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Premessa

Codifica distribuita di sorgenti video 3D

Negli ultimi anni, diverse tecniche di codifica video hanno raggiunto una grosso successo

a livello commerciale ed é oramai chiaro che i sistemi video digitali sostituiranno com-

pletamente tutti i sistemi video analogici. Le strategie di codifica video convenzionali

sono basate sull’ idea che é compito del codificatore calcolare le statistiche della sorgente,

creando cośı un codificatore complesso che interagisce con un semplice decodificatore.

Broadcasting, video on demand e video streaming si basano proprio su questo paradigma.

La codifica video distribuita (DVC) adotta invece un concetto differente poiché sposta la

complessitá computazionale della parte del decoder che ha il compito di sfruttare le statis-

tiche delle sorgenti (parzialmente o totalmente) per ottenere una compressione efficiente.

Questo nuovo approccio é particolarmente ideale per tutte quelle nuove applicazioni per

cui é richiesto un basso consumo di energia e di potenza come video-camere wireless, reti

di sensori, acquisizione multi-view dell’ immagine, etc..

Come introdotto pocánzi, la codifica video distribuita é un nuovo approccio basato su

due importanti risultati della teoria dell’ Informazione: il teorema di Slepian-Wolf e quello

di Wyner-Ziv.

Il teorema di Slepian-Wolf fa riferimento al caso in cui due sequenze random discrete e

statisticamente dipendenti, X e Y , sono codificate in maniera indipendente, a differenza

delle tecniche predittive tradizionali, MPEG e ITU-T, dove le due sorgenti sono codificate

insieme. Il teorema afferma che il rate minimo per codificare le due sorgenti, tra loro

dipendenti, é lo stesso che si avrebbe se le due sorgenti fossero codificate unitamente, con

una probabilitá di errore piccola. La codifica di Slepian-Wolf viene riferita, in letteratura,

come codifica di sorgente distribuita senza perdita poiché le due sorgenti, statisticamente

dipendenti, sono perfettamente ricostruite al decoder unico (trascurando una arbitraria-

mente piccola probabilitá di errore nella decodifica). Inoltre tale teorema é fortemente

legato alla codifica di canale: la dipendenza fra le due sequenze, X e Y , puó essere vista

come un canale virtuale dove X rappresenta l’ informazione originale non corrotta, mentre

Y , detta side information, é disponibile al decoder ed é sfruttata per stimare una versione
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rumorosa di X. L’ errore di stima tra X e la side information puó essere corretto appli-

cando tecniche di codifica di canale alla sequenza X (generando cośı i bit di paritá) con

l’idea che al decoder Y assuma il ruolo di informazione sistematica. Tuttavia il teorema di

Slepian-Wolf ha un limite molto forte poiché si riferisce ad una codifica senza perdita ed

é quindi poco adatto per scenari reali infatti la codifica lossless (senza perdita), raggiunge

fattori di compressione piuttosto bassi poiché non elimina l’ informazione video che non é

percepibile dal sistema visivo umano. Nel 1976, A. Wyner e J. Ziv hanno studiato il caso

corrispondente di codifica con perdita (lossy) e ne hanno derivato il teorema di Wyner-Ziv.

Tale teorema afferma che in alcune condizioni é possibile effettuare una codifica delle due

sorgenti indipendente senza perdita di efficienza rispetto al caso congiunto, anche se la

codifica é con perdita. É dunque possibile comprimere, secondo i teoremi di Slepian-Wolf

e Wyner-Ziv, due sorgenti statisticamente dipendenti, in maniera distribuita (codificata

separata, decodifica congiunta), ottenendo una efficienza di codifica pari a quella di schemi

piú tradizionali (codifica unita, decodifica separata).

Sebbene le fondamenta teoriche della codifica di sorgente distribuita sono state stabilite

negli anni ’70, solo ultimamente sono stati proposti schemi pratici di DVC. La ragione

maggiore del recente sviluppo si puó rintracciare nell’ evoluzione ultima che ha subito la

codifica di canale e in particolare nell’ introduzione dei Turbo-Codici e dei codici Low-

Density-Parity-Check (LDPC).

L’ analisi degli aspetti basilari del DVC, il suo approccio statistico e le principali strate-

gie pratiche portano a concludere che l’ architettura DVC presenta i seguenti vantaggi:

1. Una allocazione flessibile della complessitá generale del codec: infatti l’ approccio

DVC permette di spostare parte della complessitá del codificatore al decoder. É

quindi applicabile in tutti quei casi in cui il codificatore deve essere semplice, poco

costoso e consumare al minimo l’ energia.

2. Robustezza all’ errore migliorata. É legata al fatto che i codec DVC sfruttano le

proprietá statistiche piuttosto che la predizione.

3. Scalabilitá indipendente del codec. Mentre negli attuali codec scalabili, c’é tipica-

mente un approccio predittivo dagli strati piú bassi a quelli superiori, richiedendo

ii



al codificatore di conoscere il risultato della decodifica dello strato precedente cośı

da migliorare il successivo, nella codifica DVC non viene richiesta una conoscenza

deterministica del livello precedente ma solo un modello di correlazione. Ció implica

che, per i vari strati, i codec possono essere non noti e differenti.

4. Uso della correlazione multivista. La tecnica DVC puó essere estesa anche al caso

multivista dove é necessario tener conto anche dell’ informazione inter-vista (oltre

a quella intra-vista). In questo caso, la codifica DVC introduce dei benefici signi-

ficativi poiché a differenza dell’ approccio convenzionale che richiede che le sequenze

catturate da viste differenti siano simultaneamente disponibili dalla parte del codifi-

catore con la conseguenza che le varie telecamere comunichino fra loro, un codifica-

tore basato sul paradigma DVC non necessita di eleborare congiuntamente i frame

appartententi alle varie viste e né di una comunicazione tra le varie telecamere.

Di seguito vengono riportati gli argomenti trattati durante il Dottorato di Ricerca:

1. Valutazione degli artefatti video introdotti in un sistema di codifica distribuita

stereoscopico, Capitolo 2;

2. Codifica distribuita ”joint” sorgente-canale per sorgenti 3D, Capitolo 3;

3. Sistema di codifica distribuita multivista, Capitolo 4;

4. Trasmissione di contenuti multimediali basate sui codifici a fontana in reti MANET,

Capitolo 5.

5. Ricerca di immagini in database multimediali basata sui momenti di Zernike e sui

polinomi di Laguerre-Gauss, Capitolo 6.

Nel Capitolo 2 saranno valutati gli arteffati introdotti dalla codifica distribuita per

sequenze steroscopiche. L’ obiettivo di questo lavoro é valutare la qualitá delle immagini

stereo attraverso modelli oggettivi e soggettivi e discutere i posibili artefatti introdotti da

questo particolare approccio di codifica. Le valutazioni delle prestazioni di un sistema di

codifica distribuito saranno confrontate con le prestazioni della codifica H.264/AVC che

rappresenta ad oggi un sistema di codifica video altamente sfruttato.
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Gli artefatti precepiti in sequenze video 3D non solo creano un risultato visivamente non

gradevole ma allo stesso tempo creano malessere al sistema visivo umano. Per questa

ragione, la comunitá scientifica si sta focalizzando sulla definizione di metrica di qualitá

percettiva che possa quantificare la distorsione tipica introdotta in sequenze video 3D.

É quindi necessario classificare gli artefatti presenti in un contenuto stereoscopico o piú

generalmente 3D. Ogni fase che va dalla acquisizione, alla codifica, alla trasmissione fino

alla visualizzazione di sequenze video stereo introduce artefatti tipici di quello step:

• Acquisizione: la maggior parte dei video 3D sono ottenuti da video-camere doppie

o da configurazioni multi-vista dove ogni vista é registrata separatamente. Un al-

tro approccio consiste nel trasformare il contenuto 2D in 3D tramite algoritmi di

conversione che sfruttano le mappe di profonditá. Una terza possibilitá prevede l’

aumento della profonditá tramite la presenza di un sensore addizionale. Per tutti

questi approcci, una non corretta impostazione dei parametri quali, ad esempio, la

distanza fra le due video-camere, la lunghezza della lente focale o la distanza di

convergenza, puó creare una visione non corretta della profonditá cośı come rumore,

aliasing, e l’effetto puppet theater.

• Rappresentazione dei dat acquisiti: in particolare la conversione del formato da 2D

a 3D puó causare artefatti come il ghosting e aliasing temporale e spaziale.

• Codifica: le sequenze 3D sono generalmente codificate secondo schemi di codifica

multi-vista o algoritmi di codifica 2D adattati per lo stereo. Questa fase puó alterare

importanti dettagli dell’immagine per la percezione della profonditá.

• Trasmissione: da una parte, la perdita dei pacchetti dati e la presenza di canali

rumorosi possono essere cause di una qualitá percepita del contenuto 3D degradata;

dall’ altra parte, gli algoritmi che tentano di correggere questi errori possono a loro

volta introdurre nuovi artefatti.

• Visualizzazione: la qualitá video stereoscopica dipende fortemente dall’ approccio

adottato per la visualizzazione 3D, cioé dipende dagli artefatti che caratterizzano i

display 3D. Effetti di flickering, cross-talk e puppet theater possono essere presenti
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in questa fase.

Considerando ció, lo scopo di questo capitolo é lo studio e l’ analisi degli artefatti in-

trodotti da una sistema di codifica stereo distribuita e valutare la qualitá video attraverso

metriche oggettive e soggettive. In particolare un’ analisi sulla sensisbilitá dei parametri

che controllano il bitrate verrá affrontata.

Nel Capitolo 3 viene dato spazio alla codifica congiunta sorgente-canale. Il principio di

separazione sorgente-canale di Shannon afferma che é possibile ottenere prestazioni ottime

adottando un approccio separato per la codifica di sorgente e per la codifica di canale.

Sulla base di questo principio, i sistemi di comunicazione moderni si sono sviluppati se-

condo una rigida architettura a strati per cui la codifica di sorgente é effettuata al livello

applicativo mentre quella di canale a livello fisico. Se da una parte questo tipo di imple-

mentazione permette di sfruttare un design modulare, dall’ altra parte ci sono casi in cui

la codifica congiunta sorgente-canale puó avere maggiori vantaggi.

Secondo lo schema tandem, una sorgente Wyner-Ziv passa attraverso un quantizzatore e

un codificatore di Slepian-Wolf (SW). I bit risultatnti vengono poi protetti tramite tecniche

di codifica di canale. Tuttavia é possibile ottenere una codifica unita sorgente-canale, e a

tal fine é necessario combinare due codifiche di canale, una relativa alla codifica SW and

l’ altra alla codifica di canale, in una singola codifica.

É possibile considerare per la sorgente X, il problema della codifica su due canali.

• Il primo canale é il canale rumoroso attraverso cui passano i bit sorgente-canale e

rappresenta la distorsione subita dai bit di paritá.

• Il secondo é il canale virtuale di correlazione tra la sorgente e la side information

disponibile al decoder e rappresenta la distorsione dei bit sistematici.

In questo capitolo viene proposta un’ analisi dello stato dell’ arte dei sistemi DVC che

introducono una codifica congiunta sorgente-canale e viene presentato un modello di codi-

fica distribuita sorgente-canale per video 3D basato sui turbo-codici che preservi la qualitá

visiva percepita e allo stesso tempo mantenga una bassa complessitá computazionale.
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Dopo aver valutato la codifica distribuita per doppia sorgente e quindi analizzare mo-

delli per sequenze stereoscopiche, il passo successivo prevederá l’ introduzione di piú di

due sorgenti e cioé lo studio sistemi di codifica distribuita multi-vista.

Negli ultimi anni, i sistemi video multivista sono diventati sempre piú popolari grazie

alla presenza di applicazioni multimediali ed interattive, come ad esempio la TV 3D, o

scenari con reti di sensori wireless. Inoltre, la grossa diffusione di smart phone corredati di

videocamere ad alta definizione e la disponibilitá di connessione 3G, come HSPA e LTE,

é uno dei fattori chiave per la co-creazione di contenuto multimediale per applicazioni a

valore aggiunto.

Tuttavia, l’ impiego di camere multivista aumenta la quantitá di dati da eleborare. La

compressione dei dati diventa quindi, in tali sistemi, un fattore estremamente importante.

Rispetto a codec tradizionali, un approccio di codifica distribuita multi-vista ha i seguenti

vantaggi:

• Non é necessario che le video-camere comunichino fra loro, a differenza delle codifiche

multi-vista convenzionali dove la correlazione inter-vista viene calcolata dalla parte

dell’ encoder. In scenari reali risulta difficile scambiare una tale quantitá di dati e

la codifica distribuita si propone come una soluzione molto interessante, sopratutto

quando si lavora con un sistema composto da un alto numero di video-camere.

• La bassa complessitá computazionale permette di trasmettere i dati video con un

basso ritardo. In un sistema di codifica distribuita , la complessitá computazionale

é spostata dalla parte del decoder permettendo cośı che il codificatore abbia un

design leggero e semplice mentre la complessitá del decoder non é una questione

fondamentale in uno scenario DVC.

• La selezione delle viste che devono essere codificate é piú flessibile. In approcci

convenzionali, i frame di riferimento sono predefiniti durante tutta la codifica. Tutti

i frame di riferimento devono essere decodificati in anticipo rispetto al frame corrente.

Invece, nel nostro caso, questa ridondanza puó essere evitata poiché la predizione

inter-viste viene fatta al decoder e la decodifica delle viste differenti viene scelta

liberamente.
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Considerato ció, il Capitolo 4 é dedicato allo studio di sistemi di codifica video dis-

tribuita multivista. In particolare grande attenzione verrá data alla generazione delle side

information e della fusione dell’ informazione temporale proveniente fra frame della stessa

telecamera e dell’ informazione spaziale proveniente da frame di telecamere diverse.

Nel Capitolo 5, l’ attenzione é rivolta alla realizzazione di un sistema di trasmissione

multicast di contenuto multimediale in una rete MANET.

L’ idea é di proporre un sistema di codifica unita sorgente-canale basata sui codici LT che

permette di fornire un servizio per contenuti multimediali che sia al tempo stesso affidabile

e real-time. Lo scenario considerato é una rete MANET (Mobile Ad-hoc NETwork) dove

sono presenti sensori wireless distribuiti sul territorio e che possono muoversi.

Con rete MANET si intende un sistema autonomo e mobile composto da router e da host

legati tramite distribuzioni wireless arbitrarie. La posizione dei router e degli host puó

cambiare continuamente e in modo impredicibile.

Gli elementi caratterizzanti una rete MANET sono l’ assenza di una infrastruttura dedi-

cata, la presenza di nodi mobili in grado di auto-configurarsi e la presenza di link a bassa

capacitá e fragili.

Da una parte lo sviluppo di reti ad-hoc puó essere portato avanti rispetto alle variazioni

dei requisiti grazie alla loro proprietá di scalabilitá; dall’ altra parte, é necessario fare i

conti con prestazioni ridotte dovute a tecniche di routing multi-hop e ad un controllo dis-

tribuito. Non solo, ma la presenza di link instabili e la scarsa qualitá del canale wireless,

pone una sfida ai tradizionali schemi di routing. In questo contesto, i codici LT rappre-

sentano una valida soluzione per trasmissione dati su reti a perdita di pacchetti.

In questo capitolo, viene analizzato l’ uso dei codici LT per un sistema di codifica joint

sorgente-canale in trasmissioni a perdita di pacchetti caratterizzate dalla mobilitá. Piú

specificatamente, consideriamo uno scenario MANET con nodi che si muovono randomi-

camente e una singola sorgente che trasmette dati multimediali a N nodi riceventi. Per il

rilancio delle informazioni viene impiegato PUMA come algoritmo di routing.

PUMA (Protocol for Unified Multicast Announcement) é un algoritmo che fa routing in

reti MANET e che trasmette pacchetti in flooding, inondando cioé la rete. Si basa su
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un approccio multipath tra il router e un nodo eletto, detto core, della ret mesh ed é

caratterizzato da una alta robustezza alle perdite e ai guasti dei collegamenti.

Ogni nodo trasmittente invia pacchetti dati attraverso il percorso piú breve e quando un

pacchetto dati deve raggiungere una rete mesh, l’ informazione viene mandata in flooding

e ogni nodo mantiene aggiornata una propria cache con l’ identificativo del pacchetto con

il fine di buttare i duplicati.

Quando un flusso informativo, protetto dai codici LT, viene inviato al nodo destinatario

intermedio, quest’ ultimo deve collezionare una quantitá minima di pacchetti, eventual-

mente inviati da differenti vicini ad un hop, che permette la decodifica LT e puó ricostruire

l’ intero flusso informativo. A questo punto, il nodo codifica il flusso ricostruito sulla base

dei codici LT. L’ ordine dei pacchetti viene randomizzato sulla base di un metodo di

scrambling e i pacchetti sono ritrasmessi nella sotto-rete successiva.

Il Capitolo 6 é incentrato sullo studio di algoritmi di riconoscimento di oggetti all’

interno di immagini presenti in database (image retrieval). Le funzionalitá base di un

servizio Internet basato sul contenuto sono l’ invio e la trasmissione del contenuto insieme

alla ricerca di contenuti che puó avvenire tramite utente o tramite dispositivo di ricerca.

Inizialmente gli algoritmi di ricerca si basavano sull’ uso di metadati che descrivevano il

contenuto semantico estratto da un dato contenuto multimediale, anche attraverso proce-

dure manuali. Tuttavia i futuri servizi Internet richiederanno sempre di piú funzionalitá

atte all’ ispezione, al riconoscimento, alla categorizzazione e indicizzazione del contenuto

multimediale che richiedano il minimo intervento umano. Da qui la necessitá di imple-

mentare algoritmi che siano al tempo stesso veloci ed affidabili, in grado di localizzare ed

inseguire oggetti complessi all’ interno di una scena indipendentemente dall’ orientazione e

dalla scala. Diverse tecniche sono state adottate e tra queste le piú efficaci risultano quelle

basate su invarianti che permettono la rappresentazione di template invariante rispetto

alla scala e alla rotazione. Un vettore di feature invariante rispetto alla scala e alla ro-

tazione viene estratto dall’ oggetto complesso che si vuole indagare. Per ciascun punto,

la somiglianza tra il template e il vettore di feature é calcolata e viene estratto il mas-

simo. Queste tecniche differiscono per la scelta degli invarianti e tra queste quella basata

sui momenti di Zernike risulta essere molto interessante per la buona performance totale.
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Per la localizzazione di oggetti all’ interno di immagini saranno utilizzate due tecniche

basate entrambe sulla decomposizione Quadtree e applicando in un primo caso le funzioni

di Laguerre-Gauss e nell’ altro caso l’uso dei momenti di Zernike. Sia l’ immagine tem-

plate sia l’ immagine di riferimento sono decomposti nelle basi delle funzioni di riferimento

(funzioni di Laguerre-Gauss o funzioni di Zernike). L’ immagine template é analizzata se-

condo una procedura a blocchi tramite decomposizione quadtree. La ricerca di un pattern

complesso in un database multimediale é basata su una procedura sequenziale che veri-

fica se ogni immagine candidata contiene ciascun quadrato della lista quadtree ordinata

e migliorando, passo dopo passo, la stima della posizione, dell’ orientazione e della scala

(caso Laguerre-Gauss).

I momenti di Zernike si ottengono decomponendo il template nel dominio delle funzioni

circolari armoniche (CHF), e sono definiti su un disco di raggio unitario. Le proprietá delle

CHF permettono di calcolare un pattern semplicemente moltiplicando i coefficienti dell’

espansione per un fattore esponenziale complesso la cui fase é proporzionale all’ angolo di

rotazione. Di conseguenza, gli invarianti alla rotazione possono essere facilmente ottenuti

considerando l’ ampiezza dei coefficienti dell’ espansione.

Nelle metodologie proposte nel dominio di Zernike e nel dominio di Laguerre-Gauss, viene

selezionato un cerchio contenente l’ oggetto da localizzare e la porzione di pattern che

cade all’ interno del cerchio approssimata da una versione troncata dei coefficienti del

polinomio considerato (sia esso Zernike o Laguerre-Gauss) fino ad un dato ordine. Il

matching tra le immagini é calcolato tramite funzionale di verosimiglianza che in questo

caso é espresso in termini di coefficienti dei momenti di Zernike o coefficienti della trasfor-

mata di Laguerre-Gauss. Molte applicazioni richiedono il riconoscimento e la localizzazione

di pattern complicati che devono essere distinti da oggetti simili che differiscono per pochi

dettagli. In questa situazione l’ uso dei momenti di Zernike per il calcolo del funzionale

di verosimiglianza richiede un gran numero di termini. Per localizzare oggetti di forma

arbitraria e al contempo ridurre il carico computazionale, il pattern viene partizionato

in blocchi usando la decomposizione quadtree. La grandezza di ogni blocco é adattata

all’oggetto da analizzare ed é controllata dalla norma quadrata dell’ errore corrispondente

all’ espansione troncata dei momenti di Zernike o dei coefficienti di Laguerre-Gauss. I
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blocchi quadtree sono poi ordinati rispetto all’ energia del gradiente filtrato con passa-

basso.

Per il procedimento basato sui momenti di Zernike, la stima a massima verosimiglianza

della posizione e dell’ orientazione del primo blocco é calcolata attraverso una procedura

iterativa di quasi-Newton. Rispetto alle tradizionali tecniche di massima verosimiglianza

basate sul matching di una immagine candidata con l’ intero set di pattern ruotati, questo

procedimento richiede la massimizzazione locale del funzionale derivato dai coefficienti

di Zernike. La posizione e l’ orientazione stimate sono poi utilizzate per verificare se l’

immagine corrente contiene o meno il secondo blocco della lista quadtree ordinata. La

procedura viene ripetuta iterativamente e finisce quando tutti i blocchi della lista sono

stati processati o in alternativa quando l’ energia della differenza eccede una determinata

soglia.

Rispetto al caso dei momenti di Zernike, sfruttando la trasformata di Laguerre-Gauss é

possibile tramite funzionale di verosimiglianza stimare posizione, rotazione dell’ immagine

ma anche la scala. Anche in questo caso, il funzionale é applicato ai coefficienti dell’ es-

pansione permettendo cośı un costo computazionale ridotto.

Entrambe le tecniche permettono la ricerca di immagini all’ interno di ampi database

con un successo superiore ai metodi giá esistenti in letteratura. Permettono altreśı la

possibilitá di individuare esattamente l’ immagine cercata a partire da una regione di in-

teresse di riferimento, e di stimarne posizione, orientazione e scala, a differenza dello stato

dell’ arte dove viene individuata la classe di appartenenza dell’ immagine e non tanto l’

immagine stessa.
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Abstract

Multimedia communication over wireless networks has generated a lot of research interests

in the last years. Limited network bandwidth and the requirement of real-time playback

on one hand, and severe impairments of wireless links on the other represent the main

challenge. The additional issue has to do with the time-varying nature of wireless links

and network heterogeneity, which make the channels between the sender and the clients

extremely diverse in their available bandwidths and packet loss ratios. These diverse

transmission conditions and bandwidth scarcity require an efficient scalable multimedia

compression. Therefore, a robust scalable video coder is needed. Although standard video

coders (e.g., H.264) can offer high coding efficiency in the scalable mode, they are very

sensitive to packet loss, which results in error propagation. Motivated by its potential

applications in distributed sensor networks, video coding, and compressing multi-spectral

imagery, there has been a flurry of recent research activities on distributed source coding.

Distributed video coding (DVC) has been proposed as a promising new technique because

it adopts a completely different coding concept respect to conventional codec shifting the

complexity to decoder who has the task to exploit - partly or wholly - the source statistics

to achieve efficient compression. This change of paradigm also moves the encoder-decoder

complexity balance, allowing the provision of efficient compression solutions with simple

encoders and complex decoders. This new coding paradigm is particularly suitable for

emerging applications such as wireless video cameras and wireless low-power surveillance

networks, disposable video cameras, certain medical applications, sensor networks, multi-

view image acquisition, networked camcorders, etc., i.e. all those devices that require

low-energy or low-power consumption.

As mentioned above, Distributed Video Coding is a new video coding approach based

1



on two major Information Theory results: the Slepian-Wolf and Wyner-Ziv theorems.

The Slepian-Wolf theorem and the Wyner-Ziv theorem state that it is possible to sepa-

rately encode and jointly decode two different sources obtaining a perfect reconstruction at

the decoder. The compression efficiency is comparable to conventional predictive coding

systems.

Although the theoretical foundations of distributed video coding have been established

in the 1970s, the design of practical DVC schemes has been proposed only in recent years.

A major reason behind these latest developments is related to the evolution of channel

coding, in particular Turbo and Low-Density Parity-Check (LDPC) coding, which allow

to build the efficient channel codes necessary for DVC.

DVC approach can be very interesting when dealing with 3D video source both for

stereoscopic video sequence and multi-view video sequence because it allows to design a

simple encoder shifting all the computational complexity to the decoder. In this way, mul-

tiple cameras do not need to communicate because respect to conventional codec where

inter-view and intra-view prediction is accomplished at the encoder, here inter-view and

intra-view data are exchanged at the decoder.

When dealing with stereoscopic sequences, it is important to take into account all the pos-

sible artifacts that corrupt the coding phase. At this aim, an investigation on stereoscopic

artifacts and video quality of a 3D distributed video coding system is carried out in this

thesis. DVC video quality is estimated by means of subjective and objective evaluations.

Then two different techniques for joint source-channel coding in distributed environments

are introduced. The first is strictly related on distributed 3D video coding and it is based

on turbo code. The second approach considers ad-hoc network with mobile and distributed

nodes that acquire multimedia contents and exploit a joint source-channel coding system

based on LT code for channel protection and information relaying.

Then, a multi-view distributed video coding system based on Zernike moments is ana-

lyzed. Specifically a new fusion technique between temporal and spatial side information in

Zernike Moments domain is proposed. The main goal of our work is to generate at the de-

coder the side information that optimally blends temporal and interview data. Multi-view

distributed coding performance strongly depends on the side information quality built at

2



the decoder. At this aim for improving its quality a spatial view compensation/prediction

in Zernike moments domain is applied. Spatial and temporal motion activity have been

fused together to obtain the overall side-information. The proposed method will be eval-

uated by rate-distortion performances for different inter-view and temporal estimation

quality conditions. Finally, image retrieval techniques in multimedia database are re-

ported. Two methods based on Zernike moments and Laguerre-Gauss Transform are

proposed and compared with the state of art.
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Chapter 1

Distributed Video Coding

1.1 Introduction

Implementations of current video compression standards, e.g. ISO MPEG schemes or

ITU-Recommendations H.26X require a more computational cost at the encoder than the

decoder; typically the encoder is 5-10 times more complex than decoder. This asymme-

try can be exploited in several scenarios as broadcasting or streaming video on demand

systems where video is compressed once and decompressed many times. However, many

systems require the opposite conditions i.e. low-complexity encoders at the expense of

high-complexity decoders due to a power/processing limited systems. It is normally as-

sumed that the receiver can run a more complex decoder but when the receiver is an-

other complexity-constrained device, a more powerful video transcoder somewhere on the

network can be used. The research developments in distributed source coding theorem

suggest that efficient compression can be achieved by exploiting source statistics partially

or wholly at the decoder only. These theorems are referred as Slepian-Wolf (SW) theorem

for distributed lossless coding and Wyner-Ziv (WZ) theorem for distributed lossy coding

with side information at the decoder. Based upon these two theorems, distributed video

coding (DVC) devotes to offer the solutions for above suggested architectures. Particu-

larly, Wyner-Ziv video coding, a practical case of DVC based on applying WZ theorem

in real video coding has been extensively studied. The most attractive advantage of WZ

video coding algorithm is that it moves the computation burden from the encoder to the
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1. DISTRIBUTED VIDEO CODING

decoder but the compression efficiency still can be achieved by performing joint decoding

at the decoder.

The Wyner-Ziv theory suggests that unconventional video coding system, which encodes

individual frames independently but decodes them conditionally, is feasible. Such systems

may achieve a performance that is closer to conventional interframe coding (MPEG) than

to conventional intra-frame coding (Motion-JPEG).

Wyner-Ziv video codec has a great cost advantage because it compresses each video

frame by itself, thus requiring only intraframe processing. The corresponding decoder in

the fixed part of the network has to exploit the statistical dependence between frames,

by much more complex interframe processing. Although numerous research achievements

around WZ video coding have been made in last few years, the compression performances

of WZ video coding still cannot match predictive video coding so far. DVC is still far from

mature to be commercialized. There is still a wide space in the DVC field that needs to

be explored in the future.

1.2 Theoretical Background

SW defined the Distributed Source Coding (DSC) problem of coding correlated sources

as illustrated in Figure 1.1. Let us consider two correlated information sources that are

obtained from a bivariate distribution p(x, y), [2]. Encoders for the two sources, X and

Y , operate without knowledge of the other, while the decoders have full information on

both encoded message streams. We want to determine the minimum number of bits

per source character required for the two encoded message streams that assures accurate

reconstruction by the decoder of the two outputs. We know that when we encode a source

X, a rate R ≥ H(X) is sufficient for accurate reconstruction of X at the decoder. Now,

suppose we deal with two sources (X,Y ) ∼ p(x, y), then a rate H(X,Y ) is sufficient if we

are encoding them together.

Consider the scenario where X and Y have to be encoded separately. In this case, a rate

R = RX +RY ≥ H(X) +H(Y ) is sufficient. Slepian and Wolf, however, went on to show

that a rate R ≥ H(X,Y ) would be sufficient to accurately reconstruct both X and Y at
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1. DISTRIBUTED VIDEO CODING

the decoder.

Figure 1.1: Distributed source coding.

First, let us briefly review some results for a single source that have long been known,

[3]. Let X be a discrete random variable taking values in the set Γ = {1, 2, ...,Γ}.

Denote the probability distribution of X by pX(x) = Pr [X = x] , x ∈ Γ. Now, let

X = (X1, X2, ..., Xn) be a sequence of n independent realizations of X so that the proba-

bility distribution for the random n-vector X is given by:

pX(x) = Pr [X = x] =
n∏

i=1
pX(xi)

x = (x1, x2, ..., xn) ∈ Γn, xi ∈ Γ, i = 1, 2, ..., n

(1.1)

X can be seen as a block of n successive characters from the output of an information

source producing characters independently with letter distribution pX(x). In a typical

long block, we have letter 1 occurring npX(1) times, letter 2 occurring npX(2) times etc.

The probability of such a long typical sequence is, therefore,

pT = pX(1)npX(1)...pX(Γ)npX(Γ)

= exp [npX(1) log pX(1)] ... exp[npX(Γ) log pX(Γ)]

= exp[−nH(X)]

(1.2)
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1. DISTRIBUTED VIDEO CODING

where

H(X) = −
Γ∑

i=1

pX(i) log pX(i) (1.3)

is referred as the entropy of the source X. We define these NT = exp[nH(X)] to be

the typical sequences and each of these typical sequences is equally likely and occur with

probability exp[nH(X)]. Hence, we can transmit the source information over the channel

with a rate R = H(X) that assures an accurate reconstruction at the decoder. This

suggests that we can accurately transmit the output of the source information using only

R = (1/n) logNT = H(X) natural bits (nats) of information per character and that allows

accurate recovery of the source output.

A rate R is called admissible if for every ε > 0 there exist for some n = n(ε) an encoder

E(n, ⌊exp(nR)⌋) and a decoder D(n, ⌊exp(nR)⌋) such that Pr [X∗ ̸= X] < ε. Otherwise

R is called inadmissible.

The Slepian-Wolf theorem can now be analyzed in detail.

Theorem 1: If R > H(X), R is admissible, if R < H(X), R is inadmissible. In the

latter case, there exists a δ > 0 independent of n such that for every encoder-decoder

pair E(n, ⌊exp(nR)⌋), D(n, ⌊exp(nR)⌋), Pr [X∗ ̸= X] > δ > 0. The theorem states that

for η > 0, one can achieve arbitrarily small decoding error probability with block codes

transmitting at a rate R = H(X) + η; block codes using a rate R = H(X) − η cannot

have arbitrarily small error probability. Hence, if the rate of the code is greater than

the entropy, the probability of error is arbitrarily small and the information sequence is

efficiently decoded at the receiving end.

Theorem 2: For the distributed source coding problem for the source (X,Y ) drawn

i.i.d ∼ p(x, y), an achievable rate point is given by:

RX = H(X|Y ) + εx, εx > 0

RY = H(Y ) + εy, εy > 0
(1.4)

The feasibility of the rates in the Slepian-Wolf theorem can be proofed introducing a

new coding theorem based on random bins. The underlying idea regarding these random

bins is very similar to hash functions,i.e., we choose a large random index for each source

sequence. If the number of these typical sequences is small enough, then with high prob-

ability, different source sequences will have different indices, and we can reconstruct the
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source sequence from the index.

The procedure for the random binning follows these rules: for each sequence Xn, an index

randomly chosen from
{
1, 2, ..., 2nR

}
is given. The set of sequences that have the same

index forms a bin. For decoding the source from the bin index, we look for a typical Xn

sequence in the bin. If there is one and only one typical sequence in the bin, we declare it

to be the estimate of the source sequence; otherwise, there is an error. In practice, if there

is more than one typical sequence in this bin, an error is present. If the source sequence

is non-typical, then there will always be an error. The probability of error is arbitrarily

small for sufficient R.

Consider the encoding and decoding problem for a single source. The proof for the above

coding scheme producing an arbitrarily small probability of error for R > H(X) is as

follows:

P
(n)
e = P [g(X) = X]

= P
[
(X /∈ A

(n)
ε ) ∪ (f(X′) = f(X); (X′,X) ∈ A

(n)
ε ,X′ ̸= X)

]
≤ P

[
X /∈ A

(n)
ε

]
+

∑
x
P
[
∃x′ ̸= x : x′ ∈ A

(n)
ε , f(x′) = f(x)

]
p(x)

≤ ε+
∑
x

∑
x′∈A(n)

ε ,x′ ̸=x

P (f(x′) = f(x))p(x)

= ε+
∑

x′∈A(n)
ε

2−nR
∑
x
p(x)

≤ ε+ 2−nR2n(H(X)+ε)

≤ 2ε

(1.5)

The basic idea of the proof is to partition the space of Xn into 2nRX bins and the space

of Υn into 2nRY bins.

Random code generation: Independently assign every x ∈ Xn to one of 2nRX bins

according to a uniform distribution on
{
1, 2, ..., 2nRX

}
. Similarly, randomly assign every

y ∈ Υn to one of 2nRY bins. f1 and f2 are assigned to both the encoders and the decoder.

Encoding: Source 1 sends the index of the bin to which X belongs and source 2 sends

the index of the bin to which Υ belongs.

Decoding: Given the index pair (i0, j0), declare (x̂, ŷ) = (x, y), if there is one and only
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one pair of sequences (xy) such that f1(x) = i0, f2(y) = j0 and (x, y) ∈ A
(n)
ε . Otherwise,

declare an error.

The set of X sequences and the set of Y sequences are divided into bins such a way that

the pair of indices specifies a product bin. Having done this, the probability of error at

the decoder is defined as the union of the following events:

E0 =
{
(X,Y ) /∈ A

(n)
ε

}
E1 =

{
∃x′ ̸= X : f1(x

′) = f1(X)and(x′, Y ) ∈ A
(n)
ε

}
E2 =

{
∃y′ ̸= Y : f2(y

′) = f2(Y )and(X, y′) ∈ A
(n)
ε

}
E3 =

{
∃(x′, y′) : x′ ̸= X, y′ ̸= Y, f1(x

′) = f1(X), f2(y
′) = f2(Y )and(x′, Y ) ∈ A

(n)
ε

}
(1.6)

Thus

P
(n)
e = P (E0 ∪ E1 ∪ E2 ∪ E3)

≤ P (E0) + P (E1) + P (E2) + P (E3)
(1.7)

Extending the result for a single source to two sources, we can say that the cardinality

of the set of jointly atypical sequences (xy) is very small compared to that of the jointly

typical sequences. It follows that the probability measure of that set → 0 for large n.

Hence,

P (E0) = ε

Now lets consider P (E1),

P [E1/(X = x, Y = y)] = ∪
(x′,y)∈A(n)

ε ,(x′=x)

{
f1(x

′) = f1(x)
}

Thus,

P [E1] =
∑

(x′,y′)

p(x, y)P [E1/(X = x, Y = y)]

≤
∑
(x,y)

p(x, y) ·
∑

(x′,y)∈A(n)
ε ,(x′ ̸=x)

P [f1(x
′) = f1(x)]

≤
∑
(x,y)

p(x, y)2−nRX |Aε(X/y)|

≤ 2−nRX2n(H(X/Y )+ε)

(1.8)

which→ 0 if RX > H(X|Y ) and n is large. The above result follows from the following:

P
[
f1(x

′) = f1(x)/ (f1(x) = i0)
]
= 2−nRX
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This implies that,

P [f1(x
′) = f1(x)] =

∑
i0

P [(f1(x) = i0)] · P [f1(x
′) = f1(x)/ (f1(x) = i0)]

= 2−nRX ·
∑
i0

P [f1(x) = i0]

= 2−nRX

(1.9)

|Aε(X/y)| is defined to be the set of X sequences that are jointly typical with a

particular Y sequence. The proof for the fact that |Aε(X/y)| ≤ 2n(H(X/Y )+2ε) is as follows,

1 ≥
∑

x∈A(n)
ε (X/Y )

p(X/Y )

≥
∑

x∈A(n)
ε (X/Y )

2−n(H(X/Y )+2ε)

=
∣∣∣A(n)

ε (X/Y )
∣∣∣ 2−n(H(X/Y )+2ε)

Thus we have, ∣∣∣A(n)
ε (X/Y )

∣∣∣ ≤ 2n(H(X/Y )+2ε)

When dealing with large values of n and high rates, the probabilities of the events

E2 and E3 get arbitrarily small. It follows from the above discussion that the overall

probability of error for the joint sequence at the decoder is,

P (n)
e ≤ 4ε

which is arbitrarily small. It can, therefore, be seen that the condition for achievability of

the rate pair has been satisfied by (RX , RY ) = (H(X/Y ) + εx,H(Y ) + εy). Hence, this is

the proof for the theorem.

The rate pair that has been suggested above can change roles i.e, we can have (RX , RY ) =

(H(X) + εx,H(Y/X) + εy) and the theorem would still hold. This is equivalent to saying

that the decoder now has complete information about the source and is trying to decode

Y based on the joint typical sequence set. Thus, the rate region can be expressed as,

RX ≥ H(X|Y ), RY ≥ H(Y |X)

RX +RY ≥ H(X,Y ).
(1.10)

Despite the separate encoding of X and Y , SW proves that the total rate ,RX +RY , for

encoding X and Y can achieve the joint entropy H(X,Y ) as if they were jointly encoded.
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Figure 1.2: Admissible rate ”Slepian-Wolf Region”

According to the Slepian-Wolf theorem and equation 1.10, the rate region, called

”Slepian-Wolf region”, for the reconstruction with an arbitrary small error probability

of X and Y can be described by Fig. 1.2, where the vertical, horizontal and diagonal

lines, corresponding to those three formulas of equation 1.10 respectively, represent the

lower bounds for the achievable rate combinations of R(X) and R(Y ). Slepian-Wolf coding

generally refers to the lossless distributed source coding. Notice that lossless here is not

mathematically lossless but allowing a controlled amount of errors which is approaching

the lossless case. One interesting feature of Slepian-Wolf coding is that it is a close kin

to channel coding which was already studied by Wyner. Considering two i.i.d. binary

sequences X and Y and a virtual correlation channel, the source sequence X and side

information sequence Y are modeled as the input and output of the virtual channel re-

spectively. Y is therefore a noisy version of X where noise introduced by the channel refers

to the correlation between X and Y . Then a systematic channel code can be adopted to

encode X and only the resulting parity bits are transmitted. At the decoder, the received

parity bits and the side information Y are used to perform error-correcting decoding. In

this approach, significant compression is resulted due to the fact that only few parity bits
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Figure 1.3: Lossy compression with side information

are needed to be sent.

1.2.1 Wyner-Ziv theorem

Later on, Wyner and Ziv studied the counterpart of SW theorem for lossy coding and

established the bounds for lossy compression with side information at the decoder,[4],

where the decoder produces X̂ with a certain distortion D with respect to X as illustrated

in Figure 1.3.

When the SI is available at both, encoder and decoder sides, a rate RX|Y (D) is achieved

for encodingX with a distortion D. Further, there is an increase of (RWZ
X|Y (D)−RX|Y (D)) =

0 in rate when the SI is not available at the encoder but only at the decoder side. In other

words, the rate in the case where the SI is not available at the encoder is lower bounded

by the one when the SI is available at the encoder. However, Wyner and Ziv show that

both rates, RWZ
X|Y (D) and RX|Y (D), are equal when the sources are memoryless Gaussian

and the Mean Square Error (MSE) is used as the distortion metric. With a predefined

threshold D, they established the minimum rate necessary to encode X guaranteeing X̂

with an average distortion below D. The results indicated that for the same threshold D,

the minimum encoding rate (for X) of the case when the statistical dependency between

X and Y is only available at the decoder, described by RWZ(D), is bigger than that of

the case when the dependency is available both at the encoder and the decoder, described

by RX|Y (D). The Wyner and Ziv theorem also can be described by Eq.1.11:

RWZ(D) ≥ RX|Y (D) (1.11)
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In the literature, RWZ(D) and RX|Y (D) are called Rate-Distortion (RD) functions. No-

tice that when D = 0, equation 1.11 falls to the Slepian-Wolf result which means that

it is possible to reconstruct X with an arbitrarily small error probability even when the

correlation between X and Y is only available at the decoder.

Finally, the Slepian-Wolf theorem and the Wyner-Ziv theorem state that is possible com-

pressing two statistically dependent sequences in a distributed way (separate encoding,

jointly decoding); the difference between them is that in the Slepian-Wolf theorem the de-

pendency between two sequences is available both at the encoder and the decoder therefore

the coding is lossless with allowing an arbitrary small error probability between the source

sequence and the reconstructed sequence, while in the Wyner-Ziv theorem the dependency

is only available at the decoder and sequences are lossy coded.

1.3 State of Art

Distributed Video Coding (DVC) states that it is theoretically possible to separately

encode and joint decode two or more statistically dependent sources at the same rate

obtained when the same sources are joint encoded and decoded, [4][2]. This strategy

has been adopted by many authors for the design of high compression rate inter-frame

video coding schemes. The common goal is to generate at the decoder a side information

that optimally blends temporal and interview data. In other terms, while standard video

coders exploit the statistical dependencies of the source signal in order to remove spatial

and temporal redundancies, in DVC each video frame is encoded independently, knowing

that some side information will be available at the decoder to remove transmission errors

and improve the video quality. This approach considerably reduces the overall amount of

transmission necessary from the cameras to the central decoder and simplifies the com-

plexity of the video encoder by shifting all the complex interframe processing tasks to the

decoder. This property can be very interesting for power/processing limited systems such

as wireless camera sensors that have to compress and send video to a fixed base station

in a power-efficient way. It is normally assumed that the receiver can run a more complex

decoder but when the receiver is another complexity-constrained device, a more powerful
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video transcoder somewhere on the network can be used.

However, although all these approaches are extremely promising, they are still not as

efficient as standard video coders in terms of rate-distortion performance due to the fact

that distributed source coding techniques rely on a a-priori knowledge of the correlation

structure. These approaches are often not simple in practical applications as asymmetric:

in fact some cameras need to transmit their full information to provide side information

to the decoder while others only transmit partial information. Finally most of the multi-

view DVC approaches do not take advantage of the multi-view geometry to improve the

performance of their encoders.

The first attempts to design quantizer for reconstruction with side information were

inspired by the information theoretic proofs. Zamir and Shamai , [5], proved that, under

certain constraints, linear codes and nested lattices may reach Wyner-Ziv rate-distortion

function when source data and side information are jointly Gaussian. This idea has been

elaborated and applied by Pradhan et al., [6], who studied both the asymmetric case of

source coding with side information at the decoder for Gaussian sources that are statisti-

cally dependant and the symmetric case where both sources are encoded at the same rate.

Xiong et al., [7] implemented instead a nested lattice quantizer as WZ encoder, followed by

a SW coder and proved that Low-Density-Parity-Code (LDPC) can be a powerful solution

for DVC.

Yeo and Ramchandran [8] proposed a robust method that exploits inter-view correla-

tion among cameras that have overlapping views in order to deliver error-resilient video

in a distributed multiple wireless camera sensors scenario. The system has low encoding

complexity, satisfies tight latency constraints, and requires no inter-sensor communica-

tion. Each video frame is divided into non-overlapping blocks and the syndrome of each

quantized block is transmitted with a cyclic redundancy check (CRC) computed on the

quantized block. The encoder at each of the video camera sensors does not need any

knowledge about the relative positions of any other cameras. The decoder searches over

candidate predictors and attempts to decode using the received syndrome and the can-

didate predictor as side-information. If the CRC of the decoded sequence checks out,

decoding is assumed to be successful. In particular, the decoder first tries to decode a
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block using decoder motion search in the temporal dimension; if that fails, then decoder

performs the disparity search along the epipolar line in each overlapping camera view.

In [9] the authors propose a practical solution for Wyner-Ziv stereo coding that avoids

any communication between the low complexity encoders. The method is based on a pixel-

level mask fusion of temporal and interview side information. In particular, the first view

is coded in conventional way using H.264/AVC, and DVC principles are applied to the

coding of the second, dependent view. The system fuses, pixel-by-pixel, the temporal side

information created using a motion-based frame interpolation scheme with the interview

side information created using a disparity-based frame extrapolation algorithm. This

technique shows the potential of a side information fusion approach performed at the

decoding stage. The same approach is followed in [10], where the authors adaptively

select either the temporal or the interview side information on a pixel by pixel basis.

The system uses also a turbo decoder to detect when decoding is successful and no more

parity bits need to be requested via the feedback channel. The proposed algorithm has

the advantage to be symmetric with respect to the two cameras.

1.4 The Considered DVC Architecture

The considered practical DVC architecture used in this research follows Pereira approach,

[9], and it is shown in Figure 1.4.

Figure 1.4: Stereo video coder architecture.
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This codec is an evolution of the one initially proposed in [11] and uses a feedback

channel based turbo coding approach.

The DVC encoding architecture works as follows: a video sequence is divided into Wyner-

Ziv (WZ) frames and key frames. The key frames may be inserted periodically with a

certain Group of Pictures (GOP) size or an adaptive GOP size selection process may be

used depending on the amount of temporal correlation in the video sequence; most results

available in the literature use a GOP of 2 which means that odd and even frames are key

frames and WZ frames, respectively. While the key frames are conventionally encoded

with video codec such as AVC/H.264 Intra; the WZ frames are DCT transformed and

then quantized,[12]. Then, the quantized coefficients are split into bit planes, and one

by one are turbo encoded. The reason of the this choice lies in near-channel capacity

error correcting capability of the turbo code. The parity bits are stored in the buffer and

transmitted in small amounts upon decoder request via the feedback channel.

At the decoder, the frame interpolation module is used to generate the side information

frame, an estimate of the WZ frame Xi, based on previously decoded frames, Xi−1 and

Xi+1. The side information is treated as noisy corrupted version of coded WZ frame and

used to decode the coded WZ frames at the decoder. For a Group Of Pictures (GOP)

length of 2, Xi−1 and Xi+1 are the previous and the next temporally adjacent key frames,

Intra coded. The side information (SI) is then fed by an iterative turbo decoder to obtain

the decoded quantized symbol stream. The decoder requests for more parity bits from

the encoder via the feedback channel whenever the adopted request stopping criteria has

not been fulfilled; otherwise, the bitplane turbo decoding task is considered successful.

The side information, together with the decoded quantized symbol stream, is also used in

the reconstruction module. After all DCT coefficients bands are reconstructed, a block-

based 4x4 inverse discrete cosine transform (IDCT) is performed and the result is the

reconstructed WZ frame. To finally get the decoded video sequence, decoded key frames

and WZ frames are conveniently merged. The statistic dependency between the original

WZ frame Xi and the side information Yi is modeled as Laplacian distribution. When Yi,

received parity bits and derived Laplacian distribution parameters, is obtained then it is

possible to turbo decode and then reconstruct the quantized symbols.
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When dealing with stereo sequence, there are two dependent views to be coded. In a

Wyner-Ziv coding framework, the available statistical dependency has to be exploited not

only in time as was done for the monoview case, but also in space, i.e. between the two

dependent views.

1.4.1 Transformation

The aim of the transformation phase is to make the input video more suitable for com-

pression by compacting the signals energy into the lower transform coefficients. The DVC

scheme uses the 4x4 separable integer transform in AVC/H.264 with properties similar to

the DCT. Given a NxM frame, the DCT transform is defined as follows, Equation 1.12:

XDCT [u, v] =
4

NxM
c[u]c[v]

N−1∑
n=0

M−1∑
m=0

x[n,m] cos

[
(2n+ 1)uπ

2N

]
cos

[
(2m+ 1)vπ

2M

]
(1.12)

where XDCT [u, v] , for u = 0, 1, ..., N − 1 and m = 0, 1, ...,M − 1 represents the DCT

coefficient at (u, v), i.e., line (row, vertical axis) u and column (horizontal axis) v, and:

c[u], c[v] =


1√
2
, foru, v = 0

1, otherwise

The first cosine term is the vertical basis function generator represented by sampled

cosine signal. n sets the sample number and u sets the frequency. For the same reason,

the second cosine term is followed as the horizontal basis function generator. Since the

DCT is separable, the two-dimensional DCT can be obtained by computing 1-D DCT

in each dimension separately. For the implementation view point, most of international

standards favor 4x4 block size, considering its complexity and performance. It converts

the image block into a form where redundancy or correlation in the image data is reordered

in terms of the basis images, so that the redundancy can be easily detected and removed.

The detection is possible by the virtue of orthogonal property of the basis images; non-

zero coefficients are obtained if an image pattern block coincides with the basis block.

Natural image data, of course, may not coincide with the rectangular shaped basis images.

Although the DCT shows sufficient performance of compression capability, one major

disadvantage of the DCT is the block structure that dominates at very low bit rates,

called blocking artifacts transforms. If the difference of quantization errors between two
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adjacent blocks is so large, it would be easily detectable by human eye and the block

disparity occurs.

1.4.2 Quantization

In general, a Wyner-Ziv coder can be thought as consists of a quantizer followed by

a Slepian-Wolf encoder. Quantization of the sampled data is performed with a finite

number of levels. It is assumed that the sampling is uniform and sampling rate is above

the Nyquist rate so that there is no aliasing in the frequency domain. Some criteria, such

as minimization of the quantizer distortion, have been used for quantization of image data.

Quantizer design includes input (decision) levels, output (representation) levels and the

number of levels. A uniform quantizer is completely defined by the number of levels, step

size and if it is a midriser or a midtreader. Instead of the type of quantizers, a quantized

output (reconstruction) value is determined in a certain interval (quantization step) where

any of the input values happens. Since the reconstruction value represents the whole range

of input values, quantization inherently is a lossy process and the lost information may

not be recovered. Since, usually, the distribution of image data is concentrated on mean

value region and image processing, including predictive coding and transform coding,

produces more abundant distribution on smaller levels near zero, which means less energy

or variance, the region can be quantized with fine step size, while others can be quantized

with coarse step size. A nearly uniform quantizer is designed using these properties,

enlarging the step size only in the mean value region, called a deadzone. Except for the

deadzone (input range for which the output is zero), the stepsize is constant.

1.4.3 Slepian-Wolf Encoder

The Slepian-Wolf codec can be implemented by a systematic channel code as turbo code.

This coding technique consists essentially of a parallel concatenation of two binary con-

volutional codes, decoded by an iterative decoding algorithm. These codes obtain an

excellent bit error rate (BER) performance by making use of three main components, [13].

A turbo encoder is constructed using two RSC (Recursive Systematic Convolutional) en-

coders arranged in parallel and combined with a random interleaver, together with a
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Figure 1.5: Turbo encoder structure

multiplexing and a puncturing block. Typically, the two encoders E1 and E2 are RSC

encoders of rate Rc = 1/2, such that c′1 = c1, c
′
2 = c2 and the lengths of the incoming

sequences m, c1 and c2, and c′1 and c′2 are all the same. Then the overall turbo code rate

is Rc = 1/3. Puncturing is a technique very commonly used to improve the overall rate

of the code. It consists in periodically eliminating one or more of the outputs generated

by the constituent RSC encoders. Thus, for instance, the parity bits generated by these

two encoders can be alternately eliminated so that the redundant bit of the first encoder

is first transmitted, eliminating that of the second decoder, and in the following time in-

stant the redundant bit of the second encoder is transmitted, eliminating that of the first.

Puncturing is not usually applied to the message (systematic) bits, because this causes

a BER performance loss. In this way, the lengths of c′1 and c′2 are half the lengths of c1

and c2, respectively, and the resulting overall rate becomes Rc = 1/2. Puncturing is not

usually applied to the message (systematic) bits, because this causes a BER performance

loss. There are two important components of a turbo encoder whose parameters have a

major influence on the BER performance of a turbo code: the first is the interleaver, espe-

cially its length and structure, and the second is the use of RSC as constituent encoders.

The interleaver reads the bits in a pseudo-random order. The choice of the interleaver is a

crucial part in the turbo code design in fact the task of the interleaver is to ”scramble” bits

in a (pseudo-)random. Two are the purposes. Firstly, if the input to the second encoder is

interleaved, its output is usually quite different from the output of the first encoder. This
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Figure 1.6: A pseudo-random interleaver with L = 8

means that even if one of the output code words has low weight, the other usually does

not, and there is a smaller chance of producing an output with very low weight. Higher

weight, as we said before, is beneficial for the performance of the decoder. Secondly, since

the code is a parallel concatenation of two codes, the divide-and-conquer strategy can be

employed for decoding. If the input to the second decoder is scrambled, also its output

will be different, or uncorrelated from the output of the first encoder. This means that the

corresponding two decoders will gain more from information exchange. The excellent BER

performance of these codes is enhanced when the length of the interleaver is significantly

large, but also important is its pseudo-random nature. The interleaving block, and its

corresponding de-interleaver in the decoder, does not much increase the complexity of a

turbo scheme, but it introduces a significant delay in the system, which in some cases can

be a strong drawback, depending on the application. The RSC-generated convolutional

codes are comparatively simple, but offer excellent performance when iteratively decoded

using Soft-InputSoft-Output (SISO) algorithms. The interleaver used in this work, is the

pseudo-random interleaver: it uses a fixed random permutation and maps the input se-

quence according to the permutation order. The length of the input sequence is assumed

to be L. Figure 1.6 shows a random interleaver with L = 8.

1.4.4 Parity bit Request Channel

For each Wyner-Ziv frame, the decoder generates the side information Ŝ by interpolation

or extrapolation of previously decoded key-frames and, if possible, previously decoded

Wyner-Ziv frames. To exploit the side information, the decoder assumes a statistical model
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of ”parity bit request channel”. Specifically, a Laplacian distribution of the difference

between the individual pixel values S and Ŝ is assumed. The latter has the following

Probability Density Function, Eq. 1.13:

pX(x) =
αx

2
e−αx|x| (1.13)

where αx is related to the subband coefficient variance σ2
x of the distribution, it controls

how much the side information resembles the original frame. It is estimated by computing

the variance of the residual between WZ frame and side information frames offline, [14].

The turbo decoder combines the side information Ŝ and the received parity bits to recover

the Wyner-Ziv frame. If the decoder can’t reliably decode the original data, it requests

additional parity bits from the encoder buffer through feedback. The ”request-and-decode”

process is repeated until an acceptable probability of symbol error is reached. Moreover,

the bit rate for a Wyner-Ziv frame is determined by the statistical dependence between the

frame and the side information. While the encoding algorithm itself does not change, the

required bit rate does as the parity bit request channel statistics change. The decision on

how many bits to send for each frame is tricky, since the side information is exploited only

at the decoder but not at the encoder. One approach to solve the rate control problem

relies entirely on decoder and feedback information. The decoder attempts decoding by

using the bits received so far. If turbo decoding fails, the decoder requests additional bits

from the encoder. Feedback also allows the decoder to have a great flexibility in generating

the side information.

1.4.5 Side Information Creation

The side information plays a key issue in the WZ coding architecture. Side information can

be seen as a corrupted version of the WZ frame passing through the ”virtual correlation

channel”. In WZ coding, the correlation between the side information and the WZ frame

is exploited at the decoder. Since the encoder has no knowledge of the side information

during encoding process, the accuracy of the side information is consequently extremely

important for the compression performance of WZ coding. In fact it can improve the effi-

ciency of compression, requiring few bits to be sent during decoding if the side information
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Figure 1.7: Side information creation as merging of disparity and temporal motion esti-

mation for stereoscopic video sequence

is accurate enough, namely if it is very similar as the WZ frame. Otherwise, the encoder

has to send more parity bits to correct the ”errors” between the side information and the

WZ frame and the compression effect is no more so efficient. It is computed fusing two in-

formation: the first coming from temporal motion estimation (ME) and the second coming

from disparity between left and right frame. It is also very important to design an ad-hoc

fusion scheme between these two data. When we are not dealing with stereoscopic video

sequence, the side information is obtained exploiting only temporal information between

the previous key-frames. In Fig. 1.7, the two motion estimation are shown.

The temporal side information with time index t is generated by performing motion

compensated interpolation between the Intra H.264 decoded key frames at time t− 1 and
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t + 1. This interpolation technique involves symmetrical bidirectional block matching,

smoothness constraints for the estimated motion and overlapped block motion compensa-

tion. Since the next key frame is needed for interpolation, the frames have to be decoded

out-of-order, similar to the decoding of B frames in predictive video coding. The essence

of side information generation is frame interpolation between two frames. The frame in-

terpolation is based on the assumption that smooth motion lies between key frames and

objects motion obeys the linear translation model. This assumption is not always true,

especially when dealing with high motion sequences and the interpolation quality can be

degraded seriously. Once temporal motion estimation between the previous and next In-

tra frame and disparity between left and right frame are performed, two side information

(temporal and spatial) are created and it is necessary to find an efficient way to fuse the

temporal and inter-view correlations so that the decoder may at least take benefit of the

most powerful of them for each decoded frame. Several techniques have been proposed in

literature, [10], [14]. The fusion-based approach used in this work is based on the following

ideas, [9]:

1. For each WZ frame under decoding, the (fused) side information is created based

on the temporal and interview side information; this side information which is ex-

pected to be better than each individual side information should provide better

rate-distortion (RD) performance than temporal or inter-view alone.

2. The process to fuse the two individual side information is based on a binary fusion

mask created after decoding the most recent frame; pixel by pixel, this mask is set

to 1 if the temporal side information is the most similar to the decoded frame and

set to 0 if inter-view side information is the most similar.

In Fig.1.8, the fusion side information scheme is presented. The binary decision mask

used for each WZ frame being decoded indicates which is the best side information to use

for each pixel: the temporal or inter-view side information.
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Figure 1.8: Stereo side information generation architecture using a mask-based fusion

approach.

1.4.6 Slepian-Wolf Decoder

In the considered DVC system, Slepian-Wolf decoder is essentially constituted by a turbo

decoder. Turbo decoding involves iterative exchange between the constituent decoders

for progressively better estimates of the message bits, in a decoding procedure that is

helped by the statistical independence of the two code sequences generated by each input

bit. In the decoding procedure, each decoder considers the information provided by the

samples of the channel, the systematic (message) and parity bits, together with the a

priori information that was provided by the other decoder, that was previously calculated

as its extrinsic information. However, instead of making a hard decision on the estimated

message bits, as done for instance in the traditional decoding of convolutional codes using

the Viterbi algorithm, the decoder produces a soft-decision estimate of each message bit.

This soft-decision information is an estimate of the corresponding bit being a 1 or a 0; that

is, it is a measure of the probability that the decoded bit is a 1 or a 0. This information

is more conveniently evaluated in logarithmic form, by using a log likelihood ratio (LLR).

This measure is very suitable because it is a signed number, and its sign directly indicates

whether the bit being estimated is a 1 (positive sign) or a 0 (negative sign), whereas its

magnitude gives a quantitative measure of the probability that the decoded bit is a 1 or a

0, [13]. The turbo decoder is composed of two Soft Input Soft Output (SISO) decoders: P1

and P2 are the punctured versions of the parity bits produced by the turbo encoder. The
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Figure 1.9: Turbo Decoder scheme.

systematic bits, S, are extracted directly from the SI, which can be seen as a corrupted

version of the original data after passing through a virtual channel. The parity bits request

channel model is used to try to predict the errors present in the SI.

The problem of the decoding of a turbo code is essentially to determine Maximum A

Posteriori (MAP) estimates or soft decisions of states and transitions of a trellis encoder.

The MAP algorithm is related to many other algorithms, such as Hidden Markov Model,

HMM which is used in voice recognition, genomics and music processing.

In addition to MAP algorithm, another algorithm called SOVA, based on Viterbi decod-

ing is also used. SOVA uses Viterbi decoding method but with soft outputs instead of

hard. SOVA maximizes the probability of the sequence, whereas MAP maximizes the

bit probabilities at each time, even if that makes the sequence not-legal. MAP produces

near optimal decoding. In turbo codes, the MAP algorithm is used iteratively to improve

performance.

The info bits are called uk. The coded bits are referred to by the vector c. Then the coded

bits are transformed to an analog symbol X and transmitted. On the receive side, a noisy

version of X is received. A metric of confidence, that represents how far the received

symbol is from the decision regions, is added to each of the three bits. Often Gray coding

is used, which means that not all bits in the symbol have same level of confidence for

decoding purposes. There are special algorithms for mapping the symbols (one received

voltage value, to M soft-decisions, with M being the M in M-PSK.) Let’s assume that
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after the mapping and creating of soft-metrics, the vector Y is received. One pair of these

decoded soft-bits are sent to the first decoder and another set, using a de-interleaved ver-

sion of the systematic bit and the second parity bit are sent to the second decoder. Each

decoder works only on these bits of information and pass their confidence scores to each

other until both agree within a certain threshold. Then the process is iterated with next

symbol in a sequence or block consisting of N symbols (bits). The state of the source in

time instant i is denoted as Si , and its output is Xi. A sequence of states from time

instant i to time instant j will be denoted as Sj
i = Si, Si+1, ...Sj , and will be described by

the corresponding output sequence Xj
i = Xi, Xi+1, ..., Xj . Xi is the i− th output symbol

taken from a discrete alphabet. The state transitions are determined by the transition

probabilities:

pi(u/u
′) = P (Si = u/Si−1 = u′) (1.14)

and the corresponding outputs by the probabilities:

qi(X/u′, u) = P (Xi = x/Si−1 = u′, Si = u) (1.15)

where x is taken from the discrete output alphabet. The discrete hidden Markov source

generates a sequence Xn
1 that starts at state S0 = 0 and ends at the same state S0 = 0.

The output of the discrete hidden Markov source Xn
1 is the input of a noisy discrete

memoryless channel that generates the distorted sequence Y n
1 = Y1, Y2, ..., Yn. Transition

probabilities of the discrete memoryless channel are defined as R(Yj/Xj), such that for

every time instant 1 ≤ i ≤ n,

P (Y i
1/X

i
1) =

i∏
j=1

R(Yj/Xj) (1.16)

The term R(Yj/Xj) determines the probability that at time instant j, the symbol Yj is

the output of the channel if the symbol Xj was input to that channel. This will happen

with a transition probability P (yj/xj) that the input symbol xj converts into the output

symbol yj . A decoder for this Markov process has to estimate the MAP probability of

states and outputs of the discrete hidden Markov source by observing the output sequence
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Y n
1 = Y1, Y2, ..., Yn. This means that it should calculate the probabilities:

P (Si = u/Y n
1 ) =

P (Si=u,Y n
1 )

P (Y n
1 )

P ({Si−1 = u′, Si = u}/Yn) =
P (Si−1=u′,Si=u,Y n

1 )
P (Y n

1 )

(1.17)

The notation here is that the state Si defines a given state i in a trellis, whereas

its particular value is obtained from an alphabet U of states of the trellis, with u =

0, 1, 2, ..., U − 1. Therefore, in a trellis, the sequence Y n
1 = Y1, Y2, ..., Yn is represented by

a unique path. The following MAP probability is associated with each node or state of a

trellis:

P (Si = u/Y n
1 )

and the following MAP probability is associated with each branch or transition of the

trellis:

P (Si−1 = u′, Si = u/Y n
1 )

The decoder will calculate these probabilities plus joint probabilities.

1.4.7 Reconstruction

This phase is the opposite of the quantization step at the encoder. To reconstruct the cur-

rent frame, the side information with decoded WZ DCT bins are used. It consists in either

accepting a side information value if it fits into the quantization interval corresponding to

the decoded bins or truncating the side information value into this quantization interval.

Let Y be the side information value, d the decoded quantization index, ∆ the quantization

step and X̂ the reconstructed value. The reconstructed value X̂ is computed as:

X̂ =


Y, ifd∆ ≤ Y ≤ (d+ 1)∆

d∆, ifY < d∆

(d+ 1)∆, ifY > (d+ 1)∆

(1.18)

1.5 Application Scenarios for DVC

Several scenarios where distributed video coding can be applied are identified in this sec-

tion, highlighting benefits and drawbacks. The most relevant DVC applications are studied

evaluating DVC strengths such as error resilience, encoder-decoder complexity tradeoff,
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low power encoder consumption according to specific requirements of each scenario. The

most promising scenarios for DVC applications are, [15]:

• Wireless Video Cameras;

• Wireless Low-Power Surveillance;

• Mobile Document Scanner;

• Video Conferencing with Mobile Devices;

• Distributed Video Streaming;

• Multiview Video Entertainment.

1.5.1 Wireless Video Cameras

With the new emerging technologies for wireless communication, the availability of sending

video data in a wireless fashion has now become a reality. In this contest, DVC approach

can be efficiently exploited for wireless communications with remote devices. A list of

some important applications where wireless cameras are used, is provided, but it is clear

that many other situations can be considered as well. The first application deals with the

possibility of using wireless portable cameras as home surveillance. A portable device that

can be placed everywhere can be very useful in order to monitor if something is going to

happen in a room, or when someone comes in a shop...

Very small wireless cameras can also be employed for police investigation purpose or for

remote sensing of phenomena that are very hard to be physically reached (e.g. biomedical

applications). Another application example can be the monitoring of traffic control. The

advantage of having wireless cameras with respect to wired camera is the possibility to

reconfigure the network and the positions of nodes inside the network.

In this contest, the following requirements appear to be relevant: low cost, error re-

silience, low-power consumption and small size. If on one side, DVC approach can be

suitable for these kind of scenarios, on other side some current drawbacks have to be

taken into account. In fact, the required decoding complexity seems to be very high for
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Figure 1.10: wireless camera and monitor

Figure 1.11: Traffic management center at Tokyo
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real-time applications moreover until now DVC did not reach the same level of compression

efficiency as state of art predictive coding (e.g. H.264/AVC).

1.5.2 Wireless Low-Power Surveillance

In order to provide surveillance and security, different low-power consumption components

are interconnected and the communication among them is guaranteed by wireless commu-

nication protocols. The components that provide information to the system are cameras

(and/or sensors) and images captured or displayed by one or multiple devices.

As the range of applications that are placed into the wireless low-power surveillance net-

work scenario is so wide and varied, the requirements may depend on the applications

focused. However there are general requirements suitable to all the possible scenarios like

low power consumption, small weight and small size, error resilience, compression effi-

ciency and delay constraint. DVC technique allows to answer to all these requirements

but at the same time it is necessary to consider a network transcoder because in an end-

to-end low power surveillance network scenario, a transcoder inside the network must be

used in order to keep both the encoder and the decoder as simple as possible.

1.5.3 Mobile Document Scanner

Nowadays, mobile phones can be used as portable fax or scanner simply by sweeping the

phone across the page. Document scanning on the go with a mobile phone would give

wireless carriers the opportunity to provide a host of new services, ranging from the most

basic ones like document transmission to email addresses, to printer or the user’s pc,

to more advanced services like Optical Character Recognition (OCR) and instantaneous

translations for travelers, sending back the translated text via instant messaging.

Scanning an A4 sized page by moving a mobile phone video camera over the document is

likely to take about 3 or 5 seconds. Assuming a video frame rate ranging between 5 to 10

frames per second, this will produce between 15 to 50 images which a central server must

merge together to extract the text and record any images. The application runs on the

central server must then forwards the processed document to the targeted end device e.g.,

user’s pc, email, printer and mobile phone.
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Figure 1.12: Document scanning with mobile phone

The main requirements regarding this application are: complexity, video post-processing,

central server processing and image processing quality. The most relevant advantages for

DVC approach are a lower encoding complexity and an improved error resilience while the

drawbacks are lower compression efficiency and an higher decoding complexity since the

decoding is performed on the central server, one can afford to have an increased decoder

complexity up to a point related to the scalability of the service. However, approaches

with a more flexible load balancing between encoder and decoder might be very beneficial

for such applications.

1.5.4 Video Conferencing with Mobile Devices

In a video-conference system, two or more users positioned in different locations can inter-

act via two-way video and audio transmissions simultaneously through a set of interactive

telecommunication technologies. It has also been called ”visual collaboration” and is a

type of groupware. With a video-conferencing it is possible to bring people at different

sites together for a meeting, using audio and video systems. This can be as simple as a

conversation between two people in private offices (point-to-point) or can involve several

sites (multi-point) with more than one person in large rooms at different sites. Besides

the audio and visual transmission of meeting activities, video-conferencing can be used to

share documents, computer-displayed information, and whiteboards, [16].

It requires real-time and low-complexity. DVC answers to these requirements but at

the same time it has low compression efficiency and it needs for a transcoder.
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Figure 1.13: Video Streaming solution over Internet

1.5.5 Distributed Video Streaming

The huge developments of Internet have given the chance to realize video streaming sys-

tems that allow a user to view a video sequence at its own place while downloading it from

a remote server or a disk. In this setting, the user does not want to download first the

video to see it at a later time but he wants instead to see the sequence while ”streaming”.

With the same idea that led to the development of peer to peer networks for ” distributed”

download of files, it possible to consider the possibility of performing ”distributed stream-

ing” in order to give to the receiver the maximum data flow. In this way, the video stream

is sent to the receiver by different senders in a distributed fashion, in order to reduce the

bitrate at the sender sides and increases it at the receiver. The major requirements and

functionalities to be considered are: compression efficiency, bitrate allocation, real-time

performance, flexibility and error resilience.

1.5.6 Multiview Video Entertainment

Multiview images of a scene can be used for several applications ranging from free view-

point television (FTV) to surveillance; entertainments applications are currently playing

a more and more important role in multiview video systems. In FTV, the user can freely

control the viewpoint position of any dynamic real-world scene. This system can cover

a limited area, to extend the coverage area it is possible to introduce distributed sensors
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Figure 1.14: Free viewpoint Television scheme

network.

Many tasks can benefit from the availability of multi-view images of the same scene as

restoration, interpolation and object recognition. Data reduction becomes a key-issue in

multiview images and video processing. Furthermore, due to strong correlation between

multiple views, multiview data reduction has its own characteristics that differ signifi-

cantly from traditional image/video compression. The major requirements are: low cost

and low complexity, high number of cameras, camera parameters and a priori knowledge

of geometric information and robustness to occlusions. DVC satisfies almost all require-

ments but at the same time it is clear that visual occlusions present a challenging problem

for any distributed video coding technique.
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Chapter 2

Stereo Video Artifacts in a

Distributed Coding Approach

2.1 Introduction

When dealing with stereoscopic 3D video, the perceived artifacts produce not only visually

unpleased results, but also general discomfort on the human visual system. Due to these

reasons, the scientific community is focusing on the definition of a perceptual quality

metric that quantifies the typical distortion that could occur. At this aim it is important

to identify classes of artifacts which could arise in several scenarios involving stereoscopic

content. It is important to underline that visual artifacts could arise at any processing

and delivery phase of a stereo video sequence [17] [18]:

• Acquisition and content creation: there are three common approach to capture 3D

video. Most 3D content is obtained by dual camera or multi-camera configurations

where each view (left and right for stereoscopic sequence) is separately recorded.

Settings parameters such as camera base distance (distance between two cameras),

convergence distance and camera lens focal length are used to scale horizontally dis-

parity and the degree of perceived depth, [19]. A second approach transform 2D

video into 3D content using a conversion algorithm that derives depth map from 2D

still frames or video sequence. Third, video output can be augmented by depth infor-

mation collected by another sensor. All these approaches can cause unnatural effects
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due to an incorrect configuration, calibration or positioning of the camera system.

Typical artifacts introduced in this phase are noise, aliasing, blur, barrel distortion,

pincushion, keystone distortion, vignetting, and aberration artifacts caused by the

camera, as well inter-channel distortion such as vertical disparity, depth plane cur-

vature, cardboard effect and puppet theater effect. In addition, there is a group of

temporal artifacts such as motion blur and temporal mismatch between channels,

keystone distortion, temporal mismatch and cardboard effect.

• Representation of the acquired data: there are many existing conversion formats but

two main groups have mostly evolved: multi-view video where more than two video

streams of the same scene are represented from different point of views, video plus

depth already standardized as MPEG-C, Part 3, [20]. In particular, if representation

format is different from the one the scene was captured then artifacts as dense depth

video, ghosting by occlusion and temporal and spatial aliasing cane be introduced.

• Encoding phase: stereoscopic color and depth video are normally encoded with

multi-view coding schemes where video sequences are encoded as separate streams

and temporal and inter-channel correlations are used to compress data or algorithms

for 2D video adapted for stereo where 2D video and depth map are encoded sepa-

rately. This step can alter image details that are important for depth perception.

Typical degrading effects of this step are blocking, mosaic patterns, staircase effect,

ringing, color bleeding and mosquito noise, as well as a depth ringing artifacts spe-

cific for dense depth video. Also, various asymmetric stereo-video coding schemes

are sources of cross-distortion artifacts, where one channel is spatially or temporally

downsampled.

• Transmission: on one side, packet data loss and channel noise introduced in a video

content delivery can be sources of a degraded perceived quality of the content; on the

other side, the algorithms that attempt to correct these errors, can cause additional

problems on their own. Impairments are due to packet loss, jitter and color bleeding.

Transmission causes propagating and non-propagating packet-loss artifacts, noise

and jitter; however the last two are not characteristic for the DVB-H channel.
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Figure 2.1: Data flow of 3D TV

• Visualization: stereo video quality is strongly dependent on the adopted approach to

3D visualization, i.e. on the artifacts that characterize the 3D displays. Flickering,

cross-talk, puppet theater effect and shear distortion, aliasing, view interspersing

(also known as ghosting artifacts), and accommodation-convergence rivalry can oc-

cur at this step. Additionally, the autostereoscopic displays, which are suitable for

mobile 3DTV suffer from image flipping (also known as pseudoscopy), picket fence

effect. The last group of artifacts depends greatly on the observation angle.

Considering that, from a quality of experience point of view, the attention has been

focused on conventional video coders, the scope of this chapter is to analyze stereo video

artifacts introduced by stereo distributed video coders available in the literature by means

of subjective experiments. A comparison with more traditional coders is also provided. In

particular, a sensitivity analysis with respect to the parameters that control bit-rate will

be carried out, [21].

The rest of this chapter is organized as follows: in Section 2.2 an analysis of the artifacts

related to stereo video coding is presented, while in Section 2.3 the adopted metrics are

described. Finally in Section 2.4 some experimental results are reported and in Section

2.5 conclusions and future work are drawn.

36



2. STEREO VIDEO ARTIFACTS IN A DISTRIBUTED CODING APPROACH

2.2 Artifacts introduced in stereo video coding

In conventional 2-D video coding, the introduced monoscopic artifacts comprise all the

typical artifacts of 2D images as blurring, noise, blocking and other structural changes. In

the viewing of a stereo video, the final user could recognize ”2D artifacts” but still having

a perfect perception of the depth; obviously, larger distortion could damage the binocular

view.

The stereoscopic artifacts change the relation between the two views and thus forbid the

brain to have the proper binocular depth view. Such artifacts can change the disparity

information of a scene or cause any other structural changes. Other annoying effects could

convey unnatural information to the brain inducing so eye-strain and visual discomfort

[19].

When dealing with stereo video content artifacts, we have to consider 4 groups of impair-

ments based on how they are perceived by human brain: structure, color, motion and

binocular [18], [22].

By structure, we mean those distortions that can impact on structural changes (i.e.

contours and texture); by motion and color, those that can affect motion and color vision.

Finally, binocular impairments can degrade the binocular depth perception when it is per-

ceived as a stereo-pair (cannot be noted with a single eye). Based on this classification,

we focalize our attention on artifacts introduced in the phase of coding.

In traditional and stereoscopic video coding, quantifying the artifacts in terms of the vi-

sual impact is a difficult task. In fact, the perceived distortion is not only related to

the absolute quantization error but it is depending on local, global spatial inter-view and

temporal characteristics of the video sequences [23]. Consequently, it is not possible to

provide a specific bit-rate at which anyone artifacts is showed. Hence, the discussion will

take into account the descriptions of some possible artifacts as blocking effect, blurring,

ringing, staircase effects and mosaic patterns for the category structure; color bleeding

for the category color; motion compensation artifacts and mosquito effect for the category

motion and cross-distortion, cardboard effect for the category binocular.
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Figure 2.2: Artifacts affecting various stage of 3D video delivery
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2.2.1 Artifacts in image structure

2.2.1.1 Blocking effect

The blocking effect is a discontinuity between consecutive blocks in the image. It can

be seen as a discontinuity at the borders of each block in a reconstructed frame coming

from individual treatment of each block in the coding stage according to its content,[22].

The severity of blocking effect is subject to the coarseness of the quantization of DCT

coefficients of either one or both adjacent. One of the aims for the coding of pixels as

block units is to exploit the high local inter-pixel correlation in a picture. Unfortunately,

coding a block as an independent unit does not take into account the possibility that the

correlation of the pixels may extend beyond the borders of a block into adjacent blocks,

thereby leading to the border discontinuities. Since the blocking effect is more visible

in the smoothly textured sections of a picture, the lower order DCT coefficients and in

particular DC coefficients, play the most significant role in determining the visibility of

the blocking effect. However, the blocking effect may occur in spatially active areas as a

result of very coarse quantization.

Higher quantization suppress more DCT coefficients and this lost information causes the

blocking artifacts. Due to the coarse quantization, a loss of spatial details is a consequence,

visible as blurring after the reconstruction of an image. Blocking artifacts in color channels

can also cause color bleeding.

2.2.1.2 Blurring effect

The blurring effect is a lack of spatial details in moderate to high spatial activity regions of

pictures, such as in roughly textured areas or around scene object edges. For intra-frame

coded macro blocks, blurring is directly related to the suppression of the higher order AC

DCT coefficients through coarse quantization, representing the content of a block only

through lower order coefficients.
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2.2.1.3 Ringing effect

The ringing effect is most evident along high contrast edges in areas of generally smooth

texture in the reconstruction, and appears as a shimmering or rippling outwards from the

edge up to the encompassing blocks boundary. The higher is the contrast of the edge, the

greater is the level of the peaks and troughs of the rippling.

2.2.1.4 Staircase effect

The staircase effect is linked to both the blocking and mosaic pattern effects because

it can be seen as a discontinuity between adjacent blocks. When a diagonal edge is

represented within a string of consecutive blocks, the consequence of coarse quantization

is the reconstruction of the diagonal edge as a number of horizontal or vertical steps. It

produces staircase edges.

In addition, the alignment of patterns or objects within a scene cannot always be well

approximated by the separable DCT. The staircase effect and the ringing effect often

occur together. High-contrast areas are the source of ripples and shimmering near the

borders due to coarse quantization of high frequency components during the quantization.

2.2.1.5 Mosaic pattern effect

The mosaic pattern effect is the apparent mismatch between all, or part, of the contents of

adjacent blocks; the overall effect remembers square tiles visually ill-fitted in a mosaic. It

can be a block with a certain contour or texture dissimilar to the neighboring blocks, or a

block used in the representation of an object which does not blend satisfactorily with the

other constituent blocks. The reduction of the high frequency components in horizontal

and vertical direction can lead to this annoying artifact. This is another situation where

the basic DCT functions become visible.
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2.2.2 Artifacts in Image Color

2.2.2.1 Color Bleeding

The color bleeding can be described as a smearing of chrominance information along high-

contrast chrominance areas and it is equivalent as distortion to blurring in the luminance

channel. The color bleeding is due to a coarse quantization of high frequency chromi-

nance coefficients. It results in the representation of the chrominance components with

only the lower frequency coefficients. Color bleeding results from coarse or even zero

quantization of higher order AC transform coefficients for the color channels. Due to the

colour sub-sampling schemes, this kind of distortion has an annoying influence on the color

information in the whole macro-block, named chrominance ringing.

2.2.3 Artifacts related to motion

2.2.3.1 Mosquito Noise

The mosquito effect is a temporal artifact seen mainly in smoothly textured regions as

a fluctuations of luminance/ chrominance levels around high contrast edges, or moving

objects, in a video sequence. This effect is related to the high frequency distortions

introduced by both the ringing effect, and the prediction error produced by the motion

compensated mismatch artifacts. The mosquito noise also affects stationary areas within

a moving scene, characterized by high spatial frequencies. Flickering in the luminance and

chrominance channels may be observed.

2.2.3.2 Judder

This kind of artifacts is typical in teleconference systems and phone applications and it can

be seen as an image flipping in the direction of movement. The necessary bandwidth for the

transmission is a function of the change in video content but in this sort of applications

bandwidth is mostly limited and therefore especially in fast moving scenes the image

sequence is cut into discrete snapshots to fit the temporal bandwidth of the source.
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2.2.4 Binocular Artifacts

2.2.4.1 Cross-distortion

Cross-distortion is caused by asymmetrical video coding in both temporal or spatial do-

mains. In the case of temporal asymmetric video coding, one channel has lower frame-rate

than the other; otherwise, in case of spatial asymmetric video coding one channel has lower

resolution than the other.

Cross distortions occur when the bit budget of the right and left picture presented to an

observer is not equal. It leads to a decreased overall quality of the image or sequence,

whereas the human visual system fortunately tries to compensate this mismatch. If the

difference in quality between the left and right image becomes too big, a wrong or even

distorted depth is perceived.

2.2.4.2 Cardboard effect

The cardboard effect is typically caused by image acquisition or compression parameters

resulting in a coarse quantization of the disparity or depth maps. Due to it, the objects

appear flat as if the scene is divided into discrete depth planes. The flattening of the

objects in a scene evokes an unnatural depth percept.

2.2.4.3 Depth Bleeding

More unusual coding artifacts that have impact on depth perception are depth bleeding and

depth smoothing. Depth bleeding affects the depth channel, it is similar to color bleeding.

Depth smoothing is due to asymmetric compression or resolution of the depth channel.

2.3 Quality metrics

As we have illustrated in the previous sections, stereo video stream can be subject to

several distortions during the the capturing, representation, coding, transmission or visu-

alization steps. Any of these phases may result in a degradation of visual quality. With

the deployment of Blue-Ray, DVD, personal computer and communications technologies,
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video files are disseminated in many different formats from CD to AVI (Audio Video In-

terleave) and other file types. Video technology has drastically changed over the years

from the black and white television to the chance, nowadays, to create recordable media

with high resolutions in our own living room. Video content, today, can be transferred

from place to place on multiple types of media. The providers and consumers of video

material have kept pace with the times by increasing their expectations of quality. The

problem that the industry faces now is how we measure video quality, guarantee delivery

of high quality video and prove that the quality is delivered at the promised level.

There are two primary ways to measure video quality. The first is Subjective Quality

Assessment. This method exploits structured experimental designs and ”human” partici-

pants to evaluate the quality of the video presented when compared with a given reference.

The second is Objective Quality Assessment. This measures physical aspects of a video

signal and considers both the physical aspects and psychological issues. Both types of

testing are far from an exact science but they have proven to be very useful tools.

In the following we will discuss some objective and subjective quality metrics used for

evaluation of video quality. These metrics are generally used for modeling 2D video qual-

ity but since there are not specific quality metrics for stereoscopic video, the conventional

quality metrics, PSNR, SSIM and VQM, will be adopted for objective evaluation; at the

contrary, the mean opinion score, MOS, will be analyzed for subjective assessments [24].

2.3.1 Objective Quality Evaluation

An objective image quality metric can be useful for different applications. First, it can

be employed to dynamically monitor and adjust image quality. Second, it can be used

for optimizing algorithms and parameters settings of image processing architecture, [25].

Finally, it can be a benchmark for an image quality systems and algorithms.

Objective quality metric can be classified according to the availability of the original image

with which the processed image has to be compared.

If the reference image is known, then the metric is said to be full-reference, otherwise if the

reference image is not available, the quality assessment is no-reference or blind. A third
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case can be represented by partial availability of the reference image (only the extracted

features are present), and in this case, the metric is said to be reduced-reference.

2.3.1.1 PSNR

A useful and often used metric is peak-to-peak signal-to-noise ratio, PSNR.

This image quality index is defined as the ratio between the maximum signal power and

noise power that can interfere with the fidelity of the representation,[26]. The PSNR is

most commonly used in the field of image processing as a measure of quality of recon-

struction of lossy compression codecs. The signal in this case is the the reference image,

and the noise is the error introduced by compression. It is strongly used for comparison of

compression codes, because it gives an approximation to human perception of reconstruc-

tion quality. However it can happen that in some cases, one reconstruction may appear

to be closer to the original than another, even though it has a lower PSNR (a higher

PSNR means higher quality reconstruction). This metric is not always so reliable and lot

of attention must be taken with the range of validity of this metric; it is only conclusively

valid when it is used to compare results from the same codec (or codec type) and same

content. It is most easily defined via the mean squared error (MSE) which for two mxn

images I and K (only luminance is considered)where one of the images is considered a

noisy approximation of the other is defined as:

MSE =
1

mn

m∑
i

n∑
j

||I(i, j)−K(i, j)||2 (2.1)

The PSNR is defined as:

PSNR = 10 · log
(
MAX 2

I

MSE

)
= 20 · log

(
MAX I√
MSE

)
(2.2)

Here, MAXI is the maximum possible pixel value of the image. When the pixels are

represented using 8 bits per sample, this is 255. For color images with three RGB values

per pixel, the definition of PSNR is the same except that the MSE is the sum over all

squared value differences divided by image size and by three. Typical values for the PSNR

in lossy image and video compression are between 30 and 50 dB, where higher is better.

Acceptable values for wireless transmission quality loss are considered to be about 20 dB

to 25 dB.
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This metric is appealing because it is simple to calculate and has clear physical mean-

ing. However, it does not match very well the perceived visual quality.

2.3.1.2 SSIM

The Structural SImilar Measure (SSIM) [25] compares local patterns of pixel intensities

that have been normalized for luminance and contrast; in particular, the SSIM index is a

combination of three different attributes: luminance, contrast and structure, [27].

The three components are combined to yield an overall similarity measure. Considering

two windows x and y of a common size NxN , this metric holds:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(µ2
x + µ2

y + C2)
(2.3)

where µx is the average of x, µy is the average of y, σx is the variance of x, σy is the

variance of y and σxy is the covariance; all these parameters are computed within a local

8x8 square window. C1 = (K1, L)
2 and C2 = (K2, L)

2 are two variables to stabilize the

division with weak denominator; L is the dynamic range of pixel-values and K1,K2 ≪ 1

are small constants.

An important point is that the three components are relatively independent. For example,

the change of luminance and/or contrast will not affect the structures of the image.

For image quality assessment, it is useful to apply the SSIM metric locally rather than

globally. In fact, localized quality measurement can provide a spatially varying quality

map of the image, which delivers more information about the quality degradation of the

image, resulting more useful in some applications.

2.3.1.3 VQM

The National Telecommunication and Information Administration (NTIA) has developed

a General Model for estimating video quality and its associated calibration techniques

(e.g. estimation and correction of spatial alignment, temporal alignment, and gain/offset

errors), [28]. The NTIA’s research has focused on developing a technology independent

parameters that model how people perceive video quality. These parameters have been
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combined using linear models to produce estimates of video quality that closely approxi-

mate subjective test results.

The General Model uses a reduced-reference system that provides an estimate of the overall

impressions of video quality, [29]. Reduced-reference metrics systems uses low-bandwidth

features that are extracted from the source and destination video streams. Real-time in-

service quality can be measured by reduced-reference system (provided an ancillary data

channel available to transmit the extracted features) and this is necessary for tracking

dynamic changes in complex scene and/or transmission systems.

The General Model and its associated calibration techniques comprise a complete auto-

mated objective video quality measurements systems. The calibration of the original and

the processed video streams includes spatial alignment, valid region estimation, gain and

level offset calculation, and temporal alignment. VQM calculation involves extracting

perception-based features, computing video quality parameters to construct the General

Model.

VQM can be computed using various models based on certain optimization criteria. These

models include:

1. Television

2. Video-conferencing

3. General

4. Developer

5. PSNR

2.3.2 Subjective Video Quality Measurements

It is clear that it may not be possible to fully characterize system performance by objective

means; consequently, it is necessary to supplement objective measurements with subjective

measurements. Subjective assessment uses human subjects (real end users) to evaluate,

compare or assess the quality of images under test. Subjective assessment is the most

reliable way to determine actual image quality, and cannot be replaced with objective
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testing.

In this case, the mean opinion score (MOS) provides a numerical indication of the perceived

quality of received stereo video content after compression and/or transmission.

2.3.2.1 Mean Opinion Score (MOS)

The MOS is expressed as a single number that can range from 1 to 5 or from 1 to 100.

The lowest number represents the worst case while the biggest number corresponds to the

highest perceived video quality. MOS tests for video are specified by ITU-R BT.500-11

[30].

The MOS is generated by averaging the results of a set of standard, subjective tests where

a number of viewers rate the viewed video quality of test sequences.

Compressor/decompressor (codec) systems and digital signal processing are commonly

used in voice communications, and can be configured to conserve bandwidth, but there is

a trade-off between voice quality and bandwidth conservation. The best codecs provide

the most bandwidth conservation while producing the least degradation of video quality.

A drawback of obtaining MOS estimations is that it may be more time-consuming and

expensive as it requires hiring experts to make estimations.

At the aim of evaluating the quality of a stereo video content, objective and subjective

quality assessments can be performed. The goal of objective video quality assessments is

to develop a quantitative measure that can automatically predict perceived video quality.

2.4 Experimental Results

As illustrated in Section 2.3, subjective evaluation testing is used to measure the effect of

distributed video coding artifacts on the perceived quality of the reconstructed stereoscopic

sequence,[21]. The obtained results have also been compared with the quality evaluated

by using three 2-D video objective quality models namely PSNR, VQM and SSIM.

The Video Quality Metric adopted here, is derived by Watson’s DCT-based metric (DVQ)

[31] [32] video quality evaluation and considers only the luminance of the video sequence
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and takes into account a human Spatial Contrast Sensitivity Function (SCSF).

In the following we show the results for the DIPLODOC 3D ”road stereo sequence” [33],

that is 240x320 pixels and 15 frames per second; 201 frames were used for the sequence.

In the DVC architecture, a GOP equal to 2 has been analyzed, where the right view has

been Wyner-Ziv coded while the left view is coded with a conventional H.264/AVC. As

usual for WZ coding, only luminance data has been coded; the total bit-rate includes the

luminance rate for the WZ frames and key frames for the right view to be coded since the

left view is always the same.

16 non-expert observers (8 males and 8 females) participated in the experiments and were

asked to rate the video sequence perceived quality according to the method proposed in

[30]: the subjective ratings for the coded stereoscopic sequences have been scaled into a

linear opinion score scale, which ranges from 0 (bad quality) to 100 (excellent quality).

The observers were also asked to evaluate the kind of annoying visual artifacts for each

shown sequence.

The bit-rate of the 3-D coded sequence have been systematically varied and 5 reference

bit-rates were considered: 10, 25, 100, 500, 2100 and 5000 Kbit/sec, i.e. ranging from

a low bit-rate transmission case where the DVC approach results to be more suitable to

a high bit-rate channel case, where a conventional H.264/AVC coder usually results to

be more appropriate. For each reference bit rate, the H.264/AVC 3-D coded sequence

and the DVC 3-D coded sequence have been considered. The stimulus set contains 15

Figure 2.3: MOS scores for perceived stereo video quality.
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coded sequences and the original, uncompressed sequence is used as the reference in the

evaluation test. The set is randomized and presented sequentially.

Figure 2.3 shows MOS scores for the overall perceived quality, while Figures 2.4, Figure

2.5 and Figure 2.6 show the rate distortion (RD) performance for the analyzed WZ stereo

coding architecture, by respectively considering the PSNR, VQM and SSIM quality mod-

els. These metrics have been adopted to evaluate the quality of the decoded 2-D right

sequence [24].

Figure 2.4: RD performance by PSNR evaluation. PSNR is averaged on the whole right

sequence.

Figure 2.5: RD performance by VQM evaluation. VQM is averaged on the whole right

sequence.

49



2. STEREO VIDEO ARTIFACTS IN A DISTRIBUTED CODING APPROACH

Figure 2.6: RD performance by SSIM evaluation. SSIM is averaged on the whole right

sequence.

A number of interesting conclusion can be drawn. Given that DVC schemes are more

suitable for low bit-rate channels because less amount of data need to be transmitted,

Figures 2.3 supports the above statement from a visual perspective point of view. On

the contrary, the reversal of the trend at about 400 Kbit/sec shows that a conventional

H.264/AVC coder results to be more appropriate at high bit-rate even if DVC approach

would be still preferred in some cases due to the advantage of low-complexity encoders.

Figures 2.4, 2.5 and 2.6 report the same trend for the WZ coded right sequence.

A flickering effect has been noticed on the DVC coded sequence only at low bit-rate due to

the alternate of low-quality decoded H.264/AVC key frames and higher quality decoded

WZ frames. Obviously this effect is not anymore noticeable at high bit-rate when the

quality of the decoded key frames and the quality of the decoded WZ frames becomes

similar. Due to this considerations, we have increased the GOP’s length in the DVC

method and included these coded sequences in the set evaluated by the observers. In

order to show that, from a perceived quality point of view, when the bit-rate becomes

lower, it is more convenient to use a longer GOP, GOP of length 9 was considered for

reference bit-rate 25 Kbit/sec. Average MOS values reported in Table 2.1 shows that the

human eye perceives less annoyance when, at low bit-rate, it is presented a sequence coded

with a longer GOP. Average values of PSNR, VQM and SSIM, computed on the whole

right sequence, confirm the above statement from an objective point of view.
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For the reasons described above, the blocking effect typical of a conventional H.264/AVC

Table 2.1: Objective/subjective results for a low bit-rate channel.

PSNR [dB] VQM SSIM MOS

25 H.264/AVC 23,76 5,31 0,64 16

25 DVC GOP=2 26,5 3,48 0,78 27

25 DVC GOP=9 29,8 2,36 0,87 29

at low bit-rate was less noticeable in the DVC decoded sequence. In fact this effect only

affects the key frames of the right sequence and the left sequence. We believe that a

symmetric approach where both the views have a limited amount of key frames would not

let the observer perceive a blocking effect.

A blurring effect has been also noticed on the DVC coded sequence due to the particular

WZ coder that is used. In the analyzed scheme, a turbo decoder with puncturing rate

equal to 1/3 has been used. Note that the turbo decoder performance is strictly dependent

on the amount of parity bit planes used to reconstruct the WZ frames. The adopted turbo

decoder was always able to reconstruct the WZ frames even if in very uniform areas to be

decoded a blurring effect was noticed by few careful observers. This effect is to be related

not only with the used WZ decoder but also with the accuracy of the side-information:

this is the actual challenge in the most recent stereo DVC approaches that have to exploit

the temporal and inter-view correlation.

The combination of the above effects let few participants note a jerkiness-like effect for

low bit-rate cases: this corresponds to the perception of originally continuous motion as

a sequence of distinct ”snapshots”. In fact, when a sequence of still frames is perceived

by the human brain at a continuous rate, intermediate images are interpolated and the

observer subjectively appears to see continuous motion that in reality does not exist.

Finally, in the lowest bit-rate case, some observers perceived a loss of stereo vision either

in H.264/AVC coded sequences and in WZ ones.
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2.5 Conclusions

In this chapter, a stereoscopic video quality assessment has been conducted for the eval-

uation of a distributed video coding scheme. The considered coding approach has been

compared with conventional H.264/AVC. The objective evaluations showed that DVC has

a better quality than H.264/AVC for lower bit-rate; at the contrary, for higher bit-rate

conventional stereo video coders result more powerful. These results have been validated

by subjective tests.

Objective and subjective video quality experiments have been carried out to evaluate

video artifacts introduced in a stereo distributed video coding system. The most relevant

artifacts that have been noticed are flickering, blocking and blurring.

The obtained results can be considered a starting point for an extensive analysis of

the DVC stereo perceived quality that takes into account different DVC schemes.
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Chapter 3

Distributed Joint Source-Channel

Coding

3.1 Introduction

This chapter presents a distributed joint source-channel 3D video coding system. Here,

instead of using the classical two steps scheme, we adopt a single source-channel encoder

for both compression and protection resulting in a distributed 3D video coding scheme.

Shannon’s source-channel separation principle [34] states that, in the limit of large block-

length and for a large class of communication setups, the optimal performance can be

approached by adopting a tandem source and channel coding schemes.

Driven by the separation principle, modern communication systems have been developed

according to a rather rigid layered architecture [35]: the source coding is implemented at

the application layer, while the channel coding is designed and optimized at the physical

layer, [36], [37]. While a separated (layered) architecture has the advantage of modular

system design, allowing that a great variety of services can exploit a common data network

infrastructure, there are cases where a Joint Source-Channel Coding (JSCC) approach

can be very appealing. On one hand, there exist several relevant multiterminal settings

where the separated approach is known to be suboptimal [34]. On the other hand, even

in standard point to point channels where Separated Source-Channel Coding (SSCC) is

asymptotically optimal, the use of independently designed source and channel codes may
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Figure 3.1: Channel model with uncoded side information

result in poor performance in the practical non-asymptotic regime of finite block length

and low complexity encoding/decoding, [38].

The purpose of the work presented in this chapter is to outline a new pragmatic approach

to the of DVC-based Joint Source-Channel 3D video coding scheme for noisy channel that

preserves the perceived visual quality while guaranteeing a low computational complexity.

The mathematical framework will be fully detailed and the tradeoff among redundancy

and perceived quality and quality of experience will be analyzed with the aid of numerical

experiments.

3.2 Theoretical Background

Let’s consider a general model where two independent channels operate in parallel as de-

picted in Figure 3.1. If the inputs to both channels are encoded, the Shannon coding

theory states that it is possible to transmit reliably the source information if source en-

tropy rate is below the sum of each channel capacities, C1+C2; otherwise if source entropy

rate is above this values, then no source information can be reliably transmitted. In the

model we consider the information passing through channel 2 is not encoded and this can

represent a practical scenario such as Slepian-Wolf case.

As demonstrated in [39], the source can be reliably transmitted if its conditional entropy

rate (given the output of channel 2) is below the capacity C1 and otherwise if the con-

ditional entropy exceeds C1, no reliable transmission is guaranteed. This condition for a

reliable transmission is equivalent to the source entropy rate being below the sum of chan-

nel 1 capacity and the mutual information rate of channel 2. So the source information is

related to channel 2 because if input/output mutual information is maximum then source

information can be reliably transmitted when entropy rate is below C1 + C2.
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Be Xn, a word of length n, the output of the source, and suppose that the decoder selects

a word X̂n upon observations of the outputs of both channels. As demonstrated in [39],

if the source and the channel 2 are such that (X,Z) are jointly ergodic and stationary,

and assume that H(X/Z) is the conditional entropy rate of X given Z, then it has been

proofed that:

1. the source is transmissible if

H(X/Z) < C1 (3.1)

2. the source is not transmissible if

H(X/Z) > C1 (3.2)

This result suggests that the information rate of the source can be seen as the sum of two

components:

H(X) = H(X/Z) + I(X;Z) (3.3)

such that the first component is encoded and then pass through channel 1 and the sec-

ond component is transmitted through channel 2 without encoding first. Even though,

the second part is not encoded, the source can be reconstructed with a arbitrary small

probability of error at the decoder.

Moreover, if source is matched to channel 2 in the sense that it maximizes its input/output

mutual information, then it turns out that it is possible to transmit information at the rate

C1 +C2 without encoding information that passes through channel 2, (side information).

Equivalently, the Slepian-Wolf limit in this noisy channel case isH(X/Z)/C1, with C1 ≤ 1.

A separation theorem for lossy source-channel coding with decoder side information, i.e.,

the noisy channel Wyner-Ziv case, is given in [40]. In the separation theorem given in

[39], the conditional entropy H(X/Z) is replaced by the Wyner-Ziv rate-distortion func-

tion RWZ ∗ (D).

3.2.1 Distributed Joint Source-Channel Coding

When the channel is noisy in the SW problem, source-channel coding with side information

is needed. According to Shannon theorem, a reliable transmission can be accomplished by
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Figure 3.2: The system model for Distributed Joint Source-Channel Coding

separate source and channel coding. However although tandem designs are asymptotically

optimal, practical design are expected to perform better when employing joint source

channel coding. Following the separate design, first the sources are Wyner-Ziv coded,

where a WZ code can be considered a concatenation of a quantizer and a SW code, where

the quantizer design with side information is an essential part. In practice, the source and

its side information are assumed to be connected by a virtual error-prone channel. Then,

the Slepian-Wolf coded bits are protected with a channel code against the distortion they

are going to encounter when transmitted through a noisy channel. Since SW coding is

essentially channel coding, it is more meaningful to combine two channel codes, the ones

used for SW coding and the channel coding into a single channel code and use just this

channel code for joint source-channel coding with side information. The main idea of

underlying such a joint scheme is to view the source-channel bits as the parity bits of a

systematic channel code and to consider an equivalent channel coding problem over two

channels. The first channel is the actual noisy channel through which the source-channel

coded bits ( the parity bits of the systematic channel code) are sent to the decoder, and

it describes the distortion experienced by the parity bits of the code. The second channel

is the ”virtual” correlation channel between the source (the systematic bits of the channel

code) and the side information available at the decoder [41] [42]. In the following a brief

overview of the joint source channel Slepian-Wolf encoder is presented.

Let us consider X = [X1, X2, , Xn] and Y = [Y1, Y2, , Yn] where Xi’s and Yi’s are

i.i.d. equiprobable binary random variables. In addition, Xi and Yi are correlated so

that Pr[Xi ̸= Yi] = p < 0.5. Y is available lossless at the joint decoder and we try to

compress X as efficiently as possible [43],[44]. Since the rate used for Y is its entropy
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Figure 3.3: Achievable rate region defined by Slepian-Wolf bounds

nRy = nH(Yi) = n bits, theoretically the minimum rate required to make X decodable

given reference Y at the decoder is the conditional entropy H(Xi|Yi). The conditions for

two correlated sources X and Y can be expressed as:

H(X|Y ) < CX

H(Y |X) < CY

H(X,Y ) < CX + CY

(3.4)

Assuming that CX = CY = C, it can be obtained that:

RX ≥ H(X|Y )/C

RY ≥ H(Y |X)/C

RX +RY ≥ H(X,Y )/C

(3.5)

where RX and RY are respectively the encoding rate of X and Y . In figure 3.3 the

achievable rate defined by Slepian-Wolf bounds and the DJSCC rate region are shown.

3.3 Related Works

The most direct method for implementing Distributed Joint Source-Channel coding (DJSCC)

is sending additional bits for general Distributed Source Coding (DSC) scheme to approach

the theoretical bound. Based on this idea, efficient designs representing the state of art
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are reported in this section. Reference [45] presents the case where decompression must

be done from compressed data corrupted by Additive White Gaussian Noise (AWGN).

Turbo codes are used by finely designing the matrices of the two constituent encoders.

The design of [43] exploits systematic Irregular Repeat-Accumulate (IRA) codes [46] for

DJSCC. The main idea is to view the system as transmitting the source over two channels.

The first one is the actual channel trough which the source-channel coded bits are sent

to the decoder and describes the distortion that affects the parity bits of the systematic

IRA codes. The second channel is the enhanced actual channel and it could be either a

combination of the actual channel and the correlation channel. This channel describes the

distortion of the information bits.

The systematic part goes through the binary symmetric correlation channel and the parity

bits through the actual channel. The feasibility of designing different channel conditions for

the systematic and the parity part separately is the main advantage in joint source-channel

coding with side information. The simulation results confirm the superior performance to

the turbo codes scheme.

Using the IRA codes for pre-coding, Raptor codes [47] were designed for DJSCC [42],[48],

over packet erasure channels. The rateless property can guarantee the success in decoding

regardless of the packet loss ratio. The IRA precoder is followed by an LT code which guar-

antees the rateless property of the overall Raptor code, meaning that a limitless stream

of packets can be generated by the encoder. The use of Raptor encoder leads to a min-

imization of the number of packets that the decoder has to receive in order to correctly

decode beyond the Slepian-Wolf compression limit. They varied the rate of IRA precode

and introduced a bias towards selecting IRA parity symbols versus systematic symbols

in forming the bipartite graph of the LT code. This bias is motivated by the fact that a

correlated version of IRA systematic bits is already available as side information at the

decoder, and its optimization is embedded in the overall Raptor encoder design. For the

decoder side, an iterative soft-decision that combines the received packets and the side

information to perform joint decoding is performed. However, they didn’t give a calculable

method to determine the optimal design.

In [49], the authors propose a scheme based on distributed arithmetic coding (DAC) over
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noisy channels. The proposed encoder is a combination of DAC and arithmetic coding

with forbidden symbol. The decoding side is based on a sequential decoder and it in-

troduces an additive MAP metric to rank the various decoding attempts. At each step,

the value of the coded sequence is used to select the interval corresponding to a decoded

symbol. The selected interval is subdivided according to the known probabilities. In [50],

the case of compression of single and correlated binary source using punctured turbo codes

is proposed. When dealing with correlated sources, both sources are compressed indepen-

dently of each other. The encoder structure can be seen as ”super” turbo encoder, with

each constituent encoder being a turbo code. The decoder is based on message passing

algorithm over the graph associated to each constituent turbo encoders. The decoding

phase proceeds in a traditional fashion except that no noise is considered here. How-

ever, additional extrinsic information is also exchanged between both turbo decoders. To

achieve a good performance, the puncturing scheme is carefully selected: half of the sys-

tematic bits for each constituent turbo encoder are used. The bit stream from the first

source is punctured in a uniform way while the second bit stream is punctured following

the interleaver. The design of an efficient joint source-channel coding scheme based on

LDPC code is reported in [44]. The architecture they proposed is inspired by [51] for

the parallel channel model. The basic idea is dividing the encoded codeword into several

fractions in order to process them separately. Since it is unnecessary to transmit all the

codeword to the decoder for the existence of correlation, so for one source only a fraction

of information bits and a fraction of parity bits is sent through the noisy channel. At the

joint decoder, the received different parts of the information bits from different encoders

will re-produce an integrated codeword for decoding, and they act as side information for

each other. The simulate results verify the limit-approaching performance of the proposed

scheme and show better results than [52].

3.4 Distributed Joint Source-Channel Coding for 3D Videos

In this section we present a distributed 3D video coding with joint source-channel cod-

ing based on Turbo-code, [53]. The reason of employing this particular codes lies in the
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fact that turbo codes are powerful channel codes that allow to get close to Slepian-Wolf

bound. Here distributed source-channel video coding is achieved by puncturing parity bits.

Puncturing is the process of deleting some parity bits from the codeword according to a

puncturing matrix. It represents a tradeoff between rate and performance. For achieving

a joint source-channel scheme, the main idea is to consider an equivalent channel coding

problem over two channel. The first channel is the actual noisy channel through which the

source-channel coded bits ( the parity bits of the systematic channel code) are sent to the

decoder, and it describes the distortion experienced by the parity bits of the code. The

second channel is the ”virtual” correlation channel between the source (the systematic

bits of the channel code) and the side information available at the decoder.

At the decoder side, an iterative soft-decoding system that combines received packets and

the side information to perform joint decoding is considered. It consists of two constituent

decoders: the Soft-In/Soft-Out (SISO) Channel decoder and the Soft-In/Soft-Out (SISO)

Source Decoder[54]. The information that is passed between the constituent decoders is

log-likelihood ratios of the databits.

3.4.1 Turbo codes

It is important to find the optimal trade off between the amount of data transmitted and

the quality of the decoded stream.

To this aim, the use of turbo codes [55] is often preferred as they allow to send the minimum

amount of data while guaranteeing near channel capacity error correcting performance [56].

In the DVC scheme, depicted in Figure 3.4, after a Wyner-Ziv frame is transformed and

quantized, it is separated into bit-planes, which are fed one-by-one to a turbo encoder. The

turbo encoder consists in a Parallel Concatenation of Recursive Systematic Convolutional

Codes (PC-RSC) in addition to a pseudo-random interleaver to spread burst errors. Each

RSC encoder produces two output, the systematic bits Si and the parity bits Pi, where

i = 1, 2.

The systematic bits of the encoded data are discarded while all generated parity bits
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Figure 3.4: Turbo encoder structure in DVC approach.

are stored at the encoder side in a buffer and transmitted in the decoding phase upon

the decoder’s request via a feedback channel. As for Figure 3.5, in order to reconstruct

the data, the iterative Maximum A Posteriori (MAP) turbo decoder uses the parity bits

requested to the encoder and the systematic bits, directly extracted from the side in-

formation which can be seen as a corrupted version of the original data. A Laplacian

distribution is assumed for the difference between the original data and the side infor-

mation [11] [57]. The parity bits are requested until they are exhausted or an acceptable

probability of symbol error is reached: hence, depending on the accuracy of the systematic

bits, additional parity bits are requested, thus leading to an efficient use of the band.

Figure 3.5: Turbo decoder structure in DVC approach.

The aim is to design an algorithm where each encoder has high compression perfor-

61



3. DISTRIBUTED JOINT SOURCE-CHANNEL CODING

mance to minimize transmission costs, low computational complexity to preserve battery

life and robustness to avoid effects of channel loss. Traditional video coder as MPEG

and H.26x achieve high compression but have high complexity and are sensible to predic-

tion mismatch in case of packet loss. On the other hand MJPEG is robust but has poor

compression performance.

3.4.2 Joint Source-Channel Decoding

The proposed scheme, [53], is inspired from [44] for the separate channels model. The basic

idea is to divide the encoded codeword into two fractions and process them separately. Let

us consider two memoryless sources X and Y which are statistically dependant to each

other with cross-over probability P [Y ̸= X/X] = pXY and P [X ̸= Y/Y ] = pY X . The

k-bit sequence of the sources X is encoded independently using turbo-code (k, n); thus,

the codeword of X will be represented of systematic bits plus parity bits Pi (i = X,Y )

where Pi = k − n. However it not necessary to transmit the entire codeword to the

decoder because of correlation between the two sources. So for source X only k systematic

bits and biPi parity bits are transmitted trough the noisy channel with constraints that

0 ≤ bi ≤ 1,
2∑

i=1
bi = 1. The DJSCC encoding rate RX for the source X is:

Ri =
k + bi(k − n)

k
(3.6)

In Figure 3.6, the separate channel model is drawn for the source X. As explained before,

the source Y is available at the decoder for reconstructing the Wyner-Ziv frame.

At the joint decoder, the received different parts of the information bits from different

encoders will re-produce the entire codeword for decoding, as they act as side information

for each other. For source X, at the aim of obtaining a complete codeword for decoding,

the corresponding systematic part is replaced by the side information which is received

from Y . This method can be similarly applied in decoding for Y . At the decoder side, re-

ceived packets and the side information are combined by an iterative soft-decoding system

to perform joint decoding. It consists of two constituent decoders: the Soft-In/Soft-Out

(SISO) Channel decoder and the Soft-In/Soft-Out (SISO) Source Decoder. The informa-

tion that is passed between the constituent decoders is log-likelihood ratios of the databits.
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Figure 3.6: parallel channel model for DJSCC scheme

3.5 Experimental Results

In order to evaluate the performance of the proposed DJSCC approach, we tested it on

DIPLODOC 3-D ”road stereo sequence” [33]. We encode 201 frames, with a capture rate

of 15 frame per pixels, and the resolution of each frame is 240x320.

In the DVC architecture, a GOP equal to 2 has been analyzed, where the right view has

been Wyner-Ziv coded while the left view is coded with a conventional H.264/AVC. As

usual for WZ coding, only luminance data has been coded; the total bit-rate includes the

luminance rate for the WZ frames and key frames for the right view to be coded since the

left view is always the same.

The coded video stream is transmitted over AWGN channel with SNR = 8dB. The turbo

code rate is Rc = k/(k+P ) = 1/3 and the total encoding rate is R = RX+RY = 1/Rc = 3.

We considered a symmetric rate case where b1 = b2 = 0.5 (JOINT1/2) and another case

where b1 = 0.7 and b2 = 0.3 (JOINT) and we compared rate distortion performances

of our joint source channel coding method against tandem method where source coding
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Figure 3.7: Rate-distortion comparison with different schemes.

Figure 3.8: SSIM comparison with different schemes

and channel coding are separated. We have also compared Joint DVC approach with

H.264 coding. The bit-rate of the 3-D coded sequence have been systematically varied

and 6 reference bit-rates were considered: 500, 800, 1000, 1200, 1500 and 2100 Kbit/sec.

PSNR and SSIM performances show that joint source-channel coding performs better

than tandem approach when the asymmetric case (JOINT) is considered, i.e. b1 = 0.7

and b2 = 0.3,as shown in figures 3.7 and 3.8; on the contrary when the symmetric case is

evaluated performance assessments show that tandem approach is better.

In figure 3.10, rate distortion of our approach has been compared to H.264 coding.

The bit-rate of the 3-D coded sequence have been systematically varied from 10 to 20000

Kbit/s ranging from a low bit-rate transmission case where the DVC approach results to
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be more suitable to a high bit-rate channel case, where a conventional H.264/AVC coder

usually results to be more appropriate. For each reference bit rate, the H.264/AVC 3-D

coded sequence and the DVC 3-D coded sequence have been considered.

Figure 3.9: RD comparisons by PSNR evaluations between our proposed method and

conventional H.264 coding. PSNR is averaged on the whole right sequence.

Figure 3.10: RD comparisons by SSIM evaluations between our proposed method and

conventional H.264 coding. SSIM is averaged on the whole right sequence.

3.6 Conclusions

In this chapter, the joint source-channel coding problem for the DVC approach has been

addressed. It has been also presented a novel approach that performs distributed joint
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source channel coding for 3D videos. At this aim, we have applied turbo code in joint

source-channel coding. The reason lies in the fact that they allow to send the minimum

amount of data while guaranteeing near channel capacity error correcting performance.

Performance results show a better trend of DJSCC compared to conventional tandem

method when the asymmetric case is considered for joint coding.

The considered coding approach has been also compared with conventional H.264/AVC.

The performance evaluations showed that JDSCC has a better quality than H.264/AVC

for lower bit-rate; at the contrary, for higher bit-rate conventional stereo video coders

result more powerful.
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Chapter 4

Multiview Distributed Video

Coding

4.1 Introduction

In recent years, multiview video system have become more and more popular due to the

adoption of interactive multimedia applications such as 3D television, surveillance and

wireless sensors network. In addition, the wide spread of smart phones equipped with

high definition cameras and the availability of powerful uplink 3G connections like HSPA

(High Speed Packet Access), HSPA+, and LTE (Long Term Evolution) is one of the key

enabling factors of co-creation of multimedia contents for several value added applications,

like interactive news and distributed environmental surveys.

In surveillance applications, the employment of multiple views can be used to improve the

performance of event detection and recognition algorithms.

However, the amount of data generated by multiview systems increases with the number of

cameras. For this reason, data compression is a key-factor in such systems. A distributed

video coding approach in multiview applications has the following advantages:

• The communication between the different cameras can be removed. In conventional

multiview video coding, inter-view correlation is exploited at the encoder. In prac-

tical scenario it is very difficult to exchange such amount of data among cameras.

In multiview distributed video coding, no communication is needed among cameras.

67



4. MULTIVIEW DISTRIBUTED VIDEO CODING

Figure 4.1: General scheme of multi-view distributed video acquisition

This can be very interesting when dealing with dense multicamera systems.

• Low computing complexity makes the multiview video data be transmitted with

low delay. Although the complexity of the decoder increases by temporal and inter-

view computation, fast algorithms can be used in on-line decoding case. However,

a general DVC scenario is offline decoding case where the complexity of decoder is

not a major concerns.

• The selection of the views that need to be decoded is more flexible. In conventional

multi-view video coding scheme, the reference frames are predefined during encoding.

All the reference frames have to be decoded before the current frame despite which

view they are from. Instead, in our case, this redundancy can be avoided because

the inter-view prediction is done at the decoder and the decoding of different views

is freely chosen.

Multi-view Distributed Video Coding (MDVC) differs from mono-view and from stereo

DVC in the decoder because the SI is obtained not only using the frames within the same

camera but considering information coming from frames of the other cameras, [12]. This

chapter is addressed to the design of multi-view distributed video coding schemes. First

a summary of the related works is depicted in Section 4.2 while a review of different

side information techniques is presented in 4.3. In Section 4.4, a new fusion technique

between temporal and spatial side information in Zernike Moments (ZM) space is proposed
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where only one camera is DVC coded while the other are conventionally coded. Then the

proposed method has been generalized in order to code all the cameras. The aim of these

contributions is the proposal of a coding scheme that, thanks to the statistical correlation

among the different views, allows reconstructing a 3-D highly defined scene based on

the DVC theoretical framework. The creation of side information is described in Section

4.5, the performance assessments are reported in Section 4.6 and finally in Section 4.9

conclusions are drawn.

4.2 Related Works

Artigas et al. [58] proposed two novel fusion techniques between temporal and inter-camera

side information. In the first technique, temporal motion interpolation is performed be-

tween the previous and the forward frames from the side cameras. The result is subtracted

from the current frame and then thresholded to obtain a binary mask. The second algo-

rithm uses the previous and the forward frames as predictors for the current frame on the

side cameras to compute a reliability mask. The obtained results show that the fusions

improve the average PSNR of the side information using high resolution video. However,

the rate-distortion (RD) performance of DVC is not investigated and the simulations are

run using the original frames, which is in practice not feasible. Moreover, depth maps are

required to perform the inter-camera prediction, which is a hard problem for complex real

world scenes.

In [57], a scenario of low-cost camera arrays employing a low-complexity encoders and high-

complexity decoder is considered. Captured multi-view video frames are first encoded by

WZ or Intra-codec and then transmitted to decoder. To achieve a good efficiency coding

performance, a wavelet-based WZ video coding scheme is proposed as the core coding

module. WZ frames are DWT transformed and SPIHT method is used to reorder the

transformed coefficients before turbo-coding. Once WZ frames are created, a Log-MAP

algorithm is used to successively decode them with the side information until un accept-

able BER is achieved. The side information is a merge between temporal information and

inter-view information and it is calculated with flexible prediction scheme similar to H.264
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mode decision scheme. Evaluations of performances show that the proposed method sig-

nificantly outperforms conventional H.263+Intra Coding. In [59], the wavelet transform is

combined with turbo codes to encode a multi-view camera array in a distributed way. At

the decoder, a fusion technique is introduced to combine temporal and homography-based

side information.

In [60] new fusion techniques are designed, based on idea that the global coding per-

formance are strongly dependant on quality of side information. The better the side

information is, the fewer bits are required to encode Wyner-Ziv frames. The fusion meth-

ods use temporal and inter-view residuals and a linear combination between the available

values. However, although all these approaches are extremely promising, they are still not

as efficient as standard video coders in terms of rate-distortion performance due to the

fact that distributed source coding techniques rely on a a-priori knowledge of the corre-

lation structure [61]. These approaches are often not simple in practical applications as

asymmetric: in fact some cameras need to transmit their full information to provide side

information to the decoder while others only transmit partial information. Finally most

of the multi-view DVC approaches do not take advantage of the multi-view geometry to

improve the performance of their encoders.

4.3 Side Information Techniques

4.3.1 Multiview Motion Estimation (MVME)

The motion vectors are first computed on Intra camera and then used on Wyner-Ziv

cameras to estimate WZ frames, [62]. The relationship between two cameras is evaluated

by finding disparity vectors. As for motion vectors, they relate each block in the WZ frame

with the one more similar in the Intra camera. Then, each matched block in the Intra

camera is again searched for in a temporally adjacent frame and so the motion vectors are

found. The obtained motion vectors are applied to WZ camera to generate the estimation.

The used frames are called path, and with this technique there are 4 possible paths.

It is possible to increase the number of paths by finding the disparity vectors in the
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Figure 4.2: 4 different paths obtained with two H.264 cameras and two reference frames

in each H.264 cameras.

Figure 4.3: Motion estimation and disparity estimation.

previous instant and applying them to the current time instant to estimate the WZ frame.

Increasing the amount of motion and disparity data makes the results more reliable but

at the same time it increases the amount of data that the decoder must carry out. The

reliability measure used in this work to weight different paths is based on the local variance

of the motion field around each block. In fact, real fields are usually uniform, except at

the edge while incorrectly calculated fields are usually very noisy.
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4.3.2 Side Information with encoder driven fusion

In [1], the authors proposed a fusion technique for merging temporal, homography and

Disparity Compensation View Prediction (DCVP) side information. At the encoder, a

binary mask based on the knowledge of the original video is computed. Then, it is com-

pressed using JBIG [63] and transmitted to the decoder.

The temporal side information is computed with block-based motion estimation algorithm.

Then, the motion vectors are interpolated at mid-point, considering the intersection point

of each motion vector with a virtual frame at mid-distance from both key-frames.

The inter-view side information is performed calculating the homography from left, right

or both cameras. For the spatial information, also disparity compensation view prediction

is considered. DCVP uses the left and the right frames from the side cameras. To perform

the optimal motion vectors, each vector is weighted with weights 0.1, 0.2 until 0.9. For

each weight, PSNR with respect to the central camera is computed. The wight with max-

imum PSNR is kept and used for the rest of the video. To fuse all the side information

(temporal, homography, DCVP), at the encoder a binary mask is created comparing the

Wyner-Ziv frame with the previous and the forward frame. The binary mask is, then,

encoded using JBIG. At the decoder, the binary mask is used to define for each pixel

which reference to use.

The rate-distortion performances overcome monoview DVC by a maximum gap of

around 1dB. PSNR for the proposed method is compared only with temporal and spatial

side information.

4.3.3 Side Information with Motion Compensated Temporal Interpola-

tion and Homography Compensated Inter-view Interpolation

Dufuax at al. [64] have proposed a multiview distributed video coding with three cameras.

Only the central camera is DVC coded while the side camera are coded with conventional

video codec as H.264/AVC.

Temporal side information is generated computing block-based motion vectors by block-

matching algorithm. The WZ frame is at mid-distance between the previous and the

forward frame, so the computed motion vectors are halved.
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Figure 4.4: fusion scheme at the decoder for [1]

The disparity between central and the side view is modeled by homograhy. It can be

applied in three different ways: by taking the transformed pixel in the left view, by taking

the transformed pixel in the right view and by taking the average of the two.

Hence, different modes to create side information are possible and it is possible to switch

modes on a pixel by pixel basis. The proposed fusion technique uses the original frame to

determine the optimal prediction.

4.3.4 View Synthesis

In [65], the authors proposed a view synthesis prediction technique for multiview video

compression. A virtual version of each view is synthesized using previously encoded views

and using the virtual view as a reference for predictive coding. The knowledge of camera

and scene geometry can improve prediction and compression of a given camera from its

neighbors.

Here, a disparity compensation view prediction is used and compared with the view syn-

thesis prediction. With DCVP the value of the intensity of the frame of a given frame

can be predicted from the previous camera. It provides improvements over temporal

prediction but it doesn’t take advantage of important multiview video features. In fact,
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while temporal prediction only exploits translation, disparity can be related also rotation,

zoom or other intrinsic camera properties that are often difficult to model using only the

translational motion compensation. To take advantage of these features, a virtual view

from previously encoded views is synthesized and then using this virtual view, a predictive

coding is performed.

To synthesize Î[c, t, x, y], a depth map D[c, t, x, y] is required that describes how far the

object corresponding to pixel (x, y) is from camera c at time t, as well as an intrinsic

matrix A(c), rotation matrix R(c) and a translation vector T (c) describing the location of

the camera relative to some global coordinate system. Using the pinhole camera model to

project the pixel location (x, y) into world coordinates [u, v, w], we have:

[u, v, w] = R(c) ·A−1(c) · [x, y, 1] ·D[t, c, x, y] + T (c) (4.1)

The drawback of this technique is the difficulty to estimate depth for real world complex

scene. In addition, the quality of the side information depends on the precision of camera

calibration and depth estimation.

4.4 The proposed method with only one WZ camera

The proposed MDVC scheme, reported in [66], is now described and shown in fig.4.5. The

main goal of our work is to generate at the decoder the side information that optimally

blends temporal and interview data. Multi-view DVC performance strongly depends on

the side information quality built at the decoder. At this aim to improve its quality a

temporal view compensation/prediction in Zernike moments’ domain is applied. More

in detail, we first apply state of the art key point extraction and matching algorithms

to estimate the parameters characterizing the effects of the geometrical transformations

among different views in the image planes. Then, to handle rotations, we partition each

view in blocks and for each of them we compute the Zernike moments as a projection of

the function defining the Region Of Interest onto a set of orthonormal functions within

circles whose radii are selected according to the previously estimated zoom factors. ZM

are generally used in several computer vision applications due to the low sensitivity to

image noise and to good feature representation capabilities. The disparity estimation can
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be obtained by comparing ZMs rather than by comparing intensity values. We estimate

disparity in the moment space by minimizing the difference between reconstructed inten-

sity values. Spatial and temporal motion activity will be fused together at the encoder

side to obtain the overall side-information. The adopted fusion scheme compares the tem-

poral and the inter-view residuals (the difference between the two compensated reference

frames) and uses the estimation to have the smallest one. The proposed method will be

evaluated by rate-distortion performances for different bit-rates.

The overall architecture is composed of three cameras which are assumed to be static. The

two side views are coded with a conventional AVC Intra encoder (H.264/AVC) and the

central view is coded using Wyner-Ziv coding, in particular the odd frames are considered

key-frames (KF) and coded H.264/AVC and the even frames are Wyner-Ziv coded. The

Wyner-Ziv frames are transformed (using DCT), quantized and the resulting bit planes

are turbo-encoded. However systematic bits are not transmitted and are discarded, in-

stead they are replaced at the decoder side by the side information, created at the decoder

side with key-frames. The side information is the merge of temporal motion estimation

between key-frames belonging to the same camera and disparity estimation between side

views camera frames and central camera frames. Then, SI is turbo-decoded with the

necessary parity bits to obtain the decoded WZ frame.

4.5 Multi-view Side Information Creation

Multi-view video coding differs from mono-view DVC in the decoder. More precisely the

side information (SI) is constructed not only using the frames within the same camera

but using frames from the other cameras as well. Multi-view side information exploits

intra-view information between the previous and the next decoded key-frames and the

inter-view information between the central Wyner-Ziv frames and side views frames. In

this section, a new multi-view side information creation method based on Zernike moments

temporal view prediction is presented.
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Figure 4.5: Multi-view distributed video coder architecture

4.5.1 Temporal information in Zernike domain

To improve side information quality a temporal view compensation/prediction in Zernike

moments’ domain is applied. More in detail, we partition each view in blocks and for each

of them we compute the Zernike moments for each blocks. The motion estimation can

be obtained by comparing ZMs rather than by comparing intensity values. We estimate

temporal motion in the moment space by minimizing the difference between reconstructed

intensity values.

ZM are generally used in several computer vision applications due to the low sensitivity

to image noise and to good feature representation capabilities. Let x = [x1, x2] denote the

cartesian coordinates of points in the real plane ℜ2. The polynomials form a complete or-

thogonal basis set defined on the unit circle x21+x22 ≤ 1 and belong to the class of complex,

polar separable functions with harmonic angular shape, called circular harmonic function

(CHF), as defined in [67]. Specifically, denoting with Ṽnm(ρ, θ) = Vnm(ρ cos θ, ρ sin θ) the

expression of Zernike polynomials Vnm(x1, x2) of order n and repetition index m in polar
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coordinates ρ =
√

x21 + x22 and θ = tan−1(x2/x1), we have

Ṽnm(ρ, θ) = Rnm(ρ)ejmθ, (4.2)

where Rnm(ρ) is Zernike radial profile defined as:

Rnm(ρ) =


(n−|m|)/2∑

s=0

(−1)s(n−s)!ρn−2s

s!(
n+|m|

2
−s)!(

n−|m|
2

−s)!
if n− |m| even

0 if n− |m| odd,

(4.3)

The orthogonality condition on Zernike polynomials gives:

2π∫
0

1∫
0

V ∗
nl(ρ, θ)Vmk(ρ, θ)ρdρdθ =

π

n+ 1
δnmδlk, (4.4)

where δnm denotes Kronecker delta.

For a continuous function f(x), inside the unit disk centered at x0, the following

Zernike polynomial expansion holds:

f(x) =

∞∑
n=0

+∞∑
m=−∞

Anm(x0)Vnm(x− x0), (4.5)

with expansion coefficients Anm(x0) given by:

Anm(x0) =
n+ 1

π

∫ ∫
∥x−x0∥≤1

f(x)V ∗
nm(x− x0)dx1dx2. (4.6)

Since Ṽnm(ρ, θ) can be rotated by an angle φ by multiplying it by a factor e−jmφ, the

expansion coefficients A
(φ)
nm(x0) of an image f(x) rotated by an angle φ are related to the

expansion coefficients Anm(x0) of f(x) by the following relationship:

A(φ)
nm(x0) = Anm(x0)e

−jmφ. (4.7)

This leads to the well-known rotational invariance property
∣∣∣A(φ)

nm

∣∣∣ = |Anm|.

To calculate Zernike moments, the image (or the region of interest) is first projected

onto the unit disk. Pixels outside the unit circle are not considered.

In practical situations, the reconstruction of the image is performed by using a finite

number of Zernike moments i.e.:

f̂(ρ, θ) =
N∑

n=0

m=+M∑
m=−M

AnmVnm(ρ, θ). (4.8)
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The reconstruction error depends on both the number of employed moments and on the

size of the image.

The temporal motion estimation can be obtained by comparing ZMs rather than by

comparing intensity values. We estimate disparity in the moment space by minimizing

the difference between reconstructed intensity values. Let us consider a NxN block B

then the temporal motion estimation between the reconstructed k-frame f̂k and (k + 1)-

reconstructed frame f̂(k+1) is:

C(x, y,∆x,∆y) =
∑

(x,y)∈B

(f̂k+1(x+∆x, y +∆y)− f̂k(x, y))
2 (4.9)

where −dmax
m < ∆m < dmax

m ,−dmax
n < ∆n < dmax

n are the maximum allowed displace-

ments. The temporal motion estimation is given by:

(∆x,∆y) ∈ arg min
∆x,∆y

(C(x, y,∆x,∆y))

Then, the motion vectors are interpolated at mid point to generate side information.

This is done by considering the intersection point of each motion vector with a virtual

frame at mid-distance from both key frames as shown in fig.4.6.

Figure 4.6: Multi-view distributed video coder architecture

4.5.2 Spatial Information

The spatial side information is constructed by homography between central cameras view

and side cameras views [64]. More in detail, we first apply state of the art key point ex-

traction and matching algorithms to estimate the parameters characterizing the effects of
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Figure 4.7: spatial side information based on homography

the geometrical transformations among different views in the image planes. The homogra-

phy is a 3x3 matrix that relates one view to another one in the homogeneous coordinates

system. Under homography, we can write the transformation of points 3-D from the first

view to the second view as:

X2 = HX1 (4.10)

where X1, X2 ∈ ℜ3. In the image planes using homogeneous coordinates, we have: λ1x1 =

X1, λ2x2 = X2, therefore λ2x2 = Hλ1x1. This means that x2 is equal to Hx1 up to a

scale. In homogeneous coordinates, we get the following constraint:
x2

y2

z2

 =


H11 H12 H13

H21 H22 H23

H31 H32 H33




x1

y1

z1


This model is suitable when the scene can be approximated by planar surface or when the

scene is static and the camera motion is a pure rotation around its optical center. In our

case the first assumption applies.

To compute homography matrix, it is necessary to know almost three matching points

between the two frames. At this aim, salient points based on invariants have been extracted

and then ranked based on the saliency of the key points. We define salient points of a

pattern the ones characterized by wide spatial and angular bandwidths (i.e., the corners).

Thus, we select as salient points those points corresponding to the local maxima of the

spatial density of the gradient energy. In practice, we adopt Harris corner detector for

choosing key-points.
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4.5.3 Fusion scheme

The fusion step merges the different side information (temporal, homography right and

homography left) in order to improve the quality of the final one. The fusion scheme

adopted in this work, follows the method proposed in [1]. The idea is to determine a very

good estimate of the Wyner-Ziv frame, which is called the fusion mask. The decision for

each frame is taken with respect to this fusion mask. At the encoder, each pixel of the

Wyner-Ziv frame belonging to the central view (cam2) at the time k is compared to pixels

coming from the previous key-frame KF cam2
k−1 and forward frame KF cam2

k+1 . If the one from

the previous pixel has a closer value, the binary mask at the pixel position is set to one. On

the other hand, if the forward pixel has a closer value, it is set to zero. The binary mask

then is turbo-encoded. At the decoder, the binary mask is compared with temporal side

information, between the previous frame KF cam2
k−1 of the central camera (cam2) and the

forward frame KF cam2
k+1 of the central view, and spatial side information between the first

camera frame Icam3
k (Intra-coded) at the time k and the central camera frame WZcam2

k at

the same time and the spatial side information between the central camera frame WZcam2
k

and the third camera frame Icam3
k (Intra-coded). The fusion mask defines for each pixel

which reference to use.

Figure 4.8: Fusion scheme of side information
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4.6 Experimental Results

Now we show the performance results for ”Breakdancer” multi-view sequence available at

[68]. The spatial resolution has been halved to 1024x768 to 512x384 pixels, 100 frames

were used for the sequence, the capture rate is 15 frames per second, and only the first

three cameras were used.

Breakdancer contains significant motion so the motion estimation is a difficult and chal-

lenging task. In the DVC architecture, a GOP equal to 2 has been analyzed, where the

central view has been Wyner-Ziv coded while the side views are coded with a conventional

H.264/AVC. As usual for WZ coding, only luminance data has been coded; the total bit-

rate includes the luminance rate for the WZ frames and key frames for the central view

to be coded since the side views are always the same.

The side information for WZ frames is created merging motion estimation in Zernike do-

main and disparity estimation as explained before. For Zernike moments only the first five

orders are considered to have a good image reconstruction. The bit-rate of the multi-view

coded sequence have been systematically varied and 9 reference bit-rates were considered:

80, 200, 300, 800, 1500, 2000, 5000, 10000 and 20000 Kbit/sec, i.e. ranging from a low

bit-rate transmission case where the DVC approach results to be more suitable to a high

bit-rate channel case, where a conventional H.264/AVC coder usually results to be more

appropriate. For each reference bit rate, the H.264/AVC 3-D coded sequences and the

DVC 3-D coded sequence have been considered. Figures 4.9, and Figure 4.10 show the

rate distortion (RD) performance for the analyzed WZ stereo coding architecture, by re-

spectively considering the PSNR and SSIM quality models at different bit-rates. These

metrics have been adopted to evaluate the quality of the decoded 2-D right sequence of

the central camera.

Given that DVC schemes are more suitable for low bit-rate channels because less

amount of data need to be transmitted. On the contrary, the reversal of the trend at

about 3000 Kbit/sec shows that a conventional H.264/AVC coder results to be more ap-

propriate at high bit-rate even if DVC approach would be still preferred in some cases due
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Figure 4.9: RD performance by PSNR evaluation. PSNR is averaged on the whole central

camera sequence.

to the advantage of low-complexity encoders.

Figures 4.9, and 4.10 report the same trend for the WZ coded right sequence of the second

camera.

The proposed method has been compared with other methods present in literature

as [1] and [64], that have been described in paragraphs 4.3.2 and 4.3.3. The RD perfor-

mance shows that our approach based on Zernike moments outperforms the state of art

of side information method. As said before, for low bit-rate MDVC performs better than

conventional H.264/AVC.

4.7 Proposed Approach with all WZ Cameras

In Section 4.4 a multiview distributed video coding where only the central camera is WZ

coded while the side views are conventionally encoded has been presented. Now we propose

a general scheme where all the camera are WZ coded. We adopt the so called symmetric

scheme 1/2, which gives identical roles to all cameras: each of them produces alternatively
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Figure 4.10: RD performance by SSIM evaluation. SSIM is averaged on the whole central

camera sequence.

one Key-Frames followed by one Wyner-Ziv frame. A shift is introduces between cameras,

in order to obtain a frame repartition in time-view domain. In Figure 4.12, the frames

repartition with three cameras. A WZ frame can exploit two interpolation, a temporal

estimation based on the previous KF and the forward KF and an inter-view estimation

based on KF coming from the left and the right views. The two estimations must be

combined in order to build a unique SI for the turbo decoder, while improving the rate

distortion performance.

For the central camera, named camera 2, the approach followed in 4.5 will be applied. The

central camera can exploit information coming from the two side views for the inter-view

estimation. The temporal side information will be calculated in Zernike domain, while

the homography between central view and left view and central view and right view is

performed in order to build spatial side information. To merge all the side information,

a binary mask is created to act as a reference. Then, temporal side information and the

two spatial side information are compared with the reference, as explained before.

For the side cameras, camera 1 and camera 3, a slight different approach is followed. The

temporal side information is usually created with Zernike moments, while the spatial side
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Figure 4.11: RD comparison between the proposed method and the state of art.

Figure 4.12: Multiview scheme with frame repartition. WZ frame and KF frame are

alternated for each camera.
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Figure 4.13: Distributed multiview video coding.

information is computed finding disparity with block matching algorithm between KF

belonging to the considered side camera and KF belonging to centra camera.

4.8 Experimental Results

The sequence Breakdancers, [68], is used for evaluating the performance of the proposed

scheme and for comparing with [1]. Breakdancers contains significant motion. This makes

the motion estimation a difficult and challenging task. The spatial resolution is 512x324

for all the sequence and the temporal resolution is 15 fps. In this research, three camera

views are used and the performance is evaluated only for all the cameras. For DVC

simulations, the following settings have been employed:

• Only luminance data is coded.

• All the cameras all contain WZ frames. All the sequences are split, the odd frame

are WZ coded while the even frame are conventionally encoded in Intra mode. A

shift is introduced between cameras to have a frame repartition in time-view domain.

• The same Quantization Parameter (QP) is used the key frames of the cameras. A

QP is defined per quantization matrix such that the decoded key and WZ frames

have a similar quality.

• The GOP size is equal to 2.
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Figure 4.14: PSNR evaluations of the proposed method respect to the state of art.

The rate-distortions are evaluated by PSNR and SSIM. The performance evaluation

shows that multi-view DVC shows better trend when compared with conventional Intra

codec H.264/AVC at low bit-rates. PSNR of camera 2 is higher than PSNR of camera 1,

the reason of these trends is that the central camera (Camera2) takes advantage of three

contribution, one coming from temporal information and two from inter-view information.

While the side views exploit only one temporal side information and one spatial side

information (coming from the central camera). Also the comparison with the state of art

is carried out and the simulation results show that the proposed method based on Zernike

moments outperforms the state of art.

4.9 Conclusions

In the last years multiview video systems are becoming more and more appealing due

also to the wide spread of smart phones equipped with high definition cameras and the

availability of powerful uplink 3G connections, also 3DTV application can take advantage

of this approach. Respect to mono-view DVC and stereoscopic DVC, multi-view DVC has

to deal with more data coming from different cameras. Hence, the side information quality
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Figure 4.15: RD by SSIM evaluation. The SSIm has been averaged on the all video

sequence.

is an fundamental deal and the fusion of temporal and side information is very important.

In this chapter, some results related to a novel multiview DVC technique based on Zernike

moments have been proposed and compared with the state of art.

Zernike moments allows a good frame reconstruction and motion estimation exploiting

only the first five orders of Zernike polynomials. The introduced system allows a 3-D highly

defined scene based on DVC framework. It is interesting for mobile applications where it

is required a low complexity encoders. Moreover the considered coding approach has been

compared with conventional H.264/AVC. Performance assessments showed that DVC has

a better quality than H.264/AVC for lower bit-rate; at the contrary, for higher bit-rates

conventional stereo video coders result more powerful. Multi-view DVC can be applied

in various scenarios e.g. smart phones video conferencing where mobile devices have

limited computational resources and power. Further, Multi-view DVC shows a better error

resilience and should achieve a good compression efficiency when compared to conventional

codec.
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Chapter 5

Fountain Code based AL-FEC for

Multicast Services in MANETs

5.1 Introduction

The emerging spread of portable devices, e.g. smart phones that can benefit from wireless

connection, and the growing wireless connection availability open new scenarios where

users can benefit from Internet services wherever and whenever they want.

MANETs ( Mobile Ad-hoc NETworks) are autonomous and mobile systems consisting of

router and hosts linked by arbitrary wireless distributions, [69], and have been created

also to answer to previous requirements. Locations of routers and hosts may change

continuously and in unpredictable way forming random and non-optimized nets. Since

MANET is a network without infrastructure that can be easily installed and reconfigured,

it is very appealing for low-budget commercial services. On one side, the development of

ad-hoc networks can be progressively carried out with respect to changing requirements

thanks to their scalability property; on the other side it is necessary to deal with reduced

performances due to multi-hop routing and distributed control. Moreover in wireless

systems, the poor channel quality and link instability, pose challenges to traditional routing

schemes.

In this context, fountain codes are an appealing, capacity-approaching Application Layer

- Forward Error Correction (AL-FEC) solution for data transmission over lossy packet
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networks. The property of being rateless i.e., the ability of adapt the code on the fly,

makes fountain codes an attractive solution for data broadcast/multicast applications in

a MANET where users may experience varying channel conditions and packets loss rate.

A fountain code can be seen as a code that generates a continuous flow of transmitted

data packets, simulating the action of water falling from a spring into a collecting bucket,

[13]. Once the bucket is full, collection process ends and further processing on decoding

the content of the bucket will take place. It does not matter which droplets are falling

into the bucket as long as the bucket is full. Luby Transform (LT) codes are the first

realization of digital fountain codes, [70], and have been applied in my work due to their

near optimality with respect to any erasure channel.

In this chapter, we analyze the use of LT codes, in case of small and long message length,

for robust multicast data transmission over MANET, in order to reduce the end to end

latencies and packet delays, even in presence of significant packet losses. The idea is to

propose a joint source-channel coding method that exploits LT code. In chapter 3, the

basic theme of distributed joint source-channel coding has been studied and a method

that relies on turbo code has been proposed. Hence, with respect to the previous case,

here we present and analyze a joint source-channel coding technique based on LT code

that provides reliable and real-time multimedia content services.

To provide advantages in terms of throughput or robustness in multicast delivery over

ad-hoc wireless network, network coding has recently emerged as a new appealing field,

[71]. In network coding the nodes combine the received packets before the retransmission

to neighboring nodes. Respect to this approach, we can, at the same time, improve

robustness and reduce end to end latencies, proposing a MANET multimedia streaming

that exploits fountain codes, [72].

More specifically, we consider MANET scenarios where nodes are randomly moving and

a single source is transmitting multimedia data to N receiving nodes. Data packets are

sent from source to destination through intermediate nodes that flood data messages into

network exploiting PUMA protocol.

PUMA is a multicast routing protocol that relies on creation of multipaths between router

and the core node of the mesh network, [73]. This algorithm shows high robustness to
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link failure and losses. Every transmitting node sends data packets through shortest paths

existing between router and core node. When a data packet has to reach a mesh member,

the data is flooded in to the mesh and every node keeps update a cache with ID packets

in order to drop duplicates. When a packet flow, protected by an LT code, is sent to an

intermediate destination node, that node has to collect the minimum amount of packets,

eventually sent by different one-hop neighbors, that allows LT decoding, and to reconstruct

the original information flow. Then, it encodes the reconstructed flow by means of an LT

code adapted to the status of the worst link with its one-hop neighbors. Then it scrambles

the encoded packets, based on a p − r Fibonacci sequence, [74], re-transmits them. For

the scrambling phase, the p − r Fibonacci sequences have been chosen, because with an

appropriate selection of p and r parameters values, that sequences allow to scramble the

order of every amount of packets.

The rest of the chapter is organized as follow: in Section 5.2, the MANET scenario is

depicted, in Section 5.3 PUMA protocol is described. Then in Section 5.4 the description

of the LT code design is given and the different LT codes implementations, considered in

this work, are presented; in section 5.5, the proposed idea is illustrated, then in Section

5.6 the experimental results are reported. At the end, conclusions are drawn in Section

5.7.

5.2 MANET

The static concept of a fixed network, that allows the inter-communication among devices

distributed in known positions in the environment, is now substituted by a new concept

of dynamic network, i.e. a network where nodes are dynamically distributed in the en-

vironment because they are not only part of fixed devices but they are also embedded

in mobile and handled devices. The communication capacity of these mobile devices, is

called ”Ubiquitous Communication”.

The interconnection among all these devices, mobile and fixed, is possible thanks to dy-

namic networks capable of supporting wireless technologies.

Internet Engineering Task Force (IETF), that represents the technician community study-

90



5. FOUNTAIN CODE BASED AL-FEC FOR MULTICAST SERVICES IN MANETS

Figure 5.1: Example of MANET applications

ing the evolution of Internet architecture, has defined this new implementation of network

as Mobile Ad-hoc NETwork (MANET), [75]. It is intended to be an autonomous and

mobile system composed of router and host that are connected via radio so to create a

graph (i.e. an arbitrary distribution of wireless connections). Such a network can not take

advantages of classical concepts of data distribution over Internet. In this new approach,

routers are continuously changing positions in an unpredictable way, forming random and

non-optimal graphs. Ad-hoc network is a set of mobile and auto-configuring nodes with-

out use of pre-existence infrastructure. Without infrastructure, nodes can manage control

and networking exploiting distributed algorithms. The underlying idea is that MANET

can be created based on specific application and can be handled based on nodes resources.

MANET has also the advantage of being robust due to its distributed behavior, nodes’

redundancies and the absence of centralized node that can go out of order. All these fea-

tures makes MANET an appealing solution for military and civil protection applications,

[76]. It can be also exploited in commercial applications due to low-cost infrastructure.

The development of ah-hoc network can be progressively increased according to chang-
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Figure 5.2: Mobile Ad-hoc NETwork

ing requirements and this is possible thanks to its scalability property. At the same time,

MANET paradigm has to face limits coming from multi-hop routing and distributed con-

trol.

The high level of dynamism in wireless environments, makes the mobility possible

unpredictable and the access points are time-varying. If it happens, new change has to be

known so that data regarding topological changes can always keep update. In fact, one

of the main deal related to ad-hoc network managing lies in the choice of used routing

algorithms to adapt the network to the dynamism of the nodes and to notify frequent and

random topology changes.

Generally, the amount of signalling data traffic used by a distributed routing algorithm is

very high; at this aim, most of the study are focused on optimizing the routing algorithms

for Ad-hoc networks and on decreasing signalling data traffic. Routing algorithms for

MANET can be classified in three categories: proactive, reactive and hybrid, [77].

5.3 Puma Protocol

The task of a multicast routing protocol for mobile ad hoc networks is to support the

dissemination of information from a sender to all the receivers of a multicast group while
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trying to efficiently use the available bandwidth even in presence of frequent topology

changes. PUMA (Protocol for Unified Multicast Announcement) is a multicast routing

protocol used in MANET able to establish and handle a mesh shared network without

requiring any unicast routing protocol to operate or pre-assignments of core to groups,

[78].

The novelty in PUMA derives from its use of very simple signaling (multicast announce-

ments) to accomplish all the functions needed in the creation and maintenance of a mul-

ticast routing structure in a MANET. Multicast announcements are used to: elect cores

dynamically, determine the routes for sources outside a multicast group to multicast data

packets towards the group, join and leave the mesh of a group, and maintain the mesh of

the group. PUMA protocol shows higher PDR (Packet Delivery Ratio) values with lower

overhead when compared to conventional multicast protocols as MAODV and ODMRP,

[73]. PUMA supports IP multicast service model, allowing at every source to transmit

multicast packets to a certain group, without knowing which are the nodes that belong

to that group. This protocol is based on receiver-initiated approach, i.e. it uses a special

node called core in order to avoid flooding of control and data packets of the sources of

different groups. The selected protocol implements a distributed algorithm to select a core

node among multicast groups’ receivers and to inform of their distance and next-hops to

the core. The main key-factor is that multi paths are created between a router and a

node, based also on the distance between nodes making this algorithm very robust to

link failure and losses in the network. Every router is connected to a core node through

the shortest paths. The set of all the paths between a router and core node is called

mesh. Every transmitting node will send data packets through shortest paths existing

between router and core node. When a data packet has to reach a mesh member, the

data will be flooded in to the mesh and every node will keep update a cache with ID

packets in order to drop duplicates. PUMA exploits a single control message, multicast

announcements(MA), to realize all these functionalities. Every multicast announcements

is composed by a sequence number, group addresses (ID group), core identification (ID

core), core distance and a parent node that selects the preferred neighbor to reach the

core. Through these messages, nodes elect core node, determine the routes for sources
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outside a multicast group to multicast data packets towards the group, join and leave the

mesh of a group, and maintain the mesh of the group. When multicast announcements

are sent through the net, connectivity list are created by nodes in order to set the mesh

and route data into the network. When a node will send data to a group, this packet will

be flooded by nodes with the best MA. Also if a link falls down, the next node with the

second best MA will be chosen. This means that multi paths are created into the network

to reach the core.

5.4 LT code

LT codes were proposed by M. Luby in 2004, [70]. They represent the first practical

realization of digital fountain codes. These codes are rateless i.e. the rate does not need

to be fixed in advance and the encoding symbols can be generated on the fly.

The two parameters that characterize an LT code ensemble are the length of informa-

tion sequence K and ρ the output degree distribution that determines the degrees of the

output nodes in the decoding graph.

Each encoded packet tn is produced from K source data s = [s1, s2, s3, ..., sK ] in two

simple steps:

• For every tn packet, the number of the source packet related to it, is chosen; this

number is the degree dn of the encoded packet. dn is randomly chosen from a degree

distribution ρ(d); the appropriate choice of ρ depends on the source data size K.

• dn distinct input packets are chosen and tn is set equal to the bitwise sum, modulo

2 of those dn packets.

Stopping condition for the encoding algorithm can be specified, e.g., by setting the number

of packets beforehand, or by managing the acknowledgements that each recipient can

send when enough packets have been received. The encoding operation defines a graph

connecting tn encoded packets to the source packets.

Luby showed the existence of an output degree distribution that provides an high

probability of successful decoding at rates just below the channel capacity on erasure
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channels, [79]. In addition, the probability of successful decoding can be made arbitrarily

close to 1 in the asymptotic lengths of data source, i.e. when K → ∞. This distribution

is called ideal soliton distribution and is given by:

Ψi =

 1/K, i = 1

1/i(i− 1), 2 ≤ i ≤ K
(5.1)

However, in practical scenario the ideal soliton distribution performs poorly, due to an

high sensitivity. In fact, at each stage of decoding pruning, the number of singly connected

output nodes is expected to be 1 and whenever it becomes zero prior to decoding end, the

decoding fails. So, it was necessary to introduce a modification, called ”robust soliton”

distribution:

Ti =


R/(iK), 1 ≤ i ≤ K

R − 1

(R/K) ln(R/K), i = K
R

0, KR + 1 ≤ i ≤ K

(5.2)

where R = c
√
K ln K

δ , and c and δ are suitable chosen parameters. The parameter δ is

a bound on the probability that the decoding fails to run to completion after a certain

number K ′ of packets have been received. The parameter c is a constant of order 1.

Decoding is done iteratively by using information of which source blocks are added together

in a received packets. The decoder task is to recover s from t = Gs where G is the matrix

associated with the graph. Both side of the transmission know this matrix, even when it

is pseudo-randomly generated.

In the decoding algorithm, all the messages are either completely uncertain messages or

completely certain messages. Uncertain messages assert that a message packets sk could

have any value, with equal probability; certain messages assert that sk has a particular

value with probability one.

The decoding algorithm finds a tn received packet that is connected to only one source

packet sk; if there is not such tn packet, the decoding fails. Otherwise sk is set equal to

tn and is added to all check nodes tn that are connected to sk; then all the connections

related to source packet sk are removed. After that, the decoding algorithm finds another

tn connected to only one source packet and continues the described process.

The key-factor of the LT codes is the degree distribution in the encoding procedure,
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because it is the only component responsible for the efficiency of these codes. It has

been shown that LT codes perform very well for long messages length K. In our work,

we consider two different degree distribution, for a small message length, we apply an

algorithm for iterative optimization of the degree distribution by using an approach based

on importance sampling [80]; otherwise for long message length, we consider optimized

”Robust Soliton Distribution” as suggested in [81]. The used distributions are based on

”Soliton Distribution”, so the probability of degree-one symbol is less than the probability

for degree-two symbol.

In our work, for small message length case, the source length K is set to 1000 and the

following distribution, Eq.5.3, is applied:

pi =



η1, for i = 1,

η2, for i = 2,

η3, for i = 100,

1
i(i−1) , for i = 3, . . . , 99 and i = 101, . . . , n.

(5.3)

The distribution is then normalized.

The optimized parameters are ηopt = (0.083, 0.487, 0.032). The choice of parameter values

is very important, because a bad choice could lead to poor performance of the decoding.

Otherwise, for long message length case, the source length K is set to 10000 and the

characterized parameters of Robust Soliton Distribution, c and δ, where c suitable positive

constant and δ is the decoding failure probability, are respectively set to 0.02 and 0.01.

5.5 The proposed approach

In this research, we consider Manet scenarios where nodes are moving and a single source

is transmitting multimedia data to N receiving nodes, [72]. Data packets are sent from

source to destination through intermediate nodes that flood data messages into network

exploiting PUMA protocol.

The entire network can be seen as sum of different sub-layers with intermediate destina-

tion nodes that have the task to decode information flow once they have received K(1+ε)

packets i.e. the useful amount of packets for decoding. Then, those intermediate destina-
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tion nodes recode the original information flow, scramble the order of data packets and

finally, re-transmit encoded packets into the next sub-layer. Doing so, every intermediate

destination nodes receive information flow from multiple source nodes. In this way, the

intermediate node can collect the enough amount of packets before the end of the trans-

mission period.

The purposes of this approach is to propose a joint source-channel coding technique based

on LT code that can improve the robustness and reduce the end to end latencies of a

multicast service in a scenario with multiple sensors distributed in the surrounding envi-

ronment.

An exhaustive description of the presented approach is detailed in Section 5.6.

5.6 Experimental Results

The considered network is based on IEEE 802.11 standard. It is composed of three sub-

layers that represent three main steps. In Fig.5.3 the overall network is shown. The entire

Figure 5.3: Example of network composed by three main sub-layers used for simulations.
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network is the sum of 4 sub-networks, each of 16 or 8 nodes that are moving randomly

with a velocity of 5 m/s, according to ”Random Waypoint Model”.

Refereing to Fig. 5.3, node S is the initial source and it performs source flow encoding

and then it transmits the encoded data into the networks. N1,N2, N3...N7 nodes perform

decoding and they send data into the new sub-network. D1, D2, D3 and D4 are the final

destination nodes with the task to decode the entire multimedia content.

Three scenarios have been considered to evaluate our method: the first one is the ideal

case where no packet loss is supposed to be; the second case is, instead, corrupted by

packet loss and in particular in every sub-networks, a different Packet Loss Rate (PLR)

has been added and consequently a different overhead has been considered for every step.

The simulated losses are due MAC collisions, random losses and link failures. In the

third scenario, the number of packets is increased till reaching 10000 pkts (packets) and

the network is subject to different packet loss rates. In addition, we have evaluated the

performances of scrambling technique for routing data packets compared to data routing

without scrambling for each proposed scenarios.

In the first part of the network, the source encodes data flow using modified LT codes

for a reduced number of packets, [80]. Once LT coding has been done, node S transmits

1000 packets plus an overhead of 200 packets that represents almost 20% of useful packets.

Data packets are routed among mobile nodes till reaching intermediate nodes N1, N2 and,

N3. At this point, intermediate receiving nodes will decode multimedia content once the

necessary number of packets has been reached to regenerate the entire data flow. Source

node (S) floods packets into the network without scrambling the order so that the net

results robust to losses but there is no time saving.

In the second step, the intermediate nodes will become sources of the second sub-

network and they will encode data flow exploiting the same LT encoding matrix. Data

packets are sent through the network without following a sequential order but a random

order i.e. scrambling of data packets has been performed according to Fibonacci p − r

sequence,[82], [74]. Every stream has a different permutation, which is generated by three

keys. The choice of the keys is optimized for each sub-network. Every destination node

does not know the used keys, and can generate different keys when it re-transmits the
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collected packets. This technique has been applied also in the next step to N4, N5, N6

and N7 nodes when they becomes sources of the other two sub-networks but using different

Fibonacci sequence values.

Packets sent from new sources and characterized by 25% of overhead, are transmitted

into the net till they reach N4, N5, N6 and N7 destination nodes. Receiving nodes of

the second step will LT decode and in the third step they are the sources of two new

sub-networks and they LT encode and relay coded data flow in the network.

The third step is characterized of two different sub-nets. N4 and N5 nodes share the

same encoding matrix and a different encoding matrix is shared by N6 and N7. N4 and N5

send data packets plus 19% of overhead inside a smaller sub-net composed of 8 nodes. The

final receivers are D1 and D2 with the task to LT decode multimedia content. Likewise,

N6 and N7 will send, following Fibonacci p − r sequence, data flow into the left sub-net

to the final receivers D3 and D4.

The transmission velocity is equal to 10 pkt/s. For simulations, NS-2 software [83] has

been used on a laptop Intel Core 2, CPU T5200 with a frequency clock of 1.66 Hz and

1GB for RAM. For all the simulations, decoding starts once 1100 pkts have been collected

(10% of overhead). In the first step, encoding time of the source for 1200 packets is 17.03

seconds, the transmission lasts 120 seconds and no losses for collision at MAC level or

other losses are considered.

5.6.0.1 First Scenario (no PLR)

For each step of the network, the arrival times of the k(1 + ε) = 1100 packets (ε = 0.1)

have been evaluated comparing the case where scrambling technique is performed and the

case where no scrambling is considered, the results are shown in Figures 5.4, 5.5 and, 5.6.

Decoding time of the first 1100 packets has been evaluated for the 3 destination nodes

(N1, N2 and N3) of the first step and reported in Table 5.1.

In the second step encoding times of 1250 packets have been evaluated for N1, N2 and

N3, Table 5.2.

In this second phase, transmission lasts 125 seconds and 1% of packets is lost due to
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Figure 5.4: Comparison of the arrival time of k(1+ε) packets between network that per-

forms scrambling and the case where scrambling is not performed for the second step.

Figure 5.5: Comparison of the arrival time of k(1+ε) packets between network that per-

forms scrambling and the case where scrambling is not performed for 3A sub-network of

the third step.

N1 N2 N3

Decoding time (sec.) 5.78 5.79 5.80

Table 5.1: Decoding time in the first step

N1 N2 N3

Encoding time (sec.) 18.83 18.83 18.83

Table 5.2: Encoding time in the second step
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Figure 5.6: Comparison of the arrival time of k(1+ε) packets between network that per-

forms scrambling and the case where scrambling is not performed for 3B sub-network of

the third step.

N4 N5 N6 N7

Decoding time (sec.) 6.25 6.14 6.00 6.00

Table 5.3: Decoding time in the second step

MAC collisions. Each receiver obtains data from all the sources. Decoding times for N4,

N5, N6 and N7 addresses nodes are reported in the Table 5.3.

Let us consider the 3A sub-net with D1 and D2 as final receivers. Encoding times of

1190 pkts for N4 and N5 nodes have been evaluated and reported in the Table 5.4.

Transmission lasts 119 seconds and 1% of pkts are lost due to MAC collisions, and

each addressee node obtains data from all the source. Decoding time for D1 and D2 are

reported in Table 5.5.

Finally, sub-net with final addresses D3 and D4 is considered. Encoding times of 1144

pkts for N6 and N7 nodes are reported in Table 5.6. Transmission lasts 114 seconds and

1% of packets are lost for MAC collisions. Each addressee node obtains data from all the

N4 N5

Encoding time (sec.) 17.12 17.12

Table 5.4: Encoding time for 3A in the third step

101



5. FOUNTAIN CODE BASED AL-FEC FOR MULTICAST SERVICES IN MANETS

D1 D2

Decoding time (sec.) 5.87 5.79

Table 5.5: Decoding time for 3A in the third step

N6 N7

Encoding time (sec.) 15.92 15.92

Table 5.6: Encoding time for 3B in the third step

sources. Decoding time of the first 1100 pkts for D1 and D2 are reported in Table 5.7.

5.6.0.2 Second scenario (with PLR)

For the second scenario, different PLRs have been added in each part of the network. In

the sub-network related at step 2, PLR is equal to 11%; in the sub-network called 3A ,

PLR=6% and finally in 3B sub-network PLR=3%. In figures 5.7, 5.8 and, 5.9 the results

are shown. As for the first scenario, performance comparisons have been made evaluating

routing with scrambling approach and routing without scrambling.

In Figures 5.10, 5.11 and 5.12 arrival times comparisons at different packet loss rates,

are presented for each step of the network. Performance results show that applying scram-

bling technique to data routing, arrival times of packets to destination are reduced in

contrast to conventional multicast routing.

5.6.0.3 Third Scenario (Increased number of pkts and with PLR)

LT codes are generally designed for high number of packets (almost 10000 pkts) and for

the previous scenarios an optimized version of LT codes has been implemented. In this

final scenario we have increased the number of packets delivered into a network subject

to a different packet loss rates and the degree distribution for LT code is the ”Robust

D3 D4

Decoding time (sec.) 5.49 5.62

Table 5.7: Decoding time for 3B in the third step
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Figure 5.7: Comparison of the arrival time of k(1+ε) packets between network that per-

forms scrambling and the case where scrambling is not performed for the second step.

Figure 5.8: Comparison of the arrival time of k(1+ε) packets between network that per-

forms scrambling and the case where scrambling is not performed for 3A sub-network of

the third step.

Figure 5.9: Comparison of the arrival time of k(1+ε) packets between network that per-

forms scrambling and the case where scrambling is not performed for 3B sub-network of

the third step.
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Figure 5.10: Arrival times comparison at different PLRs in network step 2.

Figure 5.11: Arrival times comparison at different PLRs in network 3A of the third step.

Figure 5.12: Arrival times comparison at different PLRs in network 3B of the third step.
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Figure 5.13: Comparison on arrival times for 10000 packets between network that performs

scrambling and the case where scrambling is not performed for the second step.

Figure 5.14: Comparison on arrival times for 10000 packets between network that performs

scrambling and the case where scrambling is not performed for 3A sub-network of the third

step.

Soliton” with optimized characteristics parameters c and δ as suggested in [81]. In the

second step of the network, PLR is equal to 11%; in network step 3A, PLR = 4% whereas

in network step 3B, PLR = 3%. The used simulation parameter values are the same

of previous scenarios instead simulation times are increased due to the increased number

of pkts. For this case, LT decoding starts on average once 10600 packets are collected

(ε = 0.06). Based on these considerations, we expected consistent performance values

with previous cases and the performed simulations have confirmed our expectations. In

Figures 5.13, 5.14 and 5.15, performance comparisons have been made evaluating routing

with scrambling approach and routing without scrambling.
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Figure 5.15: Comparison on arrival times for 10000 packets between network that performs

scrambling and the case where scrambling is not performed for 3B sub-network of the third

step

5.6.1 Remarks

In the first step of the proposed network, no scrambling is performed and this means that

there is no time saving for packets decoding. However, the net is robust to losses for two

main reasons: first, PUMA is based on a multi-path approach so that destination node

receives packets from more sources and second, a modified LT coding is applied. In the

second sub-net composed of 16 nodes, the number of collisions is greater than 8 nodes

sub-net, nevertheless packet loss is 1% in both cases. The reason lies in the fact that in

16 nodes sub-net all the addressees obtain data from all the tree sources instead in the

third step, only 2 nodes are sources for each 8 nodes sub-net.

5.7 Conclusion

The present chapter has addressed stream reliability problems for multimedia delivering in

a MANET. In particular, a method based on joint source-channel coding based on LT code

has been described. Some applications as mobile wireless sensors networks distributed in

bounded environments can benefit from this technique because introducing a joint source-

channel coding and a scrambling approach, it is possible to provide robust and real-time

multimedia content services. Multimedia communications can benefit from our proposed

method that reduces receiving time of useful packets quantity. At the same time, it
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maximizes the quality of service reconstructing lost packets. Moreover, a key-factor of

the proposed approach is the use of the considered scrambling technique that allows an

improvements on delivery times.
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Chapter 6

Image Search

6.1 Introduction

Content discovery, delivery, and streaming are the basic functionalities of current content-

centric Internet services. The first generation of retrieval systems was based on the use

of metadata describing the semantic content of a multimedia document, usually extracted

by manual procedures. However, Future Internet content aware services will require more

efficient functionalities for inspection, crawling, recognition, categorization, and indexing

of digital content with minimal human intervention. Thus, their implementation requires

fast and reliable algorithms for locating and tracking complex objects irrespective of their

actual orientation and scale. The estimation of position, rotation, and scale of a given tem-

plate in a complex scene is a classic task in computer vision applications as printed circuit

board inspection, autonomous vehicle guidance, remote monitoring, and surveillance.

At this aim, different techniques have been proposed. Matching the details of an ob-

served image with a given template can be performed by a straightforward solution in

which the likelihood functional map, or any other similarity index such as the Normalized

Cross Correlation (NCC) or the Sum of Absolute Differences (SAD), related to a discrete

set of rotated and scaled versions of the template is computed. Although conceptually

simple, this solution is highly inefficient and susceptible of converging to local maxima

if either scale or orientation are under-sampled. To face the computational complexity

problem, sequential detection and coarse to fine estimation procedures based on multires-
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olution hierarchical template matching have been investigated [84], [85], [86]. Towards

this goal, a technique for reducing the possible candidate locations based on thresholding

of NCC between the unrotated template and a sliding window of the searched image has

been proposed in [87]. As an alternative to full search, different optimization schemes,

such as genetic [88] and particle swarm [89] algorithms have been introduced.

More effective techniques based on the algebraic invariants theory allowing the design

of rotation and/or scale invariant template decomposition have been investigated [90]. In

general, a feature vector of rotation and scale invariants first extracted from the template.

The same procedure is applied to a sliding window in the under-test image. Then, for

each location, the similarity between the template and the sliding window feature vectors

is computed and the maximum is extracted. Template detection can then be performed

by thresholding the maximum similarity index, while the position corresponding to that

maximum constitutes the estimated pattern location. Once the template location has

been determined, orientation and scale can be finally estimated.

These techniques mainly differ for the invariants constituting the feature vector. Simple

invariants derived from the image central moments were proposed by Hu in 1962, [91].

A comprehensive reference concerning invariant moments can be found in [92]. Among

the others, invariants based on Zernike moments have attracted the interest of many

researchers. In fact, it has been demonstrated that Zernike moments and pseudo-Zernike

moments have the best overall performance in the retrieval among the used moments, [93].

These moments are obtained by the decomposition of a template on complex Circular

Harmonic Functions (CHFs) that form a complete orthogonal basis on a unit disc. Due

to a general property of the CHFs, a pattern can be easily steered by multiplying the

expansion coefficients by complex exponential factors whose phase is proportional to the

rotation angle. As a consequence, rotation invariants can be easily obtained by considering

the magnitude of the expansion coefficients.

Moreover, when orthogonal expansions based on CHFs are employed, the localization

procedure proposed in [94] for Gauss-Laguerre CHFs can be generalized, and a fast Max-

imum Likelihood (ML) procedure for joint location, orientation, and scale estimation can

be devised. For instance, in the case of Zernike CHFs, in the query image the circular
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area surrounding the object to be localized is first selected, then the portion of the image

inside the circle is approximated by a truncated expansion in terms of Zernike polynomials

up to a given order. The Likelihood functional is then expressed in terms of Zernike ex-

pansion coefficients. The steering property of the CHFs allows to apply fast optimization

techniques based, for example, on the Newton-Raphson method.

Many applications require detection and localization of complicated patterns that have

to be distinguished from similar objects differing only for a few fine details. In this case,

direct use of Zernike moments for computing the ML functional requires a great number

of expansion terms.

In this chapter, two image recognition techniques based on Zernike moments and

Gauss-Laguerre Transform are analyzed, [95], [96], [97]. Here, in order to manage ob-

jects of arbitrary shape, while reducing the computational cost, we partition the pattern

to be localized into small square blocks using a quadtree decomposition.

When dealing with Zernike moments, the size of each block is adapted to the local

image content and is controlled by the quadratic norm of the error corresponding to the

truncated Zernike expansion, [95]. The quadtree blocks are then ranked with respect to

the energy of the low pass filtered gradient or, equivalently, to Fisher’s information on

location and rotation. ML estimation of the location and the orientation of the first block

of the quadtree is performed by means of an iterative quasi-Newton procedure making use

of Zernike moments. The estimation algorithm is an extension of the technique proposed

for Gauss-Laguerre approximation in [94].

Compared to the traditional ML technique based on the matching of a candidate

image with a whole set of rotated versions of the pattern, this procedure requires a local

maximization of functionals derived by Zernike coefficients.

The estimated location and orientation are then used for verifying whether the current

image contains the second block of the rank ordered template quadtree list. If the quadratic

norm of the difference between the subset of the reference template, constituted by the

first and the second square of the quadtree, and the current image falls below a predefine

threshold, the next block of the quadtree list is analyzed. The procedure ends either if the

energy of the difference exceeds a threshold or the last list element has been processed.
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Then a novel method based on a Riesz hypercomplete basis whose elements are the

Laguerre-Gauss Circular Harmonic functions is presented, [97].

Laguerre-Gauss Circular Harmonic functions are complex, polar separable filters char-

acterized by harmonic angular shape, a useful property to build rotationally invariant

descriptors. Using this basis we can efficiently represent complex images containing many

details. In fact, given a region of interest of an image, the support is partitioned into

smaller and smaller square blocks whose width is controlled by the norm of the error cor-

responding to a truncated expansion in terms of Gauss Laguerre CHFs.

To further reduce the computational complexity of the Maximum Likelihood estimation

implementation, the elements of the quadtree blocks are ranked with respect to their

amount of Fisher’s information on location and rotation, proportional to the energy of

the low pass filtered gradient Then, a procedure based on the sequential matching of each

block of the ranked quadtree list is applied.

The chapter is organized as follows: two similar methodologies for image search are

described. First, the mathematical properties of Zernike polynomial expansion are sum-

marized in Section 6.2. In Section 6.3 the overall scheme of the proposed approach is

presented. In subsection ?? the quadtree based procedure is described, and the template

detection and orientation and location estimation algorithms are illustrated in subsection

6.3.2. Performances assessments are reported in Section 6.4. Then, the image retrieval

procedure based on Laguerre-Gauss polynomials is explained and in Section 6.5.1, their

mathematical properties are summarized. In Sections 6.5.2 and 6.5.3, the followed al-

gorithm is reported and in Section 6.6 the experimental results are illustrated. Finally

conclusions are drawn in Section 6.7.

6.2 Zernike polynomial expansion

Let x = [x1, x2] denote the cartesian coordinates of points in the real plane ℜ2. The

polynomials introduced by Zernike in 1934 form a complete orthogonal basis set defined

on the unit circle x21 + x22 ≤ 1 and belong to the CHF class, i.e., to the class of complex,

polar separable functions with harmonic angular shape, as defined in [98], [67]. Specifi-
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cally, denoting with Ṽnm(ρ, θ) = Vnm(ρ cos θ, ρ sin θ) the expression of Zernike polynomials

Vnm(x1, x2) of order n and repetition index m in polar coordinates ρ =
√

x21 + x22 and

θ = tan−1(x2/x1), we have

Ṽnm(ρ, θ) = Rnm(ρ)ejmθ, (6.1)

where Rnm(ρ) is Zernike radial profile defined as:

Rnm(ρ) =


(n−|m|)/2∑

s=0

(−1)s(n−s)!ρn−2s

s!(
n+|m|

2
−s)!(

n−|m|
2

−s)!
if n− |m| even

0 if n− |m| odd,

(6.2)

in Figure ?? some examples of Zernike polynomials are shown.

The orthogonality condition on Zernike polynomials gives:

2π∫
0

1∫
0

V ∗
nl(ρ, θ)Vmk(ρ, θ)ρdρdθ =

π

n+ 1
δnmδlk, (6.3)

where δnm denotes Kronecker delta. The radial polynomials Rnm(ρ) satisfy the relation:

1∫
0

Rnl(ρ)Rml(ρ)ρdρ =
1

2(n+ 1)
δnm. (6.4)

For a continuous function f(x), inside the unit disk centered at x0, the following

Zernike polynomial expansion holds:

f(x) =

∞∑
n=0

+∞∑
m=−∞

Anm(x0)Vnm(x− x0), (6.5)

with expansion coefficients Anm(x0) given by:

Anm(x0) =
n+ 1

π

∫ ∫
∥x−x0∥≤1

f(x)V ∗
nm(x− x0)dx1dx2. (6.6)

Since Ṽnm(ρ, θ) can be rotated by an angle φ by multiplying it by a factor e−jmφ, the

expansion coefficients A
(φ)
nm(x0) of an image f(x) rotated by an angle φ are related to the

expansion coefficients Anm(x0) of f(x) by the following relationship:

A(φ)
nm(x0) = Anm(x0)e

−jmφ. (6.7)

This leads to the well-known rotational invariance property
∣∣∣A(φ)

nm

∣∣∣ = |Anm|.
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Figure 6.1: Zernike filters with order up to n = 3 and m = 3, real part and imaginary

part, respectively.

To calculate Zernike moments, the image (or the region of interest) is first projected

onto the unit disk following the approach proposed in, [99], [100]. Pixels outside the unit

circle are not considered.

The accuracy of Zernike moments computed via Equation (6.6) is affected by the

geometric approximation error, [101], [102]. This is due to the fact that the area covered

by the square pixels involved in the computation of Zernike moments is not exactly the

unit disk. However, by computing Zernike moments in polar coordinates this error can be

minimized [101].

In practical situations, the reconstruction of the image is performed by using a finite

number of Zernike moments i.e.:

f̂(ρ, θ) =

N∑
n=0

m=+M∑
m=−M

AnmVnm(ρ, θ). (6.8)

The reconstruction error depends on both the number of employed moments and on the

size of the image.
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6.3 The Proposed approach in Zernike domain

In this section the proposed approach in Zernike domain is described, [95]. In Figure 6.2

the overall scheme of the proposed method is shown. Our approach is based on Zernike

moments, used to compute the likelihood between the query image and the images in

the database. Zernike moments are computed by using the quadtree decomposition, this

ensures that, for each point, Zernike moments are a good representation of the neighbor-

hood. Once Zernike quadtree decomposition is performed, the likelihood map is computed

and used for the image recognition and for the rotation angle estimation.

Figure 6.2: The architecture of the proposed image retrieval system. First, salient points

are extracted by means of Harris detector and a Zernike moments quadtree decomposition

is applied. Then a sequential detection and estimation procedure is performed to retrieve

the candidate image inside the database.

6.3.1 The quadtree decomposition

When dealing with image retrieval techniques, descriptors based on Zernike moments

can represent a very powerful tool due to their discriminating power, noise resilience,

information redundancy, and reconstruction capability. However, in order to manage

complex objects of arbitrary shape that have to be distinguished from similar objects
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differing only for a few fine details, the required number of Zernike moments is very high.

Hence, splitting the region of interest containing the under-test object into smaller squares

using a quadtree decomposition, it is possible to reduce the computational complexity, see

Figure 6.3.

Figure 6.3: Example of how an image can be split in more blocks according to a quadtree

decomposition.

Then, for each square of the decomposition, the truncated Zernike expansion is applied

to the portion of the pattern inside the circumcircle of the actual square.

Let us define with f(x) the original image, with f̂(x) the reconstructed image with

a predefined number of Zernike moments, and with wT (x) a square window of unitary

width. Then, given a square region of interest R, centered on ξ and with width δ, let

P (R) be the predicate

P (R) =

{∥∥∥∥wT

(
x− ξ

δ

)[
f(x)− f̂(x)

]∥∥∥∥2 < γ

}
, (6.9)

which is True if the squared norm of the approximation error is smaller then the threshold

γ.

At the first step, P (R) is evaluated. If P (R) = True the approximation is good enough

and the decomposition stops. Otherwise, to reduce the approximation error, without

increasing the number of Zernike moments, we split R into four squares Rk, k = 1, ..., 4,

with halved width and we apply the truncated Zernike expansion in each of them. If for

any region Ri, P (Ri) is False we further partition that region in other four regions Rik ,

k = 1, ..., 4 and iterate the whole procedure.
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As illustrated in Figure 6.4, using the quadtree decomposition, R is partitioned into

smaller and smaller square regions R(n), so that for each region R(n), P (R(n)) = True.

(a) Lena’s image (b) Lena Quadtree decomposition

Figure 6.4: Example of quadtree decomposition by means of Zernike moments computation

on Lena image.

A sequential procedure that verifies whether the candidate image contains each square

of the quadtree list and refines, step by step, the location and orientation estimates, [96],

is employed in order to search for complex patter in large multimedia database. In order

to design a fast sequential detection and estimation procedure and to reduce the retrieval

time, we propose to start the search of the quadtree elements starting from those which

are simpler to locate, i.e. those elements that can represent the local properties of the

pattern.

Pattern location, rotation, and scale estimation accuracies are strictly related to Fisher’s

information and this quantity is proportional to the magnitude of the energy of the image

gradient and to the energy of the angular derivative, or, equivalently, to the square of the

effective spatial and angular bandwidths [94].

Thus, defining as salient points of a pattern those points characterized by wide spatial

and angular bandwidths, the quadtree building procedure can be summarized as follows:

• for each reference pattern, a ranked list of salient points is computed on the basis of

the local Fisher’s information on location, translation and scaling;

• Zernike expansion based on Quadtree decomposition is applied to the neighborhood

of each salient point;
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• the sequential procedure verifying whether the candidate image contains each neigh-

borhood of each salient point as described in the next paragraphs is applied until a

stopping condition is verified.

In practice, we employ Harris corner detector algorithm, [103], to select salient points

motivated by the fact that corners meet the wide spatial and angular bandwidth condition

of salient points.

To illustrate the rational of the use of Harris detector we observe that, for a template

f(x), eventually rotated by an angle φ, Fisher’s information matrix on its location Jb

is proportional to the energy tensor of the image gradient ∇fx = [fx1fx2 ]
T . In fact, as

demonstrated in [94],

Jb =
4

N0
RφE∇fxR

T
φ , (6.10)

where Rφ is the rotation matrix, defined as:

Rφ =

 cosφ sinφ

− sinφ cosφ

 . (6.11)

and

E∇fx =

∫ ∞

−∞

∫ ∞

−∞
Mf (x)dx1dx2, (6.12)

where Mf (x) is the spatial density of the gradient energy:

Mf (x) = ∇fx(x)∇fT
x (x). (6.13)

Thus we select as salient points those points corresponding to the local maxima of the

spatial density of the gradient energy, irrespective of the rotation matrix. This in turn

implies that we look for those points characterized by positive, large eigenvalues of Mf (x).

By denoting with λ1(x) and λ2(x) the eigenvalues of Mf (x) we select as salient points the

local maxima of Harris corner detector functional, [103]:

Γf (x) = λ1(x)λ2(x)− k(λ1(x) + λ2(x))
2, (6.14)

where 0 < k < 0.25 is a constant.

The main advantage of choosing Γf (x) is that it can be evaluated without explicitly

computing the eigenvalues. In fact it can be demonstrated that

Γf (x) = det[Mf (x)]− k trace2[Mf (x)]. (6.15)
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In addition, to prevent false detections, only those points for which Γf (x) exceeds a

predefined threshold are considered. Moreover, since Fisher’s information on location is

proportional to the integral ofMf (x) on the template support, in order to sort the quadtree

elements with respect to the achievable location estimate accuracy, salient points can be

equivalently ranked based on the local average of Γf (x).

As an example, in Figure 6.5(b) the neighborhoods of the first ten salient points ranked

with respect to Γf (x) are shown. In Figure 6.5(c) the reconstructed image by means of

the first 5 terms of Zernike expansion are also reported.

(a) Original image (b) Original neighborhood

(c) Reconstructed neighborhood

Figure 6.5: In this Figure, the original image (a), the obtained neighborhoods with Zernike

expansions (b) and the reconstructed neighborhoods (c) of the salient points are shown.

The size of the neighborhoods is chosen according to the quadtree decomposition.

Finally we observe that, since the eigenvalues of Mf (x) are rotation invariant, Harris

detector is rotation invariant too.
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6.3.2 Rotation and Location Estimation Procedure

To detect the pattern belonging to the first block of the ranked quadtree list, an iterative

quasi-Newton procedure with also the Maximum Likelihood estimate of both location and

orientation of the pattern of the considered block in each candidate image is calculated,

since rotation of a pattern simply produces a linear phase shift of each Zernike expansion

coefficient, proportional to the order of the angular harmonic.

Let f(x) be the candidate image that potentially contains a noisy, translated, and ro-

tated version of the quadtree detail g(x) of the template. At the position b and orientation

φ we have:

w[Rφ(x− b)]f(x) = ω[Rφ(x− b)]g[Rφ(x− b)] + v(x), (6.16)

where w(x) is a generic window, v(x) is the observation noise modeled as a white, zero-

mean Gaussian random field with power density spectrum equal to (N0/4) and Rφ is the

rotation matrix (6.11).

The estimation of b and φ can be performed by maximizing the Log-Likelihood func-

tional Λ[f(x);b, φ]:

lnΛ[f(x);b, φ] = − 2

N0

∫ ∫
|w[Rφ(x− b)|2 |f(x)− g[Rφ(x− b)]|2dx. (6.17)

Thus the Zernike Moments Likelihood Map is defined as follows:

ZMLM(b) = max
φ

{
ln Λ̂[f(x);b, φ]

}
(6.18)

where Λ̂ is the Likelihood functional computed by using Zernike moments. The detailed

description of the representation of Λ̂ in terms of Zernike moments and the derivation of

the rotation estimator are reported in A.

The estimated location b̂ is then given by the value of b corresponding to the maximum

of ZMLM(b):

b̂ = Arg

{
max
b

[ZMLM(b)]

}
. (6.19)

Then, in the case of content discovery, the template image is, first, compared with all

the images in the database through ZMLMMax = Max[ZMLM(b)] evaluated on the

first block of the quadtree. The database images are ranked according to the associated
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ZMLMMax. The one showing the highest value is retained as the best candidate for

matching the first ranked quadtree block, while the location b̂1 of the absolute maximum

and the corresponding φ̂1 = φ̂(b̂1) constitute the initial estimate of the pattern position

and orientation.

This estimate is iteratively refined, block by block. Specifically, let b̂k be the estimate

of the location of the first block and φ̂k the estimate of the template orientation after

processing the first k blocks of the quadtree.

The estimate [b̂k−1, φ̂k−1] is employed to verify whether the candidate image contains

the k-th block of the rank ordered list of the quadtree elements as follows. Let δxk be the

displacement of the center of the k-th block of the quadtree with respect to the center of

the first block. Then, the predicted location c̃pk of the center of the k-th block on the basis

of the processing of the first (k − 1) blocks is computed:

c̃pk = b̂k−1 +Rφ̂k−1
δxk, (6.20)

where Rφ̂k−1
is the rotation matrix.

The ZMLM of the k-th block is evaluated only for a limited set of possible loca-

tions, falling inside a small neighborhood of c̃pk. In addition, the quasi-Newton procedure,

adopted for building the ZMLM of the n-th block, is initialized using φ̂k−1. The neigh-

borhood width δwk accounts for the prediction error and can be set proportional to its

standard deviation for which the following relationship holds:

σ2
c̃k

= σ2
b̂k−1

+ σ2
φ̂k−1

|δxk|2 , (6.21)

where σ2
b̂k−1

and σ2
φ̂k−1

are the variances of b̂k−1 and φ̂k−1, respectively.

Computation of these variance would require the knowledge of the statistics of the

image data base. In practice, the neighborhood width can be computed by resorting to

the inverse of Fisher’s information. At this aim we recall that the information on template

location Jb is given by (6.10), while the information Jφ on the orientation of a template

g(x) is equal to, [94]:

Jφ =
4

N0
Egφ (6.22)
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where Egφ is the total energy of the template angular derivative

Egφ =

∫ ∞

0

∫ 2π

0

[
∂g(ρ, θ)

∂θ

]2
ρdθdρ. (6.23)

It can be easily verified that Egφ is proportional to the effective angular bandwidth of

the template. In addition Jφ can be expressed in terms of the coefficients Zg
nm of Zernike

expansion of g(x) as follows:

Jφ =
4

N0

∞∑
n=0

+∞∑
m=−∞

πn2

(n+ 1)σ2
|Zg

nm|2 . (6.24)

Further details on Fisher’s information matrix and on Rao-Cramer lower bound for

the estimation of the location, rotation, and scale of a pattern in [94].

If the energy of the difference between the subset of the reference template, constituted

by the first k blocks of the quadtree and the current image falls below a predefine threshold,

location, and rotation of the image are refined and the next block analyzed.

In particular, let Zgh
nm be Zernike coefficients of the h-th block of the quadtree associated

to g, at the k-th stage the following functional is maximized:

lnΛ(k)[f(x);b, φ] = − 2

N0

N∑
n=0

+M∑
m=−M

K∑
h=1

π

(n+ 1)σ2

∣∣∣Zf
nm(b+Rφδxh)− Zgh

nmejmφ
∣∣∣2 .
(6.25)

In practice, only a few blocks, determined by the stopping condition, are employed in

order to refine the initial estimate. We intend for stopping condition: the energy of the

gradient of the subset of the template image constituted by the firstK blocks of the ordered

quadtree list. If the energy exceeds a fraction of the energy of the gradient of the whole

template we stop adding blocks to the subset. In addition, when the magnitude of δxk is

sufficiently high, the actual rotation can be estimated on the basis of the orientation of the

line connecting the centers of the first and the k-th block. Nevertheless, evaluation of (6.25)

is required in order to decide about the presence of the searched template in the current

image. In fact, if at k-th stage lnΛ(k)[f(x); b̂k, φ̂k] falls below a predefine threshold, or

equivalently the energy of the difference between the first k blocks of the template quadtree

and the current image exceeds a corresponding threshold, the current image is discarded

and the next item of the dataset corresponding to the highest ZMLMMax is considered
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as candidate for pattern matching. The procedure ends all the blocks in the list have been

processed.

6.4 Experimental Results

6.4.1 Experiments and performance evaluation

The performance evaluation the COREL-1000-A Database, [104] has been employed. It

consists of 1000 JPEG colored images of size 384x256 or 256x384 pixels, split in 10 cate-

gories with 100 images each, see Figure 6.6. For each original image a second copy, rotated

with respect to the original by a random angle has also been inserted in the data base

resulting in a testset of 2000 images. This database has been chosen because it covers a

wide range of semantic categories, from natural scenes to artificial objects.

In the performed simulations the following conditions and the following set of param-

eters have been employed:

• two levels quadtree decomposition with Zernike filter diameters respectively of 27

and 13 pixels;

• quadtree splitting threshold for the Euclidean distance between the original image

and reconstructed image equal to 0.007, (see Equation 6.9);

• the maximum order of truncated Zernike expansion is equal to n = 5, this value

has been chosen so that sampling step, given by the size of the filter, is sufficient to

follow all the oscillations of the filter itself;

• the image is represented in YUV format and the retrieval procedure is only applied

to the luminance component.

These setup values have been experimentally determined because they minimized the

prediction errors.

Although the sequential matching should be applied to the whole set of quadtree

blocks, the analysis of the performed simulations shows that a limited number of blocks

(e.g., usually 5) is in general sufficient in order to achieve an high probability of finding the
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correct image. This number is directly related to the threshold η of the stopping condition

and specifically, it has been set to η = 60% in the reported simulations.

For the performance assessment, the average percentage of recovered relevant images,

the average percentage of angle estimates error less than 5 degrees, and the mean square

error of angle estimate have been computed. The results are summarized in Table 6.1.

Table 6.1: Performance results of the proposed method.

Average percentage of recovered relevant images 95%

Average percentage of angle estimate error < 5 deg 91.95%

Root Mean square error of Angle Estimate 0.34 deg

In order to further reduce the complexity, the template orientation has been estimated

on the basis of the orientation of the line passing through the center of the first and the

second block of the tree.

6.4.2 Comparison with other methods

The retrieval accuracy and efficiency of the proposed method have been compared with

both conventional and most recent methods. Conventional methods are based on com-

bination of the most commonly used image features: color and texture, (CT), [105]. In

addition, conventional methods include global search and regional search [106] and the

method employed in SIMPLIcity [107]. In global search (GS), for each query image, a fea-

ture vector is selected and compared with those of images from the database. In regional

search (RS) the user selects only the desired block (the region of interest) from the query

image, the system then performs a search comparing the feature vectors of correspond-

ing blocks from the image database. SIMPLIcity uses a wavelet-based feature extraction

method. Recent methods include a technique based on Genetic Algorithms (GA) and a

relevance feedback based modified version, [105]. It is important to underline that respect

to the majority of existing image retrieval systems where a retrieved image is considered

a match if it belongs to the same category of the query image, the proposed technique

allows to retrieve the exact copy of the query image and its rotated version. In addition
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it allows to estimate the angle with which the image has been rotated. The comparison

results, reported in Table 6.2, show that the accuracy of the proposed method outperforms

both conventional and state of the art methods. The proposed approach, tested by using

a non-optimized MATLAB code, is time consuming with respect to the others methods.

Nevertheless this value has been achieved with a rather small order with respect to Zernike

expansion and with the simplified rotation estimation.

Table 6.2: Average retrieval precision of the proposed ZM method compared with con-

ventional (global and regional search, color-texture, and SIMPLIcity) and recent methods

(Genetic Algorithm GA). The simulations have been tested on COREL-1000-A Database.

ZM GS RS Color-Texture SIMPLIcity GA

Average

retrieval precision (%) 95 87.2 84.8 43 46 53

6.4.3 Computational complexity

To assess the computational complexity of the method an evaluation of the number of

elementary arithmetic operations has been performed. More in detail, let:

• Rfi , Cfi be the filter size;

• R,C be the image size;

• i be the number of employed quadtree levels;

• L be the number of filters that depends on the order N and the repetition M ;

• k be the number of the blocks considered.

The computation complexity of the image analysis phase is:

1. Zernike moments computation (repeated i times)

• additions: L ·Rfi · Cfi ·R · C,

• multiplications: L ·Rfi · Cfi ·R · C,
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2. Reconstruction of the image by using the Zernike moments (repeated i times)

• additions: L ·Rfi · Cfi ·R · C + L ·R · C,

• multiplications: L ·Rfi · Cfi ·R · C,

3. Reconstruction error computation (repeated i times)

• additions: 2 ·Rfi · Cfi .

Summarizing the approximated number of additions is: 2 · i · (L ·R · C ·Rfi · Cfi) and the

approximated number of multiplications is: 2 · i · (L ·R · C ·Rfi · Cfi). The computational

complexity of the comparison between the query and the generic image in the DB is shown

in Table III. Finally, the total number of additions is:

2 ·R · C + L · (R · C + 1) + 200 · L+ 2 + (k − 1) ·
[
7 + L ·

(
R·C+1

8

)
+ 200 · L+ 2

]
=

= R · C · (2 + L) + 201 · L+ 2 + (k − 1) ·
{
9 + L ·

[(
R·C+1

8

)
+ 200

]} ∼=
∼= R · C · L+ (k − 1) ·

(
L · R·C

8

)
,

(6.26)

and the total number of multiplications is:

2 ·R · C + L · (R · C + 4) + 1 + 300 · L+ 2 + (k − 1) ·
[
5 + L ·

(
R·C+4

8

)
+ 1 + 300 · L+ 2

]
=

= R · C · (2 + L) + 304 · L+ 3 + (k − 1) ·
{
8 + L ·

[(
R·C+4

8

)
+ 300

]} ∼=
∼= R · C · L+ (k − 1) ·

(
L · R·C

8

)
.

(6.27)

The proposed approach, tested by using a non-optimized MATLAB code on a 2,67GHz

CPU and 2GB RAM desktop, is time consuming with respect to the others methods.

However, the use of optimized compiled C code for the core algorithm blocks (the Zernike

decomposition and the Maximum likelihood estimation) allows to reduce the computa-

tional time of a factor of ten.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.6: Examples of images for each categories present in the database COREL-1000-

A.
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6.5 The proposed method in Laguerre-Gauss domain

6.5.1 Laguerre-Gauss Transform

Let x = [x1, x2] be the coordinates in the real plane ℜ2. Any image f(x) ∈ L2(ℜ2, d2x)

can be expanded on orthogonal basis under a Gaussian weighting function, w (x) = eπ|x|
2
,

complete over the entire plane, around a given point ξ = (ξ1, ξ2), [94]:

f (x)w

(
x− ξ

s

)
=

∞∑
n=0

∞∑
k=0

Dn,k (ξ)
1

s
L(n)
k

(
|x− ξ|

s
, θ(x− ξ)

)
(6.28)

where θ() denotes the angular coordinate defined by the relationship

θ(x) = tg−1

(
x2
x1

)
,

L(n)
k (r, θ) are the Laguerre-Gauss functions defined as:

L(n)
k (r, θ) = (−1)k 2(|n|+1)/2π|n|/2

[
k!

(|n|+ k)!

]1/2
· r|n|L(n)

k

(
2πr2

)
e−πr2ejnθ, (6.29)

L
(n)
k are generalized Laguerre polynomials defined by Rodriguez’s formula:

L
(n)
k (t) =

t−net

k!

dk

dtk

[
tk+ne−t

]
=

k∑
h=0

(−1)h

 n+ k

k − h

 th

h!
, (6.30)

and the expansion coefficients are defined as:

Dn,k (ξ) =

⟨
f(x)w

(
x− ξ

s

)
,
1

s
L(n)
k

(
|x− ξ|

s
, θ(x− ξ)

)⟩
.

We incidentally observe that the parameter s controls the width of the weighting function.

The expansion in terms of Gauss-Laguerre functions can be derived, for instance, by

first applying the Fourier’s series expansion to the representation of the image f in polar

coordinates with respect to the angular coordinate, and then expanding the radial profile

of each harmonic using the Laguerre polynomials L
(n)
k (t).

The Gauss-Laguerre functions are members of the wider class of Circular Harmonic

Functions (CHFs), successfully used for many low level vision tasks, thanks to their se-

lectivity with respect to basic visual patterns, [108],[109]. CHFs of n-th order are, by

definition, polar separable functions of the form h(r)ejnθ.
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By virtue of their harmonic angular shape, CHFs are indeed natural detectors for

different classes of features: CHFs of order n=1 for example are tuned to edges, n = 2 to

lines, n = 3 to forks, etc..

In addition, every Laguerre-Gauss function generates a dyadic Circular Harmonic

Wavelet. This means that every image f(x) can be represented by its continuous wavelet

transform WLn
k
[f ](b, α, σ) where b, α and σ are the parameters representing respectively

the translated, rotated and scaled version of the mother wavelet L(n)
k .

With reference to localization of complicated patterns, a rather relevant property is

the following.

PROPERTY I. Given an image f defined over a finite support I ⊂ ℜ2 and a lattice

Ξ = {ξm ∈ I,m = 1, ...,M} the set of Laguerre-Gauss functions{
1

s
L(n)
k

(
|x− ξm|

s
, θ(x− ξm)

)
,m = 1, ...,M

}
defines a Riesz basis for f .

Proof. The orthogonality of the Laguerre-Gauss functions implies that

∑
m

∫
I

∣∣∣∣w(
x− ξk

s

)∣∣∣∣2 |f(x)|2dx =
∑
m

∑
n

∑
k

|Dn,k (ξm) |2,

therefore

γ∥f(x)∥2 ≤
∑
m

∑
n

∑
k

|Dn,k (ξm) |2 ≤ Γ∥f(x)∥2,

with

γ = min
x

M∑
m=1

∣∣∣∣w(
x− ξk

s

)∣∣∣∣2 ,
and

Γ =
M∑

m=1

∫
I

∣∣∣∣w(
x− ξk

s

)∣∣∣∣2 dx.
q.e.d.

Thus in turn implies that the inner product between two images f and g with expansion

coefficients Dn,k (ξm) and Cn,k (ξm), respectively, satisfies the following condition:

γ

Γ
⟨f(x), g(x)⟩ ≤ 1

Γ

∑
m

∑
n

∑
k

Dn,k (ξm)C∗
n,k (ξm) ≤ ⟨f(x), g(x)⟩
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The magnitude of the approximation error strictly depends on the ratio γ/Γ, that can

be a priori computed. Moreover, it could be demonstrated that the more general set of

Gauss-Laguerre functions{
1

sk
L(n)
k

(
|x− ξm|

sk
, θ(x− ξm)

)
,m = 1, ...,M

}
it is a Riesz basis too.

Here the quadtree decomposition adaptive scheme for choosing the lattice Ξ and the

shape parameters {sk} that realizes a good trade off between accuracy and complexity is

applied, with a similar technique proposed for Zernike moments.

6.5.2 Maximum Likelihood Localization

Let now f(x) be the observed region of interest that contains a noisy, translated, rotated

and scaled copy of a given template pattern g(x) so that we have:

w[Rφ(x− b)]f(x) = w[Rφ(x− b)]g

[
Rφ

(
x− b

a

)]
+ v(x),

where the parameters a, b and φ represent respectively scale, position and rotation of the

observed image and Rφ is the rotation matrix defined as:

Rφ =

 cosφ sinφ

− sinφ cosφ

 .

Let θ = [b, a, φ] be the unknown parameter vector, the Likelihood functional is given

by the conditional probability of f w.r.t. θ, divided by any arbitrary function that does

not depend on θ :

lnΛ[f(x);b, a, φ] = − 2

N0

∫ ∫ ∣∣∣∣w [
Rφ

(
x− b

a

)]∣∣∣∣2 × ∣∣∣∣f(x)− g

[
Rφ

(
x− b

a

)]∣∣∣∣2dx.
(6.31)

Direct Maximum Likelihood solution evaluation is not very simple because the search

of the maximum for b, φ and a is a search in a four dimensional space. However the choice

of LG functions as expansion basis and the choice of gaussian window which is rotation

invariant leads to a simpler iterative procedure,[110]. In fact, considering that any n-th
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order CHF can be steered in any direction φ by simple multiplication by the complex

factor e−jnφ, and denoting with ηn,k(x; a) the expansion coefficients of g(x/a), we can

approximate the ML functional as follows:

lnΛ[f(x);b, a, φ] ≃ const− 2

N0Γ

∑
m

∑
n

∑
k

∣∣∣∣Dn,k(ξm)− ηn,k

[
Rφ

(
ξm − b

a

)
; a

]
e−jnφ

∣∣∣∣2 .
(6.32)

On the other hand, denoting with Cn,k(x) the expansion coefficients of g(x) for a = 1

(i.e. Cn,k(x) = ηn,k(x; 1) ) the following interscale relationship holds

ηn,k(x; a) =

∞∑
l=k

B(a;n, k, l)Cn,k(x),

where

B(a;n, k, l) = (−1)l−k

√
(n+ l)!l!

(n+ k)!k!
· a

−n−2k

(l − k)!

(
1− 1

a2

)l−k

, (l ≥ k). (6.33)

Thus, the ML functional can be further approximated as follows:

lnΛ[f(x);b, a, φ] ≃ const− 2

N0Γ
×

∑
m

∑
n

∑
k∣∣∣∣∣Dn,k(ξm)−

∞∑
l=k

B(a;n, k, l)Cn,k

[
Rφ

(
ξm − b

a

)]
e−jnφ

∣∣∣∣∣
2

The maxima of the expression of the above functional w.r.t. scale a and orientation φ

represent the Laguerre-Gauss Likelihood Map (GLLM):

GLLM(b) = max
a,φ

{lnΛ[f(x); a, φ,b]}

The local estimate of the maxima can been performed by means of quasi-Newton max-

imization procedure as the Broyden-Fletcher-Goldfarb-Shanno algorithm. The location

of the absolute maximum of this map provides the estimated position of the pattern.

The resulting Laguerre-Gauss Likelihood Map indicates, point by point, the best matches

between the two images under all possible orientations and scales.
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6.5.3 Quadtree Decomposition

Since f(x) may contain multiple objects with arbitrary shape, direct use of Gauss Laguerre

expansion as well of other CHFs expansions, as those in Zernike’s moments,for computing

the ML functional would require a larger and larger number of expansion terms. Thus,in

order to reduce the computational complexity, we resort to the hypercomplete Riesz basis

that allows to partition the region of interest into smaller squares, so that for each of them

a truncated Laguerre-Gauss expansion with a reduced number of terms can be utilized.

More in detail, let R represent the region of interest, eventually coincident with the whole

image, and let P be a predicate equal to True whenever the accuracy of the approximation

of the current Riesz basis can be considered satisfactory. R is partitioned into smaller and

smaller square regions R(i), so that for each R(i), P (R(i)) = True. Initially the basis set

is empty and the current region R(0) is set equal to the given ROI. At the i-th step of the

recursion, the center ξi of the current region R(i) is evaluated and the subset of functions{
1

si
L(n)
k

(
|x− ξi|

si
, θ(x− ξi)

)
, k = 1, ...,K, n = 1, ..., N

}
is added to the current basis set as a potential candidate. Then the predicate P is com-

puted.

In order to control the computational complexity of the whole procedure, we chose as

predicate P the comparison of the L2 norm of the approximation error in the reconstruction

of a square block of the image with a predefined number of Gauss Laguerre coefficients with

a threshold t. If the norm of the error between the image itself f(x) and the reconstructed

image f̂(x) using the current basis exceeds a predefined threshold, P is set to false. Let

us denote with δi the width of R(i), and with wT (x) a square window of unitary width,

then

P (R(i)) =

{∣∣∣∣∣∣∣∣wT

(
x− ξi
δi

)
[f(x)− f̂(x)]

∣∣∣∣∣∣∣∣2 < t

}
.

Pattern location, rotation and scale estimation accuracy is strictly related to the

Fisher’s information. However, as demonstrated in [94] this quantity is proportional to

the magnitude of the energy of the derivatives along two orthogonal directions and to
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the energy of the angular derivative, or, equivalently, to the effective spatial and angular

bandwidths.

In order to reduce the search time, the ranking of template quadtree blocks is based

on saliency of key-points extracted for each block as suggested in [111].

When a ROI of a given image has to be searched in a database, the comparison is

accomplished the first block of the ranked list and Laguerre-Gauss coefficients of each

database candidate image. The expansion in Laguerre-Gauss domain is made using the

same base employed for the current quadtree block.

Since rotation of a pattern simply produces a linear phase shift of each expansion

coefficient proportional to the order of the angular harmonic, detection of the pattern

belonging to the first square of the ranked quadtree list can be performed by means of

a quasi-Newton maximization procedure as the Broyden-Fletcher-Goldfarb-Shanno algo-

rithm maximizing, for each b the quantity

GLLF (1)(b, a, φ) = − 2

N0Γ
×

N∑
n=0

K∑
k=0

∣∣∣∣∣Dn,k(ξc)−
L∑
l=0

B(a;n, k, l)Cn,k(ξc − b)e−jnφ

∣∣∣∣∣
2

(6.34)

where ξc denotes the center of the current region.

Thus, for each discrete location of a grid, the rotation and the scale maximizes the

GLLF (1) functional are determined and then a discrete direct search is performed to

determine its absolute maximum. Thus, at the first step the parameter estimate is

[b̂
(1)

, â(1), φ̂(1)] = Arg

{
max
b,a,φ

[
GLLF (1)(b, a, φ)

]}
Once for each image of the dataset the local maximum of GLLF (1) has been computed,

the images are ranked on the basis of this absolute maximum. Then the image correspond-

ing to the highest GLLF (1) is selected as the potential candidate for image matching, and

[b̂
(1)

, â(1), φ̂(1)] is employed as coarse estimate in order to verify whether the candidate

image contains the second block of the rank ordered list of quadtree elements, too.

With respect to the first block, the GLLF (2) map is built only for a limited set of

possible locations, falling inside a small neighbor of the site predicted on the basis of the

coarse estimates. In addition, the quasi-Newton procedure utilized to maximize GLLF (2)

is initialized using the coarse estimate too.
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If the energy of the difference between the subset of the reference template, constituted

by the first and the second square of the quadtree and the current image falls below a

predefine threshold, location and rotation of the image are refined and the next square

analyzed.

In general, at the h-th stage the GLLF (h) map is computed using the first h points of

the lattice, ranked according to the saliency indicator, i.e.,

GLLF (h)[b, a, φ] = − 2

N0Γ
×

∑
m

∑
n

∑
k∣∣∣∣∣Dn,k(ξm)−

∞∑
l=k

B(a;n, k, l)Cn,k

[
Rφ

(
ξm − b

a

)]
e−jnφ

∣∣∣∣∣
2

The procedure ends when the last block in the list has been processed.

6.6 Experimental Results

The proposed method has been tested on a 52 images database. For each grey-level

image, we have 4 different views (256x256 pixels) corresponding to different orientations

and scales, the first one is the original image, the second image is scaled, the third one is

rotated and the last one is scaled and rotated. See fig.6.7. In the performed simulations,

the Laguerre-Gauss expansion has been truncated to the (angular) order n=6, and to the

(radial) order k=7. This gives, for each quadtree block a descriptor array of 173 elements.

The value sm of the weighting gaussian window is matched to quadtree block size. In

fig.(6.8) an example of the Likelihood map for the ”Einstein” image is showed. In table

(6.4) some results on angle and scale estimate error for some images from the multimedia

database are reported. The angle and scale estimate errors are quite low and the algorithm

is capable to find the searched points in the candidate image, estimating rotation and scale

of the image with a low error rate.
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Image Angle Estimate Error [deg] Scale Estimate Error

airplane 0 0

airplane-rot10-scal90 0.19 0.01

airplane-rot15 0.58 0.01

airplane-scal92 0.07 0.02

einstein 0 0

einstein-rot40-scal97 2.58 0.03

einstein-rot220 3.13 0

einstein-scal97 0 0.03

tree 0 0

tree-rot195-scal87 0.38 0.01

tree-rot35 0.09 0.01

tree-scal80 0.11 0.01

peppers 0 0

peppers-rot78-scal95 5.81 0.07

peppers-rot98 1.65 0.01

peppers-scal82 0.78 0.07

clock 0 0

clock-rot90-scal92 0.05 0.01

clock-rot85 0.22 0.08

clock-scal98 0.59 0.01

Table 6.4: Angle and scale estimate error for some images from the database
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Figure 6.7: Three database samples with different orientations

6.7 Conclusions

Content discovery, delivery, and streaming are the basic functionalities of current content-

centric Internet services. The first generation of retrieval systems was based on the use

of metadata describing the semantic content of a multimedia document, usually extracted

by manual procedures. However, Future Internet content aware services will require more

efficient functionalities for inspection, crawling, recognition, categorization, and indexing

of digital content with minimal human intervention. It is very important to employ fast

and reliable algorithms for locating and tracking complex objects irrespective of their

actual orientation and scale.

At this aim, two novel techniques for searching complex patterns in large databases

based on the decomposition of the template in smaller blocks whose size is adapted to the

local image content have been proposed and analyzed through this chapter. The represen-
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Figure 6.8: Laguerre-Gauss Likelihood map of ”Einstein” image

tation of the image blocks by means of Zernike moments and Laguerre-Gauss transform

allows the design of an effective maximum likelihood matching procedure. With respect to

state of the art methods that represent the whole pattern in terms of orthogonal basis and

eventually extract an invariant feature vector from the representation coefficients, the use

of the quadtree decomposition keeps low the number of terms of the truncated expansions

still assuring the required accuracy in representing the original image and to efficiently

manage even template supports with irregular shape. The experimental results show a

very good detection rate (about 95%) and an high accuracy in estimating the template

rotation.

The Laguerre-Gauss Transform allows a simpler iterative Likelihood functional esti-

mate compared to the traditional Maximum Likelihood based on searching the image with

the whole set of rotated and scaled images. In particular, it allows an approximated ML

solution with a low computational cost. Thanks to the Gaussian windowing, this method

is well suited for localization of patterns of complex objects. The experimental results

show an high detection rate and an accurate location estimate and show how this class of

Circular Harmonic filters performs very well in presence of scaling and rotation.

Respect to the state of art where the majority of image recognition techniques are

capable to detect the image class at which the given image belongs and not the image

itself or its scaled and rotated version, with these new methodologies it is possible also to

identify the image itself in a large database. Although in the proposed methods, the ML
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functional has been thresholded to detect the template presence in a collection of images,

it can be directly employed to rank the collection images with respect to the similarity of

their content to the given template.
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Appendix A

Maximum Likelihood Estimation

in Zernike domain

Direct Maximum Likelihood estimation is of difficult solution because the search of maxi-

mum of the rotation φ and the location b implies the search in three dimensions. However

the choice of a disk of radius σ as weighting window w(x) and the use of Zernike expansion

lead to a simpler and faster iterative procedure. In fact, expanding both w[Rφ(x−b)]f(x)

and w(x)g(x) by means of Zernike moments we obtain:

w[Rφ(x− b)]f(x) =

∞∑
n=0

+∞∑
m=−∞

Zf
nm(x0)

1

σ
Vnm

(
x− x0

σ

)
, (A.1)

w(x)g(x) =

∞∑
n=0

+∞∑
m=−∞

Zg
nm(x0)

1

σ
Vnm

(x
σ

)
, (A.2)

where

Zf
nm(b) =

n+ 1

π

∫ ∫
∥x−b∥≤σ

f(x)
1

σ
V ∗
nm

(
x− b

σ

)
dx1dx2, (A.3)

Zg
nm =

n+ 1

π

∫ ∫
∥x−b∥≤σ

g(x)
1

σ
V ∗
nm

(x
σ

)
dx1dx2. (A.4)
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Substituting (A.3) and (A.4) in (6.17) and considering the orthogonality of Zernike poly-

nomials, we have:

lnΛ[f(x);b, φ] = − 2

N0

∫ ∫
∥x−b∥≤σ

|f(x)− g[Rφ(x− b)]|2 dx1dx2

= − 2

N0

∞∑
n=0

+∞∑
m=−∞

π

(n+ 1)σ2

∣∣∣Zf
nm(b)− Zg

nmejmφ
∣∣∣2

= − 2

N0

∞∑
n=0

∞∑
m=−∞

π

(n+ 1)σ2

[∣∣∣Zf
nm(b)

∣∣∣2 + |Zg
nm|2

]
+

+
4

N0

∞∑
m=−∞

π

(n+ 1)σ2
Re

{ ∞∑
n=0

[Zf
nm(b)]∗Zg

nmejmϕ

}
. (A.5)

Let us denote the maxima of the truncated version of the above expression w.r.t. rotation

versus the pattern location b as the Zernike Moments Likelihood Map:

ZMLM(b) = max
φ

{
− 2

N0

N∑
n=0

+M∑
m=−M

π

(n+ 1)σ2

∣∣∣Zf
nm(b)− Zg

nmejmφ
∣∣∣2} . (A.6)

This map indicates, point by point, the best matching between the region of interest

and the reference image under all possible orientations.

In order to derive a fast estimator of φ(b) we observe that, by posing

µm(b)ejηm(b) =
1

(n+ 1)

N∑
n=0

[Zf
nm(b)]∗Zg

nm, (A.7)

we can write

ZMLM(b) = − 2

N0

∞∑
n=0

∞∑
m=−∞

π

(n+ 1)σ2

[∣∣∣Zf
nm(b)

∣∣∣2 + |Zg
nm|2

]
+

max
φ

{
4π

N0σ2

M∑
m=−M

µm(b) cos [mφ+ ηm(b)]

}
. (A.8)

For each position, the evaluation of the rotation φ̂(b) can be performed by Newton-

Raphson iterative procedure that in the actual case specifies as follows:

ϕ̂
(h)
ML(b) = ϕ̂

(h−1)
ML (b)−

M∑
m=−M

mµm(b) sin
[
mϕ̂

(h−1)
ML (b) + ηm(b)

]
M∑

m=−M

m2µm(b) cos
[
mϕ̂

(h−1)
ML (b) + ηm(b)

] . (A.9)

140



Bibliography

[1] M. Ouaret, F. Dufuax, and T. Ebrahimi. Multi-view distributed video coding with

encoder driven fusion. In European Signal Processing Conference (EUSIPCO-2007),

September 2007.

[2] D. Slepian and J.K. Wolf. Noiseless coding of correlated information sources. IEEE

Transactions on Information Theory, 19:471–480, July 1973.

[3] J. Venkaratam. Analisys of slepian wolf coding. Technical report, University of

Notredame, February 2003.

[4] A.D. Wyner and J. Ziv. The rate-distortion function for source coding with side

information at the decoder. IEEE Transactions on Information Theory, 22(1):1–10,

January 1976.

[5] R. Zamir and S. Shamai. Nested linear/lattice codes for wyner-ziv encoding. In

Proceeding of Information Theory Workshop, pages 92–93, June 1998.

[6] S.S. Pradhan and K. Ramachandran. Distributed source coding using syndromes

(discus): Design and construction. Proceeding of IEEE Data Compression Confer-

ence, pages 158–167, March 1999.

[7] A. Liveris, Z. Xiong, and C. Georghiades. Compression of binary sources with

side information a he decoder using ldpc codes. IEEE Communications Letters,

6(10):440–442, October 2002.

141



BIBLIOGRAPHY

[8] C. Yeo and K. Ramchandran. Robust distributed multi-view video compression for

wireless camera networks. In Proceeding of SPIE Visual Communications and Image

Processing, January 2007.

[9] J.D. Areia, J. Ascenso, C. Brites, and F. Pereira. Wyner-ziv stereo video coding

using a side information fusion approach. In IEEE 9th Workshop on Multimedia

Signal Processing, MMSP 2007, pages 453–456, October 2007.

[10] M. Tagliasacchi, G. Prandi, and S. Tubaro. Symmetric distributed coding of stereo

video sequences. In IEEE International Conference on Image Processing, ICIP 2007,

volume 2, October 2007.

[11] B. Girod, A.M. Aaron, S. Rane, and D. Rebollo-Monedero. Distributed video coding.

In Proceedings of the IEEE, volume 93, pages 71 –83, 2005.

[12] Mourad Ouaret. Selected Topics on Distributed Video Coding. PhD thesis, Ecole

Polytechnique Federale de Lausanne, 2009.

[13] J. C. Moreira and P. G. Farrell. Essentials of Error-Control Coding. J. Wiley and

Sons, Ltd, 2006.

[14] M. Naccari, M. Tagliasacchi, S. Tubaro, P. Zontone, R. Rinaldo, and R. Bernardini.

Forward error protection for robust video streaming based on distributed video cod-

ing principles. In Proceeding of 5th Internaional Conference on Visual Information

Engineering, pages 747–752, August 2008.

[15] F. Pereira, P. Correia, J. Ascenso, E. Acosta, L.Torres, C. Guillemot, C. Bandeir-

inha, M. Ouaret, F. Dufaux, T. Ebrahimi, R. Leonardi, M. Dalai, and S. Klomp.

Application scenarios and functionalities for dvc, final version. Deliverable d19,

DISCOVER, 2007.

[16] ”http://en.wikipedia.org/wiki/videoconferencing”.

[17] A. Gotchev, S. Jumisko-Pyyko, A. Boev, and D. Strohmeier. Mobile 3dtv system:

quality and user perspective. In 4th Int. Mobile Multimedia Communications Conf.

MobiMedia, 2008.

142



BIBLIOGRAPHY

[18] A. Boev, D. Hollosi, A. Gotchev, and K. Egiazarian. Classification and simulation

of stereoscopic artifacts in mobile 3dtv content. In Proceeding of SPIE, Stereoscopic

Displays and Applications XX, Feb. 2009.

[19] L. Meesters, W. Ijsselsteijn, and P. Seuntiens. Survey of perceptual quality issues in

three-dimensional television system. In Proceeding of SPIE, Stereoscopic Displays

and Virtual Reality Systems X, volume 5006, 2003.

[20] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G.B. Akar, G. Tri-

antafyllidis, and A. Koz. Coding algorithms for 3dtva survey. IEEE Transactions

on Circuits and Systems for Video Technology, 17(11):1606–1621, November 2007.

[21] M. Cancellaro, V. Palma, and A. Neri. Stereo video artifacts introduced by a dis-

tributed coding approach. In Proceeding of International Workshop on Video Pro-

cessing and Quality Metrics (VPQM 2010), Scottdale, Arizona, January 2010.

[22] A. Boev, D. Hollosi, and A. Gotchev. Classification of stereoscopic artefacts. Tech-

nical report, MOBILE3DTV, April 2010.

[23] M. Yuen. Coding artifacts and visual distortion. H.R. Wu and K.R. Rao, Digital

Video Image Quality and Perceptual Coding, CRC Press, 2005.

[24] C.T.E.R. Hewage, S.T. Worrall, S. Dogan, and A.M. Kondoz. Prediction of stereo-

scopic video quality using objective quality models of 2-d video. Electronics Letters,

44(16):963–965, 31 2008.

[25] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-

ment: from error visibility to structural similarity. IEEE Transactions on Image

Processing, 13(4):600–612, 2004.

[26] ”http://en.wikipedia.org/wiki/peaksignaltonoiseratio”.

[27] A. Loza, L. Mihaylova, D. R. Bull, and C. N. Canagarajah. Structural similarity-

based object tracking in video sequences. In Proceeding of International Conference

on Information Fusion, pages 1–6, Florence, Italy, July 2006.

143



BIBLIOGRAPHY

[28] M. Pinson and S. Wolf. A new standardized method for objectively measuring video

quality. IEEE Transaction on Broadcasting, 50(3):312–322, September 2004.

[29] ITU-T Reccomendations J.143. User requirements for perceptual video quality mea-

surements in digital cable television. Reccomandations of the ITU, Telecommunica-

tion Standardization Sector.

[30] ITU-R BT.500-11. Methodology for the subjective assessment of the quality of

television pictures. In Recommendations of the International Telecommunications

Union - Radiocommunication Sector, 2002.

[31] Feng Xiao. Dct-based video quality evaluation. In MSU Graphics and Media Lab

(Video Group), Winter 2000.

[32] A.B. Watson. Towards a perceptual videoquality metric. In Human Vision, Visual

Processing, and Digital Display VIII, volume 3299, pages 139–147, 1998.

[33] available at http://tev.fbk.eu/databases/.

[34] T. Cover and J. Thomas. Elements of Information Theory, Second Edition. John

Wiley & Sons, Inc, 2005.

[35] J. Kurose and K. Ross. Computer Networking: A Top-down Approach Featuring the

Internet. Pearson Addison Wesley, 2003.

[36] O. Y. Bursalioglu, M. Fresia, G. Caire, and H. V. Poor. Lossy joint source-channel

coding using raptor codes. International Journal of Digital Multimedia Broadcasting,

2008, 2008.

[37] M. Fresia and G. Caire. A pratical approach to lossy joint source-channel cod-

ing. In Proceedings of Information Theory and Applications Workshop, San Diego,

California, USA, February 2007.

[38] Gastpar M., Rimold B., and M. Vetterli. To code, or not to code: lossy source-

channel communication revisited. Information Theory, IEEE Transactions on,

49(5):1147 – 1158, May 2003.

144



BIBLIOGRAPHY
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