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Chapter 1

Introduction

Networks are all around us; from the simplest forms of life to the complexity of
our brain. Also ourselves are part of many networks from the social interaction
that we engage or as a result of biochemical interactions inside a single cell.
Networks have demonstrated to be present not only in social or biological
contexts but also in technological systems. The major example is the Internet,
maybe the biggest technological network. Other examples include highways,
transportation systems, power generation and distribution networks. Thus, the
study of the characteristics of the networks is of primary importance for the
advance of sciences.

The study of networks historically started as a branch of discrete mathe-
matics known as graph theory. The birth of graph theory dates back to in 1736
when the Swiss mathematician Leonhard Euler published the solution to the
Königsberg bridge problem (the problem of finding a round trip that traversed
each of the bridges of the prussian city of Königsberg exactly once). Since
1736 graph theory has provided a prolific framework for the solution of many
practical and theoretical problems such as the optimal flow in a network of
pipes or how to fill n jobs by n people with maximum total utility.

Started as a branch of mathematics in the 20th century other fields discover
the potentialities of the graph theory applied to real problems. In the early 20’s
social scientists initiate analysing relationships between social entities exploit-
ing the tools offered by graph theory. Also, in physics interactions modelled as
graphs start to emerge.

In the last decade a new way of thinking about networks arose. Thanks to
the availability of huge amounts of digital data, computational power and the

3
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4 CHAPTER 1. INTRODUCTION

Figure 1.1: This visualization represents macroscopic snapshots of IPv4 and
IPv6 Internet topology samples captured in January 2009. The plotting method
illustrates both the extensive geographical scope as well as rich interconnec-
tivity of nodes participating in the global Internet routing sytem.For the IPv4
map, CAIDA collected data from 33 monitors located in 30 countries on 5 con-
tinents. Coordinated by our active measurement infrastructure, Archipelago
(Ark), the monitors probed paths toward 7.4 million /24 networks that cover
95% of the routable prefixes seen in the Route Views Border Gateway Protocol
(BGP) routing tables on 1 January 2009.For the IPv6 map, CAIDA collected
data from 6 Ark monitors located in 4 countries on 2 continents. This subset of
monitors probed paths toward 1,491 prefixes which represent 88.9% of the glob-
ally routed IPv6 prefixes seen in Route Views BGP tables on 1 January 2009.
Original picture from The Cooperative Association for Internet Data Analysis
(CAIDA) http : //www.caida.org/research/topology/ascorenetwork/

quickness in communications a different kind of networks has been analyzed.
Such networks are defined as Complex Networks. As suggested by their name
complex networks are composed by a large quantity of units connected in a
irregular and sometimes time evolving fashion.

The birth of this new research field was triggered by two papers published
at the end of the 90’s. The first, by Watts and Strogatz, appeared in Nature in
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Figure 1.2: Visualization of the connections between users in the flickr
Processing.org group. Nodes represent users and links friendship be-
tween them. Original from the flickr processing.org group http :
//www.flickr.com/photos/eskimoblood/2111672366/

1998 and explained the emergency of a property that has been conjectured in
many real world networks, the so-called small world phenomenon. Although
some real networks can be very large, i.e. the Internet, the distance between
two random nodes in most cases remains relatively small, this concept being
already known in social sciences from the 60’s and expressed by the idea of 6
degrees of separation (the idea that everyone is on average approximately six
steps away from any other person on Earth), Watts and Strogatz proposed a
model in which starting from a regular network, the random rewiring of a small
fraction of the links provokes that the mean distance between nodes rapidly
drops to very low values.

In the second seminal paper, appeared in Science in 1999, Barabási and
Albert show that in real networks nodes are not equal but few of them have
a vast amount of connections and the majority of the nodes are only poorly
connected. This peculiar organization has been showed to be present in most
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6 CHAPTER 1. INTRODUCTION

Figure 1.3: The map of the human diseases networks (HDN). Round nodes
represent genetic disorders, square nodes are genes and a link between a square
and round nodes is drawn if the gene is considered responsible for the disorder.
Colors indicate the type of disease. Sizes are proportional to the number of
genes associated with the disease.

of the networks we know about and gave the impulse to study networks as a
separate field.

The first steps in research on complex networks began with the definition
of new tools to characterize the topology of real systems. The most important
discovery was the existence of a series of unifying principles common to many
networks in very different fields. In this way systems as diverse as phone call
networks, acquaintances graphs, the Internet, genetic and metabolic networks,
and the actors collaboration networks have been shown to share the same struc-
ture and in many cases the same laws governing their functioning. The most
striking of these principles is the almost omnipresence of a specific degree dis-
tribution function named power law that sensibly deviates from the expected
poissoninan function. As this particular structure is the result of the evolu-
tionary forces that act over it, one can suppose that the structure must play a
key role in the dynamical processes that can take place on it. This supposition
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drove the research into a second stage in which the focus changed from the
analysis of already formed networks to the understanding of the evolutionary
principles that shape real networks structure. At this stage studies highlighted
the huge effects of the topology over the dynamics on a network and a series
of unexpected results showed that many counter-intuitive behaviors, as the
emergence of cooperation in a selfish world, can be explained by the complex
interconnections between nodes. This new approach permitted to create a set
of theoretical tools to study the behavior of large ensembles of interconnected
dynamical units that before have only been observed in an empirical way. In
the last years, as usual in every research field, the focus changes from a simply
descriptive point of view to a predictive one, in which the knowledge starts to
be used to make predictions about the future behavior of the system and to
exploit system characteristics to control the overall dynamics. This is the case
i.e. of the epidemic spreading in acquaintance networks or congestion control
in communication ones, in which effective immunization policies or routing al-
gorithms have been proposed. In figures 1.1, 1.2 and 1.3 some examples of
complex networks are presented. Figure 1.1 depicts the map of the Internet at
the Autonomous Systems (AS) level for the IP v. 4 and v. 6 protocols. Nodes
positions in the graph are related to AS geographical positions and number of
connections. Figure 1.2 presents an example of virtual social networks with the
connections between users in the Flickr photo-sharing service. In figure 1.3 a
biological network is represented in which genetic correlations between human
genetic disorders are highlighted [24].

The aim of this work is to analyze, model and control dynamical systems
through complex networks theory. Specifically, we will propose a series of dy-
namical models on large graphs to represent complex and non linear dynamics.
We mainly focus on theoretical models that, at a high level of abstraction, are
representations of real world technological and social systems. In the cases
where it’s possible, we will propose an analytical treatment of these systems
and we corroborate our predictions via numerical simulations and real data
analysis. In particular we will try to predict the dynamical evolution of the
systems under study and express the conditions for the emergence of a desired
collective behavior. During the work we will present several types of models to
illustrate some of the dynamics that are studied in complex networks literature.
We will cover four different aspects of networks dynamics and we consider three
distinct field of application.

The first is the field of sensor and monitoring networks that nowadays are
becoming more and more important in our automated world. In this case we
consider two different types of applications. In one we study the robustness of
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8 CHAPTER 1. INTRODUCTION

a static sensor network. Specifically we will present a distributed algorithm for
the generation of robust topologies in a two dimensional environment. In the
second we look at a spatial environment in which agents can move randomly to
simulate mobile sensors and robots. In the second field of application we focus
our attention on maybe the most important type of technological networks:
communication networks such as the internet and the complex traffic inter-
change that takes place on its nodes. We will focus on two aspects of traffic
dynamics. On one side we will investigate the attributes of traffic flows in such
networks. On the other side we will propose an empathetic traffic control strat-
egy that allows for a greater traffic volume to be forwarded to the destination
before congestion arises. Finally, in the third applied field, we consider both
technological and transportation networks to study how a disease (biological
or a computer virus) can spread on a complex environment.

To guide the reader in the logical organization between different applications
the work has been separated in three main parts each one covering one type
of dynamics on complex networks and two other introductory and concluding
parts.

In the first part an introduction to complex networks theory and its tools
is given. The concepts introduced are the ones needed to clearly understand
the rest of work without a profound knowledge of the field. Specifically, in
chapter 2 we present the tools acquired from graph theory and social sciences
to analyze the topological structure of complex networks. We will start showing
the building blocks of a graph as nodes and links and different graph classes.
Then, we will focus on single nodes and links properties like the degree and the
strength. We will follow introducing group of nodes properties like the degree
distribution of a network and the clustering coefficient. Chapter 2 ends with a
presentation of some of the most important models available in the literature
for the creation and evolution of complex networks.

Chapter 3 is devoted to introduce the recent advances in modeling dynam-
ics on networks. In this chapter different dynamics will be taken into account
covering most of the concepts that will be used in the rest of work and, specif-
ically, the basic models that will be taken as foundations in parts II, III and
IV. To study the robustness of a network some basic definitions of percolation
theory will be proposed. We also present the state of the art of evolutionary
game theory on networks, traffic and congestion dynamics and the most recent
advances in disease spreading on large graphs.

Please, note that, although we try to cover the most important concepts in
the field, a systematic review of the recent literature is outside the scope of this
work. We will just resume the basic informations needed to fully understand
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the entire work. We will also provide at the beginning of each part a short
intro including the key concepts needed to understand the part alone. For a
complete review of the field please refer to [1, 2, 3, 4].

In the second part we start the description of the research activity that
represents the center of this thesis work. In this part we concentrate on models
for sensor and mobile networks. Specifically, we will cover two aspects: the
generation of robust topologies for sensor networks on a 2D space and the
study of the conditions that allow the emergence of cooperation in a mobile
agents environment.

In chapter 4 we cope with the problem of creating a fault tolerant topology
for a sensor network in a distributed fashion. To do so we consider a two
dimensional space in which sensor nodes are distributed randomly (i.e. dropped
from a plane). In our model nodes have an interaction radius r representing
the range of the communication antenna. We propose a distributed algorithm
that draws nodes desired degree from a fixed degree distribution and tries to
establish the desired number of connections. The degree distribution is chosen
to assure high robustness both for random failures and intentional attacks.

In chapter 5 we move a little further considering a 2D environment in which
agents can move randomly to study the conditions under which cooperation
becomes a convenient strategy. To this end, we examine the behavior of random
moving agents that play a typical social game as the prisoner’s dilemma and
we explicit the insurgency of an all cooperators output as a function of nodes
density, velocity and game’s parameters.

The third part is fully devoted to traffic models in communication net-
works. Chapter 6 presents the study of traffic flows characteristics. Through
random walk theory we analyze fluctuations in mean flows and predict their
value. We also test our theory with numerical simulations and real data analy-
sis. In chapter 7 another fundamental problem for communication networks is
addressed: how to optimally drive traffic to cut down the point at which con-
gestion emerges. We present a minimal traffic model to study the emergence
of congestion and propose a self adaptive strategy to forward higher traffic
values. We also permit neighboring nodes to collaborate on the routing opti-
mization and finally a proof that this local empathetic behavior produces the
same results as global optimization is given.

Part IV offers a presentation of the work done in epidemics dynamics. In
this part we present three different topics ranging from a fully analytical study
of simple disease spreading dynamics to a complex model that incorporates
human responses to the disease. The first study is presented in chapter 8. We
propose an alternative formulation to the classic Heterogeneous Mean-Field
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10 CHAPTER 1. INTRODUCTION

analysis that can analytically recover the whole disease phase diagram and
also predict the single node’s infection probability. The proposed approach
also allows to study a complete class of infectious dynamics ranging from a
contact process to a fully reactive interaction.

In chapter 9 we deepen the study of the effects of non-reactive interactions
on epidemic spreading. Two coupled models are presented. To describe nodes
interaction a traffic model is introduced, in which packets represents quanta of
interaction and infection can be transmitted only if two nodes exchange traffic.
We also consider different traffic scenarios and propose an analytical treatment
for the study of the epidemic threshold.

Chapter 10 presents a more realistic model in which human responses to
the rise of an epidemic are considered. We extend the model proposed in
chapter 9 in a metapopulation scenario in which individuals move according
to traffic flows and adapt their conduct to the development of the disease. We
introduce two types of responses based respectively on cancel a journey or avoid
infected nodes and, through an heterogeneous mean-field approach, we derive
an expression for the critical mobility threshold.

Finally, in the last part of this thesis the conclusions of the work are drawn
and a list of the publications and the other research activities carried out are
presented.
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Chapter 2

Topology: Complex networks

and networked systems

Since this work is fully devoted to the study of dynamical models on top of com-
plex networks in this first part we consider useful to introduce some preliminary
notions regarding complex networks’ structure and graph theory. Therefore,
the aim of this chapter is to present some basic concepts of networks’ topology
that will be helpful to understand the rest of the thesis. We first introduce the
main definitions and the notation used in the work. Then, we discuss some
structural properties observed in real networks and the most important models
proposed in the literature to represent them.

2.1 Basics definitions and notation

A complex network can be easily represented by a graph and thus the tools
offered by graph theory [5, 6, 7] can be used for the mathematical treatment
of networks. A graph G(N, K) consists of two sets namely N and K. N is
defined as a set of nodes (or vertices) and K as a set of pair of nodes defined
as links (or edges). The cardinality of the two sets is referred respectively as
the number of nodes and links of the graph.

A node is usually named by its index i in the set N and a link by a couple
of nodes i and j denoted by (i, j) or lij . If a link (i, j) between nodes i and j
is present in K the link is said to be incident on i and j and they are defined
as adjacent or neighboring nodes.

A particular category of graphs is represented by the graphs in which the K

11
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set is composed by ordered pairs of nodes. Such graphs are defined as directed
graphs in opposition with undirected graphs in which nodes order in links is
unimportant. In directed graphs links are directed from the first node to the
second one. On the other side, in undirected graphs links are bidirectional and
the presence of link (i, j) implies the presence of link (j, i). In graph theory a
weight or value can be associated with nodes or links, in this case the graph is
defined as weighted. If multiple links or selfloop are present the graph is defined
as a multigraph.

The size of a graph is determined by the cardinality of the set N and the
number of links may vary from 0 to N(N−1)/2. A graph is sparse if the number
of links is much smaller than the square of the number of nodes (K ≪ N2),
otherwise the graph is called dense. A subgraph G′(N ′, K ′) of G(N, K) is a
graph in which N ′ and K ′ are a subset of N and K respectively and all the
links in K ′ only contain nodes in N ′.

As this work mainly cope with diffusion dynamics on graphs a key concept
is represented by the reachability of two nodes. If nodes i and j are not directly
connected by a link it may be possible to reach j from i traversing a list of links
from i to j. A walk can be defined as a list of links that starts in i and ends
in j. A walk in which there aren’t repeated nodes is defined as a path. The
length of a path is represented by the number of links that must be crossed to
reach the destination and the smallest path from node i to j is the so-called
shortest path. A cycle is a walk starting and ending on the same node.

If for each pair of nodes in a graph exists a path connecting them the graph
is said to be connected, otherwise the graph is defined as disconnected. A
component of a graph G is a connected subgraph of G. We can also the define
giant component as a component whose size scales as N .

To represent a graph on a computer system it could be useful to consider
a matricial form of the graph G. The adjacency matrix A is a square N × N
matrix which elements aij are 1 if there is a link between nodes i and j and 0
otherwise. For undirected graphs the adjacency matrix is symmetric and as no
self loops are allowed in normal graphs the principal diagonal always contains
zeros. This form of representation offers some advantages (i.e. direct access to
each element), but some drawbacks are also present, first of all large memory
occupancy as the size of memory needed is O(N2). The problem is amplified
for sparse graphs in which the matrix is mostly composed by zeros.

Other forms of representation include the so called list of adjacency: a
linked list in which each element represents a link between two nodes. In this
case the memory occupancy is O(K) but some drawbacks are the high time
needed to access an element as it is needed to cross part of the list to reach the
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desired link.

2.1.1 Nodes degree and degree distribution

The degree of a node i is the number of links in which i is involved and can be
defined in terms of the adjacency matrix A as:

ki =
∑

j∈N

aij . (2.1)

In case of directed graphs it is possible to evaluate two components of the
degree of a node, namely the number of incoming links (links that end at the
node) kin

i =
∑

j aji defined as in-degree and the number of outgoing links (links

that start at the node) kout
i =

∑

j aij defined as out-degree; the total degree

of a node is referred as ktot
i = kin

i + kout
i . The sequence of the nodes degree is

named degree sequence of a graph.
One of the most important characteristics of a graph is its degree distribu-

tion. Usually denoted as P (k) the degree distribution represents the probability
that a randomly chosen node it has degree k, or in other terms the fraction
of nodes with degree k. For directed graphs it could be useful to define the
in-degree distribution P in(k) and the out-degree distribution P out(k).

The degree distribution gives important information regarding the structure
of the graph and can be analysed graphically (plotting P (k) as function of k)
or evaluating the moments of the distribution. The generic n−moment of P (k)
reads as:

〈kn〉 =
∑

k

knP (k). (2.2)

The first moment of the distribution 〈k〉 denotes the mean degree of the graph
and the second moment 〈k2〉 the fluctuations of the distribution. This latter
factor plays a crucial role on dynamics that take place on a network.

2.1.2 Shortest path and average path length

In the context of diffusion processes on networks the distance between nodes
is a key aspect and more importantly the shortest distance. As expressed
previously 2.1, the shortest path is the minimal length of a path connecting
two nodes in the graph. To have a compact representation of all distances in
a graph it could be useful to use a matrix D whose entries dij contain the
length of the shortest path connecting i and j. It’s important to notice that
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if the graph is undirected D is symmetric and if the graph is disconneted D
can contain elements equal to ∞. The maximum value of D is defined as the
diameter of the graph and represent the distance to reach the two extreme
nodes in the graph. The mean distance between two nodes is defined as the
average path length or characteristic path length [8] and can be calculated as:

L =
1

N(N − 1)

∑

i,j∈N ,i6=j

dij . (2.3)

The main disadvantage in the calculation of L is represented by its divergence
in case of disconnected graphs. To overcome this problem a useful solution is
to consider the harmonic mean of the shortest path lengths [9] and derive the
efficiency of a graph:

E =
1

N(N − 1)

∑

i,j∈N ,i6=j

1

dij
. (2.4)

This latter definition avoids the divergence of L as every couple of nodes be-
longing to disconnected components gives a zero contribution to the formula.

2.1.3 Centrality measures

To study the dynamical behavior of networks it’s convenient to evaluate the
importance of a single node in the graph, as the relevance of a node can be
related to different factors i.e. the distance to other nodes or how many paths
pass though it, multiple measures have been proposed in the literature and
are defined as centrality measures [10]. A first measure of the importance of
a node is related to the number of connections it has, since a very connected
node can reach a huge number of neighbors at the same time, this quantity
takes the name of degree centrality. In diffusion processes the distance between
nodes plays a key role in the dynamics and it could be useful to define the
importance of a node as how close it is to the other nodes. Thus, we can
define the closeness centrality as the mean distance of a node to all the others.
Maybe the most important centrality measure is represented by the so-called
betweenness centrality that measures how important a node is with respect
to how many traffic flows pass through it. Mathematically the betweenness
centrality is determined by the number of shortest paths that pass through a
node over the total number of shortest paths in the graph:

bi =
∑

j,k∈N , j 6=k

njk(i)

njk
, (2.5)
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2.1. BASICS DEFINITIONS AND NOTATION 15

where njk is the number of shortest paths between j and k and njk(i) the
number of shortest paths connecting j and k that pass through i. In the same
way the concept of betweenness centrality can be extended to the links and is
referred as edge betweenness centrality [11].

2.1.4 Clustering

Another typical property of complex networks is represented by the clustering
(or transitivity). In social networks analysis the transitivity represents the
fraction of connected triangles that can be found in a graph over the total
number of connected triples of nodes. This quantity is defined as T and can
be calculated as [1]:

T =
3× # of triangles in G

# of connected triples of vertices in G
(2.6)

It is also possible to consider the so-called clustering coefficient C [8] of a graph.
The clustering coefficient gives the probability that two neighbors of a random
node are also connected. To do so a local clustering coefficient ci of node i
is introduced as the probability that element ajl = 1 given that j and l are
connected with i. It can be counted up as the number of links ei existing in the
sub-graph Gi (where Gi is the sub-graph formed by considering the neighbors
of i) over the maximum number of possible links in Gi, that is ki(ki − 1)/2:

ci =
2ei

ki(ki − 1)
=

∑

j,m aijajmami

ki(ki − 1)
. (2.7)

The global clustering coefficient of the entire graph is given by the average of
ci over all the nodes in G:

C = 〈c〉 =
1

N

∑

i∈N

ci . (2.8)

As ci is defined as a probability we have 0 ≤ ci ≤ 1 and consequently also
0 ≤ C ≤ 1. Sometimes it could be useful to consider the clustering coefficient
over degree classes ck or higher orders cycles as order four or five. It’s also
possible to consider a measure of clustering based on the efficiency (eq.2.4) and
defined as local effciency:

Eloc =
1

N

∑

i∈N

E(Gi) . (2.9)
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2.1.5 Degree correlations

Many real world networks show a complex structure that sometimes cannot
be fully explained by the simple degree distribution. This is the case of the
so called correlated networks in which the probability that a node with degree
k is connected to one node with degree k′ depends of k. On the contrary, in
uncorrelated networks such probability is independent of k.

To highlight the correlations in the graph structure the conditional proba-
bility P (k′|k), representing the probability that a node with degree k it points
to one with degree k′, can be introduced. For uncorrelated graphs can be
proved [12, 13] that P (k′|k) = k′P (k′)/〈k〉 thus independent of k. Although
P (k′|k) gives enough information to characterize degree correlations its mea-
sure in finite size networks cannot be applied due to its sensitivity to noise. To
avoid this problem an indirect measure of P (k′|k) is introduced and is defined
as the average nearest neighbors degree of a node:

knn,i =
1

ki

∑

j∈Ni

kj =
1

ki

N
∑

j=1

aijkj , (2.10)

this expression can be grouped by degree classes k giving knn(k) that repre-
sents the average degree of neighbors of a node with degree k. The evaluation
of knn(k) as a function of k gives the entity of correlations in the graph. For
uncorrelated networks knn(k) is a constant and its values is 〈k2〉/〈k〉. Corre-
lations can be evaluated as the numerical value of the slope ν of knn(k) as a
function of k. If ν is positive nodes tent to connect with nodes of similar degree
and the graph is said to be assortative, otherwise high degree nodes tent to
connect with low degree ones and the graph is said disassortative [14]. Another
method to estimate degree correlations in a graph is to calculate the Pearson
correlation coefficient of the degrees of the nodes at the end of each link as
proposed in [14, 15].

2.1.6 Motifs and community structures

To fully investigate the internal structure of a graph it is possible to consider
complex measures that not only involve a single node (i.e. degree) but group
of nodes and how they are connected. A first measure of this type is repre-
sented by motifs analysis. A motif M is a pattern of connections occurring
in a significantly higher number than in randomized versions of the graph. A
randomized version of a graph is a graph with the same degree distribution
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Figure 2.1: All the possible 3-noded motifs on a directed network.

of the original graph but with links randomly rewired. A motif is defined as
a n-nodes connected sub-graph both directed or not. To asses the statistical
relevance of a motif the Z-Score is introduced as:

ZM =
nM − 〈nrand

M 〉

σrand
nM

, (2.11)

where nM is the number of times M appears in the original graph G, 〈nrand
M 〉

is the average number of appearances of M in the ensemble of the randomized
versions of G and σrand

nM
its standard deviation.

Considering larger group of nodes and different connections it is possible
to extend the concept of motif to a wider class defined as community struc-
tures. Communities where firstly introduced in sociology to represent highly
connected groups of friend or families in acquaintance networks [10]. A first
definition of community in a graph can be as follows: given a graph G a com-
munity is a sub-graph G′ of G whose nodes are tightly connected. Although
this is a formal definition it includes an uncertainty given by the definition
of tightly connected nodes giving rise to distinct definition of community in
a graph. In the most strict form a group of tightly connected nodes can be
seen as a group in which every node is connected to all the others. Such group
is defined as a clique. Other definitions can be derived considering not only
adjacent nodes but just nodes at distance at least n [10].

Another class of definitions are based on the concept that in a community
most of the links are directed inside the community and only a small fraction
are directed outside it [16].
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p = 0 p = 0.5p = 0.1

Figure 2.2: Examples of ER graphs generated with three different connection
probabilites p = 0 , p = 0.1 and p = 0.5

2.2 Networks models

Once the most important characteristics of graphs for complex networks anal-
ysis have been introduced, we now focus on the mathematical modeling of real
world networks. In this section we present some generic network models with
special attention to their properties and construction algorithms.

2.2.1 Erdös and Rényi random graphs

The first approximation of a real network is represented by the so called random
graphs. The adjective random refers to the non-regular organization of links in
the graphs opposite to regular graphs in which each node has a fixed number
of links. The mathematical study of this class of graphs was firstly initiated by
Solomonoff and Rapoport [17], but the first systematic analysis was proposed
by Erdös and Rényi in 1959 [18]. Erdös and Rényi propose a model to generate
random graphs with exactly N nodes and K links. We denote such graphs
as Erdös and Rényi (ER) random graphs GER

N,K . To generate this kind of
graphs it is possible to start with N disconnected nodes and then draw K links
between randomly chosen couples of nodes avoiding self and multiple links. It’s
important to notice that in this case only a possible graph in the statistical
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ensemble of all the GER
N,K graphs is created. Another definition (that coincide

with the previous for N → ∞) can be obtained considering N nodes and the
probability p of connecting two random nodes. The graph can be generated
creating N nodes and connecting each possible couple of nodes with probability
p. This procedure creates a different ensemble of graphs GER

N,p characterized
by different number of links; a graph with K links is obtained with probability
pK(1 − p)N(N−1)/2−K .

The structural properties of ER graphs vary as a function of p and their
behaviour changes at pc = 1/N corresponding to the critical degree 〈k〉 = 1.
In particular it can be proved [5] that for p < pc the graph almost surely has
only components of size O(lnN). For p = pc the larger component has size
O(N2/3) and for p > pc a giant component O(N) appears.

The degree distribution of ER graphs was first studied by Bollobás [19].
In particular a node i has k = ki links with a binomial probability P (ki =
k) = Ck

N−1p
k(1 − p)N−1−k, where pk represents the probability that k links

are adjacent to the node, (1−p)N−1−k is the probability for the absence of the

remaining N − 1− k links, and Ck
N−1 =

(

N − 1
k

)

is the number of different

ways of selecting the end points of the k edges. Averaging over degree classes
k gives the degree distribution P (k) that for N → ∞ is well approximated by:

P (k) = e−〈k〉 〈k〉
k

k!
. (2.12)

Given the degree distribution it’s also possible to calculate other proper-
ties of the ensemble [5]. The diameter of the graph varies around Diam =
lnN/ ln(pN) = lnN/ ln〈k〉. The average path length L consequently scales as
ln(N) leading to very small networks also for large values of N . Regarding the
clustering coefficient, it can be demonstrated [8] that C = p = 〈k〉/N . This
means that C vanishes in the large N limit.

2.2.2 Watts and Strogatz small world networks

One of the most important properties of real networks is that despite of their
huge size the average distance between nodes remains relatively small. This
feature is know as small world phenomenon. Specifically the term small world
refers to graphs with high clustering coefficient and small average path length.
The Watts and Strogatz (WS) model is a method, proposed by Duncan Watts
and Steven Strogatz [8], to create graphs with small average path length and
high clustering coefficient. The algorithm starts with a N nodes ring in which
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Figure 2.3: Diagram of the random rewiring procedure for interpolating be-
tween a one-dimensional lattice and a random network in the Small-world
model. Three rewiring probabilities are showed: p = 0, p = 0.0001 and p = 1.
The networks have N = 10 nodes and k = 4.

each node is connected with its 2m nearest neighbours leading to K = mN
links. After this step a rewiring procedure is applied in which with probability
p each link (considered only once) is rewired and with probability 1 − p is
preserved. For p = 0 a regular lattice is obtained with high C but large values
of L. For p = 1 a random graph similar to ER graphs with minimum degree
m is obtained and for intermediate values of p there exists a small region in
which the graphs show the small world property. The degree distribution in
WS graphs also varies between a delta function centered at 2m with p = 0 to
a poissonian distribution similar to ER graphs with p = 1. For different values
of p the degree distribution reads as [20]:

P (k) =

min(k−m,m)
∑

i=0

(

m
i

)

(1 − p)ipm−i (pm)k−m−i

(k − m − i)!
e−pm
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Figure 2.4: Characteristic path length L(p) and clustering coefficient C(p) for
the family of randomly rewired graphs described by the small-world model as
a function of the rewiring probability p. Original figure from [8].

2.2.3 Scale-Free networks

Recently [129] it has been showed that a huge amount of networks ranging from
biological to social and technological networks are characterized by few nodes
with very large degree, absolutely improbable in poissonian degree distributions
as in the ER graphs. These nodes are called hubs and the degree distribution
of such networks is well approximated by fat-tailed distributions, specifically in
most cases it follows a power-law degree distribution in the form P (k) ∼ Ak−γ

with 2 ≤ γ ≤ 3. Such graphs are named Scale-Free (SF) networks [2, 129]
because power-laws have the property of having the same functional form at
all scales. Scale free networks represent the most important model in complex
networks analysis and due to their peculiar structure they have profound impact
on the dynamic that run on top of them.

In the last decade a plethora of models to produce synthetic scale-free net-
works has been presented, ranging from static [22] to evolving ones [129] or
from fitness based [23] to hyperbolic mapping of geometrical spaces [21]. One
of the most important is the one proposed by Barabási and Albert [129].

The Barabási-Albert model (BA) is based principally on two concepts: the
growth and the so-called preferential attachment. The model is inspired to the
growth of the World Wide Web in which pages with a high number of links
gain new connections more rapidly than low-connected pages. The algorithm
to create a BA scale-free network GBA

N,K is the following: starting with a core
of m0 connected nodes, at each time step t = 1, 2, 3, 4 . . . , N − m0 add a node
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j with m ≤ m0 new links. To choose a node i to connect j the preferential
attachment mechanism is used. In preferential attachment the probability to
choose a node i for a new connection is proportional to its degree ki:

Πj→i =
ki
∑

l kl
. (2.13)

In the model every new node has m links thus at time t the network will have
N = m0 + t nodes and K = mt links, the average degree is 〈k〉 = 2m.

The BA model in the infinite time limit t → ∞ produces graphs with
power law degree distribution and a fixed γ = 3. The model has been solved
analytically via a mean-field approximation [129, 25], a rate equation approach
[26] and a master equation approach [27]. Also in the BA model the mean
distance between nodes grows logarithmically with N but, in contrast with
ER graphs with a double logarithmic correction so fixed N and K the mean
distance L is smaller in BA networks than ER graphs. The clustering coefficient
scales as the inverse of the size of the network C ∼ N−1 leading to a vanishing
clustering in the infinite size limit. To obtain scale-free networks with a non
zero clustering various models have been presented one of the most important
is the so-called Holme and Kim model [36] in which the preferential attachment
mechanism is used to create the first of the m links and the remaining links are
chosen with probability p through a mechanism defined triad formation that
create triangles in the network choosing as end of a link one neighbor of the
node chosen through the preferential attachment.

2.2.4 Generalized Random graphs

Although the presented models can reproduce some of the features of real
systems they are specific and sometimes a generalization of the concept of
random graphs to graphs with an arbitrary degree distribution could be useful.

The configuration model [37] represents one of these generalizations of ran-
dom graphs allowing to create graphs from a given degree sequence. A degree
sequence is a sequence of integer numbers in which each number represents the
degree of a node D = k1, k2, k3, . . . , kN where

∑

i ki = 2K with K the number
of links in the graph. Note that D can be chosen to approximate the desired
P (k) for large N . Graphs created using the configuration model are sampled

by the ensemble Gconf
N,D of all the graphs with N nodes and D degree sequence

chosen with equal probability. To create a random graph from D and N it’s
possible to create N nodes and assign to each node i a number of half-edges
equal to its degree ki and then connect each half-edge randomly. Although this
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Figure 2.5: Examples of complex networks. A) a random graph, B) a scale-
free network, C) a hierarchical network in which a pattern of connections is
repeated at different scales. For the three examples the degree distribution
P (k) and the clustering coefficient as a function of the degree C(k) is reported.
Original figure from [24].

algorithm is quite naive it allows to create a wide range of random graphs from
ER graphs to scale-free networks.

Given its simplicity the configuration model permits to calculate some of
the topological features analytically. The condition for the formation of a giant
component given a degree distribution P (k) has been found by Molloy and Reed
[38, 39]:

Q =
∑

k

k(k − 2)P (k) > 0 . (2.14)

It’s worth noting that in case of ER graphs the formula gives the critical
threshold at a value equal to 〈kc〉 = 1 that is the critical degree already observed
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in sub-section 2.2.1. An approximate expression for the average path length
was found by Newman et al. [40] when N ≤ z1 and z2 ≤ z1:

L =
ln(N/z1)

ln(z2/z1)
+ 1 , (2.15)

with z1 and z2 being the mean number of first and second neighbors respec-
tively. The clustering coefficient is given by [28]:

C =
〈k〉

N

[

〈k2〉 − 〈k〉

〈k〉2

]2

=
〈k〉

N

[

(

σk

〈k〉

)2

−
〈k〉 − 1

〈k〉

]2

, (2.16)

this value is the same that in ER graphs multiplied by an extra factor. It’s
important to notice that such extra factor can assume high values especially
in case of power law degree distributions and although C vanishes in the large
N limit, for finite graphs it can be non negligible.

2.2.5 Random Geometric Graphs

A special attention is needed in case of modeling spacial networks, in which
nodes can be placed in a D-dimensional space. The most simple model of
spacial networks is the random geometric graph (RGG) model. A RGG is
constructed placing N nodes randomly on a D-torus or a plane and nodes within
an interaction radius r are connected. Such graphs represent a fundamental
model for many real world applications like sensor networks or cities. All the
features of RGGs strictly depend on the density of nodes ρ in the space and
the interaction radius r. In particular, considering a d-dimensional space of
volume Vd the density ρ is defined as ρ = N/Vd and the mean degree reads as
〈k〉 = ρπr2. RGGs are characterized by the same degree distribution of ER
graphs (see 2.2.1 ):

P (k) = e−〈k〉 〈k〉
k

k!
, (2.17)

and also the size of the giant component as function of 〈k〉 undergoes a sec-
ond order phase transition. The clustering coefficient in RGGs can be easily
calculated considering the density of nodes and the so-called excluded volume
Vex = 2dV [41] :

C =
1

Vex

∫

Vex

ρ(r)dV. (2.18)
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Chapter 3

Dynamical models on complex

networks

The main goal of complex networks study is to model, describe and predict the
different dynamics that can take place on top of real networked systems. Thus,
once a short review on the main topological feature of complex networks have
been presented we can now focus on dynamical systems that can be seen as a
network.

The aim of this chapter is to introduce recent approaches presented in the
literature in modeling networked systems. Specifically, in this part we give
a brief summary of the concepts needed to understand the results that will
be presented in the upcoming chapters. A special focus will be dedicated to
diffusion models in complex networks both on a information transmission and
epidemic spreading perspective. Also a brief resume of the latest advances
in modeling evolutionary dynamics on networks and some basics concepts of
percolation theory will be given.

3.1 Percolation Theory

The percolation theory provides a suitable framework to analytically investigate
the robustness of a network, i.e., the ability of a network to properly operate
even when a fraction of its components is damaged [1].

Strictly speaking, the percolation theory is a general mathematical theory
of connectivity and transport in geometrical complex systems. Percolation is
of particular interest to physicists as it can be considered the simplest model of

25
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a disordered system capable of experiencing a phase transition. A remarkable
aspect of percolation is that many results can be often encapsulated in a small
number of simple algebraic relationships. For a comprehensive introduction to
the percolation theory the reader is referred to [80].

A standard percolation process can be, in general, of two types: site or
bond. Site percolation on a given graph means that the vertices are empty with
a given probability f (or occupied with a probability p = 1 − f ), while bond
percolation refers to the existence or not of an edge between two arbitrarily
chosen nodes. Once the random deletion (or placement) of nodes or edges is
done, several quantities allow the characterization of the network properties. In
particular, it is possible to look at the existence and size of the giant component
as a function of f , and at the average size and fluctuations in the size of finite
components. In this way, it can be defined a critical probability fc below
which the network percolates, i.e., it has a giant component, and a set of
critical exponents characterizing the phase transition. The exact value of such
a threshold fc depends on which kind of grid (graph) is considered and its
dimension. Percolation theory gives an analytical framework for the study
of failures or attacks on a network in general. During the last decades some
exact results have been proposed for special types of graphs such as one and
two dimensional lattices, cayley trees and a general criterion for study networks
robustness. In 1998 Molloy and Reed [75] defined a criterion for the appearance
of the giant component in a graph with generic degree distribution P (k) only
analyzing its first 〈k〉 and second moment 〈k2〉. The Molloy and Reed criterion
has been used by Cohen et al.[65][66] to give a general form for the percolation
threshold fc both for random failures and intentional attacks

3.2 Evolutionary dynamics

A game or strategic game is a mathematical framework to model social or
economical interactions. Specifically in a strategic game two or more agents
(that represent decision makers) are involved. Each agent can choose between
two or more different actions. These actions are defined strategies. The agents
interact through the actions and the goal of each agent is to choose the sequence
of actions to maximize its gain (also defined as payoff ). These simple rules allow
to model a wide range of real systems from social to economical and biological
ones and, although only a schematic representation of real interaction is used,
complex and unexpected behaviors can emerge.

The so-called game theory have its origins in the work by J. von Neumann
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and O. Morgenstern [29]. Historically the study of game theory is divided in two
approaches: the classical game theory in which each agent is expected to act
as a rational player and strategies are fixed and the evolutionary game theory
in which each agent can change its strategy dynamically and copy successful
agents strategies. Both in classical and evolutionary game theory interactions
take place in a well-mixed population but complex behaviors can be obtained
considering interactions limited to adjacent nodes in a graph.

The most studied game in game theory is the Prisoner’s Dilemma (PD)
[30]. The game is defined in the following way: Two agents namely A and B
play repetitively . Each player has two options: to cooperate or to defect and
a payoff is associated with each couple of actions. If both players cooperate
(defect), both receive one (zero) point. If one player cooperates and the other
defects, the cooperator scores zero points while the defector scores b points,
with b > 1. Table 3.1 depicts a schematic representation of the payoff matrix
in the PD.

Cooperate Defect
Cooperate R, R S, T

Defect T, S P, P

Table 3.1: Matrix representation of the Prisoner’s Dilemma payoffs. T stands
for Temptation to defect, R for Reward for mutual cooperation, P for Punish-
ment for mutual defection and S for Sucker’s payoff. in the prisoner’s dilemma,
the following inequalities must hold: T > R > P > S

In a spacial version of the PD interactions are given by a graph as a regular
lattice [31]. Each player plays an iterated PD game against its neighbors and
a total payoff for each player is the sum of the payoffs accumulated during the
encounters with its neighbors. In an evolutionary version at the end of each
round of interactions a player can copy the strategy of one of each individual
that has earned a higher payoff with probability 1−p , and, to model occasional
irrational moves, the opposite strategy with probability p.

In complex networks versions of the PD [32, 33] an enhancement in the
levels of cooperation is usually observed and this is due to the effects of inho-
mogeneous degree distributions [35, 34].
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3.3 Traffic models

One of the most important roles of technological networks is to efficiently trans-
port goods, information, people from one part to another of the network. For
this reason traffic and congestion models in complex networks are of extreme
interest in computer science, engineering and physics. In particular, infor-
mation networks such as the Internet or sensor networks are of fundamental
importance. The aim of such models is to understand the fundamental charac-
teristics of traffic dynamics and the effects of topology on the network delivery
capacity and the onset of congestion.

The first study regarding information traffic in complex networks focused on
the transition between a free flow regime, in which a low traffic can be handled
by the nodes, and a congested phase in which the size of nodes queues start to
grow indefinitely. This first model was proposed by Ohira and Sawatari [92] and
two classes of nodes are present: hosts which can generate and receive traffic
and routers that can only store and forward messages. At each time step p new
packets are injected in the system with random origins and destinations and
each node has an unlimited queue managed with a first in-first out (FIFO)
policy. Packets follow a shortest path route and in case of two equivalent
paths two alternatives are possible: the deterministic routing in which the less
congested node is chosen and the probabilistic routing in which more congested
nodes can be chosen with a tunable probability. In the model the topology is
a 2D regular lattice with host nodes at the boundaries. Although this model
is very different from real communication networks such as the Internet it
shows some relevant traffic properties observed in real traffic analysis [42]. The
most significant results is related to the sudden transition from free flow to
congested state as the traffic p increases. This transition recalls a second order
phase transition in statistical mechanics and it’s characterized by a critical
traffic rate pc that depends on the routing strategy adopted, demonstrating
that an optimal routing is crucial to accommodate high traffic values without
congestion.

A plethora of modifications to this model have been presented considering
random locations for hosts and routers [93] and traffic dependent packets cre-
ation rates [94]. In particular this latter models resemble some traffic control
strategies present in actual communication networks [42]. In the same study
[94] the authors demonstrate that as a results of this control strategy the system
self-organize at the critical point of the transition. The same authors studied
the effects of topology on traffic delivery capacity [43] using as a substrate a
real Internet topology. The effects of topology on the onset of congestion have
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been widely analysed [44, 45, 46, 47] demonstrating that although scale-free
networks have small distances between nodes most of the shortest paths pass
through main hubs overloading them and promoting the onset of congestion.
To avoid the hubs overload a collections of congestion aware routing models
have been proposed [48, 49, 50, 51] in which the quality of a channel qij is
expressed as a function of the number of packets ni currently at one node
qi = f(ni). Where f(n) is defined as follow: for n = 0 is equal to 1 leading to
a high quality of the channel and an easy moment of packets, for n > 0 takes
the form f(n) = n−ξ with ξ ≥ 0 leading to lower quality as n increases.

The effect of different topology measures on traffic aware models have been
investigated by Echenique et al. in [52, 53]. In these latter models a congestion
avoiding routing scheme is presented. In particular packets are delivered not
considering the topological shortest path but, at each time step the next hop j
for a packet with destination t is chosen as the one that minimizes the effective
distance δj , defined as:

δj = hdjt + (1 − h)nj , j = 1, . . . , ki , (3.1)

where djt is the variation in the distance from the actual node i and t passing
through node j (note that this quantity can only be djt = −1 if the node is on
the shortest path from i to t, 0 if j is at the same distance from t and 1 if j is
further from t), nj is the size of the queue of j and h is a tunable parameter.
When h = 1 packets follow the topological shortest path, when h 6= 1 a traffic
aware routing mechanism is adopted allowing packets to follow longer but less
congested paths. At each time steps p packets are introduced in the system
and the number A(t) of packets that have not reached their destination at time
t is measured. For low traffic values both models (the shortest path, and the
traffic aware) show a stationary state for A(t) corresponding to the free flow
state. As the traffic p increases two different behaviors for A(t) are observed:
in the shortest path model A(t) grows linearly with p and in the traffic aware
scheme a rapid and non linear increase of A(t) is observed. To study the phase

transition related to this behavior an order parameter ρ = limt→∞
A(t+τ)−A(t)

τp
is introduced, where τ is the observation time. Substantially, ρ measures the
difference between the number of packets that are injected in the system and
the ones who reach their destination. For ρ = 0 all the packets are delivered
in the time window τ (i.e. the free flow state). Otherwise when ρ → 1 no
packet reaches the destination: the system is congested. The study of ρ as a
function of p shows important differences between the shortest path and the
traffic aware routing. In the shortest path the transition occurs at relatively
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low rates and the transition is continuous resembling a second order phase
transition. In the traffic aware regime, instead, the congestion arises at higher
traffic values but an abrupt transition is present recalling a first order phase
transition. An analytical confirmation has been proposed by De Martino et al.
[117, 118] in which authors present a minimal traffic model that can be solved
analytically. Although the model is very simple it includes all the features of
previous models as the dependence from network topology and traffic aware
routing schemes. In particular, the congestion aware routing is implemented
through a probability η that represented the probability that a packet will be
refused if the receiving node is already congested. Analytical results confirm
the shift of the critical traffic value pc in presence of the congestion aware
routing and the change in the transition from smooth to abrupt.

All these findings demonstrate the high influence of topology and routing
schemes on traffic dynamics that can be exploited to design next generation
communication networks.

Another fundamental topic in traffic analysis is represented by the study
of fluctuations in mean flow over nodes or links. This kind of studies have
been motivated by trying to predict the traffic on desired node (or link) to
better design network infrastructure. A first analysis has been conducted in
[195, 196] where the authors claim the existence of two universality classes for
the relation between the mean flow 〈fi〉 on a node and its fluctuations σi. The
two classes lead to a simple scaling law σi ∼ 〈fi〉

α where α can take only two
values 1/2 or 1. The authors propose two models based on random diffusion
and shortest path to explain the different behaviors and conclude that the
two universality classes are due to the effects of external and internal dynamic
fluctuations respectively. A different approach is exposed in [91]. In this case
the authors propose a model based on queueing theory with exponential arrival
and service time and claim that the scaling exponent α can vary continuously
between 1/2 ≤ α ≤ 1.

3.4 Epidemic spreading

The study of how a disease spreads in a population is a fundamental topic
in medical research. Since the 20th century attracted a lot of attention from
mathematicians and, nowadays the mathematical modeling of infectious dis-
eases is a key concept in epidemiology. Physicists and engineers entered the
field when the similarities between the spreading of a disease and a percolation
process were en-lighted [54].



i

i

“main” — 2011/2/24 — 5:56 — page 31 — #43
i

i

i

i

i

i

3.4. EPIDEMIC SPREADING 31

Figure 3.1: Schematization of an SIS process with β as infection probability
and µ as recovery rate

The first application of epidemic modeling on complex interaction topolo-
gies is due to Pastor-Satorras and Vespignani [163, 164] that in a couple of
seminal papers analysed the effects of network connections on the rate and
diffusion patterns of a disease.

A fundamental building block in modeling infectious diseases is represented
by the so-called compartmental models, in which the population is divided into
different groups each representing a possible state of the disease [128, 160]. In
the most simple case population can be divided into two groups: susceptible (S)
healthy persons that can catch the disease if in contact with infected individuals
and infected (I) persons that currently have the disease and can transmit it
to the others. Within this framework, or adding additional states like the
recovered (R) persons that have been infected and now are cured (or died), it
is possible to model a variety of different diseases.

One of the simplest epidemiological models describe diseases that can only
be caught once and end up in a immunization or death of the infected is the
SIR. The model is based on two parameters, the transmission rate β, and the
recovery rate µ. At the beginning of the spread an initial seed I0 of infected
individuals is inserted in the population and a susceptible individual i if in
contact with an infected j is infected with probability β:

S(i) + I(j)
β

−→ I(i) + I(j) (3.2)

and an infected becomes recovered at rate µ:

I(i)
µ

−→ R(i) . (3.3)

It’s also possible to model diseases that don’t give immunization to their
survivors, such as the tuberculosis and the common cold. These diseases are
well described by the SIS model in which an infected returns in the S state at
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rate µ. In the simplest case the spreading of the disease is considered much
faster than mean lifespan of an individual so birth and death rates are not
taken into account but it’s possible to model more complicated scenarios in
which births and deaths are considered or other classes such as latent (L,
individuals that are infected but are not infectious).

The two presented models (SIR and SIS) although very similar lead to a
totally different behavior. In the SIS two possible steady states are possible:
one with I = 0 in which the disease is absorbed by the system and no real
outbreak in the population takes place or an endemic state I > 0 in which
the infected population reaches a stationary state and the disease propagates
indefinitely. In the SIR model at the final state the number of infected is always
zero and in this case there are two possible outcomes: the disease didn’t produce
an outbreak and the final recovered population is near the value of the initial
seed, or the disease propagated to a finite fraction of the population. Even
though the dynamical behavior of the two models is very different, in both
cases the two parameters β and µ (or more correctly their ratio σ = β/µ ) play
an important role in the presence or not of an epidemic outbreak. In particular
we are interested in predicting the critical point σc at which the epidemic
transition from the absorbing phase in which the disease cannot create a finite
outbreak and, to the endemic phase in which a finite fraction of infected (or
removed in SIR) occurs. To get some initial insight on the value of the critical
point and the nature of the epidemic transition it’s possible to consider a simple
scenario defined as homogeneous mixing.

In the first approximation, both the SIR and the SIS models are considered
within the homogeneous mixing hypothesis [128], meaning that the contacts
between individuals are chosen randomly from the entire population. Although
this strong approximation doesn’t consider any geographical or local detail, it
permits to represent the system as a set of ordinary differential equations for
the densities of individuals in each class. For the SIR model the equations are:

ds(t)

dt
= −βkρ(t)s(t)

dρ(t)

dt
= −µρ(t) + βkρ(t)s(t) (3.4)

dr(t)

dt
= µρ(t)

where k is the number of contacts in the unit time (that is fixed for all
individuals) and s(t), ρ(t), r(t) are, respectively, the fraction of susceptible,
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infected, and removed individuals at time t. Note that the normalization con-
dition s(t) + ρ(t) + r(t) = 1 ∀t also hold. Equations 3.4 can be explained in
the following way: susceptibles become infected at a rate that is proportional
to the infection probability β, the densities of infected, susceptibles and the
number of contacts per unit time; infected decay into recovered at rate µ. It’s
important to notice that β and µ are fixed and equal for all the contacts. The
system in eqs. 3.4 can be solved analytically and predicts the presence of a
non-zero epidemic threshold βc for the outbreak of the disease. In particular by
considering the so-called epidemic incidence (indicated as r∞ = limt→∞ r(t))
if β > βc the value of r∞ assumes a finite value, otherwise r∞ is infinitesimally
small in the very large population limit. Solving the model for a small infection
seed as initial conditions (s(0) ≃ 1, ρ(0) ≃ 0, r(0) = 0) leads to a simple ex-

pression for the epidemic threshold βc = k
−1

(a complete analytical derivation
of the results can be found in [56]). Specifically, it can be proved that βc acts
as a critical point in phase transitions, where r∞ is the order parameter and β
the control parameter. Another important relation can be established with a
very fundamental concept in epidemiology: the basic reproductive number R0

defined as the number of secondary infections generated by an infected individ-
ual in an otherwise fully susceptible population and obviously only values of R0

larger than one imply the survival of the disease. In the case of homogeneous

mixing R0 is given by R0 = βµk
−1

.
Although the homogeneous mixing hypothesis has good analytical proper-

ties in order to obtain realistic previsions it must be abandoned and a contact
patterns must be considered. Recent studies in sexually transmitted diseases
have revealed the high heterogeneity of sexual contacts networks that pro-
foundly affects the epidemic dynamics [128, 154, 155].

A first step toward the consideration of contact networks came from Grass-
berger [54] that demonstrated the equivalence between a spreading process on
a network and a percolation-like process on the same graph. The first results
on highly skewed degree distribution is due to Moreno, Pastor-Satorras and
Vespignani that via a mean-field analysis solved a modified version of SIR on
heterogeneous graphs with a generic degree distribution P (k) and a finite aver-
age connectivity 〈k〉. Let’s consider the quantities sk(t), ρk(t) and rk(t), which
are the densities of susceptible, infected, and removed nodes in the degree class
k at time t. We can also write the normalization condition as:

sk(t) + ρk(t) + rk(t) = 1 , (3.5)

and express the global values of the epidemic incidence by the average over
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Figure 3.2: Temporal evolution of the number of Susceptible (blue), Infected
(green) and Recovered (red) in the SIS (left) and SIR (right) models respec-
tively. Original picture from http : //en.wikipedia.org/.

the various connectivity classes: r∞ = limt→∞ r(t), with r(t) =
∑

k P (k)rk(t).
At the mean-field level, these densities satisfy the same set of coupled differen-
tial equations as in Eqs. (3.4), but differentiated by connectivity classes:

dsk(t)

dt
= −βksk(t)Θ(t)

dρk(t)

dt
= −ρk(t) + βksk(t)Θ(t) (3.6)

drk(t)

dt
= ρk(t)

where µ is set to one, and Θ(t) represents the probability that any given link
points to an infected site [163, 164]:

Θ(t) =

∑

k kP (k)ρk(t)

〈k〉
. (3.7)

Solving the system 3.6 in a similar way than 3.4 (see [159] for details) it’s
possible to obtain a condition for the epidemic threshold 1/〈k〉

∑

k kP (k)(βk) =
β〈k2〉/〈k〉 > 1, leading to the value for the epidemic threshold:

βc =
〈k〉

〈k2〉
(3.8)
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This latter result has profound implications in highly heterogeneous network.
In fact for graphs in which 〈k2〉 < ∞ as ER graphs the threshold has a finite
value and a standard phase transition is observed, but for graphs with highly
fluctuating degree distributions 〈k2〉 can assume high values and in some cases
like scale free networks with 2 < γ ≤ 3 can diverge leading to a vanishing
epidemic threshold for the N → ∞ limit. Although a real zero threshold is
impossible in practice eq. 3.8 states that also in finite networks the threshold
can be very low and will be smaller in scale-free networks than in ER random
graphs of equal sizes. This behavior can be understood analysing the value of
the basic reproductive number which can be calculated as: R0 = βµ−1〈k2〉/〈k〉
in which higher values of 〈k2〉 leads almost surely to R0 > 1.

Recently a more sophisticated class of models have been presented that
incorporate a complex interaction scheme and represent well the behavior of
large scale societies. These models are defined as metapopulation models and
have been intensively studied in ecology, populations and migrations dynamics
[59, 60, 61]. Metapopulation models rely on assumption that the population un-
der study is structured and localized in discrete patches or subpopulations and
connected by some degree of migration. In this class of models each node repre-
sents not and individual but a subpopulation and subpopulations are connected
through individual mobility. Within each sub-population individuals interact
in a homogeneous mixing fashion and they can move from one population to
another following some kind of diffusion rule. This framework results very
useful in modeling epidemic dynamics in structured populations [57, 58, 128].
It’s important to notice that in this case the arrival of the disease in a new
subpopulation and the entire evolution of the epidemic process is governed by
the mobility rates and coupling between subpopulations.

A very simple metapopulation model of spreading in heterogeneous net-
works has been presented in [141]. The authors propose a Reaction - Diffusion
system with only two types of particles namely A and B that can diffuse at a
constant rate DAB = 1 and react in the following way:

B
µ

−→ A (3.9)

B + A
β

−→ 2B . (3.10)

Where µ and β represent transition probabilities from one state to another.
The system evolution can be represented in terms of fraction of particles A (or
B) in nodes with degree k:
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ρA,k =
1

Vk

∑

i|ki=k

ai (3.11)

ρB,k =
1

Vk

∑

i|ki=k

bi . (3.12)

Where ai and bi are the number of A and B particles in node i and Vk

is the number of nodes with degree k. In this way it’s possible to derive an
expression for the density of A (B) particles at the stationary state as:

ρA,k =
k

〈k〉
(ρA + µρB − βΓ) . (3.13)

With Γ =
∑

k P (k)Γk and Γk = ρA,kρBk
. Eq. 3.13 can be studied in a similar

fashion like the SIR model (see [141] for the detailed analysis) and an expression
for the critical total particle density ρc over which B particles are not absorbed
by the system is:

ρc =
〈k〉2

〈k2〉

µ

β
. (3.14)

This latter result indicates that also in this case for high heterogeneous net-
works a vanishing critical point is present and the effects of heterogeneity in
degree distribution play a fundamental role in shaping spreading dynamics.

As the previous model has profound analogies with a SIS model a more
elaborate metapopulation model with a real SIR dynamics has been presented
by the same authors [142] and an expression for the critical mobility rate pc at
which the disease invades the whole system is given. In this case individuals can
belong to one of the three classes: S, I and R. Inside each node a homogeneous
mixing version of the SIR takes place with the basic reproductive number given
by R0 = β/µ. A mobility rate pk proportional to nodes degree and a mean
population per node N are considered. Solving the model via a mean-field
treatment (see [142]) the critical mobility rate pc reads as:

pc =
1

N

〈k〉2

〈k2〉 − 〈k〉

µR2
0

2(R0 − 1)2
. (3.15)
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Introduction

A sensor network consists of a collection of nodes deployed in an environment
that cooperate to perform a task. Each node, which is equipped with a radio
transceiver, a micro-controller and a set of sensors, shares data to reach the
common objective. Sensor networks provide a framework in which, exploiting
the collaborative processing capabilities, several problems can be faced and
solved in a new way. However, it comes along with several challenges such as
limited processing, storage and communication capabilities as well as limited
energy supply and bandwidth. Performing a partial computation locally on
each node, and exploiting inter-node cooperation, is the ideal way to use sensor
networks. Unfortunately, this modus-operandi is highly constrained by the
reduced hardware capabilities as well as by the limited energy resources that
makes communication extremely unreliable as well as expensive in terms of
node life-time. As a consequence, the availability of a mechanism to build
distributed robust connectivity topologies, where robustness is meant against
random node failures and intentional node attacks, is crucial.

Sensor networks can be of interest to different areas of application, ranging
from environmental monitoring [64, 83], civil infrastructures [70, 74], medical
care [76, 78] to home and office applications [71, 79]. In each field, the deploy-
ment of a sensor network has provided interesting advantages. For instance,
in the context of environmental monitor the introduction of a sensor network
made it possible to keep environments intrinsically threatening for human be-
ings [83] under surveillance, or in the context of medical care it made it possible
to remotely monitor the health condition of patients by continuously extracting
clinical relevant information [76].

Regardless to the specific application, for a sensor network in order to prop-
erly operate, information must be shared across the network allowing for data
dissemination and data aggregation. Indeed, a big effort has been done by the
research community to develop efficient topology discovery and control algo-

39
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rithms able to achieve that. Strictly speaking, the topology discovery aims to
infer the topological structure of the network for management purpose, while
the topology control aims to maintain some desired network properties in order
to improve the performance of networking services such as routing. In particu-
lar, regarding the topology control problem, the majority of works available in
the literature address this problem in terms of per-node transmission power in
order to increase the life-time of the sensor network [62, 63, 73]. Some contri-
butions focus their attention on the fault-tollerance aspects in terms of network
deployment or power assignment [69, 72, 82].

In this second part of the work we present the work carried out in the sensor
and mobile networks analysis and control. Specifically our interest will address
relevant topics in the field: how to create a self-organized robust topology for
a static sensor network and the study of the conditions for the emergence of a
collaborative behavior on a class of moving agents.

In chapter 4 a novel topology control algorithm is proposed. The main idea
is to design a robust connectivity topology by exploiting percolation theory
principles applied to complex networks. In detail, a mechanisms to build an
arbitrary topology over a geographical environment is proposed. In addition,
a robust distribution against random failures and intentional attacks has been
exploited.

Once we have exploited the possibilities for robust static sensor networks
we can move one step further considering an enhanced class of networks the
so-called mobile networks. As the number and performances of mobile devices
we use creates new ways of communication and interaction arise. In particu-
lar, future internet architecture will a backbone-less architecture in which each
node can both produce and handle traffic creating a network of self configuring
and dynamically changing devices. Mobile networks are also a good model to
study moving unmanned objects behavior as robot or mobile sensors. In this
case communication can be crucial to survey or operate in an unknown environ-
ment. In both the presented examples: future internet and robots interaction a
fundamental role is played by the cooperation between individuals and collec-
tive behaviors. Cooperation in these cases requires that part of the individuals
capacities (such as battery energy or bandwidth) must be shared among the
individuals to obtain a global result (i.e. the whole system connectivity or the
ability to solve a complex task). For these reasons the study of the conditions
that permits cooperation to be a convenient and winning strategy is crucial for
these infrastructures functioning.

In chapter 5 we present a very simplified model for the study of the emer-
gence of cooperation in a group of mobile agents that play a social game as
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the Prisoner’s dilemma. Especially we use concepts borrowed from random
geometric graphs and game theory to numerically investigate the conditions
that allows cooperation to be an evolutionary stable strategy in a dynamically
chancing interaction network.
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Chapter 4

Robust Topologies For Sensor

Networks Applications

In this chapter we describe a distributed algorithm for the generation of highly
robust network topologies where nodes are randomly distributed on a 2D-plane.
Nodes can be easily seen as elements of a sensor network that have been de-
ployed in a geographical space. The main idea under the proposed algorithm is
to exploit percolation theory principles to design a very robust topology both
to random failures and intentional attacks. To do so we define a specific degree
distribution and then let the nodes self-configure according to it.

The rest of the chapter is organized as follows. In Section 4.1 the proposed
algorithm is described. In Section 4.2 a numerical analysis to corroborate the
analytical results is given. Finally, in Section 4.3 conclusions are drawn.

4.1 The Proposed Algorithm

The simple idea underlying this work is that well-known techniques in the
field of complex networks robustness can be suitably applied to a geographical
environment. In detail, this work proposes a way of reproducing an arbitrary
degree distribution P (k) on a geographical space where nodes are characterized
by limited visibility. In particular, a degree distribution with properties of
robustness against both faults and attacks is desired. Indeed, the multi-modal
distribution proposed by [81] turns out to have these properties. As a result,
a robust topology for sensor network can achieved.

The following scenario is considered:

43
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• Nodes are uniformly distributed in a closed 2-Dimensional plane of side
L and area A = L2.

• Nodes have a limited radius of interaction r defined as a fraction of L,

Now, given a sensor network consisting of N nodes, the number of neighbors
(degree) of a generic node i is 〈ki〉 = ρπr2, where ρ = N/L2 is the density of
nodes deployment.

According to the given scenario the proposed algorithm works as follow: i)
N nodes are distributed uniformly on a square of side L ii) as each node i starts
operating, it extracts a integer number k from a selected distribution iii) then i
tries to make k connections with the nodes in its visibility radius r, iv) to assure
the full connectivity of all the nodes an additional step, i.e., the connectivity
maintenance step, is introduced. Note that, a node might not be able to
establish the desired number of connections, indeed this is highly influenced by
the density of deployment ρ along with the fixed radius r. Nonetheless, a good
approximation of the distribution can always be reached for reasonable values
of ρ and r. Indeed, this is the case for a realistic sensor network scenario.

As far as the connectivity maintenance step is concerned, the idea is to ex-
ploit a consensus algorithm by which nodes share their ID within their visibility
neighborhood, i.e., node within its range of visibility. From an algorithmic per-
spective, each node broadcasts its ID to its neighbors, if a node receives a lower
ID it starts sharing the received lower number. Periodically, each node check
IDs within visibility neighborhood. If one of these nodes k holds a lower ID,
then node i creates a new connection to k and starts sharing k’s ID. This step
permits to obtain a connected network only adding few links to the original
distribution, and if executed periodically to readapt network topology to fail-
ures and damages. Note that, even though the connectivity maintenance step
is required, from a practical standpoint this can be avoided by performing a
proper choice of ρ and r.

Note that, a few parameters regarding the degree distribution are required
for the algorithm in order to properly operate. Moreover, as these parameters
are fixed, they can be directly hardcoded into each node.

At this point, being a technique for constructing an arbitrary distribution
over a geographical space available, the analytical evaluation of the best form
for the P (k) is faced.
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4.1.1 Optimal degree distribution for network robustness

A robust multimodal degree distribution has been proposed in [81]. In this
work, the authors show that a network which maximizes the value of the thresh-
old fT , defined as fT = fr + fa with fr the percolation threshold for random
node removal and fa the threshold for targeting node removal, can be obtained
by exploiting the following functional form:

P (k) =

m
∑

i=1

riδ(k − ki) =

m
∑

i=1

r1a
−(i−1)δ(k − ki) (4.1)

where ki = k1b
−(i−1) with k1 min degree of the network and δ(x) Dirac’s delta

function. In addition, the authors show an inter-dependency among all the
parameters of Eq. 4.1 leading to a model that depends only on N and m,
i.e, the number of nodes and the number of distinct modes in the distribution
respectively. In detail, the model is characterized by three different quantities,
namely: a that represents the fraction of nodes having different degrees and
is larger than 1, b that controls the values of the degrees, and k1 that is the
smallest degree in the network. As far as the other parameters r1 and rm are
concerned, they can be obtaiend from the normalization condition:

m
∑

i=1

ri = r1

m
∑

i=1

a−(i−1) = 1 (4.2)

as follows:

r1 =
1 − a−1

1 − a−m
or rm =

a − 1

am − 1
(4.3)

and
a − 1

am − 1
=

q

N
(4.4)

rm =
q

N
= Nα−1 with 0 < α < 0.25 (4.5)

with q the number of nodes with the highest degree km. Authors of ref. [81]
also demonstrate that the mean degree 〈k〉 is:

〈k〉 =

m
∑

i=1

kiri = k1r1

m
∑

i=1

(ab)−(i−1) (4.6)

leading to a general form for parameters a and b

ab ∼ N (1/2−α)/(m−1) (4.7)
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from eq.4.7 it is possible calculate

a ∼ N (1−α)/(m−1) (4.8)

and

b ∼ N1/2(m−1) (4.9)

Eqs. 4.8 and 4.9 give the dependency of a and b, once fixed the number
of nodes N , from m and α leading to a two parameters model, on which it
is possible to calculate the optimal value of the percolation threshold fopt

T

defined as the sum fopt
T = fopt

a + fopt
r of the two percolation thresholds for

nodes attacks and random failures respectively. it is possible to demonstrate
that optimal values of fT are obtained for α = 0 and m = 2. Note that, as the
fopt

T is a linear combination of two factors, a slightly different behavior, i.e.,
higher robustness to random node failures or higher robustness to intentional
node attacks, can be obtained with a proper choice of the two parameters α
and m.

An example of network topology created with the proposed algorithm when
exploiting the multi-modal distribution described so far is given in Fig. 4.1. It
can be noticed that the obtained topologies are characterized by a high number
of triangles which guarantee robustness. At the same time, the degree of the
most connected nodes is kept sufficiently low which allows to both mitigate the
impact of intentional attacks and limit the effect of random failures.

4.2 Numerical Analysis

The proposed algorithm has been investigated through numerical simulations.
Two aspects of interest have been investigated: the robustness to random node
failures and the robustness to node attacks. The first aims to evaluate the
capability of the sensor network to properly operate even when suddenly some
nodes stop working, while the second investigates the resistance of the network
when in presence of organized attack aiming to destabilize the normal operating
conditions.

The following indexes of quality have been considered: i) the number of
components ii) the size of the giant component iii) the percentage of network
disconnected. The first index gives an information about the overall connec-
tivity of the network, the second one gives an idea about the remaining oper-
ability, while the last one gives an information about the number of nodes still
functioning.
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a)
b)

c) d)

Figure 4.1: Four examples of network produced by the proposed algorithm
with different number of nodes N , a) N = 50, b) N = 100, c) N = 500 and d)
N = 1000, with m = 3, k1 = 3 and α = 0.

Moreover, a comparison against a null-model has been performed. Such a
null-model is built starting from the network produced by the proposed algo-
rithm by keeping the same constraints on the number of nodes, the visibility
radius r but introducing a randomized version of the link connections leading
to a Poisson degree distribution. As a result, a random network topology is
achieved.

Several network configurations have been analyzed. In the following only re-
sults regarding a network composed by 2500 nodes deployed in an geographical
space with side L = 10 and density ρ = 2 are shown.
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Fig. 4.2-a) shows the degree distribution P (k) obtained for the proposed
model with the parameter m = 3. It can be noticed the presence of three peaks,
respectively for k = 3, 22, 33, representing the three modes of the distribution.
The two remaining spare peaks can be explained by the limited visibility r of
nodes. Indeed, these two peaks would tend to the closest ones on the line if
the radius r were sufficiently big. Note that for m → ∞ the distribution P (k)
tends to a scale-free distribution [81]. On the other hand, Fig. 4.2-b) describes
the degree distribution P (k) obtained for the null-model, which is, as expected,
a Poisson distribution.
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Figure 4.2: Degree distribution of the proposed model a), and of the null-model
b). Parameters setting: N = 2500, m = 3, k1 = 3, α = 0.

Table 4.1 gives a synoptical overview of the conducted analysis. In partic-
ular, it can be noticed that when considering two networks with a comparable
number of nodes and links the proposed model turns out to be more robust.
This can be explained by the higher value of the clustering coefficient 〈c〉 lead-
ing to an higher number of triangles in the network that are known to be the
most robust structure against random failures. Moreover, another interesting
aspect can be pointed out: both the characteristic path length and diameter
values are lower for the proposed model. Indeed, this is a good property for
a sensor network as it implies a lower consumption to spread data over the
network.

Fig. 4.3 shows the number of connected components (CC) for both the pro-
posed model (circles) and the null-model (squares) when varying the fraction
of removed links. In detail, Fig. 4.3-a) represents the behavior of the mod-
els against random node failures, while Fig. 4.3-b) depicts the same behavior
against intentional attacks. In both cases, the proposed model outperforms
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Table 4.1: Main topological features of the proposed model against the null-
model.

Model N E 〈k〉 kmax 〈d〉 dmax 〈c〉
Proposed Model 2500 4201 3.36 33 5.99 13 0.004766

Null Model 2500 4277 3.42 11 7.24 15 0.001279

0 0,2 0,4 0,6 0,8 1
Fraction of removed nodes

0

20

40

60

80

100

C
C

0 0,1 0,2 0,3 0,4 0,5 0,6
Fraction of attacked nodes

0

100

200

300

400
C

C

Figure 4.3: Number of connected components (CC) vs. fraction of removed
nodes for the proposed model (circles) and the null-model (squares) in case of
random node failures a) and intentional node attacks b). Parameters setting:
N = 2500, m = 3, k1 = 3, α = 0.

the null-model, i.e., the network starts to break down after a higher fraction of
node (approx. 20%). Note that, isolated nodes are not counted as components.

Fig. 4.4 shows the size of the giant component for both the proposed model
(circles) and the null-model (squares) when varying the fraction of removed
links. Also in this case, the proposed model outperforms the null-model. In
particular, the size of the biggest component decreases almost linearly with the
fraction of removed nodes in the case of random nodes removal.

Finally, Fig. 4.5 shows the fraction of disconnected nodes for both the model
(circles) and the null-model (squares) when varying the fraction of removed
links. As before, the performance of the proposed model is significantly better
than the null-model.

An additional analysis of the behavior of proposed technique has been suc-
cessively carried out. In particular the following aspects have been investigated:
the rate of growth of the number of links with the respect to the number of
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Figure 4.4: Size of the giant component (Size GC) vs. fraction of removed
nodes for the proposed model (circles) and the null-model (squares) in case of
random node failures a) and intentional node attacks b). Parameters setting:
N = 2500, m = 3, k1 = 3, α = 0.
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Figure 4.5: Fraction of disconnected nodes vs. fraction of removed nodes for
the proposed model (circles) and the null-model (squares) in case of random
node failures a) and intentional node attacks b). Parameters setting: N =
2500, m = 3, k1 = 3, α = 0.

nodes, the fraction of isolated nodes resulting from the removal of a fraction
of nodes and the variation of the tree indexes previously introduced, i.e., the
number of components, the size of the giant component and the percentage of
network disconnected, when varying the value of the parameter m.

Fig. 4.6-a) shows the rate of growth of the number of links with respect
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Figure 4.6: a) Growth rate of the number of links vs. the number of nodes. b)
Fraction of isolated nodes resulting from the removal of a fraction of nodes in
case of random node failures.

to the number of nodes. it can be easily noticed that the number of links
increases linearly with the number of nodes. This is indeed a good property
of the algorithm as the higher vis the number of links the higher is the power
consumption of the network leading to a good scalability. Fig. 4.6-b) illustrates
the fraction of isolated nodes resulting as a consequence of the removal of a
fraction of nodes. This is another interesting property of the algorithm. In
fact, it points out that only a negligible percentage of nodes are affected by the
removal of other nodes. In other words, by removing a node the connectivity
of its neighbors is not significantly influenced.

Figs. 4.7 shows how the tree indexes change when varying the value of the
parameter m. Note that, this result is referred to the proposed model against
random node failures. According to the theoretical results, the higher is the
value of the parameter m the better is the performance against random failures
as the scale-free characterization of the degree distribution becomes more and
more notable. Indeed, this is in agreement with the results obtained in [81] as
the percolation threshold is not influenced by the variation of the parameter
m, but at the same time other characteristics, such as the number of connected
components, are positively influenced in the case of random node failures.
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Figure 4.7: a) Number of connected components, b) Size of the giant component
and c) Fraction of isolated nodes vs fraction of removed nodes in the proposed
model with different values of m. m = 3 (circles), m = 5 (squares), m = 7
(diamonds), m = 10 (triangles). Parameters setting: N = 2500, k1 = 3, α = 0.

4.3 Conclusions

In this chapter, a novel topology control algorithm has been proposed. Indeed,
the availability of a connectivity topology algorithm able to properly operate
even when in presence of random failures of nodes drastically increases the
robustness as well as the operability of a sensor network.

In detail, an algorithm to build an arbitrary topology over a geographical
environment is proposed. In addition, a robust degree distribution against ran-
dom failures and intentional attacks has been exploited [81]. The properties
of the resulting model have been analytically characterized by exploiting the
percolation theory and the related results have been corroborated by numerical
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simulations. In particular, three different indexes of quality have been inves-
tigated, namely the number of connected components, the size of the giant
component and the fraction of disconnected nodes in the network. Moreover,
a comparison against a randomized version of the network (null-model) has
been performed. According to these results, the proposed topology control
technique has turned out to be very effective as it always outperforms the null-
model in terms of connectivity maintenance against both random node failures
and intentional node attacks.

To conclude the proposed algorithm is distributed and easy to implement
on-board each node. It requires a limited number of messages in order to
build the topology and the number of links scales linearly with the size of the
network. Moreover, even though the algorithm has been implemented only in a
2-dimensional plane, there is no additional cost to extend it to a n-dimensional
space, as the topology construction relies only on the Euclidian distance.

Several challenges still remain for future work. An extension where a node
independently sets its radius of visibility r might be investigated in order to
reduce the energy consumption. In addition, a dynamical network rewiring
process able to reconnect the network anytime two or more components arise
might be studied. Finally, an enhanced scenario where mobility is taken into
account for some nodes might be of interest.
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Chapter 5

Cooperation in a Mobile Agents

Scenario

An open question in biology and social sciences is to understand how cooper-
ation emerges in a population of selfish individuals. A theoretical framework
that has shed some light into this long-standing problem is evolutionary game
theory [172, 173]. Through the development and the study of different social
dilemmas, scientists have been able to elucidate some of the mechanisms that
enable cooperative behavior in populations.

One of the most studied games is the Prisoner’s Dilemma (PD) in which
players can cooperate (C) or defect (D) and receive a different payoff according
to their and their opponent strategy. While a population of individuals playing
a PD game does not support cooperation if they are well-mixed, the existence
of a spatial structure gives as a result that cooperation survives under certain
conditions as cooperative clusters can emerge in the system [172, 173].

Recent works have shown that the cooperative behavior is actually enhanced
when the individuals play on a ER random graph. Further improvement in the
global level of cooperation is obtained if the network of contacts is scale-free
[174, 175, 176, 177]. The reason is that cooperators are fixed in the highly
connected nodes, turning also into cooperators their neighborhood and guar-
anteeing in this way their long-time success. Additionally, several works have
explored different rewiring mechanisms that allow an improvement in the av-
erage level of cooperation in the system [178, 179, 180]. Interestingly, social
dilemmas can also be used to generate highly cooperative networks by imple-
menting a growth mechanism in which the newcomers are attracted to already

55
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existing nodes with a probability that depends on the nodes’ benefits [181].
In spite of the relative large body of work that has been accumulated in

the last few years, there are situations of practical relevance that remain less
explored. This is the case of models where individuals can move and change
their neighborhood continuously by encountering different game’s partners as
time goes on. Highly changing environments can be found in a number of
social situations and the study of how cooperative levels are affected by the
inherent mobility of the system’s constituents can shed light on the general
question of how cooperation emerges. Furthermore, the insight gained can be
used to design cooperation-based protocols for communication between wireless
devices such as robots [182]. Recently, a few works have dealt with this kind
of situation [183, 184, 185]. However, the models were limited to the case in
which individuals are allowed to move on the sites of a 2D regular lattice.

In this chapter, we consider the less-constrained -perhaps more realistic-
case in which a set of Prisoner’s Dilemma players unconditionally move on
a two dimensional plane. We explore under which conditions cooperation is
sustained. In particular, we inspect the robustness of the average level of
cooperation in the population under variation of the game parameters and of
the mobility rules. Our results show that cooperation is actually promoted
provided that players do not move too fast and that cooperation is not too
expensive. Additionally, at variance with other cases, the dynamics of the
system exhibits only two stable attractors -those in which the whole population
plays with one of the two possible strategies.

the rest of the chapter is organized as follows. In section 5.1 the dynamical
model is presented. Then the results of the numerical simulations and a brief
discussion are given in section 5.2 and finally in section 5.3 the conclusions are
drawn.

5.1 The model

In our model, we consider N agents (individuals) moving in a square plane of
size L with periodic boundary conditions, and playing a game on the instanta-
neous network of contacts. The three main ingredients of the model are: the
rules of the motion, the definition of the graph of interactions, and the rules of
the evolutionary game.
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5.1.1 Motion

Each agent moves at time t with a velocity vi(t) (i = 1, 2, . . . , N). We as-
sume that the modulus of the velocities of the individuals is constant in time,
and equal for all the agents, while the individuals are allowed to change their
direction of motion, θi(t). Hence we can write the velocities as: vi(t) =
(v cos θi(t), v sin θi(t)). The individuals are initially assigned a random posi-
tion in the square and a random direction of motion. At each time step they
update their positions and velocity according to the following dynamical rules:

xi(t + 1) = xi(t) + vi(t) (5.1)

θi(t + 1) = ηi (5.2)

where xi(t) is the position of the i-th agent in the plane at time t and ηi are
N independent random variables chosen at each time with uniform probability
in the interval [−π; π].

5.1.2 Network of interactions

At each time step we consider that the neighborhood of a given agent i is made
up by all the individuals j which are within an Euclidean distance dij less than
some threshold r. In what follows, without loss of generality, we set r = 1.
Therefore, the instant network of contacts is defined as the graph formed by
nodes centered at all the N circles of radius 1 together with the links between
those agents in the neighborhood of each individual. Note that as agents move
every time step, the network of contacts, and hence the adjacency matrix of the
graph is continuously changing, not only because the number of contacts an
individual has may change, but also due to the fact that the neighbors are not
always the same. The topological features of the graph defined above depend on
several parameters. For instance, the mean degree of the graph can be written
as 〈k〉 = ρπr2 = ρπ where ρ = N/L2 is the density of agents. For small values
of ρ, the graph is composed by several components and there may also exist
isolated individuals. On the contrary, when ρ > ρc a unique giant component
appears [41] (for our system with periodic boundary conditions ρc ∼ 1.43). An
example of an interaction network with N = 103 agents is depicted in fig. 5.1.
Long range links are due to the periodic boundary conditions.
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Pajek

Figure 5.1: A typical interaction network with N = 103 agents. Cooperators
agents are depicted in green and defectors agents are in red. Long range links
are due to the periodic boundary conditions.

5.1.3 Evolutionary dynamics

As the rules governing the evolutionary dynamics, we assume that individuals
interact by playing the Prisoner’s Dilemma (PD) game. Initially, players adopt
one of the two available strategies, namely to cooperate or to defect, with the
same probability 1/2. At every round of the game all the agents play once
with all their corresponding instant neighbors. The results of a game translate
into the following payoffs: both agents receive R under mutual cooperation
and P under mutual defection, while a cooperator receives S when confronted
to a defector, which in turn receives T . These four payoffs are ordered as
T > R > P ≥ S in the PD game so that defection is the best choice, regardless
of the opponent strategy. As usual in recent studies, we choose the PD payoffs
as R = 1, P = S = 0, and T = b > 1. Once the agents have played with
all their neighbors, they accumulate the payoffs obtained in each game, and
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depending on their total payoffs and on the payoffs of the first neighbors, they
decide whether or not to keep playing with the same strategy for the next round
robin. In this process, an agent i picks up at random one of its neighbors, say
j, and compare their respective payoffs Pi and Pj . If Pi > Pj , nothing happens
and i keeps playing with the same strategy. On the contrary, if Pj > Pi ,
agent i adopts the strategy of j with a probability proportional to the payoff
difference:

Πij =
Pj − Pi

max{kj , ki}b
, (5.3)

where ki and kj are the number of instant neighbors of i and j respectively
(i.e. the number of agents inside the circles of radius r centered at i and
j respectively). This process of strategy updating is done synchronously for
all the agents of the system and is a finite population analogue of replicator
dynamics. When finished, the payoffs are reset to zero, so that repeated games
are not considered.

The movement and game dynamics might in general be correlated, and
the influence of the agents movement on the performance of the PD dynamics
depends on the ratio between their corresponding time scales. Here, we con-
sider the situation in which both movement and evolutionary dynamics have
the same time scale. Therefore, at each time step, the following sequence is
performed: (i) the agents perform a new movement in the two-dimensional
space, (ii) establish the new network of contacts (determined by the radius r
of interaction) and (iii) they play a round of the PD game, accumulating the
payoffs and finally updating their corresponding strategies accordingly. After
this latter step, the players move again. The process is repeated until a sta-
tionary state is reached. Here, a stationary state is one in which no further
changes of strategies are possible.

5.2 Results and Discussions

We have performed extensive numerical simulations of the model for various
values of the agent density ρ and velocity v, and different values of the game
parameter b. Let us first note that for the limiting case in which v = 0, the
results point out that the average level of cooperation is different from zero,
as one might expect from the fact that the underlying network of contacts
has a Poisson degree distribution. Indeed, the graph corresponds to a random
geometric graph [41], a network having the same P (k) as an ER random graph,
but with a higher clustering coefficient. This latter feature leads to a further
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Figure 5.2: Average level of cooperation, 〈c〉, as a function of time (Monte
Carlo steps) for v = 0.01 and two different values of b, b = 1.1 b = 1.3, as
indicated. Other model parameters have been fixed to ρ = 1.30 and N = 103

agents.

increment of the average level of cooperation, as it has been shown that a
network with a high clustering coefficient promotes cooperation [186, 187].

Let us now focus on the case v 6= 0. The first difference that arises with
respect to the case in which agents do not move is that the dynamics of the
system only have two attractors. Namely, the asymptotic state (i.e., when
the probability that any player changes its strategy is zero) is either a fully
cooperative network (all-C) or a network in which all the individuals end up
playing as defectors (all-D). This behavior is illustrated in Fig. 5.2, where we
have reported the average level of cooperation 〈c〉 in a population of N = 103

individuals as a function of time, for v = 0.01 and for two different values of b.
Starting from a configuration in which individuals are cooperators or defectors
with the same probability, the average level of cooperation slowly evolves to
one of the two asymptotic states: all-C or all-D. It is also worth stressing that
the system reaches those states more slowly than in static settings (i.e., when
v = 0). Specifically, it appears that the system spends a considerable time
in metastable states (flat regions in the figure) that are followed by a sudden
decrease (or increase) of the average level of cooperation.

The evolution of the system depends on the density of players. In Fig. 5.3,
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Figure 5.3: Fraction of realizations in which the system ends up in an all-C
configuration, Fc, as a function of the density of players ρ for a fixed value of
b = 1.1 and v = 0.01. The system is made up of N = 103 agents. The results
are averages taken over 100 different realizations.

we have represented the dependence of the fraction of realizations, Fc in which
the population ends up in an all-C configuration as a function of the density
ρ for b = 1.1 and v = 0.01. There are two limits for which Fc = 0. At low
values of the density, the agents are too spread in the 2D plane. As a result,
cooperators unsuccessfully strive to survive and get extinguished given the low
chance they have to form clusters -the only mechanism that can enforce their
success. On the contrary, for large values of ρ the population is quite dense
and, locally, the agents’ neighborhoods resemble a well-mixed population in
which more or less everybody interacts with everybody and therefore defection
is the only possible asymptotic state. Values of ρ between these two limiting
cases confer to cooperators a chance to survive. Interestingly, there is a region
of the density of players, 0.9 . ρ . 3 which is optimal for cooperative behavior.
Beyond this region Fc decays exponentially with ρ reaching zero at ρ ≈ 7.

Up to now, we have analyzed the behavior of the system for small values
of the velocity of the agents and of the temptation to defect. Figure 5.4 sum-
marizes the results obtained for a wider range of model parameters (v and b)
in a population of N = 103 agents and ρ = 1.3. The results are averages taken
over 100 realizations of the model. The phase diagram shows a relative wide
region of the model parameters in which cooperative behavior survives. For a
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Figure 5.4: The color code shows the fraction of realizations in which the whole
system is made up of cooperators, Fc, as a function of the velocity at which the
agents move (v) and the temptation to defect (b). The Y-axis is in log scale for
clarity. The rest of parameters are N = 103 agents and ρ = 1.30. Each point
is an average over 100 different realizations

fixed value of v, this region is bounded by a maximum value of the temptation
to defect close to b = 1.3, which decreases as the velocity at which players
move increases. Furthermore, when b is kept fixed, increasing the value of v is
not always beneficial for the survival of cooperation. In fact, when the indi-
viduals move too fast, they change their environment quite often and quickly,
then increasing the likelihood to meet each time step a completely different
set of players. In other words, when the velocity is increased beyond a certain
value, the well-mixed hypothesis applies to the whole population of players,
thus leading to the extinction of cooperation in the long time limit.

Figure 5.5 sheds more light on the dependence of the fraction of cooperators
with respect to the velocity of the agents. There we have represented the layer
corresponding to b = 1.1 in Fig. 5.4. As can be seen from the figure, for low
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Figure 5.5: Fraction of realizations ending up in an all-C configuration as a
function of the velocity v of the agents for b = 1.1. The inset shows the
smallest value of the temptation to defect, bc, for which the probability of
achieving a fully cooperator asymptotic state is zero, as a function of v. In
both cases, N = 103 agents, ρ = 1.30, and results correspond to averages over
100 realizations.

values of v all the realizations lead the system to a configuration in which all
strategists are cooperators. As the PD players move faster, the probability of
achieving such a configuration decreases and gets zero for values of v close to
0.05. From that point on, the all-C asymptotic state is never realized. This
latter point also depends on the specific value of b. The inset of Fig. 5.5,
represents the smallest values of the temptation to defect, bc, for which in all
the realizations performed the system ended up in the all defectors state as
a function of v. The results show that beyond v ≈ 0.1, cooperation never
survives in a population of moving agents irrespective of b.

5.3 Conclusions

Concluding in this chapter, we have studied the effects of mobility on a popula-
tion of Prisoner’s Dilemma players that are able to move in a two-dimensional
plane. Numerical simulations of the model show that a fully cooperative system
is sustained when both the temptation to defect and the velocity of the agents
are not too high. Although cooperation is extinguished for a wide region of the
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parameter space, our results show that mobility have a positive effect on the
emergence of cooperation. As a matter of fact, as soon as v 6= 0, the mobility
of the agents provokes the spread of the winning strategy to the whole popu-
lation, leading the system to a global attractor in which all players share the
surviving strategy. In other words, the movement of individuals prevents the
coexistence of different strategies in the long time limit. Namely, for small (and
fixed) values of b cooperation prevails at low velocities, while defection succeeds
for larger v. Our results are relevant for the design of new cooperation-based
protocols aimed at motion coordination among wireless devices and for other
communication processes based on game theoretical models [182].
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Introduction

Communication networks [188] are nowadays subject of intense research as
modern society increasingly depends on them. In this third part we investigate
some interesting models for the study of traffic properties on such networks.

The first studies on the field have dealt with the architecture of these sys-
tems, showing that the systems’ topological features [188, 189, 190] are at the
root of the critical behavior of several dynamical processes taking place on top
of them [1, 188]. On the other hand, models for traffic and information flow
on complex networks have been recently investigated as a way to improve our
understanding on key issues such as the scalability, robustness, performance
and dynamics of technological networks [1, 188]. In particular, much effort has
been invested in finding what are the conditions for an efficient performance
of communication networks, the latter being measured as the ability of the
system to avoid congestion and reduce transit times [191, 192, 193, 194].

Actual studies are mainly distinguished in two areas. One focusing on the
traffic properties in the free flow regime as main communication infrastructures
adopt control mechanisms to prevent the onset of the congestion (i.e. conges-
tion avoidance in TCP protocol [42]). These studies address problems as the
structural evolution of these networks [85, 86] or the navigability [87, 88, 89]
and the dynamical features of traffic [90, 91]. Another area of interest is rep-
resented by the study of mechanisms and techniques aimed to delay the arise
of congestion. These mechanisms are intended to operate before traffic control
protocols to allow the network to handle a larger quantity of traffic before con-
gestion control become active. Many studies try to optimize traffic conditions
by designing efficient routing strategies [95, 96, 97, 98, 99, 101, 100] that on one
hand, provide with short delivery times and, on the other hand, avoid the onset
of the congested state causing the failure of information flow. It has been shown
that finding the best suited strategy depends strongly on two main features:
the topological patterns of the particular network and the load of information

67



i

i

“main” — 2011/2/24 — 5:56 — page 68 — #80
i

i

i

i

i

i

68 CHAPTER 5. COOPERATION IN A MOBILE AGENTS SCENARIO

on top of it. Regarding the first of these two issues, a number of routing mecha-
nisms have been studied on different structures [101, 102, 103, 104] allowing to
design resilient network backbones [105, 106, 107]. On the second issue many
congestion-aware routing protocols have been proposed, based on biased ran-
dom walks [113], shortest-path [114, 115] and efficient-path [116] routings. In
addition to the design of efficient routing protocols, several strategies to avoid
congestion have been implemented. Remarkable examples of these strategies
are the implementation of incoming flow rejection [117, 118] and the packet-
dropping mechanisms [119] for avoiding the congestion of single nodes.

In this part we will cover the two aspects of traffic dynamics: the study of
the traffic properties in the free flow regime and mechanisms to delay the onset
of the congested state.

Predicting fluctuations in traffic intensity is a crucial issue in communica-
tion network design and maintenance as hardware costs and resource planning
are strictly influenced by variations on the mean traffic level. The aim of chap-
ter 6 is to investigate the relationship between mean flow on a node and its
variance. Specifically, we present a traffic model based on random diffusion
that can give some insights on the value of standard deviation in single nodes
and then study the scaling relationship between mean traffic and its variations.

The problem of delaying the appearance of congestion is tackled in chapter
7 in which an analytic model for traffic simulation is presented and then a series
of self-adaptive strategies are proposed. The main idea behind these adaptive
behavior is that nodes located in different positions on the network, based on
their degree and congestion level of their neighbors, can experience different
traffic values and then the optimal behavior can be different. We propose a
minimal traffic model in which nodes can chose if accept or not an incoming
packet based on their congestion state. As a further improvement we consider
a situation in which nodes can collaborate with their neighbors and define a
local optimal strategy.
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Chapter 6

Flow Fluctuations on Complex

Networks

The relationship between the fluctuations σ and the average flux 〈f〉 in traffic
dynamics on complex networks is a controversial issue that has received a lot of
attention very recently [195, 197]. The authors of Refs. [195, 196] claimed the
existence of the relation σ ∼ 〈f〉α, with real communication networks belonging
to one of two universality classes, the first one characterized by an exponent
value α = 1/2, the second one by α = 1. The authors of [197] questioned the
existence of the two universality classes. They numerically showed that there is
a wide spectrum of possible values for α, depending on parameters such as the
persistence of packets in the network, the duration of the time window during
which statistics are recorded, and the rate of service at the nodes’ queues [197].

In this chapter, we propose a model for traffic in complex networks, the
Random Diffusion (RD) model, that is amenable to analytical solution. The
model predicts the existence of a simple law that relates the fluctuations at
a node i, σi to the average traffic flow fi, depending on the delicate balance
of three quantities: (i) the variation in the number of packets in the network,
(ii) the degree of the node i, and (iii) the length of the time window in which
measures of traffic flow are performed. Notwithstanding its simplicity, the
RD model is able to capture the essential ingredients determining the scaling
of fluctuations empirically observed for traffic flow in real complex networks.
More important, we also show that the hypothesis of a power-law scaling of
flow fluctuations has to be abandoned under certain conditions. Results of
numerical simulations of a traffic-aware model and analysis of real data of
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Internet flow confirm our theoretical findings.

6.1 Random diffusion model

In the random diffusion (RD) model we represent packets of information as
w random walkers traveling in a network made up of N nodes and K links.
Under the assumption that the packets are not interacting, it follows that the
average number of walkers λi at a node i is given, in the stationary regime, by
[198, 199]

λi(w) =
ki

2K
w . (6.1)

Let us assume that the total observation time T is divided into time-windows
of equal length. Each window is made of M time units. A window represents
the minimal resolution for measurements of the flux in a node and its fluctua-
tions, being the first the result of accumulating the number of packets traveling
through the node during the M time units. The average number of packets 〈fi〉
processed by node i in a time window is measured, together with its standard
deviation σi. These are the two quantities monitored in Refs.[195, 197] for
real systems and in the numerical simulations of network traffic models. The
main interest is to investigate the dependence of σi with 〈fi〉. In particular, we
want to verify whether a power-law relation σi ∼ 〈fi〉

α holds, and what factors
determine the exponent α. In the RD model we can consider two possible situ-
ations: either the number of packets in the network is constant over the whole
period of time T , namely w = W , or it can vary from one time window to the
other. In the latter situation, we assume that the probability F (w) of having
w walkers on the network in a window of length M is equally distributed in
the range [W − δ, W + δ], i.e.,

F (w) =
1

2δ + 1
, (6.2)

with 1 ≤ δ ≤ W . To find an expression for the average number of packets 〈fi〉
flowing through a given node i, we first calculate the probability Pi(n) that,
after M time steps, n packets have visited node i.

In the case w = W , due to the fact that the packets are not interacting,
the arrival of walkers at a node is a Poisson process. Therefore, after a period
of M time units, the mean number of packets (the average flux) at a node i is
〈fi〉 = λi(w)M , and the probability of having n packets reads

Pi(n) = e−λi(w)M (λi(w)M)n

n!
, (6.3)
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with σ =
√

λi(w)M =
√

〈fi〉. Thus, the scaling exponent is α = 1/2.
In the more general case in which the number w is distributed as in Eq. (6.2),

the probablity Pi(n) is

Pi(n) =

j=2δ
∑

j=0

e−
ki
2K

(W−δ+j)M

2δ + 1

[ ki

2K (W − δ + j)M ]n

n!
. (6.4)

Calculating first and second moments of Pi(n) one obtains

〈fi〉 =
∞
∑

n=0

nPi(n) =
kiWM

2K
, (6.5)

〈f2
i 〉 =

∞
∑

n=0

n2Pi(n) = 〈fi〉
2(1 +

δ2

W 2
) + 〈fi〉 . (6.6)

Finally, the standard deviation can be expressed as a function of 〈fi〉 as

σ2
i = 〈fi〉

(

1 + 〈fi〉
δ2

W 2

)

. (6.7)

6.2 Discussion

The above derivation provides an understanding of the origins of Eq. (6.7),
proposed in [195], and shows that the relation between σi and 〈fi〉 depends on
the concurrent effects of three factors, namely: (i) the noise δ associated to
the fluctuations in the number of packets in the network from time window to
time window; (ii) the length M of the time window; and (iii) the degree of
the node ki (since 〈fi〉 depends on ki). Consequently, real traffic rarely falls in
either of the two limiting cases of Eq. (6.7), i.e., σ ∼ 〈f〉α with α = 1/2 or 1.

Expression (6.7) contains all the behaviors previously observed in Refs. [195,
197], and also predicts new dependencies that can be tested to be valid in more
refined traffic models as well as in real data. In fact, if the three quantities δ,
M and ki are such that

kiMδ2

2KW
≪ 1 , (6.8)

expression (6.7) reduces to a power-law scaling σ ∼ 〈f〉α with exponent α =

1/2. On the contrary, whenever the ratio kiMδ2

2KW is not negligible anymore, the
exponent α differs from 1/2 and approaches 1. In other words, it may well
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Figure 6.1: Flow fluctuation σ as a function of 〈f〉 for the RD model with
various parameter values. In panel (a), δ = 103 and W = 104. In panel (b),
W has the same value while M has been fixed to 10. In both figures, points
correspond to the solution of Eq. (6.7) for different values of ki (1 . . . 18). The
total number of links is K = 33500. Dashed lines are guides to the eyes and
correspond to σ ∼ 〈f〉α, with α = 1/2 (lower curves) and α = 1 (upper curves).
See the text for further details.

be the case in which, even for small values of the noise parameter δ, a large
value of M cancels out the effect of the ratio δ

W being too small in Eq. (6.7).
This behavior was already explored in [197] by means of numerical simulations.
However, the fact that the ratio in formula (6.8) depends quadratically on δ
and only linearly on ki and M , has gone unnoticed. The RD model puts such
dependence on solid theoretical grounds, and also reveals the role played by
the other two parameters M and ki on the observed scaling.

In Fig. 6.1 we plot the dependence of σ with 〈f〉 in the RD model for several
values of the parameters M and δ. Panel (a) corresponds to the case in which
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the ratio δ
W = 10−1 is fixed and the length of the time windows used to measure

the flow of packets through different nodes is varied. For each value of M , we
have superimposed the results obtained for nodes with different connectivity
values, ranging from ki = 1 to ki = 18. If one follows the arguments given in
[195], a value of α = 1/2 should be expected for this choice of δ/W . Instead,

as shown in the figure, σ ∼ 〈f〉
1
2 only for small values of M , while the scaling

exponent approaches 1 as M is increased. This means that, whenever the
temporal resolution in the measurements is not small enough and packets are
counted and accumulated over long periods, α tends to 1.

A novel striking feature revealed by law (6.7), and not revealed in previous
studies, is the dependence with the degree of the nodes. An example of the
effects of node degrees is shown in Fig. 6.1a. It turns out that, for some values
of M (e.g. M = 102 in the figure), the fluctuations at lowly connected nodes
are characterized by an exponent α = 1/2, whereas for highly connected nodes
the exponent turns out to be α = 1. Hence, there is not a single exponent
characterizing the fluctuations at every node of the network, regardless of its
connectivity. This is again a clear indication that a power-law behaviour,
σ ∼ 〈f〉α, even with non-universal exponents ranging in [1/2, 1], is not the
most general situation when characterizing the flow fluctuations for a whole
network [195, 197]. Admittedly, α is not constant for every possible choice of
the parameters δ, W and M along the whole set of ki values. This effect is
particularly relevant for highly heterogeneous networks like the Internet, where
degree classes span several decades. In these kinds of networks, one should
therefore expect different scaling laws depending on whether the packets are
flowing through lowly or highly connected nodes.

The influence of the noise level on α for a fixed time window length (M =
10) is depicted in Fig. 6.1b. When δ is small, so that the number of packets in
the network from one time frame to the following does not change significantly,
α = 1/2. On the contrary, when δ is sufficiently large, the exponent is 1.
This is more in consonance with the results in [195], where the dependence
with the noise level was addressed only for a low value of M , getting that as
δ increases α → 1. On the other hand, we observe again that fixing M and
varying δ does not guarantee the existence of a unique exponent for the scaling
of fluctuations in traffic flow, though in this case the dependence is smoother
than that observed in Fig. 6.1a.

In the following we show that expression (6.7) predicted by the RD model is
indeed valid for more elaborated traffic models, and that the RD approximation
captures the phenomenology of real communication systems. We report the
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Figure 6.2: Flow fluctuation σ as a function of 〈f〉 from numerical simulations of
the Internet traffic model (see text for details) on synthetic scale-free networks
with N = 104 nodes, K = 37551 links, and degree exponent γ = 2.2. Different
panels correspond to different values of M , respectively M = 1, 5 × 102, 35 ×
103, 105. Color-coded values represent the logarithm of node degree. The
continuous line is the curve y = x0.5, while the dashed line is y ∼ x.

results obtained on top of synthetic scale-free (SF) networks with N = 104

nodes and power-law degree distributions pk ∼ k−γ , with an exponent γ = 2.2
as the one empirically observed for the Internet at the autonomous system
level [189]. However, we stress that since the topological properties of the
underlying graph only enter into Eq. (6.7) through the degree of the nodes
ki and the total number of links in the network, K, the results hold for any
graph with an arbitrary degree distribution pk as our own simulations using SF
networks, random graphs and a real autonomous system map of the Internet
[189] reveal.

On the other hand, to mimic the way packets flow in real communication
networks, we consider a dynamical model that is able to simulate Internet’s
most important dynamical characteristics [192, 193]. The dynamics of the
packets is simulated as follows. Each node represents a router with an infinite
size buffer. The delivery of packets is made following a First In First Out
(FIFO) policy. At each time step, p new packets are introduced in the system
with randomly chosen sources and destinations 1. Packets routing is based

1 We have checked that the behavior observed does not depend on the creation rate of
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Figure 6.3: Flow fluctuation σ as a function of 〈f〉 for the Abilene Interfaces.
The values of M used in each panel are: M = 5 (a), M = 30 (b), M = 60
(c), and M = 720 (d). Time is in minutes. The value of α for each M is also
reported. Averages are taken over one month of data corresponding to the
period between January 11 to February 11 of 2006.

on a traffic-aware scheme [192, 193] in which the path followed by a packet
is that that minimizes the effective distance di

eff = hdi + (1 − h)ci, where di

is the distance between node i and the packet destination, ci is the number
of packets in i’s queue, and h is a tunable parameter that accounts for the
degree of traffic awareness incorporated in the delivery algorithm [192, 193].
It is worth recalling that h = 1 recovers a shortest-path delivery protocol,
mimicking most of the actual Internet routing mechanisms.

Figure 6.2 shows σ as a function of 〈f〉 obtained through extensive numerical
simulations of the traffic model with h = 1 and p = 2. Different panels in the
figure correspond to different values of the time-window length M . The results
indicate that the main responsible of the value of α (interpolating between the
two extreme α = 1/2 and α = 1) is the interplay between the node degree and

packets, by considering uniform, exponential and power law distribution functions (in all
cases, the distributions are characterized by the same average number of packets p).
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the time resolution used to record the flux of packets, exactly as predicted by
the scaling law (6.7) obtained in the RD model. In fact, Fig. 6.2a corresponds
to the choice of parameters for which formula (6.8) holds for all values of ki,
leading to α = 1/2. On the contrary, when M is large enough and the other
parameters are kept fixed as in Fig. 6.2d, relation (6.8) is not satisfied whatever
the value of ki used, hence giving an exponent α = 1. Finally, the breakdown
of the scaling law σ ∼ 〈f〉α anticipated by the RD model is captured in Figs.
6.2b and c, where it is clearly revealed that there is not a unique exponent
characterizing the flow of packets through every node of the network. Indeed,
there is a crossover from σ ∼ 〈f〉1/2 for lowly connected nodes to σ ∼ 〈f〉 for
the highly connected ones. We also note that a similar behavior is observed
(figures not shown) when traffic-aware routings (h < 1) are taken into account.

We have also analyzed the data corresponding to the traffic between routers
of the Abilene backbone network 2. As the data collected for the routers
in the backbone correspond only to the flow between them, this backbone
network can be viewed as an isolated communication system where the routers
create, delivery and receive data packets. Therefore, the measures effectively
correspond to a small network handling a large amount of traffic and whith all
its nodes having a similar degree. For this reason, we are not able to observe
here the dependence with the node degree. However, at variance with the
analysis performed in [197], we have varied the length of the time windows
used to extract the flux and its deviation 3. Once again, the results, depicted
in Fig. 6.3, show that the exponent α is not universal and radically depends
on M . Note that, although the lower bound of α = 0.706 > 1/2 is determined
by the minimal resolution (M = 5 minutes) of the raw data, further increasing
M will recover the upper bound α = 1.

As a further test we analyzed data produced by a network simulator soft-
ware NS2. NS2 is a discrete event simulator that provides substantial support
for simulation of TCP, routing, and multicast protocols over wired and wireless
(local and satellite) networks. It permits to fully reproduce most of the charac-
teristics of a real computer network, implementing the standard TCP/IP stack
and several types of connection media. To collect the data we firstly generate

2Data publicly available at http://abilene.internet2.edu.
3 We are implicitly assuming that packets are uncorrelated. This approximation seems

not to crude as the lifetime of packets in the Internet is at most of several seconds, while
the minimal resolution of the raw data is 5 minutes. After all, the 5 minutes time window
can also be considered as cumulative data. We have, however, redone the calculations tak-
ing nonconsecutive time windows to further avoid possible correlations with no qualitative
changes in the results.
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a BA network with N = 1000 nodes, then ran the NS2 simulator with ran-
domly choosen origins and destantions at constant packets creation rate (no
fluctuations in system’s arrivals) and with all the TCP/IP stacks protocols ac-
tivated. While the simulations ran, we collect the flow data on each node with
the highest resolution made possible by the simulator (about 10−3 seconds)
and comparable with traffic dynamics time scale (about 10−4 seconds). Then
we computed for each node the mean flow 〈fi〉 and its fluctuations σi. Results,
presented in Fig. 6.4, show that all exponents α between 0.5 ≤ α ≤ 1 are
recovered (as prediceted by the theoretical model) and, as no external fluctua-
tions are presents and the sampling time scale is comparable to dynamics time
scale, the observed behavoir is a truly effect of nodes degrees heterogeneity
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Figure 6.4: Flow fluctuation σ as a function of 〈f〉 from NS2 simulations for a
BA Network with N=1000 and m0 = 2. The dashed line is the curve y = x0.5,
while the continuous line is y ∼ x.

6.3 Conclusions

Concluding, in this chapter we have derived a theoretical law for the depen-
dence of fluctuations with the mean traffic in a network. Such a dependence is
governed by three factors: one related to the dynamics, one related to the topol-
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ogy, and one of statistical nature. More importantly, the theoretical law reveals
that the previously claimed power-law scaling (with universal or non-universal
exponents) has to be abandoned. Our numerical results and the analysis of
real data confirm that, even in the presence of correlations between packets,
one cannot assume a single exponent to characterize the fluctuations of traffic
for the whole network. Finally, we note that the scaling breakdown predicted
here is amenable to experimental confirmation by measuring the traffic flow in
large communication networks so to capture the predicted (topological) effects
of degree heterogeneity.
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Chapter 7

Empathy Minimizes Congestion

in Communication Networks

Lot of the recent literature has tackled the critical properties of jamming and
congestion transitions in communication networks [92, 93, 94, 95, 96, 97, 98,
99, 101, 100]. It has been shown that finding the best suited strategy depends
strongly on two main features: the topological patterns of the particular net-
work and the load of information on top of it. Regarding the first of these
two issues, a number of routing mechanisms have been studied on different
structures [102, 103, 101, 104] allowing to design resilient network backbones
[105, 106, 107].

Many of the routing policies proposed so far rely on the (static) structural
properties of the communication network. Examples of such policies are bi-
ased random walks [108, 109], shortest-path [110, 111] and efficient-path [112]
schemes. These routing mechanisms can be conveniently reformulated to in-
corporate the information about the dynamical state of the system, i.e. the
congestion state of routers. This allow to dynamically change the paths fol-
lowed by information packets in order to bypass those over-congested routes.
In this line, congestion-aware schemes have significantly improved the perfor-
mance of or the addition of a router memory to avoid packets getting trapped
between two adjacent nodes [120].

All the above studies have assumed that both network topology and the
mechanisms to avoid congestion are static (i.e. neither topology nor the rout-
ing strategies change). However, this approach neglects that, even for the same
graph, the optimal routing policy depends strongly on the state of congestion

79
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of the system [114, 115, 117, 118, 121, 122]. Therefore, in order to balance cor-
rectly the congestion in a communication system it seems appropriate to allow
the elements (routers) to switch to the best suited strategy to avoid congestion
given the instant traffic conditions. In this chapter, we propose an adaptive
mechanism that allows nodes to choose their individual strategies instead of
imposing a common policy. In this adaptive protocol routers exploit their lo-
cal information about the congestion state of the system to decide whether to
accept incoming packets. First, in section 7.1, we introduce a minimal routing
model without any adaptive mechanism that allow us to unveil the role of the
rejection mechanism when it is externally tuned. In section 7.2 we will consider
that each router can adopt its own rejection strategy and make some analytical
derivations about the optimal strategic configuration to avoid the congestion
onset. In section 7.3 we will implement our first adaptive mechanism and show
that when nodes are allowed to dynamically adapt their own strategy while
only being aware of their own congestion state (myopic case), the onset of con-
gestion is shifted to a larger critical load (with respect of the static algorithm
introduced in section 7.1). This improvement is due to the self-organization of
the strategies of nodes into degree-correlated configurations. However, we will
show that the delay of the onset of congestion comes together with a sharp,
first-order like, transition that provides no dynamical signals about the onset
of congestion. Finally, in section 7.4 we show that when nodes are allowed to
know the congestion state of its nearest neighbors and empathize with them,
it is possible to recover the former large critical load together with a smooth
phase transition, avoiding the uncertain scenario of the myopic adaptive model.
More importantly, we will show that tuning conveniently the degree of empathy
between routers it is possible to recover, through a local mechanism, both the
congestion levels and the rejection patterns provided by the global minimiza-
tion introduced in section 7.2.

7.1 Minimal traffic model

Let us start by introducing the minimal traffic model in which the adaptive
algorithm will be implemented below. In this model, we consider the transfer of
information packets between adjacent routers as a probabilistic event. Inspired
by [117, 118] we consider a set of stochastic equations for describing the time
evolution of the queue length of the nodes at some time t, qt = {qt

i}. The queue
length of a given node, qt

i , can either increase or decrease due to several events.
First, at each time step with some probability p a new packet is generated
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being added to the queue of the node. Second, at each time step each node
tries to send a packet in its queue to any of its first neighbors. This packet can
be rejected by the chosen neighbor with some probability η. If the packet is
accepted, it may be removed from the system with certain probability µ. These
two latter events mimic the effects, although with some important differences,
of an active queue control strategy as the random early detection (RED) [123]
present on Internet routers and the arrival of the packet to its final destination
respectively. Following the above ingredients we can write the time-discrete
Markov chain of the minimal traffic model as:

qt+1
i = qt

i + p +

N
∑

j=1

Θ(qt
j)Aji

kj
(1 − µ)(1 − η)

− Θ(qt
i)

N
∑

j=1

Aij

ki
(1 − η) , (7.1)

where Aij represents the (i, j) term of the adjacency matrix of the network
substrate and Θ(x) is the Heaviside step function (Θ(x) = 1 if x > 0 and
Θ(x) = 0 otherwise). Since our network is undirected and unweighted, the
adjacency matrix is defined as Aij = Aji = 1 if nodes i and j are connected
and Aij = Aji = 0 otherwise. The quantity ki is the degree of a node i
(
∑

j Aij = ki), i.e. the number of routers connected to it. Two terms in the
right-hand-side of equation (7.1) account for the incoming flow of packets that
arrive to the queue of node i, namely, p (accounting for the external load of
packets) and the first sum (accounting for the arrival of packets from its first
neighbors). On the other hand, the second sum in equation (7.1) accounts for
the probability that a packet from i is delivered to a first neighbor.

The set of equations (7.1) are solved starting from a zero congestion state:
q0
i = 0 ∀i. The evolution of the system is monitored by means of the following

order parameter [95]:

ρ = lim
T→∞

Q(t + T ) − Q(t)

pT
, (7.2)

where Q(t) is the sum of all the queue lengths at time step t, Q(t) =
∑N

i=1 qt
i .

The value of the above order parameter is bounded (0 ≤ ρ ≤ 1) and describes
the dynamical regime in which the system ends up. Namely, ρ = 0 indicates
that the system is able to balance the incoming flow of new packets with a
successful delivery of the old ones. In this case the system is said to operate
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Figure 7.1: Phase diagrams, ρ(p), of the minimal traffic model using different
values of the rejection rate η. The inset shows the existence of different critical
values pc when varying η

in the free-flow regime. Instead, when ρ > 0 the above balance is not fulfilled
and the queues of the nodes increase their size in time at a rate ρ · p. In this
latter situation the system is in the congested phase.

We have studied the behavior of the order parameter ρ taking the rate of
packet creation p as the control parameter. The arrival-to-destination prob-
ability is set to µ = 0.2 as the usual value found in the Internet [84]. The
corresponding phase diagrams are shown in Fig. 7.1 for several values of the
rejection probability η using a SF network of N = 5000 with P (k) ∼ k−2.2. As
observed in the figure, the transition from free-flow to congestion occurs in a
smooth way at low values of p being the critical point pc = 0.02 for η = 0 (no
rejection). However, as the rejection rate η increases the value of pc decreases
and ρ increases faster (see inset in Fig. 7.1).
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7.2 Analytical approximation of global congestion

minimization

The above results question the convenience of implementing a rejection mecha-
nism in routing models. However, the bad performance of this rejection mech-
anism relies on the homogeneous distribution of the rejection rates across the
routers of the network. We now explore the general situation in which the
individual rejection rates are independent. Therefore the set of equations (7.1)
transforms into:

qt+1
i = qt

i + p +

N
∑

j=1

Θ(qt
j)Aji

kj
(1 − µ)(1 − ηi)

− Θ(qt
i)

N
∑

j=1

Aij

ki
(1 − ηj) . (7.3)

This new set of equations is now used to determine the optimal set {ηi} so that
congestion is minimized for a given value of p. To this aim, we first use two
assumptions: (i) the node has reached a stationary state, qt+1

i = qt
i ∀i, and

(ii) the queue length of nodes is nonzero, Θ(qt
i) = 1. These provisos admitted,

equations (7.3) turn into the following set of equations for the rejection rates
of the routers {ηi}:

0 = p +

N
∑

j=1

Aji

kj
(1 − µ)(1 − η) −

N
∑

j=1

Aij

ki
(1 − η) . (7.4)

Now we make use of the annealed approximation of the adjacency matrix [124,
125, 126]:

Aij = Aji =
kikj

N〈k〉
, (7.5)

where 〈k〉 is the average degree of the network (〈k〉 ≃ 4 in our case). Introducing
the annealed expression (7.5) into equations (7.4) we obtain:

ki(1 − ηi) =
1

1 − µ
[〈k(1 − η)〉 − p〈k〉] , (7.6)

where 〈k(1 − η)〉 =
∑

j kj(1 − ηj)/N . Equation (7.6) clearly shows that the
larger the degree of a router the larger its rejection rate. Therefore, from this
expression we observe that a non-homogeneous distribution of rejection rates
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across the routers is beneficial to assure the free-flow condition (and thus to
delay the onset of congestion). We can calculate the expression of the rejection
rate by computing the value of 〈k(1 − η)〉. From equation (7.6) we obtain:

〈k(1 − η)〉 =
1

1 − µ
[〈k(1 − η)〉 − p〈k〉] , (7.7)

and finally we have:

〈k(1 − η)〉 =
p

µ
〈k〉 . (7.8)

Therefore, the rejection rate of a node with connectivity ki reads:

ηi = 1 −
p〈k〉

µki
. (7.9)

As anticipated above, expression (7.9) shows that the rejection rates of nodes
should depend on their degrees rather than being externally set to a constant
value. In Fig. 7.2 we apply equation (7.9) to plot the rejection patterns corre-
sponding to different values of the external load p. As shown ηi decreases with
p and increases with ki.

The assumptions made in order to obtain equation (7.9) point out that
the validity of this expression, for all the nodes, should be restricted to the
proximity of the critical point pc. First, for p < pc many of the queues are
zero (invalidating assumption (ii)) thus making the rejection rate imposed by
equation (7.9) too restrictive for the real traffic conditions. On the other hand,
for p > pc assumption (i) does not hold for all the nodes. This is manifested
by the prediction of negative rejection rates, ηi < 0, in equation (7.9) for
those nodes with low connectivity. In practice, the impossibility of displaying
negative rejection rates fix their rejection rate to ηi = 0. However, those nodes
with large enough connectivity can still avoid congestion by means of positive
rejection rates as described in equation (7.9) (see Fig. 7.2). Following these
arguments, we can estimate the exact value of pc as the maximum value of p
for which ηi ≥ 0 for all the nodes in the network. In particular, given that, for
a given p, the value of ηi increases with ki we obtain pc imposing in equation
(7.9) that those nodes with the minimum connectivity, ki = kmin, have ηi = 0.
Since in our case kmin = 2 and 〈k〉 ≃ 4 we obtain pc ≃ 0.1. Therefore, by
externally fixing the rejection rate of each node we can assure the permanence
in the free-flow phase up to pc ≃ 0.1.
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Figure 7.2: Rejection rates of nodes as a function of their degree ηi(ki) as
obtained from equation (7.9). The curves correspond to different values of the
external load of information p.

7.3 Myopic adaptability

The minimal traffic model introduced in section 7.1 shows that system’s perfor-
mance deteriorates as soon as rejection rates are uniformly set in the system.
However, in section 7.2 we have shown that a non-uniform configuration for
the rejection rates shifts the critical load to larger values. However, this non-
uniform configuration has been externally imposed and derived analytically
following different assumptions. A correct derivation of the optimal configura-
tion would imply, on one hand, a more sophisticated calculation and, on the
other hand, a complete knowledge of the architecture of the network. This lat-
ter condition makes unrealistic the external tuning of the individual rejection
rates.

In order to overcome the need of global knowledge about the topology of
the network we now introduce an adaptive scheme based solely on the local
information available to nodes. In this adaptive setting we will allow nodes to
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choose their own rejection rate so that the dynamical state of a node will be
described by both qt

i and ηt
i :

qt+1
i = qt

i + p +

N
∑

j=1

Θ(qt
j)Aji

kj
(1 − µ)

[

1 − ηt
i

]

− Θ(qt
i)

N
∑

j=1

Aij

ki

[

1 − ηt
j

]

(7.10)

The individual choice of each instant value ηt
i aims at operating at the optimal

regime as given by the external parameters p and µ. To this aim, each node
chooses its own rejection rate for the following time-step attempting to reach an
optimal queue length, qopt = p/µ, so that traffic is homogeneously distributed
across the network. To this end, a node raises or decreases its own rejection
rate depending on the deviation of its instant queue length from the optimal
queue, ∆t

i = qt
i − qopt. This rationale mimics a myopic behavior by which,

regardless of the congestion state of the system, nodes are allowed to close the
door to new packets while decreasing their respective queues. To incorporate
this adaptive behavior we couple equations (7.10) with the following equations
for the set {ηt

i}:

ηt+1
i =

1

1 + exp (−β∆t
i)

. (7.11)

This evolution rule takes the form of the saturated Fermi function so that
congested nodes, qi > qopt, will tend to total rejection, ηt+1

i → 1, whereas
those under-congested will open the door to new packets, ηt+1

i → 0. The
velocity of the transition from these two regimes is controlled by β so that it
controls the reactivity of nodes to congestion. while ηt+1

i = 0.5 will be adopted
when qt

i = qopt.
The adaptive equations (7.11) allow for abrupt changes in the rejection

rates between two consecutive time steps. Thus, we also explore a different
formulation:

ηt+1
i = ηt

i + β∆t
i , (7.12)

in which the rejection rates evolve smoothly. Rule (7.12) is completed by
assuring that ηi remains bounded so that 0 ≤ ηi ≤ 1. In the above equation
(7.12), β acts as the inverse of the time between two consecutive time steps
of the adaptive dynamics. Therefore, in the continuous time approximation of
equation (7.12), the derivative of the rejection rates is equal to the difference
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Figure 7.3: (Left) Phase diagram ρ(p) for the myopic routing models A
(squares) and B (diamonds) and for the minimal routing model (circles).
(Right) Average rejection rate 〈η〉 as a function of p of the former three routing
schemes.

between the instant queue length and its optimal value, i.e. ∆t
i = qt

i − qopt.
Note that in this setting when qt

i = qopt a router will adopt ηt+1
i = 0.

In the following we will use the two formulations for the myopic adaptive
model and show that the results are qualitatively the same. Namely, we will
call model A to equations (7.10) and (7.11), and model B to the formulation
using equations (7.10) and (7.12). Note that in both models the parameter
β controls the reaction speed of nodes to congestion. In this direction, our
numerics have shown that by changing β one basically controls the duration
of the transient time before the stationary distribution of the rejection rates
is reached. In the following, we set β = 10 and β = 10−2 in models A and B
respectively.

In the left panel of Fig. 7.3 we show the phase diagram, ρ(p), of the myopic
adaptive model with the two formulations. As observed, in both formulations
the myopic model displays an abrupt, first-order like, transition from the free-
flow to the congested state. Moreover, in Fig. 7.3 we have also plotted the
phase diagram of the minimal model when η = 0, i.e. its most congestion-
resilient version, to show the improvement of myopic adaptability by shifting
the jamming transition from pc = 0.02 to pc ≃ 0.1. This value for the critical
load is exactly the same as the one predicted in section 7.2 using the analyt-
ical approximation with global knowledge. Thus, the myopic adaptive model,
equals the delay predicted by minimizing congestion globally.
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Figure 7.4: Distribution of the individual rejection rates ηi across degree-classes
for several values of p in the myopic routing models A (left) and B (right).

To analyze the roots of the resilience of the myopic adaptive routing to
congestion we have plotted in the right panel of Fig. 7.3 the mean value of
the rejection rate, 〈η〉 =

∑N
i=1 ηi. In this case we observe that models A and

B display the same pattern after the sharp transition to congestion, i.e. the
sudden closing of all the doors in the network thus causing the abrupt transition
to ρ ≃ 1 as soon as p > pc. On the other hand, the configurations adopted by
both models before the onset of congestion, p < pc, are quite different: While
in model B 〈η〉 ≃ 0, for model A a significant part of the population adopts
ηi > 0. Surprisingly, in this latter setting the average rejection rate decreases
as we approach the critical point, pc.

To have a deeper insight about the microscopic configurations that allow to
delay the onset of congestion we show in Fig. 7.4 the set of individual rejection
rates of nodes {ηi} ranked according to their degrees. In both models A and
B, the correlation between ηi and ki is clear since all the routers within the
same degree-class display similar rejection rates. First, in model A we observe
that for p = 0.01 the system self-organizes homogeneously around η ≃ 0.4.
However, when p increases the rejection rates of low-degree classes decreases
while hubs start to close their doors progressively as p increases. For model
B the microscopic configurations adopted as p increases are similar regarding
the behavior of high-degree nodes. However, in this latter scenario low-degree
nodes remain accepting incoming packets up to the congested state. These
two figures show that the two different internal dynamics (showing different
microscopic organizations ) lead to the same macroscopic result: the delay of
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the onset of congestion.
Let us highlight that the delay of the congestion onset in this myopic adap-

tive setting again contradicts the results obtained for the minimal routing
model in which, even a small (homogeneously distributed across routers) re-
jection rate leads to an increase of the congestion in the system. Quite on the
contrary, the myopic adaptive model points out the same idea concluded from
the global minimization of congestion: a hierarchical (degree-based) organi-
zation of the rejection rates by the system is strongly beneficial to avoid the
congestion of the system. However, it is important to note that the self-adopted
strategies differ strongly from those configurations found in section 7.2. From
figure 7.4 it becomes evident that the strategies adopted by the myopic adap-
tive settings are clearly different than the ones obtained from equation (7.9)
by minimizing congestion using global knowledge. Although in equation (7.9)
the value of the rejection rate increases with the degree of the node (as in the
myopic settings) in this case the evolution with p is basically different. Thus,
although the critical load has been shifted to the same value as in the one found
in section 7.2, the self-organized patterns of the rejection rates in the myopic
settings reveal a clearly different scenario.

7.4 Empathetic adaptability

The myopic adaptive setting has improved remarkably the resilience to con-
gestion without the need of tuning any external parameters. However, the
existence of an abrupt phase transition, again as found in [114, 115, 111, 120],
demands for further improvements. The main goal in order to soften such
abrupt transition is to avoid that all the nodes close their doors due to its own
congestion by incorporating an empathetic behavior based on the local knowl-
edge about the dynamical state of their neighbors. This empathetic behavior
should motivate congested nodes to open their doors when detecting an hyper-
congested state in its surroundings. To this aim we take model B (note that
the generalization of model A can be done in the same way) and reformulate
its equations as follows:

ηt+1
i = ηt

i + β
[

(1 − α)∆t
i − α〈∆t

j〉Γi

]

. (7.13)

In the above equations we introduce a new term accounting for the average
level of congestion in the neighborhood, Γi, of a node i,

〈∆t
j〉Γi

=

N
∑

j=1

Aij

ki
∆t

j . (7.14)
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Figure 7.5: (Left) Phase diagram ρ(p) of the empathetic routing model for
several values of the empathy parameter α. The phase diagram of the minimal
routing model (circles) is also plotted for the sake of comparison. (Right) For
the same empathy parameters we show the average rejection rate 〈η〉 as a func-
tion of p. The function 〈η〉(p) obtained analytically from global minimization
and computed from equation (7.9) is also shown.

The relative importance that nodes assign to the local level of congestion in
their neighborhoods with respect to their own state is controlled by the pa-
rameter α. In particular, when α = 0 we recover the myopic setting whereas
for α = 1 routers behave “altruistically” and their decisions are based solely
on their neighbor’s state of congestion. Thus, the parameter α measures the
degree of empathy of routers.

In the left panel of Fig. 7.5 we plot the phase diagrams for several values of
α together with that of the minimal non-adaptive routing model for the sake
of comparison. From our simulations we found that for α < 0.5 the phase-
transition is similar to that of the myopic adaptive model (α = 0), i.e. having
a critical load of pc ≃ 0.1 followed by a first-order transition to full congestion.
However, from the figure we observe that when α > 0.5 the transition to
congestion occurs smoothly, thus recovering the behavior of the minimal model.
On the other hand, the value of pc also decreases with α (thus anticipating the
onset of congestion) although it remains close to the original value p = 0.1 until
α ≃ 0.63. For this latter value α = 0.63 we identify the optimal operation point
since the onset of congestion is delayed as much as in the myopic model but
displaying a second-order phase transition reaching similar levels of congestion
to those observed in the minimal model.
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Figure 7.6: Distribution of the mean rejection rates 〈η〉 across degree-classes
of the empathetic adaptive model for several values of the empathy parameter
α compared with the global minimization prediction (dashed line). Different
traffic values p are presented: (a) p = 0.02 (free-flow regime), (b) p = 0.1
(critical point), (c) p = 0.3 and (d) p = 0.6 (congested state)

In order to unveil what is the strategy adopted by the system to reach
such optimal phase diagram we have computed the average level of rejection
rate as a function of p for the relevant values of α. In the right panel of Fig.
7.5 we observe that those curves corresponding to α > 0.5 are quite different
from those obtained in Fig. 7.3 for the myopic adaptive setting. In particular,
when p ≪ pc the empathetic adaptability shows a large amount of rejection.
However, as p increases the average rejection rate decreases monotonously. This
high-rejecting behavior for p < pc, was not observed in the myopic scheme.
Quite on the contrary, it was shown that nearly all the doors were open in the
sub-critical regime. However, the high rate of rejection observed in the right
panel of Fig. 7.5 is due to the large degree of empathy (α > 0.5) and the
existence of a number of under-congested nodes, ∆i < 0, in the sub-critical
regime. Under these low traffic conditions, most nodes will close partially their
doors when detecting under-congested neighborhoods, 〈∆t

j〉Γi
< 0, in order to

benefit from the availability of neighbors to handle their packets. This situation
is highly dynamical and most of the nodes experiment large fluctuations in
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their rejection rates until the system equilibrium is reached. This microscopic
scenario, although clearly different from that of the myopic setting, is able to
delay the onset of congestion in an efficient way. As p approaches pc and for
p > pc we observe in Fig. 7.5 that 〈η〉 decreases to 0 as p increases when
α > 0.5. This decrease is due to both the large number of over-congested
neighborhoods, 〈∆t

j〉Γi
> 0, surrounding routers in the super-critical regime

and their large degree of empathy. This large degree of empathy prevents from
the sudden door closing in when p > pc, thus favoring a smooth transition to
congestion reaching similar congestion levels to those observed in the minimal
routing model in the super-critical regime.

At variance with the myopic adaptive setting, the monotonous decrease of
〈η〉(p) from 〈η〉 = 1 at p = 0 points out a similar behavior to that obtained by
means of global minimization of congestion. As shown in the right panel of Fig.
7.5 the theoretical estimation of 〈η〉(p) (circles) follows the same trend as the
self-adopted patterns for α > 0.5. To analyze in detail the similarity between
the empathetic setting and the microscopic patterns predicted by global mini-
mization of congestion we plot in Fig. 7.6 the average value of the rejection rate
as a function of the degree k of the nodes, 〈η〉(k), for several values of p and α.
The panels correspond to (a) p = 0.02 (free-flow regime), (b) p = 0.1 (critical
point), (c) p = 0.3 and (d) p = 0.6 (congested state). The shape of each curve
〈η〉(k) behaves similarly to the theoretical one. More importantly, for each
value of p there is one value of α, αopt, for which the curve 〈η〉(k) fits perfectly
the prediction made by global minimization of congestion. The precise value of
αopt depends on p. In particular, for p = 0.02 we find αopt ≃ 0.63, for p = 0.1
we obtain αopt ≃ 0.55, for p = 0.3 we have αopt ≃ 0.68 and, finally, for p = 0.6
the value found is αopt ≃ 0.75. Moreover, from the left panel of Fig. 7.5, we
observe that the values found for αopt are those for which congestion, ρ(p), is
minimum. This result points out that empathetic adaptability is able to avoid
congestion by means of only local information as much as global minimization
does.

7.5 Conclusions

We have studied a novel mechanism that allow routers to adapt their individual
strategies based on their local knowledge about congestion. Although in our
approach nodes can only decide either to refuse or to accept incoming packets
from their first neighbors, we obtain a variety of dynamical behaviors. First, we
have analyzed the situation when no individual adaptability is allowed. This
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allow us to show that whenever a small level of rejection is applied indistinctly
to all the nodes, one obtains a worse overall behavior than when all incoming
flows are accepted by the routers. Then, we have considered that routers can
have different rejection rates and derived analytically their patterns to mini-
mize congestion, considering global knowledge of the network topology. With
these globally optimized patterns the resilience to congestion of the system can
be enhanced significantly. Besides, these patterns reveal a dependence of the
rejection rate and the degree of the router and its mean value decays with the
incoming load of packets.

After the global minimization of congestion we have studied the situation
in which nodes self-adjust their own rejection rate dynamically depending on
their instant level of congestion (myopic setting). In this case we have shown
that the critical load of the network is shifted to a value similar to that found
analytically by means of global minimization of congestion. This improvement
is again achieved by a proper distribution of the rejection rates according to the
degrees of the routers. However, in the adaptive case, such degree-correlated
configuration is self-tuned by the system and differs from that obtained an-
alytically. As usual in congestion-aware routing schemes, such delay in the
congestion onset comes together with an abrupt transition from the free-flow
phase to the congested one that prevents from having any warnings of the ap-
proach to the onset of congestion. For this reason, we have finally explored
the situation in which routers also consider the congestion state of their first
neighbors to adapt their rejection rates. We have shown that when nodes em-
pathize with the congestion state of their neighbors, thus not rejecting packets
from them when they detect an over-congested neighborhood, the shift in the
critical load (obtained through global minimization and the myopic adaptabil-
ity) is preserved and followed by a smooth congestion transition. Moreover,
the analysis of the microscopic patterns of rejection rates when empathy is
the mechanism at work point out a similar organization to that obtained from
global minimization. In particular it is possible to find the degree of empathy
that perfectly agrees with the analytical estimation of the rejection pattern
that minimize congestion for a give information load.

In summary, we have shown that allowing routers to adapt their own strate-
gies together with a certain degree of local empathy is strongly beneficial to
the behavior of complex communication systems. Moreover, the improvement
shown when local empathy is at work is similar to that obtained by minimizing
congestion by means of a global knowledge of the network topology. Thus, the
empathetic strategy represents, a remarkable example of how local rules can
achieve levels of functioning as optimal as those obtained with global knowl-
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edge of the system. Besides, our results open the relevant question about how
local empathy can be naturally tuned as a function of the external inputs.
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Introduction

The problem of modeling how diseases spread among individuals has been in-
tensively studied for many years [55, 128, 143, 152, 160]. The development
of mathematical models to guide our understanding of the disease dynamics
has allowed to address important issues such as immunization and vaccination
policies [128, 153, 144]. Scientist’s approaches to problems in epidemiology in-
volve statistical physics, the theory of phase transitions and critical phenomena
[170], which have been extremely helpful to grasp the macroscopic behavior of
epidemic outbreaks [14, 130, 138, 146, 155, 158, 159, 163, 164]. The main arti-
fice of this success has been the Mean-Field (MF) approximation, where local
homogeneities of the ensemble are used to average the system, reducing de-
grees of freedom. It consists in consider all the nodes have the same dynamical
properties, thus the mean behavior of the system is representative for all the
nodes and assumes that fluctuations can be neglected.

The study of complex networks [1, 3, 4] has provided new grounds to the
understanding of contagion dynamics. Scale-free networks have demonstrated
to be a good approximation of the connection patterns of sexual contacts [154],
the Internet [165], as well as other social, technological and biological networks
[133] and thus their structure must be taken into account when considering
a spreading scenario. Scale-free networks [1, 4, 129] are characterized by the
presence of hubs, which are responsible for several striking properties for the
propagation of information, rumors or infections [14, 130, 146, 155, 159, 163].
To consider this peculiar structure a modified version of the MF approximation
the so-called heterogeneous mean field (HMF) is introduced [163]. In HMF
nodes with the same degree are considered to have the same dynamical behavior
and are thus grouped in degree classes. The system behavior is then obtained
averaging over all the degree classes. The main accomplishment of the HMF
approach is that it can analytically predicts the critical rate βc at which the
disease spreads, i.e. the epidemic threshold.
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Theoretical modeling of how diseases spread in complex networks is largely
based on the assumption that the propagation is driven by reaction processes,
in the sense that the transmission occurs from every infected through all its
neighbors at each time step, producing a diffusion of the epidemics on the net-
work. However, this approach overlooks the notion that the network substrate
is a fixed snapshot of all the possible connections between nodes, which does
not imply that all nodes are concurrently active [148]. Many networks ob-
served in nature [1, 4], including those in society, biology and technology, have
nodes that temporally interact only with a subset of its neighbors [127, 162].
For instance, hub proteins do not always interact with all their neighbor pro-
teins at the same time [151], just as individuals in a social network [154] do
not interact simultaneously with all of their acquaintances. Likewise, Internet
connections being utilized at a given time depends on the specific traffic and
routing protocols. Given that transport is one of the most common functions of
networked systems, a proper consideration of this issue will irreparably affect
how a given dynamical process evolves. Starting from this assumption it’s also
possible consider a more complex scenario in which not only traffic shapes the
actual connection that can be exploited by an epidemics but also a backward
loop in introduced and the knowledge of an existing epidemic can alter the
normal traffic activity.

In this forth part of the work we will focus on some open problems in epi-
demic modeling on complex networks and we will try to solve some of the
problems stated above. Specifically we will address the following questions.
The HMF although very effective in the prediction of the epidemic threshold
βc cannot be used to study the behavior of the system away of the critical point
and cannot reproduce the microscopical behavior of single nodes. Is it possible
to have some analytical insights of the single nodes state and study the entire
epidemic phase diagram? Recent works propose very accurate models that
include several classes of mobility but all rely on the assumption that propa-
gation is similar to a reaction process. Is it possible to consider an epidemic
spreading model in which interactions are not reactive but driven by traffic
processes that better reproduce real world cases? And, in this latter case, can
we model the impact of human responses to an epidemic spreading?

To answer the first of these questions in chapter 8 we introduce a micro-
scopical analytical treatment of the problem of how a contact-based disease
spreads on a complex network. To do so, we extend the classical HMF through
a probabilistic discrete-time Markov chains approach that can be used to study
the overall behavior of the system in the whole phase diagram and faithfully
reproduce the single nodes infection probability. In chapter 9 we consider a
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scenario in which interactions between individuals are not fully reactive (i.e. in
the case of the classical HMF)but only a subset of the connections are consid-
ered simultaneously and are driven by a traffic process. We show that, in this
case, the epidemic threshold βc is strictly related to the amount of traffic on
the network and the previous results of a vanishing threshold can be obtained
as a particular case of random diffusion and high traffic values. Finally, in
chapter 10 we will answer the third question: how human responses impact on
the evolution of the spreading. We will present a meta-population model in
which the contagion dynamics is shaped by traffic flows and individuals have
a knowledge of the epidemic state in each node adapting their behavior to
the epidemic conditions. We will show that in many cases trying to avoid in-
fected nodes produces an increment in terms of number of infected populations
and overall epidemic incidence. We will also present the evidence that traffic
reduction policies are almost ineffective.



i

i

“main” — 2011/2/24 — 5:56 — page 100 — #112
i

i

i

i

i

i



i

i

“main” — 2011/2/24 — 5:56 — page 101 — #113
i

i

i

i

i

i

Chapter 8

Modeling Epidemic Spreading in

Complex Networks

In this chapter, we present a theoretical framework for contact-based spreading
of diseases in complex networks. This formulation, Microscopic Markov-Chain
Approach (MMCA), is based on probabilistic discrete-time Markov chains, gen-
eralizes existing HMF approaches and applies to weighted and unweighted com-
plex networks [148]. Within this context, in addition to capturing the global
dynamics of the different contact models and its associated critical behavior, it
is now possible to quantify the microscopic dynamics at the individual level by
computing the probability that any node is infected in the asymptotic regime.
Extensive Monte-Carlo (MC) simulations corroborate that the formalism here
introduced reproduces correctly the whole phase diagram for model and real-
world networks. Moreover, we capitalize on this approach to address how the
spreading dynamics depends on the number of contacts actually used by a node
to propagate the disease.

8.1 Microscopic Markov-Chain Approach to disease

spreading

The critical properties of an epidemic outbreak in SF networks can be addressed
using the HMF prescription [163, 164, 155, 159, 14, 130, 146, 158]. It consists
of coarse-grained vertices within degree classes and considers that all nodes in
a degree class have the same dynamical properties; the approach also assumes
that fluctuations can be neglected. Specifically, if β is the rate (probability per
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unit time) at which the disease spreads, it follows that the epidemic threshold
in uncorrelated SF networks is given [163] by βc = 〈k〉/〈k2〉, leading to βc → 0
as N → ∞ when 2 < γ ≤ 3.

MF approaches are extremely useful to assess the critical properties of epi-
demic models, however they are not designed to give information about the
probability of individual nodes but about classes of nodes. Then, questions
concerning the probability that a given node be infected are not well posed in
this framework. To obtain more details at the individual level of description,
one has to rely on MC simulations, which have also been used to validate the
results obtained using MF methods. Restricting the scope of epidemiologi-
cal models to those based in two states [152, 143, 160] −susceptible (S) and
infected (I)−, the current theory concentrates on two specific situations, the
contact process [156, 134, 150, 135, 136, 132] (CP) and the reactive process
[145, 137, 141] (RP). A CP stands for a dynamical process that involves an in-
dividual stochastic contagion per infected node per unit time, while in the RP
there are as many stochastic contagions per unit time as neighbors a node has.
This latter process underlies the abstraction of the SIS model [152, 143, 160].
However, in real situations, the number of stochastic contacts per unit time is
surely a variable of the problem itself [148]. In this chapter we develop a micro-
scopic model, based on Markov-Chains, to cope with the concurrency problem
in the spreading of epidemics.

8.1.1 Contact-based epidemic spreading models

Let us suppose we have a complex network, undirected or directed, made up of
N nodes, whose connections are represented by the entries {aij} of an N -by-N
adjacency matrix A, where aij ∈ {0, 1}. Unlike standard HMF approaches,
our formalism allows the analysis of weighted networks, thus we denote by {wij}
the non-negative weights (wij ≥ 0) of the connections between nodes, being
wi =

∑

j wij the total output strength [131] of node i. The above quantities
completely define the structure of the underlying graph. The dynamics we
consider is a discrete two-state contact-based process, where every node is
either in a susceptible (S) or infected (I) state. Each node of the network
represents an individual (or a place, a city, an airport, etc.) and each edge is
a connection along which the infection spreads. At each time step, an infected
node makes a number λ of trials to transmit the disease to its neighbors with
probability β per unit time, and then has a probability µ of recovering to the
susceptible state. This forms a Markov chain where the probability of a node
being infected depends only on the last time step, hence the name Microscopic
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Markov-Chain Approach (MMCA). After some transient time, the previous
dynamics sets the system into a stationary state in which the average density
of infected individuals, ρ, defines the prevalence of the disease.

We are interested in the probability pi(t) that any given node i is infected
at time step t. We denote by rij the probability that a node i is in contact
with a node j, defining a matrix R. These entries represent the probabilities
that existing links in the network are used to transmit the infection. If i and
j are not connected, then rij = 0. With these definitions, the discrete-time
version of the evolution of the probability of infection of any node i reads

pi(t + 1) = (1 − qi(t))(1 − pi(t)) + (1 − µ)pi(t) + µ(1 − qi(t))pi(t) , (8.1)

where qi(t) is the probability of node i not being infected by any neighbor at
time t,

qi(t) =

N
∏

j=1

(1 − βrjipj(t)) . (8.2)

The first term on the right hand side of eq. (8.1) is the probability that node i
is susceptible (1− pi(t)) and is infected (1 − qi(t)) by at least a neighbor. The
second term stands for the probability that node i is infected at time t and
does not recover, and finally the last term takes into account the probability
that an infected node recovers (µpi(t)) but is re-infected by at least a neighbor
(1−qi(t)). Within this formulation, we are assuming the most general situation
in which recovery and infection occur on the same time scales, allowing then
reinfection of individuals during a discrete time window (for instance, one MC
step). This formulation generalizes previous approximations where one time
step reinfections can not occur.

The formulation so far relies on the assumption that the probabilities of
being infected pi are independent random variables. This hypothesis turns out
to be valid in the vast majority of complex networks because the inherent topo-
logical disorder makes dynamical correlations not persistent. The dynamical
system (8.1, 8.2) corresponds to a family of possible models, parameterized by
the explicit form of the contact probabilities rij . Without loss of generality, it
is instructive to think of these probabilities as the transition probabilities of
random walkers on the network. The general case is represented by λi random
walkers leaving node i at each time step:

rij = 1 −

(

1 −
wij

wi

)λi

. (8.3)
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The Contact Process (CP) corresponds to a model dynamics of one contact per
unit time, λi = 1, ∀i in eq. (8.3) thus rij = wij/wi

1. In the Reactive Process
(RP) all neighbors are contacted, which corresponds, in this description, to set
the limit λi → ∞, ∀i resulting on rij = aij regardless of whether the network
is weighted or not. Other prescriptions for λi conform the spectrum of models
that can be obtained using this unified framework. The phase diagram of every
model is simply obtained solving the system formed by eq. (8.1) for i = 1, . . . , N
at the stationary state,

pi = (1 − qi) + (1 − µ)piqi , (8.4)

qi =

N
∏

j=1

(1 − βrjipj) . (8.5)

This equation has always the trivial solution pi = 0, ∀i = 1, . . . , N . Other non-
trivial solutions are reflected as non zero fixed points of eqs. (8.4) and (8.5),
and can be easily computed numerically by iteration. The macroscopic order
parameter is given by the expected fraction of infected nodes ρ, computed as

ρ =
1

N

N
∑

i=1

pi . (8.6)

8.1.2 Numerical results

To show the validity of the MMCA model here discussed, we have performed
MC simulations on different SF networks for RP. In Figure 8.1 the phase dia-
gram of the system obtained by MC simulations is compared with the numerical
solution of eqs. (8.4) and (8.5). To model the epidemic dynamics on the de-
scribed topologies we incorporate a SIS model in which, at each time step, each
node can be susceptible or infected. Each simulation starts with a fraction ρ0

of randomly chosen infected individuals (ρ0 = 0.05 in our simulations), and
time is discretized in time-steps. At each time step an infected node i infects
with the same probability β all its neighbors and recovers at a rate µ. The sim-
ulation runs until a stationary state for the density of susceptible individuals,
ρ(t) is reached. The agreement between both curves is matchless. Moreover,
the formalism also captures the microscopic dynamics as given by the pi’s, see

1Strictly speaking, when λ = 1, our model is not exactly the standard CP, since in that
case reinfections are not considered. However, we will refer to it as a CP since only one
neighbor is contacted at each time step and the critical points of both variants are the same.
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Figure 8.1: Average fraction of infected nodes ρ as a function of the infection
rate β for N = 104. Lines stand for the MMCA solutions (with λ = ∞) and
symbols correspond to MC simulations of the SIS model on top of random scale-
free networks with γ = 2.7 (error bars are smaller than the size of the symbol).
In the inset, scatter plot for the probability that a node is infected using results
of MC simulations (the y-axis) and the solutions (x-axis) of eqs. (8.4) and (8.5).
Both results have been obtained for µ = 1, the inset is for β = 0.1.

the inset of Fig. 8.1. While the computational cost of the MC simulations is
considerably large, the numerical solution of the fix point eqs. (8.4) and (8.5),
by iteration, is fast and accurate.

In Fig. 8.2 we analyze our formalism on top of the airports network data
set, composed of passenger flights operating in the time period November 1,
2000, to October 31, 2001 compiled by OAG Worldwide (Downers Grove, IL)
and analyzed previously by Prof. Amaral’s group [149]. It consists of 3618
nodes (airports) and 14142 links, we used the weighted network in our analysis.
Airports corresponding to a metropolitan area have been collapsed into one
node in the original database. We show the density of infected individuals ρ
as a function of β for different values of λ. Both the critical points and the
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Figure 8.2: Density of infected individuals ρ as a function of β for different
values of λ in the air transportation network [149]. The smallest epidemic
threshold and largest incidence is obtained for the RP, in which the matrix R
corresponds to the adjacency matrix. This implies that the SIS on unweighted
networks is a worst case scenario for the epidemic spreading in real weighted
networks. ρ is calculated according to eq. (8.6) once the pi’s are obtained, µ is
set to 1.

shape of the ρ − β phase diagrams greatly change at varying the number of
stochastic contacts (λ). We observe a moderate disease prevalence in the case
of small values of λ, even for large values of the spreading rate β. In contrast,
when the number of trials is of order 103 the situation is akin to a RP.

Finally, we compare the results of the formalism for different random scale-
free networks satisfying P (k) ∼ k−γ , which have been generated using the
configuration model [1, 4] with a fixed size of N = 104 nodes. Fig. 8.3 shows
the phase diagram for µ = 1 and several values of the exponent γ, both below
and above γ = 3. Symbols correspond to MC simulations, whereas dotted lines
represent the results obtained using the analytical approximation. As it can
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Figure 8.3: Phase diagram for the SIS model (λ = ∞) in a random scale free
network for different γ’s. The networks size is N = 104 nodes and µ = 1.
MC results are averages over 102 realizations. Dashed lines corresponds to the
theoretical prediction and symbols to MC results.

be seen, the agreement between both methods is remarkable, even for values
of γ < 2.5 where structural changes are extremely relevant [169]. On the other
hand, one may explore the dependency with the system size while fixing the
degree distribution exponent γ. This is what is shown in Fig. 8.4, where we have
depicted the phase diagram for networks with γ = 2.7 for several system sizes
ranging from N = 500 to N = 105. Except for N = 500, where MC results
have a large standard deviation close to the critical point, the agreement is
again excellent in the whole range of β values.

8.1.3 Epidemic Threshold

Let us now assume the existence of a critical point βc for fixed values of µ and
λi such that ρ = 0 if β < βc and ρ > 0 when β > βc. The calculation of this
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Figure 8.4: Phase diagram for the SIS model (λ = ∞) in a random scale free
network for different system sizes as indicated. The networks have a power-
law degree distribution with an exponent γ = 2.7 and µ = 1. MC results are
averages over 102 realizations.

critical point is performed by considering that when β → βc, the probabilities
pi ≈ ǫi, where 0 ≤ ǫi ≪ 1, and then after substitution in eq. (8.2) one gets

qi ≈ 1 − β
N
∑

j=1

rjiǫj . (8.7)

Inserting eq. (8.7) in eq. (8.4), and neglecting second order terms in ǫ we get

N
∑

j=1

(

rji −
µ

β
δji

)

ǫj = 0 , ∀i = 1, . . . , N , (8.8)

where δij stands for the Kronecker delta. The system (8.8) has non trivial
solutions if and only if µ/β is an eigenvalue of the matrix R. Since we are
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looking for the onset of the epidemic, the lowest value of β satisfying (8.8) is

βc =
µ

Λmax
, (8.9)

where Λmax is the largest eigenvalue of the matrix R. Equation (8.9) defines
the epidemic threshold of the disease spreading process.

With the previous development it is worth analyzing the two limiting cases
of CP and RP above. In the first case, one must take into account that the
matrix R is a transition matrix whose maximum eigenvalue is always Λmax =
1. Thus the trivial result that the only non-zero solution corresponds to βc = µ.
For the RP corresponding to the SIS spreading process usually adopted [163],
the classical result for uncorrelated SF networks is recovered because, in this
case, the largest eigenvalue [139, 166] is Λmax = 〈k2〉/〈k〉.

8.1.4 Mesoscopic equations at the critical point

Once the general framework given by the dynamical system (8.1, 8.2) has been
proposed, it is instructive to approximate it using the hypotheses underlying
HMF. These hypotheses consist of: i) coarse-graining the system in classes of
node by degree, assuming that the dynamical properties within each class are
the same, and ii) neglecting fluctuations. To obtain the mesoscopic description
we consider the second order approximation of eqs. (8.4) and (8.5), and proceed
as in the previous section. Therefore,

qi ≈ 1 − β
∑

j

rjiǫj + β2
∑

j<l

rjirliǫjǫl . (8.10)

After substitution in (8.4) and reordering terms one gets

0 = −µǫi + β(1 − ǫi)
∑

j

rjiǫj + µβǫi

∑

j

rjiǫj − β2
∑

j<l

rjirliǫjǫl , (8.11)

which are the equations governing the dynamics of the contact-based epidemic
spreading process at the microscopic level. It is possible to write eq. (8.11) at
the commonly used mesoscopic (degree class) level for unweighted, undirected
heterogeneous networks. The interactions then take place between classes of
nodes. Defining the average density of infected nodes with degree k as ρk =
1

Nk

∑

ki=k pi, where Nk is the number of nodes with degree k and the sum runs
over the set of nodes of degree k, we obtain the generalized HMF equation near
criticality.
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To simplify the notation, we define the function

Rλ(x) = 1 − (1 − x)λ . (8.12)

Thus, the values of rji may be expressed as

• Weighted networks:

rji = Rλ

(

wji

wj

)

. (8.13)

• Unweighted networks:

rji = Rλ

(

aji

kj

)

= ajiRλ

(

1

kj

)

= ajiRλ(k−1
j ) . (8.14)

Homogeneous networks

For homogeneous unweighted undirected networks, ǫi = ǫ and ki ≈ 〈k〉 for all
nodes. Thus, ρ = 1

N

∑

j ǫj = ǫ and

0 = −µρ + βρ(1 − ρ)
∑

j

rji + µβρ2
∑

j

rji − β2ρ2
∑

j<l

rjirli . (8.15)

The terms involving values of rji are

rji ≈ ajiRλ(〈k〉−1) , (8.16)
∑

j

rji ≈ 〈k〉Rλ(〈k〉−1) , (8.17)

∑

j<l

rjirli ≈
1

2
〈k〉(〈k〉 − 1)Rλ(〈k〉−1)2 . (8.18)

Now, eq. (8.15) becomes

0 = −µρ + βρ(1 − ρ)〈k〉Rλ(〈k〉−1)

+ µβρ2〈k〉Rλ(〈k〉−1) − β2ρ2 1

2
〈k〉(〈k〉 − 1)Rλ(〈k〉−1)2 , (8.19)

which may be considered as the MF approximation of our model for homoge-
neous networks.

If λ = 1 then R1(〈k〉
−1) = 1

〈k〉 and eq. (8.19) becomes

0 = −µρ + βρ(1 − ρ) + µβρ2 −
〈k〉 − 1

2〈k〉
β2ρ2 . (8.20)
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If λ → ∞ then R∞(〈k〉−1) = 1 and eq. (8.19) reads

0 = −µρ + βρ(1 − ρ)〈k〉 + µβρ2〈k〉 −
1

2
β2ρ2〈k〉(〈k〉 − 1) . (8.21)

In both cases, the first two terms correspond to the standard CP and RP
models (previously reported in the literature) respectively, and the additional
terms are second order contributions corresponding to reinfections and multiple
infections.

Heterogeneous networks

Now we will concentrate on the class of heterogeneous unweighted undirected
networks completely specified by their degree distribution P (k) and by the
conditional probability P (k′|k) that a node of degree k is connected to a
node of degree k′. Of course, the normalization conditions

∑

k P (k) = 1 and
∑

k′ P (k′|k) = 1 must be fulfilled. In this case, the average number of links
that goes from a node of degree k to nodes of degree k′ is kP (k′|k).

In these heterogeneous networks it is supposed that all nodes of the same
degree behave equally, thus ǫi = ǫj if ki = kj , and the density ρk of infected
nodes of degree k is given by ρk = 1

Nk

∑

i∈K ǫi = ǫj , ∀j ∈ K, where Nk =

P (k)N is the expected number of nodes with degree k. Here we have made use
of K to denote the set of nodes with degree k. This notation allows to group
the sums by the degrees of the nodes. For instance, if the degree of node i is
ki = k then

∑

j

ajiǫj =
∑

k′

∑

j∈K′

ajiρk′ =
∑

k′

ρk′

∑

j∈K′

aij =
∑

k′

ρk′kP (k′|k) = k
∑

k′

P (k′|k)ρk′ .

(8.22)
Now, let us find the mean field equation for heterogeneous networks. First

we substitute equation 8.14 in equation 8.11

0 = −µǫi + β(1 − ǫi)
∑

j

ajiRλ(k−1
j )ǫj

+ µβǫi

∑

j

ajiRλ(k−1
j )ǫj − β2

∑

j<l

ajialiRλ(k−1
j )Rλ(k−1

l )ǫjǫl .(8.23)

It is convenient to analize separately the summatory terms in equation 8.23,
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supposing node i has degree k:

∑

j

ajiRλ(k−1
j )ǫj =

∑

k′

∑

j∈K′

ajiRλ(k′−1
)ρk′

=
∑

k′

Rλ(k′−1
)ρk′

∑

j∈K′

aij

= k
∑

k′

P (k′|k)Rλ(k′−1
)ρk′ , (8.24)

∑

j<l

ajialiRλ(k−1
j )Rλ(k−1

l )ǫjǫl

=
1

2

∑

j

∑

l

ajialiRλ(k−1
j )Rλ(k−1

l )ǫjǫl −
1

2

∑

j

a2
jiRλ(k−1

j )2ǫ2j

=
1

2

∑

k′

∑

k′′

∑

j∈K′

∑

l∈K′′

ajialiRλ(k′−1
)Rλ(k′′−1

)ρk′ρk′′ −
1

2

∑

k′

∑

j∈K′

a2
jiRλ(k′−1

)2ρ2
k′

=
1

2

∑

k′

∑

k′′

Rλ(k′−1
)Rλ(k′′−1

)ρk′ρk′′

∑

j∈K′

aij

∑

l∈K′′

ail −
1

2

∑

k′

Rλ(k′−1
)2ρ2

k′

∑

j∈K′

a2
ij

=
1

2
k2
∑

k′

∑

k′′

Rλ(k′−1
)Rλ(k′′−1

)P (k′|k)P (k′′|k)ρk′ρk′′

−
1

2
k
∑

k′

Rλ(k′−1
)2P (k′|k)ρ2

k′ . (8.25)

Substitution in equation 8.23 leads to the generalized HMF equation

0 = −µρk + βk(1 − ρk)
∑

k′

P (k′|k)Rλ(k′−1
)ρk′

+ µβkρk

∑

k′

P (k′|k)Rλ(k′−1
)ρk′

−
1

2
β2k2

∑

k′

∑

k′′

Rλ(k′−1
)Rλ(k′′−1

)P (k′|k)P (k′′|k)ρk′ρk′′

+
1

2
β2k

∑

k′

Rλ(k′−1
)2P (k′|k)ρ2

k′ . (8.26)



i

i

“main” — 2011/2/24 — 5:56 — page 113 — #125
i

i

i

i

i

i

8.2. CONCLUSIONS 113

If λ = 1 then R1(k
−1) = 1

k and eq. (8.26) becomes

0 = −µρk + βk(1 − ρk)
∑

k′

1

k′
P (k′|k)ρk′

+ µβkρk

∑

k′

1

k′
P (k′|k)ρk′ +

1

2
β2k

∑

k′

1

k′2
P (k′|k)ρ2

k′

−
1

2
β2k2

(

∑

k′

1

k′
P (k′|k)ρk′

)2

. (8.27)

If λ → ∞ then R∞(k−1) = 1 and eq. (8.26) reads

0 = −µρk + βk(1 − ρk)
∑

k′

P (k′|k)ρk′

+ µβkρk

∑

k′

P (k′|k)ρk′ +
1

2
β2k

∑

k′

P (k′|k)ρ2
k′

−
1

2
β2k2

(

∑

k′

P (k′|k)ρk′

)2

. (8.28)

Again, the first two terms in both cases correspond to the standard CP and
RP HMF equations respectively, and the additional terms are second order
contributions corresponding to reinfections and multiple infections.

8.2 Conclusions

In this chapter we have presented a novel framework to study disease spreading
in networks. By defining a set of discrete-time equations for the probability
of individual nodes to be infected, we construct a dynamical system that gen-
eralizes from an individual contact process to the classical case in which all
connections are concurrently used, for any complex topology. The whole phase
diagram of the system can be found solving the equations at the stationary
state. The numerical solution of the analytic equations overcomes the com-
putational cost of MC simulations. Moreover, the formalism allows to gain
insight on the behavior of the critical epidemic threshold for different values
of the probability of contacting a fraction λ of neighbors per time step. The
MMCA model deals with infections driven by direct contacts between nodes,
but not with traffic situations where nodes transmit the epidemics by flow com-
munication with others [158]. In this latter case, the routing protocol of traffic
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between nodes is absolutely relevant and can change the critical point of the
epidemic spreading. In the next chapters, we develop a framework in the scope
of MF theories to cope with the problem of assessing the impact of epidemics
when the routing of traffic is considered.
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Chapter 9

Traffic-driven epidemic spreading

in complex networks

In this chapter we investigate the outcome of an epidemic spreading process
driven by transport instead of diffusion. To this end, we analyzed a paradig-
matic abstraction of epidemic contagion, the SIS model, which assumes that
contagion occurs through the eventual contact or transmission between con-
nected partners that are using their connections at the time of propagation.
This is achieved by considering a quantized interaction at each time step. Math-
ematically, we set up the model in a flow scenario where contagion is carried
by interaction packets traveling across the network. We consider two possible
scenarios that encompass most of real traffic situations: i) unbounded deliv-
ery rate, and ii) bounded delivery rate, of packets per unit time. We derive
the equation governing the critical threshold for epidemic spreading in SF net-
works, which embeds, as a particular case, previous theoretical findings. For
unbounded delivery rate, it is shown that the epidemic threshold decreases
in finite SF networks when traffic flow increases. In the bounded case, nodes
accumulate packets at their queues when traffic flow overcomes the maximal de-
livery rate, i.e. when congestion arises. From this moment on, the results show
that both the epidemic threshold and the infection prevalence are bounded due
to congestion.

115
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9.1 The model

In the first place, two different types of SF networks are generated. On one
hand, we build random uncorrelated SF networks using the configuration model
[1, 4]. On the other hand, small-world, SF and highly clustered networks – all
properties found in many real-world networks [1, 4] such as the Internet – are
also generated using a class of recently developed network models [168, 88],
in which nearby nodes in a hidden metric space are connected. This metric
space can represent social, geographical or any other relevant distance between
the nodes of the simulated networks. Specifically, in the model currently at
study, nodes are uniformly distributed in a one-dimensional circle by assign-
ing them a random polar angle θ distributed uniformly in the interval [0, 2π)
and assigned an expected degree k. The expected degrees of the nodes are
then drawn from some distribution x(k) and the network is completed by con-
necting two nodes with hidden coordinates (θ, k) and (θ′, k′) with probability

r(θ, k, θ′, k′) =
(

1 + d(θ,θ′)
η′kk′

)−α

, where η′ = (α−1)/2〈k〉, d(θ, θ′) is the geodesic

distance between the two nodes on the circle, and 〈k〉 is the average degree.
Finally, choosing x(k) = (γ−1)kγ−1

0 k−γ , k > k0 ≡ (γ−2)〈k〉/(γ−1) generates
random networks with a power law distribution with exponent γ > 2 . In most
of the simulations, γ = 2.7 〈k〉 = 3 and α = 2 are fixed.

Once the networks are built up, the traffic process is implemented in the
following way. At each time step, p = ΛN new packets are created with
randomly chosen origins and destinations. For the sake of simplicity, packets
are considered non-interacting so that no queues are used. The routing of
information is modeled through even a shortest path delivery strategy or a
greedy algorithm [88, 87]. In the latter, the second class of SF networks is
used and a node i forwards a packet to node j in its neighborhood, which is
the closest node (in the hidden metric space) to the final packet destination.
Results are insensitive to the two routing protocols implemented.

To model the spreading dynamics we have implemented the aforementioned
Susceptible-Infected-Susceptible model, in which each node can be in two pos-
sible states: healthy (S) or infected (I). Starting from an initial fraction of
infected individuals ρ0 = I0/N , the infection spreads in the system as the
nodes interact. A susceptible node has a probability β of becoming infected
every time it interact with an infected neighbors. We also assume that infected
nodes are recovered at a rate µ, which we fix to 1 for most of the simulations.
After a transient time, we compute the average density of infected individu-
als, ρ, which is the prevalence of disease in the system. To account for link
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concurrency, we consider that two nodes do not interact at all times t, but
only when they exchange at least a packet. This situation is reminiscent of
disease transmission on air transportation networks; if an infected individual
did not travel between two cities, then regardless of whether or not those cities
are connected by a direct flight, the epidemic will not spread from one place
to the other. In this way, although a node can potentially interact with as
many contacts as it has and as many times as packets it exchanges with its
neighbors, the effective interactions are driven by a second dynamics (traffic).
The more packets travel through a link, the more likely the disease will spread
through it. On the other hand, once an interaction is at work, the epidemics
spreads from infected to susceptible nodes with probability β. For example,
if at time t node i is infected and a packet is travelling from node i to one of
its neighbors node j, then at the next time step, node j will be infected with
probability β. Therefore, susceptible and infected states are associated with
the nodes, whereas the transport of packets is the mechanism responsible for
the propagation of the disease at each time step.

9.1.1 Unbounded delivery rate

We firstly concentrate on an unbounded delivery rate scenario, in which every
node can handle as much packets it receives. In this situation, congestion can
not arise in the system. Fig. 9.1 shows the results for the stationary density
of infected nodes ρ as a function of β and the traffic generation rate Λ for SF
networks.

In this case the traffic level determines the value of both the epidemic in-
cidence and the critical thresholds and it’s important to notice the emergence
of an epidemic threshold under low traffic conditions. This implies that for a
fixed value of Λ, the epidemic dies out if the spreading rate is below a certain
critical value βc(Λ). More intense packet flows yield lower epidemic thresholds.
The reason for the dependence of the critical spreading rates on Λ is rooted
in the effective topological paths induced by the flow of packets through the
network. At low values of Λ, there are only a few packets traveling throughout
the system, so the epidemic simply dies out because many nodes do not partic-
ipate in the interaction via packets exchanges. As Λ grows, more paths appear
between communicating nodes, thus spreading the infection to a larger portion
of the network. Therefore, in traffic-driven epidemic processes the infection is
constrained to propagate only through links that transmit a packet, and thus
the number of attempts to transmit the infection depends on the flow condi-
tions at a local level, namely, on the number of active communication channels
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Figure 9.1: Dependence of epidemic incidence on traffic conditions for un-
bounded delivery rate. The density of infected nodes, ρ, is shown as a function
of the spreading rate β and the intensity of flow Λ in SF networks. Flow con-
ditions (controlled by Λ) determine both the prevalence level and the values of
the epidemic thresholds. Increasing the number of packets traveling through
the system has a malicious effect: the epidemic threshold decreases as the flow
increases. Each curve is an average of 102 simulations starting from an initial
density of infected nodes ρ0 = 0.05. The network is made up of 103 nodes
using the model in [88], results correspond to the greedy routing scheme. The
remaining parameters are α = 2, γ = 2.6 and 〈k〉 = 3.

at each time step. As a consequence, the effective network that spreads the
infection is no longer equivalent to the complete underlying topology. Instead,
it is a map of the dynamical process associated with packet traffic flow. The
conclusion is that the disease propagation process has two dynamical compo-
nents: one intrinsic to the disease itself (β) and the other to the underlying
traffic dynamics (the flow). To theorize about these effects we next formulate
the analytical expression for the dependence of the epidemic threshold on the
amount of traffic injected into the system, following a mean-field approach akin
to the conventional analysis of the reaction driven case. Mathematically, the
fraction of paths traversing a node given a certain routing protocol [191], the
so-called algorithmic betweenness, bk

alg, defines the flow pathways. Let us con-
sider the evolution of the relative density, ρk(t), of infected nodes with degree
k. Following the heterogeneous mean-field approximation [163], the dynamical
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rate equations for the SIS model are

∂tρk(t) = −µρk(t) + βΛbk
algN [1 − ρk(t)] Θ(t). (9.1)

The first term in Eq. (9.1) is the recovery rate of infected individuals (we
set henceforth µ = 1). The second term takes into account the probability
that a node with k links belongs to the susceptible class, [1 − ρk(t)], and gets
the infection via packets traveling from infected nodes. The latter process is
proportional to the spreading probability β, the probability Θ(t) that a packet
travels through a link pointing to an infected node and the number of packets
received by a node of degree k. This, in turns, is proportional to the total
number of packets in the system, ∼ ΛN , and the algorithmic betweenness of
the node, bk

alg. Note that the difference with the standard epidemic spreading
model is given by these factors, as now the number of contacts per unit time
of a node is not proportional to its connectivity but to the number of packets
that travel through it. Finally, Θ(t) takes the form

Θ(t) =

∑

k bk
algP (k)ρk(t)

∑

k bk
algP (k)

. (9.2)

Eq. (9.1) has been obtained assuming: (i) that the network is uncorrelated
P (k′|k) = k′P (k′)/〈k〉, and (ii) that the algorithmic flow between the classes
of nodes of degree k and k′ factorizes bkk′

alg ∼ bk
algb

k′

alg. Although no uncorrelated
networks exist, this approximation allows us to identify the governing param-
eters of the proposed dynamics. The second approximation is an upper bound
to the actual value of the bkk′

alg , whose mathematical expression is, in general,
unknown. The validity of the theory even with these approximations is notable
as confirmed by the numerical simulations.

By imposing stationarity [∂tρk(t) = 0], Eq. (9.1) yields

ρk =
βΛbk

algNΘ

1 + βΛbk
algNΘ

, (9.3)

from which a self-consistent equation for Θ is obtained as

Θ =
1

∑

k bk
algP (k)

∑

k

(bk
alg)

2P (k)βΛNΘ

1 + βΛbk
algNΘ

. (9.4)
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The value Θ = 0 is always a solution. In order to have a non-zero solution, the
condition

1
∑

k bk
algP (k)

d

dΘ

(

∑

k

(bk
alg)

2P (k)βΛNΘ

1 + βΛbk
algNΘ

)∣

∣

∣

∣

∣

Θ=0

> 1 (9.5)

must be fulfilled, from which the epidemic threshold is obtained as

βc =
〈balg〉

〈b2
alg〉

1

ΛN
, (9.6)

below which the epidemic dies out, and above which there is an endemic state.
In Fig. 9.2 a comparison between the theoretical prediction and numerical
observations is presented. Here, we have explicitly calculated the algorithmic
betweenness for the greedy routing as it only coincides with the topological
betweenness for shortest paths routing. The obtained curve separates two
regions: an absorbing phase in which the epidemic disappears, and an active
phase where the infection is endemic.

Equation (9.6) is notably simple but has profound implications: the epi-
demic threshold decreases with traffic and eventually vanishes in the limit of
very large traffic flow in finite systems, in contrast to the expected result of a
finite-size reminiscent threshold in the classical reactive–diffusive framework.
Admittedly, this is a new feature with respect to previous results on epidemic
spreading in SF networks. It is rooted in the increase of the effective epidemic
spreading rate due to the flow of packets. This is a genuine effect of traffic-
driven epidemic processes and generalizes the hypothesis put forward in the
framework of a reaction-diffusion process [141] on SF networks. It implies that
an epidemic will pervade the (finite) network whatever the spreading rate is if
the load on it is high enough. Moreover, Eq. (9.6) reveals a new dependence.
The critical threshold depends on the topological features of the graph, but at
variance with the standard case, through the first two moments of the algorith-
mic betweenness distribution. As noted above, the algorithmic betweenness of
a node is given by the number of packets traversing that node given a routing
protocol. In other words, it has two components: a topological one which is
given by the degree of the node and a dynamical component defined by the
routing protocol.

Within our formulation, the classical result [163]

βc =
〈k〉

〈k2〉
, (9.7)
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Figure 9.2: Comparison between numerical and theoretical critical points. Log-
log plot of the critical thresholds, βc, as a function of the rate at which packets
are injected into the system, Λ. Two regions are differentiated: an active and
an absorbing phase as indicated. The solid line corresponds to Eq. (9.6) with
〈balg〉
〈b2

alg
〉

1
N = 0.154. The agreement is remarkable even though Eq. (9.6) is derived

using a MF approach. The underlying network, infection spreading mechanism
and routing protocol are the same as in Fig. 9.1. Each curve is an average of
102 simulations. Remaining parameters are the same as in Fig. 9.1.

can be obtained for a particular protocol and traffic conditions, although we
note that the microscopic dynamics of our model is different from the classical
SIS. To see this, assume a random protocol. If packets of information are
represented as w random walkers traveling in a network with average degree
〈k〉, then under the assumption that the packets are not interacting, it follows
that the average number of walkers at a node i in the stationary regime (the
algorithmic betweenness) is given by [198, 157] bi

alg = ki

N〈k〉w. The effective

critical value is then (βΛ)c = 〈k〉2/(〈k2〉w), that recovers, when ω = 〈k〉, the
result in Eq. (9.7).

Results are robust for other network models and different routing algo-
rithms. We have also made numerical simulations of the traffic-driven epidemic
process on top of Barabási-Albert and random SF networks implementing a
shortest paths delivery scheme. In this case, packets are diverted following the
shortest path (in the actual topological space) from the packets’ origins to their
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Figure 9.3: Density of infected nodes, ρ, as a function of traffic flow (determined
by Λ) and the epidemic spreading rate β for random scale-free networks and
a shortest paths routing scheme for packets delivery. Each point is the result
of 102 averages over different networks and initial conditions. The exponent of
the degree distribution of the network is γ = 2.7.

destinations. The rest of model parameters and rules for epidemic spreading
remain the same. Figs. 9.3 and 9.4 show the results obtained for random SF
networks generated via the configuration model and the Barabási-Albert model
respectively. As can be seen, the phenomenology is the same for both types
of networks: the epidemic threshold depends on the amount of traffic in the
network such that the higher the flow is, the smaller the epidemic threshold
separating the absorbing and active phases. On the other hand, for processes
in which the delivery of packets follows a shortest path algorithm, Eq. (9.6)
looks like

βc =
〈btop〉

〈b2
top〉

1

ΛN
, (9.8)

where btop is the topological betweenness. To further confirm our findings on a
realistic topology we run the model on top of the Air Transportation Network
(ATN) [149]. The network composed by the direct flies between more the
3000 airports in the world, in which each node represents an airport and the
links represents the direct connection between them. Although in the ATN
links have weights accounting for the annual number of passengers voyaging on
each connection, we considered the network as un-weighted and the shortest-
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Figure 9.4: Density of infected nodes, ρ, as a function of traffic flow (determined
by Λ) and the epidemic spreading rate β for BA scale-free networks and a
shortest paths routing scheme for packets delivery. Each point is the result of
102 averages over different networks and initial conditions.

path routing protocol. Also in this case the results are confirmed as shown in
Fig. 9.5. Fig. 9.6 also shows the agreement between the analytical prediction
and the numerical simulations.

9.1.2 Bounded delivery rate

Equation (9.8) allows us to investigate also the equivalent scenario in the pres-
ence of congestion. Let us consider the same traffic process above but with
nodes having queues that can store as many packets as needed but can deliver,
on average, only a finite number of them at each time step. It is known that
there is a critical value of Λ above which the system starts to congest [191]

Λc =
(N − 1)

b∗alg

. (9.9)

Equation (9.9) gives the traffic threshold that defines the onset of conges-
tion, which is governed by the node with maximum algorithmic betweenness
b∗alg. Substituting (9.9) in (9.6) we obtain a critical threshold for an epidemic
spreading process bounded by congestion. Increasing the traffic above Λc will
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Figure 9.5: Density of infected nodes, ρ, as a function of traffic flow (deter-
mined by Λ) and the epidemic spreading rate β for the ATN (considered as
unweighted) and a shortest paths routing scheme for packets delivery. Each
point is the result of 102 averages over different networks and initial conditions.

gradually congest all the nodes in the network up to a limit in which the traffic
is stationary and the lengths of queues grow without limit.

To illustrate this point, let us assume that the capacities for processing and
delivering information are heterogeneously distributed [171, 194, 167] so that
the larger the number of paths traversing a node, the larger its capability to
deliver the packets. Specifically, each node i of the network delivers at each
time step a maximum of ⌈ci = 1 + kη

i ⌉ packets, where η is a parameter of the
model. In this case, the critical value of Λ in Eq.(9.9) is multiplied by the
maximum delivery capacity [171]. Moreover, without loss of generality, we will
explore the behavior of the model in random SF networks where the routing
is implemented by shortest paths balg = btop ∼ kν , being ν usually between
1.1 and 1.3 [165]. The previous assumption for the delivery capability thus
allows to explore as a function of η the situations in which the delivery rate is
smaller or larger than the arrival rate (defined by the algorithmic betweenness).
Phenomenologically, these two scenarios correspond to the cases in which the
traffic is in a free flow regime (if η > ν) or when the network will congest (if
η < ν). We also note that the adopted approach is equivalent to assume a
finite length for the queues at the nodes.

Fig. 9.7 shows the fraction of active packets on the network, as a function
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Figure 9.6: Comparison between numerical and theoretical critical points in
the ATN. Log-log plot of the critical thresholds, βc, as a function of the rate
at which packets are injected into the system, Λ for the ATN. The dashed

line corresponds to Eq. (9.6) with
〈balg〉
〈b2

alg
〉

1
N = 0.041. Despite existing degree

correlations in the network, the agreement is remarkable. Each point is an
average of 102 simulations.

of the spreading rate β and the rate at which packets are generated Λ for two
different values of η using a shortest path delivery scheme on top of random
SF networks. For η = 0.8, the epidemic incidence is significantly small for all
values of the parameters Λ and β as compared with the results obtained when
the rate of packets delivery is unbounded. On the contrary, when η = 1.7 the
phase diagram is qualitatively the same as for the unbounded case, including
the result that the epidemic incidence vanishes when Λ is large enough. A closer
look at the dynamical evolution unveils an interesting, previously unreported,
feature − when the rate at which packets are delivered is smaller than the rate
at which they arrive, the average value of infected nodes saturates beyond a
certain value of the traffic flow rate Λ. This effect is due to the emergence of
traffic congestion. When the flow of packets into the system is such that nodes
are not able to deliver at least as many packets as they receive, their queues
start growing and packets pile up. This in turns implies that the spreading
of the disease becomes less efficient, or in other words, the spreading process
slows down. The consequence is that no matter whether more packets are
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Figure 9.7: Fraction of active packets as a function of the traffic flow with
bounded delivery rate. It represents the fraction of active packets A: packets
still traveling in the network over the total amount of generated packets in a
time period τ , as function of the traffic injected in the system Λ for different
values of the delivery capacity η. The underlying network and the routing
protocol are the same as in Fig. 9.3.

injected into the system, the average level of packets able to move from nodes
to nodes throughout the network is roughly constant and so is the average level
of infected individuals.

Fig. 9.8 illustrates the phenomenological picture described above. It shows
the epidemic incidence ρ for a fixed value of β = 0.15 as a function of Λ for
different values of η. The figure clearly evidences that congestion is the ultimate
reason of the behavior described above. Therefore, the conclusion is that in
systems where a traffic process with finite delivery capacity is coupled to the
spreading of the disease the epidemic incidence is bounded. This is good news
as most of the spreading processes in real-world networks involves different
traffic flow conditions. Further evidence of this phenomenology is given in
Fig. 9.9, where we have depicted the epidemic threshold as a function of Λ
for two different values of η, less and greater than ν. When η < ν congestion
arises, and the contrary holds for η > ν where the diagram is equivalent to
that of unbounded traffic. The onset of congestion determines the value of
β above which congestion starts. It is clearly visualized as the point beyond
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Figure 9.8: Epidemic incidence in traffic-driven epidemic processes with
bounded delivery rate. The figure represents the average fraction of infected
nodes ρ as a function of Λ for different delivery rates at fixed β = 0.15. When
congestion arises, the curves depart from each other and the epidemic incidence
saturates soon afterwards.

which the power law dependence in Eq. (9.6) breaks down. The plateau of
βc corresponds to the stationary situation of global congestion. A comparison
for different values of η in the bounded delivery rate model is presented in
Fig. 9.10.

9.2 Conclusions

In summary, we argued both analytically and numerically the conditions for
the emergence of an epidemic outbreak in scale-free networks when disease
contagion is driven by traffic or interaction flow. The study provides a more
general theory of spreading processes in complex heterogeneous networks that
includes the previous results as a particular case of diffusive spreading. More-
over, we have shown that the situation in which the epidemic threshold vanishes
in finite scale-free networks is also plausible, thus providing an explanation to
the long-standing question of why some viruses prevail in the system with a
low incidence. Moreover, the new approach presented here provides a novel
framework to address related problems. For instance, in the context of air-
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Figure 9.9: Epidemic thresholds as a function of Λ for two values of η. The onset
of congestion (the arrow in the plot) marks the point, Λc ≈ 0.150, at which the
curve for η = 0.8 departs from Eq. (9.6), i.e., when the power law dependence
breaks down. Soon afterwards congestion extends to the whole network leading
to a bounded (from below) epidemic threshold. On the contrary, when the
delivery rate is large enough (as in the case of η = 1.7), Eq. (9.6) holds for all
values of Λ, thus resembling the unbounded delivery rate case.

transportation networks [140], a similar mechanism to the one reported here
could explain the observed differences in the impact of a disease during a year
[147]. One might even expect that, due to seasonal fluctuations in flows, the
same disease could not provoke a system-wide outbreak if the flow were not
high enough during the initial states of the disease contagion. Incorporat-
ing the non-diffusive character of the spreading process into current models
has profound consequences for the way the system functions. Also the theory
could help designing new immunization algorithms or robust protocols; one in
particular being quarantining highly sensitive traffic nodes. On more general
grounds, our conclusions point to the need of properly dealing with link concur-
rency. Further exploring this challenge will have far-reaching consequences for
the study of dynamical processes on networks, and especially the relationship
between structure and dynamics for networked systems. Ultimately, this paves
the way towards a more complete theoretical framework of complex networks.
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Figure 9.10: Comparison between different delivery capacity in the bounded
delivery rate model. The plot represents density of infected nodes, ρ, as a
function of traffic flow Λ and the epidemic spreading rate β for random scale-
free networks and a shortest paths routing scheme with different values of the
delivery capacity η: panel a) η = 0.8, b) η = 1.0, c) η = 1.5 and d) η = 1.7, for
the random SF network and the shortest path delivery scheme.
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Chapter 10

Impact of human behavior on

epidemic outbreaks.

Recent disease outbreaks have highlighted the need to develop even more com-
plex and sophisticated epidemiological models adapted to the way contagion
spreads in our modern society [140, 153]. Just a few decades ago, some dis-
eases would have produced only local outbreaks. However, the changes in hu-
man habits and the development of fast and world-wide transportation systems
[140, 153, 149, 147, 211] have led to a situation in which a disease can spread in
a few days producing a global threat to public health systems. Certainly, cur-
rent theoretical and computational models have gained in complexity and have
incorporated a number of important ingredients that make them more accurate
in modeling pandemics [163, 155, 159, 14, 130, 144, 141, 142, 146, 158, 202]. For
instance, we have been able to adapt models based on the assumption of ran-
dom mixing of individuals within the population to include the interconnection
patterns of the networks through which the disease disseminates in the system
[1, 4]. The same happens with Agent Based computational Models (ABMs),
which are increasingly more complex and able to track millions of virtual in-
dividuals, capturing their contacts and mobility patterns [200, 201, 206]. The
expectancy is that these latter models would allow real time monitoring and
prediction of contagion dynamics.

Latest diseases such as the severe acute respiratory syndrome (SARS) and
the H1N1 influenza have shown that dynamical and topological properties of
transportation networks are key factors to understand today’s infections. For
example, the presence of hubs dominate the uprise of epidemic processes in

131
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scale-free (SF) networks [163, 155, 159, 14, 130, 146, 158]. Recently [158], it
has been proposed that epidemic behavior also depends on the characteristics
of transport processes that take place on top of the topology, in the form
of traffic or interaction flow. In particular, the epidemic threshold turns out
to be inversely proportional to the traffic flow in the system [158], such that
the more intense the flow of individuals the lower the epidemic threshold. The
latter mechanism suggests that limitations on the propagation of new infections
through changes in mobility patterns might eventually shape the course of an
epidemic.

Perhaps the most important of our current challenges in epidemic model-
ing is the inclusion of self-initiated (i.e., not due to external measures) human
behavioral reactions in front of a disease [206, 207]. These kind of human re-
sponses to the presence of a disease include the increase of personal hygiene,
voluntary vaccination and quarantine, changes in the frequency of contacts
as well as irrational behaviors (fear, phobias, etc), all of which feed back to
impact epidemic dynamics [207]. Although the latter reactions are quite com-
mon and well-documented, no systematic investigation has been carried out.
Admittedly, the inclusion of human behavioral changes into theoretical and
computational models is infrequent.

In this chapter we consider a metapopulation model that incorporates self-
initiated changes in human behavior in response to an epidemic outbreak and
study how these reactions influence the spread of infectious diseases. The
model is general enough as to include a number of different responses. We find
that whatever the response is, the global invasion threshold remains the same.
However, the number of subpopulations affected by the outbreak does depend
on the population behavior. If individuals retrain themselves from traveling, a
lower impact is obtained. On the contrary, when a selfish behavior is adopted by
bypassing hot epidemic spots, the outbreak reaches a larger fraction of the total
population. Our results thus point out that predictions of disease progression
should be made with care if information about behavioral adaptation is not
incorporated (in particular, the worst scenario hypothesis should be revised).

10.1 The model

Our model belongs to the class of metapopulation systems widely used in epi-
demiology [209]. This modeling approach provides the theoretical and compu-
tational framework for describing the spread of diseases in spatially structured
interacting subpopulations that are connected through a network. Each sub-
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population consists of a number of individuals that are divided into several
classes according to their dynamical state with respect to the modeled disease
− for instance, susceptible, infected, removed, etc. The internal compartmen-
tal dynamics models the contagion dynamics by considering that people in
the same subpopulation get in contact and may change their state according
to their interactions and the infection dynamics. Finally, subpopulations also
interact and exchange individuals due to mobility from one subpopulation to
another. Figure 10.1 shows an schematic representation of the metapopulation
system.

Metapopulation epidemic models with heterogeneous coupling patterns have
been recently considered [142, 212]. Such framework includes the hetero-
geneities found in demographic and mobility patterns, hence, a subpopulation
is further classified according to the number of subpopulations it is in contact
with, i.e., its degree k. The results obtained for this kind of models show that
local outbreaks depend on disease parameters. Furthermore, the global inva-
sion threshold, that marks the point beyond which a local outbreak reaches
other subpopulations and spreads throughout the metapopulation system, not
only depends on the infection parameters, but also on the mobility rates of the
individuals [142, 212]. This is a remarkable result as it allows a better under-
standing of current diseases and opens up new ways to deal with global threats
to public health systems. For instance, one could study how different mobility
patterns impact the spread of the disease, which will allow the evaluation of
several strategies based on mobility reduction to contain a global pandemic.

10.1.1 Baseline Metapopulation System

Previous studies have considered a markovian setting for the movement of
the individuals among subpopulations [142, 212]. Therefore, travelers do not
have memory of their home and every unit time all of them have the same
probability − as given by a diffusion rate λij − to travel from subpopulation
i to subpopulation j. While this approach has been widely used for very large
populations, the most natural way to capture the spread of the infection due
to the movements of individuals is to consider the non-markovian situation in
which individuals are assigned a home, i.e., a subpopulation where they remain
if they are not traveling. Moreover, every time individuals start a travel to
other subpopulations, the latter should not necessarily be in their immediate
(next-nearest) neighborhood. The most general scenario should include the
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Figure 10.1: Schematic representation of the Metapopulation System. A popu-
lation of individuals is divided in V subpopulations, which are connected with
each other following a heterogeneous network. Within each subpopulation,
individuals are classified according to their dynamical status as susceptible, in-
fected and removed. In absence of behavioral changes (blue arrows), individuals
move from a subpopulation to another at a rate λ following the shortest path
connecting both subpopulations. We also illustrate one of the two mechanisms
of risk aversion explored. When prevalence-based information is available, indi-
viduals might avoid traversing diseased subpopulations, at the cost of traveling
along largest paths (yellow arrows).
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possibility that individuals go through different subpopulations before arriving
to their final destinations.

The present model considers a population of size N divided into V subpop-
ulations. At the initial state, individuals are ascribed a home. Every time
unit each of the Ni individuals (N =

∑

i Ni) of subpopulation i travels with
probability λij = λ. For simplicity, let us first consider the case in which des-
tinations j are randomly chosen (other choices are discussed below). We note
that this only applies to individuals at home, because when they are traveling,
they move every unit time with probability one to the next subpopulation in
their way to the final destination. Additionally, once the travelers arrive to
their destinations, they go back home. As for the traveling routing, we con-
sider as the most plausible setting that individuals travel along the shortest
path connecting the origin and the destination. In each node a SIR dynamics
takes place over a well mixed population of initial size Ni(0) = wi, being wi

the strength of node i. When time goes on, Ni(t) changes according to the
number of individuals that has been received and has left the node. Within
the nodes, one step of a SIR process takes place. The state of every individual
inside a node i is changed according to the following probabilities: a susceptible
individual becomes infected with probability p(S→I) = 1 − (1 − β

Ni
)Ii , and an

infected recovers with probability p(I→R) = µ. Specifically, the exact number
of individuals that changes its state is determined by a binomial distribution
with the probability p(S→I) (or p(I→R)) and the susceptible populations size
Si(t) (or infected Ii(t)) as parameters. Note that in this scenario, R0 only
participates in the internal dynamics; individuals traveling through node i are
involved in the SIR and thus can change their state while at node i.

The SIR model [209, 161] is characterized by the average number of infec-
tious individuals produced by a single infected individual in a fully suscepti-
ble population, the so-called reproductive number R0 = β/µ. If R0 > 1, an
outbreak takes place [209, 161]. For the case of metapopulation models, the
previous relation holds. However, if the mobility rate of the individuals of the
originally infected subpopulation is not large enough as to ensure the seeding
of other subpopulations, the outbreak could remain local. As noted before,
a global invasion threshold have been shown to exist when individuals move
among subpopulations following a markovian assumption [142, 212]. We first
show that our metapopulation system without any human behavioral reaction
also exhibits a global invasion threshold.

Let us consider a network G(V, M) with V nodes, M links and degree dis-
tribution P (k). Each node i of the network is considered a subpopulation with
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Ni individuals. We set the subpopulation size proportional to its degree. Next,
assume a diffusion process in which each individual in a node i (origin) travel
to another node j (destination) of the network with a probability λ. The des-
tination j is selected with a probability proportional to the subpopulation size
Nj. Once individuals engage in a travel, the shortest path is selected among
all the possible paths connecting the origin and the destination of the travel.
Besides, we also consider that individuals come back to their home subpopula-
tions after they reach their destinations. A standard convenient representation
of the system is provided by quantities defined in terms of the degree k:

Nk =
1

Vk

∑

i|ki=k

Ni. (10.1)

Let us consider that an individual of a subpopulation of degree k gets some
infectious disease characterized by a reproductive number R0 > 1. Let us define
D0

k as the number of diseased subpopulations of degree k at generation 0. In
the early stage, the number of diseased subpopulations is small, thus, we can
study the evolution of this number using a tree-like approximation relating Dn

k

with Dn−1
k . The average number of infected individuals in the class of degree

k during the evolution of the epidemic is αNk. The parameter α depends on
the specific disease. Each infected individual stays in the infectious state for
an average time µ−1. Then the number of infected people circulating through
the network after n − 1 generations is:

ωn−1 =
λα

µ

∑

k′

Dn−1
k′ Nk′ (10.2)

The number of infected individuals that will pass through a subpopulation
of degree k will be a fraction of Eq. (10.2) proportional to the topological
betweenness (in general, it is proportional to the algorithmic betweenness, but
given that individuals are following the shortest path, it coincides with the
topological one in our case). This measure is defined as:

b(i) =
∑

j,l=1,n

i6=j 6=l

Djl(i)

Djl
, (10.3)

where Djl is the total number of shortest paths from j to l and Djl(i) is the
number of shortest paths from j to l that goes through i. The latter quantity
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also measures the centrality of a node assuming a diffusion scenario in which
travelers go through the shortest paths. We can then write:

γn−1
k =

bk

btot
ωn−1, (10.4)

where btot is the sum of all the betweenness of the nodes. For the nth generation
we have:

Dn
k = Vk

(

1 −
Dn−1

k

Vk

)

[

1 − R
−γn−1

k

0

]

, (10.5)

where the first term on the right is the probability that the subpopulation is
not already seeded by infected individuals and the last is the probability that
the new seeded subpopulation will experience an outbreak. In the early time
and for R0 ∼ 1 we can approximate the last expression considering:

Dn−1
k

Vk
<< 1, (10.6)

and

1 − R
−γn−1

k

0 ∼ (R0 − 1)γn−1
k , (10.7)

obtaining:

Dn
k = (R0 − 1)Vkγn−1

k = (R0 − 1)
λα

µ
Vk

bk

btot

∑

k′

Dn−1
k′ Nk′ . (10.8)

Considering at the equilibrium:

Nk =
k

〈k〉
N̄, (10.9)

where N̄ =
∑

k P (k)Nk is the average subpopulation size, we get:

Dn
k = (R0 − 1)

λα

µ
N̄Vk

bk

btot

1

〈k〉

∑

k′

Dn−1
k′ k′. (10.10)

Let us define now Θn =
∑

k Dn
kk, then we have:

Θn = (R0 − 1)
λα

µ
N̄

Θn−1

〈k〉

∑

k

Vkk
bk

btot
. (10.11)
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The last term needs can be further developed as:

∑

k

Vkk
bk

btot
=

V
∑

k P (k)kbk

V
∑

k′ P (k′)bk′

. (10.12)

Considering now bk ∼ kη one is left with:

Θn = (R0 − 1)
λα

µ
N̄

1

〈k〉

〈k1+η〉

〈kη〉
Θn−1. (10.13)

We finally get the global invasion threshold as:

R∗ = (R0 − 1)
λα

µ
N̄

1

〈k〉

〈k1+η〉

〈kη〉
. (10.14)

We can write the threshold condition for the mobility rate:

λN̄ ≥
〈kη〉

〈k1+η〉

〈k〉µ

α
(R0 − 1)−1. (10.15)

These last two expressions are the crucial quantities, and give the conditions for
a global outbreak. It is important to remind that in metapopulation networks
the condition R0 > 1 for each subpopulation is not enough to infer whether a
finite number of subpopulations will be affected by the disease. In Fig. 10.4,
we compare results from numerical simulations with the analytical prediction
expressed in Eq.(10.15). The figure shows that the mean-field framework nicely
recovers the value of the mobility threshold beyond which the movement of
individuals from infected subpopulations to susceptible ones is large enough as
to seed the latter and spread the epidemic to a system-wide scale.

Comparison with numerical results

To compare the analytical insights with the numerical results we choose as
substrate an uncorrelated scale free network generated according to the config-
uration model with γ = 2.5 and N = 3000. First of all we tested the assumption
made in Eq. (10.9), in which the number of individuals Nk at nodes of degree
k, at the equilibrium, is proportional to k. To do so, we start the simulation
with a population of Ni ≃ 1000 in each node, wait until the traffic equilibrium
has been reached, and finally we collect the values of Ni. Fig. (10.2) shows the
values of Nk as function of degree k, justifying our assumption. In order to
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Figure 10.2: Nk as a function of the degree classes k and the best fitting curve,
leading to a linear scaling.

calculate the critical mobility rate λc we use Eq. (10.15) and λc reads as:

λc =
1

N̄

〈kη〉

〈k1+η〉

〈k〉µ

α
(R0 − 1)−1. (10.16)

Thus, we need to know the specific value of η in the chosen network and fix
a value for R0. To obtain an estimate for η we compute the value of the
betweenness bi for each node i and coarse grain by degree classes k.

bk =
1

Vk

∑

i|ki=k

bi. (10.17)

Note that to evaluate bi of each node we decide to make a run of the simulation
and register the number of packets that pass through a link over a very long
period of time. In this way, the values of bi are more precise and closer to the
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Figure 10.3: bk as a function of the degree classes k and the best fitting curve,
leading to a value of η = 1.51

actual dynamics. Fig. (10.3) shows bk as function of the degree classes and the
fit for η gives a value of η = 1.51.

Now we have all the ingredients to calculate the critical value λc and com-
pare it with the numerical results.First we calculate the mean degree of the
network 〈k〉 = 4.0 and then the ηth moment of the degree distribution ob-
taining 〈kη〉 = 10.93 and finally the (1 + η)th moment 〈k1+η〉 = 158.60, we
also decide to fix R0 = 1.5 and the value of N̄ = 1000, and substituting α in
Eq. (10.16) this lead to:

λc =
1

N̄

〈kη〉

〈k1+η〉

〈k〉µR2
0

2(R0 − 1)2
=

1

1000

10.93

158
4.0 · 0.04 ·

1.52

2 · 0.52
= 0.0000496.

(10.18)
In Fig. (10.4) we show the good agreement obtained when comparing the

numerical simulations of the model and the analytical prediction for the global
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invasion threshold.

10.1.2 Metapopulation System with Behavioral Changes

Next, we focus on our main goal in this work and explore several scenarios
of self-initiated human behavioral changes and their impact on the spread of
the disease. To this end, we consider that concurrent to the propagation of
the infection, prevalence-based information about disease outbreaks triggers
the spread of awareness, which promotes different behavioral changes. These
reactions have been shown [207] to modify the disease state of the individuals
[208, 213], the model parameters [214] and the contact structure [215, 203, 205,
204]. However, the influence of behavioral changes in metapopulation systems
remains elusive. In our a system, human responses to the presence of a disease
might have a direct impact on mobility and traveling habits, since avoiding
infected spots can cause a rise in the use of alternative paths. A yet more
drastic reaction to be included is that individuals retreat from traveling at all.

We consider that individuals react to prevalence-based information, and
study two mechanisms of risk aversion. In the first mechanism we assume that
people tend not to start a journey if the destination is known to be affected by
a certain disease, thus the number of cancelled trips can be considered propor-
tional to fraction of infected individuals at the destination. The second case
(see Fig. 10.1) considers behavioral reactions that induce changes in travel-
ing routes, a sort of epidemic-aware bypath routing. In the next sections we
describe the different mechanisms we use to model behavioral changes.

10.1.3 Departure probability

During the H1N1 pandemic in 2009, especially in the early stage, a big drop
in the number of travelers to (and within) Mexico was registered [210]. A
first plausible mechanism to model behavioral changes is obtained changing
the probability of departure according to the stage of the disease at a given
destination. We can thus assume that individuals might decide to postpone
their trips. Mathematically this behavior can be modeled as:

λ → λij = λ

[

1 −
Ij(t)

Nj(t)

]

. (10.19)

The expression above considers that the probability that each individual will
travel is not anymore constant but a function of the epidemic incidence at desti-
nation. At the beginning of the spreading process, when the number of infected
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individuals is small, the mobility is given by λ for all possible destinations j,
since the second factor above is close or equal to 1. However, during the evo-
lution of the disease, as soon the number of infected individuals increases, the
departure probability starts to change from place to place and the mechanism
becomes effective.

10.1.4 Rerouting

Let us assume that a traveler from subpopulation i has as destination subpop-
ulation j, and that a node m is in the shortest path between its origin and
destination. Let us also suppose that subpopulation m is experiencing a se-
vere outbreak. The individual could decide to travel anyway but changes the
route going through another, maybe longer but less risky alternative path. We
modeled this kind of behavior by introducing a cost function:

cm(t) = hδm + (1 − h)
Im(t)

Nm(t)
, (10.20)

where the parameter h is defined in the closed interval [0, 1] and δk can assume
three values [−1, 0, 1]. −1 is associated to the shortest path (the individual will
be one hop closer to its destination), 0 to a new path which does not change
the current distance to the destination, and 1 otherwise (the individual will be
one hop farther to its destination). At each time step, each individual that is
traveling decides the next node to move to by minimizing the cost function,
unless the next move leads to its destination.

It is worth noticing that the parameter h, although defined in the interval
[0, 1] can take on only a small subset of meaningful values. If h is too small,
the traveler essentially moves through the network following the landscape of
epidemic incidence, as no information of its destination is taken into account
when deciding where to move. This is a highly unrealistic situation that there-
fore sets a lower bound (> 0) to h. Similarly, one can easily show that h is
also bounded from above. Although h = 1 mathematically corresponds to the
limit of shortest path, this limit is obtained well before. Admittedly, one can
show that in order for a traveler to go through a path one hop farther than the
destination the following condition must be satisfied

I−(t)

N−(t)
−

I+(t)

N+(t)
>

2h

1 − h
, (10.21)

where I−
N−

and I+
N+

are the densities of infected individuals at subpopulations

one hop closer and one hop farther from the traveler’s destination, respectively.
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The same argument leads to the following condition with respect to the pos-
sibility of going through a path that does not change the current distance to
destination:

I−(t)

N−(t)
−

I=(t)

N=(t)
>

h

1 − h
, (10.22)

where I=
N=

is the density of infected individuals at a subpopulation which is
at the same distance of the traveler’s destination. We have checked that our
results for the model including behavioral changes are qualitatively the same
for different values of h in the interval [0.05, 0.2] (beyond h = 1/3, no differences
with respect to the shortest path results are obtained, which means that this
limit has been reached at h = 1/3 as expected from Eq. (10.21)).

10.1.5 Mechanistic Numerical Simulations

We resort to extensive numerical simulations and study a variety of cases.
Furthermore, motivated by the recent empirical evidence on the heterogeneous
properties of transportation and mobility patterns, we carried out Monte Carlo
simulations on top of the Air Transportation Network (ATN). The ATN is com-
posed of passenger flights operating in the time period November 1, 2000, to
October 31, 2001 compiled by OAG Worldwide (Downers Grove, IL) and ana-
lyzed previously in [149]. It consists of 3618 nodes (airports) and 14142 links.
We use the weighted network in our analysis. Airports corresponding to a
metropolitan area have been collapsed into one node in the original database.
This network is highly heterogeneous in the number of connections between
urban areas (subpopulations) as well as in the traffic wil in terms of the num-
ber of passengers or available seats on a given direct route connecting two
subpopulations i and l. Taking into account these traffic patterns, we assume
that initially the number of individuals in subpopulation i is proportional to
its strength Ni =

∑

l wil. Moreover, as the travel flows are not homogeneous,
we also consider that individuals choose their destinations proportionally to
the strengths of each possible target subpopulation. In this way, we preserve
the inter-city traffic patterns. Finally, it is possible to make the model more
realistic by considering that infected individuals diffuse at a lower rate, λI ,
than susceptible subjects and that all travelers spend a time τ at their desti-
nations before coming back home. Without loss of generality we assume that
λI = λ/2 and that τ is drawn from a uniform distribution with mean equal to
the traveled distance dil.

The overall dynamics is determined by the way agents select which neigh-
bor to visit next on their ways to their destinations, presuming that following
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Figure 10.4: To compare the analytical insights with numerical results, we rep-
resent in the figure the number of diseased subpopulations D/V as a function
of the mobility rate for two R0 values. The analytical value (Eq.(10.15)) is indi-
cated by the arrow. Full-circles are results from numerical simulations (the line
is a guide to eyes). The value of α has been approximated by α = 2(R0−1)/R2

0

[161]. The substrate topology is an uncorrelated scale-free network generated
according to the uncorrelated configuration model [216] with γ = 2.7 and
V = 3000 subpopulations. Other parameters are indicated in the figure.

the shortest path is the preferred solution in an infection-free scenario. At
each subpopulation, traveling individuals are tracked in time and the evolution
of the disease monitored. In addition, we study the invasion dynamics and
measure the number of diseased subpopulations at time t, D(t). All numerical
results reported henceforth are averages taken over at least 100 realizations of
the initial conditions and the stochastic dynamics. We next separately consider
the aforementioned behavioral responses which comprehend a whole range of
possibilities. Intuitively, risk-aversion strategies should not affect the invasion
threshold. This is because near the global invasion threshold, the probabil-
ity to find an infected subpopulation other than the one where the epidemic
was originally seeded vanishes. Therefore, behavioral changes are expected
to impact the course of the epidemic once the outbreak takes place and has
reached a macroscopic fraction of the total number of subpopulations in the
metapopulation system.
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10.2 Discussion

In Fig. 10.5 we analyze the behavior of the density of diseased subpopulations
D/V at the end of the global epidemic as a function of both the basic repro-
ductive number R0 and the traveling diffusion rate λ. The results reported
correspond to three different situations. Symbols represent the final fraction of
diseased subpopulations when no risk aversion mechanism is present. In this
case, individuals diffuse from one subpopulation to another along the shortest
path connecting their home with their destination. As specified above, infected
subjects have a lower mobility rate than susceptible and removed individuals,
and all of them spend a time τ at destination before engaging in the way back
home. This constitutes our null model. Dotted lines correspond to the situa-
tion in which individuals react to the presence of the epidemic such that they
travel with a probability that depends on the number of infected individuals
at their destination. Finally, solid lines represent the second risk-aversion re-
sponse, in which individuals seek a trade-off between the epidemic incidence
along the path connecting the origin and destination of the travel and the
length of the latter.

Figure 10.5 shows that in all cases analyzed the metapopulation system ex-
hibits an invasion threshold which is independent of human behavioral changes.
This threshold determines whether the flow of individuals between subpop-
ulations is high enough in order to allow the infectious disease to invade a
finite fraction of the whole metapopulation system. The figure also clearly
evidences the radically distinct effects of the two risk aversion behavioral re-
sponses. When people have the option of deciding whether or not to engage in
a travel, the fraction of diseased subpopulations at the end of the outbreak de-
creases with respect to the null case, thus pointing out that this kind of response
is beneficial. The reason for the reduction in D/V is rooted in the effective re-
duction of the mobility rate of the individuals which lead to a smaller exposure
of susceptible individuals, both while traveling and at home, to the disease.
This is in line with the usual measures adopted externally by public health
authorities, which are aimed at reducing the frequency of contacts between
susceptible and infected individuals and therefore to contain the spreading of
the disease by cutting down the number of susceptible-infected transitions.

A more striking and unexpected result is obtained for the second risk aver-
sion scenario. As Fig. 10.5 shows, it turns out that when travelers decide
to bypass the subpopulations with a high number of infected individuals, the
disease penetration, as given by the number of subpopulations with local out-
breaks, increases. The rationale behind this finding is that the increase in the
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Figure 10.5: The figure compares the fraction of diseased subpopulations D/V
when risk aversion mechanisms are active, with the situation in which such
behavioral responses are not taken into account. Panels (a) and (b) show,
respectively, the dependency of D/V with the basic reproductive number R0

and the mobility rate λ for random scale-free networks. Symbols represent the
results obtained when individuals do not react to the presence of the disease.
The rest of results correspond to the two risk aversion responses: DP stands
for the mechanism in which individuals decide whether or not to travel, while
H corresponds to the value used for the cost function in the second case of
behavioral change. Moreover, in panels (c) and (d) we compare the behavior
of the fraction of diseased subpopulations D/V for the null and full versions of
the metapopulation system on top of the worldwide air transportation network.
The results confirms that the invasion threshold is independent of behavioral
changes and that the latter have a significant impact on the invasion dynamics
of the metapopulation. In particular, for fixed mobility rates, including behav-
ioral changes could have a larger effect in D/V than increasing the value of
R0. Model parameters are those used in panels (a) and (b). See the main text
for further details.
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Figure 10.6: The figure compares the fraction of recovered individuals R when
risk aversion mechanisms are active, with the situation in which such behavioral
responses are not taken into account. Panels (a) and (b) show, respectively,
the dependency of R with the basic reproductive number R0 and the mobility
rate λ for random scale-free networks. Symbols represent the results obtained
when individuals do not react to the presence of the disease. The rest of results
correspond to the two risk aversion responses: DP stands for the mechanism
in which individuals decide whether or not to travel, while H corresponds to
the value used for the cost function in the second case of behavioral change.
Moreover, in panels (c) and (d) we compare the behavior of the fraction of
recovered individuals R for the null and full versions of the metapopulation
system on top of the worldwide air transportation network.
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flow of individuals going through alternative paths brings in the infection to
new subpopulations that would otherwise remain susceptible. This constitutes
a very interesting finding, as one can thought of the whole process in terms of
a social dilemma or a public goods game. Individuals adopt a sort of selfish
behavior by avoiding highly infected spots, but as a consequence, the disease
invades a larger fraction of the subpopulations in the metapopulation system.
Thus, what is beneficial at the individual level, turns out to be detrimental for
the wellbeing of the whole population. It is also worth stressing that the effects
of this kind of behavioral changes in front of a disease non trivially depend on
both R0 and λ. As seen in the bottom panel of Fig. 10.5, for fixed and rela-
tive high mobility rates, this kind of risk aversion response may provoke that
the number of diseased subpopulations for a disease with an associated R

′

0 be
larger than the corresponding fraction of diseased subpopulations for another
disease characterized by a different R

′′

0 (R
′′

0 > R
′

0), but without this type of
risk aversion effects.

We further represent in Fig. 10.6 the results obtained with the full version
of the metapopulation system together with the null case for the fraction of
recovered individuals R. For the fully developed metapopulation system, all
mechanisms are active concurrently, so that the two risks aversion behaviors
add in a way that individuals first decide whether or not to travel and if they
engage in a travel, then they move following the second aversion dynamics.
The results confirm that strongest effects are induced when alternative paths
are used for movements between subpopulations. Here, we also confirm the
existence of a global invasion threshold that does not depend on behavioral
changes. Also, in Fig. 10.7 we present the infection trees (see caption for
description) for the baseline and the fully developed model highlighting the
differences not only in the number of infected subpopulations but also in the
time and methods contagion occurs.

10.3 Conclusions

In summary, we have analyzed a metapopulation system where individuals
move from origins to destinations that can be several subpopulations apart.
The model incorporates several scenarios of self-initiated human behavioral
responses in front of a disease. We first have shown that there is a global
threshold associated to the subpopulation invasion dynamics. We have re-
ported an analytical expression that gives the minimum number of individuals
diffusing among subpopulations in order to have a global epidemic outbreak.
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Figure 10.7: The picture depicts the infection tree (a directed tree in which a
link between subpopulations i and j is drawn if an individual infected in i has
caused an outbreak in j ) for the baseline (A) and the fully developed model
(B) on the US air transportation network. Colorscale from light yellow to dark
red indicates the time at which contagion occurs.

Our main results concern the effects of self-initiated, prevalence-based behav-
ioral responses and their impact on the mobility and traveling patterns and the
number of diseased subpopulations at the end of the epidemic. Other reactions
are expected to have a further impact in the evolution of a disease, but at a
more local level.

We believe that future approaches should be addressed to improve our un-
derstanding of the spreading dynamics among subpopulations. After all, what
differentiate today’s global diseases is the fast time scale associated to the
global pandemic. Our study may also be important in other contexts where
population dynamics plays a role. We have shown that new migration routes
could significantly modify the dynamics of a metapopulation system. Finally,
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our findings suggest that human behavioral responses to the presence of a dis-
ease have a large impact not only at a local level, but more importantly, could
shape the evolution of global pandemics. In this sense, behavioral adaptation
should be included as a key factor in current epidemiological platforms. As our
results show, some reactions could even lead to worst situations than previously
thought.
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Conclusions

As large networks are all around us and grow at increasing rates it becomes
more and more important understand and control their functioning. To do so
a comprehensive and multidisciplinary approach is often needed. This thesis
tackles the problem of predicting the dynamical evolution of interconnected
systems and enhances their capabilities from three different perspectives rang-
ing from robotics to epidemiology.

First we concentrated on sensors and mobile networks tackling the problems
of creating a distributed and robust topology for static sensors and the study
of the evolution of cooperation when agents can move mimicking unmanned
robots behavior. For the first problem we model a real environment as a 2D
space in which nodes are distributed randomly and have a limited visibility ra-
dius. The problem consists of finding a pattern of connections that assures the
whole network connectivity (when possible) and shows the optimal resilience
to failures and targeted attacks. We have proposed a distributed algorithm
that permits to create a random geometric graph with a prescribed degree dis-
tribution. Then we exploited recent results on percolation theory applied to
complex networks topology to choose a multi-modal degree distribution that
maximize both the percolation thresholds for failures and attacks. Numerical
tests against a randomized ensemble of graphs, taken as a null model, showed
that our recipe outperform the null model in several aspects of network re-
silience as the size of the giant component and the size and the number of
connected components.

Then we placed on a more complex scenario characterized by interacting
moving agents playing an evolutionary version of a social dilemma. In this
case we concentrated on the evolution of cooperation as a convenient strategy
with the aim of highlighting the conditions for the emergence of a collaborative
behavior. We proposed a model in which agents move and interact with other
agents in their visibility radius playing a round of prisoner’s dilemma and collect

153
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a payoff. An evolutionary step is then made assuring the selection of the best
strategy. Numerical evidence showed that, although defection is favoured, there
exists a consistent range of parameters space in which cooperation becomes
advantageous. Such conditions are fulfilled when agents density is enough to
produce small clusters in which cooperation can grow and players velocity is
small enough to assure clusters stability for a reasonable amount of time. These
results open many interesting questions that can be answered in the future. Is it
possible to control agents movement via some simple evolutionary rules? Does
cooperation allow agents to solve simple tasks collectively? Can we exploit
such scenario to create next generation communication networks that relies on
several mobile devices without a pre-constructed backbone?

In the second part we have faced a couple of interesting problems on top
of communication networks: the study of fluctuations in mean flows in a traf-
fic network and an optimization technique for congestion control. Firstly the
problem of finding a relationship between the mean flow on a node and its stan-
dard deviation has been analyzed. Recent works on the topic have highlighted
the presence of some scaling laws but their validity remains controversial. We
presented a model based on random walks theory that incorporates most of
the characteristics of real communication systems such as network structure
and fluctuations in external systems arrivals. The solution of the model evi-
denced a direct relation between flows fluctuations and three factors, namely:
the variations in the number of packets in the network, the degree of the nodes
and the length of the time window in which measurements are performed. An-
alytical predictions have been confirmed via three different analysis: a simple
numerical traffic model on top of a scale-free topology, real data analysis, and
events simulations via a realistic traffic generator.

On chapter 7 we tackled an open question that received a lot of attention
in the literature: finding an optimization technique that allows to handle high
traffic rates on a network delaying the onset of the congestion. We approached
the problem in a theoretical way proposing a minimal model for traffic sim-
ulation that incorporates a simple control strategy nowadays present in real
communication networks: refusing to receive a packet with a certain proba-
bility to control the growth of nodes queues. We showed that some simple
adaptive strategies can considerably slow down the onset of congestion, but
modifying the nature of the transition between free flow regime and the con-
gested state from a smooth to an abrupt one. As an additional element we also
permit nodes a simple form of collaboration: consider in the adaptive process
the congestion state of their neighbors. This latter ingredient has a profound
impact on traffic dynamics leading to a delay on the onset of congestion and a
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smooth transition between free flow and congested regimes. Another striking
property of this local empathetic behavior is that by introducing it the system
recovers the same performances that a global optimization strategy.

Although a huge quantity of works have been proposed on these two topics,
many open questions remain unanswered. Can we produce traffic models that
faithfully reproduce traffic flows on the Internet that are shaped by commercial
and peering relationships rather than simple topological constraints? Is it
possible to approach the traffic problem as a cooperative game between agents?

On the last part of the work we focused on spreading processes on networks.
Our study started with a simple analytical formulation to model the spreading
of a disease in a class of interaction rules. Then, we move on the modeling of a
more complex scenario in which interactions are described by traffic flows. We
conclude our analysis with a fully developed metapopulation system in which
the impact of human responses to the epidemic spreading is considered. In
the first study we proposed an alternative formulation to the classical hetero-
geneous mean field to study a SIS model on scale free networks. The model
can be integrated numerically and we analytically derived its equivalence with
the HMF by recovering the epidemic threshold. In addiction to the HMF this
approach permits to predict the single nodes infection probability and can be
applied to an entire class of interaction models ranging from contact process
to a fully reactive scenario like the HMF. Numerical simulations confirm our
findings. After that we have presented a model in which nodes interactions
are driven by traffic flows in a coupled fashion. Packets are seen as quanta
of interaction between individuals and as the way the disease can spread in
the population. The analytical treatment of the model via an HMF approach
showed that the epidemic threshold strictly depends on the traffic values of the
system and, in case of a bounded delivery rate, it can assume a finite value
also for very high traffic intensities. In the last chapter of this part a profound
extension of the previous model has been presented. In this case a metapop-
ulation framework has been adopted modeling subpopulations as nodes and
incorporating human mobility. In a SIR scenario individuals can transport the
disease from one supopulation to another. Numerical simulations confirmed
the theoretical prediction for the global invasion threshold and two schemes
for human responses to the epidemic diffusion have been analyzed. In the first
individuals are allowed to cancel their journey with a probability proportional
to the fraction of infected individuals at the destination. In the second we per-
mit them to take a longer but less infected path to the destination. Numerical
analysis showed an unexpected result. Although cancelling a journey can only
slightly reduce the epidemic incidence a longer but safer path can have a dra-
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matic outcome bringing the disease in places that otherwise will be untouched
and raising consistently the epidemic incidence.

Despite of these recent advances in epidemic modeling on complex networks
a complete knowledge of epidemic dynamics is still far from our view. Models
able to cope with individuals differences in infection rates and efficient policies
to block the spread of a disease are needed. Also in modeling interactions
more complex approaches that incorporate temporal patterns are of crucial
importance.

Concluding, in this thesis the characteristics of several dynamical models
on top of large and complex topologies have been presented and some control
techniques have been tested. Today’s world is complex and it’s impossible
to think at our lives without the connections that we all share. But such a
complexity can be managed and exploited to bring us to a better life. In this
work we have tried to shed light on some complex behaviors that emerge in
technological networks and I hope that this contribution as little as it is could
be useful to someone else in the future.
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Other Research Activities

Simultaneously with the research for the development of this thesis, other topics
in different areas have been dealt with:

• Synchronization of non-identical oscillators in a power micro-generation
scenario. Future scenarios of electrical distribution networks with many,
geographically dispersed power micro-generators from renewable sources
impose to cope with the problem of the functional stability of such net-
works. Does the network topology play a role in ensuring a viable syn-
chronization stability ? We present a modified version of the Kuramoto
model, used to mimic a network of power generators, has been applied
to estimate the synchronization behavior of large networks with differ-
ent topologies (random, scale-free) in homogeneous (i.e. all nodes and
links with equal properties) configurations. The network stability upon
link(s) removal (in term of resistance to synchronization loss) has been
also analyzed.

• De-Novo Assembly of Quasispecies via Next-Generation Sequencing. The
problem of reconstruct a viral quasispecies from a Next Generation Se-
quencer (NGS) consists in reproducing the original genome from the sam-
ples obtained via a shotgun sequencing machine. In this field we applied
some concepts from complex networks theory for the de-novo assembly
(i.e. without the need of any reference genome) of NGS samples of a qua-
sispecies, in particular viral quasispecies differentiating within a host, and
eventually quasispecies showing evidence of recombination. The proposed
method relies on a statistical procedure to construct an overlap graph and
then on an algorithm based on random walks to reconstruct the different
variants of a quasispecies from a NGS sample. The overall graph can be
also analyzed via classical networks analysis tools to obtain insights on
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quasispecies features as multiple variants with variable mutation rates,
recombinants, and repeated regions.

• Effect of Topology on Diversity of Spatially-Structured Evolutionary Algo-
rithms We study of the effects of networks topology to spatially-structured
evolutionary algorithms’ dynamics. We focused our study on takeover
time and diversity of the solutions, applying the algorithm on a multi-
modal optimization problem. Using as algorithms’ underlying structure
different networks models we studied the relationship between algorithm’s
dynamic, i.e. takeover time, first hitting time and number of distinct
optima found at convergence, and networks’ features like clustering co-
efficient and characteristic path length. A comparison with a panmictic
evolutionary algorithm is made to study the effects of the introduction of
a structure in the mating dynamics of the algorithm, resulting in an en-
hancement of diversity and containing the takeover time and first hitting
time overhead.
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[115] P. Echenique, J. Gómez-Gardeñes, and Y. Moreno, EPL 71, 325 (2005).

[116] X. Ling, M.-B. Hu, R. Jiang, and Q.-S. Wu, Phys. Rev. E. 81, 016113
(2010).

[117] D. De Martino, L. Dall’Asta, G. Bianconi, and M. Marsili, Phys. Rev. E
79, 015101(R) (2009).

[118] D. De Martino, L. Dall’Asta, G. Bianconi, and M. Marsili, J. Stat. Mech.
P080232 (2009).

[119] W. Huang, and T.W.S. Chow, Chaos 19, 043124 (2009).

[120] W.-X. Wang, Z.-X. Wu, R. Jiang, G. Chen, and Y.-Ch. Lai, Chaos 19,
33106 (2009).

[121] K. Kim, B. Kahng, and D. Kim, EPL 86, 58002 (2009).

[122] G. Petri, H.J. Jensen, and J.W. Polak, EPL 88, 20010 (2009).

[123] S. Floyd, V. Jacobson, IEEE/ACM Trans. Netw. 1(4), 397413 (1993).

[124] G. Bianconi, Phys. Lett. A 303, 166 (2002).

[125] G. Bianconi, EPL 81, 28005 (2008).



i

i

“main” — 2011/2/24 — 5:56 — page 169 — #181
i

i

i

i

i

i

169
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[149] R. Guimerà, S. Mossa, A. Turtschi, L. A. N. Amaral, Proc. Natl. Acad.
Sci. USA 102:7794-7799 (2005).

[150] M. Ha, H. Hong, H. Park, Phys. Rev. Lett. 98:029801 (2007).

[151] J.-D. J. Han, N. Bertin, T. Hao et al, Nature 430: 88-93 (2004).

[152] H. W. Hethcote, SIAM Review 42:599-653 (2000).

[153] L. Hufnagel, D. Brockmann, T. Geisel, Proc. Natl. Acad. Sci. USA
101:1512415129 (2004).

[154] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, Y. Aberg,
Nature 411:907-908 (2001).

[155] A. L. LLoyd, R. M. May, Science 292:1316-1317 (2001).

[156] J. Marro, R. Dickman, Nonequilibrium phase transitions in lattice models.
Cambridge University Press, Cambridge (1999).
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[178] V. M. Egúıluz, M. G. Zimmermann, C. J. Cela-Conde, and M. San
Miguel, Am. J. Soc. 110, 977 (2005).
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