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Abstract

The proposed work aims at giving a contribution in the domain of multi robot systems.

In the last years these architectures, thanks to their flexibility and robustness with

respect to monolithic structures, have been deeply investigated in various applications.

Looking at commercial platforms, one of the main limitations relies on the hard-

ware configuration. In most of cases, the low-level control software is not open source,

compromising a detailed customization of the robot. This drawback can be partially

overcome by the usage of plug-in boards which ease the use of a particular sensor. How-

ever, whenever an application requires heterogeneous transducers, the management of

several boards increases the computational burden of the CPU, the energy consumption

and costs.

The first contribution of this thesis is the description of the prototyping of a multi

robot platform. The robots, based on a dual layer architecture, have been designed

to be low-cost and flexible in order to cope with several scenarios. The reduced di-

mensions allow the units to execute experiments in small environments, like the ones

typically available in a research laboratory, even interacting with commercial platforms

like sensor networks.

Afterward, several experimental research activities are covered.

In the field of motion control, two techniques for the encircling problem, i.e. the

task in which a set of robots rotates around a target, are presented. This toy problem is

very appealing to the scientific community because it deals with a series of technological

issues which involve communications, motion estimation and control design.

Also the data fusion, which is one of the most treated problem in robotics, has

been taken into account. One of the traditional approaches resides on the Bayesian

framework. This approach allows a straightforward combination of data gathered by

several sensors. In this dissertation, such technique has been used in environmental
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monitoring. In particular extensive experiments were performed using the aforemen-

tioned platforms in the domain of gas source localization: the task consists in the search

of a source releasing gas in an environment. Besides the Bayesian framework, other

techniques can be used. In particular a focus on the Transferable Belief Model (TBM)

is provided. Unlike the probabilistic formulation, the TBM is able to effectively repre-

sent the concept of ignorance and contradiction, concepts which, for example, belong

to the human kind of thinking. In this work a technique for the data fusion in a multi

agent context is proposed. The theoretical results have been validated by extensive

experiments concerning the cooperative topological map building.

Finally a lookup view about the integration between mobile and static sensor net-

works (SN) is provided. One of the main issues for a static network is to know about

the interdistances between nodes. In this work a localization algorithm, based on a

modified Extended Kalman Filter, is showed. As for the previous topics, experimental

results support the theoretical approach.

In the last chapter conclusions and possible improvements are discussed.
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Chapter 1

Introduction

In the last years, Multi robot systems have gathered a lot of interest. This topic

represents the 9− 10% of the titles in the IEEE International Conference on Robotics

and Automation in the last decade.

The great advantage in using multi robot architectures resides in an enhanced ro-

bustness, flexibility and efficiency with respect to monolithic structures. The usage of

multiple units intrinsically allows a greater resiliency to faults, a parallelization of the

task execution among multiple agents and consequently a shortening in time execu-

tion. The development of these systems has gone hand in hand with the technological

improvements in the micro-machining fields. Nowadays the miniaturization, i.e. the en-

ergy consumption reduction, allows the development of intelligent electro-mechanical

devices keeping low the costs. Current embedded CPUs can run standard OS and

consequently can mount conventional sensors/devices. De facto, these robots can be

considered like small wireless units equipped with a considerable computation power.

The enhancement with respect to single robot architectures relies largely on the

ability of exchanging information by wireless channels. In this manner, the team can

instantaneously have a perception regarding different zones and consequently achieves

a better understanding of what happens within the operating scenario.

On the other side, such advantages are paid with sophistication in the dynamics

involving the overall system. This architecture can be represented by a set of simple,

possibly different, systems linked each other by communication channels.

As a consequence, the stability of the algorithms running over a distributed system

is much more difficult to analyze with respect to the past. Indeed, the communication
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1. INTRODUCTION

topology, which in most of cases changes rapidly over the time, couples the dynamics

of the interconnected systems.

In last years, a big effort has been given to the study of ”networked” systems,

especially those concerning coordinated motion and the data fusion.

The first topic aims at moving a set of agents in a coordinated manner while the sec-

ond one tries to achieve useful considerations taking into account observations coming

from different units, possibly dislocated over the operating scenario.

1.1 Movement control

The motion ability is one of the distinctive features of a multi-robot system with re-

spect to conventional sensor networks. While the control for a single agent has been

deeply studied and can be considered an achieved goal by the scientific community, the

extension to multiple units is still susceptible of improvements.

The proposed techniques can be currently divided into two main areas: the first one

tries to steer the agents into precise geometrical shapes by means of analytical control

laws, while the second one finds inspiration from the biological world.

The former approach results effective to mathematically characterize the behavior

of the system in terms of stability. However these algorithms rely on assumptions which

hardly fit real scenarios, although they are very precise and well posed.

The bio-inspired algorithms instead aim to create an emergent behavior. They are

based on the principle that local interactions, based on very simple rules, can lead to a

complex global behavior when a large swarm is considered. With respect to analytical

approaches, the convergence properties are rather difficult to demonstrate even if results

can be very impressive.

However, in both cases the interaction between agents plays the fundamental role.

The interaction is mainly based on the sensorial and communication capabilities of the

robots.

Sensors are important in order to gather relative information, e.g. distance and

possibly angular displacement, among agents. They vary from simple noisy transducers

to sophisticated and expensive range finders which are able to gather very precise

measurements. The kind of measures and their quality directly influence both the

control design and the quality of the movement.

2



1.2 Sensor fusion

The kind of communication is instead strictly related to the task time comple-

tion: power transmission and bandwidth tune the propagation speed of the informa-

tion among agents. As for the sensors, these devices can be very simple, e.g. a light

emitter, or very expensive, e.g. a large-bandwidth modem. Besides performance and

costs analysis, a particular care about power consumption has also to be taken into

account: especially when small devices are considered, the capacity of accumulators

plays a fundamental role in the overall design.

1.2 Sensor fusion

Data fusion is a fundamental topic in robotics and in the overall scientific community.

To have a full autonomy, a robot has to effectively process the data gathered by sensors

in order to decide what to do.

Multi agent systems naturally enlarge the amount of information that a unit has

to process: data coming from different places allow a better understanding of what is

happening in the operating scenario.

This advantage is paid with sophistication in the model description: the estima-

tion processes running on each robot are coupled by means of wireless communication

channels.

Furthermore, this coupling, i.e. the topology of the communications, is dependent

on the transmission capabilities and on the movements of the robots, i.e. it can rapidly

change over the time.

In last years, a big effort has been made to study the behavior of these systems:

a large amount of studies exploits the Bayesian framework. It allows a straightfor-

ward combination of data coming from different sources. In this context, a multi robot

system can be modeled like a network whose nodes are the robots and the edges rep-

resent the communication links. Each node samples a given probability distribution

and consequently fuses data coming from other sources by the probability theory. This

approach is very effective when the probability distributions can be described by spe-

cific characteristics, i.e. the noise affecting the transducers can be described with a

Gaussian function. In this case the approach is computationally efficient and very easy

to implement. However, even in this case, the topology of the communication links can

lead to complicate situations which have to be carefully taken into account.

3



1. INTRODUCTION

If the Bayesian framework provides an effective and easy-to-implement method to

process data gathered from transducers, on the other side it does not provide the

same expressivity in high level reasoning. For example, its rigid structure does not

provide a natural representation of contradiction between sources. Furthermore, it

difficulty handles the concept of ignorance: when an ambiguous measure is considered,

typically the amount of belief is equally split among the most prominent hypotheses;

this approach, for example, differs from the human kind of thinking which takes into

account the union of prominent hypotheses and not its specifications.

Related to these situations, alternative frameworks have been proposed in liter-

ature. These techniques describe an effective paradigm in cases where complex, i.e.

contradictory and ambiguous, situations raise. However, this flexibility is paid with a

huge increase of the computational burden. This is the main reason why they are often

relegated to monolithic and static structures. On the other side, the advent of multi

agent systems may naturally enhance the execution of these techniques. Currently,

the application of alternative paradigms over distributed systems is still an open field

susceptible of improvements.

1.3 Contributions

The main contributions of this thesis can be stated in three points.

The first one concerns about the prototyping of a mobile platform. This robot,

replicated in 12 units, has been designed in order to execute multi robot algorithms.

Differently from commercial platforms, this architecture is fully accessible in terms of

control software and can be easily adapted to several scenarios without the insertion

of adjunct boards. These peculiarities are demonstrated by several experiments which

are described in this dissertation. At the moment, related publication about this topic

has been published in (1). Currently, (2) has been submitted.

The second contribution is related to the formation control: in particular the encir-

clement problem is treated. This topic has been deeply studied and many techniques

have been proposed over the years. However, the majority of the algorithms require

the knowledge of certain parameters which are difficult to estimate: to overcome this

drawback, an external and centralized monitoring system is often used. In this disserta-

tion, a fully autonomous multi robot system has been considered. Furthermore, control

4



1.3 Contributions

laws have been designed in order to avoid the use of parameters which are particularly

sensitive to error estimate. At the moment, the related publication about this topic is

(3).

The last contribution is related to data fusion. In this context, a big effort has

been given by the scientific community to the enhancement of the Bayesian framework

for multi robot systems. In this thesis, the Bayesian approach has been used in the

domain of environmental monitoring in combination with a stigmergic approach in a

smart environment. In particular, extensive experiments concerning the gas source

localization have been conducted. Another contribution relies on the study of non-

conventional paradigms in multi agent systems: in particular, an algorithm concerning

the data fusion upon the Transferable Belief Model framework is presented. In this

case as well the algorithm is supported by real experiments concerning the cooperative

topological map building. At the moment, the related publications about this topic are

(4), (5), (6), (7). Currently, (8) and (9) have been submitted.

In the final part of the dissertation, some notes are devoted to the integration

between static and mobile systems. The related chapter does not pretend to go in

deep about this topic: it just presents some preliminary technique about the static

sensor network localization. In particular, this task can be viewed like a fundamental

prerequisite in order to achieve the aforementioned integration. Before starting any

task execution, in fact, a static sensor network has to know the location of the nodes.

Here we propose a discussion about a distributed technique based on the Extended

Kalman Filter. The algorithms are supported by experiments conducted using real

devices. At the moment, (10) has been published about this topic.

5
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Chapter 2

An experimental platform for

multi robot algorithms

In this Chapter a mobile platform built from scratch is described. The main peculiarity

relies in its flexibility: it mounts several sensors and others can be added in order

to cope with several scenarios. A particular care regarding mechanical and electrical

design has been taken in order to keep low the costs. Furthermore the communication

capabilities allow the interaction with standard sensor networks. All these components

are managed by dedicated software architecture

2.1 Introduction

A rather new and very interesting research field in mobile robotics investigates the

cooperation of several units and in particular the possibility of getting a collaborative

behavior by decentralized algorithms. Indeed, decentralized algorithms show definite

advantages over centralized ones. They are naturally resilient to one point failure (the

loss of one unit), can easily reconfigure themselves and don’t require a leader in the

team. Moreover, they can take benefit from the increase of computing power that can

be achieved parallelizing the activities of all the computers of the team. At the same

time, the number and the length of inter-robot communications can be kept smaller

than those necessary for centralized activities.

The field of decentralized algorithms can be roughly divided in two areas. The first and

older one is that of swarm robotics where the control is performed by rule-based de-

7



2. AN EXPERIMENTAL PLATFORM FOR MULTI ROBOT
ALGORITHMS

signed behaviors (e.g. (11), (12), (13)). Tuned by a trial and error approach, they can

provide a very good performance and can be adapted to different robots and environ-

ments. Research works in the other area try to decompose well posed (in an analytical

sense) algorithms in fragments that can be run onboard each robot using its small

computing and communication capabilities (e.g. (14), (15)). Under these regards, the

latter area shows several similarities with sensor networks and can even be useful to

consider each robot as a moving node of such a network. The analytical demonstration

of their convergence to the correct results is often carried on under milder assumptions

than their centralized relatives and often assuming far from reality characteristics as

Gaussian, zero mean errors, lossless communications, strict inter robot synchronization.

In both cases, the results are strongly influenced by the available onboard sensors, the

reliability and the range of the communication system and obviously the working en-

vironment.

A serious assessment about the effectiveness of these algorithms requires therefore a

good deal of experimental work and a team of robots. Thus, our research group decided

to develop a prototype of a mobile robot that is low priced, in order to be replicated in

many copies, and at the same time is equipped with many sensors, able to communicate

over different channels, endowed with a sufficient computing power and easy to program.

SAETTA has been designed to fit these requirements. To have a low cost, we

made some mechanical choices that positively influenced also the electronic part. The

first is to build a standard differential-drive wheeled robot for indoor use and give up

interesting, exotic locomotion approaches that are useful in more challenging environ-

ments. Low cost derives also from the recent improvements of computer boards and

even more from the advance of micromachined sensor technology. Several kinds of

kinematic transducers are indeed included in the design, the utility of which will be

discussed in the sequel. Moreover, we gave up any aesthetic concern, at least till now.

The size of the robot was chosen in order to conduct experiments in a limited space

with, say, ten units but at the same time sufficiently large to require no complex (and

costly) miniaturization and to allow a few limited expansions.

8
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Figure 2.1: Saetta robots: a part of the 12 Saetta robots developed at DIA.

Figure 2.2: The Saetta robot: along the body IR sensors are visible, while in the rear

part, above the cap, the compass is located. On the top, a beacon allows to acquire the

ground truth for performance comparison by an external camera.

2.2 Mechanical and traction design

The traction system of the robot and its mechanical structure play an important role in

keeping simple the overall project and low the cost of each unit. One important choice

has been the use of stepper motors instead of the more common d.c. ones. They offer

several advantages. First of all, a stepper motor needs neither a tachometer nor an

encoder nor, as a consequence, the circuitry associated with the transducer. As for the

controller, the situation is not so clear, as a stepper motor requires no kinematic control

loop, but it implies a rather complex timing, in particular when micro-stepping is used.
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Thus, for this specific point, the difference is made by the hardware resources of the

control processor that, in our case, are sufficient to perform all the needed operations.

Moreover, a stepper motor requires lower supply voltages as it has a very low back

EMF; this means less cells in the accumulator and a simpler circuitry. Finally, the

provided torque is sufficient to move the robot without a gearbox even using large

diameter wheels.

On the other hand, a stepper motor leads to longitudinal vibrations whose level has

been kept low by a proper choice of the motor and of the driving technique (see Section

2.4.3).

The case of the robots has been kept as simple as possible without paying attention

to the aesthetical results. We started from a standard PVC wiring box that is cheap

and offers a sufficient mechanical robustness. Its rigidity, already good when the cover

is inserted, has been enhanced by an internal aluminium bar that also carries the

accumulators while the motors are screwed on the long sides of the box. The motors

can carry a rather heavy transversal load that is several times the weight of the robot.

Therefore, they can be placed so that the center of gravity of the finished unit is about

aligned with the motor axes that support the wheels. In this way, a simple plastic

sphere can be used for the third rest avoiding the use of a castor. The castor has been

coupled with a small part of neoprene which acts like a damped spring. This choice

was evaluated in order to reduce the amount of longitudinal vibrations induced by the

stepper motors which resulted in a discontinuous floor/sphere contact. In this way

the vibrations do not disturb the motion of the robot, that indeed shows a very good

odometry. The relevant data of the robot are referred in Table 2.1.

Table 2.1: Robot specifications

Size 14× 29cm

Battery voltage 9,6 V

Current consumption 600÷ 1000 mA

Wheel radius 3.6cm

Max speed 30 cm/s

10
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2.3 System architecture

The electronics of the robot is organized as a two tiers architecture. The first tier

takes care of motors and sensors while the other one executes higher level control and

communication tasks. This conceptual division has an immediate correspondence in

the hardware realization: each tier is realized on a separate electronic board and has

its own CPU.

The first board is custom designed around a Programmable Interface Controller

(PIC) while the other is a commercial ARM9 board running embedded Linux (NETUS).

The two boards communicate via a high speed serial interface. Interboard connectors

provide, besides the electrical connections, the mechanical support to the ARM9 board.

At the moment, a 2 axis gyroscope, a 3 axis magnetometer (only two used), a 3

axis accelerometer and 5 infrared (IR) sensors are connected to the lower level board.

2.4 Low level tier

This tier is implemented on a 18F87J50 PIC from Microchip. It is hosted by a board

whose size is approximately 13×27cm that, besides the CPU, accommodates the sensors

(that are actually mounted on mini piggy-backs), the motor drivers, the power supply

and the connectors carrying the other board.

The power source is constituted by the series of 8 AA cells providing a nominal

voltage of 9.6V and a total capacity of 2.3Ah. Two supply voltages are needed: 5V and

3.3V. The conversion from the battery pack voltage is obtained by the cascade of two

high efficiency converters. The overall autonomy depends on the characteristics of the

experiment, i.e. the traversed space and the used peripheral and sensors. On average,

the robot has a 90-minutes autonomy.

The board can work in a stand-alone way when the ARM9 board is not installed,

connecting the PIC by jumpers to a dedicated connector for a wireless ZigBee module,

thus obtaining a simpler but cheaper configuration.

2.4.1 Central processing unit tasks

The PIC is an 8 bit controller. The main features which are interesting for the project

are detailed below:

11
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Figure 2.3: System architecture: each peripheral is connected to a specific controller.

The two controllers are linked (red arrow) by an RS232 communication.

• Clock frequency 48MHz

• Supply voltage 3.3V

• Flash program memory 128KB

• A serial RS232 communication port

• 12 analog inputs with 10 bit converter

• 4 timers/counters

• several digital I/O lines

A timer has been used to trigger the control cycle TPIC of the processor, in our case

25ms. The control period is responsible for managing the synchronous operations like

channel sampling, data filtering and the coordination with the high level tier.

The main activities the PIC has to perform are: transducers sampling, control of

the actuators by means of digital lines and communication with the high level tier and

eventually with a ZigBee module if no upper level tier is used. In the latter case, the

PIC is also used to run all the subtasks of the mission.

Asynchronous operations, like actuation and communication management, have to

be taken into account, too. To this aim, some interrupts originated by the internal PIC

hardware are used: the related description is detailed in Section 2.4.2.
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2.4.2 Software

The software architecture is similar to the interrupt design pattern described in (16).

The program is constituted by two main blocks: an infinite loop that executes

low speed operations, and a very frequent and short routine. The latter is triggered

by a timer which expires every 50µs: it checks for events related to some peripherals

(serial port, motors, analog sampling, etc) and, if needed, it performs some fast actions

(setting a flag, buffering of a received character, step movement, storage of acquired

data, etc). It performs only very simple operations and is not preemptive.

Flags enable the execution of slower operations in the infinite loop: if a flag is set,

the launch of the related long term action (like message parsing, notification of served

positions, data filtering, etc) is performed.

2.4.3 Motor Control

Each motor is controlled by a dual full-bridge pulse width modulation (PWM) driver.

The driver is a 24 pins dual inline package (DIP). It provides both electrical and thermal

protections. Stepper motors provide a 200 steps resolution with a nominal torque of

12 Ncm. The motor windings are independently controlled: four current levels can be

imposed, ranging from 0% to 100% of the max current value. The control is done acting

on a couple of pins controlled by the PIC. Furthermore, another pin is used to impose

the current direction in the winding. Globally, six digital lines per motor are used by

the PIC to perform the control which results in a PWM of fixed period. The electrical

period is at least constituted by four intervals. When using micro-stepping, the intervals

are multiple of four and in our case eight or twelve intervals have been tested. As a

consequence a resolution respectively of 400 and 600 steps can be achieved. Figure 2.4

shows the vibration analyses on the mechanical structure for these two kinds of control

when the wheel rotates at 2.5Hz. Data were collected by a Type 4371 accelerometer

from Bruel & Kjaer. The twelve intervals solution clearly shows lower vibration levels

and it is used for the whole range of operation even if it is slightly more demanding in

terms of CPU operations. As a result, the robot odometry on a typical floor is very

good. After estimating the wheel diameter by calibration, the error along a straight

line is less than 1%.
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Figure 2.4: Vibrations gathered with twelve (continuous blue) and eight intervals control

(dotted red). On the x-axis Hertz units are represented while on the y-axis the magnitude

of the signal gathered from the accelerometer is showed. The eight intervals control shows

a peak centered at about 20Hz.

2.5 Sensor characteristics and calibration

The robot is provided with a rather complete set of kinematic sensors. In particular,

the proprioceptive ones are a 3-axes accelerometer, a 2-axes gyroscope and a 3-axes

magnetometer (to be used as a compass); odometry sensors have not been included as

stepping motors are used. The range of exteroceptive sensors connected to the PIC

comprehends just five IR range finders as more sophisticated units are driven by the

upper tier processor. In this tier, the transducer furnishes analog sources which are

sampled by the analogical to digital converter provided by the PIC. When needed,

a small circuitry constituted by an amplifier and low pass filter is put between the

transducer and the PIC.

All the channels are sampled with a burst acquisition: in each control cycle TPIC ,

the PIC collects N (in our case N = 8) samples for every channel at maximum sampling

rate (60 − 100µs per channel). The acquisitions are then averaged to reduce random

fluctuations. It is worth noting that the number of samples is a power of 2 to improve

the computation time using shift operators.

In the following the aforementioned sensors are described, together with their per-

formances and calibration, when needed.

2.5.1 Infrared sensors

Each infrared sensor, a GP2Y0A02YK from Sharp, is composed by an emitter and a

separate detector. The analog range measurement is obtained by a triangulation of
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the spot projected on the obstacle. Intensity is discarded, thus the sensor is insensitive

to the obstacle reflectance. However, differently from the other sensors mounted on

the robot, the relation between the output voltage of the sensor and the distance is

not monotonic and shows a maximum near 20cm. Therefore the same reading can

refer to two different distances (see Figure 2.5-a) and this ambiguity is located in a

range that can be very dangerous with respect to the safety of the robot (e.g. collision

avoidance). Thus, a dangerous and safe zone must be considered in the IR curve. One

way to overcome this problem is considering subsequent readings to disambiguate from

the two zones. For each unit, the calibration was effected using a standard polynomial

fitting considering a separate subset of data for each zone. As shown in Figure 2.5-

a, a small difference results between the tested units, however it can be reduced to

acceptable values by a simple vertical translation of the calibration curve: the result of

this operation can be viewed in Figure 2.5-b. The operative range can be considered to

be from 7cm to 120cm: out of this range, measures are useless due to the noise and the

discretization of the converters. Errors are particularly important for distances greater

than 80 cm: the standard deviation of the measure, even averaging 64 samples, is near

10cm and affects in particular localization and mapping tasks. Instead, for distances

between 25cm and 50cm, the repeatability is about 1cm. Along this range, the mean

error is under 2cm.

Each IR sinks about 50mA, thus the PIC can turn ON or OFF their supply line by

a transistor.

2.5.2 Accelerometers

The accelerometer device is a 3 axes unit (MMA7260QT from Freescale semiconductor).

Its range can be chosen among four values from 1.5g up to 6g by 2 pins. This setting

is typically applied at power up, but online changes are possible. Actually, considering

the noise superimposed to the measures and the difficulty to get rid of the offsets,

these sensors cannot be reliably used for velocity or position estimation and they find

the main application to state the position with respect to the horizontal plane, an

information that can be very useful in connection with the sensors connected to the

upper tier, e.g. the camera. In particular, supposing that initially the robot starts the

mission on a horizontal plane, a different posture is recognized if the values gathered

on the axes differ from the initial ones. To this purpose, the maximum sensitivity is
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Figure 2.5: Calibration curves obtained from different sensors: (up) original data; (down)

curves after the unbiasing. Y axis are AD units, on the x axis distance in cm is reported.

used. As in this case two axes are sufficient, it is possible to leave out one axis by a

jumper (the one oriented along the non-holonomic constraint of the vehicle) to sense

the battery voltage.

2.5.3 Rotation sensors

This section briefly describes the behavior both of gyro and magnetometer sensors. The

gyro is a 2-axes ADXRS150 sensor from Analog Devices, oriented along the roll and

yaw axes of the robot. At the moment, the most used part is the one oriented along

the yaw axis, which measures the rotational speed of the robot.

The magnetometer is a three-axes HMC1043 sensor from Honeywell. To spare an

analog input, only two axes were considered, being them sufficient to determine the

position of the Earth magnetic field on the horizontal plane. To adapt the chip output

levels to those of the analog/digital converter, two operational amplifiers are needed.

The two components can be affected by a bias related to the residual magnetization of

the sensitive core. Each of these biases cannot be estimated as they change randomly

at every power-on. To overcome this drawback, a calibration, consisting in a full

self-rotation of the robot, has to be performed at the beginning of each experiment.

Alternatively, the magnetometer provides a procedure consisting in a reset driven by
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a train of current pulses injected into a digital line of the chip. Although effective, in

our case the amount of current needed by this operation is too much onerous for the

battery capabilities.

Also in the case of gyro, a calibration at each power-on is performed by self-rotations.

The gyro calibration curve revealed a linear behavior with respect to the rotational

velocity of the robot (see Figure 2.6).

The magnetometer outputs instead showed the expected profile: each axis returned

a sinusoidal curve representing the projection of the magnetic field on that direction.

Two remarks are in order: first, the currents flowing in the robot’s circuits has a

negligible effect on the readings of the magnetometer; second, the gyro is very sensitive

to temperature conditions. In our experiments, we noted that these variations were not

negligible. In order to reduce this phenomenon, we tried to estimate the bias whenever

the robot stopped: tough that some improvements was obtained, the gyro did not

result reliable over long periods to achieve velocity and nevertheless position measures,

especially over long periods.

Consequently the velocity integration is unreliable on long time intervals.

During the navigation experiments, however, the two sensors showed rather different

error characteristics. While the gyro maintained the expected behavior, the compass

resulted unreliable in some areas of the arena where experiments were performed: these

situations were observed when passing over big iron beams installed under the floor.

One typical behavior is depicted in Figure 2.8. In this test, SAETTA traveled two

straight paths interleaved by a 90 degrees rotation. During the self rotation, the field

direction was constant and the angle was correctly measured (the sensor returned 88.8

degrees); on the contrary, during the straight paths, the reading exhibited large errors

because they passed over a beam that modified the magnetic field. Obviously, any

large ferromagnetic mass induces the same problems. When no disturbing mass is

present, the compass is highly reliable as can be seen by Figure 2.14. In this graph the

magnetometer measures are compared with the odometry ones that can be considered

reliable due to the very slow velocity imposed to actuators. The maximum error in this

experiment was 7o.

Thus, we can have some indications on the use of the two kinds of sensor. When self

rotating, compass is reliable for rotational measures but cannot provide an indication

of the absolute position of the robot wrt the North direction. Absolute angle can be
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Figure 2.6: Calibration curve for the gyroscope sensor: red asterisks represent the mea-

sured data, the blue line is the calibration curve achieved by the least square estimation.

Robot rotation speed is on the y axis (radiant/sec), digit units on the x one.
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Figure 2.7: Magnetometer measures compared with the bearing achieved by odometry:

continuous line (blue) is the odometry of the robot, dotted line(red) is the magnetometer

reading. The signals are expressed in degrees units over a temporal scale (seconds). The

maximum displacement is about 7 degrees.

relied upon only if there is an a priori knowledge about the presence and the position of

disturbing masses, or after a long straight path during which the compass readings are

constant. Moreover, the compass can be used to go back on a path already followed, as

in each point the error is the same in the two ways. For paths with a sufficiently fast

velocity and a large radius of curvature, it is safer to rely on the integration of the gyro

readings if the bias can be estimated in some way (for example during stop phases).
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Figure 2.8: Curve acquired by the magnetometer: continuous line (blue) is relative to

straight motion affected by iron beams, the dotted (red) one is relative to a self rotation

of π/2. Signals are represented in degrees units over a temporal scale (seconds).

2.6 High-level tier

The high level tier is implemented on a Linux embedded board, the NETUS board

from ACME SYSTEMS srl. It has an AT91SAM9G20 Atmel processor at 400MHz.

The board comes with 64MB RAM and 8MB FLASH. It sinks 60mA from a 5V source

and offers 5 serial, 2 USB and 1 ethernet ports plus several digital input/output lines.

It carries an expansion board hosting a ZigBee module for communications in an un-

structured environment. Linux offers the advantages of a solid open source Operating

System that can be tailored on the user needs and gives the possibility to easily access

the low level resources. The availability of many widespread interfaces as the USB

and the RS232 in a standard OS opens the system to the use of an almost unlimited

number of peripherals. At now we have connected webcams for vision and inter-robot

distance estimation, standard Wi-Fi keys, an RFID tag reader for navigation in par-

tially structured environments and a small laser scanner. With a careful programming,

even rather complex vision algorithms can be implemented and, at the moment, the

actual bottleneck seems to be in the batteries, since all these expansions sink a lot of

current.

2.6.1 ZigBee communications

In a multirobot scenario, the ZigBee wireless communication channel is very important

for the system architecture. In particular, the ZigBee module from Maxstream has
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been used. This module can communicate with a baud rate up to 250000bps within

a range up to 20m in an indoor environment and up to 100m in outdoors without

an infrastructure 1. The protocol enables the robots to interact also with ZigBee

compliant sensor networks. The use of this chip makes it possible to embed SAETTA

in etherogeneous systems including both sophisticated devices as well as tiny platforms

(see for example (17) ) .

Differently from Wi-Fi devices, ZigBee ones have low power consumption: supplied

at 3.3V, our module sinks 55mA and 270mA respectively in RX and TX modes and

less than 1mA when idle. On the contrary, they show a smaller bandwidth that is

anyway more than sufficient for most cooperation purposes.

Furthermore, several options using the ZigBee API are available. It is worth to

underline the main features related to the typical multirobot scenarios. The module

is able to work in different modes, which can be switched at run time: sleep, receive,

transmit, idle and command mode. The last one allows the master device to set con-

figuration parameters of the chip. Furthermore, it is possible to establish either a

connection with implicit management of the acknowledgement (similar to TCP/IP) or

without it (similar to UDP) depending on the specific application. Due to the cost of

transmitting a packet, it is possible to send data in a broadcast mode or to a specific

subset of other nodes (specifying the Personal Area Network ID to which the nodes of

interest belong). These options (that are completely managed by the module without

further computational load for the processor) find a direct correspondence in multi

robot applications where the communication graph plays more ((18)) or less ((19))

importance, requiring a strictly connected net or a sporadic exchange of information

without acknowledgements.

When an interaction both with sophisticated hardware and with a sensor network is

required in the same experiment, it is possible to use at the same time both the ZigBee

(802.15.4 standard) and the standard Wi-Fi channels (802.11 standard).

2.6.2 Software

Relying on a Linux OS, the software architecture has been developed in a more sophis-

ticated manner than the PIC code.

1www.sparkfun.com/datasheets/Wireless/Zigbee/ZigBee-Manual.pdf
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In literature several frameworks have been proposed. In (20), the Player project is

introduced. It is a multi robot framework where each robot can be seen like a node of

the network. Even in the internal architecture of each agent, devices and algorithms can

be implemented as nodes connected each other: this approach is very effective in terms

of abstraction but has the inconvenient in the overhead of communications. In (21)

an interesting approach to domestic robotic networks is described: in this framework,

every piece of data, referred as ”a tuple”, is ”published” in a distributed and connected

network. Also in this case the overhead introduced into the communication was not

appropriate for tiny devices. To overcome this issue, an optimized version running even

on very limited platforms is described in (22). Another interesting approach is given

in the Multi-Robot Integrated Platform(MIP) 1: this framework is an object oriented

environment which divides algorithms, tasks and devices into categories. Within each

category, a component can be easily substituted by another one, resulting in short time-

to-develop new experiments. Furthermore the algorithms can be executed both on real

platforms (Khepera III) and in a simulated environment based on Player: the swapping

between the two environments is easy as the change of one flag. Although very flexible,

the use of OOP programming introduces an overhead which highs the computational

burden, especially for embedded platforms like the one used on SAETTA.

In our case, we have chosen to develop a framework which encompasses both the

overhead about sophisticated communications and OOP programming. A particular

care about the timing performances was taken at the price of losing the abstraction

level previously described.

The developing system is based on the C language. Our board mounts a standard

Ubuntu 9.10 version, thus we could take all the advantages of the standard programming

techniques. Currently, we chose a multi-threading approach to separate the kind of

activities to be executed.

The critical ones are put in the main thread. This thread has a cyclic structure

whose period is 200ms. It contains the routines to communicate with the PIC, motion

commands and all the subtasks which concern about the safety of the robot. The

control period is triggered by an interrupt deriving from the interface with the PIC

(see Section 2.7) which starts the communication exchange between the two CPUs.

1http://www.dis.uniroma1.it/ labrob/software/MIP/
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Figure 2.9: High level program structure: on the left the vertical time line is depicted.

The first block, the main thread, is constituted by the periodic execution of subtasks:

the communication with the PIC (PIC COMM block), motor control, and low level data

processing. It can be seen that the periodicity of this thread is triggered by the interrupt

INT which raises every 200ms. Conceptually, other parallel periodic threads can be run

at the same time: they can be executed by subtasks whose execution can be shorter

than the control cycle (e.g. COMM THREAD) or longer (GENERIC THREAD). The

communication between threads is performed by shared variables SV.

This thread can be flanked by other ones which contain auxiliary activities: cur-

rently one is used for wireless communication (ZigBee or Wi-Fi), another for an RFID

reader and so on. Typically each thread has a cycle which depends upon the activity

it has to do: if a precise synchronization is needed, semaphores can be adopted. Com-

munication between threads is implemented by the use of shared variables (see Fig.

2.9).

It is worth to note that whenever a thread doesn’t have to perform any operation,

it is put in idle mode, i.e. it is not time consuming, by the OS (23).

2.7 Communication between the two tiers

The interaction between the two tiers, i.e. between the NETUS and the PIC boards, is

performed under the RS232 communication protocol. Denote with TNETUS and TPIC

respectively the NETUS and the PIC control period cycle. The exchange of information

is made at the beginning of TNETUS (see Figure 2.10). The starting message, sent by

the PIC, raises an interrupt on the NETUS processor enabling the main thread to
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Figure 2.10: System timing. a) Communication process between the two controllers.

The PIC sends a starting message (red arrow), the NETUS replies with a command (blue)

and finally the PIC send processed data (green). b) Packet structures: header (1 byte

ID), payload (varying length), a crc code (2 bytes) and an end character (END). The end

character is unique as it cannot compare in the other fields: a masking technique is used

to avoid this condition.

run. The NETUS board answers with a packet containing commands computed by the

previous cycle. Finally, after receiving the command packet, the PIC board sends the

data collected and processed over the 8 previous sub-periods. Each message, in both

directions, is composed by the following fields:

• header: it is an ID that identifies the kind of packet

• payload: it is the information owned by the packet

• crc: it is a verification code

• end: it identifies the end of the packet

The commands that the upper tier can send are: system state conditions, refer-

ence velocities or displacements and stop commands. The lower tier sends data about

odometry, sensor readings and acknowledgments about correct command execution.

2.8 Basic Testing

In this section two simple experiments are described in order to show the performances

of the platform. In each test the robot was asked to execute some well known task
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in robotics. The first experiment is devoted to characterize the interaction between

multiple units: robots have to meet in a common point using the consensus algorithm

(18). In this scenario both communication and odometry performances were tested.

The second experiment is related to infrared sensors: one robot explores a small area

in order to build a map of the surrounding environment. In Section 2.9 a more detailed

experiment about localization will be provided.

2.8.1 Consensus algorithm

In this scenario a set of 3 robots was used. The test was made to evaluate the perfor-

mances of the system about motion precision in presence of heavy inter-robot commu-

nications.

Each agent, having a prior knowledge of its own state with respect to a common

frame, broadcasted repeatedly its position to the others. Applying the consensus filter,

the robots would meet to the mean of the initial positions if the dynamics of the robots

were linear. Due to the nonholonomic constraints, the input generated by this control

law had to be filtered by a Cartesian controller (24). As depicted in Fig. 2.11, this

controller overcomes the drawback: the trajectories of the robots converge to a common

point, which obviously is not the mean of the initial states. In detail, in this test, each

robot traveled meanly for 84.3cm: the maximum linear speed was set to 8 cm/s while

the rotational one was 0.98 rad/s. Each robot broadcasted its state with a frequency

of 10 Hz (double with respect to the control cycle to prevent data loss): on average

each robot sent 137 packets. In tab. 2.2 it can be seen that the number of lost packets

is negligible as well as the computational load: the algorithm took about 3ms per

iteration and could be furthermore reduced avoiding the use of trigonometric functions

with lookup tables and integer implementations.

Similarly, the odometry furnishes precise data. Robots arrived to a common point

without having feedback about their positions. As mentioned before, several tests

revealed errors smaller than one percent over long straight paths (about 12m) and

contained angular displacements as well.

2.8.2 Mapping

In this test a robot explored a small area to build a map by the IR sensors. In partic-

ular a closed tunnel with a length of 130cm ( Figure 2.12) has been considered. The
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Table 2.2: Consensus experiment data

Robot 1 Robot 2 Robot 3

Path (cm) 59 98 96

max speed (cm/s) 7.54 7.36 7.25

mean speed (cm/s) 3.15 3.85 3.99

Packets sent∗ 129 152 130

Total data loss 3.5% 2.9% 2.1 %

Max data loss with respect to one target 3.7% 3.1% 2.4 %
∗ different numbers of packets sent are due to different power-on time of the robots: the broadcasting is related

to the power-on time while the consensus algorithm starts in a synchronous manner with an external starting command.
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Figure 2.11: Consensus algorithm for 3 agents: black triangles represent the robot initial

positions. The axes units are centimeters.

dimensions were chosen in order to effectively exploit the IR sensors.

In the test the robot made a smooth trajectory: along a straight path it stopped for

two times to span the surrounding environment. The results of this experiment can be

seen in Figure 2.13. The maximum linear speed was likely 6cm/s with a mean speed,

without taking into account the resting, of 2.79cm/s while the maximum rotational

speed was 0.3 rad/s.

The mapping results are good (see Fig.2.13): the sides of the open square are

estimated with an error less than 5cm without using any sophisticated data processing.

When more demanding mapping is needed, more performing sensors, e.g. laser range

finders, can be mounted on SAETTA.
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Figure 2.12: Test bed for the map building: the sides of the square are 60cm long; the

two slanted sides are 1m long.
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Figure 2.13: Map built by IR sensors. the robot trajectory is represented in violet,

asterisks show the sensor acquisitions. Each color identifies an IR sensor: the front side

ones are blue and red dots, front central one is yellow and the rear lateral ones are green

and black.

2.9 A modified particle filter for low performance robotic

platforms

In this section a localization algorithm, for small platforms like SAETTA, is presented.

These experiments were conducted with a previous version of the NETUS board, the

FOX one mounting a chip of 100MHz, making the scenario more demanding. Due to

the limited processing capabilities, some ad hoc solutions have been used: the lack

of processing resources has been compensated by an efficient implementation of the

estimator and by the use of compass measures which ease the computational load. The
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results show how a careful design allows the implementation of sophisticated algorithms

even on small platforms.

2.9.1 Problem setting

The localization problem can be approached using a probabilistic framework. It ba-

sically consists in the state estimation of a system whose temporal evolution can be

modeled as:

qk = f(qk−1, uk−1, νk) (2.1)

where k ∈ N, f(·, ·) is a generic nonlinear function, qk ∈ Ω represents the state of the

system at the k − th time step, uk represents the control input, νk ∈ N(0, σ2
ν) is a

zero mean Gaussian noise with variance σ2
ν and Ω is the set of all the states x. To

improve the estimation process, an observation system is used to gather measures that

are function of the state x. It can be modeled as:

zk = h(qk, λk) (2.2)

where h(·, ·) is a nonlinear function and λk ∈ N(0, σλ) is a zero mean Gaussian noise

with variance σλ. It is assumed that the sequence of states qk can be modeled as a first

order Markov process, e.g.

p(qk|Qk−1, Uk−1) = p(qk|qk−1, uk−1) (2.3)

and also that the observations zk are conditionally independent, hence:

p(zk|Qk) = p(zk|qk) (2.4)

where Qk represents the sequence of states up to the instant k. Similarly, denote with

Zk and Uk respectively the set of measurements and control inputs up to the generic

instant k.

Under the previous assumptions, a prior and posterior belief about the state estimation

can be introduced. The first represents the degree of belief about a certain state based

on the knowledge of the previous estimates, the control input, that is assumed to be

perfectly known, and the observations, all of them up to instant k − 1:

bel−(qk) = p(qk|qk−1, uk−1, Zk−1) (2.5)
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the latter instead represents the degree of belief after acquiring a new measure zk; due

to the assumptions described by eq. 2.3 and eq. 2.4 and using the Bayes rule, the

posterior belief can be defined as:

bel+(qk) =
p(zk|qk)bel

−(qk)
p(zk|Uk−1,Zk−1)

(2.6)

where p(zk|qk) is the perceptual model. In this way, the recursive estimation can be

performed by defining the prior belief as:

bel−(qk) =
∫

Ω p(qk|qk−1, uk−1)× bel+(qk−1)dqk−1 (2.7)

Particle filter adopts the aforementioned recursive model by a sampling approach.

The posterior belief function is approximated by a set of N samples extracted by a

normalized importance sampling distribution π(qk|uk−1, zk):

bel+(qk) ≈ 1
N

∑N
i=1wi · δ(x− qi) (2.8)

where δ(·) represent the Dirac pulse, and qi, i ∈ 1, . . . , N is a sample extracted by

the distribution π which, in the robotics field, is commonly represented by the prior

distribution bel−(qk) ((25)). Under this assumption, using the Bayes rule, the weight

assigned to each particle is:

w
(i)
k = w

(i)
k−1 ·

p(zk|q
(i)
k

)bel−(qk)

π(qk|uk−1,zk)
= w

(i)
k−1p(zk|q

(i)
k ) (2.9)

Furthermore the prior belief can be achieved in a recursive fashion as:

bel−(qk) = p(qk|qk−1, uk−1) · bel+(qk−1) (2.10)

This recursive procedure has to be supported by a re-sampling technique. As new

data become available, most of the particles have a negligible weight. These ones, with

a re-sampling procedure, can be substituted with particles which fit better the new

measures. To determine when a re-sampling iteration has to be done, the following

performance index is commonly used:

Tk = 1∑N
i=1(w

∗i
k
)2 (2.11)

where w∗i
k is the normalized weight:

w∗i
k =

wi
k∑N

i=1 w
i
k

(2.12)
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Whenever this value is less than a constant T , a re-sampling process is started. This

consists in choosing a new set of particles according to the distribution p(qk|Zk):

p(qk|Zk) ≈
∑N

i=1w
i
kδ(qk − qik) (2.13)

in other words, the new particles are sampled with a major probability in the neigh-

borhood of the most promising particles of the previous iteration.

2.9.2 Algorithm implementation

In this section the implementation of the algorithm on the SAETTA robot is discussed.

In its complete formulation, for each particle the algorithm computes the intersections

between the five beams originating by the infrared sensors and all the walls and then

selects the feasible (shortest distance) intersection to compute p(zk|qk). These com-

putations involve multiple rototranslations, each of which makes use of trigonometric

function. This kind of operation represent the main bottleneck in the algorithm exe-

cution, thus the attention will be focused just on this part.

Denote with F0 the frame origin and omit the temporal index k. Let the generic pose

of the particle with respect to F0 be qi = {pi, θi}, with pi = (pxi pyi )
T ∈ R2 and θi ∈ S.

Furthermore denote with Fb a frame related to a generic sensor b = (pb θb)
T ∈ R2 × S,

centered at pb and oriented like θb with respect to F0. Similarly, let bz = (bpz
bθz)

T

the representation of the pose z ∈ (R2× S) with respect to Fb. It is assumed that each

particle i is equipped with M sensors (in our case M = 5), each of which having a pose

sji = (qji βji)
T ,j = 1, . . . ,M , with respect to F0.

Consider a generic particle qi and define a fitness function g : R × R → R, for sji, as

the Gaussian:

g(dj , d̂ji) =
1√
2πσ2

s

e
(dj−d̂ji)

2

2σ2
s (2.14)

where dj is the measure actually acquired by the j-th sensor, d̂ji is the measure the

sensor would acquire if the robot were in the particle pose qi, and σs is a fitness function

parameter.

The most of computation relies on the determination of d̂ji. Consider a linear obstacle

O delimited by the endpoints ξ1 = (ξ1x ξ1y)
T and ξ2 = (ξ2x ξ2y)

T , with ξ1, ξ2 ∈ R2. A

way to calculate the range d̂ji between the sensor and the obstacle is to represent, by
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means of a rototranslation, the endpoints with respect to Fsji :

sjiξo = R(−(βji + θji))(ξo − qji), o = 1, 2 (2.15)

where R(−(βji+ θji)) is the rotation matrix along the axis orthogonal to the R2 plane.

The computation of the distance is performed whenever at least one of the x coordinate

is positive and the y coordinate of the two points are opposite each other. If these two

conditions are satisfied, the distance between the sensor ji and the obstacle O is:

d̂ji|O = −sjiξ1y
sjiξ1x−

sjiξ2x
sjiξ1y−

sjiξ2y
+sji ξ1x (2.16)

Consider the environment E =
⋃P

i=1 Oi like the union of the all P linear obstacles

present into the environment, P ∈ N. To determine the expected reading of a generic

sensor, its minimum distance from the obstacles in E must be considered;

d̂ji = minp d̂ji|O=Op
(2.17)

where the term d̂ji|O=Op
denote the distance between sensor pose sji and the obstacle

Op. The complexity for the determination of the distances for the whole population of

samples is O(N ·M ·P ). This requires a lot of computations and constitutes the worst

bottleneck of the implementation. Each iteration of the aforementioned algorithm,

using floating point numbers, takes about 2.6s considering a population of 20 particles.

In the optimized implementation, shown in the next section, the same iteration takes

about 40ms.

2.9.2.1 Optimized algorithm

The efficiency improvements are based on three actions. The first one consists in using

the compass readings to impose the particle bearings. The feasibility of this action is

related to the precision shown by the compass, at least in our experiments. In this

case the computing time for p(zk|qk) is only 1.5 seconds, which is about one half of

the original one. Note that the particle number (equal to 20) has been kept the same.

Therefore it is used to span a 2-dimension space instead of a 3-dimensional one thus

improving the particle “density” which in turn provides a smaller error and a better

convergence of the algorithm as shown by the reduced number of effected re-samplings.

Actually, to get the same properties of the original algorithm, this number could be

reduced with a consequent improvement of the iteration speed.
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Furthermore, because the execution time is still unsuitable for real time use, an

integer representation has been adopted (26) for the numeric variables and a lookup

table Tcos has been used for the cosine operator. These actions make much faster the

rototranslation of walls. In fact, every wall is rotated by the same angle given by the

sum of the compass reading and the sensor relative angular position. It is worth of

note that the same approach is applied to shorten the computation of sji by rotating

the vector position of the sensor wrt the robot center of the angle.

In particular, being our scenario confined in few meters, the 32 bit length which is

native of our processor for integer variables makes it negligible the loss of precision due

to the quantization (27). As for the angles, the range from 0 to π/2 has been discretized

into 128 levels. The correspondent cosine range, [1, . . . , 0], has been represented by

the interval [1023, 0]. In this way a generic angle α is represented by an index l s.t.

Tcos[l]/1023 ≈ cos(α).

This representation (26) is sufficient to represent the cosine of every angle into

the range [−π, π]. Similarly, the sine representation reduces by a proper shifting in

the table. The same approach, obtaining the table Tfitness, has been used for the

computation of the fitness function in Eq. 2.14. Also the range of values which the

fitness function can assume has a maximum which is a power of two, thus reducing

the normalization operator to a simple shift. It has to be stressed that this approach,

making use of analytical representation for the environment, can be easily adapted to

gridmaps. The schematization of the algorithm can be viewed in Alg. 1.

2.9.3 Experimental results

In this section some experiments are presented to show the performance achieved by

SAETTA. The test bed is constituted by a rectangular arena which presents a recess

(see fig. 2.15). Several tests have been conducted: here we describe one of the most

significant. The ground truth about the Cartesian position of the robot has been logged

by an external webcam calibrated by the Matlab Vision Toolbox. In this experiment

the robot has traveled for about five minutes in the arena. Due to the stochastic nature

of the particle filter, beyond the onboard real time implementation described before,

the data collected by the robot were stored in a PC to perform also a statistical analysis

of the behavior wrt different initial conditions randomly chosen to start the population

of the particle filter. The comparison was performed between a standard particle filter
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Algorithm 1: Fitness value for the particles population

Data: dj , qi, sji , j = 1, . . .M, i = 1, . . . , N

let θ̂ be the compass measure

Result: fitness values ωi, i=1, . . . , N

for each sensor j=1, . . . , M do

get cos(−(θ̂ + βji)) and sin(−(θ̂ + βji)) from Tcos[l]

for each particle i = 1, . . . , N do

d̂ji ←∞
for each Ok ∈ E, k = 1, . . . , P do

sjiξo = R(−(θ̂ + βji))(ξ
k
o − pji), o = 1, 2, making use of Tcos[l]

if ( (sjiξ1x > 0 or sjiξ2x > 0) and (sign(sjiξ1y) 6= sign(sjiξ2y)) then
compute daux according to eq. 2.16

if daux < d̂ji then

d̂ji ← daux

end

end

end

ωji = g(dj , d̂ji) making use of Tfitness(⌊dj − d̂ji⌋)
end

end

for each particle i = 1, . . . , N do

wi =
1
M

∑M
j=1wji

end

(PF) and the fixed bearing algorithm (FBA). Due to the reliability of the compass in our

test-bed and the reduced dimensionality of the problem, the convergence of the FBA is

faster and the errors are smaller than the ones achieved by the PF. Table 2.3 has been

obtained running the algorithm on the same data set for 500 iterations (approximately

100 seconds) and starting from 50 different initial conditions. The error is relative to

the weighted mean of the best five particles, in terms of importance weight, over a total

population of 20. The FBA shows better performance than PF, both with respect to

the error statistics and to the number of re-samplings. Running the standard algorithm

with a bigger population, e.g. 50 particles, the results are, as expected, slightly better
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Figure 2.14: Magnetometer data compared with bearing obtained by odometry : solid

line is the odometry of the robot, dashed line represents magnetometer readings. The units

for y axis are degrees. The maximum displacement is about 10 degrees.). On x axis the

time, in seconds, is reported.

but with a computation time almost twice as high. Some data concerning about time

execution of the FBA algorithm with respect to the particle population are reported in

Table 2.6).

In Table 2.4, the results of the whole navigation are showed: also in this case the

FBA performs better with respect to the PF. The error trajectory for one trial is de-

scribed in Fig. 2.16: the curves represent the error obtained considering respectively

the weighted mean of the 5 best particles at each iteration and the mean of the total

population. The correspondent representation of the first curve is represented in fig.

2.15. The red dots represent the mentioned weighted average; the isolated ones repre-

sent initial estimates and correspond to the first part of the curve. After 400 iterations,

when the error starts to decrease, the best hypotheses track the robot trajectory. This

situation is represented by the dense set of hypotheses lying on the neighborhood of

the robot trajectory. Finally, a kidnapping test is showed. In this case, the data set

has been dropped from iterations 200 to 900. As detailed in Table 2.5, results show

how the FBA algorithm performs after about 500 iterations. In this section, we did not

consider the Extended Kalman Filter because, although effective, this estimator needs

to know the initial location of the robot within a certain precision. In our case, instead,

we run our experiments without having a prior knowledge about the initial state of the

robot.
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Figure 2.15: Algorithm evolution: the real robot trajectory is the dashed line; the hy-

potheses related to the estimate of the FBA are red dots. Arrows indicate the moving

direction of the robot along the trajectory. After some iterations (clustered isolated hy-

pothesis) during which the real pose is wrongly estimated, the algorithm correctly tracks

the robot. Both axes coordinates are expressed in cm

0 500 1000 1500
0

20

40

60

80

100

120

iterations

cm

Figure 2.16: Error convergence: dashed line represents the hypotheses obtained averaging

the whole population; solid line represents the hypotheses obtained averaging the best 5

particles. Units on the y axis are in cm, number of iterations are reported on x axis.

Table 2.3: Tests for 500 iterations

Alg. emean (cm) σ2
mean (cm2) # of resamplings

PF 48.25 1478 90

FBA 5.89 8.24 35
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2.10 Conclusions

In this work, a new small mobile platform has been presented. The main characteris-

tics of the robot are the contained costs and the flexibility. The latter one has been

showed both through hardware and software architecture which adapt easily to different

contexts, as stated by several examples.

Currently the core feature, hence the base software and the management of impor-

tant navigation sensors, has been developed. Future works will focus on the imple-

mentation of a software framework based on a very structured scheme: it is useful to

structure the base features of the robot upon which the various high level tasks will be

executed.

Other works will be done in the research algorithms direction: many open problems

related to the multi robot fields could be faced by this architecture. Furthermore

another very interesting aspect is the interaction between these platforms and other

systems, e.g. static sensor networks or human beings.

Table 2.4: Tests for 1400 iterations.

Alg. emean (cm) σ2
mean (cm2) # of resamplings

PF 9.86 111.0903 137

FBA 5.7831 13.8332 46
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Table 2.5: Results obtained in an experiment where kidnapping conditions are used.

emin (cm) σ2
min (cm2) emean(cm) σ2

mean (cm2)

6.1356 11.7727 6.84 11.83

Table 2.6: Computation time for one single iteration of the FBA with mean error algo-

rithm.

# of particles time (ms) emean (cm)

5 13 21.956

10 25 13.75

15 34 9.69

20 45 5.78

30 57 5.23

50 83 4.98

100 139 4.34
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Chapter 3

Formation control: the

encirclement case

In this Chapter, the encirclement problem is analyzed. This problem consists in the

design of control laws able to steer a set of robots around a target, which can be static

or dynamic, at constant speed. Furthermore the agents have to be equally spaced over

the circle they travel. In the further two techniques are proposed: both of them are

experimentally validated through extensive tests1.

3.1 Introduction

In this chapter a particular motion technique, the encirclement, is taken into account.

This task has gathered a big interest in the scientific community, mainly for two

reasons: first it deals with a series of technological issues related to communications,

motion estimation and control design; second, the encircling is a fundamental part in

missions like entrapment, escorting or patrolling.

The design of control laws has to carefully take into account both the kind of

communication and the quality of the available sensorial system.

The former is fundamental in order to characterize the communication graph, i.e.

the flux of the information spreading among robots. In fact the swarm can be concep-

tually represented by a graph, whose nodes are the robots and the edges represent the

communication channels.

1This is a joint work with the Robotics Lab, La Sapienza. The experiments were conducted with

the Khepera III robots of the Robotics Lab, La Sapienza
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The latter is important in order to determine the quality and the performances that

can be achieved by the control laws.

Furthermore, another sophistication is represented by the specific kinematic of the

vehicles.

In literature a large variety of works have been proposed. In the formation control,

one of the first approaches was based on the potential fields. In (28) a study about a

swarm of robot which has to traverse a space in which multiple obstacles raise is showed.

In particular a potential-based technique is exploited and considerations about the

ability of the swarm to keep cohesion are reported. In (29) a fleet is guided through the

interaction between agents and virtual points which deform the shape of the formation

to achieve some tasks and guarantee collision avoidance. In both previous works the

communication between agents was considered unlimited. The main drawback in the

use of potential fields is the coarse effectiveness in presence of local minima: when multi

robot systems are considered, the mixture of potential fields can lead to stall situations.

While these works take into account holonomic vehicles, in (30) a nonholonomic

constraint is introduced. A group of unicycles is steered at constant linear speed around

a common point. In (31) an extension with communication limitations is considered:

in this case the global information is propagated through local interactions. In both

previous works a Lyapunov control approach is used. The uniform spacing along the

circle needed by the encircling task is achieved using the so called (M,N) patterns,

for which a controller based on phase potentials is proposed. This controller requires

relative bearings that in real experiments are rather difficult to achieve. Furthermore

the controller is nested in the sense that if the circle has to be divided in M sectors,

moments of order M − 1 have to be calculated. Another issue is the constant linear

speed in the control law: this constrain does not fits with situations, e.g. proximity to

obstacles, where the agents can not keep constant the linear velocity.

In (32) a work strictly related to the previous one is presented. Although very

effective, the relative bearing and the distance estimation is done by a centralized

vision system mounted on the roof.

A fully centralized approach has been proposed in (33). A vision system provides

the configuration of the robots to a centralized controller that computes the trajectories.

This algorithm, derived from the control theory related to manipulators, computes the

trajectories considering a set of required tasks. Each of them has a different priority
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and is projected on the null space of the previous one. This controller requires a good

estimate of the pose of every robot with respect to a fixed frame in order to compute

the Jacobian of the formation.

In (34) a control for nonholonomic agents with directional sensors using a Lyapunov

approach based on the cartesian displacement between robots is presented . However

the control law requires the previous knowledge of the number of agents, therefore

possible faults of robots are not taken into account.

Some algorithms present control laws whose convergence is based on the topology of

the communication graph which describes the information flow between the agents (35).

In (36) a fixed topology algorithm, based on the concept of the α stability property, is

discussed to drive holonomic robots into a regular formation. Under the assumption

that the information graph is strongly connected, it can be demonstrated that agents

reach a common estimate (consensus) of such global quantities (37). Extensions to

consensus problem have been proposed in (38) and (39) where more robust second

order filters allow propagation of time varying quantities.

In (40) an artificial intelligence approach to the evader-pursuer problem is used.

Both pursuers and evaders use networks whose evolution is influenced by environmen-

tal measures. During the task execution, each agent has a particular role, possibly with

different characteristics, with respect to the rest of the formation. In (41) a real ex-

periment with an heterogeneous formation is performed. Using both aerial and ground

vehicles, probabilistic algorithms to entrap an evader are performed. During the task

execution, a grid map of the environment is used.

In (42) the effectiveness of a four-phase bio-inspired cooperative strategy for mul-

tiple pursuers to confine an evader in a bounded region is demonstrated. The authors

assume that all the players have unlimited sensing capabilities and that both instan-

taneous position and velocity of the evader are available to all pursuers. These strict

assumptions are removed in (43), in which an algorithm to solve the visibility-based

pursuit-evasion problem is presented for a single agent and suggested for a multi robot

case.

In all the previous works where an experimental framework is presented, the quanti-

ties required in order to execute the encircling task are gathered by a centralized system

which results to be more precise with respect to a distributed one: this simplification

hinders an effective analysis about the performances achieved by a specific technique.
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Furthermore, a centralized architecture is usually not robust to faults and a structured

environment is typically required. In a real context it is very important to design a

decentralized estimation system that uses the measures directly gathered by the agents

to estimate the quantities involved in the control law.

For the best of our knowledge, the work described in the following is innovative

because it takes into account a more realistic and minimal model of the measured

quantities, and achieve the encircling task in an more unstructured environment. Fur-

thermore the controller of each unit is independent from the orientation of the other

robots: relative bearings are very critic parameters to estimate and nonholonomic con-

straints are taken into account. Therefore, each robot has only to performs measures

within its own current local frame: this also avoids the use of compass and/or gyros

during the task execution.

The high degree of decentralization of the multi-robot system also guarantees a

high robustness to single agent faults. The proposed control laws are experimentally

validated by a set of real robots: each unit executes the encirclement after performing

an estimate of the formation configuration by the Mutual Localization Algorithm (44).

The cascade of the two tasks results to be effective also in case of faults.

In the following two approaches are proposed: the first relies on a planner/controller

scheme, while the second tries to avoid the trajectory generation using directly a feed-

back law.

3.2 Problem setting

Consider a multi robot system constituted by a set of N robots R = {A1, . . . ,AN}.
Denote with pi = (pxi p

y
i )

T ∈ R2 and θ ∈ S1 respectively the unknown position of a

representative point and the unknown orientation of Ai, both expressed in an fixed

frame F. Denote with pt = (pxt p
y
t )

T the unknown target position in F. Each Ai is

modeled as a unicycle, i.e.:

q̇i = (ṗTi θ̇i)
T =





cos θi 0
sin θi 0
0 1





(

vi
wi

)

(3.1)

where vi and wi are respectively the speed and the steering controls. Each Ai has an

attached moving frame Fi with origin pi and orientation θi. Denote with iqj = (ip
T
j

iθj)
T

the unknown configuration of Aj expressed in Fi.
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Furthermore suppose that each unit is equipped with a sensorial system, the Robot

detector, able to extract some informations about other robots, and a communication

system.

The robot detector is a sensor device that measures the relative position (not the

orientation) of other robots and of the target w.r.t. the detector, provided that they

fall in a perception set Dp that is rigidly attached to it. The shape of Dp is arbitrary,

and in particular it may contain blind zones. The relative position measures provided

by the robot detector are anonymous, i.e., they do not convey the specific identity of

the detected robot (hence, the target is detected as a robot).

The communication module can send/receive data to/from any other robot con-

tained in a communication set Dc such that Dp ⊆ Dc. For simplicity suppose that Dc

is a circle of radius Rc.

Associated to R, denote with G = (V,E) the communication graph whose nodes

vi ∈ V represent the robots, i.e. |V | = |R|, and E is the set of edges representing a

communication link between two robots. In the latter case a communication link eij

exists if and only if the distance between two robots Ai and Aj , represented by two

nodes vi and vj , is less than Rc. This supposition implies a bidirectional communication,

i.e. if Ai is able to communicate with Aj then also Aj is able to communicate with Ai.

The graph can be represented by the associated Laplacian matrix (37),

L =







−∑N
k=1,k 6=i eik if i = j

1 if i 6= j
0 otherwise

(3.2)

with L ∈ RN×N . This matrix has the following properties: it has at least one null

eigenvalue, which is the greatest one, whose associated eigenvector is 1 = {1, . . . , 1}T ∈
RN , i.e. it spans the subspace constituted by vectors having identical components.

These properties can be used effectively when a set of agents has to agree about

some information, e.g. the inter-distance between the agents. In fact, considering a

system having the following dynamics:

η̇(t) =
1

N
Lη(t) (3.3)

with η ∈ RN and t denoting the time, the state η converges to a vector whose compo-

nents are all equal to the mean of initial state components η(0). This system will be

useful in the description of the algorithms.
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Figure 3.1: Sequence of the feature extraction process, from left to right: the robot

with red circle acquires scan measures, the feature extraction extracts features which are

compliant with the robot shape, the output consisting of the set of extracted features is

furnished.

The encirclement problem is the problem of finding a control law ui(t), ∀i ∈ 1, . . . , N

such that every agent is able to rotate with constant velocity vi onto a circle centered at

a point pt and having a radius R. Furthermore, the agents have to distribute themselves

over the circle with a regular distribution, i.e. each agent has to be equally distant from

the preceding and consequent neighbor.

3.3 Mutual Localization

Mutual Localization algorithm is a technique which allows to estimate in a distributed

fashion the configuration, in metrical terms, of a team of mobile robots. In this chap-

ter a particular algorithm has been used in order to validate the effectiveness of the

controllers: the mutual localization algorithm with anonymous measures (45). This al-

gorithm was chosen because it easily adapts to a real context. In fact, differently from

previous works, it does not implies that measures gathered by one unit are related to

the identity of the other agents. Initially each robot is only able to extract features

which resemble to a robot shape (Figure3.1).

Upon this information and the one provided by the other robots (called observa-

tions), the algorithm onboard the robot furnishes an estimate of the formation config-

uration, i.e. the configuration of the team mates. This result is gathered by a two step

process: the first consists of a multi registration algorithm, called Multireg, which takes

in input the observations and furnishes a set of possible configurations. The output

of this phase is then injected into an estimator (a multi Extended Kalman Filter or a

particle one) which provides the best hypothesis. Because the detailed description is
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out of the purpose of this thesis, the reader is referred to (46), (47)

3.4 Orbital Controller

In this section a controller based on dynamic feedback linearization (48) is proposed.

In view of the encirclement objective, it is convenient to express the configuration of

the generic i-th robot in polar coordinates with respect to a reference frame centered

at the target, as in Fig. 3.2. In particular, these coordinates are the distance ρi of the

unicycle wheel center from the origin, the angle γi that the sagittal (forward) axis of

the robot forms with the line joining the unicycle wheel center to the origin, and the

angle φi between the same line and the x axis. In the following, φi is also called phase

of the robot). The kinematic model of the unicycle is then written as (49)

ρ̇i = −vi cos γi
γ̇i = (sin γi)/ρi − ωi

φ̇i = vi(sin γi)/ρi,

where vi and ωi are respectively the driving and steering velocity inputs.

It is assumed that the robot index i refers to the cyclic counterclockwise ordering

of the robots defined by their increasing phase angles (see Fig. 3.2). For the i-th

robot, denote by φ̄i the mean between the phases of the successor (robot i + 1) and

the predecessor (robot i − 1) of the robot. Correct execution of the encirclement task

requires that

lim
t→∞

ρi(t) = R lim
t→∞

φi(t) = φ̄i(t) lim
t→∞

φ̇i(t) = Ω ∀i, (3.4)

where R and Ω are respectively the encirclement radius and angular speed, which must

be the same for all robots.

The architecture of the system used for the algorithm execution is depicted in

Fig. 3.5. The initial configuration (ρ0i , γ
0
i , φ

0
i ), provided by the mutual localization

module1 is used to plan a reference trajectory for the robot. In particular, such tra-

jectory is specified by an exosystem that assigns reference evolutions ρri , φr
i to the

1This assumes that the configuration estimate is immediately reliable. In practice, it may be

necessary to perform a preliminary motion of the multi-robot system aimed at improving the accuracy

of the estimate. To this end, the anti-symmetry control law proposed in (45) may be used.
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robot

target

robot 

robot

Figure 3.2: Polar coordinates for the i-th robot and the cyclic ordering defined by phases.

coordinates ρi, φi. In fact, it can be demonstrated that these two are flat outputs (50)

for the unicycle in polar coordinates, i.e., once an evolution is assigned to them it is

possible to compute algebraically the corresponding evolution γri of the remaining vari-

able γi as well as the reference inputs vri , ω
r
i . The reference outputs ρri , φ

r
i are fed to

a feedback controller based on Dynamic Feedback Linearization (DFL), that generates

the control inputs vi, ωi so as to guarantee global exponential tracking of the reference

trajectory (48). It should be noted that ρri , φ
r
i are initialized at ρ0i , γ

0
i , so that the

transient is extremely fast. During its operation, the DFL tracker uses the current

estimate of the target-frame robot configuration (ρi, γi, φi) computed by the mutual

localization module.

In the following, we consider three slightly different versions of the basic encir-

clement task entailed by (3.4), and give the appropriate form of the trajectory planner

(exosystem). In all versions, the encirclement radius R is assigned in advance. The

reference radius ρri (t) is therefore always generated by

ρ̇ri = Kρ(R− ρri ) ρri (0) = ρ0i , (3.5)

where Kρ is a positive gain. As a consequence, ρri (t) exponentially converges to R for

any initial condition. Note that ρri (t) does not depend on the reference radius of any
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other robot.

The three versions of the encirclement task differ on the procedure used by the

robots to agree on the common value of the angular speed Ω in (3.4). They are analyzed

in detail below.

3.4.0.1 Encirclement – Version 1.

In the first version, the angular speed Ω is also specified in advance. The reference

phase φr
i (t) for the i-th robot is generated by

φ̇r
i = Ω+Kφ(φ̄

r
i − φr

i ) φr
i (0) = φ0

i , (3.6)

where Kφ is a positive gain and φ̄r
i is the mean between the reference phases of the

predecessor and the successor (in accordance with the counterclockwise cyclical ordering

of the reference phases). We have the following result (the proofs of all the propositions

can be found in (51)).

Proposition 1 The flow of (3.5),(3.6) yields exponential convergence of ρri to R, of

φr
i to φ̄r

i , and of φ̇r
i to Ω, for any assigned R, Ω and any initial ρ0i , φ

0
i .

An example of reference robot trajectories corresponding to the flow of (3.5),(3.6)

is shown in Fig. 3.3. The robots approach the circle in such a way that the ‘insertion

points’ are almost uniformly spaced, and actually achieve the required formation very

quickly.

3.4.0.2 Encirclement – Version 2.

In the second version, the robots are assigned an escape window s, i.e., the time interval

in which a point on the circle remains unvisited at the steady state corresponding to the

asymptotic conditions (3.4). Being s = 2π/nΩ, where N is the number of robots, the

robots can in principle easily compute the required value of Ω as Ω = 2π/ns; however,

since N is not known a priori, an estimate n̂ of this number is required.

Assume that each robot instantaneously computes its own estimate as n̂i = 2π/∆r
i ,

where 2∆r
i is the reference phase difference between the successor and the predecessor.

The required angular speed for the robot is then computed as Ωi = 2π/n̂is = ∆r
i /s.
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Figure 3.3: Reference trajectories corresponding to the flow of (3.5),(3.6) for a generic

initial configuration of a 6-robot system, with a target located at the origin. The config-

uration of each reference robot along its trajectory is explicitly shown at six equispaced

time instants, identified by 1, . . . , 6.

Using this expression for Ω in (3.6) we obtain the following exosystem for the reference

phase:

φ̇r
i = ∆r

i /s+Kφ(φ̄
r
i − φr

i ) φr
i (0) = φ0

i . (3.7)

Proposition 2 The flow of (3.5),(3.7) yields exponential convergence of ρri to R, of

φr
i to φ̄r

i , and of φ̇r
i to 2π/ns, for any assigned R, s and any initial ρ0i , φ

0
i .

3.4.0.3 Encirclement – Version 3.

In the third version, only the radius R is assigned, and the robots must autonomously

agree on a common value of the angular speed Ω. The reference phase exosystem for

the i-th robot is

Ω̇r
i = KΩ(φ̄

r
i − φr

i ) Ωr
i (0) = 0 (3.8)

φ̇r
i = Ωr

i +Kφ(φ̄
r
i − φr

i ) + ξi φr
i (0) = φ0

i (3.9)
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where ξi is a constant forcing term. Denote by ξ̄ the average of the forcing terms ξi

over the multi-robot system.

Proposition 3 The flow of (3.5), (3.8–3.9) yields exponential convergence of ρri to R,

of φr
i to φ̄r

i , and of φ̇r
i to ξ̄, for any assigned R and any initial ρ0i , φ

0
i .

An interesting feature of this third scheme is that the common frequency of the

phase reference trajectories can be regulated by acting on a single robot; to this end,

it is sufficient to let ξi = 0 for all the robots but one.

To allow the implementation of (3.6), (3.7), or (3.8–3.9) all the robots must broad-

cast their current reference phase through the communication system. However, each

robot computes its reference trajectory and control inputs autonomously on the basis

of local information, i.e., its own configuration and data coming from the neighbors.

3.5 Tangential Controller

In this section the tangential controller, based on weaker assumptions about the in-

formation gathered by each agent with respect to the orbital one, is presented. In

particular each robot is not asked to achieve the phase of other robots. Only inter-

distances between units and polar coordinates of the target with respect to the frame

of each robot are needed. This control has been demonstrated to asymptotically solve

the encirclement problem only with agents starting outside the circle, while in the other

case only practical effectiveness by experimental results is showed.

The proposed control law can be conceptually split into two orthogonal phases. The

former steers the robot over the circle rounding at constant velocity vd, while the latter

allows a uniform distribution by the knowledge of local information.

For the moment, the attention will be focused only on the case where agents start

outside the circle (see Fig. 3.4). Suppose, without loss of generality, that the target is

centered at the origin. Thus it is possible to define the error vector as the following:

ei = drefi (cos θrefi sin θrefi )T (3.10)

where:

drefi =
√

ρ2i −R2 (3.11)
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τ
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Figure 3.4: Representation of the problem setting related to the tangential controller.

θrefi = φi + τi (3.12)

with φi = −arctan 2(yi, xi) and τi = arctan

(

R

d
ref
i

)

The control that steers each agent rounding at constant linear speed vd around pt,

i.e. asymptotically both ei → 0 and θi → θrefi , is:

vi = Kv · |ei|+ vf (3.13)

ωi = Kω(θ
ref
i − θi) + θ̇refi (3.14)

where vf > 0 is a feedforward term and θ̇refi is a nonlinear compensation taking

into account the nonlinearities due to the variation of θrefi .

The meaning of vf will be clarified into a while. For the moment consider the

rotational dynamics. The rotational error eθ is described by the following dynamics.

ėθ = θ̇refi − θ̇ = −Keθ (3.15)

Consider the dynamic of θrefi :

θ̇refi = φ̇i − τ̇i =
vi
ρ
(sin(φi − θi) + tan τ cos(φi − θi)) (3.16)
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with:

φ̇i = −
d

dt
arctan 2(pyi , p

x
i )

= − 1

1 + (
p
y
i

pxi
)2

ṗyi p
x
i − ṗxi p

y
i

(pxi )
2

= − 1

ρ2
[ ρ cos(φi) vi sin(θi)− ρ sin(φi) vi cos(θi)]

= − 1

ρ2
[ρvi sin(φi − θi)]

= −1

ρ
[vi sin(θi − φi)]

=
1

ρ
[vi sin(φi − θi)]

and:

τ̇ =
d

dt
arctan 2(R, drefi ) =

=
1

1 + R2

|ei|2

(

− R

|ei|2
)(

d

dt
drefi

)

= −R

ρ2
pT ṗ

drefi

= −R

ρ2
ρ(cos(φ− π) sin(φ− π))vi(cos(θi) sin(θi))

T

drefi

= −R

ρ2
ρ(− cos(φ) − sin(φ))vi(cos(θi) sin(θi))

T

drefi

=
vi
ρ

R

drefi

cos(φi − θi)

=
vi
ρ
tan τ cos(φi − θi)

Summarizing the dynamic is:

θ̇refi =
vi
ρ
(sin(φi − θi) + tan τ cos(φi − θi))
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this term reveals a problematic situation when the robot is in the proximity of the

circle but with a wrong bearing: in this case τ →∞ but cos(φ−θ) 6= 0. This drawback

can be skipped by acting a modulation over vf . For hypothesis vf is a signal greater or

equal than zero. In order to achieve the task, it is possible to module vf in a manner

such that input controls remain bounded. In the case where the robot is next to the

circle but with a wrong bearing, then τ → π
2 , |e| → 0 and ρ → R; consequently the

feedforward θ̇refi becomes:

θ̇refi =
vi
ρ
(sin(φ− θ) + tan τ cos(φ− θ)) =

=
Kv|ei|+ vf

ρ
(sin(φ− θ) + tan τ cos(φ− θ)) =

=
0 + vf

ρ
(sin(φ− θ) + tan τ cos(φ− θ)) =

=
vf
R
(sin(φ− θ) + tan τ cos(φ− θ)) =

=
vf
R

sin(φ− θ) +
vf
R

tan τ cos(φ− θ)) =

= ǫ+
vf
R

tan τ cos(φ− θ))

where ǫ can be neglected because it is bounded. In order to keep the control ω

bounded, it is possible to apply the following saturation:

vf
R

tan τ cos(φ− θ)) < M ⇒

⇒ vf <
M R

tan τ cos(φ− θ)

with M > 0 constant. Applying this rule, the rotational control is bounded and

consequently the system respects the BIBO (bounded input - bounded output) property.

This allows to state that the rotational error goes to zero at exponential rate.

This saturation can also be interpreted like an initial limitation on the input in

order to steer the bearing of the robot in a correct direction. Formally, the term vf has

the following form:

vf = min(vd,
M R

tan τ cos(φ− θ)
)

50



3.5 Tangential Controller

Whenever a correct task execution is asymptotically achieved, the variation of the

angle φ tends to be constant, φ̇ → vd
R

while γ̇ → 0. Therefore asymptotically |e| → 0

and θi → φi + τi. This can be demonstrated by the following Lyapunov candidate:

V =
1

2
(e2i + e2θ)

this is a radially unbounded function with:

V̇ = eTi ėi + eθėθ =

drefi (cos(θrefi ) sin(θrefi ))
(

d
dt
|ei|( cos(θrefi ) sin(θrefi ) )T+

drefi θ̇refi ( − sin(θrefi ) cos(θrefi )T )
)

−Kθe
2
θ

= drefi · (pT ṗ)/|ei|+ 0−Kθe
2
θ

= ρ( cos(φ− π) sin(φ− π)) · vi(cos θi sin θi)
T −Kθe

2
θ

= ρ( − cos(φ)− sin(φ)) · vi(cos θi sin θi)
T −Kθe

2
θ

= −ρ( cos(φ) sin(φ)) · vi(cos θi sin θi)
T −Kθe

2
θ

= −ρ vi cos(φi − θi)−Kθe
2
θ

= −ρ (Kv|ei|+ vf ) cos(φi − θi)−Kθe
2
θ

(3.17)

After a certain instant the rotational error will be such that the V̇ will be perma-

nently negative definite. The only cases where V̇ = 0 is when cos(φ − θ) = 0. This

implies that τ = π
2 ⇒ |e| → 0, θ → θrefi and vf = vd. The invariant set will be achieved

permanently and the dynamic of the robot will be:

vi = vd wi = vd/R

as desired. The regular distribution is obtained by a further modification over the

vf signal. In particular a consensus technique acting on the neighborhood of Ai can be

used. The consensus component vc is defined as

vc = max(0,Kc(dij − dik)) (3.18)

where:

dij = |ipi+1|, (3.19)

dik = |ipi−1|, (3.20)

where dij and dik are respectively the distance of the robot Ai from the subsequent

and previous agent with respect to the aforementioned notation.
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This perturbation is a feedback control that acts on the invariant set of the previous

controller. Asymptotically it will lead to dij = dik, ∀i, j, k ∈ 1, . . . , N . In fact, because

robots asymptotically arrive to the circumference, the final neighborhood of every robot

is constituted by a front and a rear neighbor, i.e. the multi agent topology, in metrical

terms, can be represented by a ring. The consensus interaction, described by Equation

3.2, will guarantee the regular distribution of the formation:

v′f = min(vf + vc,
M R

tan τ cos(φ− θ)
)

therefore, asymptotically the robots converge to a circle with a linear velocity vf

(vc asymptotically vanishes) and with a rotational speed w′
f =

v′
f

R
.

In the case robots start inside the circle, a saturation law is proposed. In particular

the controller takes the following form:

vi = vf (3.21)

ωi = Kω(φi +
π

2
− θi) + φ̇i +K ′(R− ρi) (3.22)

it corresponds to a control that steers the robot along the circle having a radius ρi

(smaller than R). Asymptotically, the perturbation proportional to (R− ρi) steers the

robot on the circle of radius R. It is interesting that this control law keeps continuity

with respect to the transition towards the other side of the circle. As a consequence, the

switching Lyapunov theorem could be used in order to determine stability properties

(52). Currently only experimental effectiveness is showed.

A particular consideration about this formulation is needed: the coupling of the

term τ with the cosine of the angular displacement has to be carefully managed in

order to avoid numerical instability issues. In practical case, a saturation over the

term τ can be used. During experiments, this device has been demonstrated to be

effective although it can lead to a transient in which a switching between the external

and internal controller is present due to the approximation induced on τ term

3.6 Conditions for Task Achievement

The proposed methods will achieve the encirclement task provided that the robots can

localize the target and each other. In this section, we briefly discuss the conditions
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under which these two requirements are actually satisfied. Recall that the mutual lo-

calization module used in our encirclement scheme is effective within weakly connected

components (simply called subnets in the following) of the robot detection graph, pro-

vided that Dp ⊆ Dc and multi-hop communication is used (44).

The first condition may be derived from the analysis of the desired steady state of

the system, in which the N robots are uniformly distributed along a circle of radius R.

In this formation, the whole detection graph must be weakly connected, i.e., a single

subnet must exist. In view of the circle topology, this property is guaranteed if each

robot can detect the target and the successor robot with respect to the cyclic phase

ordering (that is actually the predecessor if Ω is positive). For example, this is true if

Dp is a frontal circular sector with central angle at least π+ ǫ wide, with ǫ any positive

number, and radius at least max{R, 2R sinπ/n}.
The second condition is instead obtained considering the beginning of the encir-

clement task. To localize the target at t = 0, each subnet of the detection graph must

contain at least one robot that detects the target. From that moment on, all the robots

will get closer to the target in view of the reference evolution (3.5) for ρ, and therefore

target detection is guaranteed throughout the task (this is easy to show if Dp has the

shape discussed above). In particular, all the subnets will merge into a single connected

component that includes the whole graph.

Note that the first condition (on Dp) concerns the robot detector, whereas the

second (on the detection graph at t = 0) restricts the admissible initial arrangements

of the robots with respect to the target. Taken together, they are a sufficient condition

for task achievement — less demanding requirements may be enforced (in particular,

on the shape of Dp) but their efficacy would be more difficult to prove.

3.7 Experiments

We have experimentally validated our encirclement scheme with a system of five Khep-

era III robots. Each robot is equipped with a wi-fi card and a Hukuyo URG-04LX

laser sensor with an angular range of 240◦ and a linear range artificially limited to

2 m. The robot detector is a simple feature extraction algorithm that inspects the laser

scan searching for the indentations made by the vertical cardboard squares mounted

atop each robot (in the blind zone of the range finder). Since each square can give
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Figure 3.5: The structure of the encirclement system that runs on thei-th robot.

indentations of the laser scan that range from 1 to 12cm, depending on the relative

orientation between the measuring and the measured robot, the detector cannot dis-

tinguish among robots, the target and obstacles whose size is in the same range. The

encirclement scheme has been implemented using the MIP architecture1 which provides

a multi-tasking estimation/control framework, a realistic simulation environment, and

allows direct porting for execution on real robots.

The mutual localization module implements the method proposed by (44), to which

the reader is referred for a detailed description. The inputs to this component are (1)

the anonymous relative position measures (which include the target, if this is contained

in Dp) coming from the robot detector (2) an estimate of the configuration of the robot

in its own frame, computed by any self-localization (position tracking) algorithm (3) the

same information (i.e., anonymous relative position measures and robot configuration

in its own fixed frame) obtained via communication from each neighbor. A multiple

registration algorithm followed by a multi-EKF are used to process these data and com-

pute an accurate estimate of the configuration of each robot in a common fixed frame.

While a cooperating target is directly identified and localized with this procedure, it is

interesting to note that a non-cooperating target can still be singled out by the mutual

localization module as the only ‘robot-like’ object that does not communicate its data.

From the mutual localization results, each robot can directly derive an estimate of

1http://www.dis.uniroma1.it/∼labrob/software/MIP/index.html.
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its configuration (position and orientation) with respect to a common target-centered

frame.

The encirclement control module generates the control inputs to the robot using

the target-centered configuration of the robot computed by the mutual localizer as well

as information coming from the neighbor robots.

3.7.1 Experimental results - Orbital controller

A typical experimental result is summarized in Fig. 3.6. Here we are considering ver-

sion 1 of the encirclement task, and hence (3.5–3.6) as a trajectory planner, with

R = 0.5 m and Ω = 0.06 rad/s. One of the robot is used as a stationary (cooperating)

target. At the start (snapshot 1), only three robots are active. At t1 = 200 s, with

the three robots rotating around the target in a regular formation, another robot is

added (snapshot 2); the four robots then achieve a regular formation (snapshot 3). At

t2 = 310 s one of the robot is kidnapped and powered off (snapshot 4). The three

remaining robots rearrange themselves in a regular formation (snapshot 5). Finally, at

t4 = 600 s another robot is kidnapped and the formation becomes a 1 m wide dipole.

The evolution of the experiment is also illustrated by Fig. 3.7, that shows the plots

of the distances between consecutive robots, the distances between each robot and the

target, and the robot angular speeds. The fact that during each phase the correct reg-

ular formation is promptly reached shows the reactivity of the proposed encirclement

scheme.

We have also run experiments with moving targets, obtaining satisfactory results as

long as the speed of the target remains at least one order of magnitude smaller than that

of the robots. One such experiment is shown in Fig. 3.8. Video clips of the experiments

are available at http://www.dis.uniroma1.it/labrob/research/encirclement.html.

3.7.2 Experimental results - Tangential controller

In this section an experiment considering the tangential controller is reported. In par-

ticular the situation where one or more units are suddenly moved away, i.e. kidnapped,

from their position is analyzed1. Also some considerations about the experimental

1Other videos and data are available at http://www.dis.uniroma1.it/~labrob/research/entrapment.html.
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3. FORMATION CONTROL: THE ENCIRCLEMENT CASE

Figure 3.6: Encirclement of a stationary target (solid red circle).

setup responsiveness is detailed. The circle radius is set to R = 0.4 m and the esti-

mated distances between each agent and the target are showed in Fig. 3.9. The 3

estimated distances between A1 and each other robot are showed in Fig. 3.10, where

the 3 horizontal dotted lines represent the 3 correct inter-robot distances for a formation

of 4, 3 and 2 robots, in fact d1 corresponds to
√
2R, d2 is

√
3R while d3 is equal to 2R.

Relevant phases of the experiment are reported in Fig. 3.11. At the beginning the 4

robots start 2 m away from the target and move to encircle it. At instant t0 the desired

4-robot encircling is reached, at instant t1 A4 is manually kidnapped and kept away, at

instant t2 the 3 remaining robots rearrange and reach a new equilibrium; at instant t3

also A3 is manually kidnapped but immediately released 2 m away; in the meanwhile

the two remaining robots reach the equilibrium on a 2-robot formation; at t4, after A3

has reached the other two robots, a new equilibrium for 3-robot team is reached and

A4 is reinserted 2 m away; finally at t5 a new equilibrium on a 4-robot formation is

reached again. All these kidnappings, that can also be considered as robots failures,

show fault tolerant capabilities of the mutual localization. Note that the estimator of

each robot also provides a steady relative measure related to a robot temporarily or

definitely hidden by means of occlusions as well as the relative measure of a robot on

the back which is invisible to the object detector due to the limited cone of the laser.

Subsequently, the tangential controller provides an effective execution of the task.
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Figure 3.7: Orbital controller experiment: distances between consecutive robots (top),

distances between each robot and the target (center), angular speeds of the robots (bot-

tom).
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Figure 3.8: Encirclement of a moving target (solid red circle).

Since we do not use a global localization system we do not have a ground truth

localization to compare with our mutual localization in order to understand how the

performances of the mutual localization influence the performances of the controller.

However, since the implementation of the mutual localization algorithm and the com-

munication protocol are exactly the same in simulation and in a real experiment, a

simulation reproducing the events sequence is perfectly suitable for this aim. The re-

sults of this simulation are showed in Fig. 3.12, where the real distances are compared

with the estimated ones, and in Fig.3.13, where the estimation error is plotted. The

unique relevant aspect to note is the small delay of the estimated quantity, due in most

part to the communication delay between the agents.

3.8 Conclusions

In this chapter two techniques for the encirclement problem have been presented. The

proposed schemes integrate a mutual localization module based on the developments
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3.8 Conclusions

time (s)

m

Figure 3.9: Robots to target distances: before t1, robots reach the circle. Then at t1 the

robot A4 is kidnapped: it is physically blocked from t2 to t4. Also A3 is moved away at

t3. At the end, the right configuration is obtained.

time (s)

m

Figure 3.10: Robot1’s estimate: before t1 the four agents reach the correct 4-formation.

At t1 A4 is kidnapped and the remaining agent are
√
3R far to each other. At t2 also A3is

kidnapped and consequently a 2-formation is established. Finally, reinserting both A4 at

t4 and A3 at t5, the 4-formation is newly achieved.
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Figure 3.11: Snapshot of an experiment: a) starting formation: in the top of the figure

can be seen the target b) three robots in the encircling’s transient ; c) four robots encircling;

d) kidnapping of a robot; e) three robots formation restored after kidnapping; f) hiding of

a robot.
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Figure 3.12: Real (continuous lines) and estimated (dashed lines) distances between A1

and A2, A3, A4. The estimates follow the real values with a small delay.
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Figure 3.13: Error in the estimate of the distances between A1 and A2, A3, A4. The

errors are always sufficiently limited except when a robot is kidnapped, due to the fast

displacement and the estimate delay.
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in (44).

Concerning about the Orbital controller the theoretical proof of its effectiveness is

supported by extensive experimental results.

Future work will be aimed at:

• proving that the reference trajectories never meet, so as to provide grounds for

identifying a collision avoidance condition for robots of finite size;

• performing a theoretical analysys of a trajectory generation scheme based on

continuous replanning, in which the actual robot coordinates (estimated through

the mutual localization module) are used in place of their reference value (we

already implemented such a variant with encouraging results);

• integrating a consensus mechanism among the robots on the results of the mutual

localization, and especially the configuration of the target.

Concerning the tangential controller, only the part for robots coming from the

external part of the circle has been proven. Improvements regarding the inner part

will be considered as well as the effect of saturation blocks. The latter topic would be

useful in order to use the linear input to avoid collisions.
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Chapter 4

Data fusion with the Transferable

Belief Model approach

In this Chapter a multi agent approach to the Transferable Belief Model is proposed.

This framework shows an effective representation of the ignorance and contradiction

among sources about phenomena which have to be estimated. The technique has been

validated through extensive experiments concerning topological map building

4.1 Introduction

Data fusion is a research area that is growing rapidly due to the fact that it provides

means for combining pieces of information coming from different sources/sensors. As

a result, an enhanced overall system performance, i.e., improved decision making, in-

creased detection capabilities, diminished number of false alarms, improved reliability,

with respect to separate sensors/sources can be achieved (53).

Indeed, data fusion techniques play an important role in the context of multi-agent

systems where information coming from different sources must be aggregated in order

to provide a meaningful description of the surrounding environment. The majority

of works available in the literature is based on the Bayesian framework, where the

aggregation is achieved by applying the Bayes rule. The most representative example

is the Kalman Filter, where noisy data are assumed to be described by means of a

gaussian probability distribution (54). Several works have been proposed to deal with

the multi-agent data fusion in a Bayesian framework (55, 56). In this context, the
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network topology of the multi-agent system is considered as a Bayesian network over

which a message passing algorithm to perform inference on a graphical model is devised.

The Theory of Evidence (DS) introduced by Arthur P. Dempster and Glenn Shafer

represents a valid alternative to the Bayesian framework (57). The main difference

concerns the way in which the ignorance is handled: in the probabilistic framework the

uncertainty is treated by splitting the amount of credibility among plausible events,

in the DS framework a belief is assigned to the set describing all the plausible hy-

potheses without supporting any in particular. Depending on the specific application,

one framework can be more adequate than the other (58). This framework was fur-

ther extended by the Transferable Belief Model (TBM) introduced by Philippe Smets

(59). In particular, TBM introduces the idea of open world assumption in the DS

framework. This implies the set of hypotheses not to be exhaustive, therefore data

can take to contradiction. Indeed, the concept of contradiction is a powerful tool to

detect cases where information fusion has to be considered unreliable, case that is not

considered in the Bayesian technique. The main limitation of this framework is the

computational complexity, which grows exponentially with respect to the number of

events, as their supersets have to be taken into account. To overcome this drawback,

several approximation technique have been proposed (60), (61), (62). However, in

case a minimal number of events is enough to model the problem, the TBM approach

has been effectively used, e.g, in diagnostic applications (63) and target identification

(64). Other methods, basing on the aforementioned approximation techniques, concern

vehicle localization (65), and water treatment (66).

In this chapter the data aggregation problem for a multi-agent system is investi-

gated. In the following dissertation, agents are assumed to be independent reliable

sources which collect data collaborating to reach a common knowledge. A protocol

for distributed data aggregation which is proved to converge to the basic belief assign-

ment (BBA) given by a centralized aggregation based on the Transferable Belief Model

(TBM) conjunctive rule is provided. The approach of the TBM to multi robot system is

finally used in the topological map building: the cooperation between SAETTA robots

allows the estimation of patterns which could not be identified by the single agent. The

proposed technique fits properly the capabilities of the SAETTA robots: within the

proposed framework, i.e. a limited number of hypotheses, our techniques is suitable for

small and cheap robots like SAETTA.
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4.2 Transferable belief model

4.2 Transferable belief model

The Theory of Evidence is a formalism which can be used for modeling uncertainty

instead of classical probability. Theory of Evidence embraces the familiar idea of using

a number between zero and one to indicate the degree of belief for a proposition on the

basis of the available evidence.

Let Ω = {ω1, . . . , ωn} be a finite set of possible values of a variable ω, where the

elements ωi are assumed to be mutually exclusive and exhaustive. Let Γ(Ω) , 2Ω =

{γ1, . . . , γ|Γ|} be the power set associated to it. In this framework, the interest is fo-

cused in quantifying the belief of propositions of the form: “the true value of ω is in

γ”, with γ ∈ Γ. The propositions of interest are therefore in one-to-one correspondence

with the subset Ω, and the set of all propositions of interest corresponds to the elements

of Γ. The set Ω so defined, is referred as frame of discernments.

Definition 1 (BBA) A function m : 2Ω → [0, 1] is called a basic belief assignment if

m(∅) = 0 (4.1)
∑

γa∈Γ

m(γa) = 1 (4.2)

Thus for γa ∈ Γ, m(γa) is the part of belief that supports exactly γa, i.e. the fact

that the true value of ω is in γa, but due to the lack of further information, does not

support any strict subset of γa. The first condition reflects the fact that no belief should

be committed to ∅ and the second condition reflects that the total belief has measure

one.

Notice that m(γa) and m(γb) can be both equal to zero even if m(γa∪γb) 6= 0. Further,

m(·) is not monotone under inclusion, i.e. γa ⊂ γb does not imply m(γa) < m(γb).

Notice that the BBA represents the atomic information in the theory of evidence.

Definition 2 A function Bel : 2Ω → [0, 1] is called belief function over Ω if it satisfies

the following relationship:

Bel(γa) =
∑

γb⊆γa

m(γb) (4.3)
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this function quantifies the total specific amount of belief supporting the event, and it

is often taken into account in the decision making process after data aggregation has

been performed (59).

The main criticism to Shafer formulation concerns the application of the Dempster-

Shafer (DS) combination rule. In fact, whenever there is a strong conflict between

sources to be combined, the straightforward application of DS combination rule can

produce a result in which certainty is assigned to the minority opinion (67).

A more refined approach is based on the Transferable Belief Model (TBM) proposed

by Philips Smets in (68). The TBM theory, like the Shafer formulation, relies on the

concept of basic belief assignment function, but removes the assumption of m(∅) = 0.

This allows to omit the normalization constant in the Dempster’s rule of combination

and conditioning.

Definition 3 (Smets - operator ⊗)

In the TBM, the combination rule is, therefore, defined in this way:

sij , si ⊗ sj =
{

(mi ⊗mj)(γa); γa ∈ Γ
}

(4.4)

where:

mij , (mi ⊗mj)(γa) =
∑

γb, γc

γb ∩ γc = γa

mi(γb)mj(γc). (4.5)

Note that, for sake of clarity the following notationmi(γa)⊗mj(γa) , (mi ⊗mj)(γa)

will be used indiscriminately in the further.

The fact that m(∅) > 0 can be explained in two ways: the open world assumption

and the quantified conflict. The open world assumption reflects the idea that Ω might

not be exhaustive, i.e. it might not contain all the possibilities. Under this interpreta-

tion, being ∅ the complement of Ω, the mass m(∅) > 0 represent the modeling errors,

that is the fact that the truth might not be contained in Ω. The second interpretation

of m(∅) > 0 is that there is some underlying conflict between the sources that are com-

bined in order to produce the BBA m. Hence, the mass assigned to m(∅) represents

the degree of conflict.
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4.3 A Transferable Belief model applied on formation pattern selection

In particular, it can be computed as follows:

mij(∅) = 1−
∑

γa 6= ∅

γa ∈ Γ

mij(γa) (4.6)

4.3 A Transferable Belief model applied on formation pat-

tern selection

In this section an algorithm to select a geometric shape into which a set of robots

have to arrange is proposed. This technique uses the classical TBM: although being

distributed, the application shows several limitations (see Section 4.3) which will be

removed in the following Sections.

4.3.1 Problem setting

Consider a set of N holonomic robots R = {Ai, i = 1 . . . N}, each of which is able to

communicate within a communication disk whose radius is Cmax and to sense within a

sensing disk whose radius is Dmax, where typically Cmax ≥ Dmax. Suppose that each

robot is equipped with a sensorial system si that is composed by an array of sonar range

finders. Denote with formation pattern a set of virtual robots V = {vi, i = 1, . . . , N}.
Furthermore, some patterns are supplied: they can be grouped in a single set P defined

as P = {pk, k = 1, . . . , S}, S ∈ N. Furthermore, suppose that the set R explores an

environment which can be approximated by the union of atomic environmental patterns.

These patterns can be detailed in corridor, T-junction, open-space and corner. Call the

set of these patterns Ω. The aim of this algorithm is to describe a technique to arrange

the set R into the best formation pattern with respect to proper performance indices,

after classifying the surrounding environment.

4.3.2 Environmental categorization

The fusion process is performed after that each robot creates its own basic mass as-

signment using the map building technique described in (69). In each iteration of the

algorithm, every robot provides a BBA Mi = {mi(p), ∀p ∈ 2Ω}. The fusion information
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a) b)

Oi

iOj

iOj

Dmax

Φi

Figure 4.1: a)Frames on the robot: in black Oi is the robot frame while iOj is the

orientation of the j-th scan b) Sonar parameters with respect to the frame attached to the

j-th scan.

is done using the Eq. 4.5:

mij(z) =
∑

t,w:z=t∩w

mi(t)mj(w), ∀z ∈ Γ. (4.7)

This approach show several limitations related to the information exchange among the
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d) e)

Figure 4.2: Formation patterns composed by four elements: a) Column b) Row c) Slash

d) Delta e) Circle.

agents. The framework requires to adopt a rigid information passing scheme: the flux

of information can not be modified and furthermore synchronization is required. Syn-

chronization is required to overcome situations where an an agent, during the process,

elaborates a new set of masses from a new observation: this new set of data can not

be instantaneously inserted in the estimate. This work has been briefly explained in

the thesis in order to describe which are the possible limitations in using a standard
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4.3 A Transferable Belief model applied on formation pattern selection

formulation related to the possibility theory. The details about the implementation can

be found in (4).In the further sections, these limitations will be removed.

4.3.3 Simulations

In this section, simulations about the proposed environment recognition and formation

selection algorithms are presented. Algorithms were run only in simulated environment

under the Player/Stage framework (20).

Figure 4.3: Environment map used in simulations.

In this scenario robots are asked to pass through the environment depicted in Figure

4.3. During the execution, the robots optimize some performance indices: for example

they have to optimize the coverage, i.e. they have to cover as space as they can, or the

crossing speed, i.e. the ability of the formation to pass as quick as possible through

certain environment.

In the first simulation, whose salient moments are depicted in Figures 4.4a-d, the

robots pass through the environment optimizing the coverage and the quickness of

passing. It can be seen that the crossing of corridors brings the set of robots to arrange

in a column formation because it is the only feasible solution (Fig. 4.4-a and Fig.

4.4-c). When the platoon is instead in a larger section, robots move towards a row

formation (Figure 4.4-b,d). The estimation of the environment over the time is depicted

in Figure 4.5: on the x-axis there is the number of iterations while the y-axis shows

the mass values over the time. It is worth to mention that here only atomic elements

are figured. In particular the green line represent the mass associated to the corridor,

the blue dotted line is the one associated with the open space and finally the red one is

related to the T-junction. In accordance with the results, the categorization changing

is evident.

As mentioned before, the fusion process constrains the communication protocol:

each robot collects the masses of its neighbors taking care that no cycles are formed.
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a)

b)

c)

d)

e)

Figure 4.4: a) - d) Arranged formation with α = [0.4, 0.1, 0.4, 0.1]T e) formation with

α = [0.25, 0.4, 0.25, 0.1]T .

70

figures/dempster/envGlob.eps


4.4 Distributed TBM for multi agent systems

Figure 4.5: Mass distribution of atomic elements over the time

4.4 Distributed TBM for multi agent systems

Let us consider a simple scenario, where three agents, whose network topology is de-

picted in Figure 4.6, observe the same event. Furthermore, let us assume that the

objective of these agents is to perform a data aggregation in order to reach a common

knowledge about such an event. To this end, let us suppose that agent 1 first collabo-

rates with agent 2 and successively sets up a collaboration with agent 3. At this point,

a question arises: what happens if agent 1 collaborates again with agent 2? Let us

further investigate this situation.

Figure 4.6: Network topology.

Every agent can apply the Smets combination rule to interact with its neighbors.

When agent 1 collaborates with agent 2 they share the owned information to reach a new

common knowledge (s12). After that, when agent 1 sets up a collaboration with agent

3, they reach a new knowledge (s123). Now if agent 1 and agent 2 collaborate again, by

using the Smets combination rule, they would reach a new “wrong” knowledge (s12123),

where the information due to the first communication would be considered twice.

Therefore, in a distributed scenario a different combination strategy must be de-

signed in order to overcome this issue. To this end, let us assume the current knowledge

of an agent can be divided with respect to any of its neighbors in two parts, i.e, common

knowledge and novelty. In particular, the common knowledge represents the portion of

information shared by the agents, while the novelty is the novel portion of information

brought by an agent. At this point, this issue can be simply overcome by restricting

the aggregation among agents to the novelty, and then combining the obtained result
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with the common knowledge. In this way, when agent 1 and agent 2 collaborate again,

they can reach a new knowledge avoiding to consider twice the result of their previous

aggregation.

In section 4.4.1 the problem setting related to this scenario is summarized. In

Section 4.4.2 a technique to deal with this static scenario is proposed, while in 4.4.3 an

additional assumption is made: agents can dynamically collect new observations over

time. As a consequence, the following question holds: what happens if some agents

update their observations while performing the data aggregation? Indeed, the protocol

must take into account the fact a node might update its direct knowledge. To this end,

a proper extension of the proposed distributed data aggregation protocol is devised in

order to overcome this limitation. In particular conditions related to the rate of the

new incoming observations will be provided to guarantee the convergence of the system

to a common BBA.

4.4.1 Problem Setting

Let the network of agents be described by an undirect graph G = {V,E}, where V =

{vi : i = 1, . . . , n} is the set of nodes (agents) and E = {eij = (vi, vj)} is the set of edges
(connectivity) representing the point-to-point communication channel availability. A

position pi ∈ Rd in the dth dimensional space is associated to each node vi ∈ V , with

i = 1, . . . , n.

In particular, an edge representing a connection between two agents exists if and

only if the distance between these agents is less then or equal to their communication

radius r ∈ R, namely

E = {eij : ‖pi − pj‖d ≤ r, i 6= j},

where ‖ · ‖d is the Euclidean norm in Rd. Since the graph is undirect the existence of

the edge eij (from node i to node j) implies the existence of the edge eji (from node j to

node i). Therefore, in the following they will be used without distinction to indicate a

connection between node i and j. Moreover, we will refer to N(i) as the neighborhood

of agent i, namely the set of indices of the agents directly connected through an edge

with agent i.

In the proposed framework a gossip algorithm (70) is defined as a triplet {S,R, e}
where:
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• S = {s1, . . . , sn} is the set containing the local state si ∈ Rq of each agent i in

the network.

• R is the local interaction rule (⊕ binary operator) that, for any couple of agents

(i, j) with eij ∈ E, gives:

R : Rq × Rq −→ Rq.

• e is the edge selection process that specifies which edge eij ∈ E(t) is selected at

time t.

Algorithm 2: Gossip Algorithm.

Data: t = 0, si(0) ∀ i = 1, . . . , n.

Result: si(tstop) ∀ i = 1, . . . , n.

while stop condition do
• Select an edge eij ∈ E(t) according to e.

• Update the states of the selected agents applying R:

si(t+ 1) = si(t)⊕ sj(t)

sj(t+ 1) = sj(t)⊕ si(t)

• Let t = t+ 1.

end

From an algorithmic point of view, a possible implementation of the gossip algorithm

is given in Algorithm 2.

The following assumptions on the network of agents are made:

Assumptions 1

• The network can be described by a connected undirected graph G.

• The communication range is limited by a maximum communication radius r.

• The communication among agents is asynchronous, gossip like (70).

• A distributed algorithm to build a spanning tree T is available to the agents, for

example by using (71, 72).
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• Agents are capable to handle the storage required for the algorithm execution.

�

4.4.2 Static version

In this section, a local interaction rule R to perform the distributed TBM data ag-

gregation over a network topology for a multi-agent system, under assumptions 1, is

described. Furthermore, every agent is assumed to provide only a single observation

over the time.

Let us assume T = {V, Ê} to be the spanning-tree over the graph G computed by

the agents in a distributed fashion, where V = {vi : i = 1, . . . , n} is the set of nodes

(agents) and Ê = {eij = (vi, vj)}, Ê ⊆ E is a subset of the edges of E required to build

a spanning-tree.

Definition 4 (S)

Let S(t) = {s1(t), . . . , sn(t)} be the set of the agents states defined with respect to a finite

frame of discernment Ω = {ω1, . . . , ωm}, where si(t) = {mi(t, γa), γa ∈ Γ}, si(t) ∈ R|Γ|

is the set of basic belief assignment (BBA) of agent i over the power set Γ(Ω) at a given

time t ∈ N. Note that, in the following the time dependence will be omitted for sake of

clarity if not strictly required.

Let us now introduce the binary operator ⊙, which is useful to break up any set of

basic belief assignment with respect to any other one.

Lemma 4.1 Let us consider two sets of basic belief assignment (BBA) sk =
{

mk(γa); ∀γa ∈
Γ
}

, and si =
{

mi(γa); ∀γa ∈ Γ
}

. It can be defined an operator ⊙:

s̃ik , sk ⊙ si = sj (4.8)

such that:

sk = si ⊗ sj . (4.9)
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In particular, each element of sj =
{

mj(γa); ∀γa ∈ Γ
}

, can be computed recursively

as follows:

mj(γa)=

mk(γa)−
∑

γb ∩ γc = γa

γb ⊃ γa

mj(γb)mi(γc)

∑

γa⊆γb
mi(γb)

, (4.10)

by starting from the element of the power-set with highest cardinality, γ|Γ| = {Ω}, and
moving down to the elements with cardinality equal to one, i.e., {γi+1 = {ωi}, i = 1, . . . , n},
with γ1 = ∅.

Proof: The proof is a simple consequence of the application of Smets operator ⊗.

Let us assume sk can be written as the Smets aggregation of si and sj:

sk , si ⊗ sj =
{

(mi ⊗mj)(γi); γi ∈ Γ
}

where:

mk(γa) , (mi ⊗mj)(γa)

=
∑

γb∩γc=γa

mi(γb) ·mj(γc)

= mj(γa)
∑

γb⊆γa

mi(γb) +
∑

γb ∩ γc = γa

γb ⊃ γa

mj(γb)mi(γc).

At this point, by collecting with respect to mj(γa) the following expression is obtained:

mj(γa)=

mk(γa)−
∑

γb ∩ γc = γa

γb ⊃ γa

mj(γb)mi(γc)

∑

γa⊆γb
mi(γb)

.

Therefore, sj =
{

mj(γa); ∀γa ∈ Γ
}

is obtained. �

Definition 5 (R - operator ⊕ )

Let R be a rule to combine the basic belief assignments for two agents (i, j) such that

eij ∈ Ê as follows:
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si(t+ 1) = si(t)⊕ sj(t)

=
{

(

m̃j
i (t, γa)⊗ m̃i

j(t, γa)
)

⊗ m̄i,j(t, γa);

∀ γa ∈ Γ
}

,

(4.11)

with ⊗ the Smets operator. Let us denote with s̃ji (t) =
{

m̃j
i (t, γa); ∀γa ∈ Γ

}

the

novelty of the agent i with respect to the agent j, which can be computed recursively as

follows:

m̃j
i (t, γa) =

mi(t, γa)−
∑

γb ∩ γc = γa

γb ⊃ γa

m̃j
i (t, γb)m̄i,j(t, γc)

∑

γa⊆γb
m̄i,j(t, γb)

(4.12)

and s̄i,j(t) =
{

m̄i,j(t, γa); ∀γa ∈ Γ} (or equivalently s̄j,i(t)) is the common knowledge,

i.e., the knowledge stored by both agents after their last aggregation, set to the neutral

element n = {0, 0 . . . , 0, 1} of the TBM conjunctive rule before their first aggregation.

Note that, as a consequence of Lemma 4.1, for a given agent i the following relation

holds between the novelty and the common knowledge with any other agent j:

si(t) =
{

mi(t, γa); ∀γa ∈ Γ
}

= s̃ji (t)⊗ s̄ij(t)

=
{

m̃j
i (t, γa)⊗ m̄i,j(t, γa); ∀γa ∈ Γ

} (4.13)

Furthermore, for any couple of agents (i, j), the related states si and sj are equal

if and only if they are completely described by their common knowledge, i.e. si = sj =

s̄i,j .

Remark 1 A few important remarks are now in order:

- In order to apply the local interaction rule R, an agent must have stored all the

most recent collaborations with its neighbors, that is
{

si ⊕ sj ; j ∈ N(i)
}

.

- As only information concerning collaborations among (1-hop) neighbors are re-

quired, the algorithm is fully distributed and scalable in terms of memory require-

ments with respect to the size of the network.
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At this point, in order to prove the convergence of the proposed algorithm, some prop-

erties concerning the local interaction rule R must be introduced.

Lemma 4.2 (R properties) The local interaction rule R defined according to eq. (4.19)

has the following properties:

si ⊕ sj = sj ⊕ si (commutativity)

si ⊕ si = si (idempotence)

(si ⊕ sj)⊕ sk = si ⊕ (sj ⊕ sk) (associativity)

(4.14)

for each triple (i, j, k) : eij , ejk ∈ Ê.

Proof: The properties can be proven by applying the definition given in eq. (4.19).

• Commutativity:

Let us consider two agents (i, j), then from Definition 5 we have:

si ⊕ sj =
(

s̃ji ⊗ s̃ij

)

⊗ s̄i,j

=
(

s̃ij ⊗ s̃ji

)

⊗ s̄j,i

= sj ⊕ si

where
(

s̃i⊗ s̃j

)

=
(

s̃j⊗ s̃i

)

comes from the commutativity property of the Smets

operator ⊗ and s̄i,j = s̄j,i by definition.

• Idempotence:

Let us supposed two agents (i, j) at a given time t have their BBA equal to their

common knowledge (acquired at certain time previous t), that is si = sj = s̄i,j ,

then we have:

si ⊕ sj =
(

s̃ji ⊗ s̃ij

)

⊗ s̄i,j

=
(

n⊗ n

)

⊗ s̄i,j

= s̄i,j

= si
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• Associativity:

Let us consider a triplet of agents (i, j, k) such that eij , ejk ∈ Ê, then we have:

(

si ⊕ sj

)

⊕ sk = sij ⊕ sk

= s̃kij ⊗ s̃ijk ⊗ s̄ij,k

= sij ⊗ s̃ijk

= s̃ji ⊗ sj ⊗ s̃ijk

= s̃ji ⊗ sj ⊗ s̃jk

= s̃ji ⊗ sjk

= s̃jki ⊗ sjk

= s̃jki ⊗ s̃ijk ⊗ s̄ij,k

= si ⊕ sjk

= si ⊕
(

sj ⊕ sk

)

where the equivalent relations s̃ijk = s̃jk and s̃ji = s̃jki come from the independence

of knowledge between nodes i and k with respect to j, due to the properties of

the topology structure of the communication graph, i.e., a spanning-tree T.

�

So far, we have introduced a local interaction rule R and we have described its prop-

erties. In the following, it will be shown that if the agents apply the gossip algorithm

given in Algorithm 2 with such a local interaction rule R over the spanning-tree T, they

converge toward a common BBA. In particular, it will be shown that such a BBA is

the same as in the case of a centralized aggregation based on TBM conjunctive rule (68).

Definition 6 (Centralized TBM) Let us consider a system of n agents (sources)

where each agent i provides an independent set of observations at time t = 0 described
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by the basic belief assignment si(0) = {mi(0, γa); γa ∈ Γ}. A centralized aggregation

schema would provide the following aggregated BBA:

s1 2 ... n = s1 ⊗ s2 ⊗ . . .⊗ sn (4.15)

Let us now introduce the concept of a time-dependent forest F(t, t+∆) with respect

to a given tree T over time as follows:

Definition 7 Let us define F(t, t + ∆t) = {V, Ê(t, t + ∆t)}, with Ê(t, t + ∆t) =
⋃t+∆t

z=t e(z) and e(z) ∈ Ê, as the forest resulting from the union of all the edges given

by the edge selection process over the set Ê from time t to time t + ∆t. Obviously, if

the edge process e is such that in the time interval (t, t+∆t) the forest F(t, t+∆t) is

connected, then the spanning tree T is obtained.

n

n

n

n
n

n

n

n

n
n

n

n

n

n

n

a) b) c)

Figure 4.7: Steady-state convergence over the spanning tree T at different time-interval:

a) after the first interval of time during which the tree T is obtained, the related leaves will

send only the neutral element b) after a certain amount of time the root of T achieve the

steady state s̄ c) Finally the steady state is spread over the whole net.

In order to prove the main result of the paper, a useful relationship between the

Smets operator ⊗ and the proposed interaction rule ⊕ is now introduced.

Lemma 4.3 Let us consider three agents (i, j, k) such that eij , ejk ∈ Ê with their

observations si(0), sj(0), sk(0) at time t = 0. The following holds:

si(0)⊗ sj(0)⊗ sk(0) = si(0)⊕ sj(0)⊕ sk(0) (4.16)

Proof: The lemma can be proven by applying the definition given in eq. (4.19) along

with the properties given in eq. (4.13):
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si(0)⊕ sj(0)⊕ sk(0) =
(

si(0)⊕ sj(0)
)

⊕ sk(0)

=
(

s̃ji (0)⊗ s̃ij(0)⊗ s̄i,j(0)
)

⊕ sk(0)

=
(

si(0)⊗ sj(0)⊗ n

)

⊕ sk(0)

where

s̃ji (0)⊗ s̃ij(0)⊗ s̄i,j(0) = si(0)⊗ sj(0)⊗ n

is due to the independence of the agents observation. Now, by defining sz(0) = si(0)⊗

sj(0), it follows that:

sz(0)⊕ sk(0) = s̃kz(0)⊗ s̃zk(0)⊗ s̄z,k(0)

= sz(0)⊗ sk(0)⊗ n

= si(0)⊗ sj(0)⊗ sk(0)

�

Let us now introduce the main result of the paper, that is the convergence of the

proposed gossip algorithm towards the basic belief assignment (BBA) as in the central-

ized aggregation schema given in Definition 6.

Theorem 4.1 (Distributed TBM) Let us consider a gossip algorithm {S,R, e} over
a spanning-tree T = {V, Ê} with S and R defined respectively as in Definition 4 and

Definition 5. Let us assume each agent i at time t= 0 provides an independent set of

observations described by the basic belief assignment si(0) = {mi(0, γa); γa ∈ Γ}. If e

is such that ∀ t ∃∆t ∈ N so that the time-variant forest F(t, t + ∆t) is connected,

then there will exist a time t = t̄ so that:

si(t
′) = s1(0)⊗ s2(0)⊗ . . .⊗ sn(0) ∀ t′ > t̄, (4.17)

that is, each agent i converges toward the same BBA as in the centralized aggregation

schema given in Definition 6.
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Proof: The proof of the theorem consists of three steps. First, it will be proven

that a steady-state exists for the proposed gossip algorithm. Successively, it will be

proven that such an algorithm always converges toward a steady-state. Finally, it will

be proven that the steady-state is unique and it is the same as the result of the cen-

tralized aggregation schema given in eq. (4.15).

• Steady-State Existence

In order to prove the existence of a steady-state for the proposed gossip algorithm,

it will be shown that a sufficient and necessary condition is that all the agents

share the same state s̄. In fact, if all the agents have the same state s̄, accord-

ing to the interaction rule given in eq. (4.19), they will always send the neutral

element n for any further aggregation. Therefore, the state s̄ is itself a steady

state for the multi-agent system. Furthermore, let us prove by contradiction this

condition to be necessary as well. To this end, let us consider a spanning-tree T

computed by the agents in a distributed fashion. Now, let us suppose two agents i

and j have reached two different steady states over the network, that is si(t) = s′

and sj(t) = s′′. Therefore, according to the definition of a spanning-tree, there

will always exist a (unique) path connecting the two nodes i and j. Let us know

consider for such a spanning-tree T the path pij = {vi, vk∈Ni
, . . . , vh∈Nj

, vj} con-
necting these two agents i and j. In particular, as agent i has reached the state

s′, its neighbor k will always send to it the neutral element n as novelty for any

further aggregation. This implies that, the agent k must have reached itself the

same steady state s′ and be receiving the neutral element n by its neighbors. The

same argument can be applied to the agent j and its neighbor h with respect

to the steady state s′′. Now, by iterating this reasoning from both ends of the

Figure 4.8: Novelty contraction over the spanning tree T at different time-interval.
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path there will be a cut where all the nodes on a side will have reached the same

steady-state s′ as agent i, while on the other side all the agents will have reached

the same steady-state s′′ as agent j, as shown in Figure 4.8. Let us call x and y

the two agents on the boundaries of the cut. Since, x and y have both reached

a steady state, s′ and s′′ respectively, they must be sending the neutral element

n as novelty to each other. However, the two steady states s′ and s′′ have been

supposed to be different, therefore the two agents x and y cannot be sending the

neutral element n to each other. Indeed, this would be possible only if the two

steady states s′ and s′′ were the same steady state s̄, which gives the absurd.

Therefore a steady state holds if and only if si = sj ∀i, j ∈ N .

• Steady-State Convergence

In order to prove the convergence of the proposed algorithm towards a steady-

state, let us consider a spanning tree T computed by the agents in a distributed

fashion over the network topology G, as shown in Figure 4.7. Now, let us consider

an interval of time [t0, t0 +∆t0] for which the forest F(t0, t0 +∆t0) is connected.

This implies that some agents play the role of leaves for the resulting spanning-

tree T. According to the definition of the local interaction rule given in eq. (4.19),

(at least) these agents will always send the neutral element n to their fathers for

any further aggregation (Figure 4.7-a). Now, let us consider a new interval of

time [t1, t1+∆t1] with t1 = t0+∆t0+1. We can use the same argument with re-

spect to a new spanning-tree T′ obtained by removing the leaves from the original

spanning-tree T. In fact, there are some other agents which play the role of leaves

for the new spanning-tree T′ in the time interval [t1, t1+∆t1]. This implies again

that (at least) these agents will always send the neutral element n for any further

aggregation to their fathers. At this point, since the number of agents is finite,

by repeating this reasoning it will exist an interval [th, th +∆th] after which the

residual spanning tree Th will be composed of only one agent i, whose state s̄ is

the aggregation of all the observations available over the network (Figure 4.7-b).

Let us now consider, a new spanning tree Th+1 composed of such an agent i and

all of its one-hop neighbors. There will exist an interval [th+1, th+1 + ∆th+1]

after which the forest F(th+1, th+1 + ∆th+1) is connected. As a result, all the
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agents belonging to this spanning tree will have reached the same knowledge as

the agent i. This is due to the fact, that agent i will be the only one to send a

novelty different from n, and therefore any aggregation will let the other agents

reach its state s̄. By iterating the same reasoning, there will be an interval of

time [t2h, t2h + ∆t2h] for which the related spanning tree T2h will coincide with

the original spanning tree T. At this point, all the agents will have reached the

same state s̄ as the agent i (Figure 4.7-c). Therefore, according to the proof of

existence, s̄ is a steady state for the multi-agent system.

• Steady-State Uniqueness In order to prove the uniqueness of the steady state, it

will be shown that any sequence of aggregations over the network, where each

agent is considered at least once, is always the combination of the initial set of

observations, that is:

s̄(t) = s1(0)⊕ s2(0)⊕ . . .⊕ sn(0).

This can be proven by recalling the properties given in Lemma 4.5. In fact, the

particular sequence of aggregations does not affect the result due to the commu-

tativity and associativity properties, while the presence of several occurrences of

the same state can be neglected due to the idempotence property.

As a result, the combination of the initial set of observations is achieved. At this point,

by exploiting the result given in Lemma 4.3, the following holds:

s̄(t) = s1(0)⊕ s2(0)⊕ . . .⊕ sn(0)

= s1(0)⊗ s2(0)⊗ . . .⊗ sn(0).

Thus proving the theorem. Details concerning the algorithm execution are provided in

Appendix 4.7. �

Let us now provide a characterization of the convergence time with respect to a

given edge selection process e.
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Lemma 4.4 (Convergence Time) Let us consider an edge selection process e such

that ∀ t ∃∆t ∈ N, so that the forest F(t, t+∆t) is connected. If ∃M ∈ N : ∆t < M ∀ t,
then the convergence is reached by any agent at most at time t̄ = d ·M , where d is the

diameter of the spanning tree T.

Proof: The proof of the lemma follows the same arguments of the steady-state con-

vergence proof (4.4.3.2) by assuming that an upper bound is available to the time re-

quired for the forest to be connected. In particular, for sake of simplicity and with

no lack of generality let us assume to start at time t = 0. Under this assumption,

the information contraction process towards a single agent i described in 4.4.3.2 takes

in the worst case, i.e., the leaves are the last agents to perform an aggregation, time

t1 = (d/2) ·M . In the same way, the information propagation process from such an

agent i to all the other agents over the network described in 4.4.3.2 takes in the worst

case, i.e., one of the leaves of the previous spanning-tree is the last agent to perform an

aggregation, time t2 = (d/2) ·M . Therefore, the overall time required to the algorithm

to converge in the worst case scenario is ttot = t1 + t2 = d ·M . �

4.4.3 Dynamic version

In this section, a local interaction rule R′ to perform the distributed TBM data ag-

gregation over a network topology for a multi-agent system, under assumptions 1 and

time varying observations, is described.

As opposite to the static scenario, each agent collects new observations over the

time, hence the following terms are introduced in the formulation:

• pi(t) BBA related to the previous observation;

• li(t) BBA related to the latest observation;

For sake of clarity, the following notation will be used indiscriminately in the fur-

ther:

sc(t) = s̄i,j(t)

ss(t) = si(t)⊗ sj(t)
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Definition 8 (Combination rules) In a dynamic scenario each agent can perform

two type of data aggregation:

• Local Aggregation performed by a single agent.

• Dynamic Aggregation performed by a couple of agents.

4.4.3.1 Local Aggregation

An agent requires a local aggregation any time a new observation is available. To

this end, let us suppose that the initial observation is made at time t = 0 and a new

one is collected at time t̂k, k ∈ N. In this context, an agent must perform a local

aggregation in order to remove the past observation from its current knowledge and

add the new one. This can be achieved by first computing the novelty between the

current knowledge si and the past observation pi and then aggregating this novelty s̃pi
with the latest observation li. In this way, the updated current knowledge of the agent

will take into account only the information coming from the previous collaboration with

its neighbors and its last observation, that is:

si(t̂k) = s̃pi (t̂k)⊗ li(t̂k) (4.18)

4.4.3.2 Dynamic Aggregation Between Agents

In order to perform the dynamic aggregation between two agents the operator ~⊕ must

be introduced.

Definition 9 (R′ - operator ~⊕ )

Let R′ be a rule to combine the basic belief assignments for two agents (i, j) such that

eij ∈ Ê as follows:

si(t+ 1) = si(t) ~⊕ sj(t)

= ˜(si(t)⊗ sj(t))
c

(4.19)

=
{

m̃c
s(t, γa)

}

, ∀γa ∈ Γ

where m̃c
s(t, γa) is defined as in eq. (4.10) with respect to ss(t) and sc(t).
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Remark 2 A few remarks are now in order:

• A simple consequence of Lemma 4.1 with respect to the operator ~⊕ is that the

aggregation of two state si and sj such that sj = s̄i,j is:

sj(t+ 1) = ˜(sj(t)⊗ si(t))
c

= ˜(sj(t)⊗ si(t))
j

= si(t)

• According to the operator ~⊕, two states si(t) and sj(t) are equal if and only if

they are completely described by their common knowledge, i.e. si(t) = sj(t) =

s̄i,j(t) = sc(t).

Therefore, the aggregation rule used for the dynamic scenario turns out to be the

same as in the static scenario if the agents do not collect new observations over time.

At this point, in order to prove the convergence of the proposed algorithm some

properties concerning the local interaction rule R must be introduced.

Lemma 4.5 (~⊕ properties) The local interaction rule ~⊕ defined according to eq. (4.19)

has the following properties:

si ~⊕ sj = sj ~⊕ si (commutativity)

si ~⊕ si = si (idempotence)

(si ~⊕ sj) ~⊕ sk = si ~⊕ (sj ~⊕ sk) (associativity)

(4.20)

for each triple (i, j, k) such that eij , ejk ∈ Ê.

Proof: The properties can be proven by exploiting the Lemma 4.1 and the definition

given in eq. (4.19). Furthermore, let us consider the more general case for which agents

might have already performed an aggregation with each other. In particular, according

to Lemma 4.1, the state si of an agent i with respect to any of its neighbors j can be

always written as:

si(tm) = li(tm)⊗ sN(i)\j(tm)⊗ lj(tq)⊗ sN(j)\i(tq)

= vji (tm)⊗ vij(tq)
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where sN(i)\j(tm), sN(j)\i(tq) describe respectively all the aggregated data coming from

the neighborhood of agent i (at time tm) and j (at time tq) excluding each other, and

vph(tk) = lh(tk)⊗ sN(h)\p(tk).

• Commutativity:

Let us consider two agents (i, j), then from Definition 5 we have:

si ~⊕sj = s̃cs

= ˜(si ⊗ sj)
c

= ˜(sj ⊗ si)
c

= sj ~⊕si

where
(

si⊗sj
)

=
(

sj ⊗si
)

comes from the commutativity property of the Smets

operator ⊗.

• Idempotence:

Let us supposed two agents (i, j) at a given time t have their BBA equal to their

common knowledge (acquired at certain time previous t), that is si = sj = s̄i,j ,

then we have:

si ~⊕ sj = ˜(si ⊗ sj)
c

= ˜(si ⊗ sj)
j

= si

• Associativity:

Let us consider a triplet of agents (i, j, k) such that eij , ejk ∈ Ê. Furthermore,

according to Lemma 4.1, let us assume the current state of the three agents at

time tm to be written as follows:

si = vji (tm)⊗ vij(tq)

sj = vji (tq)⊗ lj(tm)⊗ sN(j)\i,k(tm)⊗ vjk(tq′)

= vji (tq)⊗ vi,kj (tm)⊗ vjk(tq′)

sk = vjk(tm)⊗ vkj (tq′)

and the common knowledge describing previous aggregation among these agents

to be written as:

s̄i,j(tq) = sc′ = vji (tq)⊗ vij(tq)

s̄j,k(tq′) = sc′′ = vkj (tq′)⊗ vjk(tq′).
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Then we have:

(

si (tm) ~⊕ sj(tm)
)

~⊕ sk(tm) =

=
˜(

vji (tm)⊗ vij(tq)⊗ vji (tq)⊗ vi,kj (tm)⊗ vjk(tq′)
)

c′

~⊕ sk(tm)

=
(

vji (tm)⊗ vi,kj (tm)⊗ vjk(tq′)
)

~⊕ sk(tm)

= sij(tm) ~⊕ sk(tm)

=
˜(

vji (tm)⊗ vi,kj (tm)⊗ vjk(tq′)⊗ sk(tm)
)

c′′

=
˜(

vji (tm)⊗ vi,kj (tm)⊗ vjk(tq′)⊗ vjk(tm)⊗ vkj (tq′)
)

c′′

= vji (tm)⊗ vi,kj (tm)⊗ vjk(tm)

where the equivalence s̄ij,k = s̄j,k comes from the independence of the knowledge

between node i and k with respect to j, due to the properties of the topology

structure of the communication graph, i.e., a spanning tree T. And:

si (tm) ~⊕
(

sj(tm) ~⊕ sk(tm)
)

=

= si(tm) ~⊕
˜(

vji (tq)⊗ vi,kj (tm)⊗ vjk(tq′)⊗ vjk(tm)⊗ vkj (tq′)
)

c′′

= si(tm)~⊕
(

vji (tq)⊗ vi,kj (tm)⊗ vjk(tm)
)

= si(tm)~⊕sjk(tm)

=
˜(

si(tm)⊗ vji (tq)⊗ vi,kj (tm)⊗ vjk(tm)
)

c′

=
˜(

vji (tm)⊗ vij(tq)⊗ vji (tq)⊗ vi,kj (tm)⊗ vjk(tm)
)

c′

= vji (tm)⊗ vi,kj (tm)⊗ vjk(tm)

where the equivalence s̄i,jk = s̄i,j comes again from the independence of the

knowledge between node i and k with respect to j, due to the properties of the

topology structure of the communication graph, i.e., a spanning tree T.

�
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In a dynamic scenario, referring to Def. (6), let us assume that every so often

(t = t̂k, k ∈ N), one or more agents perform an update of their observation. As a

consequence, the aggregated BBA can be updated accordingly as follows:

s1 2 ... n(t̂k) = l1(t̂k)⊗ l2(t̂k)⊗ . . .⊗ ln(t̂k) (4.21)

where li(t̂k) describes the BBA related to the most recent observation available to the

agent i.

Under the dynamic scenario assumption, the convergence of the proposed gossip

algorithm towards the basic belief assignment as in the centralized aggregation schema

is guaranteed by the following theorem:

Theorem 4.2 (Distributed Dynamic TBM) Let us consider a gossip algorithm

{S,R′, e} over a spanning-tree T = {V, Ê} with S and R′ defined respectively as in Defi-

nition 4 and Definition 9. Let us assume each agent i at time t= 0 provides an indepen-

dent observation described by the basic belief assignment si(0) = {mi(0, γa}, γa ∈ Γ}.
Furthermore, let us assume that every so often (t = t̂k, k ∈ N), one or more agents

perform an update of their observation. If e is such that ∀ t ∃∆t ∈ N so that the

time-variant forest F(t, t + ∆t) is connected, then for some k there will exist a time

t = t̄k so that:

si(t
′) = l1(t̂k)⊗ l2(t̂k)⊗ . . .⊗ ln(t̂k) (4.22)

∀ t′ ∈ [ t̄k, t̂k+1 )

where li(t̂k) describes the most recent observation available to the agent i.

Proof: The proof of the theorem consists of four steps. First, it will be proven

that a steady-state exists for the proposed gossip algorithm. Successively, it will be

shown that each agent by applying the aggregation operator ~⊕ can inject the updated

observations into the network while transparently removing the previous ones. Then, by

exploiting this property, it will be proven the convergence and finally, it will be shown

that the steady-state is unique and equal to the result of the centralized aggregation

schema given in eq (4.21).

Note that, for the existence, convergence and uniqueness analysis, the interval of

time [t̂k, t̂k+1) between two consecutive observations update is supposed to be long

enough with respect to the nature of the edge selection process e. This allows to guar-

antee that each agent can perform all the aggregations required to reach the steady-

state. Necessary and sufficient conditions concerning the length of time interval with
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respect to the edge selection process e are given in Lemma 4.6.

• Steady-State Existence:

In order to prove the existence of a steady-state for the proposed gossip algorithm,

it will be shown that a sufficient and necessary condition is that all the agents

share the same state s̄. According to the interaction rule given in eq. (4.19), this

imply that all the agents will have the same common knowledge sc. Therefore,

the state s̄ is itself a steady state for the multi-agent system. Furthermore, let

us prove by contradiction this condition to be necessary as well. To this end,

let us suppose two agents i and j have reached two different steady states over

the network, that is si(t) = s′ and sj(t) = s′′. Therefore, according to the

definition of a spanning-tree, there will always exist a (unique) path connecting

the two nodes i and j. Let us now consider for such a spanning-tree T the

path pij = {vi, vk∈Ni
, . . . , vh∈Nj

, vj} connecting these two agents i and j. In

particular, as agent i has reached the state s′, this implies that its neighbor k

must be sending a state which is equal to their common knowledge. Furthermore,

since agent k itself has reached a steady-state, agent i must be sending a state

which is equal to their common knowledge. However, according to the Remark 2

this implies that both agents have the same state, that is s′. The same argument

can be applied to the agent j and its neighbor h with respect to the steady state

s′′.

Now, by iterating this reasoning from both ends of the path there will be a cut

where all the nodes on a side will have reached the same steady-state s′ as agent

i, while on the other side all the agents will have reached the same steady-state

s′′ as agent j. Let us call x and y the two agents on the boundaries of the cut.

Since, x and y have boot reached a steady state, s′ and s′′ respectively, they must

be sending a state which is equal to their common knowledge to each other. How-

ever, the two steady states s′ and s′′ have been supposed to be different, so the

two agents x and y cannot be sending a state equal to their common knowledge

sc to each other. Indeed, this would be possible only if the two steady states s′

and s′′ were the same steady state s̄, which gives the absurd. Therefore a steady
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state holds if and only if si = sj ∀i, j ∈ N .

• Observations Propagation:

Let us consider two agents (i, j) such that eij ∈ Ê and let us assume a collabora-

tion was performed at time t = tq. The updated states can be written as:

si(tq) = li(tq)⊗ sN(i)\j(tq)⊗ lj(tq)⊗ sN(j)\i(tq)

= vji (tq)⊗ vij(tq)

sj(tq) = lj(tq)⊗ sN(j)\i(tq)⊗ li(tq)⊗ sN(i)\q(tq)

= vij(tq)⊗ vji (tq),

where sN(i)\j(tq), sN(j)\i(tq) describe respectively all the aggregated data coming

from the neighborhood of agent i and j excluding each other, and vph(tk) = lh(tk)⊗

sN(h)\p(tk). Furthermore the common knowledge at time t = tq between the two

agents can be written as sc(tq) = vij(tq) ⊗ vji (tq), Now, let us consider a time

t = tm, tm such that the two agents have performed further aggregations (but

not with each other) and an update of their observation. Their current state at

time t = tm can be written as follows:

si(tm) = li(tm)⊗ sN(i)\j(tm)⊗ lj(tq)⊗ sN(j)\i(tq)

= vji (tm)⊗ vij(tq)

sj(tm) = lj(tm)⊗ sN(j)\i(tm)⊗ li(tq)⊗ sN(i)\q(tq)

= vij(tm)⊗ vji (tq).

Now, let us assume that the two agents perform an aggregation at time t = tm+1.

Their current state can be updated accordingly as follows:

si(tm + 1) = si(tm)~⊗sj(tm)

= ˜(

vji (tm)⊗ vij(tq)⊗ vij(tm)⊗ vji (tq)
)

c

= vji (tm)⊗ vij(tm)

sj(tm + 1) = sj(tm)~⊗si(tm)

= ˜(

vij(tm)⊗ vji (tq)⊗ vji (tm)⊗ vij(tq)
)

c

= vij(tm)⊗ vji (tm)

where the common knowledge sc(tq) = vij(tq)⊗vji (tq), which represents both their

previous observations and their neighbors previous observations, is removed. Note

that, after the aggregation the common knowledge is set to the current state of

the two agents sc(tm +1) = vji (tm)⊗ vij(tm). Therefore, anytime two agents per-

form an aggregation only the most recent observation of any agent is propagated
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over the network.

• Steady-State Convergence:

In order to prove the convergence of the proposed algorithm towards a steady-

state, let us consider an interval of time [t0, t0 +∆t0], with t0 = t̂k, for which the

forest F(t0, t0+∆t0) is connected. This implies that some agents play the role of

leaves for the resulting spanning-tree T. Indeed, any further aggregation of these

agents with their fathers will not change the state of the fathers. This is due

to the fact that all the knowledge brought by the leaves is already available to

the fathers in their common knowledge (see Remark 2). Furthermore, according

to the Observation Propagation proof (4.4.3.2) only the most recent observations

will be sent by the leaves to the fathers. Now, let us consider a new interval of

time [t1, t1 +∆t1] with t1 = t0 + ∆t0 + 1. We can use the same argument with

respect to a new spanning-tree T′ obtained by removing the leaves from the orig-

inal spanning-tree T. In fact, there are some other agents which play the role of

leaves for the new spanning-tree T′ in the time interval [t1, t1+∆t1]. This implies

again that (at least) these agents will always send the common knowledge s′c for

any further aggregation to their fathers. At this point, since the number of agents

is finite, by repeating this reasoning it will exist an interval [th, th + ∆th] after

which the residual spanning tree Th will be composed of only one agent i, whose

state s̄ is the aggregation of all the most recent observations available (at time

t̂k) over the network. Let us now consider, a new spanning tree Th+1 composed

of such an agent i and all of its one-hop neighbors. There will exist an interval

[th+1, th+1 + ∆th+1] after which the forest F(th+1, th+1 + ∆th+1) is connected.

As a result, all the agents belonging to this spanning tree will have reached the

same knowledge as the agent i. This is due to the fact that for any aggregation,

agent i will be the only to have its state different from the common knowledge.

Therefore according to the Remark (2), the other agents will reach its state s̄.

By iterating the same reasoning, there will be an interval of time [t2h, t2h+∆t2h]

for which the related spanning tree T2h will coincide with the original spanning

tree T. This implies that all the agents will be reached the same state s̄ as the

agent i. Therefore, according to the proof of existence, s̄ is a steady state for the
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multi-agent system.

• Steady-State Uniqueness In order to prove the uniqueness of the steady state, it

will be shown that any sequence of aggregations over the network, where each

agent is considered at least once, is always the ~⊕ combination of the observations

set at time t = t̂k, that is:

s̄(t′) = s1(t̂k) ~⊕ s2(t̂k) ~⊕ . . . ~⊕ sn(t̂k), ∀ t′ ∈ [t̄k, t̂k+1).

This can be proven by recalling the properties given in Lemma 4.5 and the result

concerning the proof of the Observation Propagation (4.4.3.2) along with the

proof of Steady-State Convergence (4.4.3.2). In fact, the observation propagation

result guarantees that, anytime two agents perform an aggregation, only the most

recent observation of any agent is propagated over the network.

Furthermore, according to the convergence proof, when a steady-state is reached

over the network, it embodies all the most recent observations available up to time

tk. Finally, due to Lemma 4.5, the particular sequence of aggregations does not affect

the result due to the commutativity and associativity properties, while the presence of

several occurrences of the same state can be neglected due to the idempotence property.

As a result, the combination of the observations set at time t = t̂k is achieved, that is:

s̄(t) = l1(t̂k) ~⊕ l2(t̂k) ~⊕ . . . ~⊕ ln(t̂k),

that is the same result as in the centralized aggregation schema given in eq. (4.21). �

Remark 3 A few important remarks are now in order:

• The gossip algorithm described in the dynamic case allows the agents to “track”

the steady-state
(

given by eq (4.21)
)

. In fact, by applying the local aggregation

rule given in eq (4.18) each agent can replace the previous observation with the

latest one on its own state, and by applying the dynamic aggregation rule given in

eq (4.19) if two agents perform an aggregation only the most recent observation

of any agent is propagated over the network.

• The convergence capability of the proposed algorithm depends on whether the time

interval between two consecutive observations update is sufficiently long with re-

spect to the nature of the edge selection process e. However, even if some steady-

states are missed, the agents still keep tracking the most recent one.
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In the following, an analysis to derive an upper-bound of the convergence time for

the worst-case scenario is proposed.

Lemma 4.6 Let us consider an edge selection process e such that ∀ t ∃∆t ∈ N so

that the forest F(t, t + ∆t) is connected. If ∃M ∈ N : ∆t < M ∀ t, then the multi-

agent system can always reach the convergence towards a steady-state if the following

condition holds between two consecutive observations update:

t̂k+1 ≥ t̂k + d ·M, ∀ k ∈ N (4.23)

where d is the diameter of the spanning tree T.

Proof: The proof follows the same argument of the steady-state convergence proof

(4.4.3.2) by assuming that an upper bound is available to the time required for the

forest to be connected. Furthermore, let us assume that at time t = t̂k, one or more

agents have performed an observation update over the network. Under this assumption,

the information contraction process towards a single agent i described in 4.4.3.2 takes

in the worst case, i.e., the leaves are the last agents to perform an aggregation, time

t1 = (d/2) ·M . In particular, the state of such an agent i represents the aggregation of

the latest set of observation available over the network up to time tk. In the same way,

the information propagation process from such an agent i to all the other agents over

the network described in 4.4.3.2 takes in the worst case, i.e., one of the leaves of the

previous spanning-tree is the last agent to perform an aggregation, time t2 = (d/2) ·M .

Therefore, the overall time required to the algorithm to converge in the worst case

scenario is ttot = t1 + t2 = d ·M . Note that, in the case an update is performed by any

agent before the contraction process ends, i.e., t̂k+1 < t̂k + d ·M , the state spread by

agent i will no longer represent the aggregation of the most recent set of observations

available over the network, and therefore at the end of the propagation process, no

steady-state will be reached for the interval [t̂k, tk+1). �

Note that Lemma 4.6 provides only a theoretical characterization of the convergence

time for the proposed gossip algorithm. However, in a real scenario agents perform the

update of their observations independently and asynchronously, therefore no control can

be provided for the convergence of the algorithm apart from the design of a “smart”

edge selection process able to keep the upper-bound M as small as possible.
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4.5 An experimental case: the topological map building

Map-building addresses the problem of acquiring spatial models of physical environ-

ments by mobile robots (73). The map-building problem is generally considered as

one of the most important problems in the pursuit of building truly autonomous mo-

bile robots. Two different approaches for modeling an indoor environment have been

proposed: the metric approach and the topological approach (74). Metric maps cap-

ture the geometric properties of the environment, whereas topological maps describe

the connectivity of different places. These approaches exhibit orthogonal strengths

and weaknesses (75). On the one hand, topological maps are computationally effi-

cient, easy to maintain even in large scale environments while metric maps suffer from

their enormous space and time complexity. On the other hand, metric maps provide

a very detailed description of the environment while topological maps offer a limited

representation of the surrounding world.

The majority of the approaches available in the literature deals with the simulta-

neous localization and mapping problem (SLAM) consisting in both building the map

of the environment and localizing the robot that is moving within it (76). In (77) an

approach to build a topological map based on the concept of Voronoi random fields is

introduced. The idea is to extract a Voronoi graph from an occupancy grid map gener-

ated with a laser range-finder, and then represent each point on the Voronoi graph as

a node of a conditional random field. The resulting Voronoi random field estimates the

label of each node, integrating features from both the map and the Voronoi topology.

Several works have been proposed for the SLAM problem in a multi-robot scenario as

well. In (78) a platoon of four robots performs on-line the map building with a particle

filter algorithm. In (69) an alternative approach for less effective sensors, e.g., sonar

range-finders, is proposed. The idea is to build a grid-map representation of the envi-

ronment modeling uncertainty by means of the fuzzy theory. In (79), an improvement

of this work is presented. In particular, the grid-maps are exploited to extract a knowl-

edge of the surrounding environment along which the robot travels. The uncertainties

are managed through the Possibility Theory (80).

In this section a collaborative topological map-building approach for a team of

robots moving in an indoor office-like environment is proposed. Each robot, after

building a local map by infrared range-finders, builds a set of hypotheses about the
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topological nature of the surrounding environment by comparing the features extracted

using the Hough transform with a set of predefined environmental patterns. The local

view of each robot, which is significantly constrained by its limited sensing capabilities,

is then strengthened by a collaborative aggregation schema based on the Transferable

Belief Model. In this way, a better representation of the environment is achieved by

each robot by means of a minimal exchange of information.

4.5.1 Problem Setting

In the proposed framework, a team of robots which explores an unknown office-like

environment is considered. Robots are equipped with a sensorial system composed of

an array of infrared range-finders along with an analog compass which allows the team

to share a common heading direction. Therefore, a wireless channel is available for

communication purposes.

The team of robots is assumed to move in a rigid formation. This assumption has

been made in order to require a module for mutual localization: in fact it should be

sufficient to know the inter robot configuration in order to perform this algorithm. For

details about mutual localization techniques, the reader is referred to (46). Indeed, this

can be achieved by exploiting one of the several control laws available in literature, e.g.,

(81, 82). In addition, robots are assumed to be aware of the sensing occlusions due to

the other robots. Note that, this is not a strong limitation as robots are assumed to

move in a rigid formation. In particular, for each couple of robots an angular section

with respect to their line of sight is considered as occluded.This information can be

taken into account when building the set of hypotheses to describe the surrounding

environment. Figure 4.9 depicts the adopted geometrical model of occlusion for a team

of three robots.

The office-like environment in which the team of robots moves is approximated by

the union of a set of environmental patterns detailed in Subsection 4.5.2. In particular,

the following patterns are taken into account in this framework: L-turn, corridor, dead-

end, T-junction, and crossing.

The objective of this work is to develop a collaborative technique to let the team of

robots achieve a proper topological description of the surrounding environment. The

key idea is to provide an effective collaborative framework to make up for the limited

sensorial capabilities of each single robot.
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Figure 4.9: Geometric model of occlusion for the multi-robot system.

In the following the collaborative topological multi-robot map-building technique is

described. First, the patterns adopted to represent the environment are described in

Subsection 4.5.2. Then, the feature extraction process to build an actual view of the

surrounding environment is explained in Subsection 4.5.3. Successively, the topological

map building is explained in Subsection 4.5.4. Finally, the collaborative approach based

on the TBM conjunctive rule to improve the local view of each robot is described in

Subsection 4.5.4.1.

4.5.2 Environmental Patterns

In order to have a meaningful representation of an office-like area, environmental pat-

terns are introduced. Indeed, these models constitute, in our context, a valid approxi-

mation into which classify more complex environments. In the proposed scenario, maps

are composed of a combination of the following elements: L-turn (L), corridor (O),

dead-end (D), T-junction (T ), crossing (X).

In order to derive a mathematical description of these patterns some preliminary

concepts must be introduced.

Let us first introduce the set A = {a1, . . . , ak} of atomic elements as the set of

basic features that a robot can detect. In this work, walls (W) and corners (C) are

considered. An atomic element ai is described by means of a simple parametrization

with respect to the reference frame of the detecting robot. In detail, a wall is described

by the angular coefficient θ of the detected segment, while a corner is represented by the

angular coefficients θ1 and θ2 of the oriented segments connecting the two end-points

to the vertex. Note that, two different kinds of corners are considered: convex and

concave. According to the situation shown in Figure 4.10, a corner is said to be convex
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Figure 4.10: Corner detection. Robot R1 detects a convex corner while robot R2 detects

a concave one.

if the robot r belongs to the third quadrant of the reference frame Ô(v̂1, v̂2) attached

to the vertex v, concave otherwise.

Let us now introduce the concept of relational features. A relational feature fi is

a couple of atomic elements for which a set of geometric relationships hold. From a

mathematical perspective, a relational feature fi can be defined as follows:

fi = {aj , ak} : M(aj , ak) = true

where M(·) : F×F → {false, true} is a boolean map describing a given set of geometric

relationships. Note that, among all the possible relationships also the identity map, i.e.,

M(ai, ai) = true, is considered. Indeed, this allows to define a relational feature even if

only a single atomic element is recognized. The idea of relational feature turns out to

be very useful as it allows to provide a graph-like representation of an environmental

pattern and therefore a simple decomposition of it.

It is now possible to provide a formal characterization of the set P = {p1, . . . pn} of
environmental patterns. In particular, an environmental pattern pq can be described

by a set Fq = {f1, . . . , fh} of relational features. Note that, in order to be a valid

representation, the set Fq must satisfy the following property:

Fq * Fk ∧ Fq + Fk, ∀ pk ∈ P\{pq}, (4.24)

which guarantees the pattern pq to be fully described.

This formalization leads, as previously mentioned, to an intuitive graph-like repre-

sentation of an environmental pattern where links represent the geometric relationships
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Figure 4.11: Graph-based representation of an environmental pattern. Nodes represent

atomic elements linked to each other by relational edges. Dashed squares are convex cor-

ners, solid squares are concave corners and solid circles are walls. a) corridor b) T-junction

c) L-turn d) dead-end e) crossing.

existing among each pairs of atomic elements. Therefore, according to this alternative

representation, an environmental pattern can be also thought as a fully connected graph

of atomic features. Figure 4.11 gives a graphical overview of such a representation for

the set of environmental patterns adopted in this work. In particular, a corridor can

be viewed like a two wall-nodes connected by an edge for which the relationship of

equal orientation holds. A T-junction graph is instead represented by two concave-

corner-nodes and a wall-node. The corner-nodes share a common bearing for a couple

of segments while the other one has a phase displacement of π. In addition, each cor-

ner shares a common bearing with wall-node. Note that, in order to avoid a wrong
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association between atomic elements, the relationship of parallelism is constrained by a

minimal distance between the considered segments. A similar description can be easily

derived for the remaining patterns.

4.5.3 Local Topological Features Extraction

Each robot while moving builds a local map of the surrounding environment by exploit-

ing infrared range-finders. The expressiveness of the obtained map is highly constrained

by the limited amount of data which can be collected at each time, i.e., only an array

of 5 infrared sensors arranged over the 180◦ with respect to the heading direction of the

robot is available. Figure 4.12 depicts an example of local map built exploiting the raw

data collected by the robot while rotating over 360◦. In particular, it can be noticed

the effect of the noise affecting the measurements due to the intrinsic characteristics of

the sensor. The local map is used to extract some features of interest by means of a

Hough transform (83).

Figure 4.12: Example of local map built by letting the robot rotate over 360◦.

4.5.4 Local Topological Map Building

In order to achieve the topological description of the environment, the framework of

the “Theory of Evidence” introduced by Shafer in (57) is exploited. It gives an effective

mathematical model for the representation of uncertainty. Hence, it turns out to be very

suitable in a robotics context when dealing with noisy measurements coming from low-

cost sensors. In this framework, an environmental pattern represents the proposition

of a set Ω called frame of discernment, while the set of all propositions of interest

corresponds to the elements of the power-set Γ. In addition, it can be defined a function

m : Γ → 1 called Basic Belief Assignment (BBA) which associates to each element
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γ ∈ Γ a belief mass. This mass m(γ) describes the proportion of all relevant and

available evidence that supports the claim that the actual “state” belongs to γ but to

no particular subset of it. This framework suits very well the multi-robot topological

mapping problem. In fact, elements of the power-set can be used to model the subset

of patterns which fits the limited set of features that can be extracted from the partial

view of a single robot. For example, if a corner is detected by a robot during the feature

extraction process the set given by the union of all the environmental patterns which

contain a corner is considered. Note that, due to the limited sensing capability, the

whole surrounding environment will be hardly recognized by a single robot. For this

reason an aggregation among the knowledge acquired by the team must be introduced.

In this ways, ambiguities can be reduced and the set of plausible patterns can be

restricted. Conditions under which the correct pattern can be detected will be discussed

in Theorem 4.3.

As far as the construction of the set of masses M = {m(γ1), . . . , m(γ|Γ|)} is con-

cerned, let us assume each robot Ai can extract from its local map a set of relational

features si = {f1, . . . , fd} every T seconds. In addition, let us define αi = pi ∩ si,

with α ∈ [0, 1], as the “similarity” between the set of features s and an environmental

pattern pi. At this point, the set of masses, which must sum to one by definition, is

computed as follows:

• a fraction η, is assigned to the union A of all patterns compatible with the features

acquired that is:

m(A) = η, A =
⋃

pi∩s 6=∅

pi (4.25)

• the remaining 1−η of the mass is assigned proportionally (w.r.t. to the similarity)

to each subset Bj having cardinality minus one with respect to A, except for the

atomic patterns:

m(Bj) = (1− η) · χj , (4.26)

∀ B =
⋃

pi∩s 6=∅

pi s.t. |B| = |A| − 1 > 1

101



4. DATA FUSION WITH THE TRANSFERABLE BELIEF MODEL
APPROACH

with

χj =

∑

pk∈Bj
αk

∑

Bj ∈ A

|Bj | = |A| − 1

∑

pk∈Bj
αk

.

Note that, the condition |A| ≥ 2 is required in order to have an assignment to be self-

consistent, i.e., a combination of a set M with itself should not introduce contradiction.

4.5.4.1 Topological Maps Aggregation

The Transferable Belief Model (TBM) introduced by Smets (68) is exploited for the

aggregation of the topological description of the environment built by each robot. TBM

allows to combine evidence from different sources and arrive at a degree of belief that

takes into account all the available evidences.

For a couple or robots (i, j), the TBM conjunction rule can be defined as follows:

(mi ⊗mj)(γa) =
∑

γb, γc

γb ∩ γc = γa

mi(γb)mj(γc). (4.27)

From a computational perspective, the aggregation can be performed in two dif-

ferent ways. A simple approach is to let robots broadcast the acquired topological

description and then each robot performs locally the aggregation. A more refined

approach is to devise a local interaction rule which provides the same result as the

previous one avoiding the overhead of the broadcast (5). The first approach is simpler

and reasonable for a team of few robots, while the second approach is more suitable

for a large team of robots.

Note that the proposed framework turns out to be exact in the ideal case of measure-

ments without noise. The following theorem provides a mathematical characterization

of this correctness.

Theorem 4.3 Let us consider an environmental pattern pq ∈ P described by a set

Fq = {f1, . . . , fh} of relational features. Let us assume each robot to build a set of

masses according to the rules given in eq. (4.25) and eq. (4.26). Finally, let us assume

the set of masses to be aggregated according to the combination rule given in eq. (4.27).

A sufficient condition for the recognition of the environmental pattern pq is that :
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N
⋃

i

si = Fq,

where N is the number of robots and si is the set of relational features computed by the

i-th robot.

Proof: In order to prove the theorem, let us consider without any lack of generality

a partition over Fq such that every subset of Fq is correctly identified by one robot.

Let Ai be the union of all the patterns compatible with the observed subset of features

related to the i-th robot. Now, let us consider two robots j and k performing an

aggregation of their masses Mj and Mk according to eq. (4.27). The elements m(γ) of

the resulting set Mj,k are obtained as follows:

m(γ) =











mj(Aj) ·mk(Ak) if γ = Aj ∩Ak

≥ 0 if γ ∩ (Aj ∩Ak) 6= ∅
0 if otherwise

Therefore, only the elements {γl} of the power-set Γ representing the subset of envi-

ronmental patterns supported by the intersection of the two sets of relational features

Aj and Ak are assigned with a mass greater than 0, while the remaining content of in-

formation accumulates in the mass of the element γ = ∅ emphasizing the contradiction

between sources. At this point, by iterating this aggregation process, the obtained set

of masses Mj,k will be necessarily aggregated with the set Mr provided by one of the

other robots. Now, by recalling from eq. (4.24) that an environmental pattern is fully

described by the union of its own relational features and by assuming measurements to

be perfect, the following holds:
N
⋂

i

Ai = pq.

Therefore, after all the set of masses are aggregated, only the element γ = pq will have

a mass greater than 0. Hence, the correct environmental pattern can be identified. Fur-

thermore, the mass associated to γ = ∅ can be thought as the amount of contradiction

due to the initial occlusions experienced by each robot. �

Although a proper mathematical characterization has been derived under the as-

sumption of ideal measurements availability, in the real world data coming from sensors
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is always affected by noise. For this reason a simple but effective workaround to deal

with the eventuality that a robot might perform an incorrect feature extraction is pro-

posed. The idea is to assign a fraction ζ to the universe set, e.g. m(P) = ζ. This

trick allows to partially recover from a bad feature extraction process. In this way also

non common hypotheses can survive. A viable solution, making the assumption that a

sort of index measuring the quality of the feature extraction is available, is to assign ζ

proportionally to the goodness of the feature extraction process. Finally, the remaining

part after assigning η and ζ could be assigned as explained before.

4.5.4.2 Computational Complexity and Implementation Details

From a computational perspective the proposed collaborative technique for topological

map building cannot be implemented as it is. Indeed, a few tricks are required to let

the technique be computationally affordable for a team of low-cost robots.

Strictly speaking, the major bottleneck is related to the construction of the power-

set Γ. Indeed, given a frame of discernment Ω with cardinality |Ω| the related power-

set will have a cardinality equals to 2|Ω|, letting the formalization become intractable

very quickly. In order to overcome this limitation, the problem formulation has been

equivalently split in two parts. In detail, while the original formalization considers a

frame of discernment where environmental patterns own an orientation with respect

to the robot moving direction, in the algorithmic solution environmental patterns are

not oriented and the discrimination is made in two steps: first the ones which are

plausible according to the set of information coming from the team are discriminated,

successively the correct one is identified by means of an agreement over the orientation.

Indeed, this two-steps procedure allows to significantly reduce the cardinality of the set

Ω and therefore to keep the overall complexity of the proposed technique affordable.

The drawback is presented, if a non-rigid formation is assumed, by the fact that some

problems could arise when an eventual mutual localization module would introduce

error estimates. In this case the first phase could be prone to misunderstanding.

4.5.5 Experimental Results

In this section, an experimental validation of the proposed topological map-building

technique is proposed. Experiments have been carried out by exploiting two robots
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SAETTA having a complementary 180◦ field of view (see Figure 4.13 ). The experi-

ments encompass all the environmental patterns described in Section 4.5.2. In partic-

ular, three different scenarios have been considered.

The motion of a robot is regulated by a very simple rule: if an obstacle is sensed

on the heading direction, or if a large discontinuity is detected by the lateral sensors, a

360◦ rotation is performed by each robot. Note that, the rotation maneuver is required

only to make up for the limited sensing resolution of the array of infrared range-finders.

Indeed, this could be avoided if a sensor with a more refined resolution were available,

e.g., a laser range-finder.

140 cm

140 cm

t1

t2

t3 t4

a)

b)

390 cm

Figure 4.13: First scenario. a) scenario of the first experiment: the environment can be

partitioned into a sequence constituted by a corridor (upper part), a T-junction, another

corridor and a dead end b) the environment reconstructed by IR sensors is visible in the

background. Triangles represents robot poses over time, while semi circles show the parts

to be monitored by each robot.

The first scenario, with the related robots paths, is depicted in Figure 4.13. The

sequence of mass aggregation performed by the two robots is shown in Figure 4.14. In

particular, the solid (green) line represents the ground-truth, while the cross-dashed

(red) line represents the output of the coarse aggregation involving a set of non oriented

environmental patterns, and the dashed (blu) line describes the resulting (oriented)

patterns obtained after the two-step aggregation procedure is performed.
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Figure 4.14: Estimation process over the time for the first experiment: solid (green) line

represents the ground-truth, cross-dashed (red) line represents the output of the sensor

fusion using the TBM conjunctive rule, dashed (blu) line represents the output of the

algorithm using feature orientation information.

From the beginning until time t1, each robot detects a wall and, therefore the

element of the power-set supporting both a corridor and a T-junction will be set with a

mass greater than 0. Now, since the algorithmic solution described in Subsection 4.5.4.2

is considered, the aggregation (first-step) cannot solve the ambiguous situation, due to

the lack of knowledge about the orientation. However, by performing the second step

a conflict regarding the orientation of the T-junction arises and therefore the corridor

is taken as the correct pattern. Successively, at time t2 the formation moves into a

T-junction. In this case both robots detect a corner along with a wall, and therefore no

doubt concerning the correct pattern remains after the masses aggregation (first-step)

is performed. Furthermore, as a large discontinuity is detected, the two robots perform

a full rotation as explained above. After that, till time t3 the two robots remain within

a corridor performing the same aggregation as discussed for the first time interval.

Note that, due to the noise affecting the measurements, a couple of times a convex

corner is erroneously detected by one of the two robots, making the two observations

contradictory. As a result, a high value for the m(∅) is obtained by the two robots.

After time t3, the two robots approach a dead-end and also in this case a full rotation is

performed. Apart from a few erroneous features extraction both robots detect a convex

corner which supports both the L-turn and the dead-end. As for the corridor, the lack

of information about the orientation does not allow to disambiguate the proper profile

after the first step. Nevertheless, the dead-end is properly recognized after the second

step is performed.

The second scenario, which considers two intersecting corridors, is shown in Fig-

ure 4.15. After a correct initial estimation of the corridor, the couple of robots repeat-
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Figure 4.15: Estimation process over the time for the second experiment: solid (green)

line represents the ground-truth, cross-dashed (red) line represents the output of the sensor

fusion using the TBM, dashed (blu) line represents the output of the algorithm using feature

orientation information.

edly fails to estimate the crossing. Indeed, this is due to the wrong feature extraction

performed by one of the two robots. In particular, three erroneous detections are per-

formed. On the first case, one of the two robots correctly identifies two corners while

the other one simply recognizes a segment. This leads to the wrong (but plausible

according to the data) detection of a T-junction. On the second case as shown in

Figure 4.16, one of the two robots correctly identifies two corners while the other one

recognizes two roughly parallel segments which do not respect the minimum distance

constraint discussed in Subsection 4.5.2. Now, since no feature is available for the faulty

robot the entire mass is assigned to the union of all the hypotheses, i.e., m(P) = 1. As

a result, the two profiles crossing and T-junction, supported by the detection of the

other robot, cannot be disambiguated. Finally, on the third case an L-turn is detected.

This can be explained by the fact that one of the two robots erroneously recognizes a

convex corner instead of a concave one. As a consequence, by combining the patterns

supported by the correct detection of a concave corner (by one robot), with the patterns

supported by the wrong detection of a convex corner (by the other robot), the only

plausible pattern turns out to be the L-turn (Figure 4.18). Differently, the crossing is

properly recognized when both robots recognize a couple of concave corners each. Note

that, this situation could be partially recovered by assigning a mass m(P) > 0 to the

element representing the whole set of environmental patterns. In addition, if an index

of quality about the feature extraction process were available, the value of m(P) could

even be accurately tuned. Obviously, the higher the observation reliability is the lower

the value of the mass would be. For sake of clarity, let us now consider a numerical
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a) b)

Figure 4.16: Feature extraction. a) a robot correctly detects a pair of angles b) a robot

fails to recognize a pair of angles estimating a meaningless dashed line.

a) b)

Figure 4.17: Corner identification. a) the robot correctly identify a concave corner b)

the robot correctly identify a convex corner.

Power set

Power set

Power set

Figure 4.18: Mass aggregation for a couple of robots under the assumption of perfect

measures. a) mass assignment for the first robot b) mass assignment for the second robot

c) result.

example describing this situation. Figure 4.18 shows the result of the aggregation in

the case of ideal measurements, while Figure 4.19 shows the result of the aggregation

if the suggested workaround is taken into account. In the first case, the result of the

aggregation does not allow to detect the correct pattern even if further aggregations

are considered, while in the second case this would be possible as the correct pattern

is still considered plausible.

The last experiment involves the detection of the L-turn. Also in this case the orien-
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Power set

Power set

Power set

Figure 4.19: Mass aggregation for a couple of robots under the assumption of noisy

measurements. a) mass assignment for the first robot b) mass assignment for the second

robot c) result.

tation of the relational feature allows to properly estimate the surrounding environment

as can be seen in Figure 4.17 with no contradiction.

4.6 Conclusions

In this chapter the data aggregation problem for a multi-agent system has been in-

vestigated. Agents are assumed to be independent reliable sources which collect data

and collaborate to reach a common belief. A distributed protocol for data aggregation,

which was proved to converge to the basic belief assignment (BBA) given by a central-

ized aggregation based on the Transferable Belief Model (TBM) conjunctive rule, has

been provided either for static and dynamic scenarios. Furthermore a practical case for

multi robot systems, related to the topological map building, has been described.

This framework finds its effectiveness in categorization problems, where the set of

hypotheses taken into account is limited: it is worth of note that such technique is

computationally expensive with respect to other approaches, e.g. Bayesian one, and it

can be used only in proper contexts. Future work will be mainly focused on the possible

extension of the proposed technique on more demanding topologies, e.g. graphs, thus

on more demanding scenarios. While the trees can easily represent interaction between

static sensors, the use of cyclic structures better describes the interaction between

mobile units without taking into account the problem of a distributed spanning tree.

Another issue is related to the possibility of this system to store information over the

time: at now, only memoryless data fusion has been taken into account. Particularly

related to the TBM, this formulation shows another drawback: the mass related to

contradiction tends to increase over the time because it substantially integrates all
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possible ambiguities, i.e. noise, over the time. This peculiarity even more hinders the

introduction of a recursive data fusion system.

4.7 Example of Distributed Data Aggregation

In the following, an example of distributed data aggregation involving a system of 5

agents (sources) observing an event is given. Two facts are assumed to be possible for

the observed event, hence the following frame of discernment is defined Ω = {a, b} and
the following power-set is obtained. Γ = {∅, a, b, {a, b}}. Observations collected by

the agents are summarized in Table 4.1.

Set # Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

∅ 0 0 0 0 0

{a} 0.1 0.2 0.1 0.2 0.3

{b} 0.8 0.7 0.8 0.7 0.4

{a, b} 0.1 0.1 0.1 0.1 0.3

Table 4.1: Observations collected by the system of 5 agents concerning the event.

In the case the centralized TBM aggregation schema is considered, according to

Definition 6 the result of the data aggregation is shown in Table 4.2.

Set # Agent 12 Agent 123 Agent 1234 Agent 12345 C-TBM

∅ 0.23 0.341 0.4781 0.63499 0.63499

{a} 0.05 0.011 0.0035 0.00213 0.00213

{b} 0.71 0.647 0.5183 0.36285 0.36285

{a, b} 0.01 0.001 0.0001 0.00003 0.00003

Table 4.2: Centralized TBM: final result and progressive aggregation.

Time t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9

Edge e12 e13 e24 e35 e12 e13 e12 e35 e24

Table 4.3: Edge selection process.

Let us now consider the distributed TBM aggregation schema proposed in this work.

In particular, Fig 4.20 depicts the multi-agent system where the solid (black) lines de-

scribes the network topology G, while the dashed (red) lines represents the spanning

tree T computed in a distributed fashion by the agents. The edge selection process for
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Figure 4.20: Multi-Agent system: solid (black) lines represent the network topology G,

dashed (red) lines describe the spanning tree T.

the proposed example is described in Table 4.3. For sake of simplicity, only collabora-

tions among agents which augment their common knowledge, i.e., the novelty is not the

neutral element n at least for one of the two agents, have been considered. Each agents

has a table where the common knowledge with its neighbors is stored. In particular, by

assuming each mass can be represent with a double (4 bytes in our representation),

the memory occupancy for each agent is equal to 4 x 2 x 8 = 64 bytes, where 2 is

the maximum number of neighbors in the spanning-tree T and 8 is the cardinality of the

power-set Γ. In the proposed example, the system of agents reaches a converge toward

the same BBA after 9 steps. In particular, it can be noticed that each single agents

has the same BBA (Tables 4.10,4.11, 4.12) as in the case of the centralized aggregation

schema based on the TBM conjunctive rule (Table 4.2).

Set # Agent 1 s̄1,2 s̃1,2 Agent 2 s1(t)⊕ s2(t)
∣∣∣
t=1

∅ 0 0 0 0 0.23

{a} 0.1 0 0.1 0.2 0.05

{b} 0.8 0 0.8 0.7 0.71

{a, b} 0.1 1 0.1 0.1 0.01

Table 4.4: Distributed TBM: t=1, s1 ⊕ s2.

Set # Agent 1 s̄1,3 s̃1,3 Agent 3 s1(t)⊕ s3(t)
∣∣∣
t=2

∅ 0.23 0 0.23 0 0.341

{a} 0.05 0 0.05 0.1 0.011

{b} 0.71 0 0.71 0.8 0.647

{a, b} 0.01 1 0.01 0.1 0.001

Table 4.5: Distributed TBM: t=2, s1 ⊕ s3.
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Set # Agent 2 s̄2,4 s̃2,4 Agent 4 s2(t)⊕ s4(t)
∣∣∣
t=3

∅ 0.23 0 0.23 0 0.407

{a} 0.05 0 0.05 0.2 0.017

{b} 0.71 0 0.71 0.7 0.575

{a, b} 0.01 1 0.01 0.1 0.001

Table 4.6: Distributed TBM: t=3, s2 ⊕ s4.

Set # Agent 3 s̄3,5 s̃3,5 Agent 5 s3(t)⊕ s5(t)
∣∣∣
t=4

∅ 0.341 0 0.341 0 0.5395

{a} 0.011 0 0.011 0.3 0.0069

{b} 0.647 0 0.647 0.4 0.4533

{a, b} 0.001 1 0.001 0.3 0.0003

Table 4.7: Distributed TBM: t=4, s3 ⊕ s5.

Set # Agent 1 s̄1,2 s̃1,2 Agent 2 s1(t)⊕ s2(t)
∣∣∣
t=5

∅ 0.341 0.23 0 0.407 0.4781

{a} 0.011 0.05 0.1 0.017 0.0035

{b} 0.647 0.71 0.8 0.575 0.5183

{a, b} 0.001 0.01 0.1 0.001 0.0001

Table 4.8: Distributed TBM: t=5, s1 ⊕ s2.

Set # Agent 1 s̄1,3 s̃1,3 Agent 3 s1(t)⊕ s3(t)
∣∣∣
t=6

∅ 0.4781 0.341 0 0.5395 0.63499

{a} 0.0035 0.011 0.2 0.0069 0.00213

{b} 0.5183 0.647 0.7 0.4533 0.36285

{a, b} 0.0001 0.001 0.1 0.0003 0.00003

Table 4.9: Distributed TBM: t=6, s1 ⊕ s3.

Agent 1 s̄1,2 s̃1,2 Agent 2 s1(t)⊕ s2(t)
∣∣∣
t=7

∅ 0.63499 0.4781 0 0.4781 0.63499

{a} 0.00213 0.0035 0.3 0.0035 0.00213

{b} 0.36285 0.5183 0.4 0.5183 0.36285

{a, b} 0.00003 0.0001 0.3 0.0001 0.00003

Table 4.10: Distributed TBM: t=7, s1 ⊕ s2.
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Agent 3 s̄3,5 s̃3,5 Agent 5 s3(t)⊕ s5(t)
∣∣∣
t=8

∅ 0.63499 0.5395 0 0.5395 0.63499

{a} 0.00213 0.0069 0.2 0.0069 0.00213

{b} 0.36285 0.4533 0.7 0.4533 0.36285

{a, b} 0.00003 0.0003 0.1 0.0003 0.00003

Table 4.11: Distributed TBM: t=8, s3 ⊕ s5.

Agent 2 s̄2,4 s̃2,4 Agent 4 s2(t)⊕ s4(t)
∣∣∣
t=9

∅ 0.63499 0.407 0.28 0.407 0.63499

{a} 0.00213 0.017 0.09 0.017 0.00213

{b} 0.36285 0.575 0.6 0.575 0.36285

{a, b} 0.00003 0.001 0.03 0.001 0.00003

Table 4.12: Distributed TBM: t=9, s2 ⊕ s4.
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Chapter 5

A stigmergic approach for

environmental monitoring

In this Chapter the gas source localization problem is treated. In particular a stigmer-

gic approach, i.e. the process by which agents indirectly coordinate/cooperate, is used:

inspired by a well known algorithm in literature, the Kernel DM+V algorithm, an en-

vironmental monitoring technique using low cost devices and smart environments, i.e.

places which provide some services to the robots, is proposed1

5.1 Introduction

The interest in robotic olfaction for air quality monitoring is growing steadily, mostly

driven by the need to protect the humans and the environment from the presence

of toxic contaminants and pathogens in the air. A mobile robot equipped with an

electronic-nose (e-nose) can act as an autonomous wireless node for monitoring pur-

poses. The use of a mobile platform offers a number of important advantages compared

to stationary sensors, including: higher and adaptive monitoring resolution; compen-

sation for inactive sensors; adaption to dynamic changes in the environment; the pos-

sibility to do source localization and tracking; and the possibility to perform first aid

and cleanup of hazardous sites.

Robotic olfaction is a young research field, and a number of research challenges

remain open. The two key topics in this field are gas source localization and gas

1This is a joint work with the AASS Research Center, Örebro University, Sweden
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distribution modelling. Gas source localization with mobile robots deal with the goal

of finding a source that releases some chemical substance. Gas distribution modelling

is the task of deriving a truthful representation of the observed gas distribution from

a set of spatially and temporally distributed measurements of gas concentration. Both

topics are very challenging tasks. One main reason is that in many realistic scenarios

gas is dispersed by turbulent advection. Turbulent flow creates packets of gas that

follow chaotic trajectories (84). This results in a concentration field that consists of

fluctuating, intermittent patches of high concentration.

The two topics above are closely connected, and can be seen as dual aspects of the

same problem. On one hand, knowing the gas source may allow us to form predictions

about the gas distribution; on the other hand, gas distribution modelling can provide

useful information to locate a gas source. There are, however, several difficulties that

limit the practical applicability of current techniques. Gas distribution modelling re-

quires that the robot is able to self-localize (with respect to a fixed frame or respect to

other robots) and possibly to build a map of the environment. This in turn typically

requires the use of expensive sensors and/or computationally heavy algorithms, which

makes these techniques unsuitable for practical, inexpensive service or consumer robots.

Gas source localization, by contrast, can be performed in a reactive or quasi-reactive

way with minimal sensing and computation. Unfortunately, the effectiveness of reac-

tive approaches is seriously hindered by the turbulent nature of gas distributions, which

prevents the formation of a smooth concentration gradient that the robot can follow.

In this chapter, we propose to overcome these limitations by allowing the robot

to use the environment to store information. For this, we use an RFID floor, that is,

a floor with a grid of RFID tags buried underneath it. RFID floors are an emerging

technology (85), and several authors have used them to improve localization accuracy.

For instance, in (86) the robot gathers the absolute positions stored into the floor tags

to approximatively compute its own location. In (87) a Monte Carlo approach is used

to estimate robot position, where the probabilistic model related to the antenna range

is used to instantiate a particle filter.

In our work, we use an RFID floor to store information about gas distribution.

In a nutshell, our approach works in two phases. In the first phase, the robot stores

information about the local gas concentration, derived from sensor measurements. In

the second phase, the robot stores information about the global distance to the areas
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of highest concentration. The two phases build upon a combination of an algorithm

for gas distribution mapping (88) and an algorithm for stigmergic path planning (19),

respectively. The result is the creation of a map, stored in the RFID floor, that ap-

proximates the distance to a gas source. This map provides a smooth (metric) gradient

toward the gas source, which can be used as a sort of “virtual” gradient of the gas con-

centration. This enables a robot to navigate to the source by cheap gradient descent

on the values read from the RFID tags.

Our algorithm only relies on the information coming from the gas sensor and read

from the floor tags. The robot does not need to know where it is or to store any global

information onboard. Therefore, our approach is suitable for low-cost robots with very

limited sensing and computational capabilities. As for the RFID floor, the very limited

storage capacities of standard RFID tags proved to be sufficient for our purposes, even

under long lasting experiments.

The use of the environment to store information is a well known mechanism in

nature, called stigmergy (89). Stigmergic approaches are used both in natural and

artificial agents to enable the cooperative performance of tasks (90). Accordingly, we

show in this chapter how our approach naturally extends to multiple robots, enabling

them to perform the mapping task in a cooperative way by simply storing and reading

information from the same RFID floor. Interestingly, cooperation emerges even if the

robots are not aware of each-other.

5.2 Background

In this section we recall some concepts about the two basic approaches upon which our

algorithm is based. In Subsection 5.2.1 the gas map building is described while in the

Subsection 5.2.2 distance mapping process over an RFID floor is summarized.

5.2.1 Olfaction maps

As mentioned above, the two key topics in robot olfaction are gas source localization

and gas distribution modelling. Gas source localization involves three subtasks: gas

finding, gas source tracking and gas source declaration (91). Gas finding is the task of

detecting an increased concentration of a target gas; gas source tracking is the task of

following the cues determined from the sensed gas distribution towards the source; and
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gas source localization is the decision process finding out whether the source has been

reached, at which location it is, or which object it is. Most of literature copes with

gas source localization using bio-inspired approaches: for instance, in (92) a genetic

algorithm is applied to a swarm of robots in order to locate the leakage of gas into an

environment presenting a contained airflow. The algorithm is split in two phases: in

the first each robot perform a spiral movement to explore the surrounding environment

while in the second it moves according to the gathered information and data coming

from the other robots. A similar bio-inspired spiral motion is proposed in (93), where

robots execute different strategies depending on the concentration sensed and the wind

direction measured by an anemometer. Experiments are executed under the assumption

of laminar flow. In (94), three bio-inspired odor source localization algorithms (casting,

surge-spiral and surge-cast) are tested both in simulation and with real robots in a wind

tunnel, and their expected performance is derived through a theoretical model.

Current approaches to gas distribution mapping can be divided into two groups.

Model-based approaches, such as the one proposed by Ishida et al. (95), assume a

particular model of the time-averaged gas distribution and estimate the corresponding

parameters. Model-free approaches deal with the fluctuating nature of the gas distri-

bution without assuming a particular form of the model. In (96) and (97) individual

concentration samples were recorded over a prolonged time (several minutes) at grid

locations, and in (91, 98) gas sensor readings were statistically integrated into a spatial

grid. Lilienthal et al. (88) propose a statistical approach (the Kernel DM+V algo-

rithm) of the observed gas distribution, treating gas sensor measurements as random

variables. The learned model is represented as a pair of grid maps, one representing

the distribution mean and the other one the corresponding predictive variance per grid

cell. Reggente et al. (99) show that the variance distribution map typically provides

more accurate informations about the source location than the mean distribution map.

In this work, we use the Kernel DM+V algorithm (88) because it allows a systematic

and meaningful representation of the maps, which capture important aspects related

with the gas source location thanks to the computation of the variance per grid cell,

The general gas distribution mapping problem addressed is to learn a predictive two

dimensional model p(s|x,x1:n, s1 :n) for the gas reading s at location x, given the robot

trajectory x1:n and the corresponding measurements s1:n. To study how gas is dispersed

in the environment we consider measurements from metal oxide sensors. The central
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idea of kernel extrapolation methods is to understand gas distribution mapping as a

density estimation problem addressed using convolution with a Gaussian kernel N,

which governs the amount of extrapolation. The map building process, at each time

instant ti, computes for every cell center xl the following quantities, basing on the

current position xi and gas concentration measure si of the robot:

Ωl =
∑

i=1:n

N(|xi − xl|, σ) (5.1)

Ml =
∑

i=1:n

N(|xi − xl|, σ) · si (5.2)

Vl =
∑

i=1:n

N(|xi − xl|, σ) · (si − sl(i))
2 (5.3)

where Ωl is the weight map which intuitively represent the information content of a

sensor measurement i at grid cell l. Ml, Vl are respectively the mean distribution map

and the variance distribution map. The term s(l(i)) is the mean prediction of the cell l

closest to the measurement point xi and, consequently, the quantity (si− s(l(i)))
2 is the

variance contribution of reading i, and σ is the standard deviation of the Gaussian N.

The quantity Ωl is used as a normalization factor in order to build the estimate taking

into account the particular trajectory of the robot which both may privilege certain

locations respect to others or to not cover some locations:

ml = α
Ml

Ωl

+ (1− α)m0 (5.4)

vl = α
Vl

Ωl

+ (1− α)v0 (5.5)

where α is a confidence factor which indicates high confidence for cells for which a large

number of readings close to the center of the respective grid cell is available. m0 and

v0 represent the best estimates, which are used for cells with a low confidence, i.e. for

cells for which we do not have sufficient information from nearby readings. As the best

guess of the mean concentration m0 we use the average over all sensor readings and v0

is the average over all variance contributions.
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5.2.2 Building the artificial gradient

Gradient maps over an RFID floor have been presented in (19). The environment can

be represented by a grid of cells into which one or more robots write some data.

In particular, in this approach, an estimate of the distance to a given goal is stored

into every cell. To this purpose, the robot starts from a known goal writing a 0 value

both into this cell and into an internal counter. Then robot executes random trajectories

updating the value of the cells when needed.

In particular, during the execution of the algorithm, the robot compares the es-

timate stored into the cell over which it is, with the actual estimate obtained from

its motion. In particular the latter one is obtained incrementing the internal counter

whenever a transition from a cell to another is detected.

It has been analitically proven that, under a full coverage of the environment, a

distance map reporting for each cell the minimum distance to the goal is asymptotically

obtained. This process does not need data storage on the robot except for the actual

estimated distance. Furthermore the algorithm can be run concurrently by multiple

units and it is robust with respect to the deployment of obstacles on the floor. The

presence of multiple goals is managed building several maps at the same time using the

multiple fields available on an RFID floor.

5.3 Building the map

In our scenario one or more robots travel over an hexagonal grid of cells. In particular

each cell is described by an Id and a readable/writeble memory f . It is worth to note

that the position of the cells is unknown to the robots, and that the Id does not furnish

any metrical information as it is only used to detect the passage of the robot between

two cells. The grid can be represented by a graph G = (R,E), where the set of nodes R

represents the cells and the set of edges E represents the links between adjacent cells.

The centers of two adjacent cells, pi and pj , are separated by an interdistance d, i.e.

E = {eij : ||pi − pj || = d}. The gas dispersal is supposed to be induced by a stationary

source, i.e. the gas dispersal is described by a stationary aleatory process (88).

In the further, the description of the algorithm will be detailed taking into account

only a robot. This description does not loose of generality with respect to the multi

robot case thanks to the stygmergic approach that is used in our algorithm: in fact
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the data stored in each cell are retrieved and manipulated without taking care of the

identity of the robot that performs these operations. As it will be detailed in the

further, this scheme will lead to an implicit collaboration even if the agents are not

aware of each other.

The time execution is discretized into equal slots tk, k ∈ N. For each tk, the robot

is supposed to interact with the cell that it occupies. In particular our algorithm can

be split in two phases. In the first the agent acquires and elaborates gas-concentration

measures. Once this process stops, the robot builds a distance map towards interesting

regions.

5.3.1 Phase I : map seeding

During this phase the robot gathers concentration measures. In particular at each

instant tk the agent collects a sample si(tk) on a generic cell ri ∈ R. The value si(tk)

is represented by an integer variable: this choice is supported by the fact that these

values are gathered sampling the transducers by an analog to digital (AD) converter.

These data are used to iteratively build both concentration (M) and variance (V)

maps.

In particular the informative content of a cell ri is defined as:

fi(tk) = (mi(tk), vi(tk), ci(tk)) (5.6)

where mi(tk) and vi(tk) represent respectively the actual mean and variance concentra-

tion related to the cell ri and ci(tk) is a counter representing the number of time slots

during which the robot was on the cell ci.

This representation avoids the storage of any information on-board the robot: in

this phase all the needed information is stored in the cells.

In detail, both the values of concentration and variance are supposed to be dis-

cretized into M levels lj ∈ 0, . . . , LM , j = 0, . . . ,M with lj+1 = lj +∆l,∆l ∈ N+.

Whenever a robot acquires a measure over the cell ri, the memory fi is updated as

the following:

mi(tk) = km

(

ci(tk−1)mi(tk−1) + s(tk)

ci(tk−1) + 1

)

(5.7)

vi(tk) = kv

(

ci(tk−1)vi(tk−1) + ci(tk−1)m
2
i (tk−1) + s2(tk)

ci(tk−1) + 1
−m2

i (tk)

)

(5.8)

121



5. A STIGMERGIC APPROACH FOR ENVIRONMENTAL
MONITORING

ci(tk) = ci(tk−1) + 1 (5.9)

where km and kv are constants to normalize the values into the aforementioned levels.

In this manner, at each location, an estimate of the current concentration and

variance is iteratively built.

As the robot does not have any metrical information, the related motion is governed

by a random behavior: the agent goes straight until an obstacle forbids the motion.

When this happens, random rotations are performed until a free path is available.

This scheme, despite the initial deployment of the RFID infrastructure, allows to

drastically reduce the amount of resources to be installed on the mobile platform: in

this phase the robot does not store anything on its own memory and the computational

burden is reduced only to integer operations.

After a certain amount of time this phase is declared completed: at the end of this

procedure the RFID floor is seeded by the triplets reported in Eq.(5.6).

Some considerations about the end of this phase are needed: being the navigation

governed by a stochastic behavior, it is not possible to compute in a closed form the

completion time. However, it is possible to empirically establish a good estimate basing

on the dimensions of the environment, the number of the robots and the related cruise

speed. In order to clarify this consideration, a couple of examples is reported: to

effectively cover the PEIS Home, the first phase took about 50 minutes with a single

robot while the same task took about two hours in the PEIS Home 2 with a couple of

SAETTAs. It is worth to note that only very few objects were present on the floor.

In our experiment we chose a much longer period in order to study the behavior

of the algorithm with respect to saturation phenomena. In particular, we wanted to

emphasize the robustness of our algorithm with respect to modification of the gas

distribution. Over the time in fact the environment tends to be saturated and, as it

will be shown in Section 5.4, some areas show a growing concentration. In order to

consider this particular phenomenon, we assume that the source which releases the gas

can be described as a stationary stochastic source.

Secondly, similarly to (88), a full coverage is not needed: the filtering effect of the

second phase will update the empty cells by the values obtained on the adjacent ones.

An empty cell is characterized by a triplet f = (0, 0, 0). Obviously, the less the number

of empty cells, the better the overall estimate.
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Finally, a consideration about the multi robot execution is needed. Before the task

execution, we used a simple calibration which resulted to be effective to our purposes:

we calibrated the sensors using the values gathered by the e-nose respectively when the

gas-compound is not present and when it is next to the transducer. In this manner

each robot can furnish normalized measures which are compliant with the ones provided

by the other ones: as it will be detailed in the further even this simple calibration is

sufficient to effectively perform a multi robot seeding.

5.3.2 Phase II : gradient map

In this phase the robot travels on the grid in order to build potentials centered at

interesting zones. While in (19) the case of a single goal was treated, in this scenario

we try to effectively represent multi modal profiles in which local maxima represent

more interesting locations. During the building process, the robot stores in memory a

variable, the potential counter, for each map to be built.

This variable is initially set to zero; whenever a transition is detected by a robot,

i.e. it passes from a cell to another, the potential counter is decremented by a factor ρ.

This value is then compared with the one retrieved from the tag where the robot has

arrived: the minimum between these two values is written in the memory of the cell

and the navigation continues. At the end of the algorithm, each tag, for each map, will

contain a value which is proportional to the vicinity to the more influencing maximum.

As described before, also in this case the navigation has a random nature.

It is worth to note the role of ρ: as it will be detailed in the further, this parameter

plays an essential role in order to obtain an effective representation of a multi modal

profile.
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A description of the gradient mapping is reported in Algorithm 3.

Algorithm 3:

Notation: Y ∈ R subset of cells, w(y) generic value (wether mean or variance)
on the cell y

Require: all the tags have an initial value w, a step increment value
δ = ∆l/k, k ∈ N
Ensure: each cell will contain a value proportional to its proximity with respect
to the more influencing maximum

Ycurr ← ∅
potential counter = 0
while Explore do

Yprev ← Ycurr
Ycurr ← tags in range()
Ynew ← Ycurr − Yprev

choose random y ∈ Ynew potential counter ← potential counter − δ
w(y)← max(w(y), potential counter) potential counter ← w(y)

end

5.3.3 Simultaneous building: the Olfaction gradient map

At the end of the first phase, it could be straightforward to apply the algorithm in (19).

However, this approach presents limitations when a multi modal profile is considered.

In fact the turbulent nature of the gas dispersal could take to unuseful representations.

In order to cope with that, the parameter ρ is used to filter out the effect of the

turbulence.

In practice this parameter is used to isolate interesting locations within a certain

zone. In particular it is possible to relate ρ with the previous discretization step ∆l as

the following:

D =
∆l

δ
(5.10)

with D ∈ N. As a result, whenever D is greater than one, a finer smoothing is per-

formed. In particular some asymptotic properties about the distance maps can be

inferred under the following assumptions:

Assumptions 2

(i) the reader never skips over a tag

124



5.4 Experimental results

(ii) ∀tk only a tag is in the range of the robot

(iii) the exploration strategy is complete

these conditions can be assumed achievable being supported by experimental results.

A particular consideration about the completeness of the exploration is due: this is an

asymptotic property that is respected taking into account our navigation strategy and

the fact that the environment is of finite dimensions.

Furthermore, it is useful to formalize the definition of local maximum in our con-

text:

Definition 5.1 Under Assumptions 2, a cell ri is referred as a maximum for the map

X if it contains a value x̄i(t) s.t. ∃T ′ ∈ N0 s.t. x̄i(tk) > xj(tk), ∀tk ≥ T ′ and ∀eij ∈ E

where xi and X can be referred whether to the mean (mi and M) or variance (vi

and V) map representations.

As a consequence, it is possible to infer the following property about the maps which

are built by the algorithm:

Theorem 5.1 Under assumptions 2, asymptotically in the map X each area having at

least radius D−1, centered at the maximum rmax, will contain values which are smaller

or equal to x̄max.

As it can be argued, the choice of D corresponds to filter out higher frequencies on

the gradient profile: for example, choosing D = 1 will correspond to have no smoothing

while choosing D ≥ 2 will take to a filtering effect. Denote with p̄ the longest path

between all over the shortest paths connecting two cells of the map. If δ < ∆l

p̄
, then only

the highest value collected during the first phase will not be updated. As a consequence,

all the other cells will contain a value whose magnitude depends only on the distance to

this maximum. For further details, the related demonstration is reported in Appendix.

5.4 Experimental results

In this section some experiments are analyzed with a focus on the properties previously

discussed about the algorithm. In particular two data sets are considered: the first
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was gathered in an empty space free of obstacles, while in the second walls and one

table in the middle of the room were added. The experiments lasted 9 and 18 hours

respectively. To the best of our knowledge, no experiment lasted so long in a similar

scenario. Although a shorter time for this space is typically needed (2 hours with two

robots), this time was taken into account because we wanted to test the robustness of

our algorithm with respect to the first phase: one of the main issues related to the gas

dispersal is that it can lead to saturation phenomena. For this reason, we considered

a stationary source (this does not imply a stationary gas distribution but conversely

it only characterizes the gas releasing). This assumption fits many scenarios. In a

domestic environment, it can be associated with a gas leakage in a pipe or when a

certain mass, e.g. a basket plenty of organic compound, releases chemical substances in

the air. The gas distribution changes over the time, and the source localization problem

becomes more difficult especially when the concentration increases in several locations.

As stated in (19), the second phase requires several hours. This drawback is com-

pensated by the minimal hardware which is installed on the mobile platform and by

the fact that the results of this phase depend only by the end of the seeding process.

In Subsection 5.4.1 the experimental setup is described and considerations about

the data sets are reported in Subsection 5.4.2 . In Subsection 5.4.3 results about an

empty space are presented, while in Subsection 5.4.4 map building with obstacles is

contemplated. Finally Subsection 5.4.5 discusses about the results gathered using a

multi robot system for the seeding phase.

5.4.1 Experimental setup

Experiments have been carried out into the PEIS Home 2. Compared to its prede-

cessor, the PEIS Home (17), this environment furnishes a wider area, about 60m2,

which allowed us to conduct extensive experiments. One of the distinctive features of

these structures is that their floors contain an hexagonal grid of RFID tags, which can

be individually accessed by the robot while it navigates, and thus act as a physical

read/write memory . In particular, each tag can store up to 8Bytes and the interdis-

tance between two adjacent units is 20cm. The tests were conducted using a couple

of SAETTA mobile platforms. Thanks to their small dimensions, these vehicles can

be easily used into indoor environments and they can carry on several sensors. In this

work robots mount IR sensors, a webcam, one SkyeModule M1 RFID reader and a
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Figure 5.1: a) Robot SAETTA: on the robot sides an RFID reader and a gas sensor are

mounted b) SAETTAs explore the PEIS Home 2.

MiCS-5521 metal oxide sensor as depicted in Fig. 5.1. The first two are used for ob-

stacle and collision avoidance, while the latter ones are used to execute our algorithm

(see Fig.5.1). The RFID reader checks for tag presence with a frequency of 2.5Hz; the

gas sensors are collected at the same frequency after performing an average of samples

collected at 32Hz. The webcam grabs images at 5Hz while the IR sensors are checked

at 40Hz. The maximum speed of the robot is 7cm/s. The exploration is performed

by a simple behavior which consists in moving straight until an obstacle is detected.

When this happens, a random rotation is performed. The collision avoidance, being the

landscape uniform, was implemented using the Polly algorithm (101) coupled with IR

sensors. The latter ones were used in order to cope with obstacles suddenly appeared

in front of the robot after performing a rotation. Due to the long lasting experiments,

a voltage supplier was used: electric cables were passed over the lamps on the roof. For

the task execution a person was in charge to avoid that cables would tangle each other.

This limitation is overcome in typical scenarios: as mentioned before, for the first

phase, a shorter time is sufficient in order to effectively seed the map. Another solu-

tion, when multiple units are available, consists in using some robots when other are

recharging the batteries. As it will be detailed in the further, the seeding performed

with multiple robots is demonstrated to be effective.

The second phase instead does not suffer of time interruption as it depends only by

the end of the first phase.
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a)

b)

c)

d)

m

Figure 5.2: Kernel DM+V algorithm results. White circles represent gas source location

a) mean map related to Experiment 1 b) variance map related to Experiment 1 c) mean

map related to Experiment 2 d) variance map related to Experiment 2.

5.4.2 Data set validation

In order to estimate the goodness of the data, the Kernel DM+V algorithm (88),

summarized in Subsection 5.2.1 , has been executed for both datasets. The results, de-

picted in Fig.5.2, show that the source is estimated with good accuracy both in mean

and variance maps. The error estimate is always within 50cm of the exact location

and, as expected, the variance representation shows more effectively the source loca-

tion: in fact,regarding the mean representation, the peak is in the middle of an high

concentration area, while the variance representation is less susceptible to saturation

phenomena.

5.4.3 Mapping with no obstacles

In this experiment Saetta robots collected data over a time of 9 hours in an environment

free of obstacles. In this test, data were used only for the first phase while the second one

was only simulated. The results are depicted in Figure 5.3. In this case both the mean

(Fig.5.3-b) and the variance (Fig.5.3-d) maps correctly estimated the source location

with an error of one cell. The distance map process was executed after that the seeding

phase showed a particularly relevant maximum in the vicinity of the source location:

in Fig.5.3-a and Fig.5.3-c the mean and variance ones are respectively depicted. It is

worth to note that, in this experiment, data were not filtered.
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a)

b)

c)

d)

Figure 5.3: Experiment 1 performed in the PEIS Home 2 with no obstacles. Gas level was

discretized into LM = 50levels, while D = 5. Yellow cells represent gas source location:

a) end of phase 1: seeding of the mean map, b) mean map. As showed, the error is

contained (1 cell). In the upper left part some local maxima are represented c) end of

phase 1:seeding of the variance map, d) variance map: thanks to a better seeding respect

to the computation of the mean, no local maxima are present.

5.4.4 Mapping with obstacles

The second experiment was executed under more demanding conditions due to the pres-

ence of obstacles and a longer execution period. In the second phase, we considered the

paths traversed by the two robots to validate the concurrency of this phase. In this case

a thresholding of the values was needed. This was necessary especially for the variance

maps: being this environment prone to saturation phenomena due to the long lasting

time, some areas, which were initially clean, showed an increase of variance as the gas

concentration increased over the time into the whole environment. This phenomenon

could be partially handled by filtering data, for example with a forgetting factor: this

kind of solutions, although effective, would introduce an unwanted sophistication of the

algorithm. The threshold instead can be easily set by a sensor calibration prior of the

task execution. This operation consists in acquiring the measures when the sensor is far

away from the source and when it is very close to ethanol. In this manner, the range

of the transducer can be determined. In our scenario we chose the threshold equal

either to the 70% of the maximum value or the 130% of the minimum: in both cases

we achieved good results. However, without applying a threshold, some interesting

observations about the smoothing effect of the parameter δ are possible. In Fig.5.4-a

a distance map considering D = 1 is showed, while in Fig.5.4-c the same data set has
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Figure 5.4: Distance maps obtained with different values of D, considering variance

measures in Experiment 2 without threshold. In Fig. a,c,e Yellow blobs represent gas

source location while the black ones are inaccessible tags a) distance map obtained with

D = 1, b) three dimensional representation of the distance map with D = 1, c) distance

map obtainded with D = 5, d) three dimensional representation of the distance map with

D = 5, e) distance map obtainded with D = 20, f) three dimensional representation of the

distance map with D = 20.

been processed with D = 20. As it can be noticed, the first map is very indented,

while the latter one shows only one maximum located close to the source. Intermedium

solutions can be obtained with a proper tuning of D: for example, Fig.5.4-b shows a

map were two peaks arise setting D = 5. In this case it is also possible to see how the

maxima are distant at least 4 cells each other.

In Fig.5.5-a the variance map obtained considering thresholded values is depicted:

it was built considering the real paths traversed by the two robots. It can be seen

that this representation resembles the asymptotic one obtained by simulation (Fig.5.5-

b). Furthermore, it can be seen that the presence of obstacles distorts the gradient

flux: in this manner the real distance for a cell to the source, greater than the line of

sight range, is correctly represented. It is worth noting the difference between the two

snapshots regarding the center of the image: this is due to a table put in the room; in

the simulated map it is represented by a regular hole, while in the real map it has a

different shape which depends also on the presence of power supply cables deployed on

the floor.
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Figure 5.5: Variance map obtained from Experiment 2: LM = 25 and D = 2. Data were

thresholded considering only values greater than the 70% of the maximum value achievable

by the sensor. Black cells represent obstacles or broken tags, while yellow ones represent

gas source location: a) map obtained considering the real paths performed by the robots

b) asymptotic map obtained integrating real paths with simulation c-d) 3D representation

of the aforementioned maps.

5.4.5 Concurrent seeding

In this experiment also the first phase is parallelized: the measurements performed

by each robot, due to the calibration procedure described in Subsection 5.3.1, are

normalized with respect to a known level. As depicted in Fig.5.6-b, the gap between

the estimate and true position is one cell. It is interesting to analyze the seeding phase

depicted in Fig.5.6-a: the normalization procedure allows the measures gathered by the

robots to be compatible each other. Also in this case the map was evaluated by the

real paths of the robots: although the asymptotic map is not still gathered, it can be

seen how more interesting cells are in the neighborhood of the source.

5.5 Conclusions

While mobile robot olfaction has great potential for future environmental monitoring

application, its development is hindered by the difficulties induced by the turbulent

nature of gas propagation. In this chapter, we have proposed an effective solution to

robot gas mapping that leverages the concept of stigmergy, and can be implemented
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a)

b)

Figure 5.6: Variance map obtained using concurrent seeding: a) seeding phase: the

maximum value is adjacent to the source location b) distance map obtained using real paths.

It is worth of note that asymptotic values are not gathered yet although the representation

is consistent, being the source location properly estimated.

on inexpensive robots navigating on a RFID floor. Our solution combines measure-

ments of gas concentration and fluctuation with distance computation to generate an

artificial potential field whose maxima indicate the likely position of the gas source(s).

This potential is computed on the RFID-floor rather than in the memory of the robot:

this allows the robot to totally ignore its metric location, thus posing only minimalistic

requirements on the needed hardware and software. It also enables multi-robot coop-

eration, by having several robots share the same RFID-floor. Extensive experimental

results show that our approach produces usable gas maps even when using very simple

robots.

The proposed approach points to several direction for further development. One

such direction is to study exploration strategies that use the current information in

the RFID floor. Both exploration and exploitation should consider carefully how to

deal with local minima in the field stored in the floor. Another interesting extension

is to equip the robot with a ring of RFID tag readers, rather than a single reader, in

order to estimate the direction of the gradient in one step. Finally, we plan to study

mechanisms that can cope with the case in which the position of the gas source changes

over time.
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5.5 Conclusions

Appendix

The proof of the Theorem is based on Assumptions 2. Furthermore we state, without

proof, the following propositions (details can be found in (19)):

Proposition 4

• the values m(t) and v(t) are non decreasing for each cell

• At the end of every cycle, the distance counter has the same value of the tag r

upon which the robot is.

With an abuse of notation, denote with tk = 0 the end of the first phase. By this

definition, it is possible to infer the following property:

Lemma 5.1 Each maximum x̄i(t), ri ∈ R, will be equal to its own value at the end of

the first phase, i.e. x̄i(tk) = xi(0), ∀tk ∈ N

Proof: the proof directly exploits the update rule presented in Algorithm 3 and

Definition 5.1. By contradiction, suppose that ∃t′k ∈ N s.t. xi(t
′
k) > xi(0) . This

implies that ∃rj , eij ∈ E, s.t. xi(t
′
k) = max(xi(0), xj(t

′
k−1) − δ) = xj(t

′
k−1) − δ. Thus,

at instant t′k the neighbor rj has a greater value than ri. Hereafter, by Proposition 4

and under the assumption that exploration strategy is complete, being every x non

decreasing over the time, xi will be possibly updated by a neighbor having a greater

value and thus it can not be a maximum according to Definition 5.1. �

It is worth to note that each initial value xi(0), according to Eq.(5.7) and Eq.(5.9),

has the form x̄i(0) = KiD, Ki ∈ N. Now that it has been demonstrated that asymp-

totically the maxima will be constituted by a subset of values gathered at the end of

the first phase, the Theorem 5.1 can be proved.

Proof: Let x̄i(0) be a local maximum and denote with piz the length of the shortest

path linking the cell ri to a generic cell rz. By contradiction, suppose that exists another

maximum x̄j(0), s.t. x̄j(0) > x̄i(0), with pij < D. By Lemma 5.1 the maxima have

the form x̄i(0) = KiDδ and x̄j(0) = KjDδ, Kj > Ki ∈ N. According to Algorithm 3,

∃t′k ∈ N s.t.:

xi(t
′
k) = max(xi(0), xj(0)− pijδ) (5.11)

but being xi(0)−xj(0) = Kj−Ki ≥ D, if xj is within the area of radius D−1 centered

at ci, i.e. pij < D, xi can not be a maximum because xi(t
′
k) = xj(0)− pijδ. �
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MONITORING

It is worth of note that if N multiple maxima having the same value are deployed

in a manner such that every maximum has at least one other homologous at distance

smaller than D, then no other maxima will be present into an area given by the union

of the N areas of radius D − 1 centered at maxima locations. The proof is omitted

being very similar to the previous case.
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Chapter 6

Static Sensor network

localization: an initial step

toward integration between static

and mobile systems

In this Chapter, algorithms concerning localization of static sensor networks are dis-

cussed. This task furnishes the knowledge about the nodes location, which is essential

in order to integrate mobile and static systems

6.1 Introduction

Differently from previous sections, in this chapter algorithms for Static Sensor Networks

are provided. In many contexts, the interaction between static and mobile devices is

essential in order to complete a task: mobile devices operate to improve the perfor-

mances of a preexistent static system, which has been deployed in a certain manner

on the operating scenario. Because the deployment can be done in hazardous environ-

ments, not directly accessible to the human operators, these devices can be randomly

registered, i.e. launched from an airplane, and consequently have to estimate the global

configuration of the network autonomously. Thus, knowledge about the likely position

of the nodes can be considered a prerequisite for the interaction between static and

dynamic Sensor Networks. In such a view, this Chapter can be seen as an initial step
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toward their integration.

Many sensor network applications require location awareness, as it is essential to

know where the information is sensed. Moreover location-based routing protocols could

save significant energy by eliminating the need for route discovery (102). However,

adding hardware like GPS on each node or manually configuring locations are not cost

effective for most sensor network applications. Thus, localization problem, i.e. the

problem of estimating the spatial coordinates of nodes, has received a great deal of

attention from several research groups during the last few years.

As explained in (103) and (104), it is hard to find a solution to this problem and

it is not always possible to identify sufficient conditions for a sensor network to be

localizable. The approaches proposed in literature can be grouped in centralized and

distributed ones, according to the computational issues of localization techniques. Cen-

tralized algorithms suppose the availability of a central unit able to perform complex

computations, exploiting the information retrieved by nodes. Distributed algorithms

spread the computation over the network compensating the lack of knowledge through

an intensive collaborative processing. Both of them come with advantages and draw-

backs. The centralized approach achieves good performances, but cannot be applied on

large networks as they are not scalable. The distributed approach provides sub optimal

solution prone to error accumulation, but it results more robust and scalable.

A centralized approach is proposed in (105), where the semi definite programming

(SDP) is used. This system is centralized, so that all the information are processed

in one station. The gathered measures are used to constrain the node location and

an optimization algorithm furnishes the network configuration in metrical terms. The

result is a bounding region for each node, representing feasible locations where nodes are

supposed to be. An improved SDP able to cope with noisy measurements is provided

in (106). The idea is to take advantage of an additional technique to mitigate the

inaccuracy of the solution provided by the SDP formulation. Authors proposed a

distributed formulation, which is the result of a clusterization and a local execution

of the algorithm within each subset. Therefore, the approach still remains almost

centralized, while the computational load is reduced using a limited number of nodes.

A distributed approach is adopted in (107) where an algorithm focused on providing

more robust local maps is developed. The idea is to split the problem into a sub-set
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of smaller regions in which the localization is performed by means of robust quadri-

laterals. A robust quadrilateral is a set of four fully-connected nodes whose relative

displacements lead to a configuration which is difficult to miss. After that, a proper

optimization algorithm can refine the estimated configuration.

In (108), Authors describe a 2 steps localization algorithm. In the first stage, the

ranging, a geometric algorithm like trilateration, is used. During the second step, the

positioning, a classical least squares approach, is used to minimize the quadratic error

about position estimate; this approach achieves better results than the classical min-

max approach which is anyway more suitable in devices which have serious hardware

constrains. A third step can be possibly executed to refine the final estimate: in this

case the position of each node is refined taking into account both the information

about its neighbors and the one provided by the agents which can be achieved with by

a multi-hop communication protocol.

A probabilistic way is explored in (109), where the proposed algorithm aims at

minimizing a functional depending on the quadratic error of distances between nodes

and the prior knowledge provided by anchors, i.e., nodes whose locations are known.

In the present chapter, some well known results in robot localization (110) has

been used. A probabilistic point of view is assumed and the localization problem is

mapped into a stochastic estimation problem. Several Kalman-Filter based algorithms

are proposed to discover the location of the nodes. These procedures work in a dis-

tributed fashion to reduce or balance the computational load. A comparison between

the developed algorithms is proposed to analyze their effectiveness.

6.2 Probabilistic localization

Localization problem in a sensor network can be regarded as a stochastic estimation

problem for a system described by the following equations

qk = f(qk−1, uk, wk)
zk = h(qk, vk)

(6.1)

where qk is a stochastic variable representing the location of the nodes, uk is the control

input, wk and vk are noises that affect the system, while f(·) and h(·) are mathematical

relations that characterize the state transition and the observation zk respectively.
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u k-1 z k

PREDICTOR CORRECTOR

Figure 6.1: Bayesian filter.

From a Bayesian perspective, the localization problem consists in recursive compu-

tation of the probability distribution p(qk|Zk, Uk), which describes the joint posterior

density of the sensor locations (qk) given the recorded observations (Zk) and con-

trol inputs (Uk) up to time k. Assuming that the probability density function (pdf)

p(q0|z0, u0) is available, in principle, the pdf p(qk|Zk, Uk) may be obtained recursively,

in two stages, exploiting the state transition model, the observation model , and ap-

plying the Bayes filtering (see Figure 6.1). The recursive propagation of the posterior

density is only a conceptual solution in the sense that in general it cannot be determined

analytically. Only in a restrictive set of cases the posterior density can be exactly and

completely characterized, resorting to additional assumptions.

In (111) a linear or linearised system model and additive noises are required

qk = Akqk−1 +Bkuk + wk

zk = Hkqk + vk
(6.2)

where wk∼N(0,Ξk), vk∼N(0, Rk), q0∼N(q̂0, P0) are mutually independent Gaussian

variables for each pair of time instant (k, k′). In this way all the density function

involved are Gaussian and, hence, parameterized by a mean and covariance. The mode

(q̂k) of the joint posterior p(qk|Zk, Uk) yields the current positions of the nodes, and the

variance (Pk) represents the current uncertainty. As only these two parameters have to

be computed to propagate uncertainty, there is no need to discretize the state space.

In this way the prediction becomes

q̂k|k−1 = Akq̂k−1|k−1 +Buk
Pk|k−1 = AkPk−1|k−1A

T
k + Ξk

(6.3)

while the correction requires the computation of the well known Kalman gain matrix

Kk = Pk|k−1H
T
k

[

HkPk|k−1H
T
k +Rk

]−1
(6.4)
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before update the estimate

qk = qk|k+1 +Kk(zk − zk)

Pk = Pk|k−1 −Kk

[

JkPk|k−1J
T
k +Rk

]

KT
k

(6.5)

The advantage of Kalman filter lies in its efficiency and in the high accuracy that can

be obtained: however, it is not able to cope with high nonlinear system and multimodal

distributions.

Several probabilistic global methods have been proposed to overcome these draw-

backs relaxing Gaussian assumption and introducing the discretization of the space

state. As only Kalman filter is used in the sequel, these techniques are not reported,

however a complete review can be found in (112).

6.3 Problem Setting

In this work, a group of N static nodes deployed on a planar environment is considered.

The nodes are equipped with rangefinder sensors to sense distances from other team

mates and with radio devices in order to exchange information. Nodes are able to

exchange data, i.e., their estimated positions and the related uncertainty, whenever a

node i is in the coverage area of the node j. By this way, node i acquires information

about its relative position with respect to node j, and vice versa. Absolute positioning

devices are mounted on few nodes, whose position is not computed as they play the role

of anchors in the network. Therefore their location is assumed to be a priori known.

Localization problem is regarded in the framework of Bayesian filtering. The state

to be estimated is represented by the positions of the nodes

qk =
[

q
(1)T
k , q

(2)T
k , · · · q(N)T

k

]T

(6.6)

where q
(i)
k = [p

(i)
x,k, p

(i)
y,k]

T is the position of the i-th node in a global reference frame. The

measurements of the system are the relative distances retrieved by range-finders, while

all uncertainty sources are assumed to have Gaussian distribution. Several approaches

based on Extended Kalman Filter (EKF) are applied to estimate the location of the

nodes.

As nodes are assumed to be static, the state transition model can be implemented

as

qk = qk−1 +wk (6.7)
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where wk ∈ R2N is a zero mean white noise vector with covariance matrix Ξk. The

covariance update can be computed according as

Pk = Pk|k−1 + Ξk (6.8)

The observations of the system are represented by rangefinder measurements of all

nodes. For each node i the measurements are composed by mn
i sub-vectors

z
(i,j)
k = hn(q

(i)
k , q

(j)
k ) =

√

(p
(j)
x,k − p

(i)
x,k)

2 + (p
(j)
y,k − p

(i)
y,k)

2 (6.9)

where mn
i is the number of nodes in the viewing area of the i-th node. When an anchor

is involved in the measurement, the observation can be written as:

z
(i,j)
k = ha(q

(i)
k ,M) =

√

(a
(j)
x − p

(i)
x,k)

2 + (a
(j)
y − p

(i)
y,k)

2 (6.10)

being ma
i the number of anchors in the viewing area of the i-th node and (a

(j)
x , a

(j)
y )

the position of an anchor. It should be noted that ha(·) depends on a map M, here

represented by a list of anchors position (a
(j)
x , a

(j)
y ).

Due to the non linearity of the mapping, the Jacobian (Jh
q ) of the map h(qk) with

respect to qk has to be used in the computation of Kalman gain

Kk = Pk|k−1J
h
k

T [
Jh
kPk|k−1J

h
k

T
+Rk

]−1
. (6.11)

The Jacobian is composed by mn
i sub vectors representing the Jacobian of the maps

hn(·) andma
i sub vectors representing the Jacobian of the maps ha(·). Below is reported

the Jacobian of the map hn(·)
jh(q

(i)
k , q

(j)
k ) =

[

. . . ∂hn(·)
∂xi

∂hn(·)
∂yi

. . . ∂hn(·)
∂xj

∂hn(·)
∂yj

. . .
]

[

0 dx

z
(i,j)
k

dy

z
(i,j)
k

0 −dx

z
(i,j)
k

−dy

z
(i,j)
k

0

]

(6.12)

where dx = (p
(j)
x,k − p

(i)
x,k) and dy = (p

(j)
y,k − p

(i)
y,k).

As it can be intuitively argued, to avoid ambiguous configuration, a number of at

least 3 non-aligned anchors is needed.

6.4 Distributed Localization Algorithms

In this section three different algorithms based on extended Kalman Filter for localiza-

tion in a sensor network are reported. All the proposed algorithms aim at distributing

the computational load of the KF over the network, exploiting the decoupling state

transition model of the system. In the update step, different strategies are adopted to

deal with the interaction in the measurement process between nodes.
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6.4.1 Distributed Complete EKF

The Distributed Complete Extended Kalman Filter (DCKF) is devoted to determine an

estimate for the whole system state given in eq. (6.6). The estimate is retrieved applying

Kalman Filter by means of distributing the computational load over the sensor network.

It is easy to notice, indeed, that the state transition model given in eq (6.7) is suitable

for a distributed implementation, since it is linear and fully decoupled. Unfortunately,

during the correction step, the computation of the expected measurement according to

eq. (6.9) and the update of the covariance matrix Pk|k feature some couplings. In order

to reduce the computational burden, it is possible to split the covariance matrix in N2

sub matrices, having dimension [2 × 2]. Each sub-matrix Pij represents the relation

between a couple of nodes i and j; according to this notation, sub-matrices Pii are the

ones describing the statistical features about the estimate of a single node.

Pk|k−1 =

















P−
ii . . . P−

ij

...
...

. . . . . .
...

P−
ji

. . . P−
jj

...
... . . . . . .

. . .

















. (6.13)

As far as only one measurement between two nodes i-j is considered at each instant of

time k, it is easy to show that, due to the observation model:

- Sk =
[

Jh
kPk|k−1J

h
k

T
+ Rk

]

is a scalar and depends only on the Jacobian of the

output map and the sub matrices of Pk|k−1 related with the nodes involved in the

measurement, i.e. P−
ii ,P

−
ij and P−

ji ;

- the m–th element of the vector Kk depends on the Jacobian of the output map,

Sk and the cross-correlation matrices P−
mi and P−

mj .

In this way, each node is able to perform the correction of the estimate using only the

Jacobian of the output map, a subset of the matrix Pk|k−1 and Sk. Moreover, due to

the symmetric structure of Pk|k−1, the computation of the covariance matrix can be

reduced, too. Supposing that each node computes its own auto correlation matrix P+
ii ,

there are still other N
2 ·(N−1) cross correlation sub matrices to be computed. As shown

in (113), the computational load can be split in a way such that every node computes

about N−1
2 sub matrices. However, this operation requires that a computational balance
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step is performed at the beginning to assign a subset of sub matrices P−
ij to each node

i. At each instant k, nodes share information about their estimated positions and the

subset of cross-correlation matrices, producing a high level of traffic over the net.

6.4.2 Local EKF

In the case of Local Extended Kalman Filter (LKF), the whole state of the system

given in eq. (6.6) is decomposed into N sub vectors each of which containing the po-

sition of a sensor: each node computes an extended Kalman filter to estimate its own

location. During the update, every unit needs to communicate only with its neighbors

to know their configurations, therefore the traffic over the network is considerably re-

duced. Moreover the computational load is lowered since the cross correlation terms

are neglected. For the same reason, the convergence of the filter is quickly achieved,

whilst the estimate results quite inaccurate. It is worth noting that this filter is used

only to gather a lower bound about performances of the other two algorithms.

6.4.3 Compressed EKF

The Compressed Extended Kalman Filter (CKF) has been introduced by (110) to solve

simultaneous localization and map building problem, however it can be also applied

to localization in sensor networks. At each time k, nodes collaborate to compute

an estimate for the state given in eq. (6.6), according to the full Extended Kalman

Filter equations (6.7)–(6.12). The computational load is split over the network as

presented in DCKF, however only few nodes, called preserved nodes are involved in

the update process, while the state and the cross covariance matrices of the remaining

nodes, discarded nodes (S), are not updated. When a new observation has a significant

information contribution for a node, such a node is considered in the computation

of cross-correlation terms, otherwise it increases the set of neglected nodes S. The

eq. (6.5), using a more compact form, can be written as:

Pk = Pk|k−1 − δP.

In order to quantify the significance of the information that a certain observation fur-

nishes, the diagonal elements Pk|k−1(i, i) of Pk|k−1 and δP (i, i) of δP are considered.

If they are enough small, the cross correlation terms between two nodes, that respect
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this statements, are not computed as it gives an irrelevant contribution to the estimate

compared to computational costs. In other terms, denoted by S1, S2 and S three sets

such that:

• q(i) ∈ S1 if P (i, i) < α, α > 0

• q(i) ∈ S2 if δP (i, i) < β · P (i, i), β > 0

• q(i) ∈ S if i ∈ S1 or i ∈ S2

if two elements (q(i), q(j)) belong to the set S, then the cross correlation correction

term δP (i, j) is not computed. Choosing properly α and β, a compromise between

performances and computational load can be achieved. As it is shown in (110), this

approach leads to a sub optimal solution, due to the neglecting terms in the correction

step; on the other side, the traffic generated on the net is considerably reduced with

respect to DCFK.

6.5 Experiments

In this thesis, the proposed algorithms have been widely tested both in simulation and

by means of trials in real world environment. The simulations have been carried out

using a framework developed in order to stress the algorithms under different operating

conditions. The real world experiments have been carried out acquiring data retrieved

by a MICAz sensor network from Crossbow and processing them using MatLab.

To emphasize the interaction between nodes, an ”all to all” topology has been

considered. Although this topology is not common in real sensor network, it can be

associated to clusters of nodes and exploited to decompose the localization algorithm

in a hierarchical fashion.

6.5.1 Simulation tests

A network of 30 sensors deployed in a square environment of 10 × 10 units has been

adopted for the simulation tests (see Figure 6.2). To prove the reliability of the proposed

algorithms , two sets of experiments have been considered: the sets differ in the number

of the anchors, respectively 3 and 4, located on the corners of the square. The results

retrieved using the two different configurations are summarized in Tables 6.1 and 6.2.
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The output of the simulations has been averaged over 20 trials, each one composed

by a fixed number (15) of ”all to all” communication steps. Initial conditions were

corrupted by a white noise, as detailed in the same tables, while measures have been

perturbed by a random noise with standard deviation equal to 0.2 units. The Euclidian

distance between the real position of a node and the estimate has been adopted as the

metric for the estimation accuracy. During the simulation, it was supposed that a node

i retrieves its own measurements and performs N − 1 update steps: this rigid policy

has been chosen because it reflects the used procedure in real world experiments.

According with the results in Tables 6.1 and 6.2 , DCKF and CKF are able to

estimate the position of the sensors in the network with the same accuracy. In Figure 6.4

the evolution of the position error of a node during a trial is shown. As one can

notice, the CFK rapidly converge to a small error by means of a smooth trajectory,

whilst the convergence of DCKF is slower. This behavior can be explained considering

the coupling between nodes. In DCKF a small change in the estimate of a node is

propagated all over the network and affects all the nodes. During an iteration of CKF

only few nodes are coupled and new poor information is automatically discarded.

In Figure 6.3 the cardinality of the set S in a trial is reported. When the algorithm

starts, all nodes are coupled, as the uncertainty on the initial position is high and

any new information is considered reliable. As soon as the estimate is firmed, the

cardinality of S increases and only the interaction with a small subset of neighbors is

evaluated. During the trial, the number of preserved nodes increases if the estimate

becomes inaccurate: in this sense the CKF algorithm shows a self adaptive behavior.

LKF is reported to provide an upper bound in distributing the complete filter over

the network. It shows bad performances due to the inaccurate estimate process. In

Figure 6.4 the evolution of the filter changes only when the sample node performs

measurement, according to the fully decoupled approach of the algorithm.

6.5.2 Experimental tests

Experimental results have been performed to validate the proposed approaches in a

real context. The network has been deployed using MICAz (MPR2400) platform from

Crossbow Technology. The MPR2400 (2400 MHz to 2483.5 MHz band) uses the Chip-

con CC2420, IEEE 802.15.4 compliant, ZigBee ready radio frequency transceiver in-

tegrated with an Atmega128L micro-controller. The MICAz platform is designed to
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Figure 6.2: Network deployment: anchors (crossed circles), nodes (circles), GCKF esti-

mate (asterisks), CFK estimate (squares).
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Figure 6.4: Trajectory error of a node, simulation results: CKF (black solid line), DCKF

(red dashed line), LKF (green solid line).
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Table 6.1: Simulative test with square area and four anchors.

Cov emean emin emax

(unit2) (unit) (unit) (unit)

DCKF 0.0028 0.1008 0.0166 0.2136

CKF 0.1742 0.1585 0.0187 0.7092

LKF 16.1544 10.0622 3.9647 18.4137

Init.Cond. 8.5221 4.2349 0.093 3.4345

Table 6.2: Simulative tests with square area and three anchors.

Cov emean emin emax

(m2) (m) (m) (m)

DCKF 0.1549 0.0955 0.0197 0.2265

CKF 0.1627 0.0964 0.0197 0.2239

LKF 2.7763 11.0066 4.5781 20.4064

Init.Cond. 1.0473 2.5388 0.4722 5.6635

mount several sensor boards, like the MTS310 used in these tests. MICAz platform

comes along with TinyOS, an open source event-driven operating system developed

for wireless embedded sensor networks. TinyOS component library includes network

protocols, distributed services, sensor drivers and data acquisition tools which can be

further modified to adapt them to specific performances.

A ranging technique based on the Time of Arrival (ToA) principle was exploited

to compute inter-node distances. The implementation consists of a node sending first

a RF packet and emitting an acoustic signal right after. The propagation of the RF

packet is assumed to be instantaneous and the signal is used to trigger a timer on the

receiving nodes. Such timer stops when the acoustic pulse is received. Measuring the

time of propagation, it is possible to relate this time with the distance traveled by the

acoustic pulse.

A network composed by 7 nodes and 3 anchors has been deployed over a squared

area (2 × 2m ), as Figure 6.5 shows. The collected data has been processed off-line,

using the proposed algorithm and different initial conditions to set up different trials.

The results, averaged over 20 trials, are collected in Tab. 6.3.
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Figure 6.6: Error trajectory for a node, real experiments: DCKF (black solid line), DCKF

(red dashed line), LKF (green solid line).

This table shows that DCKF and CKF achieve the same results in terms of accuracy,

however, as mentioned before, the DCKF is able to tune the coupling between nodes,

reducing the overall computational load. According to the experimental results for

this configuration, as expected, LKF presents the worst performances. This can be

explained by the fact that DCKF and CKF exploit the coupling between nodes, while

LKF does not take any advantage by this knowledge. Moreover, due to the coupling

between nodes in DCKF and CKF, an inaccurate initial condition can be recovered,

whilst LKF tends to converge toward an alternative admissible solution due to the

symmetrical layout of the network as shown in Figure 6.6.
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6. STATIC SENSOR NETWORK LOCALIZATION: AN INITIAL STEP
TOWARD INTEGRATION BETWEEN STATIC AND MOBILE
SYSTEMS

Table 6.3: Real tests with square area and three anchors

Cov emean emin emax

(unit2) (unit) (unit) (unit)

DCKF 0.0444 0.1032 0.0400 0.1661

CKF 0.0031 0.1454 0.0458 0.2866

LKF 1.1714 1.8820 0.8323 3.6220

Init.Cond. 0.1129 0.6558 0.2823 1.1355

6.6 Conclusion

In this chapter, three different localization algorithms, based on Extended Kalman

Filter, to solve localization problem in a sensor network have been proposed. The

algorithms, well known in robotics, work in a decentralized cooperative manner so to

distribute the computational load on each node of the network.

To prove the effectiveness of the approaches, extensive simulation tests have been

carried out using both simulative and experimental tests.

Although the results obtained are promising, several interesting challenges still re-

main for future works. A low computational load procedure for topology discovery and

load balancing could be investigated and implemented on the nodes of the network. A

comparison with the information form of Kalman filter could be useful to understand

different strategies to reduce the computational burden in the update step.

Regarding large networks, a probabilistic clusterization induced by the discarded

and preserved nodes could be analyzed with respect to the technique achieved by spatial

classification.
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Chapter 7

Conclusions

This dissertation has been focused on multi robot systems. In particular 3 topics have

been treated.

The first is related to the hardware prototyping of mobile robots. In particular the real-

ization of a multi-robot system has been proposed. This platform has been successfully

designed and several tests have been conducted to demonstrate its effectiveness.

However this project can be considered only at initial stage: although the core soft-

ware has been developed, the system is still susceptible of improvements. A structured

scheme for the implementation of higher level tiers has to be introduced. Furthermore

the integration with standard sensor networks seems to be the next logical step. The

experimental validation of these hybrid systems could lead to very interesting results.

Concerning the encircling problem, two approaches have been demonstrated to be ef-

fective on real robots. The major contribution of this work is the realization of a fully

autonomous system which is able to execute the task without any adjunct external

sensor.

Further directions concern the study of algorithms which execute the encircling task

taking into account collision avoidance constraints: the proposed approaches show some

promising properties although the complexity, i.e. the switching dynamics, makes it an

hard problem.
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7. CONCLUSIONS

Regarding the data fusion, the major contribution is related to the extension of the

Transferable Belief Model to distributed systems. Currently the proposed technique is

suitable only for tree topologies: a future work direction is to encompass also graph

topologies.

In environmental monitoring, which is a rather new field in robotics, several direc-

tions could be taken. In this dissertation a stigmergic approach focused on the low-cost

map-building has been proposed; however this task, in general, is susceptible to im-

provements. In particular the dynamics of the gas dispersal constitute the major issue:

this complexity has to be coupled with robotic architectures which are constrained

by computational and power resources. Future directions take into account models

which can help the robots both to model the gas advection and to fuse information in

an effective manner. One of the main limitations actually present in the majority of

works is the weak responsiveness of the estimation system both with respect to sudden

variations and to the complexity of the operating scenario.

This thesis describes a work pointing toward multiple research directions. This

feature implies pros and cons. Pros are constituted by the fact that many aspects

related to the design of multi-robot systems have been analyzed and validated with

several tests: the thesis describes the realization from scratch of a platform (SAETTA)

for a multi-robot system first, and then several techniques which fit the characteristics

of the SAETTA platform. In some cases these techniques are new, in others they

have been adapted to the specific context so they constituted the basis for scientific

publications. In every chapter, at least one real experiment has been described and

SAETTA robots have been used (with the exception of Chapter 3 and Chapter 6).

At the same time, the amount of experimental work, coupled with the heterogeneity

of the faced topics, inevitably hindered the depth of the analysis referred in the various

chapters. For example, compared to a thesis focused on a single topic, this thesis

provides a shorter bibliography and a less than exhaustive comparison with respect to

the state of the art for each topic.
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