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Abstract

The aim of this thesis is to obtain a risk management model that is able to capture

the long-term dependencies among di�erent commodities, keeping unaltered the marginal

distributions of the single commodities and preserving the analytical �exibility of factor

models.

A method to translate the error correction matrix, result of the cointegration analysis,

into correlations, and closed form formulae for term correlations are developed to include

long-run co-movements in the calibration. Furthermore, since commodity panels are

composed also by quarter and year swap contracts, numerical integration based on sparse

grids is implemented to reduce the computational complexity. Working in a multivariate

framework, also the nearest correlation matrix problem has to be addressed, therefore, a

two steps procedure is proposed. In this way, the de�nition of the starting point is more

�exible and it is possible to avoid the implementation of global optimization algorithms.

The data used are the daily quotations from December 2012 to November 2016 of the

forward panels of API2, Brent, EU ETS, TTF and German electricity.

Empirical results within a �ve commodities framework are provided. Four portfolios

are taken into consideration: a Clean Dark Spread, a Clean Spark Spread, an oil-indexed

gas contract, a long position on gas and oil. A comparison between a two-factor model

and the two-factor model with the long-term dependency is performed.

Risk measurement and risk management activities can be deeply a�ected by the new

approach, since a usual two-factor model could either overestimate and underestimate

the risk arising from the dynamics of the commodities.
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Chapter 1

Introduction

The dynamics of commodity prices can a�ect the economics of a company or a country

directly and indirectly. Technologies, geopolitics and regulations have a huge impact on

the quotations of the commodities. Shale revolution, Kyoto Protocol, COP21 are just

some examples. When it comes to forecast their levels to set up long-term strategies,

we have to deal with an high level of uncertainty, therefore, risk measurement and risk

management become crucial.

Power market sector is among the most impacted by commodity prices. Kiesel et al.

(2009) apply a two-factor model to electricity prices and Edoli et al. (2013) extend it in a

multi-commodity environment. The aim of these models is to describe the covariance ma-

trices of one or more commodities forward products. As pointed out in Alexander (1999)

and in Alexander (2001), correlation is just a short term measure and cannot perform well

in long time horizon. We know from Hicks (1939) that physical things, having constant

relative prices, can be treated as a single one. Cointegration analysis, based on the works

of Granger (1981) and Engle and Granger (1987), can be used to test and retrieve the

proportions of di�erent assets that make a portfolio stationary. Through cointegration,

the long run equilibrium (Engle and Granger (1987)) and long-run economic relations

(Johansen (2000)) among commodities have been intensively investigated in the litera-

ture. In this thesis, an analytical framework is proposed to combine the two-factor model

with the cointegration analysis. Implementing the Johansen (1995) method, the long run

1



CHAPTER 1. INTRODUCTION 2

equilibrium among the commodities is captured and then translated in terms of latent

factors correlations. In this way, it is possible to calibrate the model taking into account

more information, exceptionally precious in the long-term.

Edoli et al. (2013) are able to treat only instantaneous (daily) correlations. In this

thesis, closed form formulae for term correlations are developed to include long-term

insights, coming from cointegration analysis, and to allow to consistently work in any

kind of discrete time framework. Therefore, when it comes to simulate prices in many

years, the dimension of the problem is reduced.

Moreover, the two-factor model calibration is enhanced taking advantage of numerical

integration technique based on sparse grids (Heiss and Winschel (2008)). Commodities

forward panels are composed also by quarter and year swap contracts, that must be

coherent with the average of the monthly contracts. With the use of sparse grids, the

computational complexity is so reduced, that it is possible to simulate monthly con-

tracts in every step of the optimization in order to properly value the average contracts.

This approach could support the calibration of any model that deal with those kind of

products.

Edoli et al. (2013) elaborate a speci�c algorithm based on the Cholesky decomposition

to deal with the nearest correlation matrix problem (Higham (2002)). As in Rebonato

and Jäckel (1999), a two steps procedure is proposed. First, the extended version of

the quadratically convergent Newton method by Qi and Sun (2006) is implemented to

guarantee the intial correlation matrix to be semi-de�nite positive, and then the Edoli

et al. (2013) algorithm is applied. With this procedure, the starting point of the opti-

mization can be better de�ned according to long-term information and the use of a global

optimization algorithm is not necessary.

A comparative analysis of the model by Edoli et al. (2013) and the two-factor model

with long-term dependency is performed. The commodity association becomes more

powerful, allowing for higher correlation between electricity, coal, gas and oil. On the

other hand, the EU ETS correlations are reduced. EU ETS correlations with electricity,

oil and gas become close to zero, whilst they turns negative with coal. This can be
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explained by speci�c characteristics of the market. It is noteworthy that this kind of

relation is not identi�ed by the standard two-factor model. Depending on the considered

portfolio, it is shown that enabling for long-term dependency can both increase or de-

crease the risk. Therefore, business plans and hedging strategies decisions can be highly

a�ected by the inclusion of cointegration analysis, as very recently analysed by Gatarek

and Johansen (2016).

The thesis is structured as follows. In chapter 2, the commodity markets are de-

scribed, giving a qualitative assessment of the forces that drive their volatilities and

trends. In chapter 3, the univariate two-factor model (Kiesel et al. (2009)), the multi-

variate two-factor model (Edoli et al. (2013)) and the proposed two-factor model with

long-term dependency are presented. In chapter 4, the historical series and some details

on data management are shown. In chapter 5, the empirical results of models calibra-

tions on four case studies are provided. Finally, conclusion remarks and further areas of

analysis are discussed.



Chapter 2

An Overview of the Commodity

Market

After the electric light goes into general use, none but the

extravagant will burn tallow candles

Edison (1880)

The aim of this thesis is to obtain a model able to capture the long-run co-movements

of the commodities. A brief overview of the power, oil, coal, gas and emissions markets is

presented, in order to understand the context and to be able to give a consistent economic

interpretation of the results.

2.1 Electricity

Physically, the power markets works in the same way in all the countries. However,

markets can have di�erent organizations and characteristics depending on the legislation

and on the geography. In subsection 2.1.1, the fundamentals will be given, while subsec-

tion 2.1.2 will deal with some speci�c details of the German electricity market, since it

will be the one considered in chapter 5.

4



CHAPTER 2. AN OVERVIEW OF THE COMMODITY MARKET 5

2.1.1 Fundamentals

Nowadays electricity is necessary for almost every human activity. It is immediately

available for all its consumers and can be employed for a broad range of purposes. Light-

ing, the main usage electricity is commonly associated with, was its �rst application.

Step by step, it has become necessary for primary, secondary and tertiary sectors. It is

barely unthinkable to imagine our houses without a constant supply of electricity. Its

consumption is clean, since it does not emit greenhouse gases. Moreover, Niu et al. (2013)

state that electricity is a requirement to improve the quality of life and to support social

development.

Electricity has some characteristics that make it be unique with respect to the other

commodities (Pérez-Arriaga (2013)). It cannot be easily and economically stored. In the

last years some important technological advancements have been achieved in batteries,

but, still, the only way to store it is through hydro reservoir. Generation and demand

must be in balance in every moment and a problem occurring in any place could spread

throughout the whole system. The transmission of electricity cannot be planned as for

the other commodities or goods. Its �ows are not regulated by market participants, but

by the laws of physics. Keep the system balanced is a very complicated task. Several

systems and models have to be implemented considering di�erent time frames. Supply

and demand must be in equilibrium in each minute, but estimates are needed also with

months in advance.

The power sector can be divided in generation, transmission, distribution and retail.

The generation can be carried out using several types of power plants. Renewable

power plants use water, wind, sunlight, Earth internal heat, etc. Nuclear stations use

atomic �ssion of uranium. Finally, we have thermal power stations that use di�erent

kind of fuels, such as coal, gas, oil. Each type has its own advantages and disadvantages.

Renewable energies have a limited impact on the environment and do not need any kind

of fuel to operate. On the other hand, for most of them the production is not reliable,

since it depends on the weather. Thermal power plants need fuel to operate, therefore,

they are exposed to price dynamics. However, their production is reliable and can be
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easily managed by generator companies to meet a variable demand. Therefore, for each

power system it is very important to develop and maintain a balanced generation mix.

Depending on available resources, technologies and according to national and interna-

tional regulations, each country is characterized by a particular mix. Therefore, every

system will have its own level of prices, more or less dependent on fuels dynamics and

on weather conditions.

The transmission grids connect generation hubs to demand hubs and have two impor-

tant components. Power lines transmit electricity in the system at high-voltage, however,

electricity is injected by the generators and used by the consumers at low-voltage. There-

fore, substations are needed both in generator and demand hubs to properly control the

voltage. Transmission capacity is very important both for the resilience of the system

and for the level and volatility of the prices. If the transmission system is not developed,

the demand will have to rely more on near power plants, since signi�cant constraints

in the transmission will make the grid fragmented. On the other hand, an advanced

transmission grid will allow all the hubs to be connected, making possible to use any

available capacity.

Distribution is the low voltage network of the power system and its aim is to carry

electricity to the �nal consumer.

The power system price is based on the system marginal price (SMP). It is determined

by the intersection of the demand and themerit order curve. Every hour all the generators

bids are put together into the supply curve. In some regulated markets, the generators

have the obligation to bid at their marginal costs, while in more advanced markets the

producers are free to apply their bidding strategies. Generally, on the left side of the

curve, we have must-run and low cost power plants, while on the right side the more

expensive ones.

As we have seen, several factors can in�uence the price of electricity:

• System marginal price, network capacity, prices of the commodities. The supply

curve depends on fuel price dynamics and bidding strategies. Moreover, a small
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movement of the supply curve and in the demand curve, or issues on network capac-

ity, could trigger a spike in the prices due to a change in the marginal technology.

• Macroeconomics. Country production, interest rates a�ect the power markets in

the medium and in the long-term.

• Technology developments. Power plants e�ciency plans, advancements in renew-

able energies technologies, smart grids and batteries can have a huge impact on the

market both on the generator and on the consumer side.

• Weather. Temperature a�ects the consumers needs, but also the e�ciency of the

power plants. Moreover, its role is becoming more important with the raise of

renewable capacity. In countries with high hydroelectric capacity, the prices are

highly a�ect by the rain (e.g. South America).

• Environmental and taxation policies. National and international regulations are

one of the main drivers of the power sectors. The level of liberalization of the

market, how the prices and tari�s are set vary across the countries depending on

the legislations1. International agreements, such as Kyoto Protocol and COP21,

also play an important role in shaping tax regimes and fostering technological

changes.

2.1.2 German Power Market

The historical electricity generation by source is reported in �gure 2.1. It can be

noticed how the generation is changing. The country is reducing nuclear generation,

whilst is investing in renewable energies, that in the last year accounted for about one

third of the production. In o�-peaks periods, such as the week ends, if the weather

conditions are favourable, the renewables are able to o�set the entire demand. As a

consequence, the power prices are declining. However, it is noteworthy that about half

of the production still comes from coal power plants (�gure 2.2).

1See Pérez-Arriaga (2013) for a detailed analysis.
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Figure 2.1: Gross electricity generation in Germany (from CarbonBrief (2016a)).

Figure 2.2: German electricity shares of generation by type(from CarbonBrief (2016a)).
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Figure 2.3: German merit order curve (from IHS (2016)).

The merit order curve of Germany is reported in �gure 2.3. As expected, we can see

that the left side of the curve is composed by must-run and hydro power plants. Then, we

have nuclear and lignite power plants. Coal and the most economic gas plants compose

the central part of the curve. The expensive gas plants are on the right side, but they

are rarely used. Therefore, as well known in the markets, the power prices of Germany

are linked most of the time to coal. IHS (2016) reports also how the merit order curve

could be a�ected by coal prices, renewables investments and nuclear phaseout.

2.2 Oil Market

The oil market is one of the most important in the world. It is huge, international

(about two thirds of the production is exported and traded) and a�ected by several fac-

tors, from technological advancements to environmental policies. The oil is also recog-

nized as a leading indicator of the state of the economy, therefore, it is used in forecasting

the economic trends (Roncoroni et al. (2015)).

As summarised in Roncoroni et al. (2015), the oil industry can be divided into two
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processes, the Upstream and the Downstream. The �rst one relates to the exploration and

the production of crude oil. The second one comprehends the transportation, re�ning

and marketing of the re�ned oil products. Di�erent �rms operate on the supply side, both

independent and national oil companies2, while, as �nal consumers, we can �nd utilities,

airlines, shipping companies, energy-intensive manufacturers, petrochemical companies,

gasoline and diesel retailers.

Roncoroni et al. (2015) make a list of the most important factors that in�uence this

market:

• Macroeconomics. The economic growth is linked to energy consumption, positively

correlated with spot and forward prices.

• Technology developments, level of proven reserves, commercial and strategic stor-

age, re�ning capacity. Exploration and extraction advancements, such as the recent

grow of shale oil, the level of the reserves and re�nery spare capacity have very im-

portant e�ects on both spot and forward markets.

• Weather. Extreme natural events can damage production sites and logistic struc-

tures. Moreover, it has an important e�ect on the demand side, since both hot and

cold periods trigger higher energy consumption.

• Arbitrage among energy commodities, exchange rates and shipping. The relative

value of oil products with respect to other fuels, such as gas, is one of the main

drivers of spot and forward markets. Being quoted in US dollars, the FX rate

can increase or decrease the price of the oil products in local markets. Moreover,

shipping rates can in�uence the prices.

• Geopolitics. Negative events involving oil producers countries can make prices

spike. Also OPEC plays an important role in the market.

2In Deutsche Bank (2013) can be found a brief pro�le of the main international oil companies.
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• Environmental and taxation policies. Taxes, e�ciency plans can change demand

behaviours and can also give incentive to innovation processes, such as the growth

of the renewable sector.

Given all those sources of uncertainty, risk management is crucial in many sectors,

from the aviation industry to the utilities. It is noteworthy that in electricity generation,

a �rm can have direct exposures to oil prices, if thermal power stations are used, but

also indirect exposures, whenever the cost of the fuels, such as the gas, or the price of

electricity is indexed to oil.

Brie�y analysing the fundamentals of the market, we can see from �gure 2.4, that the

world demand has increased in the last years. The main regions of the world are following

di�erent trends. The US are drastically reducing the import of oil after the rise of shale

and fracking technologies. On the other hand, China demand is increasing, although it

is also an important producer. Middle East has stable exports, while Russia is increasing

its share. Europe and Japan are reducing their consumptions and, consequently, their

imports.

2.3 Coal Market

According to IEA (2016a), the share of coal in power generation in 2013 was over

41% and it is expected to decline to 36% in 2021.

The cycle of coal from the supply side can be summarised in three phases: mining,

preparation, transportation. About two third of the extraction is made by underground

mining, while the rest is made by surface mining. In the preparation, the coal is processed

in order to be standardized in several typologies. The �nal product is then used domes-

tically or traded on the market. Industries and power sectors are the main consumers of

this commodity. Trade and production of coal were increasing until 2012 (see �gure 2.5),

while in the last years it has stopped and it is slightly decreasing (CarbonBrief (2016b)).

As we can see in �gure 2.5, di�erently from oil, most of the coal is consumed domestically

leaving to the export only a marginal part (13% in 2000, 17% in 2014).
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Figure 2.4: World Oil Demand (source IEA (2016b)).

Figure 2.5: World coal production and export (source CarbonBrief (2016b)).
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Figure 2.6: World coal exporters (source CarbonBrief (2016b)).

Asia is the highest importer, followed by Europe, while Australia, Indonesia, Russia

and US are the most important exporters (�gure 2.6).

The drivers of the market are similar to oil but with some di�erences:

• As we have seen, most of the market is domestic.

• As pointed out in Roncoroni et al. (2015), coal reserves are well distributed in

the world, given that they are available in developing countries, but also in USA,

Australia and Europe.

• Coal is classi�ed in several typologies, depending on their carbon/energy content

(see �gure 2.7).

• The transportation costs have an high impact on the price.

• Finally, coal has an high impact on environment, given that it produces the highest

quantity of greenhouse gas. For this reason, the last international agreements are

trying to reduce the use of coal.
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Figure 2.7: Coal classi�cation (source World Coal Association (2016)).

2.4 Gas Market

IEA (2016d) data shows that in 2015 the gas production was the highest in history,

reaching the level of 3,590 Bcm (see �gure 2.8).

As in Roncoroni et al. (2015), the cycle of gas consists in �ve main activities: explo-

ration and production, processing, transportation, storage. Natural gas can be extracted

in oil �elds (associated gas) or also in speci�c �elds (non-associated gas). It is noteworthy

that in the last years the shale gas technologies in USA are changing the equilibrium of

the market. The processing aim is to remove impurities and water. The transportation

can be carried out with pipeline networks or with LNG (lique�ed natural gas). We can

distinguish between three typologies of networks. Transmission systems deliver the gas

from production site to regional systems, that in turn feed local grids, where the end
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Figure 2.8: World gas production (source IEA (2016d)).

users are connected. LNG can be transported through special freight vessels, since its

volume is about 1/600 of natural gas. Special terminals are needed to manage the trans-

portation. Finally, storage is very important in the gas market. Caverns, depleted oil

and gas �elds, aquifers, and overground steel storage units are used. Large facilities are

used to o�set seasonal patterns in the demand (seasonal storage), injecting gas during

the summer, in correspondence of low prices, and withdrawing during the winter, when

the prices are higher. Smaller facilities with high injection rates are used to deal with

short term variation in the demand (peak storage).

The gas market participants can be divided into two levels. In the �rst, we �nd

producers, power generators, industrial consumers, suppliers and distributors. In the

second, we have operators, that buy and sell gas for balancing activities, and traders.

In order to understand the dynamics of gas prices, it is useful to explore the types of
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price formation mechanism. International Gas Union (2016) �nds nine main categories:

• Oil price escalation (OPE). Gas prices are linked to crude oil and oil products. Also

coal and electricity price can be used as reference.

• Gas-on-Gas competition (GOG). Supply and demand de�ne the price for di�erent

periods and in di�erent hubs. Also bilateral agreements between multiple buyers

and sellers are included.

• Bilateral Monopoly (BIM). The price is settled in a bilateral agreement between

two large players or between a large player on one side and multiple players on the

other.

• Netback from Final Product (NET). The price is linked to the price the buyer is

selling its outputs.

• Regulation: Cost of service (RCS). A regulatory authority set a price to cover costs,

investments and to guarantee a reasonable rate of return.

• Regulation: Social and Political (RSP). The price is set by a Ministry, or by a

similar authority, on political and social basis.

• Regulation: Below Cost (RBC). The price of gas is subsidized in order to be below

its cost.

• No Price (NP). The gas is free for population and industries.

• Not Known (NK). No data or evidence.

The historical world price formation by category can be found in �gure 2.9, while the

breakdown by region for 2015 is in �gure 2.10.

As we can see, the Gas-on-Gas competition accounts for about 45% of the total. Oil

price escalation share is about 19% and is used in Asia and Europe (in the Mediterranean

area the share is over 60%). It is noteworthy that cross border �ows account for 27%
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Figure 2.9: World gas price formation 2005 to 2015 - Total Consumption (source Inter-
national Gas Union (2016)).

Figure 2.10: World gas price formation 2015 by region - Total Consumption (source
International Gas Union (2016)).
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of the world total consumption, therefore, we can say that the gas market has a higher

degree of internationality than the coal market.

Given the price formation mechanisms and the fundamentals of the market, we can

understand that the driving forces of the gas are similar to the commodities presented

in the previous sections.

• Macroeconomics and Geopolitics. Gas price is not only sensible to its geopolitics3,

but also to the ones of oil, since OPE establishes a clear link, especially in the

long-term.

• Technology developments. New methods for exploration and production can have

signi�cant e�ects on the market. It is noteworthy that the shale revolution in USA

involved both oil and gas.

• Weather and Arbitrage among energy commodities. The weather has direct and

indirect e�ects on gas, since it is highly used in the power markets.

• Regulation. The gas is impacted by international regulations directly, because the

use of gas produce greenhouse gases, and indirectly, since it is used to substitute

the more polluting coal.

2.5 The European Union Emissions Trading System

The European Union Emissions Trading System (EU ETS) has been established in

2005 to reduce greenhouse gases. The target is to reduce, with respect to 1990 levels, the

emissions by 20% within 2020 ad by 40% within 2030. According to European Commis-

sion (2016), the EU ETS is the largest emission trading market, involving 31 countries,

11,000 energy intensive installations, and covering 45% of EU greenhouse emissions. The

resources that are collected through the EU ETS are invested to combat the climate

changes.

3Cordano (2015) makes a focus on the Russian-Ukrainian crisis.



CHAPTER 2. AN OVERVIEW OF THE COMMODITY MARKET 19

The system is cap and trade. For each phase of the program, the European Union

sets a limit of the greenhouse gases that can be emitted. It has been designed to be

�exible, since the companies can decide to invest in reducing their emissions or they can

buy from other players the allowances they need to continue the operations as usual.

Therefore, the EU ETS incentives companies to innovate, given that, if they produce less

greenhouses gases, they are able to make pro�ts trading their exceeding allowances. On

the other hand, companies that are not willing to invest will have to pay extra costs.

Each allowance let the owner to emit one ton of CO24 and can be used just once.

Four trading periods have been set for EU ETS (source European Commission (2016)):

• 2005-2007 was the �rst period. It was an experimental phase, where the volume of

allowances turned to be excessive and, therefore, the price fell to zero.

• 2008-2012 was the second period. The total of allowances was reduced by 6.5%,

however, the recession decreased the demand by a higher rate, leaving a signi�cant

amount of unused allowances and credits.

• 2013-2020 is the third and current trading period. An EU-wide cap on emissions

has been introduced, reduced by 1.74% each year. Moreover, a transitioning from

free allocation of allowances to auctioning based system has started. The aim is to

reach that 57% of allowances will be allocated through auctions, in order to increase

the transparency of the system and to make polluters pay for their emissions. From

2013, the power generators have to buy all the allowances they need.

• 2021-2030 is the last period. In July 2015, a revision of the system has been

presented to the European Commission.

In �gure 2.11, we can �nd the historical trading volumes of emissions since the be-

ginning of the system. We can see that the volume has increased in the second phase.

The up-trend lasts until 2013, beginning of the current phase. As pointed out in Eu-

ropean Commission (2016), the market continues to face a challenge in the form of a

4In this thesis, CO2 will be used to identify EU ETS allowances.
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Figure 2.11: Trading volumes in EU emission allowances in mln tons (source European
Commission (2016)).

signi�cant surplus of allowances, largely due to the economic crisis which has substan-

tially depressed emissions. In the short term, this surplus risks undermining the orderly

functioning of the carbon market. In the longer term, it could a�ect the system's ability

to meet more demanding emission reduction targets cost-e�ectively. An auction of 900

million allowances was planned to take place between 2013 and 2015. However, in order

to avoid an increase in the supply, it has been postponed to 2019-2020. In 2015, another

decision has been taken to address the carbon market issue. A reserve is going to be

established, in which the 900 millions of tons will �ow into, in order to be able to manage

the supply of allowances and to increase the resilience of the market.

Therefore, it can be said that the EU ETS is linked to the dynamics of the other

commodities, but mainly on the demand side. Moreover, shocks on the demand side

could a�ect the daily trading, but in the long-term the main drive of the market is

the European regulation. Di�erently from other commodities, there is no other subject,

country or technology that could try to o�set a change in the supply of allowances decided

by the regulator, as in the case of the 900 millions of tons. This means that, depending

on available allowances, also the demand elasticity to price is a�ected.
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2.6 Summary

In this chapter, we have brie�y reviewed the functioning of the commodity markets

object of analysis. We have seen that several common economic forces drive the com-

modities dynamics, such as macroeconomics, technologies and regulations. However,

as discussed in European Commission (2016), the EU ETS market di�ers signi�cantly

from the other markets, since it is not physical, but a "virtual" market driven by the

regulators.



Chapter 3

The Model

Most generally, noise makes it very di�cult to test either

practical or academic theories about the way that �nancial

or economic markets work. We are forced to act largely in

the dark.

Black (1986)

3.1 Introduction

The model proposed in this thesis is based on factor reduction techniques, where the

dynamics of the prices are described through unobservable and latent variables. Kiesel

et al. (2009) applied a two-factor model to the electricity market. Edoli et al. (2013)

extended Kiesel et al. (2009) by implementing a two-factor model in a multi commodity

framework. However, the calibration method proposed by Edoli et al. (2013) uses only

the instantaneous correlations among the commodities to model their associations. As

stated in Alexander (2001), the correlation is intrinsically a short-run measure. A model

based only on the daily correlations would not be suited for long-term decisions, such

as investments and hedging. Given that the information in the correlation could be

incomplete, cointegration analysis could enable the model to be also consistent with

long-term dependencies. Previous studies in di�erent commodity markets, in various

22
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periods and applying di�erent methodologies prove that most of the commodity markets

are cointegrated. Therefore, it is important to extend the two-factor model in order to

include long-term information.

It is important to emphasise that non considering long-term dependencies would not

only produce a model based on partial information, but would also have negative e�ects

on the hedging strategies: being the correlation only a short term measure, correlation-

based hedging strategies commonly require frequent rebalancing (Alexander (2001)). It

is noteworthy that, as stated in Alexander (1999), high correlation of returns does not

necessarily imply high cointegration in prices. Even with very high correlation between

the returns, prices can diverge. On the other hand, cointegration can be identi�ed also

in periods where correlations are low. From a practical perspective, this would mean

that whatever the measured correlation is, high or low, the hedging strategy could be

radically di�erent when cointegration is taken into account.

There is also another consideration that would lead factor models and cointegration

work together in capturing the cross commodity association. E�ectively, whenever we

take advantage of factor models to reduce the dimension of our problem in a single com-

modity framework, like in Kiesel et al. (2009), we are basically allowing for cointegration

among the products of a commodity. This is straightforward if we use a one-factor model,

like in Clewlow and Strickland (1999b), where the correlation among the modelled prod-

ucts is one. Obviously, this is not a simple approximation, but a characteristic already

pointed out in the literature. Analysing oil prices, Crowder and Hamed (1993) �nd that

spot and futures markets are cointegrated. Schwarz and Szakmary (1994) and Peroni

and McNown (1998) �nd spot prices to be cointegrated with the future prices in three

di�erent oil products (Crude Oil, Heating Oil and Unleaded Gasoline). Moosa and Al-

Loughani (1995) studying the speculation e�ects in the oil market, �nd spot and futures

prices to be cointegrated. Yang et al. (2001) and Adämmer et al. (2016) �nd cointegration

between spot and futures of agricultural commodities. Rittler (2012) proves spot and

futures prices of European Union emissions trading scheme (EU-ETS) to be cointegrated

using high frequency data.
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The model proposed in this thesis extends the models by Kiesel et al. (2009) and by

Edoli et al. (2013) in several ways. First, numerical integration techniques based on sparse

grids (Heiss and Winschel (2008)) are implemented in order to reduce the computational

complexity that arise in dealing with quarter and year swap contracts. Second, a two steps

procedure to deal with the nearest correlation matrix problem is applied. A quadratically

convergent Newton method (Qi and Sun (2006)) is used to grant �exibility in designing

the starting point of the optimization. The algorithm of Edoli et al. (2013), that works

directly on the Cholesky decomposition of the matrix, is then applied to �t the historical

global correlation matrix. Third, closed form formulae for term correlations are computed

to allow to work in any kind of discrete time simulation framework and to link the factor

models with cointegration. Finally, long-term dependency is included, translating the

error correction matrix, computed through Johansen (1995) cointegration framework,

into term correlations.

The chapter is structured as follows. In section 3.2, the literature of commodity

models and cointegration analysis is reviewed. In section 3.3, the two-factor model is

presented. In section 3.4, the theoretical framework of cointegration will be reported.

In section 3.5, the closed form formulae for term correlations will be developed. In

section 3.6, it will be shown how the cointegration analysis will be included in the two-

factor model to take into consideration the long-term dependency that lies beneath the

observed prices of the commodities. Finally, in section 3.7, the calibration methodology

of the models is explained.

3.2 Literature Review

In literature, a multitude of models have been developed to treat commodity prices

both in the spot and in the forward markets. For the special case of electricity, there

is a stream of the literature that models it in a structural way. However, as stated by

Sims (1980), when a simultaneous equation model in structural form is not identi�ed, a

reduced form model can be parameterized instead. Furthermore, cointegration analysis
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have been intensively applied to commodities to investigate on the long-term relations

that drive their joint dynamics.

In subsection 3.2.1, a brief survey of the structural models applied to electricity will be

presented. In subsection 3.2.2, the reduced form models will be reviewed. In subsection

3.2.3, cointegration analysis applied to the commodity markets is collected.

3.2.1 Structural models for electricity

In structural models, the focus is on modelling the fundamentals of the market, like

supply and demand. Once their behaviours and their relation is captured, it will be

possible to explain price movements. Electricity has been studied through structural

models by di�erent authors. Davison et al. (2002) use power demand and capacity as

inputs to model the spot power price as a mixture of two normal distributions. Barlow

(2002), assuming that supply is deterministic whilst demand is an Ornstein-Uhlenbeck

process, represents the electricity spot price as a nonlinear Ornstein-Uhlenbeck process.

Kanamura and Ohashi (2007) approximate the supply curve with a hockey-stickshaped

curve1 and de�ne the demand as an Ornstein-Uhlenbeck process. Davison et al. (2002),

Barlow (2002) and Kanamura and Ohashi (2007) are able to model electricity price

spikes and to reasonable replicate the supply/demand dynamics of this speci�c market.

However, Barlow (2002) in the conclusion states that the model �ts well with the spot

prices, but it does not provide a satisfactory explanation of the relation between spot and

future prices. Moreover, also Kanamura and Ohashi (2007) identify in the relationship

between spot and future prices an important issue to be further analysed2. Pirrong and

Jermakyan (2008) let the power price be a function of the demand3 and of the prices

of the fuels. Also in this case, since one of the state variables is not a traded asset, it

is necessary to take account of its market price of risk. Álvaro Cartea and Villaplana

1Kanamura and Ohashi (2007) use two lines, one �at and the other steep, linked by a quadratic
curve.

2Kanamura and Ohashi (2007) propose to estimate the stochastic discount factor that let its future
spot prices to be consistent with the forward curve.

3Pirrong and Jermakyan (2008) consider the demand as one of the possible state variables. In their
model it is possible to take into consideration also the weather.
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(2008) extend the model from Barlow (2002) by introducing the capacity as a random

variable. The model is able to analytically express the expected spot prices and the price

of forward contracts, thus allowing the forward premium to have a closed form. Lyle and

Elliott (2009) develop a supply demand model "simple enough" to provide a closed form

solution for European call options.

3.2.2 Reduced form models

There are two main families of reduced form models. The �rst one is based on the

de�nition as stochastic processes of the spot price and the convenience yield. The second

one is fully focused on modelling the evolution of the forward curve through time. For

this reason, they often leverage on the knowledge developed in the multi-factor framework

of interest rate modelling4.

The convenience yield models �nd their economical roots throughout history. Keynes

(1923) explains the phenomena of backwardation5 stating that for the sake of certainty,

the producer, not unnaturally, is prepared to accept a somewhat lower price in advance

than what, on the balance of probability, he thinks the price is likely to be when the time

comes. Kaldor (1939) states that stocks have a yield since they let the producer avoid

costs, troubles and delays of ordering frequent deliveries. Working (1949) explores inter-

temporal price relations6 through a breakdown of the storage activity. He states that,

until a recognized level, stocks do imply a convenience yield, since they are necessary to

run the main processes of the business. Brennan (1958), analysing the inverse carrying

charges, proposes the same reasons as Kaldor (1939), since through stocks the wholesaler

can be more �exible and resilient to increases in clients demand. Brennan and Schwartz

(1985) de�ne the convenience yield as the �ow of services that accrues to an owner of

the physical commodity but not to the owner of a contract for future delivery of the com-

modity. Wright and Williams (1989) list three main elements that characterize the prices

4For a comprehensive review of interest rate models refer to Brigo and Mercurio (2006).
5Forward price below the spot price or decreasing forward curve.
6Working (1949) excludes from inter-temporal price relations the relation between present and past

prices.
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of storage: total transformation cost minimization, di�erences among apparently related

commodities and distortions in commodity markets, such as export subsidies or the strate-

gic petroleum reserve. There are several models that use the concept of convenience yield

to describe the relation between spot and future prices. Gibson and Schwartz (1990)

developed a two-factor model7 where the �rst one is the spot price and the second is

the instantaneous convenience yield. Furthermore, the spot price is supposed to follow

a Geometric Brownian Motion like in Black and Scholes (1973), while the instantaneous

convenience yield to follow an Ornstein-Uhlenbeck process. After some years, Schwartz

(1997) and Miltersen and Schwartz (1998) extended Gibson and Schwartz (1990) con-

sidering the instantaneous interest rate to follow a mean reverting process as in Vasicek

(1977). Hilliard and Reis (1998) include also jumps in the spot price in order to capture

the e�ect of discrete time events like the one related to the weather. The inclusion of

jump di�usion process does not change the pricing of forward contracts, but it signif-

icantly a�ects the valuation of options. All those models are able to describe several

commodity forward curve movements, but they have some limitations. As stated by

Clewlow and Strickland (1999b), since the state variables are unobservable - even the

spot price is hard to obtain, with the problems exasperated if the convenience yield has to

be jointly estimated.

The second family of models are the forward curve models or factor reduction models.

The purpose of this approach is to jointly model the evolution of the forward curve,

given the one available at the time of the valuation. The prices are described through

unobservable and latent variables, so there is no direct connection or relation with known

and explicit external variables. These models are able to let the resulting forward prices

have volatilities that decrease with the time to maturity, a very important characteristic

in the commodity markets8. The most important assumptions of those models are the

number of factors to be taken into consideration and their stochastic processes. From an

analytical point of view, Gyöngy (1986) was the �rst to �nd a one-factor process having

7Schwartz (1998) developed a one-factor model that is practically equivalent to the two-factor model
for long term time horizon.

8Also known as Samuelson e�ect (Samuelson (1965)).
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the same marginal distribution as a process with two stochastic parameters. Clewlow and

Strickland (1999b) developed a one-factor model with analytical formulae for standard

options, caps and �oors, collars, swaptions and exotic energy derivatives. Afterwards,

Clewlow and Strickland (1999a) extended the previous work to a multi-factor model.

Inspired by the calibration of LIBOR market models on swaptions by Brigo and Mercurio

(2001), Kiesel et al. (2009) extended Clewlow and Strickland (1999b), in order to work

in a two-factor environment applicable to electricity futures market. The model is able

to �t swapoption-implied volatilities, even if it has some di�cultes with very short term

products. Recently, Edoli et al. (2013) developed a calibration methodology that is

able to extend the model by Kiesel et al. (2009) in a multi-commodity framework. The

calibration is based on the historical forward quotations of WTI, Brent and Gasoil. It is

performed in two steps: �rst, the parameters of each commodity are retrieved and, then,

the cross correlations parameters are calibrated to �t the entire covariance matrix.

3.2.3 Cointegration and commodity markets

The cointegration concept by Granger (1981) and by Engle and Granger (1987) can

�nd its economic roots in Leontief (1936) and in Hicks (1939). A composite index may

be the result of the combination of several goods, so that they can be treated as a single

composite good. However, Leontief (1936) states that the choice of the composition is

an element of arbitrariness. For Hicks (1939) di�erent physical things can be treated

as a single one as long as we can assume that their relative prices do not change over

time. Therefore, one could think of the cointegration as a robust statistical method to

overcome the expert based choices of index composition and proportionality. Still, as

pointed out in Johansen (2000), the choice of the variables to be analysed depends on

the economic insight used to formulate the problem, but the cointegration framework

can be used to describe and test the existence of long-run economic relations.

Cointegration analysis has been extensively applied to the commodity markets.

Girma and Paulson (1999) analyse the relations between daily quotations of two-

months futures prices of oil with its end products, gasoline and heating oil, from 1983
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to 1994. The spreads taken into consideration are the 3:2:1 crack spread (3 contracts

of crude oil, 2 contracts of unleaded gasoline and 1 contract of heating oil), the 1:1:0

gasoline crack spread (1 contract of crude oil and 1 contract of unleaded gasoline) and

the 1:0:1 heating oil crack spread (1 contract of crude oil and 1 contract of heating oil).

Using the tests by Dickey and Fuller (1981) (ADF, Augmented Dickey-Fuller test) and

by Phillips and Perron (1988), they prove that the prices are integrated of order one and

that the spreads are stationary. The results are shown to be meaningful both for trading

and for hedging purposes.

Simon (1999) conducts a similar study on the future prices of the soybean and its end

products, soymeal and soyoil, from 1985 to 1995. The spread taken into consideration

is the crush spread (soybean meal, soybean oil and soybean). Using the ADF test, the

prices are proven to be integrated of order one. Moreover, performing the test by Engle

and Granger (1987), it is shown that the prices are cointegrated.

Serletis and Herbert (1999) analyse daily data of Henry Hub gas prices, Transco Zone

6 gas prices, Pennsylvania, New Jersey, Maryland (PJM) electricity prices, and the New

York Harbor oil prices from 1996 to 1997. With the implementation of the ADF test, the

authors prove the series to be integrated of order one, except for the PJM that result to

be integrated of order zero. Using Engle and Granger (1987), gas and oil prices result to

be cointegrated. Furthermore, using Granger causality test (Granger (1969)), causality

and feedback relations are found among the cointegrated commodities.

Emery and Liu (2002) analyse the California-Oregon Border (COB) and Palo Verde

(PV) electricity futures prices with natural gas futures prices from 1996 to 20009. With

Dickey and Fuller (1981), they �nd that the prices are integrated of order one and, using

the framework of Engle and Granger (1987), they also �nd the prices to be cointegrated.

The results show also that traders could have generated pro�ts by exploiting the mean

reversion of the spark spread10.

Asche et al. (2006) perform a multivariate cointegration analysis on end of month

9Data are daily settlement prices of NYMEX's 1st nearby California-Oregon Border and Palo Verde
electricity futures contracts and Henry Hub natural gas futures contract.

10The spark spread is the di�erence between the electricity and the gas prices.
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prices of oil, gas and electricity in the UK using the methodology of Johansen (1988).

The prices object of analysis result to be cointegrated in the period January 1995 - June

1998, hypothesis that cannot be con�rmed in the following period 1998-2002, right after

a pipeline connected the UK natural gas grid with Europe.

Wårrel (2006) analyses quarterly data from 1980 to 2000 of European and Japanese

coking and steam coal. ADF test shows that the prices are integrated of order one, while

using the approach by Engle and Granger (1987) they are also found to be cointegrated,

letting the author show the existence of a coal world market.

Panagiotidis and Rutledge (2007) try to �nd out if the UK gas prices and the Brent

oil prices decoupled in the period of the UK gas market liberalisation 1996-2003. Using

the ADF test, the test by Breitung (2002) and Breitung and Taylor (2003) that takes

into account structural breaks, the test by Saikkonen and Lütkepohl (2002) and by Lanne

et al. (2002) that considers level shifts, and the test by Phillips and Perron (1988), the

authors con�rm that prices are integrated of order one. The authors test the presence

of cointegration implementing the well known methodology by Johansen (1995) and the

non parametric procedure by Breitung (2002). UK gas and Brent prices result to be

cointegrated throughout the whole period, regardless of the opening of the gas connection

between UK and Europe. This means that, although the market was liberalised, the UK

gas market was always linked to the oil price, at least in the long run.

Bunn and Fezzi (2009) build a Vector Error Correction Model, in line with Johansen

(1991), to study the relations between gas, electricity and carbon day-ahead prices in

Germany and in UK from 2005 to 2006. ADF test and KPSS test (Kwiatkowski et al.

(1992)) show that gas and carbon prices are integrated of order one. However, the

tests give di�erent results on electricity prices, but the authors decide, however, to treat

them as non stationary series following the suggestion by Hendry and Juselius (2000)11.

Using the methodology by Johansen (1991), both Germany and UK systems result to

11Hendry and Juselius (2000), in chapter 6 Testing for Unit Roots, state that is better to treat a
stationary variable as an integrated one if it has a root close to 1 (> 0.95). One of the presented reasons
is that the Dickey-Fuller (Dickey and Fuller (1979)) test distribution is skewed with a long left tail, so
that is not easy to deal with roots closed to one.
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be signi�cantly cointegrated with di�erent cointegrating vectors given that UK has a

generation mix with the gas as the marginal technology, whilst Germany has the coal as

the marginal technology12.

De Jong and Schneider (2009) study the dynamics of spot and one month forward

contracts of UK, Belgian, Dutch natural gas markets (NBP, ZEE and TTF) and the

Dutch power market (APX) from 2004 to 2008. Johansen (1988) is used to test that all

the variables are cointegrated. In order to be focused on the relation that lies between

spot and forwards and among di�erent markets, the authors develop an innovative multi-

market spot-price model by allowing the spot-M1 spreads to be cointegrated. In this

way, the correlation between the residuals represent the short term correlation, while the

linkages among the spreads of the di�erent markets capture the long-term relationships.

Counter-intuitively the spot-M1 spreads of the gas markets are �nd to be weakly or

negatively related with the power market both in the prices and in the returns. The

authors explain the results by stating that the relationships have already been captured

by the one month contracts. The additional movements of the spot power price with

respect to the forwards are independent between power and gas. In the authors opinion,

this is mainly due to the gas sourcing practice that is not performed in the spot markets,

but usually signing long term contracts or entering in forward transactions. Furthermore,

although the relations between the di�erent markets seems to be well captured, the single

commodity distributions do not �t well with the history. It is noteworthy that the authors

say that an appropriate cointegrated forward price model should be developed in order

to capture the co-movements of the gas and electricity one month contracts.

Bosco et al. (2010) analyse the central Europe power markets. They use weekly

average of hourly power prices of Netherlands (APX), Germany (EEX), Austria (EXAA),

Scandinavia (Nord Pool), Spain (Omel) and France (Powernext) from 2002 to 2007.

In order to treat outliers, the non-Gaussian pseudo-likelihood tests by Lucas (1998) is

implemented to test if the prices are integrated and cointegrated. All the markets result

to be integrated. Moreover, with the exception of Spain and Scandinavia, the prices

12For Germany see subsection 2.1.2.
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share a common trend. Furthermore, using the data of Belgian gas index (ZEE) and

the data of Brent, the authors �nd that there is an evidence of cointegration between

electricity prices and gas, while the same result cannot be con�rmed for oil.

Bencivenga et al. (2010) analyse the daily prices of Brent, UK gas (NBP) and EEX

electricity from 2001 to 2007. Using the ADF test, the authors conclude that the variables

are integrated of order one. Using the Johansen framework (Johansen (1988), Johansen

(1991) and Johansen (1995)), the prices result to be cointegrated. Moreover, also the

Engle and Granger (1987) method is implemented to study each pair of commodities.

Westgaard et al. (2011) study the relation between Gas oil and Brent Crude oil futures

prices. They take into consideration daily prices from 1994 to 2009 of �ve di�erent

maturities for both the commodities: 1 month, 2 months, 3 months, 6 months and 12

months. Using the ADF test, all the variables are found to be integrated of order one.

Granger causality test (Granger (1969)) show that feedback occurs, meaning that there is

not a unidirectional relation. Engle and Granger (1987) and Johansen (1991) frameworks

are used to �nd that the one and two months forwards are cointegrated, whilst the other

tenors are not. The authors ascribe those counterintuitive results to the limited liquidity

of the longer term forwards and to the volatility of the period 2002-2009.

Joëts and Mignon (2012) use panel cointegration techniques to show that daily for-

ward prices of oil, coal, gas and electricity forward prices on 35 maturities are cointe-

grated. Oil, gas and coal forward prices are found to be positively linked, whilst electricity

and oil forward prices have a negative relation.

Frydenberg et al. (2014) analyse daily future prices of electricity, oil, gas and coal

in UK, German and Nordic markets from 2006 to 2012. With ADF test, the prices are

proven to be integrated of order one. Using the framework of Johansen, the authors

�nd cointegration among electricity prices, between UK electricity and gas, between UK

electricity and coal, between German electricity and coal, and between Nordic electricity

and coal. The authors think that maybe there are more cointegrating relations among

the commodities. It is noteworthy that they expect to �nd them using more historical

data, but also through an analysis of contracts with longer maturities such as monthly,
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quarterly and seasonal/yearly forwards.

Madaleno et al. (2015) analyse annual electricity, gas, coal and oil prices in 22 coun-

tries13 from 1996 to 2013. Using panel unit root (Levin et al. (2002)) and panel cointe-

gration tests (Pedroni (2001) and Pedroni (2004)), the authors �nd the variables to be

integrated of order one and to be cointegrated.

3.3 Two-Factor Model

In this section we examine the two-factor model framework. The univariate case

(subsection 3.3.1) is based on the work of Kiesel et al. (2009), while the multivariate case

(subsection 3.3.2) is based on the extension proposed by Edoli et al. (2013).

3.3.1 The Univariate Case

In the reduced factor technique, observable forwards prices can be treated directly

with Gaussian factors

(3.1)dF (t, T ) = σ(t, T )F (t, T )dW t

where

• F (t, T ) is the price of the forward with start date t and end date T

• σ(t, T ) are the volatilities of the factors

• dW t is the n-dimensional Brownian motion

• n is the number of factors.

The solution:

(3.2)F (t, T ) = F (0, T )e

∫ t
0 σ(s,T )dW s− 1

2

∫ t
0

∥∥∥∥σ(s, T )
∥∥∥∥2ds

13Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hun-
gary, Ireland, Italy, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United
Kingdom and Switzerland.
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As in Kiesel et al. (2009), the two-factor model can be de�ned as follows

(3.3)
dF (t, T )

F (t, T )
= e−k(T−t)σ1dW

1
t + σ2dW

2
t

where

• σ1 is the volatility of the short-term factor

• σ2 is the volatility of the long-term factor

• k is the short-term factor mean reversion coe�cient

• ρ is the correlation coe�cient between the short and the long-term factors

and where dW 1
t and dW 2

t are two correlated Wiener processes such that

(3.4)dW 1
t dW 2

t = ρdt

or in terms of correlation matrix

Short Long

Short 1 ρ

Long ρ 1

Table 3.1: One Commodity Factor Correlation Matrix

Applying Itô's Lemma14 (Itô (1944)) to the SDE in (3.3), we obtain

F (t, T ) = F (0, T )e
∫ t
0 σ1e

−k(T−s)dW 1
s +
∫ t
0 σ2dW

2
s− 1

2
(
∫ t
0 σ

2
1e
−2k(T−s)ds+

∫ t
0 σ

2
2ds+2

∫ t
0 σ1σ2e

−k(T−s)ρds)

(3.5)

To simplify the notation, let us have

(3.6)σ̃2(s, t) = σ21e
−2k(t−s) + σ22 + 2σ1σ2e

−k(t−s)ρ

Hence

(3.7)F (t, T ) = F (0, T )e−
1
2

∫ t
0 σ̃

2(s,T )ds+
∫ t
0 σ1e

−k(T−s)dW 1
s +
∫ t
0 σ2dW

2
s

14Shreve (2004) adds Doeblin's name to Itô's formula. In 2000 a sealed envelope, received by the
French National Academy of Sciences in February 1940, was opened for the �rst time. It contained the
work by Doeblin (1940) that revealed a construction of the stochastic integral similar to the Itô's one.
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From equation (3.7), we can compute the variance of the logarithm of a forward price

in time T0

(3.8)Var(logF (T0, T )) =

∫ T0

0
σ21e
−2k(T−t)dt+

∫ T0

0
σ22dt+

∫ T0

0
ρσ1σ2e

−k(T−t)dt

Solving the integrals, we obtain

(3.9)Var(logF (T0, T )) =
σ21
2k

(e−2k(T−T0) − e−2kT ) + σ22T0 + 2
ρσ1σ2
k

(e−k(T−T0) − e−kT )

If we consider two forward contracts with two di�erent maturities (Ti and Tj), we

can compute the covariance

(3.10)
Cov(logF (T0, Ti), logF (T0, Tj)) =

∫ T0

0
σ21e
−k(Ti+Tj−2t)dt+

∫ T0

0
σ1σ2e

−k(Ti−t)ρdt

+

∫ T0

0
σ1σ2e

−k(Tj−t)ρdt+

∫ T0

0
σ22dt

Hence, the covariance is

(3.11)
Cov(logF (T0, Ti), logF (T0, Tj)) = e−k(Ti+Tj−2T0)

σ21
2k

(1− e−2kT0) + σ22T0

+
ρσ1σ2
k

(1− e−kT0)(e−k(Ti−T0) + e−k(Tj−T0))

3.3.2 The Multivariate Case

It is possible to generalize equation (3.11) in order to consider a multivariate frame-

work like in Edoli et al. (2013). Let us have two commodities a and b, both of them

following a two-factor model like in (3.3). In order to have the more generalized frame-

work, let us suppose that the forward a has an expiry Ta, while the forward b has an

expiry Tb.

(3.12a)
dFa(t, Ta)

Fa(t, Ta)
= e−ka(Ta−t)σ1adW 1

ta + σ2adW 2
ta

(3.12b)
dFb(t, Tb)

Fb(t, Tb)
= e−kb(Tb−t)σ1bdW

1
tb

+ σ2bdW
2
tb

where the correlations between the short-term factor and the long-term factor of each

commodity are
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(3.13a)dW 1
tadW 2

ta = ρ1a,2adt

(3.13b)dW 1
tb

dW 2
tb

= ρ1b,2bdt

while the cross correlations are

(3.14a)dW 1
tadW 1

tb
= ρ1a,1bdt

(3.14b)dW 1
tadW 2

tb
= ρ1a,2bdt

(3.14c)dW 2
tadW 1

tb
= ρ2a,1bdt

(3.14d)dW 2
tadW 2

tb
= ρ2a,2bdt

Therefore, instead of a 2×2 correlation matrix like in table 3.1, we have a 4×4 factor

correlation matrix (table 3.2).

a b

Short Long Short Long

a
Short 1 ρ1a,2a ρ1a,1b ρ1a,2b

Long ρ1a,2a 1 ρ2a,1b ρ2a,2b

b
Short ρ1a,1b ρ2a,1b 1 ρ1b,2b

Long ρ1a,2b ρ2a,2b ρ1b,2b 1

Table 3.2: Two Commodities Factor Correlation Matrix

Like in the univariate case, we can obtain the explicit formulae for the logarithm of

the prices. Therefore, given (3.12), like in (3.7), we have

(3.15a)Fa(t, Ta) = Fa(0, Ta)e
− 1

2

∫ t
0 σ̃a

2(s,Ta)ds+
∫ t
0 σ1ae

−ka(Ta−s)dW 1a
s +

∫ t
0 σ2adW

2a
s

(3.15b)Fb(t, Tb) = Fb(0, Tb)e
− 1

2

∫ t
0 σ̃b

2(s,Tb)ds+
∫ t
0 σ1be

−kb(Tb−s)dW
1b
s +

∫ t
0 σ2bdW

2b
s

Now it is possible to compute the closed formula for the covariance at time T0

(3.16)

Cov(logFa(T0, Ta), logFb(T0, Tb)) =

∫ T0

0
σ1aσ1be

−ka(Ta−t)−kb(Tb−t)ρ1a,1bdt

+

∫ T0

0
σ1aσ2be

−ka(Ta−t)ρ1a,2bdt

+

∫ T0

0
σ2aσ1be

−kb(Tb−t)ρ2a,1bdt

+

∫ T0

0
σ2aσ2bρ2a,2bdt



CHAPTER 3. THE MODEL 37

Solving the integrals, we obtain

Cov(logFa(T0, Ta), logFb(T0, Tb)) =
ρ1a,1bσ1aσ1b
ka + kb

e−ka(Ta−T0)−kb(Tb−T0)(1− e−kaT0−kbT0)

+
ρ2a,1bσ2aσ1b

k1b
e−kb(Tb−T0)(1− e−kbT0)

+
ρ1a,2bσ1aσ2b

k1a
e−ka(Ta−T0)(1− e−kaT0)

+ ρ2a,2bσ2aσ2bT0
(3.17)

Therefore, we can see that formula (3.11) is just (3.17) where

(3.18)



ρ1a,1b = 1

ρ2a,2b = 1

ρ1a,2b = ρ2a,1b = ρ

σ1a = σ1b = σ1

σ2a = σ2b = σ2

ka = kb = k

Moreover, if we add the condition Ta = Tb = T to (3.18), the (3.17) is equal to the

univariate equation of the variance (3.9).

3.4 Co-integration Analysis

Cointegration can be applied only if all the series object of analysis are integrated at

least of order one. There are several methods to test if a process is stationary or not like

• the Dickey-Fuller test (Dickey and Fuller (1979))

• the Augmented Dickey-Fuller (DF) test (Dickey and Fuller (1981))

• the Phillips-Perron test (Phillips and Perron (1988))

• the KPSS test by Kwiatkowski et al. (1992)

• the test by Breitung (2002) and Breitung and Taylor (2003)
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• the test by Saikkonen and Lütkepohl (2002) and by Lanne et al. (2002).

The �rst two tests are the most used in the literature. Given a process

(3.19)Yt = ρYt−1 + ut

where ut have mean zero and �nite variance.

According to Dickey and Fuller (1979), if ρ = 1, Yt is not stationary, while, if |ρ| < 1,

it is stationary. If we express (3.19) in terms of di�erences, subtracting Yt−1 from both

sides of the equation, we obtain

(3.20)∆Yt = δYt−1 + ut

where ∆Yt = Yt − Yt−1 and δ = ρ− 1. The null hypothesis of the DF test is that δ = 0

in equation (3.20). However, it is possible that the ut are correlated. In these cases

the Augmented Dickey-Fuller test (Dickey and Fuller (1981)) shall be used. The null

hypothesis is the same, but it has to be applied to equation (3.21)

(3.21)∆Yt = b1 + b2t+ δYt−1 +

m∑
i=1

ai∆Yt−i + ut

where we are basically controlling for m lags in order to get rid of ut autocorrelation.

In case the process results to have a unit root, it is going to be necessary to test if its

di�erences are stationary or not. The order of di�erences needed to let Yt be stationary is

the order of integration. Generally, the order of integration k is identi�ed by the notation

I(k), so that a stationary process is I(0). A process is I(1) if the �rst order of di�erences

is stationary (I(0)).

All the considerations about integration have been made in a univariate framework.

However, if we have to manage two processes, it is not correct to treat each process as

in the univariate case and then extend the analysis on the bivariate case. The processes

could share a common trend and di�erentiating them before modelling their association,

would result in a loss of precious information. From a statistical point of view, this would

mean that, even if the processes result to have a unit root, a speci�c combination of them

could result to be stationary. This can be tested by implementing a regression of one
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process against the other. The regression is often identi�ed as cointegration regression

as in (3.22)
(3.22)Yt = a+ γXt−1 + ut

However, we have to verify that the residuals are I(0). We can express them in

autoregressive form (3.23)

(3.23)∆ut = ψût−1 + vt with ψ = ρ− 1

As in the ADF test, we have to test the presence of unit root. However, this time we

are working on the residuals of the model (3.22) and not directly on the observed data,

therefore, the critical values have changed. The test to be performed is the test by Engle

and Granger (1987).

In case the cointegration between the processes is con�rmed, the bivariate model can

be expressed through the Error Correction Model as in (3.24)

(3.24)∆Yt = b1∆Xt + b2(Yt−1 + γXt−1 − a) + ut

The term (Yt−1 + γXt−1 − a) that comes from (3.22) is the mean reversion to the

equilibrium and is known as the error correction term, whilst b2 is the speed of the

correction toward the equilibrium. Therefore, if due to a shock, the di�erence between

the levels of the two processes increases, the error correction element will become greater

and with strength b2 it will pull back the relation to the equilibrium. On the other hand,

if in a given t, the processes respect the long-term equilibrium, the error correction will

be zero. Finally, b1 represents the short term relation among the processes.

Within the Engle and Granger (1987) framework, we can �nd only one relation among

the variables. This is not a problem if we are dealing with only two integrated processes,

but, as stated in Alexander (2001), when there are more than two I(1) series the Engle-

Granger method can su�er from a serious bias. This can happen when more than one

spread is stationary. The framework by Johansen (1988), Johansen (1991) and Johansen

(1995) is more suited when the number of variables is greater than two. However, as

pointed out in Alexander (2001), the two methods have two di�erent aims. Engle and

Granger (1987), through OLS estimation, seek for the combination of processes with
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minimum variance, while Johansen (1995) seeks the more stationary combinations. This

framework can be considered a multivariate extension of the DF test, so let us have

(3.25)Y t = a+ bY t−1 + εt

where εt are independent Gaussian Nn(0,Σ).

Subtracting Y t−1, we have

(3.26)∆Y t = a+ ΠY t−1 + εt

with Π = b− I. As for the DF test, the (3.26) can be augmented including lags in order

to control for the autocorrelation of the residuals ε

(3.27)∆Y t = a+ ΠY t−1 +

m∑
i=1

Γi∆Y t−i + εt

To make an example, if Y t are I(1), given the di�erentiation, we will have a sta-

tionary process on the left hand side. This implies that also the right hand side has to

be stationary. Given our hypothesis, ∆Y t−i are all stationary by de�nition, therefore

ΠY t−1 has to be stationary itself15. The error correction matrix can be expressed as

(3.28)Π = αβ′

where α is the error correction or adjustment speed, and β is the cointegrating vector.

In this framework, the cointegration analysis is nothing else than a test on the rank r of

Π. r is the number of stationary linear combinations of the processes and, therefore, it

is also the number of cointegrated relations.

As reviewed in Johansen (2000), a nested sequence of hypothesis has to be formulated

in order to �nd the correct r

(3.29)H0 ⊂ H1 ⊂ ... ⊂ Hr ⊂ ... ⊂ Hn

where Hi, with i = 0...n, is the null hypothesis r ≤ i. H0 will be the test on a vector

autoregressive model for Y t in di�erences, while H1 will be the unrestricted autoregres-

sive model in the levels. A test on the rank can also be the test to �nd the r non zero
15According to De�nition 3 of Johansen (2000), if Xt is integrated of order 1 but some linear com-

bination, β′Xt, β 6= 0 can be made stationary by a suitable choice of β′X0, Xt is called cointegrated

and β is the cointegrated vector. The number of linearly independent cointegrating vectors is called the

cointegrating rank, and the space spanned by the cointegrating vectors is the cointegration space.
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eigenvalues. One of the test is

(3.30)Trace Test = −T
n∑

i=R+1

ln(1− λ̂i)

where T is the number of the observation and λ̂i are the eigenvalues of Π.

3.5 Term Correlations

Since the aim of the model presented in this thesis is to consider long-term dependen-

cies among the commodities, we need to extend the analytical framework by Kiesel et al.

(2009) and by Edoli et al. (2013). We will need closed form formulae for the term corre-

lations in order to consistently treat products in the future. Controlling the correlations

for the integration step will also allow to work in any discrete time simulation framework,

increasing the �exibility of the model and reducing the complexity of the problem.

Closed form formulae for term correlations are developed in subsection 3.5.1 for the

univariate case and in subsection 3.5.2 for the multivariate case.

3.5.1 The Univariate Case

As already pointed out in Kiesel et al. (2009), from (3.9) and (3.11), we can infer that

the variance and the covariance obviously depend on the integration step T0. However,

Kiesel et al. (2009) do not explicitly treat the closed formula of the correlation ρ between

the short and the long-term factors.

In (3.9), we can �nd the expressions of the variances of the factors and their covari-

ance:

(3.31a)Var(Short(T0, T )) =
σ21
2k

(e−2k(T−T0) − e−2kT )

(3.31b)Var(Long(T0, T )) = σ22T0

(3.31c)Cov(Short(T0, T ), Long(T0, T )) =
ρσ1σ2
k

(e−k(T−T0) − e−kT )

Therefore, the correlation is

(3.32)Corr(Short(T0), Long(T0)) = ρ
1
k (ekT0 − 1)√
1
2k (e2kT0 − 1)T0
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It is noteworthy that (3.32) does not depend on T , but just on the mean reversion k

and on T0.

3.5.2 The Multivariate Case

Di�erently from Edoli et al. (2013), where an Euler discretization is provided, we are

going to set up a not-instantaneous framework for the correlations in the multivariate

case.

As done for the univariate case in subsection 3.5.1, let us compute the integrated

correlations in the multivariate framework. Obviously, the variances are the same as in

(3.31a), whilst the covariances are di�erent.

(3.33a)
Cov(Shorti(T0, Ti), Shortj(T0, Tj)) =

ρ1i,1jσ1iσ1j
ki + kj

e−ki(Ti−T0)−kj(Tj−T0)(1− e−kiT0−kjT0)

(3.33b)Cov(Shorti(T0, Ti), Longj(T0, Tj)) =
ρ1i,2jσ1iσ2j

k1i
e−ki(Ti−T0)(1− e−kiT0)

(3.33c)Cov(Longi(T0, Ti), Longj(T0, Tj)) = ρ2i,2jσ2iσ2jT0

where i = a, b and j = a, b with i 6= j.

Hence, the T0 correlations are

(3.34a)Corr(Shorti(T0), Shortj(T0)) = ρ1i,1j

1
ki+kj

(e(ki+kj)T0 − 1)√
1

4kikj
(e2kiT0 − 1)(e2kjT0 − 1)

(3.34b)Corr(Shorti(T0), Longj(T0)) = ρ1i,2j

1
ki

(ekiT0 − 1)√
1
2ki

(e2kiT0 − 1)T0

(3.34c)Corr(Longi, Longj) = ρ2i,2j

where i = a, b and j = a, b with i 6= j.

Therefore, we have shown that the non-instantaneous cross correlations do not depend

on the maturity of the forwards, whilst the correlation between the long-term factors

equals the instantaneous correlation ρ2i,2j . Moreover, if we apply the conditions (3.18)

to (3.34), we would obtain the same results as in (3.32).
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3.6 Long-Term Dependency

Edoli et al. (2013) extend in the multivariate case the two-factor model applied in the

electricity market by Kiesel et al. (2009). Edoli et al. (2013), as aforementioned in this

thesis, deal with the instantaneous correlations. In subsection 3.5.1 and in subsection

3.5.2, closed form formulae of the correlation, taking into consideration the integration

steps, have been obtained. However, regardless of the calibration method, this would

mean that all the information on the cross commodity correlations is retrieved just on

the daily returns of the panels. The question is if something is missing. Is there any

additional data that could give some more insight in describing the phenomena that drive

the commodity markets? E�ectively, we have at least two main reasons to think that the

approach until here followed could be incomplete. The �rst comes from the structural

model for electricity literature (see subsection 3.2.1), while the second one comes from

the cointegration (see subsection 3.2.3).

We have seen16 from the studies of Davison et al. (2002), Barlow (2002), Kanamura

and Ohashi (2007), Pirrong and Jermakyan (2008), Álvaro Cartea and Villaplana (2008)

and Lyle and Elliott (2009), that the electricity is modelled as a direct or an indirect

function of the fundamentals of the market, such as demand, supply and cost of the fuels

that are used to produce electricity. Part of the literature was concerned in capturing

the jumps that characterize the historical spot prices. Even if those models were not

suited to �t the observed forward curves, they are based on the concept that the prices

of the commodities are linked by some observable factors, that imply a kind of long-term

relationship. In the short term, the prices can di�er because of jumps, but in the long term

they are driven by those forces. Actually, the factor models are based on similar concept,

but mainly within the single commodities panel. The long-term correlation among the

commodities are mainly described by the correlation of the long term products. However,

it is calculated on daily returns, that, by de�nition, are a�ected by shocks of di�erent

sizes.

16Subsection 3.2.1.
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The second stream of research is the one related to cointegration. As stated by Jo-

hansen (1995), the reason that cointegration is interesting is that cointegrating relation

captures the economic notion of a long-run relation. The cointegration could be thought

as a measure of the long-term dependency, since two variables are cointegrated if they

have a stochastic trend in common17. As stated in Engle and Granger (1987), even if

di�erent economic series can wander extensively, some economic forces will keep them

together. From a statistical point of view, this means that a combination of non station-

ary time series can be stationary18. It is noteworthy that Granger (1981) presents, as the

�rst example of cointegrating series, the input and the output of a black box of limited

capacity. Obviously, this example refers to any kind of physical production process like

the electricity generation.

Therefore, the aim of the model is to translate the error correction matrix Π, which

contains information about the long-run relations in the economy (Johansen (2000)), in

the elements of the multivariate two-factor model of Edoli et al. (2013) that drives the

association among the commodities. Since cointegration is related to long-run economic

relations (Johansen (2000)), to long run equilibrium (Engle and Granger (1987)) and to

long-run co-movements in prices (Alexander (1999)), the correlations between the long-

term factors of the commodities are a reasonable choice. Therefore, the contracts with

the longest maturities (i.e. the year swap contracts, commonly known as calendars) will

be used in the cointegration analysis. As suggested in Alexander (2001), given that we

are dealing with more than two commodities, the Johansen framework (Johansen (1995))

will be implemented. Once the methodology is applied, we will have the estimation of

the parameter of the formula (3.26). Expanding the ∆, we have

(3.35)Y t − Y t−1 = a+ ΠY t−1 + εt

Grouping Y t−1
(3.36)Y t = a+ (I + Π)Y t−1 + εt

17Murray (1994) illustrates the concept of cointegration through the humorous example of a drunk
and her dog.

18See section 3.4.
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As in Lütkepohl (1991) and in Lütkepohl and Krätzig (2004), we can compute the

forecast at a generic step t+ h

(3.37)Y t+h|t = a+ (I + Π)Y t+h−1|t

where the forecast error is

(3.38)Y t+h − Y t+h|t = εt+h + (I + Π)εt+h−1 + ...+ (I + Π)h−1εt+1

and the covariance matrix of the forecast error at step t+ h is

(3.39)

ΣY (h) = E{(Y t+h − Y t+h|t)(Y t+h − Y t+h|t)
′}

=
h−1∑
j=0

(I + Π)jΣε((I + Π)j)′

Now, using simple algebra, we are able to extract from the covariance matrix of the

forecast of the errors the correlation matrix ρ(h). In formulae

(3.40)ρ(h) =
√
diag(ΣY (h))

−1
ΣY (h)

√
diag(ΣY (h))

−1

3.7 Calibration Steps

The calibration is based on a three steps procedure:

1. The �rst step is the historical calibration on a standalone basis of each commodity.

Therefore, we will obtain short and long term volatilities, the mean reversion and

the correlation between the short and long-term factor.

2. The second step is based on a cointegration analysis using the framework of Jo-

hansen (1995). From the cointegrating relations, we will retrieve the long term

implied correlations.

3. The third step is the computation of the cross correlation parameters among the

short and long-term factors of the commodities, in order to be able to �t both

the daily correlations, as in Edoli et al. (2013), but also the long term implied

correlations. In this way, the calibration method by Edoli et al. (2013) is improved

by considering cointegrating relations.
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3.7.1 The Univariate Calibration

As in Kiesel et al. (2009), one of the aim is to �nd the set of parameters that let

the model volatilities of the logarithms of the forward prices to be like the observed

volatilities19. Moreover, like in Edoli et al. (2013), we are going to calibrate also on the

covariances of the panel of each commodity. Let us de�ne the standalone parameters as

(3.41)φ = (σ1, σ2, k, ρ)

Hence, in order to �nd the best parameters, we are going to minimize the square

di�erences between the theoretical variances and covariances and the historical variances

and covariances.

(3.42a)
np∑
i =1

(Varhistorical(log(F (t, Ti)))−Varφmodel(log(F (t, Ti))))
2 → argφmin

(3.42b)

np∑
i =1

np∑
j =i+1

(Covhistorical(log(F (t, Ti)), log(F (t, Tj)))

− Covφmodel(log(F (t, Ti)), log(F (t, Tj))))
2 → argφmin

where np is the number of products that compose the panel data of the commodity

to be calibrated. In order to �nd a feasible solution, the optimization is performed

considering the following constraints

(3.43a)σ1, σ2, k > 0

(3.43b)−1 < ρ < 1

However, it is important to highlight that the products on which the calibration is

performed are not of the same type. We have month, quarter and year swap contracts.

While for the �rst one we have derived the closed form formula (3.9), the other two

typologies are means of month swap contracts. Since the distribution of the mean of

log-normals is not known, Kiesel et al. (2009) deal with the problem by implementing

moment matching techniques.

19Kiesel et al. (2009) calibrate the model on option implied volatilities, while Edoli et al. (2013) use
the historical ones.
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Di�erently from Kiesel et al. (2009), in order to handle quarter and calendar swap

contracts, we are going to use a numerical integration method, leveraging on the frame-

work promoted by Heiss and Winschel (2008). In the article, an approach based on a

sparse grids integration (SGI) rule is de�ned an tested through Monte Carlo. This family

of methods are based on the Smolyak (1963) rule that enables to treat multiple dimen-

sions through univariate operators. Heiss and Winschel (2008) have developed an easy

to implement method that avoid the computational costs to grow exponentially with the

number of dimensions.

When it comes to numerically estimate a function, integrals have to be computed

several times. Instead of generating n simulations with equal weight as discretization

technique, a number of nodes with some speci�c weights are chosen based on the dimen-

sion of the problem (D) and on the requested accuracy (k)20. The nodes and the weights

are calculated just once, since they do not depend on the form of the function of interest

(g). As showed in Heiss and Winschel (2008), in the Monte Carlo framework the integral

to be simulated is de�ned as

(3.44)SD,R[g] =
1

R

R∑
r=1

g(xr)

where

• R is the number of simulation based on R random numbers

• xr are the random numbers.

As well known, under certain conditions, the simulation is unbiased and converges

in probability with a rate equal to 1√
R
. There are several approaches and techniques to

generate random numbers, however thousands of random numbers would be needed to

have a good convergence. This means that, when it comes to evaluate the covariance

between two calendars, we would need to simulate 48 streams of random numbers and

to use them in every step of the optimization. It is noteworthy that the time consumed

20Here the same notation of the mean reversion coe�cient of the two-factor model by Kiesel et al.
(2009) is used to be coherent with the original article by Heiss and Winschel (2008).
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is relevant not only for the scale of the problem dimension, but also because in every

simulation we have to calculate the logarithm of the mean of the exponential of a function

of the random numbers. This kind of operation is often found in likelihood estimation

and the computation costs are well known. So, a Monte Carlo approach repeated in

the calibration process would be very heavy. Therefore, Heiss and Winschel (2008) can

really reduce the elapsed time of computation and the size of the data to be stored, both

when quarter and year contracts are taken into consideration. As Heiss and Winschel

(2008), also Di Renzo et al. (2009) performed some tests in order to evaluate the bene�t

of numerically integration through sparse grids on the traditional Monte Carlo approach.

The results from Di Renzo et al. (2009) are astonishing: from an analysis performed

on power-sums of generically correlated Log-Normal RVs, they succeed to reduce the

computational complexity by 99% without any signi�cant loss of accuracy.

Using the formulae from Heiss and Winschel (2008), we can de�ne the integral to be

calculated with the sparse grids as

(3.45)AD,k[g] =
R∑
r=1

g(xr,1, ..., xr,D)wr

where

• AD,k[g] is the integral on D dimensions with k accuracy

• R is the number of nodes on which the integral is evaluated

• xr are the nodes

• wr are the weights of each node

Therefore, the single commodity calibration is going to be performed through the

formulae (3.42) and mainly integrating the methods by Kiesel et al. (2009), Edoli et al.

(2013) and Heiss and Winschel (2008), but taking into consideration the step of integra-

tion.
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3.7.2 The Multivariate Calibration

In risk management the correlation among the risk factors is crucial, since the marginal

distributions are only a part of the problem, whilst the focus is the joint distribution to

be �tted. Moreover, covariances are the parameters that drive the diversi�cation in a

portfolio, that is the measure of the natural hedging arising from the business before any

hedging strategy.

Edoli et al. (2013) approach the two-factor model calibration faced by Kiesel et al.

(2009) in a multivariate framework. The aim is to capture the historical covariances

among the panels of several commodities. Let us de�ne the parameters for more than

one commodity

(3.46)Φ = (σ1,σ2,k,C)

where

• σ1 is the vector of the volatilities of the short-term factors of the commodities

• σ2 is the vector of the volatilities of the long-term factors of the commodities

• k is the vector of the nodes for the long-term factor

• C is the correlation matrix of the short and long-term factors of all the commodities.

Like for the univariate case, we have to �nd the parameters that minimize the square

di�erences between the theoretical covariances Σmodel and the historical covariances

Σhistorical. In formulae

(3.47)(Σmodel −Σhistorical)
2 → argΦmin

Edoli et al. (2013) calibrate the parameters Φ in two steps. First, they �nd the pa-

rameters that maximize the �tting commodity by commodity (σ1, σ2, k, the correlation

between short and long term factor of each commodity). Then, they seek for the cross

correlations that optimize the multivariate distribution.

The optimization has to consider the same constraints (3.43) as the univariate case,

but we need also a valid correlation matrix. As de�ned by Higham (2002), a correlation



CHAPTER 3. THE MODEL 50

matrix is a symmetric positive semide�nite matrix with unit diagonal, so an additional

constraint is necessary: the correlation matrix C has to be semide�nite positive21.

As de�ned in Wooldridge (2013), a matrix is positive de�nite if

(3.48)x′Ax > 0 for all n× 1 vectors x except x = 0

while it is semide�nite positive if

(3.49)x′Ax > 0 for all n× 1 vectors

This issue is well known in the literature, since every time it is necessary to induce

correlation among random variables, the decomposition by Cholesky (1910) is one of the

most common techniques to be implemented22. In order to decompose the matrix, it

has to be semide�nite positive. As shown in Schott (2016), the condition expressed in

(3.48) and in (3.49) in terms of the quadratic form x′Ax can be explicited also in terms

of eigenvalues: a matrix is de�nite positive if

(3.50)λi > 0 ∀i

while it is semide�nite positive if

(3.51)λi ≥ 0 ∀i with λi = 0 for at least one i

where λi are the eigenvalues of the matrix.

Therefore, if the correlation matrix is negative de�nite, it will have at least one

negative eigenvalue, that, as stated by Simonian (2010), would drive the variance of a

portfolio to be negative. In this cases, as shown by Rebonato and Jäckel (1999) using

a variance-covariance normal approximation, also the Value at Risk could be negative.

Hull (2015), giving a practical interpretation, points out that a correlation matrix23 has

to be semide�nite positive in order to be internally consistent. Suppose to have the

following correlation matrix

(3.52)


1 0 0.9

0 1 0.9

0.9 0.9 1


21In the univariate case, since we deal with a 2× 2 matrix, the constraint ρ ∈ (−1; 1) is su�cient to

grant the semipositive de�nitiveness.
22It might be interesting to note that Turing (1948) considered the Cholesky's method more accurate

and convenient than other techniques.
23Hull (2015) uses a covariance matrix with all the variances equal to one.
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The �rst variable is highly correlated with the third one, which is highly correlated

with the second one. However, the correlation between the �rst and the second is zero,

a con�guration that seems strange. In fact if we apply to (3.49) a x = (1, 1,−1), the

equation will not be satis�ed.

An ill-conditioned correlation matrix can be found in di�erent situations. Higham

and Strabi¢ (2016) talk of the following applications in statistical modeling contexts:

• a correlation matrix computed from empirical or experimental data mainly due to

missing observations

• stress testing in �nance, when it is necessary to shift one or more elements of a

valid correlation matrix

• a correlation matrix that is the result of an aggregation of small correlation matrices

into a unique global correlation matrix.

There are also other causes of not valid correlation matrices such as

• the presence of collinearity among the variables. In this case we have redundancy,

since one or more variables are linearly dependent. Practically, perfectly linearly

dependent variables are rare, however, when the correlations are empirical esti-

mated, we could �nd variables that are almost linearly dependent. Coming back

to the notation by Schott (2016), this would mean that at least one eigenvalue λ

of the matrix is very close to zero. In econometrics, di�erent works have been de-

veloped to test collinearity through the analysis of the eigenvalues. Belsley (1991),

Maddala (1992), Belsley et al. (2004), Callaghan and Chen (2008) and Gujarati

and Porter (2008) use the condition number24 and the condition index 25 to under-

stand how small is an eigenvalue and, so, which are the variables that are linearly

dependent. However, they do not provide an objective statistical test, but only

24The condition number is given by the ratio between the maximum eigenvalue and the minimum
eigenvalue (Gujarati and Porter (2008)).

25The condition index is the square root of the condition number (Gujarati and Porter (2008)).
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some intervals empirically determined26. Moreover, implementing methods such as

Cholesky (1910), it is possible that rounding errors trigger the matrix to lose the

positive de�nitiveness.

• the correlation is computed on a too small sample. Goldberger (1991) introduces

the term micronumerosity to identify this issue in the context of linear regression,

since multicollinearity can be induced also by a small sample size.

• a variable is constant. Obviously, this would mean that its variance is zero and so

at least one eigenvalue is zero.

• the initial correlation matrix is incomplete, since some elements are unknown. This

case has been the object of a speci�c stream of research such as Grone et al. (1984),

Barrett et al. (1989), Lundquist and Johnson (1991), Budden et al. (2007) and

Smith (2008). Moreover, Kahl and Günther (2008) present a method to complete

the correlation matrix in a multi-dimensional stochastic volatility model, combining

Gaussian elimination27 and graph theory.

Although the approach by Kahl and Günther (2008) is implemented in a similar

context of the multivariate extension of the two-factor model, our issue is much more

related to the aggregation case mentioned in Higham and Strabi¢ (2016). The 2 × 2

correlation matrices of each single commodity can be thought as the small correlation

matrices. On the other hand, the correlation matrix that relates the short and long-

term factors of all the commodities acts as the global correlation matrix. In case of

ill-conditioned correlation matrix, the challenge is to �nd the smallest adjustments to be

applied to the matrix in order to obtain a valid correlation matrix. Since Higham (2002),

this issue in �nance is known as the nearest correlation matrix problem.

26In Belsley et al. (2004) weak dependecies are associated with condition index around 5-10, while
strong dependencies are associated with condition indexes of 30 or more. In the book the evidence of
the experiments suggests to use a threshold between 10 and 30. In Gujarati and Porter (2008) a similar
rule of thumb is reported: moderate to strong multicollinearity if the index is between 10 and 30, while
sever multicollinearity for values above 30.

27The Gaussian elimination is a transformation to triangular form (Section 3.3 of Du� et al. (1989)).
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Many methods have been developed to solve the problem of the nearest correlation

matrix. Finger (1997) seeks a way to stress some correlations within a correlation matrix

without losing the semipositive de�nitiveness. The part of the matrix to be stressed is

successfully changed, but also the other ones are a�ected in order to ensure the semi-

positive de�nitiveness. In the same context, Kupiec (1998) applies shrinkage techniques

to adjust the whole correlation matrix to guarantee all its eigenvalues to be positive.

However, Rebonato and Jäckel (1999) and Brooks et al. (1998) agree that the approach

by Finger (1997) change the other part of the correlation matrix in an uncontrolled way.

Moreover, Rebonato and Jäckel (1999) highlight that the method by Kupiec (1998) needs

a valid correlation matrix as starting point and that is time consuming. Therefore, Re-

bonato and Jäckel (1999) propose two new methods: the Hypersphere decomposition

and the Spectral decomposition. In the �rst one, given a correlation matrix C, the aim

is to �nd the nearest Ĉ = B · B′ thinking of the rows of B as coordinates lying on

a unit hypersphere. In each calibration step, θij are chosen so that the elements of B

are bij = cos θij ·
∏j−1
k=1 sin θik, for j ∈ [1, n − 1], and bij =

∏j−1
k=1 sin θik for j = n. The

Spectral decomposition method is based on four main steps to �nd B:

1. calculate the eigenvalues λi and the right hand side eigenvectors si of C

2. set all negative λi to zero and put them into the diagonal matrix Λ∗

3. multiply the vectors si with their associated "corrected" eigenvalues and arrange

as the columns of B∗ = S ·
√

Λ∗

4. normalise the row vectors of B∗ to unit length to obtain B.

Both the methods guarantee to produce a semipositive de�nite matrix, do not require

a valid correlation matrix to start with, and they are fast to implement regardless of

the matrix size. However, only the Hypersphere method allows the determination of a

feasible matrix that most closely approximates a target real symmetric (but not positive-

semide�nite) matrix in a well-de�ned and quanti�able sense. The Spectral decomposition

could be used as a starting point for the �rst methodology. As objective function two
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alternatives are proposed. The �rst is to minimize the sum of the squares of the elements

of the di�erence C − Ĉ
(3.53)

∑
ij

(cij − ĉij)2

that is the Frobenius norm ‖C − Ĉ‖2F . The second alternative is to minimize the sum

of the squared di�erences between the eigenvalues

(3.54)
∑
i

(λi − λ̂i)

Bhansali and Wise (2001) and Kercheval (2006) improve their methodology specifying

the problem in terms of only N ·(N−1)
2 variables. Higham (2002) elaborates two methods

based on the minimization of weighted Frobenius norms

(3.55a)‖W
1
2 (C − Ĉ)W

1
2 ‖F

(3.55b)‖H ◦ (C − Ĉ)‖F

where

• W is a positive de�nite matrix

• H is a symmetric matrix of positive weights

• ◦ is the Hadamard product28.

As stated by the author, the main weakness of the technique is its linear convergence

rate, that could require an important amount of time dealing with large matrices.

Edoli et al. (2013) implemented a method that works directly on the Cholesky decom-

position of the correlation matrix C. In this way, the condition of semide�nite positive

is automatically satis�ed. Given that from the Cholesky decomposition we have

(3.56)C = LL′

28As reviewed in Schott (2016), the Hadamard product is the element-wise multiplication of two
matrices. It can be applied only on matrices having the same size. Let us de�ne aij as the elements of
the m × n matrix A and bij as the elements of the m × n matrix B. The Hadamard product between

the two matrices is A ◦B =

 a11b11 · · · a1nb1n
...

...
am1bm1 · · · amnbmn
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Let us de�ne Li the i-th row of L with i = 1, ..., 2N , where N is the number of the

commodities. First, given that the correlation matrix diagonal is unitary, we have to

consider the following constraint

(3.57)‖Li‖2 = 1 ∀i = 1, ...2N

Then, we have also to take in consideration the correlation between short and long-

term factors of each commodity, since they have been already calibrated in subsection

3.7.1. Analytically:
(3.58)‖L2j−1L

′
2j‖= C2j−1,2j ∀j = 1, ..., N

Without this condition, the multivariate calibration would not result consistent with

the univariate one, since it would change the marginal distributions of the commodities.

A further constraint of the correlation matrix is that each element must be included

in the interval [−1, 1]. However, from the Cauchy-Schwartz inequality for the norm, we

know that
(3.59)‖L2j−1L

′
2m‖≤ ‖L2j−1‖·‖L′2m‖

But, given (3.57), we know that the elements of the right hand side of the equation

are both 1, giving an upper limit of 1, so that every element of the correlation matrix

will be included in [−1, 1].

We can now better specify the optimization objective function (3.47) in terms of L

(3.60)(Σmodel −Σhistorical)
2 → argLmin

In Edoli et al. (2013), details on the starting points to be used for the optimization

are not provided, with the exception, obviously, of the correlations already calibrated in

the single commodity framework that are included in the constraints formalized in (3.58).

We have two main alternatives. The �rst is to use a global optimization algorithm, whilst

the second is to arbitrary choose a speci�c starting point.

Regarding the global optimization approach, as described in Ugray et al. (2007), there

are several methods. In MATLAB Global Optimization Toolbox (2015), we have avail-

able the MultiStart Algorithm and GlobalSearch Algorithm. The multistart algorithms,

introduced by Locatelli and Schoen (1999), are based on the generation of multiple ran-

dom starting points in order to avoid the provided solution to be a local minima. The
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second algorithm, after generating some trial points, applies a merit �lter in order to

ensure that the remaining points have high quality. From an implementation point of

view, it is noteworthy that only the multistart algorithm can run in parallel (MATLAB

Parallel Computing Toolbox (2015)) and so it is potentially faster, since each starting

point is totally independent from the others. Initializing a proper number of starting

points, both the algorithms will �nd an optimal solution. However, this can be time

consuming, especially with large matrices.

Coming back to the de�nition of the two-factor model, we do have some implicit

suggestions on how to choose a starting point. From an economical interpretation of the

model, like in Kiesel et al. (2009), we know that the second factor models the long-term

uncertainty that is common to all products in the market. This uncertainty, among other

components, can be explained also by price developments in other commodity markets.

Therefore, it can be said that the long-term factor is the most important in capturing the

correlation within the various commodities. Moreover, from an analytical point view, we

know that the short-term factor, depending on the size of the mean reverting coe�cient

k, is not relevant for long term time horizon. Therefore, to better specify our starting

point, we can select also the correlations arising from the year swaps (calendars) of the

di�erent commodities29. The so de�ned initial correlation matrix is then decomposed

through Cholesky in order to be a starting point for the Edoli et al. (2013) correlation

calibration procedure. However, the starting correlation matrix could be not semiposi-

tive de�nite and so the Cholesky decomposition could be not applicable. In analogy with

what have been proposed by Rebonato and Jäckel (1999), a preliminary nearest corre-

lation matrix algorithm could be applied in advance. The approaches discussed above

have been used in many contexts, but as pointed out by some authors, they have some

limitations or some drawbacks. Qi and Sun (2006) elaborate a Newton-type method that

has better performance of the other approaches since, di�erently from Higham (2002),

it is quadratically convergent. Another important characteristic is that the solution is

proven to be unique. We are going to use the extended version of the method by Qi and

29This point is going to be very important in modeling the long-term dependencies.
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Sun (2006), given that it allows to perform a weighted optimization using (3.55a). In

this way, we will quickly obtain a valid starting correlation matrix for the procedure by

Edoli et al. (2013) that takes into consideration the hypothesis of the two-factor model.

Therefore, the multivariate commodity calibration is performed through formula

(3.60), integrating the approach by Edoli et al. (2013) and the numerical integration

on sparse grids by Heiss and Winschel (2008). Moreover, a model consistent starting

point for the correlation matrix is de�ned through Qi and Sun (2006), which is used in

the algorithm by Edoli et al. (2013). The step of integration in the calculation of the

correlations (see subsection 3.5.2) is taken into consideration.

3.7.3 Long-Term Dependency Calibration

Formula (3.40) extracts term correlations from the cointegration among the com-

modities. Given also the term correlation formulae developed in section 3.5, it is possible

to insert in the optimization (3.60) the information of long-term dependencies among

the commodities. Within the Edoli et al. (2013) framework, we have just to add some

products.

In Edoli et al. (2013), we have to consider the constraints (3.57), to guarantee the

correlation matrix to have a unitary diagonal and the constraints (3.58), to preserve the

correlations between the short and the long-term factors of each single commodity. In

order to include the cointegration in the model, �rst, we have to use the formulae of the

term correlations30 choosing a "long term" value for T0. Then, we have to insert in the

objective function (3.60) that the term correlations among the calendars generated by the

model are equal to the long term correlations computed in (3.40), obviously considering

coherent values of T0 and h. As starting point for the correlation matrix, we will use

the correlations between the short and long-term factors within each commodity and

the correlation according to (3.40) as the correlations among the long-term factors of

the commodities. In order to guarantee the initial correlation matrix to be semi-de�nite

positive, but controlling the correlations among the long-term factors, we will use the

30See subsection 3.5.2.
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method by Qi and Sun (2006) that allows a weighted optimization of the matrix. In the

optimization, the term covariances of the calendars will be computed using the numerical

integration on sparse grids by Heiss and Winschel (2008).

3.8 Summary

We have extended Edoli et al. (2013) to be able to handle the association among

the entire forward curves of di�erent commodities considering the presence of one or

more cointegrating relations. It is also important that the marginal distribution of the

single commodities are not signi�cantly a�ected by the extension of the model. From

an economical point of view, we have developed a way to link factor models to long-run

relations (Granger (1981), Engle and Granger (1987), Johansen (1995)), crucial when we

have to deal with hedging (Alexander (1999) and Alexander (2001)).

It is noteworthy that we have proposed a di�erent way to deal with the quarter and

year swap contracts using numerical integration techniques based on sparse grids (Heiss

and Winschel (2008)). Moreover, the two steps procedure in dealing with the nearest

correlation matrix problem, based on Qi and Sun (2006) and on Edoli et al. (2013),

enhances the �exibility of the calibration, allowing to choose an economical consistent

starting point and avoiding to implement a global optimization algorithm.



Chapter 4

The Data

The statistician was no longer responsible for the

accuracy or precision of the results of his labors. His

business became much less like that of conjurer who is

expected to work wonders, and more like that of a chemist

who undertakes to assay the proportion of gold in a

sample of ore. He need not be ashamed if the assay is low,

or elated with pride if it is high.

Fisher (1947)

4.1 Introduction

The data analysed comprehend electricity, gas, coal, EU ETS allowances and oil

forward prices. In the calibration we are going to use quoted panel data for all the

commodities. The types of product used are month contracts, quarter contracts and

year contracts. Depending on data availability, the cointegration analysis is performed

on a longer time horizon than the calibration of the rest of the model. As stated in

Alexander (2001), cointegration tests will not produce sensible results if too short a data

period is used: they are designed to detect common long-run trends in the variables. The

data period has to be su�ciently long for a stochastic trend to be detected.
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Once the calibration is accomplished, as input for the two-factor model, the data as

of the end of November 2016 is going to be used. The products are going to be split into

equivalent monthly quotations in order to have a full monthly forward curve for each

commodity.

The market taken into consideration is going to be Germany. The �rst reason is

that its electricity forward market is one of the most liquid in Europe, while the second

is because of its important relevance in the continent. Obviously, the model can be

implemented in all the markets where forward contracts prices are available. In case

of no available forward curves, like in most countries in South America, the calibration

should only rely on historical spot prices, but this issue is beyond the scope of this thesis.

All the prices in the calibration and in the cointegration analysis are going to be

treated in natural logarithms. Furthermore, all the data refers to rolling forwards con-

tracts, therefore, all the products experience some "jumps" due to the change of the

underlying period. If we take into consideration a one-month forward contract, it will

have a change in the level of the price between the last day of a month and the �rst day of

the following month. The same applies for quarter contracts and year contracts. In order

to control for this issue, we are going to sterilize the jumps in the prices by adjusting, at

end of each period, the series with the di�erence between the price of the product with

the price of the one having as underlying the period after. Since the last product of each

typology is not adjusted, we are not going to take them into consideration. It has to be

noticed that for electricity, gas and carbon emissions those products have signi�cantly

less liquidity then the others.

The selected products are the one month ahead, two months ahead, three months

ahead, one quarter ahead, two quarters ahead, three quarters ahead, one year ahead, two

years ahead and three years ahead swap contracts.
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Figure 4.1: API2 prices in e/Ton (levels).

4.2 Coal Price. API2

As a reference for coal prices, we are going to use API2, one of the most important coal

world indexes. It represents the price of coal delivered into the Amsterdam, Rotterdam,

and Antwerp region in the Netherlands. It is quoted in US dollars per metric ton. The

daily historical prices of the forward products of API2 are obtained from ICE (2016) and

cover the period from December 3, 2012 to November 30, 2016. The data is converted

in Euro. The EURUSD historical data is obtained from Bloomberg (2016). The FX

forward prices are grouped in periods as for the commodity in order to properly convert

the API2 forward prices in Euro. In �gure 4.1, the historical prices of all the products

are shown.

In �gure 4.2, the natural logarithms of the historical prices of all the products after

the rolling adjustment are reported.

The down-trend from 2012 to 2015 is mainly driven by a global reduction of commod-
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Figure 4.2: API2 prices in e/Ton (natural logarithms and after rolling adjustment).

ity prices. In 2016 the up-trend is mainly due to China. In the country the production

of coal has been limited through a reduction of the working days of the mines from 330

to 276. The aim is to restructure the entire industry.

In �gure 4.3, the forward curve as of the end of November 2016 is reported. It is the

split of the products of the panel into monthly forwards.

4.3 Oil Price. Brent

As a reference for oil prices, we are going to use Brent, the most important oil index

in Europe. It is quoted in US dollars per barrel. The daily historical prices of the forward

products of Brent is obtained from ICE (2016) and cover the period from December 3,

2012 to November 30, 2016. The data is converted in Euro as for API2. In �gure 4.4,

the historical prices of all the products are shown.

In �gure 4.5, the natural logarithms of the historical prices of all the products after
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Figure 4.3: API2 forward curve in e/Ton as of the end of November 2016.

Figure 4.4: Brent prices in e/bbl (levels).
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Figure 4.5: Brent prices in e/bbl (natural logarithms and after rolling adjustment).

the rolling adjustment are reported.

The down-trend from to 2013 to the end of 2016 is mainly due to an increase in the

world oil supply, driven by the increased production of shale oil in USA. In 2016, the

prices are recovering, since they have reached the average break-even of the shale oil

producers in USA. Moreover, in the last quarter of 2016, OPEC members have reached

an agreement to cap the production of oil.

In �gure 4.6, the forward curve as of the end of November 2016 is reported. It is the

split of the products of the panel into monthly forwards.

4.4 EU ETS price

The daily historical prices of the forward products of EU ETS allowances are obtained

from ICE (2016) and cover the period from December 3, 2012 to November 30, 2016. In

�gure 4.7, the historical prices of all the products are shown.
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Figure 4.6: Brent forward curve in e/bbl as of the end of November 2016.

Figure 4.7: EUA prices in e/Ton (levels).
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Figure 4.8: EUA prices in e/Ton (natural logarithms and after rolling adjustment).

In �gure 4.8, the natural logarithms of the historical prices of all the products after

the rolling adjustment are reported.

In �gure 4.9 the forward curve as of the end of November 2016 is reported. It is the

split of the products of the panel.

4.5 Gas price. TTF

As a reference for gas prices, we are going to use TTF (Title Transfer Facility), the

most important gas index in Europe. The daily historical prices of the forward products

of TTF are obtained from ARGUS (2015) from January 3, 2013 to December 31, 2015

and from Heren (2016) until November 30, 2016. In �gure 4.10, the historical prices of

all the products are shown.

In �gure 4.11, the natural logarithms of the historical prices of all the products after

the rolling adjustment are reported.



CHAPTER 4. THE DATA 67

Figure 4.9: EUA forward curve in e/Ton as of the end of November 2016.

Figure 4.10: TTF prices in e/MWh (levels).
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Figure 4.11: TTF prices in e/MWh (natural logarithms and after rolling adjustment).

In �gure 4.12, the forward curve as of the end of November 2016 is reported. It

is not the simple split of the products of the panel, but it has also been seasonally

pro�led (source Bloomberg (2016)). As well known in the market, the gas prices have an

important seasonal component due to weather and production seasonality.

4.6 German Electricity Price

The daily historical prices of the forward products of German electricity is obtained

from Bloomberg (2016) and cover the period from December 3, 2012 to November 30,

2016. In �gure 4.13, the historical prices of all the products are shown.

In �gure 4.14, the natural logarithms of the historical prices of all the products after

the rolling adjustment are reported.

In all the products, we can see a down-trend since 2012 until the beginning of 2016.

This is due to a general decrease of electricity prices driven by a decreasing cost of the
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Figure 4.12: TTF pro�led forward curve in e/MWh as of the end of November 2016.

Figure 4.13: German electricity prices in e/MWh (levels).
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Figure 4.14: German electricity prices in e/MWh (natural logarithms and after rolling
adjustment).

fuels and by a stagnant demand. In 2016, we are experiencing a recovery of the prices,

especially in the second half of the year. One of the most important reason is the extended

outage of several nuclear power plants in France due to longer maintenance periods.

In �gure 4.15, the forward curve as of the end of November 2016 is reported. It is

not the simple split of the products of the panel, but it has also been seasonally pro�led

(source Bloomberg (2016)). As well known in the market, the electricity prices have an

important seasonal component due to weather and production seasonality.
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Figure 4.15: German electricity pro�led forward curve in e/MWh as of the end of Novem-
ber 2016.



Chapter 5

Empirical Results

He [the speculator] is not so much a prophet (though it

may belief in his own gifts of prophecy that tempts him

into the business), as a risk-bearer. [... The speculator]

just as an insurance company makes pro�ts without

pretending to know more about an individual's prospects

of life or the chances of his house taking �re than he

knows himself.

Keynes (1923)

5.1 Introduction

We will evaluate four portfolios using the model calibrated only on the instantaneous

correlations, using the framework by Kiesel et al. (2009) and Edoli et al. (2013), and the

new proposed model (chapter 3), that includes the long term correlation e�ect implied

in the cointegrating relations, using the framework by Johansen (1995).

Therefore, we are going to analyse the di�erences between the two approaches in

order to properly assess in which way the proposed model could a�ect the measure of

the risk a company is bearing.
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The portfolios are:

1. German Clean Dark Spread

2. German Clean Spark Spread

3. A gas contract indexed to the Brent

4. A portfolio long on gas and oil.

In section 5.2, the parameters result of the calibration within the two models will be

compared. In section 5.3, the two models will be applied to the four portfolios.

5.2 Calibration of the Model

In this section, we will show the results of the application of the calibration steps as

presented in section 3.7.

5.2.1 Step 1: Single Commodity Calibration

We are going to use one year history to calibrate the model commodity by com-

modity, following the methodology by Kiesel et al. (2009), Edoli et al. (2013), but using

the formulae of the term correlations computed in subsection 3.5.1 and the numerical

integration based on the sparse grids by Heiss and Winschel (2008).

In table 5.1, the results of the calibration of the �ve commodities from December 2015

to November 2016 are shown. Reading the parameters, we can have some insights on how

the two-factor model is interpreting the data. The CO2 (EU ETS) is basically driven

by two independent stable factors. The correlation and the mean reversion parameter k

are very close to zero. Therefore, the volatility that arises from the short term factor is

persistent, since the decay coe�cient is very low. One of the reason can be linked to the

particularity of the products all expiring in the same month of the year, i.e. December.

Thus, the correlations among the products are close to one (see table 5.9). The result

can be interpreted also as that CO2 dynamics could almost be described by a one-factor
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Parameters σ short σ long k short ρ

API2_E 0.19936 0.31048 3.3984 -0.39079
Brent_E 0.32577 0.23931 0.49802 0.38886
CO2 0.41134 0.32721 0.010858 -4.5403e-05
TTF 0.24151 0.2628 1.7399 0.10306
DE 0.29176 0.24532 5.7322 -0.30705

Table 5.1: Single Commodity Two-Factor Model Parameters

σdaily API2_E Brent_E CO2 TTF DE
M1 0.0177 0.0291 0.0325 0.024 0.0192
M2 0.0181 0.0285 0.0325 0.0209 0.017
Q1 0.0184 0.0278 0.0325 0.0205 0.0157
Q2 0.0186 0.026 0.0325 0.0191 0.0163
Y1 0.0192 0.0231 0.0324 0.0178 0.0173
Y2 0.0194 0.0193 0.0321 0.0159 0.0174

Table 5.2: Products historical volatilities

σdaily API2_E Brent_E CO2 TTF DE
M1 0.0181 0.0291 0.0326 0.0228 0.0187
M2 0.0178 0.0284 0.0325 0.0215 0.0161
Q1 0.0178 0.0278 0.0325 0.0206 0.0155
Q2 0.0185 0.0259 0.0325 0.0185 0.0158
Y1 0.0191 0.0231 0.0324 0.0171 0.0162
Y2 0.0193 0.0193 0.0321 0.0166 0.0162

Table 5.3: Products model volatilities

model. On the other hand, we have the German electricity prices (DE), that have a

very high k, suggesting that there is a short term component lasting only in a very short

period. The short term factor is maybe capturing the shocks due to weather e�ects,

temporarily change in the marginal technologies and power plants outages.

After a brief overview of the estimated parameters, let us check how the volatilities

of the products are �tted by the model. In table 5.2, the historical daily volatilities

are reported, while, in table 5.3, we can �nd the result of the model. The mean of the

absolutes errors can be found in table 5.4. The model is able to capture the volatilities

of the products with negligible di�erences.

In tables 5.5, 5.7, 5.9, 5.11, 5.13 the historical correlations of the commodities panel
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σdaily di�erences API2_E Brent_E CO2 TTF DE
Mean of absolutes 0.0003 0 0 0.0006 0.0007

Table 5.4: Volatilities: Mean of absolute di�erences

API2_E M1 M2 Q1 Q2 Y1 Y2
M1 1 0.9786 0.9608 0.9133 0.8703 0.8091
M2 0.9786 1 0.9876 0.9483 0.9139 0.855
Q1 0.9608 0.9876 1 0.9646 0.9357 0.8793
Q2 0.9133 0.9483 0.9646 1 0.981 0.9447
Y1 0.8703 0.9139 0.9357 0.981 1 0.973
Y2 0.8091 0.855 0.8793 0.9447 0.973 1

Table 5.5: API2_E products historical correlations

API2_E M1 M2 Q1 Q2 Y1 Y2
M1 1 0.9889 0.9687 0.9006 0.8526 0.8337
M2 0.9889 1 0.9948 0.9551 0.9207 0.9065
Q1 0.9687 0.9948 1 0.9803 0.9556 0.9447
Q2 0.9006 0.9551 0.9803 1 0.995 0.9909
Y1 0.8526 0.9207 0.9556 0.995 1 0.9994
Y2 0.8337 0.9065 0.9447 0.9909 0.9994 1

Table 5.6: API2_E products model correlations

are reported, while the model ones are in the table 5.6, 5.8, 5.10, 5.12, 5.14.

From table 5.15 we can see that the �tting of the correlation is performing well, except

for the German electricity panel. Considering the results of the other commodities, this

could be driven by two main kind of causes. From a market perspective, the liquidity

of the products is less developed, since we are dealing with a local market. From a

Brent_E M1 M2 Q1 Q2 Y1 Y2
M1 1 0.9994 0.9981 0.9937 0.9815 0.9556
M2 0.9994 1 0.9993 0.9964 0.9855 0.9614
Q1 0.9981 0.9993 1 0.9983 0.989 0.9664
Q2 0.9937 0.9964 0.9983 1 0.9939 0.9763
Y1 0.9815 0.9855 0.989 0.9939 1 0.9899
Y2 0.9556 0.9614 0.9664 0.9763 0.9899 1

Table 5.7: Brent_E products historical correlations
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Brent_E M1 M2 Q1 Q2 Y1 Y2
M1 1 0.9999 0.9996 0.9977 0.9893 0.9549
M2 0.9999 1 0.9999 0.9985 0.9911 0.9588
Q1 0.9996 0.9999 1 0.9992 0.9928 0.9624
Q2 0.9977 0.9985 0.9992 1 0.9969 0.9727
Y1 0.9893 0.9911 0.9928 0.9969 1 0.988
Y2 0.9549 0.9588 0.9624 0.9727 0.988 1

Table 5.8: Brent_E products model correlations

CO2 M1 M2 Q1 Q2 Y1 Y2
M1 1 0.9999 0.9999 0.9998 0.9996 0.9994
M2 0.9999 1 0.9999 0.9998 0.9996 0.9993
Q1 0.9999 0.9999 1 0.9999 0.9997 0.9994
Q2 0.9998 0.9998 0.9999 1 0.9998 0.9994
Y1 0.9996 0.9996 0.9997 0.9998 1 0.9996
Y2 0.9994 0.9993 0.9994 0.9994 0.9996 1

Table 5.9: CO2 products historical correlations

CO2 M1 M2 Q1 Q2 Y1 Y2
M1 1 1 1 1 1 0.9999
M2 1 1 1 1 1 1
Q1 1 1 1 1 1 1
Q2 1 1 1 1 1 1
Y1 1 1 1 1 1 1
Y2 0.9999 1 1 1 1 1

Table 5.10: CO2 products model correlations

TTF M1 M2 Q1 Q2 Y1 Y2
M1 1 0.9514 0.9141 0.8613 0.8456 0.7884
M2 0.9514 1 0.9797 0.9416 0.9249 0.8701
Q1 0.9141 0.9797 1 0.9667 0.9526 0.8999
Q2 0.8613 0.9416 0.9667 1 0.9806 0.9472
Y1 0.8456 0.9249 0.9526 0.9806 1 0.9749
Y2 0.7884 0.8701 0.8999 0.9472 0.9749 1

Table 5.11: TTF products historical correlations
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TTF M1 M2 Q1 Q2 Y1 Y2
M1 1 0.998 0.9926 0.9597 0.8892 0.8075
M2 0.998 1 0.9983 0.9757 0.9166 0.8435
Q1 0.9926 0.9983 1 0.9867 0.9382 0.8732
Q2 0.9597 0.9757 0.9867 1 0.9819 0.9408
Y1 0.8892 0.9166 0.9382 0.9819 1 0.9879
Y2 0.8075 0.8435 0.8732 0.9408 0.9879 1

Table 5.12: TTF products model correlations

DE M1 M2 Q1 Q2 Y1 Y2
M1 1 0.786 0.7935 0.6308 0.6453 0.6454
M2 0.786 1 0.8337 0.7634 0.722 0.7036
Q1 0.7935 0.8337 1 0.7946 0.8453 0.7726
Q2 0.6308 0.7634 0.7946 1 0.8075 0.8056
Y1 0.6453 0.722 0.8453 0.8075 1 0.8471
Y2 0.6454 0.7036 0.7726 0.8056 0.8471 1

Table 5.13: DE products historical correlations

DE M1 M2 Q1 Q2 Y1 Y2
M1 1 0.9531 0.8748 0.6834 0.6236 0.6134
M2 0.9531 1 0.9804 0.8723 0.8309 0.8236
Q1 0.8748 0.9804 1 0.9516 0.9242 0.9192
Q2 0.6834 0.8723 0.9516 1 0.9969 0.9958
Y1 0.6236 0.8309 0.9242 0.9969 1 0.9999
Y2 0.6134 0.8236 0.9192 0.9958 0.9999 1

Table 5.14: DE products model correlations

theoretical point of view, this could be an indication that the panel should be described

by an additional "middle term" factor. As anticipated before, the opposite consideration

can be made on the CO2.

Summarizing, the volatilities of all the commodities are captured very well, whilst for

the correlations, the German electricity �tting should be enhanced.

Correlation di�erences API2_E Brent_E CO2 TTF DE
Mean of absolutes 0.0185 0.0024 0.0003 0.0253 0.0975

Table 5.15: Products Correlations: Mean of absolute di�erences
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Y1 H Test Critical Value (5%) p value
Rank 0 1 97.9767 76.9721 0.001
Rank 1 1 57.2971 54.0779 0.0251
Rank 2 0 35.048 35.1929 0.0519
Rank 3 0 13.8454 20.2619 0.3366
Rank 4 0 5.0517 9.1644 0.3247

Table 5.16: Product Y1: Johansen cointegration test

5.2.2 Step 2: Co-integration Analysis

As explained in section 3.6, it is important to take into consideration the long-term

dependencies among the commodities. In the long-run, the instantaneous or daily corre-

lations have less relevance that the physical relation that lies beneath the observed daily

movements. Johansen (1995) framework is implemented and the trace test is chosen,

using 5% as signi�cance level. The MATLAB Econometrics Toolbox (2015) libraries are

used to perform the analysis.

It is crucial to choose the most suitable products in order to investigate the coin-

tegrating relations. It is intuitive that, being the cointegration a long-run measure, we

should take into consideration the products with the longest expiry. The calendars are the

best candidates. We will investigate the cointegrating relations of both the two available

calendars (Y1, Y2) in order to better understand the long term dynamics. Di�erently

from the analysis in subsection 5.2.1, we are going to use the whole available time series

to have better chance in capturing the long-run co-movements.

5.2.2.1 Estimation of Cointegrating Relations

In table 5.16, the result of the Johansen co-integration analysis performed on Y1 is

shown. We can strongly refuse the hypothesis that there are one or less cointegrating

relations. With 5% signi�cance level, we cannot refuse the hypothesis of two cointegrating

relations, however, the p value is just above 5%, so the result is not so strong.

In table 5.17, the cointegrating vectors for rank equal 2 are shown. In both the vectors,

the coal and the electricity have a strong weight relatively to the others. This is realistic,
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Y1 First Second
API2_E Y1 16.6546 -15.4912
Brent_E Y1 9.6025 1.9671
CO2 Y1 4.5637 -7.5613
TTF Y1 -11.0369 -4.0663
DE Y1 -24.0699 18.4089

Table 5.17: Product Y1: Cointegrating Vectors

Y1 First Second
API2_E Y1 0.0016 0.0014
Brent_E Y1 0.0004 0.0014
CO2 Y1 -0.0001 0.0046
TTF Y1 0.0019 0.0007
DE Y1 0.0018 0.0009

Table 5.18: Product Y1: Adjustments speed

since the coal is the marginal technology in Germany, as we have seen in subsection 2.1.2.

The �rst vector simultaneously represent the spread coal-electricity and coal-gas, both

important in detecting which is the marginal power plant. The second relation can be

identi�ed as the clean dark spread, since here both the gas and the oil lose weight in

favour of the CO2.

The historical value of the portfolios composed by the cointegrating vectors are re-

ported in �gure 5.1 and in �gure 5.2.

If we perform the cointegration analysis on the products Y2, we obtain di�erent

results. In table 5.19, we can see that the test is better discriminating: the rank 3 is by

far the one that we have to take into consideration. Analysing the cointegrating relations

in 5.20, we can interpret the �rst vector as a spread between the electricity and the fuels

used in its production, the coal and the gas. Moreover, it represents the spread between

the oil and the other two fuels, relation that could quantify the guiding role of the oil

in the commodities prices. The second vector mainly represents the clean dark spread,

but with a more realistic reduced weight of the coal with respect to the electricity. The

third vector is mainly focused on the spread between the gas and the electricity (spark

spread), since gas power plants are rarely the marginal ones in Germany.
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Figure 5.1: Product Y1: First Cointegrated Relation.

Figure 5.2: Product Y1: Second Cointegrated Relation.
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Y2 H Test Critical Value (5%) p value
Rank 0 1 120.3971 76.9721 0.001
Rank 1 1 75.408 54.0779 0.001
Rank 2 1 37.9732 35.1929 0.0245
Rank 3 0 14.0652 20.2619 0.3182
Rank 4 0 5.9063 9.1644 0.1982

Table 5.19: Product Y2: Johansen cointegration test

Y2 First Second Third
API2_E Y2 -15.4414 -23.0026 0.348
Brent_E Y2 23.9415 -5.1999 6.8673
CO2 Y2 -6.5455 -7.4206 3.5462
TTF Y2 -34.0387 4.2351 -18.9173
DE Y2 29.8554 33.5022 15.1763

Table 5.20: Product Y2: Cointegrating Vectors

Y2 First Second Third
API2_E Y2 0.0014 -0.0003 -0.001
Brent_E Y2 -0.0005 -0.0002 -0.0014
CO2 Y2 0.0035 0.0019 -0.0049
TTF Y2 0.0018 -0.0008 -0.0003
DE Y2 0.001 -0.0014 -0.0011

Table 5.21: Product Y2: Adjustments speed

Looking at the adjustment speeds in table 5.18 and in table 5.21, we can understand

which are the commodities that adjust more when the economy diverges from the long

term equilibrium. In both cases, in correspondence of its highest weight, the Brent has

the lowest adjustment factor. This means that basically, after a shock in the level of the

spreads, the other commodities are a�ected by a stronger correction than the oil. In the

Y2 case, we can also see that in the second relation (clean dark spread) the electricity

and the CO2 have the highest adjustment factors. If the commodities, traded in an

international context, spike due to some shock, it is probable that the generators of

electricity will raise the price of their output in order to o�set the growing costs of the

fuels. The same consideration stands for the third relation, where the adjustment of the

electricity is much higher than the adjustment of the gas.
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Figure 5.3: Product Y2: First Cointegrated Relation.

The historical value of the portfolios composed by the cointegrating vectors are re-

ported in the �gures 5.3, 5.4 and 5.5.

5.2.2.2 Long Term Correlations

Now that the cointegration analysis has been performed, we are ready to apply the

methodology shown in section 3.6 to translate the information of the error correction

matrix in long term correlations. Since we are going to evaluate exposures until the end

of 2018, we choose the time step h that for a Y2 is equivalent to a tenor of two years and

one month. In table 5.22, the daily correlation of the Y2 of the commodities are shown,

while in table 5.23, the term correlation matrix retrieved through the methodology in

section 3.6 is reported. In table 5.24, the di�erence between the long term correlations

and the daily ones is computed.

With the exception of the CO2, in the longer term all the correlations among the

products are increased. This trend seems coherent. The correlations among the fuels are
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Figure 5.4: Product Y2: Second Cointegrated Relation.

Figure 5.5: Product Y2: Third Cointegrated Relation.
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Correlations API2_E Y2 Brent_E Y2 CO2 Y2 TTF Y2 DE Y2
API2_E Y2 1 0.3109 0.485 0.5335 0.6864
Brent_E Y2 0.3109 1 0.3181 0.5153 0.1834
CO2 Y2 0.485 0.3181 1 0.5498 0.6212
TTF Y2 0.5335 0.5153 0.5498 1 0.599
DE Y2 0.6864 0.1834 0.6212 0.599 1

Table 5.22: Product Y2: Daily Correlations

Correlations API2_E Y2 Brent_E Y2 CO2 Y2 TTF Y2 DE Y2
API2_E Y2 1 0.6188 -0.4605 0.6963 0.8968
Brent_E Y2 0.6188 1 0.125 0.9667 0.7607
CO2 Y2 -0.4605 0.125 1 0.0817 -0.088
TTF Y2 0.6963 0.9667 0.0817 1 0.8509
DE Y2 0.8968 0.7607 -0.088 0.8509 1

Table 5.23: Product Y2: Long Term Implied Correlations

Di�erences API2_E Y2 Brent_E Y2 CO2 Y2 TTF Y2 DE Y2
API2_E Y2 0 0.3079 -0.9455 0.1628 0.2105
Brent_E Y2 0.3079 0 -0.1931 0.4514 0.5773
CO2 Y2 -0.9455 -0.1931 0 -0.4681 -0.7092
TTF Y2 0.1628 0.4514 -0.4681 0 0.2519
DE Y2 0.2105 0.5773 -0.7092 0.2519 0

Table 5.24: Product Y2: Long Term Correlations minus Daily Correlations

higher, since they can be used as substitutes in many economic activities. The relative

prices are the key, as in the theory by Leontief (1936) and Hicks (1939). About the

correlations with electricity, this is due to the input-output relation, as stated in the

seminal work by Granger (1981) and deeply studied through the structural models (see

subsection 3.2.1). Regarding electricity, it is noteworthy that the fuel hierarchy in the

correlation is the same. The coal has the highest correlations, followed by gas and oil.

Once again, this could be explained by the German production mix, marginally based on

coal power plants. The CO2 has a strange behaviour as from being a positive correlated

asset with the others, in the long term its relation turns negative with the coal, and almost

independent with the others. This could have several reasons. First of all, the supply

of the CO2 depends on EU regulation, while the fuels depends on physical production
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Factors A_S A_L B_S B_L C_S C_L T_S T_L D_S D_L
API_S 1 -0.39 -0.21 -0.03 -0.28 -0.24 -0.06 -0.13 0.04 -0.42
API_L -0.39 1 0.18 0.35 0.14 0.6 -0.01 0.59 -0.43 0.8
Bre_S -0.21 0.18 1 0.39 0.3 0.29 0.03 0.21 -0.15 0.21
Bre_L -0.03 0.35 0.39 1 -0.03 0.31 0.01 0.57 -0.23 0.32
CO2_S -0.28 0.14 0.3 -0.03 1 0 0.15 0.23 -0.25 0.22
CO2_L -0.24 0.6 0.29 0.31 0 1 0.09 0.57 -0.23 0.86
TTF_S -0.06 -0.01 0.03 0.01 0.15 0.09 1 0.1 0.08 0.2
TTF_L -0.13 0.59 0.21 0.57 0.23 0.57 0.1 1 -0.24 0.72
DE_S 0.04 -0.43 -0.15 -0.23 -0.25 -0.23 0.08 -0.24 1 -0.31
DE_L -0.42 0.8 0.21 0.32 0.22 0.86 0.2 0.72 -0.31 1

Table 5.25: Correlation Matrix of the factors (without long term dependency)

processes (see section 2.5). Second, the fuels have storage costs, while for CO2 the only

"storage cost" could be represented by the interest rates. Finally, a study by Koenig

(2011) shows that in presence of a constant marginal technology, electricity, fuels and

CO2 prices decouple. Only when there is a price con�guration in which the price of

CO2 could incentive a switch in technologies, the correlation grows. Since in Germany,

given also the growing production of the renewable energies, the coal is nearly always

the marginal technology (see �gure 2.3), the point by Koenig (2011) is reasonable.

5.2.3 Step 3: Multivariate Model with Long-Term Dependency

We have calibrated the commodity in a standalone environment in subsection 5.2.1

and we have computed the long term correlations among the products. Now we are

going to calibrate the multivariate two-factor model, as in Edoli et al. (2013), and, then,

we are going to see what are the e�ects on the calibration of including the long-term

dependencies (see subsection 5.2.2).

In table 5.25, the correlation matrix of the long and short term factors of the com-

modities using only the daily correlations is reported, while, in table 5.26, we can �nd

the one adding in the optimization the cointegration outcomes.

Analysing the di�erences in table 5.27, we can �nd three clear e�ects:

1. With the exception of the CO2, all the long-term factors correlations increase. This
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Factors A_S A_L B_S B_L C_S C_L T_S T_L D_S D_L
API_S 1 -0.39 0.2 -0.21 0.59 0.66 0.67 -0.16 0.65 -0.18
API_L -0.39 1 -0.12 0.81 0.21 -0.9 -0.35 0.7 -0.64 0.89
Bre_S 0.2 -0.12 1 0.39 0.39 0.18 0.02 0.42 0 0.04
Bre_L -0.21 0.81 0.39 1 0.47 -0.62 -0.07 0.98 -0.45 0.9
CO2_S 0.59 0.21 0.39 0.47 1 0 0.62 0.51 0.44 0.53
CO2_L 0.66 -0.9 0.18 -0.62 0 1 0.57 -0.49 0.69 -0.72
TTF_S 0.67 -0.35 0.02 -0.07 0.62 0.57 1 0.1 0.8 0.01
TTF_L -0.16 0.7 0.42 0.98 0.51 -0.49 0.1 1 -0.33 0.85
DE_S 0.65 -0.64 0 -0.45 0.44 0.69 0.8 -0.33 1 -0.3
DE_L -0.18 0.89 0.04 0.9 0.53 -0.72 0.01 0.85 -0.3 1

Table 5.26: Correlation Matrix of the factors (with long term dependency)

Factors A_S A_L B_S B_L C_S C_L T_S T_L D_S D_L
API_S 0 0 0.41 -0.18 0.87 0.9 0.73 -0.03 0.61 0.23
API_L 0 0 -0.3 0.46 0.07 -1.5 -0.34 0.12 -0.21 0.09
Bre_S 0.41 -0.3 0 0 0.09 -0.11 -0.01 0.21 0.15 -0.17
Bre_L -0.18 0.46 0 0 0.5 -0.93 -0.08 0.41 -0.22 0.58
CO2_S 0.87 0.07 0.09 0.5 0 0 0.47 0.28 0.69 0.31
CO2_L 0.9 -1.5 -0.11 -0.93 0 0 0.47 -1.06 0.92 -1.58
TTF_S 0.73 -0.34 -0.01 -0.08 0.47 0.47 0 0 0.72 -0.19
TTF_L -0.03 0.12 0.21 0.41 0.28 -1.06 0 0 -0.09 0.13
DE_S 0.61 -0.21 0.15 -0.22 0.69 0.92 0.72 -0.09 0 0
DE_L 0.23 0.09 -0.17 0.58 0.31 -1.58 -0.19 0.13 0 0

Table 5.27: Correlations di�erences (with minus without long term dependency)

is coherent with the results of the cointegration analysis and correctly represents

how the market works. Moreover, we are able to capture the CO2 dynamic that

cannot be seen with a standard model.

2. The correlations among the short term factors are all increased.

3. The correlations between short and term factors of the same commodity have not

changed.

Therefore, in terms of factors correlation, the results are quite satisfying.

Let us check how the term correlations among the products of the commodities are

a�ected. In the charts, the blue line is the Q1 correlation function, the orange line is
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the Y1 correlation function. The blue diamond is the observed Q1 daily correlation,

while the orange diamond is the observed Y1 daily correlation. The black star ∗ is the

estimated long term correlation and the black circle ◦ is the long term correlation based

on the calibrated model.

Figure 5.6: API2: Correlations without long-term dependency
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Figure 5.7: API2: Correlations with long-term dependency

From �gures 5.6 and 5.7, we can see that considering the long-term dependency has

totally changed the correlations trends. The API2-Brent correlation is increased and

has changed in shape. The API2-TTF and the API2-DE correlations have shifted up,

since they have increased without changing too much their shapes. As expected, the

API2-CO2 is totally reversed. However, we have paid the price of losing precision on the

daily correlations.
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Figure 5.8: Brent: Correlations without long-term dependency
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Figure 5.9: Brent: Correlations with long-term dependency

From �gures 5.8 and 5.9, we can derive considerations similar to the API2. It is

noteworthy that the correlation between Brent and TTF has been a�ected by a huge

increase. This is very realistic, since the indexation of gas contract to the Brent is a

standard market price, especially for long term agreements (see section 2.4).
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Figure 5.10: CO2: Correlations without long-term dependency
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Figure 5.11: CO2: Correlations with long-term dependency

From �gures 5.10 and 5.11, we can see that, considering the long-term dependency,

the CO2 tends to be not correlated to both gas and German electricity.
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Figure 5.12: TTF: Correlations without long-term dependency
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Figure 5.13: TTF: Correlations with long-term dependency

Finally, from �gures 5.12 and 5.13, we see that the correlation between gas and

electricity price is shifted up.

5.3 Some Risk Management Applications

Four case studies will be analysed in this section. The exposures are monthly and refer

to the year 2018, considering as valuation date the end of November 2016. The di�erences

between the mean and the 5% and the 95% percentiles are used as risk measures. 10,000
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scenarios are simulated for each month until 2019, using Latin Hypercube Sampling

(Stein (1987)).

5.3.1 Clean Dark Spread

The �rst portfolio is a long position on a German Clean Dark Spread. A Clean Dark

Spread is the di�erence between the price of electricity in a given market and the cost of

coal and its emissions. Therefore, it is a long position on power, a short position on coal

and a short position on CO2. According to Platts (2016), the formula for the German

Clean Dark Spread 35% e�ciency clean dark spreads takes into consideration an energy

conversion factor of 6.978 (converting 1 metric ton of coal into MWh), a fuel e�ciency

factor (coal) of 35% and an emissions intensity factor of 0.973 mtCO2/MWh. Taking

into consideration the API2 index as a reference for coal cost, the Clean Dark Spread

formula is

(5.1)
Clean Dark Spread = Baseload Power Price(e/MWh)

− API2(USD/Ton)

FXEURUSD

1

6.978

1

0.35
− 0.973CO2(Ton/MWh)

We are going to consider a monthly exposure of 1 TWh.

In table 5.28 and in table 5.29, the monthly standalone risks without and with long-

term dependency are reported. In �gure 5.14, the values are plotted in a chart. Long-

term dependency is not only decreasing the risk of each monthly exposure, but it is also

reducing its growth rate. In �gure 5.15, we can see that di�erence of the risk between

the two-factor model and the two-factor model with long-term dependency has a clear

up-trend.
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emln P5 − µ P95 − µ
Jan-2018 -10.95 9.72
Feb-2018 -11.1 9.43
Mar-2018 -11.24 9.39
Apr-2018 -11.96 8.99
May-2018 -12.07 9.1
Jun-2018 -12.15 9.54
Jul-2018 -12.54 9.25
Aug-2018 -13.07 9.22
Sep-2018 -12.92 9.62
Oct-2018 -12.52 10.28
Nov-2018 -12.91 10.21
Dec-2018 -14.2 9.91

Table 5.28: CDS: risk by month without Long Term Dependency

emln P5 − µ P95 − µ
Jan-2018 -6.56 6.64
Feb-2018 -6.55 6.5
Mar-2018 -6.57 6.21
Apr-2018 -7.01 5.73
May-2018 -7.33 5.85
Jun-2018 -7.22 6.27
Jul-2018 -7.39 5.93
Aug-2018 -7.9 5.91
Sep-2018 -7.89 6.2
Oct-2018 -7.55 7.36
Nov-2018 -7.68 7
Dec-2018 -8.57 6.3

Table 5.29: CDS: risk by month with Long Term Dependency
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Figure 5.14: CDS: risk by month with Long-Term Dependency
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Figure 5.15: CDS: di�erences in the monthly risk between the model without Long-Term
Dependency and the model with Long-Term Dependency

In �gure 5.16, the risk of the two models is shown in order to retrieve the e�ects of

the long-term dependency. The results are quite impressive, since the risk is reduced

by more than one third. This is caused mainly by the higher API2-DE correlation with

respect to the standard model, after considering the long-term dependency.
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Figure 5.16: CDS: Overall risk without and with Long-Term Dependency

5.3.2 Clean Spark Spread

The second portfolio is a long position on a German Clean Spark Spread. A Clean

Spark Spread is the di�erence between the price of electricity in a given market and

the cost of gas and its emissions. Therefore, it is a long position on power, a short

position on gas and a short position on CO2. According to Platts (2016), the formula

for the 50% e�ciency Clean Spark Spread uses an emission intensity factor of 0.053942

tCO2e/MMbtu. Taking into consideration the TTF index in e/MWh as a reference for

gas cost, the Clean Spark Spread formula is

(5.2)

Clean Spark Spread

= Baseload Power Price(e/MWh)

− (TTF (e/MWh)
1

0.50
− 3.4121411565× 0.053942CO2(Ton/MMbtu))



CHAPTER 5. EMPIRICAL RESULTS 100

emln P5 − µ P95 − µ
Jan-2018 -16.32 12.86
Feb-2018 -16.09 12.57
Mar-2018 -17.35 13.04
Apr-2018 -16.8 12.28
May-2018 -16.52 12.1
Jun-2018 -16.81 12.67
Jul-2018 -17.36 12.54
Aug-2018 -16.8 12.35
Sep-2018 -18.15 13.15
Oct-2018 -17.95 14.01
Nov-2018 -19.67 14.68
Dec-2018 -21.64 14.52

Table 5.30: CSS: risk by month without Long Term Dependency

emln P5 − µ P95 − µ
Jan-2018 -14.46 10.9
Feb-2018 -14.48 10.6
Mar-2018 -15.79 11.27
Apr-2018 -15.34 10.88
May-2018 -14.93 10.64
Jun-2018 -14.73 10.84
Jul-2018 -15.49 10.93
Aug-2018 -15.44 10.59
Sep-2018 -16.27 11.23
Oct-2018 -15.71 11.61
Nov-2018 -17.35 12.11
Dec-2018 -19.35 12.68

Table 5.31: CSS: risk by month with Long Term Dependency

where 3.4121411565 is how many MMbtus are needed to generate 1 MWh according

to unit converter of IEA (2016c).

As for the Clean Dark Spread, we are going to consider a monthly exposure of 1 TWh.

In table 5.30 and in table 5.31, the monthly standalone risks without and with long-

term dependency are reported. In �gure 5.17, the values are plotted in a chart. Like in

the precedent case, the di�erences between the standard model and the new model risks

increase with time (�gure 5.18).
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Figure 5.17: CSS: risk by month with Long-Term Dependency
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Figure 5.18: CSS: di�erences in the monthly risk between the model without Long-Term
Dependency and the model with Long-Term Dependency

In �gure 5.19, the risk of the two models is shown. As for the Clean Dark Spread, the

risk is signi�cantly reduced. However, the impact is less pronounced, since the correlation

between TTF and DE with the long-term dependency is increased, but with less strength

than the API2-DE one. This makes sense given that a Clean Dark Spread, in a market

with coal as marginal fuel, is better naturally hedged in comparison with other types of

generation. As a con�rmation, in both the models, the Clean Spark Spread has a higher

risk in the monthly and in the overall exposures.
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Figure 5.19: CSS: Overall risk without and with Long-Term Dependency

5.3.3 Gas contract indexed to Oil

The third portfolio is an example of a gas contract indexed to Brent. As gas volume,

we are going to use the same quantity of gas needed for the Clean Spark Spread. Therefore,

we will have a long position on TTF and a short position to the Brent. As conversion

factor between the two, we simply apply the average ratio between the two forward curves

(BrentTTF = 2.97).

In table 5.32 and in table 5.33, the monthly standalone risks without and with long-

term dependency are reported. In �gure 5.20, the values are plotted in a chart. Also in

this case, we have a growing di�erence between the risk of the standard model and the

new model (�gure 5.21).
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emln P5 − µ P95 − µ
Jan-2018 -27.08 22.79
Feb-2018 -27.5 22.6
Mar-2018 -28.62 23.78
Apr-2018 -29.02 23.38
May-2018 -30.04 23.23
Jun-2018 -30.94 23.75
Jul-2018 -30.29 24.48
Aug-2018 -31.02 24.2
Sep-2018 -31.35 25.44
Oct-2018 -31.63 25.76
Nov-2018 -32.4 26.93
Dec-2018 -32.59 27.77

Table 5.32: OIL_INDEX: risk by month without Long Term Dependency

emln P5 − µ P95 − µ
Jan-2018 -20.04 15.82
Feb-2018 -20.51 16.02
Mar-2018 -20.43 16.34
Apr-2018 -21.13 15.9
May-2018 -21.38 15.89
Jun-2018 -21.88 16.1
Jul-2018 -21.76 16.25
Aug-2018 -22.91 16.12
Sep-2018 -22.46 16.44
Oct-2018 -22.64 16.84
Nov-2018 -22.52 17.34
Dec-2018 -22.53 17.39

Table 5.33: OIL_INDEX: risk by month with Long Term Dependency
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Figure 5.20: Oil Index: risk by month with Long-Term Dependency
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Figure 5.21: Oil Index: di�erences in the monthly risk between the model without Long-
Term Dependency and the model with Long-Term Dependency

In �gure 5.22, the risk of the two models is shown. The long-term dependency reduces

the risk by more than one fourth, given that the term correlation between TTF and Brent

is strongly increased.
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Figure 5.22: Oil Index: Overall risk without and with Long-Term Dependency

5.3.4 Gas and Oil

The fourth portfolio is a long position on TTF and a long position on Brent. Their

volumes are halved with respect to the the third portfolio. The aim to compose this

last combination is to consider a portfolio completely long, since all the others are mixed

combination of long and short positions.

In table 5.34 and in table 5.35, the monthly standalone risks without and with long-

term dependency are reported. In �gure 5.23, the values are plotted in a chart. Di�erently

from the other cases, here the long-term dependency is increasing the risk at a higher

rate than the standard model (�gure 5.24).
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emln P5 − µ P95 − µ
Jan-2018 -15.37 21.54
Feb-2018 -15.41 21.93
Mar-2018 -16 22.88
Apr-2018 -15.89 23.19
May-2018 -15.94 23.29
Jun-2018 -16.14 24.04
Jul-2018 -16.26 24.27
Aug-2018 -16.34 24.85
Sep-2018 -16.81 25.89
Oct-2018 -17.26 25.99
Nov-2018 -17.81 26.99
Dec-2018 -18.23 27.62

Table 5.34: OIL_GAS: risk by month without Long Term Dependency

emln P5 − µ P95 − µ
Jan-2018 -16.56 24.17
Feb-2018 -16.69 24.29
Mar-2018 -17.4 25.68
Apr-2018 -17.16 25.99
May-2018 -17.26 26.54
Jun-2018 -17.44 26.89
Jul-2018 -17.6 27.61
Aug-2018 -17.62 27.72
Sep-2018 -18.32 28.48
Oct-2018 -18.68 29.17
Nov-2018 -19.34 30.33
Dec-2018 -19.61 31.35

Table 5.35: OIL_GAS: risk by month with Long Term Dependency
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Figure 5.23: Oil and Gas: risk by month with Long-Term Dependency
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Figure 5.24: Oil and Gas: di�erences in the monthly risk between the model without
Long-Term Dependency and the model with Long-Term Dependency

In �gure 5.25, the risk of the two models is shown. Here the risk is increased, since

di�erently from the indexed contract, we have two long positions.
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Figure 5.25: Oil and Gas: Overall risk without and with Long-Term Dependency

5.4 Summary

The empirical results show that the correlations among the commodities change both

in size and in shape. Consistently with economic fundamentals, electricity, oil, coal

and gas associations become more powerful in the long term. On the other hand, the

CO2 correlations are reduced, becoming negative. This can be explained by its speci�c

characteristic that signi�cantly di�ers from the other commodities. The allowances are

not a physical assets and their market is driven by EU regulators. Moreover, as stated in

Koenig (2011), if CO2 price level is not enough high to trigger a switch in the marginal

technology, electricity, fuels and CO2 prices can decouple, reducing, in this way, the long

term correlation. It is noteworthy that such a dynamic is not captured by a standard

two-factor model.

The risk of the exposures computed with the proposed model are decreased in the
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case of Clean Dark Spread, Clean Spark Spread and of the oil indexed gas contract. This

is due to the higher correlations that allow diversi�cation to increase. For the same

reason, the last portfolio, being long both on oil and gas, results to have a higher risk.

Finally, we have seen that the risk measured with long-term dependency, is not only

di�erent in level, but has also a di�erent rate of growth. In the �rst three cases, the

risk measured with the standard two-factor model grows with higher rates, whilst in the

fourth case the opposite occurs.
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... apprendere ciò che è stato fatto da altri in passato,

non deve servire a far adorare feticci mummi�cati, ma a

proseguire gli sviluppi in cui quei contributi, pur superati

e rielaborati continuamente, continueranno a vivere come

apporti all'evoluzione del pensiero umano.

De Finetti (1959)

In this thesis, a two-factor model with Long-Term Dependency has been developed

and applied to commodities, including electricity. Edoli et al. (2013) are able to treat

the correlations among the commodities, however, as stated in Alexander (1999) and in

Alexander (2001), the correlation is just a short term measure. By including cointegra-

tion, it is possible to extend the model in order to be consistent and resilient in a long

term environment. The calibration of the model has been divided into three main steps.

The �rst step is to calibrate univariate models as in Kiesel et al. (2009) and Edoli et al.

(2013). The main contribution is to develop closed form formulae for term correlations.

Furthermore, to reduce the computational complexity, numerical integration based on

sparse grids (Heiss and Winschel (2008)) is implemented to treat quarter and year swap

contracts.

The second step is to perform a cointegration analysis. Following the guidelines by

Alexander (2001), the Johansen framework is implemented (Johansen (1995), Johansen

(2000)). The main contribution is to extract from the error correction matrix the infor-

mation on long term correlations.

113
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The third step is to work in a multivariate environment, as in Edoli et al. (2013),

including long term correlations. The main contribution is to develop closed form for-

mulae for cross commodity term correlations, in order to include in the calibration the

information retrieved with the cointegration analysis. Moreover, a two steps procedure

is implemented to obtain a valid global correlation matrix: the method by Qi and Sun

(2006) is used to �nd a starting point for the algorithm proposed by Edoli et al. (2013).

Such a procedure let us avoid the use of a global optimization algorithm, reducing the

dimension of the problem. It is noteworthy that through the term correlation formulae

it is easy to work in monthly simulation framework, although the calibration has been

made on daily data.

The empirical results show that the Long-Term Dependency in a risk model can have

very important consequences in the risk management activity. Companies, especially

utilities, have to plan their strategy on a time horizon that goes beyond the year and can

reach three or �ve years. In considering an investment, as for a power plant, the valuation

has to take into consideration cash �ows that cover the whole life of the structure. When

it comes to choose between two or more business strategies, possible investments, feasible

hedging strategies, it is common to support the decision with a risk-return framework.

The Long-Term Dependency could spot out that the risk a company think is bearing,

or is going to bear, using a model based only on daily correlations, is overestimated (see

cases in subsections 5.3.1, 5.3.2 and 5.3.3) or underestimated (see subsection 5.3.4). This

could jeopardize the hierarchy among the choices and could suggest the company to hedge

an exposure instead of another one. The measured risk also di�ers in its growth rate

with respect to time. In the �rst three cases, long-term dependency curbs the increase

in risk, whilst, in the last one, it widens the distributions with time. Those results are

coherent with a recent paper by Gatarek and Johansen (2016), where the cointegration

is used to �nd the optimal hedging strategy. The authors prove that cointegration plays

an important role in hedging. It allows for the possibility that the hedging portfolio has a

risk that is bounded in the horizon h, as opposed to the unhedged risk.

The designed model can also help market participants and regulators to discover,
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and/or quantify, the economic forces (Engle and Granger (1987)) that are hidden for

standard models. We have seen that in the long term, CO2 becomes independent with

electricity, oil and gas, whilst the correlation turns negative with coal. This point can be

explained by the fundamentals of the market and is coherent with the functioning of the

system marginal price, as shown in Koenig (2011).

The proposed model could also be applied in hedge accounting. As shown in Juhl

et al. (2012), cointegration could a�ect both the hedge horizon and the hedge e�ectiveness

test.

Finally, long-term dependency can help to �nd the hedging that exploit the long-run

economic relations in order to increase the e�ciency and the resilience of the implemented

strategies. On the other hand, if it is not taken into consideration, the correlation struc-

ture could be misspeci�ed and hedging strategies could destroy diversi�cation. Therefore,

the model should be implemented in �nding the optimal hedging strategy, like in Gatarek

and Johansen (2016), in order to �nd portfolios that are consistent and resilient in the

long run. In the analysis, the hedging costs should be considered, since they could sig-

ni�cantly change due to a di�erent hedging time horizon. This is important given that

bid-ask spreads are higher for long term contracts.
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