , there should be a sequence {yk}k∈N such yk ∈ f(xk) and yk → y.

As for all k, xk ∈ CO, we have that for all k, yk = xk which means that yk → x 6= y, a

contradiction. Deterrence of external deviations is immediate for the core as it is the union of

sinks. If the abstract game satisfies the weak improvement property we have that for all x /∈ CO,

f∞(x) ∩ CO 6= ∅ thus the core satisfies external stability.

For the reverse, assume that CO = M . Now, if x ∈ M , it is a sink, so f∞(x) = {x} ⊆ CO.

If x /∈ CO we have by external stability of M , that f∞(x) ∩M 6= ∅, so f∞(x) contains a sink.

This shows that Γ satisfies the weak improvement property.

The requirement of lower hemi-continuity of f in Theorem 5 can be weakened to the require-

ment that CO should be closed.
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Chapter 4

Application to Specific Settings

In this section we discuss how our results can be applied to the specific settings presented in

chapter 2.

4.1 TU Games with Coalition Structure

We can associate a social environment Γ = (N, (X, d), E, (�i)i∈N ) to each TU game with coalition

structure (N, v, π) as in Section 2.1, so we impose the properties of non-interference, full support

and the γ-model.

By Theorem 1 we know that there exists at least one non-empty MSS. Let us first show that

for TU games with coalition structure, the MSS is also unique. Towards this end, we first show

that the preference relations �i are continuous and that the effectivity correspondence E is lower

hemi-continuous.

Lemma 5. Let (N, v, π) be a TU game with coalition structure and let Γ = (N, (X, d), E, (�i
)i∈N ) be the induced abstract game as in Section 2.1. Then, for every i ∈ N , the preference

relation �i is continuous and the effectivity correspondence E is lower hemi-continuous.

Proof. Let some i ∈ N be given. To show continuity of �i, let {xk}k∈N and {yk}k∈N be sequences

in X such that xk → x and yk → y. Then, by the continuity of ui, we have that ui(x
k)→ ui(x)

and ui(y
k) → ui(y). So if ui(x

k) ≥ ui(y
k) for all k ∈ N, we obtain ui(x) ≥ ui(y), which shows

that x �i y.

To show lower hemi-continuity of E, let some S ∈ N , a sequence {xk}k∈N in X such that

xk → x and some y ∈ GS(x) be given. We show that there is a sequence {yk}k∈N such that

yk ∈ GS(xk) and yk → y. If y = x, then the choice yk = xk would do, so consider the case y 6= x,

First of all, there is k′ ∈ N such that for all k ≥ k′, π(xk) = π(x), so in particular U(xk, S) =

U(x, S). For every k < k′, we define yk = xk. For every k ≥ k′, we define yk ∈ X by π(yk) = π(y)
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and

ui(y
k) =

{
ui(y), i ∈ N \ U(x, S),

ui(x
k), i ∈ U(x, S).

Consider some k ≥ k′. Since y 6= x, it holds that S ∈ π(y) and, for every i ∈ N \ (S ∪ U(x, S)),

we have that i is a residual player and the properties of the γ-model imply that {i} ∈ π(y). The

same properties hold for π(yk). For every i ∈ S, it holds that ui(y
k) = ui(y), so ui(y

k) ≥ v({i})
and

∑
i∈S ui(y

k) = v(S). For every i ∈ N \ (S ∪ U(x, S)), we have that ui(y
k) = v({i}) = ui(y).

For every i ∈ U(x, S) it holds that ui(y) = ui(x) and ui(y
k) = ui(x

k). By coalitional sovereignty,

we have that yk ∈ GS(xk). Using that xk → x, it follows easily that yk → y.

Lemma 5 together with Theorem 2 and Theorem 3 shows uniqueness of the MSS.

Corollary 3. Let (N, v) be a coalition function form game and let Γ be the induced abstract

game as in Section 2.1. Then Γ has a unique MSS.

In fact, most other models of coalitional sovereignty will also lead to lower hemi-continuity of

E so will also have a unique MSS. However, establishing the lower hemi-continuity of E must be

done case by case.

The Coalition Structure Core One of the most prominent set-valued solution concepts for

coalition function form games is the coalition structure core.

Definition 28 (Coalition Structure Core). Let (N, v, π) be a TU game with coalition structure

and let Γ = (N, (X, d), E, (�i)i∈N ) be the induced abstract game as in Section 2.1. The coalition

structure core of (N, v, π) is the set of states x ∈ X such that for every coalition S ∈ N∑
i∈S

ui(x) ≥ v(S).

In words, the coalition structure core gives to the members of each coalition at least the payoff

they can obtain by forming that coalition.

Lemma 6. Let (N, v, π) be a TU game with coalition structure and let Γ = (N, (X, d), E, (�i
)i∈N ) be the induced abstract game as in Section 2.1. The coalition structure core of (N, v, π) is

equal to the core of Γ.

Proof. Let Y be the coalition structure core. Let y ∈ CO and assume y /∈ Y . Then there is a

coalition S such that
∑
i∈S ui(y) < v(S). Since y ∈ X, it holds for all i ∈ S, ui(y) ≥ v({i}).

Now, let uS be a vector of payoffs for the members in S such that
∑
i∈S ui = v(S) and for all

i ∈ S, ui > ui(y). Then, by full support, there exists a state y′ ∈ X such that S ∈ E(y, y′) and

uS = uS(y′). Conclude that y′ ∈ f(y). This contradicts the fact that y ∈ CO.

For the reverse, let y ∈ Y and z ∈ f(y) such that z 6= y, i.e., y /∈ CO. Then there is
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S ∈ E(y, z) such that uS(z)� uS(y). Also,

v(S) =
∑
i∈S

ui(z) >
∑
i∈S

ui(y) ≥ v(S),

where the first equality follows from the definition of the state space and the last inequality from

the definition of Y . We have obtained a contradiction.

Kóczy and Lauwers (2004) define the coalition structure core to be accessible if from any

initial state there is a finite sequence of states ending with an element of the coalition structure

core and each element in that sequence outsider independently dominates the previous element.

The notion of outsider independent domination differs from our notion of a myopic improvement

in two ways. First, residual players are not required to become singletons after a move has taken

place. Second, improvements for the members of the coalition that moves are not necessarily

strict improvements.

The following example illustrates that under the requirement of strict improvements of all

members involved in a move, as in our dominance correspondence f , the coalition structure core

does not satisfy strong external stability, i.e., it is not the case that for all states x ∈ X, there is

a state y in the coalitional structure core such that y ∈ fN(x).

Example 3. Let (N, v, π) be a TU game with coalition structure such that N = {1, 2, 3},
v({1, 2}) = 1, and v({2, 3}) = 1. All other coalitions have a worth of 0. Here, player 2 can choose

to form a coalition with either player 1 or player 3 to form a two-person coalition generating a

surplus equal to one. The coalition structure core therefore consists of only two states, y and y′,

with equal payoffs, u(y) = u(y′) = (0, 1, 0), and coalitional structures π(y) = {{1, 2}, {3}}, and

π(y′) = {{1}, {2, 3}}.
Consider an initial state x0 ∈ X such that π(x0) = {{1}, {2}, {3}} and u(x0) = (0, 0, 0). Under

our notion of a myopic improvement, where all players involved in a move have to gain strictly,

a state x1 belongs to f(x0) if and only if either π(x1) = {{1, 2}, {3}} and u(x1) = (ε, 1− ε, 0) for

some ε ∈ (0, 1) or π(x1) = {{1}, {2, 3}} and u(x1) = (0, 1 − ε, ε) for some ε ∈ (0, 1). It follows

that x1 is a state where either player 1 or player 3 receives a payoff of zero and the other two

players receive a strictly positive payoff summing up to 1.

Now consider any state xk such that either player 1 or player 3 receives 0 and the other two

players receive a strictly positive payoff summing up to 1. We claim that any state xk+1 ∈ f(xk)

has the same properties. Without loss of generality, assume that u3(xk) = 0. Let xk+1 be

an element of f(xk) different from xk. Since u1(xk) + u2(xk) = 1, the only coalition that can

move is {2, 3} and it holds that π(xk+1) = {{1}, {2, 3}}. Moreover, it must also hold that

u2(xk+1) > u2(xk) > 0 and u3(xk+1) > u3(xk) = 0, which proves the claim. It now follows that

for every k ∈ N, if xk ∈ fk(x0), then xk is such that there are two players with a strictly positive

payoff. Given this, there is no k ∈ N such that xk belongs to the coalition structure core.

Theorem 6 shows that the MSS coincides with the coalition structure core whenever it is

non-empty.
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Theorem 6. Let (N, v, π) be a TU game with coalition structure, Γ be the induced abstract

game as in Section 2.1, and Y be the coalition structure core of Γ. If Y is non-empty, then the

unique MSS of Γ is equal to Y .

Proof. From Lemma 5 we know that f is lower hemi-continuous. Also Lemma 6 shows that Y is

equal to the core of Γ. If we can show that Γ satisfies the weak improvement property whenever

Y 6= ∅, then we can use Theorem 5 to establish our proof. Since the proof is trivial when the

number of individuals n = 1, we assume n ≥ 2 throughout.

So assume that Y 6= ∅. We need to show that for all x0 ∈ X, f∞(x0) ∩ Y 6= ∅. If x0 in Y ,

then nothing needs to be shown, so assume that x0 ∈ X \ Y . We need to show that for every

ε > 0 there is a number k′ ∈ N, a state xk
′ ∈ fk′(x0), and a state y ∈ Y such that d(xk

′
, y) < ε.

Let some ε > 0 be given. Béal, Rémila, and Solal (2013) show that there exists a sequence

of states (x0, . . . , xk
′
) such that xk

′ ∈ Y , k′ is less than or equal to (n2 + 4n)/4, and, for every

k ∈ {1, . . . , k′},

1. there is Sk ∈ N such that Sk ∈ E(xk−1, xk),

2. uSk(xk−1) < uSk(xk).

Notice that the inequality in 2. only means that at least one of the players in Sk gets a strictly

higher payoff, though not necessarily all of them. Let P k be the set of partners of the players in

Sk at state xk−1, more formally defined as

P k = ∪{S∈π(xk−1)|S∩Sk 6=∅}S,

so P k is equal to the moving coalition Sk together with the residual players. Since Sk ∈
E(xk−1, xk), it follows that

ui(x
k) = v({i}), i ∈ P k \ Sk,

ui(x
k) = ui(x

k−1), i ∈ N \ P k.

We define W k ⊂ Sk to be the, possibly empty, proper subset of Sk consisting of players that

only weakly improve when moving from state xk−1 to state xk, so for every i ∈W k it holds that

ui(x
k−1) = ui(x

k). We define

δ = mink∈{1,...,k′}mini∈Sk\Wk ui(x
k)− ui(xk−1),

ε′ = min{δ, ε},

so δ is the smallest improvement of any of the strictly improving players involved in any move

along the sequence. It holds that δ > 0 and therefore that ε′ > 0. For k ∈ {0, . . . , k′}, define

νk =
n2k

n2k′+1
.

We define e(W k) = 0 ifW k = ∅ and e(W k) = 1 otherwise. We use the sequence (x0, x1, . . . , xk
′
) of

states as constructed by Béal, Rémila, and Solal (2013) to define a new sequence (x̃0, x̃1, . . . , x̃k
′
)
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of states by setting x̃0 = x0 and, for every k ∈ {1, . . . , k′},

π(x̃k) = π(xk),

ui(x̃
k) = ui(x

k) + ε′νk
|Sk\Wk|
|Wk| , i ∈W k,

ui(x̃
k) = ui(x

k)− ε′νke(W k), i ∈ Sk \W k,

ui(x̃
k) = ui(x

k) = v({i}), i ∈ P k \ Sk,
ui(x̃

k) = ui(x̃
k−1), i ∈ N \ P k.

Notice that the first line does not entail a division by zero, since if i ∈W k, then W k 6= ∅.
Compared to the sequence (x0, x1, . . . , xk

′
), the sequence (x̃0, x̃1, . . . , x̃k

′
) is such that each

strictly improving player in Sk \W k donates an amount ε′νk/|W k| to each of the players in W k

whenever the latter set is non-empty. It is also important to observe that the fraction νk is an

n2 multiple of νk−1 and that νk′ = 1/n.

We show first by induction that, for every k ∈ {0, . . . , k′}, x̃k ∈ X. Obviously, it holds that

x̃0 = x0 ∈ X. Assume that, for some k ∈ {1, . . . , k′}, x̃k−1 ∈ X. We show that x̃k ∈ X. It holds

that

ui(x̃
k) > ui(x

k) ≥ v({i}), i ∈W k,

ui(x̃
k) ≥ ui(x

k−1) + δ − ε′νk > ui(x
k−1) + δ − ε′ ≥ ui(xk−1) ≥ v({i}), i ∈ Sk \W k,

ui(x̃
k) = v({i}), i ∈ P k \ Sk,

ui(x̃
k) = ui(x̃

k−1) ≥ v({i}), i ∈ N \ P k,

where the very last inequality follows from the induction hypothesis. Moreover, for every S ∈
π(xk), it holds that either S = Sk and W k = ∅, so∑

i∈S
ui(x̃

k) =
∑
i∈Sk

ui(x
k) = v(S),

or S = Sk and W k 6= ∅, so

∑
i∈S

ui(x̃
k) =

∑
i∈Wk

(
ui(x

k) + ε′νk
|Sk \W k|
|W k|

)
+

∑
i∈Sk\Wk

(
ui(x

k)− ε′νk
)

=
∑
i∈Sk

ui(x
k) = v(S),

or S = {i′} with i′ ∈ P k \ Sk and∑
i∈S

ui(x̃
k) = ui′(x̃

k) = ui′(x
k) = v({i′}) = v(S),

or S ⊆ N \ P k, so S ∈ π(x̃k−1), and∑
i∈S

ui(x̃
k) =

∑
i∈S

ui(x̃
k−1) = v(S),

where the last equality makes use of the induction hypothesis. We have now completed the proof
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of the fact that for every k ∈ {0, . . . , k′}, x̃k ∈ X.
We show next by induction that, for every k ∈ {0, . . . , k′}, and for every i ∈ N ,

|ui(x̃k)− ui(xk)| ≤ ε′νk(n− 1).

Obviously, for every i ∈ N , it holds that |ui(x̃0) − ui(x0)| = 0 ≤ ε′ν0(n − 1). Assume that, for

some k ∈ {1, . . . , k′}, for every i ∈ N , |ui(x̃k−1)− ui(xk−1)| ≤ ε′νk−1(n− 1). We show that, for

every i ∈ N , |ui(x̃k)− ui(xk)| ≤ ε′νk(n− 1). If i ∈W k, then W k 6= ∅, and the statement follows

from the observation that

0 ≤ ui(x̃k)− ui(xk) = ε′νk
|Sk\Wk|
|Wk| ≤ ε

′νk(n− 1).

If i ∈ Sk \W k, then we have that

0 ≥ ui(x̃k)− ui(xk) ≥ −ε′νk ≥ −ε′νk(n− 1).

If i ∈ P k \ Sk, then |ui(x̃k)− ui(xk)| = 0. If i ∈ N \ P k, then it holds that

|ui(x̃k)− ui(xk)| = |ui(x̃k−1)− ui(xk−1)| ≤ ε′νk−1(n− 1) < ε′νk(n− 1),

where the first inequality makes use of the induction hypothesis and the last inequality of the

fact that νk−1 < νk.

Let some k ∈ {1, . . . , k′} and some i ∈ Sk be given. We show that ui(x̃
k) > ui(x̃

k−1). If

i ∈W k, then it holds that

ui(x̃
k) = ui(x

k) + ε′νk
|Sk \W k|
|W k|

= ui(x
k−1) + ε′νk

|Sk \W k|
|W k|

≥ ui(x̃k−1)− ε′νk−1(n− 1) + ε′νk
1

n− 1

> ui(x̃
k−1),

where the strict inequality uses that νk = n2νk−1. If i ∈ Sk \W k, then it holds that

ui(x̃
k) ≥ ui(xk)− ε′νk
≥ ui(xk−1) + δ − ε′νk
≥ ui(x̃k−1)− ε′νk−1(n− 1) + δ − ε′n2νk−1

> ui(x̃
k−1),

where the strict inequality uses the facts that δ ≥ ε′ and

(n2 + (n− 1))νk−1 < 2n2νk−1 ≤ 2νk ≤ 1.
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Combining the statements proven so far, it follows that x̃k
′ ∈ fk′(x0). We complete the proof

of the weak improvement property by noting that xk
′ ∈ Y by the result of Béal, Rémila, and

Solal (2013) and by demonstrating that d(x̃k
′
, xk

′
) < ε. It follows that d(x̃k

′
, xk

′
) < ε since

π(x̃k
′
) = π(xk

′
) and, for every i ∈ N ,

|ui(x̃k
′
)− ui(xk

′
)| ≤ ε′νk′(n− 1) < ε′ ≤ ε.

We conclude this section presenting a TU game with a non-empty Core

Example 4. (Ray and Vohra, 2015):

A convex characteristic function game is a game in which the characteristic function is super-

modular, i.e. v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ) for every S ⊆ T .

Consider the following convex game:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 3 3 3 6

In a convex characteristic function game the Core is non-empty (Shapley, 1971).

The Coalition Structure Core of this game is represented by the set

A := {u ∈ R3|u1, u2, u3 ≥ 0;u1 + u2 ≥ 3;u2 + u3 ≥ 3;u1 + u3 ≥ 3;u1 + u2 + u3 = 6)}

It is possible to check that the set A coincides with the MSS of the induced abstract game

as defined in section 2.1. Intuitively: A is closed since it is defined as a system of weak linear

inequalities; A satisfies deterrence of external deviations since every state in the set is a sink; A

satisfies external stability since for every state not in A such that the grand coalition is formed

there exists some coalition which can deviate to another state outside A such that the grand

coalition is not formed, and for every state outside A such that the grand coalition is not formed

there exists a sequence of coalitional deviations which approaches the set A; A is the minimal set

which satisfies these conditions.
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(6, 0, 0) (0, 6, 0)

(0, 0, 6)

(3, 0, 3) (0, 3, 3)

(3, 3, 0)

Figure 4.1: convex game

The set of all payoff allocation for the grand coalition is represented by the the convex hull

shown in Figure 4.1
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4.2 One-to-One Matching

A matching µ′ dominates µ ∈ X under E, µ′ � µ, if there exists a coalition S ∈ N such that

µ(S) = S and µ′ �S µ, where �S := (�i)i∈S .

Consequently, the dominance correspondence f specifies the relations of dominance among

the matching, i.e. f(µ) is the subset of X which contains all the matching that dominate µ and

µ itself.

In particular the Core of a One-to-One matching problem can be defined as follows:

Definition 29 (Core). The Core of a matching problem (M,N,�) consists of all undominated

matchings:

CM := {µ ∈ X|f(µ) = ∅}

The Core of a matching problem is not empty (Gale and Shapley, 1962).

For our purposes we refer to the following result:

Lemma 7. (Roth and Vande Vate, 1990)

For every µ ∈ X we have that fN(µ) ∩ CM 6= ∅.

Since the set of states is finite in this application, it holds that fN(µ) = f∞(µ). As such,

the result of Roth and Vande Vate (1990) can be rephrased as saying that Γ satisfies the weak

improvement property as defined in Definition 27. Given that for finite settings f is always lower

hemi-continuous, the following result now follows from Theorem 5.

Corollary 4. Let (M,W,�) be a matching problem and let Γ be the induced abstract game as

in Section 2.2. Then the MSS of Γ is unique and equal to the set of stable matchings.

Herings, Mauleon, and Vannetelbosch (2016) define the level-1 farsighted set for matching

problems. It is not hard to see that the MSS for abstract game Γ as in Section 2.2 coincides with

the level-1 farsighted set. Corollary 4 is therefore equivalent to Theorem 3 of Herings, Mauleon,

and Vannetelbosch (2016) that characterizes the level-1 farsighted set as the core of the matching

problem.
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Let consider the following example (see Gale and Shapley, 1962)

w1 w2 w3

m1 1, 3 2, 2 3, 1
m2 3, 1 1, 3 2, 2
m2 2, 2 3, 1 1, 3

Figure 4.2:

Example 5. The above ranking matrix the preferences of each player: the first number of each

pair in the matrix gives ranking of player wi ∈ W by the player mi ∈ M ; the second number

of each pair in the matrix gives ranking of player mi ∈ M by the player wi ∈ W . For example:

player m1 ranks w1 first, w2 second and w3 third while player w1 ranks m2 first, m3 second and

m1 third, and so on.

It easy to check that the Core and the Myopic Stable Set correspond to the following set of

three matchings:

= {(M1W 1;M2W 2;M3W 3)(M1W 3;M2W 1;M3W 2)(M1W 2;M2W 3;M3W 1)}
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4.3 Networks

As in section 2.3, we can associate an abstract game Γ := (N, (X, d), {�i}i∈N ) to each network

problem (N,G, (Yi)i∈N ).

Definition 30 (Pairwise Stability). A network g is said to be pairwise stable (Jackson and

Wolinsky, 1996) if for every ij ∈ g it holds that Yi(g− ij) ≤ Yi(g) and Yj(g− ij) ≤ Yj(g) and for

every ij /∈ g it holds that Yi(g + ij) > Yi(g) implies Yj(g + ij) < Yj(g).

Pairwise stability as defined in Jackson and Wolinsky (1996) is somewhat stronger and also

requires that there is no ij /∈ g such that Yi(g + ij) > Yi(g) and Yj(g + ij) = Yj(g). The weaker

notion used here is discussed as an alternative in Section 5 of Jackson and Wolinsky (1996) and

is also widely used in the literature. For generic network problems, there are no indifferences, so

the two definitions are equivalent.

It is not hard to show that a network is pairwise stable if and only if it is in the core of the

social environment Γ as defined in Definition 26.

Corollary 2 shows that any pairwise stable network is in the myopic stable set. However, it

is not necessarily the case that the MSS only contains the pairwise stable networks.

Consider the binary relation R on X defined by gRg′ if g ∈ fN(g′), i.e., g can be reached

from g′ by a finite number of dominations. Let I be the symmetric part of R, i.e., gIg′ if and

only if gRg′ and g′Rg. Consider the set of equivalence classes E induced by I. Let us denote the

equivalence class of network g by [g], i.e., g′ ∈ [g] if and only if g′Ig. For two distinct equivalence

classes [g] and [g′] write [g]P [g′] if gRg′. It is easy to see that [g]P [g′] if and only if gRg′ and not

gRg′.

Let V be the collection of maximal elements of (E, P ), i.e., [g] ∈ V if there is no [g′] such that

[g′]P [g]. Since an element of V simply represents a closed cycle as defined in Definition 25, the

following result follows from Theorem 4.

Corollary 5. Let (N,G, (Yi)i∈N ) be a network problem and let Γ be the induced abstract game

as in Section 2.3. A network g belongs to an MSS M if and only if the equivalence class [g]

belongs to V , i.e., M = {g ∈ X|[g] ∈ V }.

Herings, Mauleon, and Vannetelbosch (2009) define the pairwise myopically stable sets for

network problems using the weaker notion of dominance corresponding to pairwise stability as

defined in Jackson and Wolinsky (1996). It is not hard to see that the MSS for abstract game Γ

as in Section 2.3 coincides with the pairwise myopically stable set for generic network problems.

For such network problems, Corollary 5 is therefore equivalent to Theorem 1 of Herings, Mauleon,

and Vannetelbosch (2009) that characterizes the pairwise myopically stable set as the union of

closed cycles. In their paper, a closed cycle is defined in the sense of Jackson and Watts (2002) for

network problems. The notion of closed cycle of Definition 25 is the appropriate generalization

to social environments.

We conclude this section providing the following example of network formation:
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Example 6 (Investment Game). We consider three players. Every player can form a link with

another player with a cost of 1. Every player achieves a pay of n if all players have formed a link

with all other players and a pay of zero if at least one link is missing.

1

0
p.1 3

0
p.2

2

0
p.3

g0

1

-1
3

-1

2

0 g1

1

-1
3

0

2

-1 g2

1

0
3

-1

2

-1 g3

1

-2
3

-1

2

-1 g4

1

-1
3

-2

2

-1 g5

1

-1
3

-1

2

-2 g6

1

1
3

1

2

1 g7

It easy to check that the Myopic Stable Set of this investment game contains two networks:

the empty network and the complete network, i.e. MSS = {g0, g7}.
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4.4 Normal Form Games

In Section 2.4, we associated an abstract game Γ = (N, (X, d), E, (�i)i∈N ) to each normal-form

game G = (N, (Si)i∈N , (�i)i∈N ).

A strategy profile s ∈ S is said to be a pure strategy Nash equilibrium of the game G if, for

every i ∈ N , for every s′i ∈ Si, it holds that s �i (s′i, s−i).

It can easily be shown that a strategy profile is a pure strategy Nash equilibrium if and only

if it is in the core of the abstract game Γ as defined in Definition 26. Corollary 2 then shows that

every pure strategy Nash equilibrium belongs to every MSS. For normal-form games, Theorem 5

reduces to the following result.

Corollary 6. Let G be a normal-form game and let Γ be the induced abstract game as in Section

2.4. The MSS of Γ is equal to the set of pure strategy Nash equilibria if and only if Γ has the

weak improvement property.

The following result exploits the fact that many classes of games have the weak improvement

property.

Corollary 7. Let G be a normal-form game and let Γ be the induced abstract game as in Section

2.4. Then the MSS is equal to the set of pure strategy Nash equilibria for finite potential games,

aggregative games, and finite supermodular games.

Proof. For finite supermodular games, Friedman and Mezzetti (2001) show that the game has the

weak finite improvement property which implies the weak improvement property. Monderer and

Shapley (1996) establish the weak finite improvement property for potential games. For aggrega-

tive games, it is easily verified that E is lower hemi-continuous and preferences are continuous

by assumption, so f is lower hemi-continuous by Theorem 3. Dindoš and Mezzetti (2006) show

that aggregative games have the weak finite improvement property. The result now follows from

Theorem 5.

As an illustration, consider the two games in Example 7.

Example 7. Game 1 has a unique Nash equilibrium, but does not satisfy the weak finite im-

provement property. Thus, the MSS may contain strategy profiles which are not Nash equilibria.

Game 1:

Player 1

Player 2

E F G H

A 4, 1 −20,−20 1, 4 0, 0

B 2, 2 4, 1 −20,−20 0, 0

C −20,−20 2, 2 4, 1 0, 0

D 0, 0 0, 0 0, 0 1, 1

The Nash equilibrium of Game 1 is (D,H) and the unique myopic stable set M is given by

M = {(A,E), (A,G), (B,E), (B,F ), (C,F ), (C,G), (D,H)}.
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On the other hand, Game 2 shows that not every strategy profile where each strategy is played

with positive probability in a mixed-strategy Nash equilibrium is part of an MSS. In this game

there exists a pure strategy Nash equilibrium (B,R) and two mixed strategy Nash equilibria(
( 1

2T,
1
2M, 0B), ( 1

2L,
1
2C, 0R)

)
,
(

( 19
42T,

1
6M, 8

21B), ( 8
21L,

8
21C,

5
21R)

)
.

The unique MSS contains only the pure strategy Nash equilibrium (B,R). Of course, if we define

the states in the abstract game corresponding to Game 2 to be the mixed strategy profiles, then

the mixed Nash equilibria would be part of the MSS.

Game 2:

Player 1

Player 2

L C R

T 1, 3 3, 1 0, 0

M 3, 1 1, 3 0, 0

B 0, 0 3
2 ,

3
2 4, 4

We conclude this section providing three examples of games which exhibits the weak improve-

ment property.

Example 8. The traveler’s dilemma is a symmetric two player game in which the set of strategy

for each player is the set of natural numbers between 2 and 100, i.e. si = [2, 100] for all i ∈ N .

For each player, the utility function is defined as follow:

ui(si, sj) =


si + 2, si − 2 si < sj

si, si si = sj

sj − 2, sj + 2 si > sj

Player 1

Player 2
2 ... 99 100

2 2, 2 ... 4, 0 4, 0
... ... ... ... ...
99 0, 4 ... 99, 99 101, 97

100 0, 4 ... 97, 101 100, 100

Figure 4.3: Traveler’s dilemma.

The unique Nash equilibrium of this game is NE = {2, 2}.
It is possible to check that this equilibrium coincides with the Myopic Stable Set of this game.

In fact, for each player, the strategy {2, 2} satisfies myopic deterrence of external deviation, i.e.

every deviating player obtain a lower utility. Also, it is easy to see that {2, 2} is externally stable,

i.e. from any other strategy profile there exists a composition of dominance correspondence that

terminates in {2, 2}. Moreover, as {2, 2} is a singleton then Minimality is trivially satisfied.
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Example 9. Consider the following version of Cournot’s model. Two firms, N = {1, 2}, produce

two quantities q1, q2 ≥ 0, of homogeneous goods. We write Q = q1 + q2 and we define the inverse

demand function in the following way:

P (Q) =

a−Q Q < a

0 Q ≥ a

For all i ∈ {1, 2} we assume no fixed costs and a constant marginal cost Ci(qi) = cqi with

c < a.

For each firms, the set of strategy is given by the set Si = [0, q̄i] for all i ∈ N , where a strategy

is a quantity choice, i.e. qi ∈ Si.
For each firms, the utility is given by the profit, i.e. πi(qi, qj) = qi[a − (qi + qj) − c] for all

i ∈ N .

The Nash Equilibrium corresponds to the strategy profile (qi, qj) which solve the following

program:

maxqi∈Siπi(qi, q
∗
j ) = maxqi∈Siqi[a− (qi + q∗j )− c]

that is NE = {a−c3 , a−c3 }
It is possible to check that the pure strategy Nash equilibrium correspond to the Myopic

Stable Set. First notice that every deviation from the Nash equilibrium involve a strategy profile

in which the deviating firm obtain a lower profit. To verify external stability assume any strategy

profile outside the equilibrium, take for example s1 = (a−c2 , 0) where firm 1 get the entire market.

Firm 2 has the incentive to deviate from s1 to any s2 with q2 > 0, that is s2 ∈ f(s1). Consequently,

firm 1 will adjust its strategy with respect the new demand available in the market. This involve

a deviation to a strategy profile s3 ∈ f(f(s1)). Iterating this reasoning there will be a integer n

and a composition of dominance correspondence such that sn = {a−c3 , a−c3 } where no firm has

the incentive to deviate.

Moreover, as this set is a singleton then condition [3] is trivially satisfied.

Example 10. Next we consider a Bertrand’s model. The setting of the Bertand’s model differ

from the Cournot’s model by the fact that the set of strategy consists in the price choices, i.e.

Si = [0, p̄i] for all i ∈ N .

We assume the following demand function:

D(pi, pj) =


(a−pi)
b pi < pj

(a−pi)
2b pi = pj

0 pi < pj
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For each firms, the utility is given by the profit, i.e.

πi(pi, pj) =


(pi − c)qi pi < pj
(pi−c)qi

2 pi = pj

0 pi > pj

.

The Nash Equilibrium corresponds to the strategy profile (qi, qj) which solve the following

program:

maxpi∈Siπi(pi, p
∗
j ) = maxpi∈Si(pi − c)qi

that is NE = {c, c} where the two firm obtain a zero profit.

It is possible to check that the pure strategy Nash equilibrium correspond to the Myopic

Stable Set.

First notice that every deviation from the Nash equilibrium involve a strategy profile in which

the deviating firm obtain a lower or equal profit. To verify external stability assume any strategy

profile outside the equilibrium, s1 where a firm, say firm 1, get the entire market. At this point,

firm 2 has the incentive to deviate from s1 to any s2 with p2 < p1 to get the entire market.

Consequently, firm 1 will adjust its strategy with respect the new strategy profile s1 to reverse

the situation. Iterating this reasoning there will be a composition of dominance correspondence

which involve the implementation of strategy profile (c, c) where no firm has the incentive to

deviate (below (c, c) the two firm have negative payoff).
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Chapter 5

An Economic Application

5.1 Asymmetric Bertrand Competition without legal re-

striction

In this section we consider a Bertrand model with asymmetric marginal costs, i.e. ci 6= cj . In

particular we consider c1 < c2.

We assume that the firm with the lowest price sells the amount qi ≥ 0 at its posted price

pi ≥ 0 and incurs a cost per unit of ci ≥ 0.

If both firms post the same price, output is split equally between the two firms. Profits are

therefore given by

ui(pi, pj) =


(pi − ci)q if pi < pj ,

(pi − ci)q/2 if pi = pj ,

0 if pi > pj .

This game is interesting for several reasons.

If the set of strategies S is discrete then there are two pure strategies Nash equilibria (c2, c2+ε)

and (c2 − ε, c2) where ε is assumed to be the smallest monetary unit. In this case firm 1 get the

entire market of the market and the associate profits are π1 = (c2 − c1)(a−c2b ) and π2 = 0 in the

first case and π1 = (c2 − ε− c1)(a−c2−εb ) and π2 = 0 . The Myopic Stable Set coincides with the

two pure strategies Nash equilibria.

If the set of strategies is continuous then there are not Nash equilibria in pure strategy and

the Core of the associated abstract game is empty.

Several papers mistakenly claim that this game has no Nash equilibrium. As Blume (2003)

noted, there are mixed Nash equilibria in which player 1 chooses p1 = c2 and player 2 randomizes

his prize p2 continuously on an interval [c2, c2 + ε]. On the other hand, the literature has so far

not yet been able to determine all mixed strategies of this game.

We consider the state space X = {p ∈ R2
+ | p1 ≤ p̄, p2 ≤ p̄} and the metric di(p, p

′) = |p−p′|,
i = 1, 2.
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Observe that the payoff functions are not continuous. Given this, the dominance correspon-

dence f is not lower hemi-continuous, so we cannot use Theorem 2 to establish uniqueness of the

Myopic Stable Set.

The construction of the Myopic Stable Set, which crucially relies on the fact that the closeness

of the set, proceeds in several steps.

Step 1. P 1 = {(p1, p2) ∈ X|c1 ≤ p1 = p2 ≤ c2} ⊆M.

Towards a contradiction, suppose that (p1, p2) ∈ X satisfies c1 < p1 = p2 < c2 and (p1, p2)

is not in M . Once the contradiction is obtained, we get the result of Step 1 exploiting the

fact that M is closed.

Take any p′1 ∈ R+ such that c1 < p′1 < p1. There are two cases to consider. In case 1,

(p′1, p2) ∈ M . Given that (p1, p2) /∈ M and M is closed, there is an ε′ > 0 such that for

every ε ∈ (0, ε′) we have (p1−ε, p2) /∈M . However, for ε small enough, (p1−ε, p2) ∈ f(p′1, p2)

as firm 1 will find it profitable to deviate to p1 − ε > p′1. Since M satisfies deterrence of

external deviations, it follows that (p1 − ε, p2) ∈ M , leading to a contradiction. In case

2, we have (p′1, p2) /∈ M . By external stability, there must be (p′′1 , p
′′
2) ∈ M such that

(p′′1 , p
′′
2) ∈ f∞(p′1, p2). At (p′1, p2), firm 2 makes no sales and has zero profits. Since p′1 < c2,

it has no profitable deviation. For firm 1, any p̃1 ∈ R+ such that p′1 < p̃1 < p2 is a profitable

deviation, p̃1 = p2 may or may not be a profitable deviation, and p̃1 > p2 is not a profitable

deviation. It is now easy to see that f∞(p′1, p2) = {(p̃1, p2) ∈ R2
+|p′1 ≤ p̃1 ≤ p2}. External

stability therefore implies that there is (p′′1 , p2) ∈M with c1 < p′′1 < p1, but then we are back

in case 1, and we obtain a contradiction as before. Consequently, it holds that (p1, p2) ∈M .

Step 2. P 2 = {(p1, p2) ∈ X|c1 ≤ p1 ≤ c2, p1 ≤ p2} ⊆M.

Take (p1, p2) ∈ P 1 such that p2 < c2. It follows from Step 1 that (p1, p2) ∈M. It holds that

u2(p1, p2) is strictly negative. As such, firm two can gain by increasing p2 above the value

of p1 as this will give him a profit of zero. By deterrence of external deviations, all these

options must also be in M. The result of Step 2 now follows from the requirement that M

is closed.

Step 3. P 3 = {(p1, p2) ∈ X|c1 ≤ p1 ≤ p2} ⊆M.

Take (p1, p2) ∈ P 2 such that c1 < p1 < p2. By Step 2 it holds that (p1, p2) ∈M . Then firm

1 can deviate and can increase profits by choosing p′1 such that, p1 < p′1 < p2. Since M

satisfies deterrence of external deviations, it holds that (p′1, p2) ∈ M . This shows that we

can drop the restriction p1 ≤ c2 from the definition of the set P 2. Using closedness of M

we can again change strict inequalities to weak inequalities.

Step 4. P 4 = P 3 ∪ {(p1, p2) ∈ X|c2 ≤ p2 ≤ p1} ⊆M.

Take (p1, p2) ∈ P 3 such that c2 < p1 < p2. By Step 3 it holds that (p1, p2) ∈M . Now firm

2 can deviate and set p′2 such that c2 < p′2 < p1 and make strictly positive profits. Thus,

the set {(p1, p2) ∈ X|c2 ≤ p2 ≤ p1} is a subset of M. The set P 4 is given by the shaded area

in the left panel of Figure 5.2.

Step 5. P 4 is the unique MSS.

We have shown that P 4 is contained in any MSS, so we only need to show that P 4 itself is
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Figure 5.1: The MSS for the asymmetric Bertrand model.

p1

p2c2

c1

a QMSS. First, observe that P 4 is closed. Next, X \ P 4 is given by

{(p1, p2) ∈ X|p1 < c1}︸ ︷︷ ︸
P 5

∪ {(p1, p2) ∈ X|p1 > p2, p2 < c2}︸ ︷︷ ︸
P 6

.

In order to see that P 4 satisfies deterrence of external deviations, observe that firm 1 will

never deviate to a point in the set P 5 as this gives zero or negative profits for firm 1 and

profits at states in P 4 are non-negative for firm 1. Firm 2 has no possibility to deviate to

P 5 from a point in the set P 4. Also, any point in the set P 6 gives firm 2 negative profits.

Firm 2 only obtains negative profits at states in P 4 if p1 = p2 < c2. However, if firm 2

deviates to p′2 < p1, then his profits would become more negative so firm 2 will never deviate

to states in P 6.

It remains to show that P 4 satisfies external stability. If p2 ≤ p1 < c1, then firm 2 can

gain by choosing p′2 such that p′2 > c2. Next firm 1 can gain by choosing p′1 such that

c2 < p′1 < p2. The strategy profile (p′1, p
′
2) belongs to P 4. If p1 < p2 ≤ c1, then firm 1

can gain by choosing p′1 such that p′1 > c2. Then firm 2 can gain by choosing p′2 such that

c2 < p′2 < p′1. The strategy profile (p′1, p
′
2) is in P 4. If p1 < c1 < p2, firm 1 can gain by

choosing p′1 such that c1 < p′1 < p2 which leads to the strategy profile (p′1, p2) in P 4. Hence,

external stability holds starting from any state in P 5. For (p1, p2) ∈ P 6 \ P 5 it holds that

p1 > p2, c1 ≤ p1, and p2 < c2, so firm 2 can gain by choosing p′2 = c2. The strategy profile

(p1, c2) belongs to P 4.
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5.2 Asymmetric Bertrand Competition under legal restric-

tions

Let us now consider a slightly different version of Bertrand competition. In many countries,

pricing below marginal or average cost is considered to be predatory pricing and thus forbidden

by law. We analyze how this restriction influences the MSS. To do so, we adjust the state space

and define

X = {(p1, p2) ∈ P |c1 ≤ p1, c2 ≤ p2}.

The MSS is considerably smaller than in the previous setting. In particular, we will show that it

is equal to the set

P ∗ =

{
(p1, c2) ∈ P

∣∣∣∣c1 + c2
2

≤ p1 ≤ c2
}
,

which is illustrated in the right panel of Figure 5.2.

Recall that the mixed Nash equilibrium derived by Blume (2003) had p1 = c2 and p2 being

drawn from an atomless distribution on an interval [c2, c2 + ε]. The prediction of the MSS is that

prices will be set lower than in the mixed Nash equilibrium.

Again, we split the proof into several steps.

Step 1. First we show that P ∗ is a QMSS. We first establish deterrence of external deviations. For

(p1, c2) ∈ P ∗, profits of firm 1 are non-negative. Thus, setting p1 > c2 with a payoff of

zero is not a profitable deviation for firm 1 from any point in P ∗. Note that the payoff of

player 1 is increasing in p1 for p1 < c2. Thus, a deviation to a p1 < (c1 + c2)/2 could only

be profitable from the strategy profile (c2, c2). This requires (p1 − c1)q > (c2 − c1)q/2 or,

equivalently, p1 > (c1 + c2)/2, which is not the case. It is easily verified that firm 2 cannot

increase its profits by deviating from any (p1, c2) ∈ P ∗. This shows deterrence of external

deviations for P ∗.

It remains to verify external stability. Let some state (p1, p2) ∈ X \ P ∗ be given. If

c2 < p1 < p2, then firm 2 can profitably deviate to p′2 = (c2 +p1)/2 and firm 1 can profitably

deviate in the next step to p′1 = (c2+p′2)/2 and so forth. It follows that (c2, c2) ∈ f∞(p1, p2).

If p1 ≤ c2 < p2, then firm 1 can profitably deviate to p′1 such that c2 < p′1 < p2 and we

can continue as in the previous case. If c2 < p2 ≤ p1, then firm 1 can profitably deviate

to p′1 such that c2 < p′1 < p2 and we can continue as before. If p1 /∈ [(c1 + c2)/2, c2] and

p2 = c2, then firm 1 can profitably deviate to p′1 = (c1 + c2)/2 to reach a state in P ∗. We

have covered all states in X \ P ∗ and thereby shown that P ∗ satisfies external stability.

Step 2. Let M be a QMSS. Let us show that for every (p1, c2) ∈ P ∗ \{(c2, c2)}, if (p1, c2) ∈M, then

(c2, c2) ∈M . Suppose (c2, c2) /∈M . By closedness of M , there is ε̄ > 0 such that, for every

ε ∈ (0, ε̄), (c2 − ε, c2) /∈M . Take p′1 = max{(p1 + c2)/2, c2 − ε̄/2}, then (p′1, c2) ∈ f(p1, c2),

so (p′1, c2) ∈M . Given that p′1 > c2 − ε̄, we obtain a contradiction.
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Figure 5.2: The MSS for the asymmetric Bertrand model with legal restriction.

p1

p2c2

c1

Step 3. Let M be a QMSS. Let us show that if (c2, c2) ∈M , then, for every (p1, c2) ∈ P ∗ \{(c2, c2)},
we have (p1, c2) ∈ M . This follows from the fact that any strategy profile in (p1, c2) ∈
P ∗ \ {(c2, c2)} with p1 > (c1 + c2)/2 offers higher profits for firm 1 compared to (c2, c2) and

the fact that M is closed.

Step 4. We are now ready to show that P ∗ is an MSS. First of all, by step 1 it is a QMSS. So

if, towards a contradiction, P ∗ is not an MSS, it should violate minimality. This means

that there is a proper subset of P ∗ that is also a QMSS. This subset either contains (c2, c2)

or it is a subset of P ∗ \ {(c2, c2)}. If contains (c2, c2) then, by Step 3, it should contain

P ∗ \ {(c2, c2)} and therefore be equal to P ∗. If it is a subset of P ∗ \ {(c2, c2)}, then by Step

2, it should contain (c2, c2), a contradiction.

Step 5. Finally, let us show that the set P ∗ is the unique MSS. Let M be an MSS. By Lemma

3, it holds that P ∗ ∩ M 6= ∅. If M contains (c2, c2), then, by Step 3, M should also

contain P ∗ \ {(c2, c2)}, so P ∗ ⊆ M and by minimality P ∗ = M . If M contains an element

of P ∗ \ {(c2, c2)}, then, by Step 2, it should also contain (c2, c2) and, by Step 3, also

P ∗ \ {(c2, c2)}. Again, we obtain P ∗ ⊆M and by minimality P ∗ = M .

By characterizing the MSS for the asymmetric Bertrand model, we have shown that it is

possible to find the MSS in nontrivial non-cooperative games. The difference between the MSS

in the two versions of the Bertrand model given above is substantial which emphasizes the great

importance of details in this model, i.e., the choice of strategy sets. The underlying origin of

this sensitivity is due to the discontinuity in payoff functions. Note that in both cases no pure

strategy Nash equilibrium exists, any mixed-strategy Nash equilibrium involves randomizations

over a continuous interval, and the literature contains no full characterization of the set of Nash

equilibria. The fact that it is not overly complicated to characterize the MSS in such a complex

environment further boosts the appeal of the MSS as an equilibrium concept.
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Chapter 6

Conclusion

We generalize the concept of Pairwise Myopic Stability by Herings et al. (2009) from finite

networks to a general class of abstract games which allows for an infinite state space. The

framework of abstract games is general enough to accommodate different models of coalition

formation such as TU games with coalition structure, networks and matching models, but also

includes non-cooperative games.

The solution concept consists of three intuitive conditions which can be summarized as follows:

(i) no coalition has a profitable deviation from a state in the set to a state outside the set, (ii)

for any state outside the set, there exists a sequence of improving deviations which converges to

the set and (iii) the set is the minimal set satisfying (i) and (ii). Under minimal assumptions

(compact and nonempty state space, complete and transitive preferences), the myopic stable set

exists and it is nonempty. Moreover, under additional weak continuity assumptions, it is also

unique.

We have compared our solution concept to other concepts in several examples. The Myopic

Stable Set contains the Core and the set of pure strategy Nash equilibria. It coincides with

the Coalition Structure Core in TU games with coalition structure (Kóczy and Lauwers, 2004)

if the Coalition Structure Core exists, the set of Stable Matchings in the standard one-to-one

matching model (Gale and Shapley, 1962), the set of pairwise stable networks and closed cycles

of networks (Jackson and Watts, 2002) and the set of pure strategy Nash equilibria in finite

supermodular games (Bulow et al., 1985) and finite potential games (Monderer and Shapley,

1996) and aggregative games (Selten, 1970).

The Myopic Stable Set for abstract games provides an umbrella for well-known solution con-

cepts in many examples. Moreover, it generates novel predictions for many other examples, for

instance in a Bertrand duopoly with asymmetric cost functions. Finally, it allows for predictions

when other solution concepts fail to exist.

In this setting we assumed that individuals only take care to the immediate consequences of

their actions. This behavioral assumption is expressed by the dominance correspondence which

characterize our solution concept as ”myopic”.

From this point of view, a natural development is to extend the concept of dominance cor-
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respondence including farsightedness (see Chwe, 1994; Xue, 1998; Herings et al., 2009; Ray and

Vohra, 2015).

The farsighted dominance criterion captures the idea that individuals take into account the

ultimate consequences of their actions.

In particular, we say that a state y ∈ X farsightedly dominates x ∈ X under E, if there exist

a sequence of states (x0, ..., xn) with x0 = x and xn = y, and coalitions (S0, ..., Sn−1) such that:

1. Sk−1 ∈ E(xk−1, xk), ∀k ∈ {1, ..., n},

2. uSk(y)� uSk(xk), ∀k ∈ {0, ..., n− 1}.

This kind of extension gives the opportunity to explore many specific settings in which a

myopic analysis provides unfeasible results. A typical example is given by coalitional games with

positive spillovers (see Bloch 1996, Yi 1997) where the actions of the individuals modify the payoff

structure of the entire coalition structure. Observe that this strategic scenario can be represented

by an abstract game first, using a partition function (Thrall and Lucas 1963) for modeling the

state space; second, considering a proper structure on the effectivity correspondence (see Ray

and Vohra 2014).
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