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Introduction

Moment graphs appeared for the �rst time in 1998, in the remarkable paper of
Goresky, Kottwitz and MacPherson (cf.[20]). Their aim was to describe the equivari-
ant cohomology of a "nice" projective algebraic variety X, where "nice" means that an
algebraic torus T acts equivariantly formally (cf.[[20], �1.2]) on X with �nitely many
1-dimensional orbits and �nitely many �xed points (all isolated). In these hypotheses,
they proved that HT (X) can be described using data coming from the 1-skeleton of the
T -action. In particular, such data were all contained in a purely combinatorial object:
the associated moment graph. After Goresky, Kottwitz and MacPherson's paper, several
mathematicians, as Lam, Ram, Shilling, Shimozono, Tymozcko, used moment graphs in
Schubert calculus (cf.[33], [34], [42], [43], [44]).

In 2001, Braden and MacPherson gave a combinatorial algorithm to compute the
T -equivariant intersection cohomology of the variety X, having a T -invariant Whitney
strati�cation (cf. [7]). In order to do that, they associated to any moment graph an
object that they called canonical sheaf ; we will refer hereafter to it also as Braden-
MacPherson sheaf. Even if their algorithm was de�ned for coe�cients in characteristic
zero, it works in positive characteristic too. In this case, Fiebig and Williamson proved
that, under certain assumptions, it computes the stalks of indecomposable parity sheaves
(cf.[19]), that are a special class of constructible (with respect to the strati�cation of X)
complexes in Db

T (X; k), the T -equivariant bounded derived category of X over the local
ring k. Parity sheaves have been recently introduced by Juteau, Mautner and Williamson
(cf.[25]), in order to �nd a class of objects being the positive characteristic counterpart
of intersection cohomology complexes. Indeed, intersection cohomology complexes play
a very important role in geometric representation theory thanks to the decomposition
theorem, that in general fails in characteristic p, while for parity sheaves holds.

The introduction of moment graph techniques in representation theory is due to the
fundamental work of Fiebig. In particular, he associated a moment graph to any Coxeter
system and de�ned the corresponding category of special modules, that turned out to be
equivalent to a combinatorial category de�ned by Soergel in [41] (cf.[13]). The advantage
of Fiebig's approach is that, as we have already pointed out, the objects he uses may be
de�ned in any characteristic and so they may be applied in modular representation the-
ory. In particular, they provided a totally new approach to Lusztig's conjecture (cf.[37])
on the characters of irreducible modules of semisimple, simply connected, reductive alge-
braic groups over �elds of characteristic bigger than the corresponding Coxeter number

iii



iv CONTENTS

(cf.[18]). This conjecture was proved to be true if the characteristic of the base �eld is
big enough (by combining [31], [27] and [1]), in the sense that it is true in the limit, while
Fiebig's work provided an explicit -but still huge!- bound (cf.[16]). The characteristic
zero analog of Lusztig's conjecture, stated by Kazhdan and Lusztig a year before in [29],
and proved a couple of years later, independently, by Brylinski-Kashiwara (cf.[8]) and
Beilinson -Bernstein (cf.[4]), admits a new proof in this moment graph setting (cf.[14]). In
an ongoing project Fiebig and Arakawa are working on the Feigin-Frenkel conjecture on
the restricted category O for a�ne Kac-Moody algebras at the critical level via sheaves
on moment graphs (cf.[2], [3]). A very recent paper of Peng, Varagnolo and Vasserot
uses moment graphs to prove the parabolic/singular Koszul duality for the category O

of a�ne Kac-Moody algebras (cf.[39]), showing that the role played by these objects in
representation theory is getting more and more important.

The aim of this thesis is �rst to develop an axiomatic theory of moment graphs
and sheaves on them and then to apply it to the study of a fundamental class of mo-
ment graphs: the -regular and parabolic- Bruhat (moment) graphs. They are attached
to any symmetrisable Kac-Moody algebra and the associated indecomposable Braden-
MacPherson sheaves give the indecomposable projective objects in the corresponding
deformed -regular or singular- category O (cf.[[14],�6]). This is for us the most important
reason to consider Bruhat graphs, together with their intrinsic combinatorial interest.

Thesis organisation

Here we describe the structure of our dissertation and present brie�y the main results.

From now on, Y will denote a lattice of �nite rank, k a local ring such that 2 ∈ k×
and Yk := Y ⊗Z k.

In the �rst chapter, we develop a theory of moment graphs. In order to do that, we
�rst had to choose if we were going to work with moment graphs on a vector space (as
Goresky-Kottwitz and MacPherson do in [20]) or on a lattice. The �rst possibility would
enable us to associate a moment graph to any Coxeter system (cf.[13]), while the second
one has the advantage that a modular theory could be developed (cf. [18]). We decided
to work with moment graphs on a lattice, because our results of Chapter 5 and Chapter
6 in characteristic zero categorify properties of Kazhdan-Lusztig polynomials, while in
positive characteristic they give also information about the stalks of indecomposable
parity sheaves ([19]). Thus, from now on we will speak of k-moment graphs, where k is
any local ring with 2 ∈ k×. However, our proofs can be adapted to moment graphs on a
vector space, by slightly modifying some de�nitions.

After recalling the de�nition of k-moment graph on a lattice Y , following [16], we
introduce the new concept of homomorphism between two k-moment graphs on Y . This
is given by nothing but an order-preserving map of oriented graphs together with a
collection of automorphisms of the k-module Yk, satisfying some technical requirements
(see �1.2). In this way, once proved that the composition of two homomorphisms of
k-moment graphs is again a homomorphism of k-moment graphs (see Lemma 1.2.1), we
get the category MG(Yk) of k-moment graphs on the lattice Y and in the rest of the
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chapter we describe some properties of it.

The following chapter is about the category Shk(G), of sheaves on the k-moment
graph G. We start with recalling some concepts and results from [7], [14], [15], [19];
in particular, the de�nition of canonical or Braden-MacPherson sheaves. Even if these
objects are not sheaves in the algebro-geometric sense but only combinatorial and com-
mutative algebraic objects, we de�ne pull-back and push-forward functors (see �2.2). Let
f : G → G′ be a homomorphism of k-moment graphs on Y , then we are able to prove
that, as in algebraic geometry, the adjunction formula holds.

Proposition 0.0.1. Let f ∈ HomMG(Yk)(G,G
′), then f∗ is left adjoint to f∗, that is for

all pairs of sheaves F ∈ Shk(G) and H ∈ Shk(G′) the following equality holds

HomShk(G)(f
∗H,F) = HomShk(G′)(H, f∗F) (1)

We end the chapter with proving a fundamental property of canonical sheaves, namely
we show that, if f : G → G′ is an isomorphism, then the pullback functor f∗ preserves
indecomposable Braden-MacPherson sheaves (see Lemma 2.2.2). This result will provide
us with an important technique to compare indecomposable canonical sheaves on di�erent
k-moment graphs, that we will use in Chapter 5.

Let g be a Kac-Moody algebra, then there is a standard way to associate to g certain
k-moment graphs on its coroot lattice (cf. [15]), the corresponding regular and parabolic
(k-moment) Bruhat graphs. Denote by W the Weyl group of g, that it is in particular
a Coxeter group. Let S be its set of simple re�ections, then, for any subset J ⊂ S

there is exactly one parabolic Bruhat graph, that we denote GJ . These are the main
objects of Chapter 3. After giving some examples, we prove that all parabolic k-moment
Bruhat graphs associated to g are nothing but quotients of its regular Bruhat graph (see
Corollary 3.1.2). We then focus our attention on the case of g a�ne Kac-Moody algebra.
The most interesting parabolic Bruhat graph attached to g is the one corresponding to
the A�ne Grassmannian, that we denote Gpar = Gpar(g), and we consider it in �3.2.2.
Once showed that the set of vertices of Gpar may be identi�ed with the set of alcoves in
the fundamental Weyl chamber C+, we study �nite intervals of Gpar far enough in C+. We
are able to describe these intervals in a very precise way (see Lemma 3.2.1, Lemma 3.2.2,
Lemma 3.2.1, Lemma 3.2.4). In particular, we notice that the set of edges is naturally
bipartite and this gives rise to the de�nition of a new k-moment graph attached to g:
the stable moment graph (see �3.2.3), that is a subgraph of Gpar.

In Chapter 4, we generalise a construction of Fiebig. Let g be a Kac-Moody algebra,
then we may consider the attached Bruhat graphs. In the case of the regular Bruhat graph
G = G∅(g), Fiebig de�ned translation functors on the category of Z-graded Z-modules,
where Z is the structure algebra (see �2.1.1) of G. Moreover, in [18] he considered
a subcategory H of the category of Z-graded Z-modules and proved that it gives a
categori�cation of the Hecke algebra H of W. In a similar way, for any parabolic moment
graph GJ attached to g, we are able to de�ne translation functors {sθ}s∈S and the category
HJ . Actually, if HJ is the parabolic Hecke algebra de�ned by Deodhar in [9], this
admits an action of the regular Hecke algebra H. Recall that Kazhdan and Lusztig in
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[29] de�ned the canonical basis of H, that we denote, following Soergel's notation, by
{Hx}x∈W. Then, if 〈HJ〉 is the Grothendieck group of HJ , we may de�ne a character
map h : 〈HJ〉 → HJ (see �4.2.2) and, for any simple re�ection s ∈ S, we get the following
commutative square (see Proposition 4.2.1).

〈HJ〉 h //

sθ◦{1}
��

MJ

Hs·
��

〈HJ〉 h //MJ

,

where {1} denotes the degree shift functor on the Z-graded category HJ .
In Chapter 5 we report and expand results that have been already presented in our

paper [35]. We were motivated by the multiplicity conjecture (cf. [16]), a conjectural for-
mula relating the stalks of the indecomposable Braden-MacPherson sheaves on a Bruhat
graph GJ to the corresponding Deodhar's parabolic Kazhdan-Lusztig polynomials for the
parameter u = −1 (cf. [9]), that we denote {mJ

x,y} as Soergel does in [40]. The aim of

this chapter is then to lift properties of the mJ
x,y's to the level of canonical sheaves, that

is to categorify some well-know equalities concerning Kazhdan-Lusztig polynomials. We
mainly use three strategies to get our claims:

• Technique of the pullback. We look for isomorphisms of k-moment graphs and then,
via the pullback functor (see Lemma 2.2.2), we get the desired equality between
stalks of Braden-MacPherson sheaves (see �5.2).

• Technique of the set of invariants. For any s ∈ S we de�ne an involution σs of the
set of local sections of a canonical sheaf on an s-invariant interval of G. In this
case, the study of the space of the invariants gives us the property we wanted to
show (see �5.3).

• Flabbiness of the structure sheaf. It is known (cf. [17]) that the so-called structure
sheaf (see Example 2.1.1) is isomorphic to an indecomposable Braden-MacPherson
sheaf if and only if it is �abby and this is the case if and only if the corresponding
Kazhdan-Lusztig polynomials evaluated in 1 are all 1. We prove in a very explicit
way that the structure sheaf is �abby to categorify the fact that the associated
polynomials evaluated in 1are 1 (see�5.1 and �5.4).

The aim of the last chapter is to describe indecomposable canonical sheaves on �nite
intervals of Gpar far enough in C+. Our motivation comes from the multiplicity conjecture
together with a result, due to Lusztig (cf. [37]), telling us that for any pair of alcoves
A,B ⊂ C+ there exists a polynomial qA,B, called the generic polynomial of the pair A,B,
such that

lim−−−→
µ∈C+

mpar
A+µ,B+µ = qA,B. (2)

Actually, this result relates the Hecke algebra of the a�ne Weyl group Wa to its
periodic module M. Our interest in M is motivated now by the fact that M governs the
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representation theory of the a�ne Kac-Moody algebra, whose Weyl group is Wa, at the
critical level.

Suppose that A,B,A+ µ,B+ µ are alcoves far enough in the fundamental chamber.
Then results of �3.2.2 show that the two moment graphs G

par

|[A,B]
and G

par

|[A+µ,B+µ]
are in

general not isomorphic, while there is always an isomorphism of moment graphs between
Gstab|[A,B]

and Gstab|[A+µ,B+µ]
. Since the stable moment graph is a subgraph of Gpar, there is a

monomorphism Gstab ↪→ Gpar. The following diagram summarises this situation:

G
par

|[A,B]
G
par

|[A+µ,B+µ]

Gstab|[A,B]

?�

i

OO

// Gstab|[A+µ,B+µ]

?�

iµ

OO

We then get a functor ·stab := i∗ : ShG
par

|[A,B]

→ ShGstab|[A,B]

. The main theorem of this

chapter is the following one.

Theorem 0.0.1. The functor ·stab : Shk(G
par

|[A,B]
)→ Shk(G

stab
|[A,B]

) preserves indecomposable

Braden-MacPherson sheaves.

The stabilisation property, that is the categori�cation of Equality (2), follows by
applying the technique of the pullback to the previous result.

In the case of g = ŝl2, we are able to prove the claim via the third technique we
quoted above, that is, for any �nite interval of Gstab, we show that in characteristic
zero its structure sheaf is �abby, so it is invariant by weight translation for all integral
weights µ ∈ C+. On the other hand, we know already that the structure sheaf for the
a�ne Grassmannian is �abby (see �5.4) and this concludes the sl2-case.

For the general case, we apply a localisation technique due to Fiebig (that we recall
in Chapter 4), which enables us to use the sl2-case, together with results of [18].

Perspectives

Since the theory of sheaves on moment graphs is related to geometry, representation
theory and algebraic combinatorics, we brie�y present three possible applications or
developments of this theory on which we are interested in, one for each of these �elds.

Equivariant cohomology of a�ne Bott-Samelson varieties.

In a joint project with Stéphane Gaussent and Michael Ehrig (cf.[12]), we try to
generalise to the a�ne setting the paper [21] of Härterich, where the author describes
the T -equivariant cohomology of Bott-Samelson varieties in terms of Braden-MacPherson
sheaves on the corresponding Schubert varieties.
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Periodic patterns and the Feigin-Frenkel conjecture.

The Feigin-Frenkel conjecture provides a character formula involving Lusztig's peri-
odic polynomials (cf.[37]). In [28], Kato related these polynomials to the generic polyno-
mials. In particular, he showed that generic polynomials are sum of periodic polynomials
with certain multiplicities. We believe that a natural development of the results we got
in Chapter 5 is to prove an analog of this periodicity property for canonical sheaves. It
should correspond to a �ltration of the space of global sections of the indecomposable
Braden-MacPherson sheaf. In an ongoing project with Peter Fiebig we try to understand
this phenomenon and to apply it to get a further step in the proof of the Feigin-Frenkel
conjecture. The representation theory of a�ne Kac-Moody algebras at the critical level
is very complicated and, thanks to the fundamental work of Frenkel and Gaitsgory, it is
related to the geometric Langlands correspondence.

Moment graphs and Littelmann path model.

In 2008, during the Semester " Combinatorial Representation Theory" at the MSRI of
Berkeley, Ram conjectured a connection between the Littelmann path model and a�ne
Kazhdan-Lusztig polynomials (the so�called "Théorève"). Since in characteristic zero
the multiplicity conjecture is proved, our hope is that we may get a better understand-
ing of this connection via the study of indecomposable Braden-MacPherson sheaves, by
applying results we obtained in this thesis.

Acknowledgements

I am grateful to my advisor P. Peter Fiebig, for his guidance and support during these
two years.

I would also like to thank my coadvisor Lucia Caporaso, the coordinator of the
Doctoral School of Mathematics of the University of Roma Tre Luigi Chierchia, the former
coordinator Renato Spigler, the coordinator of the Doctoral School of Natural Sciences of
the Friedrich-Alexander-Universität of Erlangen-Nürnberg Wolfgang Achtziger and the
former coordinator Eberhard Bänsch; they all made this binationally supervised PhD
thesis possible.

I would like to acknowledge Corrado De Concini, the advisor of my master thesis, for
his encouragement and for helpful discussions also during my PhD studies.

This dissertation would not have been written without Andrea Ma�ei, who drew my
attention to the work of Peter Fiebig, and Francesco Esposito, without whose help and
support I would never even have started my PhD.

I also owe thanks to Rocco Chirivi, Michael Ehrig and Geordie Williamson for useful
conversations.

Many thanks go to Rollo Jenkins for help with the language.

I would like to thank the INdAM and the Frauenbeauftragte der Erlangen-Nürnberg
Universität for funding part of my stay at the Friedrich-Alexander-Universität of Erlangen-
Nürnberg.



CONTENTS ix

Finally, I am grateful to the Hausdor� Research Institute for Mathematics in Bonn
for its hospitality during the programme "On the Interaction of Representation Theory
with Geometry and Combinatorics", where I spent a very fruitful period. Many thanks
go to the the organisers of this programme, Ste�en König, Peter Littelmann, Jan Schröer
and Catharina Stroppel, who gave me the opportunity to take part to it.





Chapter 1

The category of k-moment graphs

on a lattice

Moment graphs were introduced by Goresky, Kottwitz and MacPherson in 1998, in
order to give a combinatorial description of the T -equivariant cohomology of a complex
algebraic variety X equipped with an action of a complex torus T , satisfying some tech-
nical assumptions (cf.[20]). A couple of years later, Braden and MacPherson, in [7], used
moment graphs to compute the T -equivariant intersection cohomology of X. Since 2006,
thanks to the seminal work of Fiebig (cf.[13],[14],[18],[16],[17]), moment graphs have be-
come a powerful tool in representation theory as well. Even if in the last years moment
graphs appeared in several papers, a proper "moment graph theory" has not been de-
velopped yet. The aim of this section is to de�ne the category of moment graphs on a
lattice and to discuss some examples and properties of it.

1.1 Moment graphs

In [20] and [7], moment graphs were constructed from a geometrical datum, but it is
actually possible to give an axiomatic de�nition.

De�nition 1.1.1 ([16]). Let Y be a lattice of �nite rank. A moment graph on the lattice
Y is given by (V,E,E, l), where:

(MG1) (V,E) is a directed graph without directed cycles nor multiple edges,

(MG2) E is a partial order on V such that if x, y ∈ V and E : x→ y ∈ E, then x E y,

(MG3) l : E→ Y \{0} is a map called the label function.

Following Fiebig's notation ([16]), we will write x−−− y if we are forgetting about the
orientation of the edge.

Studying complex algebraic varieties, Braden, Goresky, Kottwitz and MacPherson
considered moment graphs only in characteristic zero, while they turned out to be very
important in prime characteristic (see [18], [19]).

1



2 CHAPTER 1. THE CATEGORY OF K-MOMENT GRAPHS ON A LATTICE

From now on, k will be a local ring such that 2 is an invertible element. Moreover,
for any lattice Y of �nite rank, we will denote by Yk := Y ⊗Z k.

De�nition 1.1.2. Let G be a moment graph on the lattice Y . We say that G is a k-
moment graph on Y if all labels are non-zero in Yk

De�nition 1.1.3. [19] The pair (G, k) is called a GKM -pair if all pairs E1, E2 of
distinct edges containing a common vertex re such that k · l(E1) ∩ k · l(E2) = {0}.

Observe that if (G, k) is a GKM -pair, then G is a k-moment graph. This property is
very important and, in the next chapters, it will give a restriction on the ring k.

1.1.1 Examples

Example 1.1.1. The empty k-moment graph is given by the graph having empty set of
vertices. All the other data are clearly uniquely determined. We will denote it by ∅.

Example 1.1.2 (cf.[16]). A generic k-moment graph is a moment graph having a unique
vertex. As in the previous example, all the other data are uniquely determined.

Example 1.1.3 (cf.[16]). A subgeneric k-moment graph on Y is a moment graph having
two vertices and an (oriented) edge, labelled by a non-zero element χ ∈ Y , such that χ⊗1
is non-zero in Yk too.

Example 1.1.4. We recall here the construction, due to Braden an MacPherson, ap-
peared in [7]. Let G be an irreducible complex projective algebraic variety, with an al-
gebraic action of a complex torus T ∼= (C∗)d. Denote moreover by X∗(T ) the character
lattice of the torus. If G has a T -invariant Whitney strati�cation by a�ne spaces and
the action of T is nice enough (see [7], �1.1), then the associated moment graph is de-
�ned as follows. Thanks to the technical assumptions made by Braden and MacPherson,
any 1-dimensional orbit turns out to be a copy of C∗, whose closure contains exactly two
�xed points. Thus, it makes sense to declare that the set of vertices, resp. of edges, of
the associated moment graph is given by the set of �xed points, resp. of 1-dimensional
orbits, with respect this T -action. Moreover, the assumptions on the variety imply that
any stratum contains exactly one �xed point. Then, taken any two (distinct) �xed points,
x, y, that is two vertices of the graph we are building, we set x ≤ y if and only if the
closure of the stratum corresponding to y contains the stratum corresponding to x. Now,
we want to label all edges of the graph, in order to record more informations about the
torus action. Let E be an edge. Any point z of the one-dimensional orbit E has clearly
the same stabilizer StabT (z) in T , that is the kernel of a character χ ∈ X∗(T ). We then
set l(E) := χ. We obtain in this way a moment graph on X∗(T ).

In Chapters 3, 4, 5 and 6 we will focus our attention on a class of moment graphs
associated to a symmetrisable Kac-Moody algebra: the Bruhat graphs. These graphs are
nothing but an example of the Braden-MacPherson construction for the associated �ag
variety that we described above (cf.[19], �7).
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1.2 Morphisms of k-moment graphs

In this section, we give the de�nition of morphism between two k-moment graphs.
Since a moment graph is an ordered graph, whose edges are labeled by (non-zero) elements
of Y having non-zero image in Yk, a morphism will be given by a morphism of oriented
graphs together with a family of automorphisms of Yk.

De�nition 1.2.1. A morphism between two k-moment graphs

f : (V,E,E, l)→ (V′,E′,E′, l′)

is given by (fV, {fl,x}x∈V), where

(MORPH1) fV : V → V′ is any map of posets such that, if x −−− y ∈ E, then either
fV(x) −−− fV(y) ∈ E′, or fV(x) = fV(y). For a vertex E : x −−− y ∈ E such that
fV(x) 6= fV(y), we will denote fE(E) := fV(x)−−− fV(y).

(MORPH2) For all x ∈ V, fl,x : Yk → Yk ∈ Autk(Yk) is such that, if E : x−−− y ∈ E and
fV(x) 6= fV(y), the following two conditions are veri�ed:

(MORPH2a) fl,x(l(E)) = h · l′(fE(E)), for some h ∈ k×

(MORPH2b) π◦fl,x = π◦fl,y, where π is the canonical quotient map π : Yk → Yk/l
′(fE(E))Yk.

If f : G = (V,E,E, l)→ G′ = (V′,E′,E′, l′) and g : G′ → G′′ = (V′′,E′′,E′′, l′′) are two
morphisms of k-moment graphs, then there is a natural way to de�ne the composition.
Namely, g ◦ f := (gV′ ◦ fV, {gl′,fV(x) ◦ fl,x}x∈V).

Lemma 1.2.1. The composition of two morphisms between k-moment graphs is again a
morphism, and it is associative.

Proof. The only conditions to check are (MORPH2a) and (MORPH2b). Suppose that
E : x −−− y ∈ E and gV′ ◦ fV(x) 6= gV′ ◦ fV(y), that is fV(x) 6= fV(v) and gV′(fV(x)) 6=
gV′(fV(v)). If fl,x(l(E)) = h′ · l′(fE(E)) and gl′,fV(x)(l

′(fE(E))) = h′′ · l′′(gE′ ◦fE(E)), with
h′, h′′ ∈ k×, then

(gl′,fV(x) ◦fl,x)(l(E)) = gl′,fV(x)(h
′ · l′(fE(E))) = h′ ·h′′ · l′′(gE′ ◦fE(E)) = h̃ · l′′(gE′ ◦fE(E)),

and clearly h̃ = h′ · h′′ ∈ k×. Moreover,

(gl′,fV(x) ◦ fl,x)(λ) =

= gl′,fV(x)(fl,y(λ) + n′l′(fE(E)) =

= gl′,fV(x)(fl,y(λ)) + n′ · h′′ · l′′(gE′ ◦ fE(E)) =

= gl′,fV(y)(fl,y(λ)) + n′′′ · l′′(gE′ ◦ fE(E)) + n′ · h′′ · l′′(gE′ ◦ fE(E))

where n, n′′ ∈ k.
Finally, the associativity follows from the de�nition.

For any k-moment graph G = (V,E,E, l), we set idG = (idV, {idYk}x∈V). Thus we
may give the following de�nition
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De�nition 1.2.2. We denote by MG(Yk) the category whose objects are the k-moment
graphs on Y and whose morphisms are as in Def.1.2.1.

Lemma 1.2.2. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈MG(Yk). Then, any morphism
f = (fV, {fl,x}) ∈ HomMG(Yk)(G,G

′) can be written, in a unique way, as composition of
two morphisms f = g ◦ t, where g = (fV, {idYk}) and t = (idV, {fl,x}).

Proof. We have to show that there exists a k-moment graphH such that t ∈ HomMG(Yk)(G,H),
g ∈ HomMG(Yk)(H,G

′) and the following diagram commutes

G
f //

t ��

G′

H

g

?? (1.1)

De�ne H as the k-moment graph, whose set of vertices, set of edges and partial order
are the same as G and, for any edge x→ y ∈ E, the label function is de�ned as follows

lH(x→ y) :=

{
fl,x(l(x→ y)) if fV(x) = fV(y)
l′(fV(x)→ fV(y)) otherwise

Now, it is easy to check that t ∈ HomMG(Yk)(G,H) and g ∈ HomMG(Yk)(H,G
′). Clearly,

Diagram (1.1) commutes. Observe that H is not the only k-moment graph having the
desired properties, but this does not a�ect the uniqueness of the decomposition of f .

1.2.1 Mono-, epi- and isomorphisms

Here we characterise some particular morphisms of k-moment graphs: monomor-
phisms, epimorphisms and isomorphisms in MG(Yk).

Lemma 1.2.3. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈MG(Yk) and f ∈ HomMG(Yk)(G,G
′).

(i) f is a monomorphism if and only if fV is an injective map of sets (satisfying condition
(MORPH1))

(ii) f is an epimorphism if and only if fV is a surjective map of sets (satisfying condition
(MORPH1))

Proof.

(i) f is a monomorphism if and only if, for any pair of parallel morphisms g1, g2 : H→ G,
f ◦ g1 = f ◦ g2 implies g1 = g2. Then, f is a monomorphism if and only if fV is a
monomorphisms in the category of sets and, for any x ∈ V, fl,x is a monomorphism in
the category of the k-modules, but by de�nition it is an automorphism of Yk, so this
condition is empty.

(ii) As in (i), we conclude easily that f is an epimorphism if and only if fV s a surjective
map of sets.
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Example 1.2.1. Consider the following map between graphs

y • // •w

z •

++x•

α

FF

// •u

α

EE

•v

α

YY

If we set fl,x = fl,y = fl,w = idYk , we get an homomorphism of k-moment graphs that is,
by Lemma 1.2.3, a monomorphism and an epimorphism.

A map between sets, that is both injective and bijective, is an isomorphism. Here, we
show that such a property does not hold for a homomorphism of k-moment graphs, even
if it is given by a map between the sets of vertices and an automorphism of Yk. This is
actually not surprising, since k-moment graphs will play in our theory (see next chapter)
the role that topological spaces play in sheaf theory and not all bijective continuous maps
between topological spaces are homeomorphisms.

Lemma 1.2.4. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈MG(Yk) and f = (fV, {fl,x}x∈V) ∈
HomMG(Yk)(G,G

′). f is an isomorphism if and only if the following two conditions hold:

(ISO1) fV is bijective

(ISO2) for all u → w ∈ E′, there exists exactly one x → y ∈ E such that fV(x) = u and
fV(y) = w.

Proof. At �rst, we show that a homomorphism satisfying (ISO1) and (ISO2) is invertible.
Denote by f−1 := (f ′V′ , {f ′l′,u}u∈V′), where we set f ′V′ := f−1V and f ′l′,u := f−1

l,f−1
V

(u)
. We

have to verify that f−1 is well-de�ned, that is we have to check conditions (MORPH2a)
and (MORPH2b). Suppose there exists an edge F : u → w ∈ E′, then, by (iii), there is
an edge E : x→ y ∈ E such that fV(x) = u and fV(y) = w. Since f veri�es (MORPH2a),
fl,x(l(E)) = h · l′(F ) for h ∈ k× and we get

f ′l′,u(l′(F )) = f−1
l,f−1

V
(u)

(l′(F )) = f−1l,x (l′(F )) = h−1 · l(E)

Now, let µ ∈ YK and take λ := f−1l,y (µ). By (MORPH2a), µ = fl,y(λ) = fl,x(λ) + r · l′(F )
for some r ∈ k. It follows

f ′l′,u(µ) = f−1l,x (µ)) = f−1l,x (fl,x(λ) + rl′(F )) =

= λ+ r · f−1l,x (l′(F )) = f−1l,y (µ) + r · h−1 · l(E) =

= f ′l′,w(µ) + r′ · l(E)

Suppose f is an isomorphism. If (ISO1) is not satis�ed, then fV, and hence f , is not
invertible. Moreover, (ISO1) implies that for all u → v ∈ E′, there exists at most one
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x → y ∈ E such that fV(x) = u and fV(y) = v (otherwise fV would not be injective).
Now, let f be the following homomorphism, (we do not care about the fl,x's)

y • // •w

x• // •u

α
<<

Condition (ISO1) holds, but f is not invertible, since f−1V (u) 6= f−1V (w) but f−1V (u)−−−
f−1V (w) 6∈ E (this contradicts (MORPH1)).

Example 1.2.2. All the generic k-moment graphs are in the same isomorphism class
in MG(Yk). Then, we will say in the sequel the generic k-moment graph and we will
denote it by {pt}.

Example 1.2.3. If k is a �eld, then all the subgeneric k-moment graphs are isomorphic.

Example 1.2.4. The homomorphism in Ex. 1.2.1 is surjective and injective but is not
an isomorphism.

Example 1.2.5. Let α, β be a basis of Yk. Consider the following morphism of graphs
(fV, fE):

x1• // y1•

x2•

β
ii

// y2•

β

hh

x3•

α

EE

// y3•

α

GG

x4•
β

ii α

EE

// y4•
α+β

gg α

EE

De�ne

fl,x1 :=

{
α 7→ α
β 7→ β

fl,x2 :=

{
α 7→ α
β 7→ β

fl,x3 :=

{
α 7→ α
β 7→ α+ β

fl,x4 :=

{
α 7→ α
β 7→ α+ β

We have to show that these data de�ne a morphism of k-moment graphs. Condition
(MORPH3a) is trivially satis�ed. Moreover, for any pair a, b ∈ k,

fl,x1(aα+ bβ)− fl,x2(aα+ bβ) = 0
fl,x3(aα+ bβ)− fl,x4(aα+ bβ) = 0
fl,x1(aα+ bβ)− fl,x3(aα+ bβ) = −bα = −b · l(x3 → x1)
fl,x2(aα+ bβ)− fl,x4(aα+ bβ) = −bα = −b · l(x4 → x2)

Then, condition (MORPH3b) holds too. Since the fl,x are all automorphisms of Yk, f is
an isomorphism.
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1.2.2 Automorphisms

For any G ∈ MG(Yk), denote by Aut(G) the automorphisms group of G. Moreover,
we set

T := {f ∈ Aut(G) | f = (idV, {fl,x})} (1.2)

G := {f ∈ Aut(G) | f = (fV, {idYk})} (1.3)

By combining results of the previous paragraphs, we get

Lemma 1.2.5. Let G ∈ MG(Yk), then T is a normal subgroup of (Aut(G), ◦), while G
is not. Moreover, Aut(G) = T oG.

Proof. For any f ∈ Aut(G) and t ∈ T ,

f−1tf = (f−1V ◦ idV ◦ fV, {f−1l,fV(x) ◦ tl,fV(x) ◦ fl,x}) = (idV, {f−1l,fV(x) ◦ tl,fV(x) ◦ fl,x) ∈ T

For any f ∈ Aut(G) and g ∈ G,

f−1gf = (f−1V ◦ gV ◦ fV, {f−1l,fV(x) ◦ idYk ◦ fl,x}) = (f−1V ◦ gV ◦ fV, {f−1l,fV(x) ◦ fl,x})

Clearly, such an element is not in general in G.

Now, T ∩G = {idG} and the second statement follows by Lemma 1.2.1.

1.3 Basic constructions in MG(Yk)

1.3.1 Subgraphs and subobjects

De�nition 1.3.1. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈MG(Yk). We say that G′ is
a k-moment subgraph of G if

(SUB1) V′ ⊆ V

(SUB2) E′ ⊆ E

(SUB3) E′=E|V′

(SUB4) l′ = l|E′

Lemma 1.3.1. Any k-moment subgraph of G is a representative of a subobject of G.

Proof. We have to show that, for any G′, k-moment subgraph of G, there exists a
monomorphism i : G′ → G. De�ne i as iV′(x) := x and il′,x = idYk for any x ∈ V′.
From Lemma1.2.3 (i), it follows that i is a monomorphism.
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1.3.2 Quotient graphs

De�nition 1.3.2. Let G = (V,E,E, l) ∈ MG(Yk) and ∼ an equivalence relation on V.
We say that ∼ is G-compatible if the following conditions are satis�ed:

(EQV1) x1 ∼ x2 implies x1 ∼ x for all x1 E x E x2

(EQV2) for all x1, y1 ∈ V, if x1 6∼ y1 and x1 → y1 ∈ E, then for any x2 ∼ x1 there exists
a unique y2 ∈ V such that y2 ∼ y1, x2 → y2 and l(x1 → y1) = l(x2 → y2).

De�nition 1.3.3. Let G = (V,E,E, l) ∈ MG(Yk) and let ∼ be a G-compatible equiva-
lence relation. We de�ne the oriented labeled graph quotient of G by ∼, and we denote it
by G/∼= (V∼,E∼,E∼, l∼), in the following way

(QUOT1) V∼ is a set of representatives of the equivalence classes

(QUOT2) E∼ = {([x]→ [y]) | ∃x1 ∼ x, y1 ∼ y with x1 → y1}
(QUOT3) E∼ is the transitive closure of the relation [x] E∼ [y] if [x]→ [y] ∈ E∼

(QUOT4) If [x] → [y] and x1 ∼ x, y1 ∼ y are such that x1 → y1, we set l∼([x] → [y]) =
l(x1 → y1).

Lemma 1.3.2. The graph G/∼ is a k-moment graph on Y .

Proof. The only condition to be checked is that G/∼ has no oriented cycles, but it follows
immediately from (EQV1).

Lemma 1.3.3. Let G ∈MG(Yk) and let ∼ be a G-compatible equivalence relation. Then
the quotient of G by ∼ is a representative of a quotient of G.

Proof. Suppose G′ = G/∼ and de�ne p = (pV, pE, {pl,x}) ∈ HomMG(Yk)(G,G
′) as pV(x) :=

[x], where [x] is the representative of the equivalence class of x and pl,x = idYk for any
x ∈ V. By Lemma1.2.3 (ii), this is an epimorphism.

Example 1.3.1. Consider the following map of graphs

• // •

•

α

66

,,α+β •

β

WW ;;

•

α

OO

•

β

DD

α+β

33

--α+β •

α

GG

[[

88

•

β

OO α+β

[[

•

α

ZZ

β

66

HH

22
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Set fl,x = idYk for any vertex x. This is an epimorphism of k-moment graphs and it
is clear that the graph on the right is a quotient of the left one by the (compatible) relation
x ∼ y if and only if x and y are connected by an edge having the following direction

__

1.3.3 Initial and terminal objects

Remark 1.3.1. For any G ∈ MG(Yk), |HomMG(Yk)(∅,G)| = 1, then ∅ an initial object.

Lemma 1.3.4. If |Autk(Yk)| > 1, there are no terminal objects in MG(Yk).

Proof. Since in the category of sets the terminal objects are the singletons, all k-moment
graphs with more than one vertex cannot be terminal. Let G ∈MG(Yk) be a k-moment
graph with at least one vertex and let f ∈ HomMG(Yk)(G, {pt}). Then, fV is uniquely
determined, but, for any vertex x of G, fl,x can be any automorphism of Yk. Indeed,
since {pt} does not have edges, conditions (MORF3a) and (MORF3b) are empty.

It follows

Corollary 1.3.1. MG(Yk) is not an additive category.

Proof. This is because there are no zero objects in MG(Yk). Observe, that this is true
also if Y ∼= Z0. Indeed, in this case the generic graph is the (unique) terminal object but
it is not initial.

Products

Lemma 1.3.5. If |Autk(Yk)| > 1, MG(Yk) has no products.

Proof. Suppose MG(Yk) had products. Then, for any G = (V,E,E, l) ∈ MG(Yk)
it would exist the product (G × G, {p1, p2}). In particular, there would exist a g ∈
HomMG(Yk)(G,G× G) such that the following diagram commutes

G
idG

||

idG

""
g

��
G G× Gp1
oo

p2
// G

(1.4)

Let G be the generic graph and let x be unique vertex. Then, from (1.4), we would get
the following commutative diagram

Yk
idYk

~~

idYk

  
gl,x

��
Yk Yk
p1
l′,gV(x)

oo
p2
l′,gV(x)

// Yk

(1.5)
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(where we denoted pi = (piV′ , p
i
E′ , {pil′,y}) ). The commutativity of the triangles in

(1.5) implies gl,x = (p1l′,gV(x))
−1 = (p2l′,gV(x))

−1, that is p1l′,gV(x) = p2l′,gV(x) =: pl′,gV(x).

Now, choose f ∈ HomMG(Yk)(G,G) such that fl,x 6= idYk (such an fl,x exists, since we
have by hypothesis |Autk(Yk)| > 1). There would exists an h ∈ HomMG(Yk)({pt}, {pt}×
{pt}) such that the following diagram commutes

{pt}
id{pt}

yy

f

%%
h
��

{pt} {pt} × {pt}p1
oo

p2
// {pt}

But this is impossible; indeed, the diagram above would give us the following commuta-
tive diagram

Yk
idYk

~~

fl,x

  
hl,x
��

Yk Ykpl′,gV(x)

oo
pl′,gV(x)

// Yk

Coproducts

De�nition 1.3.4. Let {Gj = (Vj ,Ej ,Ej , lj)}j∈J be a family of objects inMG(Yk). Then∐
j∈J Gj = (V,E,E, l)) is de�ned as follows:

(PROD1) V is given by the disjoint union
∐
j∈J Vj =

⋃
j∈J{(v, j) | v ∈ Vj}

(PROD2) (x, j)−−− (y, i) if only if i = j and x−−− y ∈ Ei

(PROD3) (x, j) E (y, i) if and only if i = j and x Ej y

(PROD4) l ((x, j)−−− (y, j)) := lj(x−−− y)

We get:

Lemma 1.3.6. MG(Yk) has �nite coproducts

Proof. Denote by ij : Gj →
∐
j∈J Gj the morphism given by ijV(v) = (v, j) and fl,x = idYk

for any x ∈ Vj . Then, for any H ∈ MG(Yk) with a family of morphisms fj : Gj → H

there exists a unique morphism f :
∐
j∈J Gj → H such that fj = f ◦ ij . In particular, f

is given by f∐
j∈J Vi((x, j)) = fj(x) and fl,(x,j) = (fj)l,x.



Chapter 2

The category of sheaves on a

k-moment graph

The notion of sheaf on a moment graph is due to Braden and MacPherson (cf.[7])
and it has been used by Fiebig in several papers (cf. [13],[14],[18],[16],[17]). In the �rst
part of this chapter, we recall the de�nition of category of sheaves on a k-moment graph
and we present two important examples, namely, the structure sheaf and the canonical
sheaf (cf.[7]). In the second part, for any homomorphism of k-moment graphs f , we
de�ne the pullback functor f∗ and the push-forward functor f∗. These two functors turn
out to be adjoint (see Proposition 2.2.1). We prove that, if f is a k-isomorphism, then
the canonical sheaf turns out to be preserved by f∗. This result will be an important
tool in the categori�cation of some equalities coming from Kazhdan-Lusztig theory (see
Chapter 5).

2.1 Sheaves on a k-moment graph

For any �nite rank lattice Y and any local ring k (with 2 ∈ k∗), we denote by
S = Sym(Y ) its symmetric algebra and by Sk := S⊗Zk its extension. Sk is a polynomial
ring and we provide it with the grading induced by the setting (Sk){2} = Yk. From now
on, all the Sk-modules will be �nitely generated and Z-graded. Moreover, we will consider
only degree zero morphisms between them. Finally, for j ∈ Z andM a graded Sk-module
we denote by M{j} the graded Sk-module obtained from M by shifting the grading by
j, that is M{j}{i} = M{j+i}.

De�nition 2.1.1 ([7]). Let G = (V,E,E, l) ∈MG(Yk), then a sheaf F on G is given by
the following data ({Fx}, {FE}, {ρx,E})

(SH1) for all x ∈ V, Fx is an Sk-module;

(SH2) for all E ∈ E, FE is an Sk-module such that l(E) · FE = {0};

(SH3) for x ∈ V, E ∈ E, ρx,E : Fx → FE is a homomorphism of Sk-modules de�ned if x
is in the border of the edge E.

11
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Remark 2.1.1. We may consider the following topology on G (cf. [7],�1.3 or [24], �2.4).
We say that a subgraph H of G is open, if whenever a vertex x is H, then also all the
edges adjacent to x are in H. With this topology, the object we de�ned above is actually
a proper sheaf of Sk-modules on G. Anyway, we will not work with this topology in what
follows.

Example 2.1.1 (cf. [7], �1). Let G = (V,E,E, l) ∈MG(Yk), then its structure sheaf Z
is given by

• for all x ∈ V, Z x = Sk

• for all E ∈ E, Z E = Sk/l(E) · Sk

• for all x ∈ V and E ∈ E, such that x is in the border of the edge E, ρx,E : Sk →
Sk/l(E) · Sk is the canonical quotient map

De�nition 2.1.2. [15] Let G = (V,E,E, l) ∈MG(Yk) and let F = ({Fx}, {FE}, {ρx,E}),
F′ = ({F′x}, {F′E}, {ρ′x,E}) be two sheaves on it. A morphism ϕ : F −→ F′ is given by
the following data

(i) for all x ∈ V, ϕx : Fx → F′x is a homomorphism of Sk-modules

(ii) for all E ∈ E, ϕE : FE → F′E is a homomorphism of Sk-modules such that, for any
x ∈ V on the border of E ∈ E, the following diagram commutes

Fx

ϕx

��

ρx,E // FE

ϕE
��

F′x
ρ′x,E // F′E

De�nition 2.1.3. Let G ∈ MG(Yk). We denote by Shk(G) the category, whose objects
are the sheaves on G and whose morphisms are as in Def.2.1.2.

Remark 2.1.2. If G = {pt}, then Shk(G) is equivalent to the category of �nitely generated
Z-graded Sk-modules.

2.1.1 Sections of a sheaf on a moment graph

Even if Shk(G) is not a category of sheaves in the topological meaning, we may de�ne,
following [14], the notion of sections.

De�nition 2.1.4. Let G = (V,E,E, l) ∈ MG(Yk), F = ({Fx}, {FE}, {ρx,E}) ∈ Shk(G)
and I ⊆ V. Then the set of sections of F over I is denoted Γ(I,F) and de�ned as

Γ(I,F) :=

{
(mx)x∈I ∈

⊕
x∈I

Fx | ∀x−−− y ∈ E ρx,E(mx) = ρy,E(my)

}

We will denote Γ(F) := Γ(V,F), that is the set of global sections of F.
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Example 2.1.2. A very important example is given by the set of global sections of the
structure sheaf Z (cf. Ex. 2.1.1). In this case, we get the structure algebra:

Z := Γ(Z ) =

{
(zx)x∈V ∈

⊕
x∈V

Sk | ∀E : x−−− y ∈ E zx − zy ∈ l(E) · Sk

}
(2.1)

Goresky, Kottwitz and MacPherson proved in [20] that, if G is as in Ex. 1.1.4, i.e. it
describes the algebraic action of the complex torus T on the irreducible complex variety
X, then Z is isomorphic, as graded Sk-module, to the T -equivariant cohomology of X.
It is easy to check that, for any F ∈ Shk(G), the k-structure algebra Z acts on Γ(F)
via componentwise multiplication. We will focus our attention on a subcategory of the
category of Z-graded Z-modules from Chapter 4.

2.1.2 Flabby sheaves on a k-moment graph

After Braden and MacPherson ([7]), we de�ne a topology on the set of vertices of
a k-moment graph G. We state a result about a very important class of �abby (with
respect to this topology) sheaves: the BMP -sheaves. This notion, due to Fiebig and
Williamson (cf. [19]), generalizes the original construction of Braden and MacPherson.

De�nition 2.1.5. ([7]) Let G = (V,E,E, l) ∈ MG(Yk), then the Alexandrov topology
on V is the topology, whose basis of open sets is given by the collection {D x} := {y ∈
V | y D x}, for all x ∈ V.

A classical question in sheaf theory is to ask if a sheaf is �abby, that is whether any
local section over an open set extends to a global one or not. In order to characterise the
objects in Shk(G) having this property, we need some notation.

Let G = (V,E,E, l) ∈MG(Yk). For any x ∈ V, we denote (cf. [14], �4.2)

Eδx :=
{
E ∈ E | E : x→ y

}
Vδx :=

{
y ∈ V | ∃E ∈ Eδx such that E : x→ y

}
Consider F ∈ Shk(G) and de�ne Fδx to be the image of Γ({.x},F) under the com-

position ux of the following maps

Γ({.x},F) �
� //

ux

44

⊕
y.xF

y //
⊕

y∈VδxF
y
⊕ρy,E //

⊕
E∈EδxF

E (2.2)

Moreover, denote

dx := (ρx,E)TE∈Eδx : Fx //
⊕

E∈EδxF
E

Observe that m ∈ Γ({.x},F) can be extended, via mx, to a section m̃ = (m,mx) ∈
Γ({D x},F) if and only if dx(mx) = ux(m). This fact motivates the following result, due
to Fiebig, that gives a characterization of the �abby objects in Shk(G).
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Proposition 2.1.1 ([14], Prop. 4.2). Let F ∈ Shk(G). Then the following are equivalent:

(i) F is �abby with respect to the Alexandrov topology, that is for any open I ⊆ V the
restriction map Γ(F)→ Γ(I,F) is surjective.

(ii) For any vertex x ∈ V the restriction map Γ({D x},F)→ Γ({.x},F) is surjective.

(iii) For any vertex x ∈ V the map ⊕E∈Eδxρx,E : Fx →
⊕

E∈Eδx F
E contains Fδx in its

image.

2.1.3 Braden-MacPherson sheaves

We introduce here the most important class of sheaves on a k-moment graph. We
recall the de�nition given by Fiebig and Williamson in [19].

De�nition 2.1.6 ([19], Def. 6). Let G ∈MG(Yk) and let B ∈ Shk(G). We say that B
is a Braden-MacPherson sheaf if it satis�es the following properties:

(BMP1) for any x ∈ V, Bx is a graded free Sk-module

(BMP2) for any E : x→ y ∈ E, ρy,E : By → BE is surjective with kernel l(E) ·By

(BMP3) for any open set I ⊆ V, the map Γ(B)→ Γ(I,B) is surjective

(BMP4) for any x ∈ V, the map Γ(B)→ Bx is surjective

Hereafter, Braden-MacPherson sheaves will be referred to also as BMP -sheaves or
canonical sheaves. An important theorem, characterising Braden-MacPherson sheaves,
is the following one.

Theorem 2.1.1 ([19], Theor. 6.3). Let G ∈MG(Yk)

(i) For any w ∈ V, there is up to isomorphism unique Braden-MacPherson sheaf B(w) ∈
Shk(G) with the following properties:

(BMP0) B(w) is indecomposable in Shk(G)
(BMP1a) B(w)w ∼= Sk and B(w)x = 0, unless x ≤ w

(ii) Let B be a Braden-MacPherson sheaf. Then, there are w1, . . . , wr ∈ V and l1 . . . lr ∈ Z
such that

B ∼= B(w1)[lr]⊕ . . .⊕B(wr)[lr]

If B is an indecomposable BMP -sheaf, that is B = B(w) for some w ∈ V, then
conditions (BMP3) and (BMP4) may be replaced by the following condition (cf. [7],
Theor.1.4)

(BMP3') for all x ∈ V, with x E w, dx : B(w)x → B(w)δx is a projective cover
in the category of graded Sk-modules

Remark 2.1.3. If X is a complex irreducible algebraic variety with an algebraic action
of a torus T , as in Ex. 1.1.4, the associated k-moment graph turns out to have a unique
maximal vertex, that we denote by w. For k = C, Braden and MacPherson proved in [7]
that the space of global sections of the sheaf B(w) can be identi�ed with the T -equivariant
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intersection cohomology of X. In positive characteristic, Fiebig and Williamson related
B(w) to a (very special) indecomposable object in the T -equivariant constructible bounded
derived category of sheaves on X with coe�cients in k: a parity sheaf. Parity sheaves
have been recently de�ned by Juteau, Mautner and Williamson (cf. [25]) and they have
applications in many situations arising in representation theory.

Remark 2.1.4. Canonical sheaves are strictly related to important conjectures in repre-
sentation theory. We will (brie�y) discuss this connection in Chapter 5.

We end this section with a result, that connects structure sheaves and canonical
sheaves.

Proposition 2.1.2 ([17], Prop). Let G ∈MG(Yk)
+ and let w be its highest vertex. Then

B(w) ∼= Z if and only if Z is �abby.

Remark 2.1.5. The structure sheaf of a k-moment graph G is not in general �abby.
Actually, if G is as in Ex.1.1.4, the �abbiness of its structure sheaf is equivalent to the k-
smoothness of the variety X (cf. [19]). Indeed, if X is rationally smooth, its intersection
cohomology coincides with its ordinary cohomology.

2.2 Direct and inverse images

Let f = (fV, {fl,x}) : G = (V,E,E, l) → G′ = (V,E,E, l) be a homomorphism of k-
moment graphs. We want to de�ne, in analogy with classical sheaf theory, two functors

Shk(G)

f∗

88
Shk(G

′)

f∗

xx

From now on, for any ϕ ∈ Autk(Yk), we will denote by ϕ also the automorphism of
Sk that it induces.

We need a lemma, in order to make consistent the de�nitions we are going to give.

Lemma 2.2.1. Let s ∈ Sk, f ∈ HomMG(Yk)(G,G
′), F ∈ Shk(G) and H ∈ Shk(G′). Let

E : x−−− y ∈ E and F : fV(x)−−− fV(y) ∈ E′, then

(i) the twisted actions of Sk on FE de�ned via s � mE := f−1l,x (s) · mE and s � mE :=

f−1l,y (s) · mE coincide on FE/l′(F ) � FE (· denotes the action of Sk on FE before the

twist). Moreover, l′(F ) � FE = {0} in both cases.

(ii) the twisted actions of Sk on HF de�ned via s�nF := fl,x(s)·nF and s�nF := fl,y(s)·nF
coincide on HF /l(E)HF (· denotes the action of Sk on FE before the twist). Moreover,
l(E) �HF = {0} in both cases.

Proof. It is enough to prove the claim for s ∈ (Sk){2} = Yk, since Sk is a k-algebra
generated by Yk.
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(i) The statement follows from (MORPH2a), (MORPH2b) and the computations we made
in the proof of Lemma 1.2.4.

(ii) It is an immediate consequence of conditions (MORPH2a), (MORPH2b).

If ϕ is an automorphism of Sk, for any Sk-module M , we will denote Twϕ : M →M
the map sending M to M and twisting the action of Sk on M by ϕ.

2.2.1 De�nitions

De�nition 2.2.1. Let F ∈ Shk(G), then f∗F ∈ Shk(G′) is de�ned as follows

(PUSH1) for any u ∈ V′,
(f∗F)u := Γ(f−1V (u),F)

and the structure of Sk-module is given by s � (mx)x∈f−1
V

(u) := (s ·mx)x∈f−1
V

(u)

(PUSH2) for any u ∈ V′,

(f∗F)F :=
⊕

E:fE(E)=F

FE

and the action of Sk is twisted in the following way: s � (mE)E:fE(E)=F := (f−1l,x (s) ·
mE)E:fE(E)=F , where x is on the border of E

(PUSH3) for all u ∈ V′ and F ∈ E′, such that u is in the border of the edge F ,(f∗ρ)u,F is
de�ned as the composition of the following maps:

Γ(f−1V (u),F) �
� //

⊕
x:fV(x)=u

Fx
⊕ρx,E//

⊕
E:fV(E)=F FE

Tw //
⊕

E:fV(E)=F FE ,

where Tw = ⊕Twf−1
l,x
. We call f∗ direct image or push-forward functor.

De�nition 2.2.2. Let H ∈ Shk(G′), then f∗H ∈ Shk(G) is de�ned as follows

(PULL1) for all x ∈ V, (f∗H)x := HfV(x) and s ∈ Sk acts on it via fl,x(s)

(PULL2) for all E : x−−− y ∈ E

(f∗H)E =

{
HfV(x)/l(E)HfV(x) if fV(x) = fV(y)

HfE(E) otherwise

and of s ∈ Sk acts on (f∗H)E via fl,x(s).

(PULL3) for all x ∈ V and E ∈ E, such that x is in the border of the edge E,

(f∗ρ)x,E =

{
canonical quotient map if fV(x) = fV(y)
Twf−1

l,x
◦ ρfV(x),fE(E) ◦ Twf−1

l,x
otherwise

We call f∗ inverse image or pullback functor.

Example 2.2.1. Let G ∈ MG(Yk) and let p : G → {pt} be the homomorphism of k-
moment graphs having pl,x = idYk for all x, vertex of G. Then, for any F ∈ Shk(G)
p∗(F) = Γ(F). Moreover p∗(Sk) = Z , the structure sheaf of G.
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2.2.2 Adjunction formula

Proposition 2.2.1. Let f ∈ HomMG(Yk)(G,G
′), then f∗ is left adjoint to f∗, that is for

all pair of sheaves F ∈ Shk(G) and H ∈ Shk(G′) the following equality holds

HomShk(G)(f
∗H,F) = HomShk(G′)(H, f∗F) (2.3)

Proof. Take ϕ ∈ HomShk(G)(f
∗H,F), that is ϕ = ({ϕx}x∈V, {ϕE}E∈E) such that, for all

x ∈ V and E ∈ E such that x is on the border of E, the following diagram commutes

(f∗H)x

(f∗ρ′)x,E
��

ϕx // Fx

ρx,E
��

(f∗H)E
ϕE

// FE

(2.4)

We want to show that there is a bijective map γ : HomShk(G)(f
∗H,F)→ HomShk(G′)(H, f∗F)

and it is given by ϕ = ({ϕx}x∈V, {ϕE}E∈E) 7→ ψ = ({ψu}u∈V′ , {ψF }F∈E′), where

ψu := (⊕x∈f−1
V

(u) ϕ
x)T , ψF := ⊕E∈f−1

E
(F ) ϕ

E

We start with verifying that this map is well-de�ned. We have to show that for
any h ∈ Hu, ψu(h) ∈ (f∗F)u = Γ(f−1V (u),F), that is, for any x, y ∈ f−1V (u) such that
E : x−−− y ∈ E, ρx,E(ϕy(h)) = ρy,E(ϕy(h)).

From Diagram (2.4), we get the following commutative diagram

(f∗H)x = HfV(x) = Hu

(f∗ρ′)x,E
��

ϕx // Fx

ρx,E
��

(f∗H)E = Hu/l(E)Hu ϕE // FE

(f∗H)y = HfV(y) = Hu

(f∗ρ′)y,E

OO

ϕy // Fy

ρx,E

OO

(2.5)

But (f∗ρ′)y,E = (f∗ρ′)x,E by de�nition (they are both the canonical projection) and
we obtain

ρx,E ◦ ϕx = ϕE ◦ (f∗ρ′)x,E = ϕE ◦ (f∗ρ′)y,E = ρy,E ◦ ϕy

It is clear that the map γ : HomShk(G)(f
∗H,F) → HomShk(G′)(H, f∗F) we de�ned is

injective. To conclude our proof, we have to show the surjectivity of γ.
Suppose ψ = ({ψu}u∈V′ , {ψF }F∈E′) ∈ HomShk(G′)(H, f∗F), where, for all u ∈ V′ and

F ∈ E′ such that u is on the border of F , the following diagram commutes

Hu

ρ′u,F
��

ψx // Γ(f−1V (u),F)

⊕(Twfl,x◦ρx,E)
��

(f∗H)F
ψE
//
⊕

E∈f−1
E

(F ) F
E

(2.6)



18 CHAPTER 2. THE CATEGORY OF SHEAVES ON A K-MOMENT GRAPH

We claim that there exist ϕ = ({ϕx}) ∈ HomShk(G)(f
∗H,F) such that γ(ϕ) = ψ.

For any x ∈ V, let us consider u := fV(x) and de�ne ϕx as the composition of the
following maps

Hu ψy //

ϕx

44Γ(f−1V (u),F) �
� //

⊕
y∈f−1

V
(u) F

y // // Fx

For any E : x−−− y ∈ E such that fV(x) 6= fV(y), that is there exists an edge F ∈ E′

such that fE(E) = F , we de�ne ϕE as the composition of the following maps

HF ψF //

ϕE

44
⊕

L∈f−1
E

(F ) F
L

Twfl,y //
⊕

L∈f−1
E

(F ) F
L // // FE

Now, it is clear that γ(ϕ) = ψ. Indeed, if u 6∈ fV(V), then ψu = 0 and the claim is
trivial. Otherwise, u ∈ fV(V) and we get the following diagram, with Cartesian squares

Hu

ρ′u,F
��

ψy //

ϕx

**
Γ(f−1V (u),F)

(f∗ρ)y,F

��

� � //
⊕

y∈f−1
V

(u) F
y

⊕ρz,L
��

// // Fx

ρx,E

��
HF ψF //

ϕE

44
⊕

L∈f−1
E

(F ) F
L

Twfl,y //
⊕

L∈f−1
E

(F ) F
L // // FE

As application of the previous proposition, we get the following corollary.

Corollary 2.2.1. Let G ∈MG(Yk) and let Z , resp. Z, be its structure sheaf, resp. its
structure algebra. Then the functors Γ(−),HomShk(G)(Z ,−) : Shk(G) → Z − modules
are naturally equivalent. In particular, we get the following isomorphism of Sk-modules

Z ∼= EndShk(G)(Z ).

Proof. Consider the homomorphism p : G → {pt}, where we set pl,x = idYk for all x,
vertex of G. The structure sheaf of {pt} is just a copy of Sk and, for all F ∈ Shk(G), by
Prop. 2.2.1, we get

HomShk(G)(p
∗Sk,F) = HomShk({pt})(Sk, p∗F)

Bu we have already noticed in Example 2.2.1 that p∗Sk ∼= Z and p∗F = Γ(F).
Moreover, that HomSk(Sk,Z) ∼= Z and we get the claim.
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2.2.3 Inverse image of Braden-MacPherson sheaves.

The following lemma tells us that the pullback functor f∗ preserves canonical sheaves
if f is an isomorphism.

Lemma 2.2.2. Let G,G′ ∈MG(Yk)
+. Let w, resp. w', be the (unique) maximal vertex

of G, resp. G′, and let f : G −→ G′ be an isomorphism. If B(w) and B′(w′) are the
corresponding indecomposable BMP-sheaves, then B(w) ∼= f∗B′(w′) in Shk(G).

Proof. Let G = (V,E,E, l), G′ = (V′,E′,E′, l′) and f = (fV, {fl,x}).
Notice that I ⊆ V is an open subset if and only if I′ := fV(I) ⊆ V′ is an open subset.

We prove that B(w)|I
∼= f∗B′(w′)|I′ by induction on |I| = |I′|, for I open.

If |I| = |I′| = 1, we have I = {w} and I′ = {w′}. In this case B(w)w = Sk,
B′(w′)w

′
= Sk and the isomorphism ϕw : B(w)w → B′(w′)w

′
is just given by the twisting

of the Sk−action, coming from the automorphism of Sk, induced by the automorphism
fl,w of Yk.

Now let |I| = |I′| = n > 1 and y ∈ I be a minimal element. Obviously, y′ := fV(y) is
also a minimal element for I′. Moreover, for any E ∈ E we set E′ := fE(E).

First of all, observe that z ∈ Vδy if and only if z′ := fV(z) ∈ V′δy′ . By the inductive

hypothesis, for all x . y there exists an isomorphism ϕx : B(w)x →∼ B′(w′)x
′
such that

ϕx(s · m) = fl,x(s) · ϕx(m), for s ∈ Sk and m ∈ B(w)x. Moreover, if E 6∈ Eδy and x
is on the border of E with x . y, by the inductive hypothesis we have an isomorphism
ϕE : B(w)E →∼ B′(w′)E

′
such that ϕE(s ·n) = fl,x(s) ·ϕE(n), for s ∈ Sk and n ∈ B(w)E

and such that the following diagram commutes

B(w)x

ϕx

��

ρx,E // B(w)E

ϕE

��
B′(w′)x

′ ρ
′
x′,E′ // B′(w′)E

′

Now, if E : y −→ x and E′ : y′ −→ x′, then

B(w)E ∼= B(w)x/l(E)B(w)x and B(w′)′E
′ ∼= B′(w′)x

′
/l′(E′)B′(w′)x

′
.

By assumption, fl,x(l(E)) = h·l′(E′) for some invertible element h ∈ k× and ϕx(l(E)B(w)x) =

fl,x(l(E))·B′(w′)x
′

= l′(E′)B′(w′)x
′
. Thus the quotients are also isomorphic and so there

exists ϕE : B(w)E →∼ B′(w′)E
′
such that the following diagram commutes:

B(w)x

ϕx

��

ρy,E // B(w)E

ϕE

��
B′(w′)x

′ ρ
′
y′,E′ // B′(w′)E

′

Now we have to construct B(w)δy and B′(w′)δy
′
. Observe that (ϕx)x.y induces an iso-

morphism of Sk-modules between the sets of sections Γ({.y},B(w)) ∼= Γ({.′y′},B′(w′))
and, from what we have observed above, the following diagram commutes:
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Γ({.y},B(w))

⊕x.yϕx

��

//

uy

,,⊕
x.y B(w)x

⊕x.yϕx

��

//
⊕

x∈Vδy B(w)x
⊕ρx,E //

⊕x∈Vδyϕx
��

⊕
E∈Eδy B(w)E

⊕E∈Eδyϕ
E

��
Γ({.′y′},B′(w′)) ////

u′
y′

22

⊕
x′.′y′ B

′(w′)x
′ //

⊕
x′∈Vδy′

B′(w′)x
′

⊕ρ′
x′,E′

//
⊕

E∈Eδy′
B′(w′)E

′

It follows that there exists an isomorphism of Sk-modules B(w)δy ∼= B′(w′)δy
′
and

by the unicity of the projective cover we obtain B(w)y ∼= B′(w′)y
′
. This proves the

statement.

The lemma above will be a very useful tool in Chapter 5.



Chapter 3

Moment graphs associated to a

symmetrisable Kac-Moody algebra

The aim of this chapter is to recall standard notions related to the theory of Weyl
groups and to study some classes of moment graphs coming from this theory. At �rst,
we will de�ne regular and parabolic Bruhat graphs associated to a symmetrisable Kac-
Moody algebra. In particular, we will see that parabolic Bruhat graphs are quotients of
the regular ones in the sense of �1.3.2. The second part of this section is devoted to the
a�ne and a�ne Grassmannian cases. The main result of this chapter is a characterisation
of �nite intervals of the moment graph associated to the a�ne Grassmannian (see �3.2.2
and �3.2.3) that motivates the de�nition of the stable moment graph.

3.1 Bruhat graphs

Here, we de�ne a very important class of moment graphs: the Bruhat graphs. As
unlabelled oriented graphs, moment graphs were introduced by Dyer in 1991 (cf.[10])
in order to study some properties of the Bruhat order on a Coxeter group; already in
1993, he considered them as edge�labelled oriented graphs. Actually, he was labelling the
edges by re�ections of the Coxeter group (cf.[11]), instead of the corresponding positive
coroots (see Def.3.1.1). Even if his de�nition seems equivalent to ours, the extra structure
coming from the whole root lattice turns out to be fundamental when we are considering
morphisms between two Bruhat (k-moment) graphs (see �1.2). An important (and still
open) conjecture, the so-called combinatorial invariance conjecture (due to Lusztig and
Dyer, independently), states that the Kazhdan-Lusztig polynomial hx,y (see �4.2.1) only
depends on the interval [x, y] in the Bruhat graph. As moment graphs, Bruhat graphs
constitute a very important example and in fact they have been introduced already in
[7].

We start with recalling some notation from [26]. Let g be a symmetrisable Kac-
Moody algebra, that is the Lie algebra g(A) associated to a symmetrizable generalized
Cartan matrix A, and h its Cartan subalgebra. Let Π = {αi}i=1,...,n ⊂ h∗, resp. Π∨ =
{αi∨}i=1,...,n ⊂ h, be the set of simple roots, resp. coroots; let ∆, resp. ∆+, resp. ∆re

+ be

21
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the root system, resp. the set of positive roots, resp. the set of positive real roots; and
let Q =

∑n
i=1 Zαi, resp. Q∨ =

∑n
i=1 Zαi∨, be the root lattice, resp. the coroot lattice.

For any α ∈ ∆, we denote by sα ∈ GL(h∗) the re�ection, whose action on v ∈ h∗ is given
by

sα(v) = v − 〈v, α∨〉α (3.1)

Let W = W(A) be the Weyl group associated to A, that is the subgroup of GL(h∗)
generated by the set of simple re�ections S = {sα|α ∈ Π}. Recall that (W, S) is a
Coxeter system (cf. [26], �3.10).

However, W can be seen also as subgroup of GL(h), by the setting, for any λ ∈ h

sα(λ) := λ− 〈α, λ〉α∨ (3.2)

We will denote by T ⊂W the set of re�ections, that is

T =
{
sα |α ∈ ∆re

+

}
=
{
wsw−1 |w ∈W, s ∈ S

}
(3.3)

Hereafter we will write αt to denote the positive real root corresponding to the re�ection
t ∈ T. Finally, denote by ` : W → Z≥0 the length function and by ≤ the Bruhat order
on W.

3.1.1 Regular Bruhat graphs

De�nition 3.1.1. Let (W, S) be as above. Then the regular Bruhat (moment) graph
G = G(g) = (V,E,≤, l) associated to g is a moment graph on Q∨ and it is given by

(i) V = W, that is the Weyl group of g

(ii)
E =

{
x→ y |x < y , ∃α∈∆re

+ such that y = sαx
}

= {x→ y |x < y , ∃ t ∈ T such that y = tx}
(iii) l(x→ sαx) := α∨

Remark 3.1.1. Such a moment graph has an important geometric meaning. If G is the
Kac-Moody group, whose Lie algebra is g, and B ⊂ G is a standard Borel subgroup, then
there is an algebraic action of a maximal torus T ⊂ B on the �ag variety B = G/B (cf.
[32]). Moreover, the strati�cation coming from the Bruhat decomposition is T -invariant
and satis�es all the assumptions of [[7],�1]. It turns out that this is a particular case
of Example 1.1.4. In fact, the vertices are the 0-dimensional orbits with respect to the
T -action, while the edges represent the 1-dimensional orbits (cf.�2.1 of [19]). The partial
order on the set of vertices is induced by the Bruhat decomposition B =

⊔
w∈WXw, where,

indeed, Xw =
⊔
y≤wXy.

Example 3.1.1. If g = sl2, then the corresponding root system is A1 = {±α} and
W = S2. The associated Bruhat moment graph is the following subgeneric graph (see
Example 1.1.3 ).

e • α∨ // •sα
For any local ring k, this graph is clearly a k-moment graph and (G(sl2), k) is trivially a
GKM-pair.
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Example 3.1.2. If g = sl3, then the corresponding root system is A2 = {±α,±β,±(α+
β)}, W = S3. In this case, we get the following Bruhat graph.

sαsβsα = sα+β = sβsαsβ

sβsα

α∨
55

sαsβ

β∨
ii

sα

(α+β)∨

44

β∨

OO

sβ

(α+β)∨

jj

α∨

OO

e
α∨

ii

β∨

55

(α+β)∨

OO

3.1.2 Parabolic Bruhat graphs

We introduce a class of Bruhat graphs, that generalizes the one we described in �3.1.1.
In order to do this, we need some combinatorial results.

Let W be a Weyl group and let S be its set of simple re�ections. For any subset
J ⊆ S, we denote WJ := 〈J〉 and WJ = {w ∈W |ws > w ∀s ∈ J}. The following results
hold.

Proposition 3.1.1 ([5], Prop. 2.4.4).

(i) Every w ∈W has a unique factorization w = wJ ·wJ such that wJ ∈WJ and wJ ∈WJ .

(ii) For this factorization, `(w) = `(wJ) + `(wJ).

Corollary 3.1.1 ([5], Cor. 2.4.5). Each left coset wWJ has a unique representative of
minimal length.

It follows that WJ is a set of representatives for the equivalence classes in W/WJ .

In order to make consistent De�nition 3.1.2, we prove the following lemma.

Lemma 3.1.1. Let W, S, J be as before. Let x, y, z ∈W and let yJ = zJ 6= xJ . If there
exist α, β ∈ ∆re

+ such that x = sαy = sβz, then α = β and so y = z.

Proof. Take v ∈ h∗ such that WJ = StabW(v). By hypothesis, zJ = yJ and then there
exists a w ∈WJ such that z = yw. It follows

sαy(v) = x(v) = sβyw(v) = sβy(v)

That is

y(v)− 〈y(v), α∨〉α = y(v)− 〈y(v), β∨〉β

This equality holds if and only if 〈y(v), α∨〉α = 〈y(v), β∨〉β. But this is the case if and
only if 〈y(v), α∨〉 = 〈y(v), β∨〉 = 0 or α is a multiple of β.
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If it were 〈y(v), α∨〉 = 0, then 〈v, y−1(α)
∨〉 = 0 too. But this would imply that

sy−1(α) = y−1sαy ∈ StabW(v) = WJ , that is there would exist a u ∈ WJ such that

sα = yuy−1. But then we would get x = sαy = (yuy−1)y = yu, that is xJ = yJ . This
contradicts the hypotheses.

If α is a multiple of β, then α = ±β and, since α, β ∈ ∆re
+ , we get α = β.

De�nition 3.1.2. Let W, S and J be as above. Then the parabolic Bruhat (moment)
graph GJ = G(WJ) = (V,E,≤, l) associated to WJ is a moment graph on Q∨ and it is
given by

(i) V = WJ

(ii) E =
{
x→ y |x < y , ∃α∈∆re

+ , ∃w ∈WJ such that ywx−1 = sα
}

(iii) l(x→ sαxw
−1) := α∨, well�de�ned by Lemma 3.1.1.

Remark 3.1.2. Clearly, G(W∅) = G(g).

Remark 3.1.3. The moment graph we de�ned describes a geometric situation similar
to the one of Remark 3.1.1, once replaced the �ag variety with the corresponding partial
�ag variety (cf. [32]).

Example 3.1.3. Let g = sl4. In this case, ∆ = A3, Π = {α, β, γ}, W = S4 and
S = {sα, sβ.sγ}, where sαsγ = sγsα. If we chose J = {sα, sγ}, the associated parabolic
Bruhat graph GJ is the following octahedron.

sβsαsγsβ

sαsγsβ

β∨

OO

sαsβ

(β+γ)∨

FF

γ∨
99

sγsβ

(α+β)∨

XX

α∨
ee

sβ

α∨

ee
γ∨

99

(α+β+γ)∨

VV

e

β∨

OO
(α+β)∨

YY

(β+γ)∨

EE(α+β+γ)∨

HH

3.1.3 Parabolic graphs as quotients of regular graphs

Here we show that, if W, S and J are as in the previous section, then GJ is a quotient
of G by a G-compatible relation (cf. �1.3.2). To give this characterisation of parabolic
Bruhat graphs, we recall two well-known results.
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The �rst one is the so-called lifting Lemma and it is a classical tool in combinatorics
of Coxeter groups.

Lemma 3.1.2 ([22], Lemma 7.4). Let (W, S) be a Coxeter system. Let s ∈ S and v, u ∈W

be such that vs < v and u < v.

(i) If us < u, then us < vs.

(ii) If us > u, then us ≤ v and u ≤ vs. Thus, in both cases, us ≤ v.

We will use this lemma several times in what follows.
The following proposition tells that the poset structure of W is preserved in WJ .

Proposition 3.1.2 ([5], Prop.2.5.1). Let (W, S) be a Coxeter system, J ⊆ S and x, y ∈
W. If x ≤ y, then xJ ≤ yJ .

Using the previous results, we get

Lemma 3.1.3. Let (W, S) be a Coxeter system and J ⊆ S. If yJ ∈WJ , yJ ∈WJ , t ∈ T

are such that (yJ)−1tyJ 6∈WJ . Then, ty
J ≤ yJ if and only if tyJyJ ≤ yJyJ .

Proof. We prove the lemma by induction on `(yJ). If l(yJ) = 0, there is nothing to prove.
Suppose tyJ ≤ yJ and let `(yJ) > 0. Then there exists a simple re�ection s ∈ J such

that yJs < yJ , that is y
JyJs < yJyJ . Now, by the inductive hypothesis t(y

JyJs) < yJyJs
and, from Lemma 3.1.2, it follows tyJyJ = (tyJyJs)s ≤ yJyJ .

Viceversa, suppose tyJyJ ≤ yJyJ and `(yJ) > 0. Then there exists a simple re�ection
s ∈ J such that yJs < yJ , that is yJyJs < yJyJ . By hypothesis, tyJyJ <J yJ . If
yyJyJs < tyJyJ , by Lemma 3.1.2 (i), we get tyJyJs < yJyJs and the claim follows
from the inductive hypothesis. Otherwise, tyJyJ > tyJyJ and, by Lemma 3.1.2 (ii),
tyJyJs ≤ yJyJ and tyJyJ ≤ yJyJs. If tyJyJ 6≤ yJyJs, then tyJyJs > yJyJs and so
yJyJs < tyY yJs ≤ yJyJ , that implies tyJyJs = yJyJ . But this is a contradiction, since
they are not even in the same equivalence class. Thus we get tyJyJs < yJyJs and hence,
from the inductive hypothesis, the statement.

Lemma 3.1.4. Let g be a symmetrisable Kac-Moody algebra, W its Weyl group with S,
the set of simple re�ections, and let J ⊆ S. Let G be the Bruhat graph associated to
g, then the equivalence relation on its set of vertices V, given by x ∼ y if and only if
xJ = yJ , is G-compatible.

Proof. We have to check conditions (EQV1) and (EQV2).

(EQV1) From Proposition 3.1.2, if x ≤ y and xJ = yJ , then for all z ∈ [x, y], xJ ≤ zJ ≤
yJ = xJ , that is zJ = xJ .

(EQV2) Let x1, y1 ∈ W and t ∈ T be such that x1 6∼ y1WJ and x1 → y1 = tx1 ∈
E. If x2 ∼ x1, that is x2 = x1w for some w ∈ WJ , then we set y2 := y1w, clearly
x2−−− y2 = tx2 ∈ E and l(x2−−− y2) = l(x1 → y1) = αt. By Lemma 3.1.1, y2 is the only
element equivalent to y1 and connected to x2. Finally, from Lemma 3.1.3, it follows that
x2 < y2.
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Corollary 3.1.2. Let g be a symmetrisable Kac-Moody algebra, W its Weyl group with
S, the set of simple re�ections, and let J ⊆ S. Let G be the Bruhat graph associated to
g and GJ the one associated to WJ . Then GJ is the quotient of G by the G-compatible
equivalent relation de�ned in the previous lemma (in the sense of �1.3.2).

We will denote by pJ : G → GJ the epimorphism given by (pJ)V(x) := xJ and
(pJ)l,x = id for all x ∈W.

Example 3.1.4. Let g = sl3 and J = {sα} ⊂ S = {sα, sβ}. Then Example 1.3.1
describes the parabolic Bruhat graph GJ as quotient of the regular one (see Example
3.1.2).

3.2 The a�ne setting

We want now to focus our attention on the a�ne case. Let A be a generalized Cartan
matrix of a�ne type of order l + 1 and rank l. Let us enumerate its rows and columns

from 0 to l (as Kac in [[26], �6.1 ] does) , and denote by
�
A the matrix obtained from A

by deleting the 0-th row and the 0-th column. Then the Weyl group Wa of g = g(A) is

the a�nization of the (�nite) Weyl group Wf of
�
g= g(

�
A) (cf. [26], Chapter 1). Take

�
∆

to be the root system of
�
g, and

�
Π and

�
∆+ the corresponding set of simple and of positive

roots, respectively. It turns out that the set of real roots of g has a nice description in

terms of the root system of
�
g. Let δ ∈ h∗ be such that Aδ = 0 and δ =

∑r
i=0 aiαi, where

Π = {αi}i=0,...,r and the ai ∈ Z>0 are relatively prime (such an element exists and it is
unique by point b) of Theorem 5.6 in [26]). Then (cf. [26], Proposition 6.3)

∆re =

{
α+ nδ |α ∈

�
∆, n ∈ Z

}
(3.4)

and

∆re
+ =

{
α+ nδ |α ∈

�
∆, n ∈ Z>0

}
∪

�
∆+ (3.5)

It follows that Wa is generated by the set of a�ne re�ections

Ta = {sβ
∣∣β ∈ ∆re

+} = {sα,n |α ∈
�

∆, n ∈ Z>0} ∪ {sα,0
∣∣α ∈ �

∆+}.

Explicitly, the action of Wa on
� ∗
h ⊕δC is given by

sα,n
(
(λ, r)

)
= (sα(λ),−n〈λ, α∨〉+ r) (3.6)

For a given real root α + nδ, we want now to describe the corresponding coroot (α+ δ)
∨
.

We have a decomposion of the Cartan subalgebra as h =
�
h ⊕Cc⊕Cd, while h∗ =

� ∗
h ⊕Cδ ⊕CΛ0

(cf. [[26], �6.2]), where 〈δ,
�
h ⊕Cc〉 = 0. Because g is symmetrizable, by [[26], Lemma 2.1], there

is a bilinear form (, ) that induces an isomorphism ν :
� ∗
h →

� ∗
h such that we may identify α∨ and

2α
(α,α) . Then,

(α+ nδ)
∨

= α∨ +
2n

(α, α)
c =

2

(α, α)
(α+ n c) . (3.7)
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3.2.1 The a�ne Weyl group and the set of alcoves

We recall brie�y a description of Wa as a group of a�ne transformations of
� ∗
h R, the R-span

of α1, . . . , αl. This is obtained by identifying
� ∗
h R with the a�ne space

� ∗
h −1 mod Rδ, where

� ∗
h −1:=

{
λ ∈ h∗R

∣∣〈λ, c〉 = −1
}

Namely, it is possible to de�ne an action of the a�ne Weyl group on
� ∗
h R as follows

sα,n(λ) = λ−
(
〈λ, α∨〉 − 2n

(α, α)

)
α = sα,0(λ) + nα∨ (3.8)

Denote by
� ∨
Q the root lattice of

�
g and by Tµ the translation by µ ∈

� ∨
Q , that is the linear

transformation de�ned as Tµ(λ) = λ+ µ for any λ ∈
� ∗
h R. This is an element of the a�ne Weyl

group, since Tnα∨ = sα,nsα. It is easy to check that for any w ∈ Wa and for any µ ∈
� ∨
Q we

have wTµw
−1 = Tw(µ), so the group of translations by an element of the coroot lattice turns out

to be a normal subgroup. A well known fact is that Wa = Wfn
� ∨
Q (cf.[[22], Proposition 4.2]).

If θ is the (unique) highest root of
�

∆, then a minimal set of generators for Wa is given by
Sa = {sαi,0}i=1,...,l ∪{sθ,1}, where Sf := {sαi,0}i=1,...,l is the set of simple re�ections of Wf . Let
us set s0 := sθ,1 and call it a�ne simple re�ection.

Denote by

Hα,n :=

{
λ ∈

� ∗
h R | 〈λ, α∨〉 = 2

n

(α, α)

}
=

{
λ ∈

� ∗
h R | (λ, α) = n

}
and observe that the a�ne re�ection sα,n �xes pointwise such a hyperplane. We call alcoves the
connected components of

� ∗
h R \

⋃
α∈

�
∆+

n∈Z

Hα,n

and denote by A the set of all alcoves.
The dominant -or fundamental - (Weyl) chamber is

C+ := {λ∈
� ∗
h R | 〈λ, α∨〉 > 0 ∀α ∈

�
∆+}

and an element λ ∈ C+ is called dominant weight. We denote by A+ the set of all alcoves
contained in C+ and by

Π0 =

{
λ ∈

� ∗
h R | 0 < 〈λ, α∨〉 <

2

(α, α)
∀α ∈ Π

}
=

{
λ ∈

� ∗
h R | 0 < (λ, α) < 1 ∀α ∈ Π

}
the fundamental box.

We state now a 1-1 correspondence between Wa and A (cf. [[22], Theorem 4.8]). In order to
do that, we �x an alcove A+, that is the unique alcove in A+ which contains the null vector in
its closure. A+ is usually called fundamental alcove and it has the property that every element

λ ∈ A+ is such that 0 < (λ, α) ≤ 1 for all α ∈
�

∆+ (cf. [[22], �4.3]).
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The a�ne Weyl group Wa acts on the left (by (3.8)) simply transitively on A (cf. [22],�4.5)
and so we obtain

Wa −→1−1 A

w 7→ wA+.
(3.9)

Example 3.2.1. Let g = ŝl2. By (3.5), we know that ∆re
+ = {±α+nδ |n ∈ Z>0}∪{α}, where α

is the (unique) positive root of sl2 and (α, α) = 2. The corresponding Bruhat graph is an in�nite
graph, whose vertices are given by the words in two letters (s1 := sα and s0) without repetitions.
Two elements are connected if and only if the di�erence between their lengths is odd and in this
case the edge is oriented from the shorter to the longer one. Thanks to the correspondence (3.9),
we may identify the set of vertices with the set of alcoves of g. If we restrict the Bruhat graph to
the interval [A+, s1s0s1], we get the following

|
s1s0s1A

+
|

s1s0A
+
|

−α+2c

~~

s1A
+

|

−α+c

~~

α+c

99A+
|

α

~~

α+c

  

−α+c

ee s0A
+

|

α+2c

  

α

ee s0s1A
+
|

α

zz

We observe here that each wall of A+ is �xed by exactly one re�ection s ∈ Sa. We say that
such a wall is the s-wall of A+. In general every A ∈ A has one and only one wall in the Wa-orbit
of the s-wall of A+. This is called s-wall of A.

The a�ne Weyl group acts on itself by right multiplication, so it makes sense to de�ne a
right action of Wa on A. It is of course enough de�ne such an action for the generators of the
group. Thus for each alcove A let As be the unique alcove having in common with A the s-wall.

Two partial orders on the set of alcoves

Here we want to provide the set of alcoves with two partial orders (cf. [37]).
First of all, the Bruhat order on Wa induces a partial order on A. Indeed, for all alcoves

A,B ∈ A with A = xA+, B = yA+, x, y ∈Wa we may set

A ≤ B ⇐⇒ x ≤ y.

We still call it Bruhat order.
We observe that in general if we look at two �xed alcoves it is not obvious at all if they are

comparable with respect to the Bruhat order without knowing the corresponding elements in
Wa.

Now, we recall Lusztig's de�nition of a nicer partial order 4 on A, in the sense that for all
pair of alcoves we will be able to say if they are comparable and, in case, to establish which one
is the bigger one.

Each H ∈
⋃
α∈

�
∆+

n∈Z

Hα,n divides
� ∗
h R in two half spaces:

� ∗
h R= H+ ∪H ∪H−, where H+ is

the half space that intersects every translate of C+. Let A ∈ A, if H is the re�ecting hyperplane
between A and As, s ∈ Sa, we consider the partial order generated by

A 4 As if A ∈ H−.
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We notice that it is not clear in general how ≤ and 4 are related. Actually, denoting by X
the lattice of (�nite) integral coweights, that is

X∨ := {λ ∈
� ∗
h R | (λ, α) ∈ Z ∀α ∈

�
∆}, (3.10)

we have

Proposition 3.2.1 ([40],claim 4.4). Far enough inside A+, ≤ and 4 coincide, that is for all
λ ∈ X∨ ∩ C+, A,B ∈ A the following are equivalent:

1. A 4 B;

2. nλ+A ≤ nλ+B for n >> 0.

Because of this result we call 4 generic Bruhat order. Remark that 4 is invariant under
translation by coweights.

The periodic moment graph

In section 3.1, we associated to any simmetrisable Kac-Moody algebra g with Weyl group W

its regular Bruhat graph G(g). If g is moreover a�ne, that is its Weyl group is an a�ne Weyl
group Wa, we may give the following de�nition.

De�nition 3.2.1. The periodic moment graph Gper = Gper(g) = (V,E,4, l) associated to Wa is
a moment graph on Q∨ and it is given by

(i) V = A, the set of alcoves of Wa

(ii) E =
{
xA+ → yA+ |xA+ 4 yA+ , ∃α∈∆re

+ such that y = sαx
}

(iii) l(xA+ → sαxA
+) := α∨

Remark 3.2.1. We identi�ed Wa and A by (3.9) and so G(Wa) and Gper(Wa) coincide as labeled
unoriented graphs.

Example 3.2.2. Let g = ŝl2. If we restrict the corresponding periodic moment graph to the
interval [s1s0s1, s0s1A

+], we get the following moment graph.
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|
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3.2.2 Parabolic moment graphs associated to the a�ne Grassmannian

We consider in this section a very important class of parabolic moment graphs: the ones
associated to the A�ne Grassmannians, that is GJ , where W = Wa is an a�ne Weyl group and
J is the corresponding set of �nite simple re�ections, that is we are modding out by the �nite
Weyl group.

There are actually two descriptions of this graph: one identi�es the set of vertices with the

coroot lattice
� ∨
Q , while the other identi�es the set of vertices with A+, the set of alcoves in the

fundamental chamber. Hereafter, we will denote this graph by Gpar.

Since WJ = StabW(0) and W.0 =
� ∨
Q , WJ is in bijection with the coroot lattice via the

mapping w 7→ w(0) and clearly there exist an element w ∈ WJ and a re�ection t ∈ T such that
xJ = tyJw if and only if xJ(0) = tyJ(0). And we get in this way the �rst description.

On the other hand, WJ is clearly in bijection with WJ \W via the mapping wJ → (wJ)−1

modulo WJ . The set of minimal representatives for the equivalence classes, under the correspon-
dence (3.9), is given by the set A+ of the alcoves in the fundamental chamber. Moreover, we will
connect xA+, yA+ ∈ A+, if and only if there exist an element on the �nite Weyl group w ∈WJ

and an a�ne re�ection t ∈ T such that x = wyt, that is x−1 = ty−1w−1.

Example 3.2.3. Let g = ŝl3. Let us consider the interval [e, sβsαsβs0] ⊂ WJ then the two
descriptions of Gpar are as follows (we omit the labels).

(i) Description via the coroot lattice

•

•

• •

• •

•
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$$zz
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(ii) Description via the set of alcoves in C+

OO

HH VV

NN PP

WW

ee 99

OO

OO OO

== aa

dd ::



31

As we can see in the previous example, in the description of Gpar via the alcoves in the
fundamental chamber, the set of edges seems to have a very complex structure, while in the
other one the order on the set of vertices is hard to understand. Since we are interested in the
study of intervals, the description via the coroot lattice turns out to be not that useful for our

purposes, unless g = ŝl2. We will show later that �nite intervals of Gpar "far enough" in C+ have
surprisingly a very regular structure.

The ŝl2 case

If g = ŝl2, it is actually possible to give a very explicit description of Gpar. In this case we
may identify the �nite root with the �nite coroot lattice and then the set of vertices is V = Zα.
For any pair n,m ∈ Z, it is easy to check that

sα,n+m(nα) = mα, (3.11)

then Gpar is a fully connected graph. Notice that, even if (3.11) holds for any pairs of integers n
and m, we do not allow loops, so n 6= m always. Moreover, by (3.7) and (3.11), it follows

l(nα−−−mα) =

{
α+ (n+m)c if n+m ≥ 0
−α− (n+m)c if n+m < 0

(3.12)

Finally, observe that α = s0(0) and −α = sαs0(0); so, for any pair of n 6= m ∈ Z, nα < mα
if and only if |n| < |m| or n = −m > 0.

Example 3.2.4. The interval [0,−2α] of Gpar looks like in the following picture
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α−c

dd
•
2α

α
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3.2.3 Parabolic intervals far enough in the fundamental chamber

In this paragraph, we will consider only the description of Gpar in which the set of vertices
coincides with A+. Our goal is to study the structure of �nite intervals of Gpar far enough in the
fundamental chamber. In this section, k is any �eld of characteristic zero.

De�nition 3.2.2. Let λ, µ ∈ C+. We say that

(i) λ is strongly linked to µ if λ = µ+ xα, for some x ∈ R and α ∈
�

∆+

(ii) λ is linked to µ if λ = w(µ+ nα), for some n ∈ R, α ∈
�

∆+ and w ∈Wf

Remark that the fundamental chamber C+ is a fundamental domain with respect to the left
action of the �nite Weyl group (cf. [22], �1.12), so the element in point (ii) is unique.

Proposition 3.2.2. There exists a K > 0, depending only on the root system
�

∆, such that if
λ ∈ C+ and dλ is the minimum of distances of λ from the borders of C+, then all µ ∈ C+ linked
to λ, and such that |λ− µ| ≤ K · dλ, are strongly linked to λ.
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Proof. For any λ,∈ C+ and any positive �nite root α ∈
�

∆+ we denote by rλ,α the line {λ+αx |x ∈

R} ⊆
� ∗
h R. It is clear that the set of dominant weights strongly linked to λ corresponds to

(
⋃
α∈

�
∆+

rλ,α)
⋂
C+. On the other hand, we may describe the set of µ ∈ C+ linked to λ as follows.

Fix α ∈
�

∆+ and consider the line rλ,α. Each time that such a line hits a wall of C+ re�ects it
along the wall and goes on this way. Denote by r̃λ,α the piecewise linear path inside of C+ so
obtained. Now

⋃
α∈

�
∆+

r̃λ,α is the set of dominant weights linked to λ.

Thus it is enough to show that there exists a K > 0 such that if µ ∈ r̃λ,α and |λ − µ| ≤

K · dλ, then µ ∈ rλ,α. Notice that the �nite Weyl group acts on
� ∗
h R as a group of orthogonal

transformations, hence we may reduce to show that for all w ∈Wf \ {e, sα}, the distance of the
weight w(λ) from the line rλ,α is not less than K ·dλ. Moreover, one may think to this reduction
as an "unfolding" back r̃λ,α to rλ,α and considering the conjugates of λ instead of λ.

Since the distance of w(λ) from the line rλ,α is the minimum of the distances of w(λ) from
λ+ xα for x ∈ R, we have to show that |λ− xα− w(λ)|2 ≥ K2d2

λ for all x ∈ R. Computing the
square norm, and denoting λw := λ− w(λ), we have:

|α|2x2 + 2(λw, α)t+ |λw|2 +K2d2
λ ≥ 0 ∀t ∈ R

Hence this is equivalent to show that the discriminant Dw = (λw, α)2−|α|2|λw|2 + |α|2K2d2
λ ≤ 0.

First notice that Dsαw = Dw, since λsαw = λ − w(λ) + 〈w(λ), α∨〉α = λw + 〈w(λ), α∨〉α,
hence:

Dsαw = (λsαw, α)2 − |α|2|λsαw|2 + |α|2K2d2
λ =

= (λw + 〈w(λ), α∨〉α, α)2 − |α|2(λw + 〈w(λ), α∨〉α, λw + 〈w(λ), α∨〉α) + |α|2K2d2
λ =

= (λw, α)2 + 2〈w(λ), α∨〉|α|2(λw, α) + 〈w(λ), α∨〉2|α|4+
− |α|2|λw|2 − 2|α|2(〈w(λ), α∨〉α, λw)− 〈w(λ), α∨〉2|α|4 + |α|2K2d2

λ =
= (λw, α)2 − |α|2|λw|2 + |α|2K2d2

λ = Dw

Now if w−1(α) is a �nite negative root, then clearly (sαw)−1(α) ∈
�

∆+, hence, using the invari-
ance property just proved, in what follows we may assume that w ∈ Wf \ {e, sα} is such that

w−1(α) ∈
�

∆+.

Denote now by
�w
∆ + the set of positive roots sent to negative roots by w, let Cw be the

(closed convex rational) cone 〈
�w
∆ +〉R+ generated by the elements of

�w
∆ + and notice that α

is not in ±Cw. Indeed, α is not in Cw since all elements of this cone are sent to non-negative
linear combination of negative roots by w−1 and, on the other hand, α is a positive root while
all elements in −Cw are non-negative linear combinations of negative roots.

Let Lw be the set of weights λw, where λ runs in C+ and �x a reduced expression si1 . . . sir ,
with sij := sαj , for αj ∈ ∆. Then we have w(λ) = λ−(a1βi1 . . . arβir ), where βj = si1 . . . sij−1

(αij )

for j = 1, . . . , r. Notice that aij ≥ 0 for all j since λ ∈ C+ and, moreover, {βi1 , . . . , βir} =
�w
∆ +.

This shows that Lw ⊆ Cw.
Let π :

� ∗
h R \{0} → P(

� ∗
h R) the quotient map to the projective space of

� ∗
h R. Given two

non-zero vectors u, v ∈
� ∗
h R we denote by [u, v] the angle between them; clearly this symbol

depends only on the lines generated by u and v up to sign to change and up to supplementary

angles. In particular, the map P2(
� ∗
h R)→ R de�ned by (π[u], π[v]) 7→ cos2[u, v] is well�de�ned.

Since Cw is a closed convex rational cone we have that π(Cw \ {0}) is closed in P(
� ∗
h R).

Hence the map π(Cw \ {0})→ R sending π(µ) 7→ cos2[µ, α] achieves a maximal value Mα,w and
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this maximal value is less than 1 since π(α) 6∈ π(Cw \ {0}). In particular we have cos2[λw, α] ≤
Mα,w < 1 for all λ ∈ C+ \ {0} since Lw ⊆ Cw.

Finally, since there are only a �nite number of pairs (α,w), we have M := maxMα,w < 1.
Now notice that w(λ) 6∈ C+, because w 6= e, so |λw| ≥ dλ, as the segment from λ to w(λ) must
cross a wall of C+.

We are now in a position to conclude the proof. We have to show Dw ≤ 0. Since

(λw, α) = |λw||α| cos[λw, α],

our inequality becomes cos2[λw, α] ≤ 1 − K2d2
λ/|λw|2. But we have cos2[λw, α] ≤ M < 1 and

1−K2d2
λ/|λw|2 > 1−K2. Hence it is enough to choose K such that M ≤ 1−K2. This �nishes

the proof.

Let ρ be half the sum of the �nite positive coroots, that is ρ = 1
2

∑
α∈

�
∆+

α. Moreover, for

any alcove A ∈ A, let us denote by cA its centroid.

By using Proposition 3.2.2, together with the identi�cation α∨ = 2α/(α, α) for all α ∈
�

∆, we
get the following characterisation of �nite intervals of Gpar that are far enough from the walls of
the dominant chamber.

Lemma 3.2.1. Let A,B ∈ A+, then there exists an integer n0 = n0(A,B) such that for any
λ ∈ X ∩ nρ+ C+ , with n ≥ n0, for any pair C,D ∈ [A+ λ,B + λ] there is an edge C −−−D if
and only if

(i) either D = Ct for some t ∈ T

(ii) or D = C + aα for some a ∈ Z \ {0} and α ∈
�

∆+.

Proof. Observe �rst that the statement is true for g = sl2. Indeed, from �3.2.2, it follows that
n0 = 0 satis�es already the requirements.

We may then suppose g 6= sl2. The claim will follow once we prove that there exists an
n0 ∈ Z such that for all n ∈ Z, n ≥ n0 and for all pair E,F ∈ [A+ nρ,B + nρ], we have

|cE − cF | < K · dcE
where K > 0 was de�ned in Proposition 3.2.2. Indeed, the statement is equivalent to show

that for all n > n0, for any α ∈
�

∆+ we have (A + nρ + Rα∨) ∩ w([A + nρ,B + nρ]) = ∅
unless w = e, sα, but this is the case if and only if for all n > n0, for any α ∈

�
∆+ we have(

A+ nρ+ Rw(α∨)
)
∩ [A+ nρ,B + nρ] = ∅ unless w = e, sα.

For any �nite simple root α ∈
�
Π, let us denote by dcD,α the distance between cD and the

hyperplane Hα,0. Let ϕα be the angle between ρ and α, then we get the following picture

OO

Hα,0

•cD

cD + nρ

ϕα
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As we can see in the picture above, we have

dcD+nρ,α
= dcD,α + n|ρ| · cos(ϕα)

Moreover for all D ∈ [A,B]

dcD+nρ
= min

α
{dcD+nρ,α}

Let us denote r := maxD,E∈[A,B] |cD−cE | and letH ∈ [A,B] and β ∈
�
Π such that minD∈[A,B] dcD+ρ

=
dcH ,β + |ρ| cosϕβ (that is minD∈[A,B] dcD+nρ

= dcH ,β + n|ρ| cosϕβ for all n > 0). Since g 6= sl2,

for any γ ∈
�
Π it holds cosϕγ 6= 0 and we may set

m :=
r

K|ρ| · cosϕβ

De�ne n0 = dme. Now, for any pair of alcoves E,F ∈ [A,B] and for any n ∈ Z, n > n0

|cE+nρ − cF+nρ| = |cE − cF |
≤ r
= m ·K|ρ| · cosϕβ
≤ n0 ·K|ρ| · cosϕβ
≤ n0 ·K|ρ| · cosϕβ +K · dcH ,β
= K ·minD∈[A,B] dcD+n0ρ

≤ K · dcE+n0ρ

< K · dcE+nρ

We say that the edges of type (i), that is given by re�ections, are stable, while the ones of
type (ii), that is given by translations, are non-stable. We denote the corresponding sets ES ,
resp. ENS .

Example 3.2.5. Let g = ŝl2 and A = A+, B = s0s1s2s1A
+. Then in the interval [A,B] of Gpar

there are edges that are neither stable nor non-stable, as the one between A and C = s0s1A
+.

A

C

B

OO

FF XX

LL RR

YY

ee 99

OO
OO OO

>> ``

dd ::
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It is enough to translate the interval of α+ β to get the structure described in Lemma 3.2.1.

A'

B'

OO

XX

eeee ee9999 99

OO
OO OO

>> ``

dd dd

cc

::

<<

::

VV HH

00 nn

HHVV

Lemma 3.2.2. For any pair A,B ∈ A+, B ≤ A and for any pair λ1 = n1ρ, λ2 = n2ρ ∈
X ∩ nρ+ C+ (n1, n2 ≥ n0(A,B)) then G

par

|[A+λ1,B+λ1]
and G

par

|A+λ2,B+λ2]
are isomorphic as oriented

graphs.

Proof. Set µ := λ2 − λ1. The isomorphism we are looking for is given by C 7→ C + µ. Observe
that, by Proposition 3.2.1, the Bruhat order coincides in the fundamental chamber with the
generic one and so it is invariant by weight translation; then the map we have just de�ned is
an isomorphism of posets. Moreover C is connected to D in G

par

|A+λ1,B+λ1]
if and only if C + µ is

connected to D + µ in G
par

|A+λ2,B+λ2]
, indeed:

(i) D = Ct for some t ∈ T if and only if D = rC for some r ∈ T, that is if and only if there exist

α ∈
�

∆+ and n ∈ Z such that D = sα,n(C). It is now easy to check that this is the case if and only
if D+µ = sα,n+(µ,α)(C +µ), that is there exists a re�ection t′ ∈ T such that D+µ = (C +µ)t′.

(ii) D = C + aα if and only if D + µ = C + aα+ µ = (C + µ) + aα.

Remark 3.2.2. We want to stress the fact that in Lemma 3.2.2 we are not proving the exis-
tence of an isomorphism of moment graphs, but only between the underlying oriented graphs,
that is we are not considering labels. Our �rst hope was that we could �nd a collection of
{fl,C}C∈[A+λ1,B+λ1] satisfying condition (MORPh2a) and (MORPH2b). In the next two para-
graphs, we will see that it is not the case. In particular, it turns out that the labels of stable edges
are invariant by coroot translation (cf. Lemma 3.2.1), while the ones of non-stable edges are not
(cf. Lemma 3.2.4).

From now one we will denote by w ∈ Wa the corresponding alcove wA+ ∈ A, thanks to
the identi�cation (3.9) of the a�ne Weyl group with the set of alcoves. In particular, if wA+ is
contained in the fundamental chamber, we will write w ∈ A+.
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Stable edges

Let |Sa| = n and �x a numbering of the simple re�ections. We de�ne the permutation

σA,µ ∈ Sn, for A ∈ A and µ ∈
� ∨
X , in the following way: σA,µ(i) = j if the image under the

translation by µ of the si�th wall of A is the sj�th wall of A+µ (cf.�3.2.1). Let W̃a the extended

a�ne Weyl group, that is W̃a = Wa n Ω, where Ω :=
� ∨
X /

� ∨
Q (cf. [38]).

Lemma 3.2.3. For any µ ∈
� ∨
X the permutation de�ned above is independent on A ∈ A, i.e.

there exists σµ ∈ Sn such that σA,µ = σµ for any alcove A.

Proof. We know that Tkα∨ = sα,ksα,0 for any α ∈
�

∆. Since we are re�ecting twice in the same
direction (orthogonal to α), the walls of A+ kα∨ have the same numbering as the ones of A.

Thus for any µ ∈
� ∨
X there exists an element ω ∈ Ω and roots α1, . . . αr ∈ R such that

Tµ = ωsα1,k1
sα1

. . . sαr,krsαr and the numbering of the walls of A+ µ only depends on ω.

We get the following lemma.

Corollary 3.2.1. Let x ∈ Wf , t ∈ T, µ ∈ X∨ be such that x, xt, Tµx, Tµxt ∈ A+. Then,
l(Tµx−−− Tµxt) = σµ(l(x−−− xt)).

Non-stable edges

Now we describe how labels of non-stable edges change. In order to do that we need the
following result

Proposition 3.2.3 ([22],Proposition 4.1). Let z = Tz(0)v, where z(0)∈
� ∨
Q and v∈Wf . Then,

for any α ∈
�

∆+ and for any n ∈ Z,

zsα,nz
−1 = s±v(α),r with r = ±

(
〈z(0), v(α)

∨〉+ n
)
, (3.13)

where the signs are such that r > 0 or r = 0 and ±v(α) ∈
�

∆+.

We may now prove

Lemma 3.2.4. Let x ∈ A+ and x = Tx(0)w, where w ∈Wf .

(i) If α ∈
�

∆+ and Taα∨x ∈ A+, then

l(x−−− Taα∨x) = ±w−1(α∨)∓ 2

(α, α)
(〈x(0), α∨〉+ a) c, (3.14)

where ∓
(
〈x(0), α∨〉+ a

)
> 0 or

(
〈x(0), α∨〉+ a

)
= 0 and ±w−1(α) ∈

�
∆+.

(ii) Let y = Taα∨x, for some a ∈ Z and α ∈
�

∆+. Let moreover µ ∈ X∨, ω ∈ Ω and γ ∈
� ∨
Q be

such that Tµ = ωTγ . Then, if y, Tµx, Tµy ∈ C+,

l(Tµx−−− Tµy) = σµ(l(x−−− y))∓ 2〈γ, α∨〉
(α, α)

c, (3.15)

where ∓
(
〈γ + x(0), α∨〉+ a

)
> 0 or

(
〈γ + x(0), α∨〉+ a

)
= 0 and ±σµ(w−1(α)) ∈

�
∆+.
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Proof.

(i) Since Taα∨x = sα,asα,0x, we have to determine the positive root corresponding to the re�ection
x−1sα,0sα,asα,0x.

Since sα,0sα,asα,0 = sα,−a, by Proposition 3.2.3 with z = x−1, v = w−1, z(0) = −w−1(x(0))
and n = −a, we get

x−1sα,0sα,asα,0x = s±w−1(α),±(〈−w−1(x(0)),w−1(α)∨〉−a)

= s±w−1(α),∓(〈x(0),α∨〉+a).

The result follows from (3.7) and the fact that w(α)
∨

= w(α∨) for all α ∈
�

∆ and w ∈Wf .

(ii) Observe that Tµx −−− Tµy = Taα∨(Tµx). If x = Tx(0)w, then Tµx = Tµ+x(0)w = ωTγ+x(0)w

and we may apply point (i) of this Lemma with Tµx instead of x. So, if ±w−1(α) ∈
�

∆+, n = −a,
we get

l(Tkγ∨x−−− Tkγ∨y) = ±σµ(w−1(α∨))∓ 2
(α,α) (〈γ + x(0), α∨〉+ a)c

= σµ(l(x−−− y))∓ k〈γ,α∨〉
(α,α) c.

Stable moment graphs

Let Gpar be the same moment graph as before. We de�ne here the stable moment graph Gstab

as follows. This is the moment graph having as set of vertices the alcoves in the fundamental
chamber (that we identify with the corresponding elements of the Weyl group), equipped with
the Bruhat order (that here coincides with the generic one); we connect two vertices if and only
if there exists a re�ection t ∈ Ta such that y = xt, and in this case we set l(x−−− xt) := αt

∨.
Then we have:

Lemma 3.2.5. For any interval [y, w] and for any µ ∈ X∨ there exists an isomorphism of
k-moment graphs Gstab

|[y,w]
−→ Gstab

|[y,w]+µ
for all k.

Proof. Since the order on the set of vertices of Gstab is invariant by weight translation, we have
an isomorphism of posets induced by the mapping z 7→ z+ µ. This map induces also a bijection
between set of edges, as we have already seen in the proof of Lemma 3.2.2.

The permutation of Lemma 3.2.3 gives an automorphism of the root system and then an
induced automorphism of the coweight lattice. Since it depends only on the (�nite intergral)
coweight µ, we can set fl,x = σµ for any x and this gives us an isomorphism of k-moment graphs
for any k.





Chapter 4

Modules over the parabolic

structure algebra

Let Z be the structure algebra (see �2.1.1) of a regular Bruhat graph G. In [13], Fiebig de�ned
translation functors on the category Z-mod, that is the category of Z-graded Z-modules that are
torsion free and �nitely generated over Sk. Using it, he de�ned inductively a full subcategory H

of Z-mod and he proved that H, in characteristic zero, is equivalent to a category introduced by
Soergel in [41]. In [18], Fiebig showed that H categori�es the Hecke algebra H (and the periodic
module M), using translation functors. The aim of this chapter is to de�ne translation functors
in the parabolic setting and to extend some results of [18].

4.1 Translation functors

Let W be a Weyl group, let S be its set of simple re�ections and let J ⊆ S. Hereafter we will
keep the notation we used in �3.1.2.

For all s ∈ S, Fiebig de�ned in [13] an involutive automorphism σs of the structure algebra
of a regular Bruhat graph. In a similar way, we will de�ne an involution sσ for a �xed simple
re�ection s ∈ S on the structure algebra ZJ of the parabolic Bruhat (k-moment) graph GJ . In
this chapter, we suppose that (GJ , k) is a GKM-pair (see De�nition 1.1.3).

Let x, y ∈ WJ . Notice that l(x −−− y) = αt
∨ if and only if l(sx −−− sy) = s(αt

∨), because
sxw(sy)−1 = sxwy−1s = sts, where w ∈WJ . From now on, if x ∈W, we will write x instead of
xJ .

Denote by τs the automorphism of the symmetric algebra Sk induced by the mapping λ 7→
s(λ) for all λ ∈ Q∨. For any (zx)x∈WJ ∈ ZJ , we set sσ

(
(zx)x∈WJ

)
= (z′x)x∈WJ , where z′x :=

τs(zsx). This is again an element of the structure algebra from what we have observed above.
Let us denote by sZJ the space of invariants with respect to the automorphism sσ and

by −sZJ the space of anti-invariants. We denote moreover by αs∨ the element of ZJ whose
components are all equal to αs

∨. We obtain the following decomposition of ZJ as sZJ -module.

Lemma 4.1.1. ZJ = sZJ ⊕ αs∨ · sZJ .

Proof. (We follow [13], Lemma 5.1). Because sσ is an involution and char(k) 6= 2, we get
ZJ = sZJ ⊕ −sZJ . Since αs ∈ ZJ and s(αs

∨) = −αs∨, it follows sσ(αs∨) = −αs∨ and so
αs∨ · sZJ ⊆−sZJ and we now have to prove the other inclusion, that is every element z ∈−sZJ
is divisible by αs∨ in −sZJ .

39
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If z = (zx) ∈ −sZJ , then, for all x ∈ WJ , zx = −τs(zsx) ≡ −zsx ( mod αs
∨) and zx ≡ zsx (

mod αs
∨). It follows that 2zx ≡ 0 ( mod αs

∨), that is αs
∨ divides zx in Sk, as char(k) 6= 2. We

have now to verify that z′ := (αs∨)−1 · z ∈ Z, that is z′x− z′tx ≡ 0(mod αt
∨) for any x ∈WJ and

t ∈ T. If tx = sx, there is nothing to prove; on the other hand, if tx 6= sx, we get the following.

αs
∨ · (z′x − z′tx) = zx − ztx ≡ 0 ( mod αt

∨)

Since (GJ , k) is a GKM-pair, αs
∨ 6≡ 0 (mod αt

∨) and we obtain z′x − z′tx ≡ 0 ( mod αt
∨).

4.1.1 Left translation functors

In order to de�ne translation functors, we need an action of Sk on sZJ and ZJ .

Lemma 4.1.2. For any λ ∈ Q∨ and any x ∈WJ , let us set

c(λ)Jx :=
∑

xJ∈WJ

xxJ(λ). (4.1)

Then c(λ)J := (c(λ)Jx)x∈WJ ∈ sZJ .

Proof. It is clear that, if c(λ)J ∈ ZJ , then it is invariant. So we only have to prove that
c(λ)J ∈ ZJ , that is c(λ)Jx − c(λ)J

tx
≡ 0 ( mod αt

∨). Since for any xJ there exists an element yJ
such that xxJ = t tx yJ (cf. Lemma 3.1.4), then∑

xJ∈WJ
xxJ(λ)−

∑
xJ∈WJ

tx xJ(λ) =
∑
yJ∈WJ

t tx yJ(λ)−
∑
yJ∈WJ

tx yJ(λ)

= t
(∑

yJ∈WJ
tx yJ(λ)

)
−
∑
yJ∈WJ

tx yJ(λ)

=
(∑

yJ∈WJ

〈
αt, tx yJ(λ)

〉)
αt
∨

≡ 0 ( mod αt
∨),

since α∨ is a multiple of α.

For any x ∈ WJ , denote by ηx the automorphism of the symmetric algebra Sk induced by
the mapping λ 7→ c(λ)Jx for all λ ∈ Q∨. Now, by Lemma 4.1.2, the action of Sk on ZJ given by

p.(zx)x∈WJ = (ηx(p)zx) p ∈ Sk , z ∈ ZJ , (4.2)

preserves sZJ . Thus any ZJ -module and any sZJ -module has an Sk-module structure as well.
Let ZJ -mod, resp. sZJ -mod, be the category of Z-graded ZJ -modules, resp. sZJ -modules, that
are torsion free and �nitely generated over Sk.

The translation on the wall is the functor s,onθ : ZJ -mod→ sZJ -mod de�ned by the mapping

M 7→ Res
sZJ

ZJ .
The translation out of the wall is the functor s,outθ : sZJ -mod → ZJ -mod de�ned by the

mapping N 7→ Ind
sZJ

ZJ . Observe that this functor is well-de�ned thanks to Lemma 4.1.1.
By composition, we get a functor sθ := s,outθ ◦ s,onθ : ZJ -mod→ ZJ -mod that we call (left)

translation functor.

Remark 4.1.1. We want to stress the fact that, if J = ∅, the translation functor we de�ned
does not coincide with the one de�ned by Fiebig in [13]. Indeed, we are twisting the action of
Sk, while in [13] Sk acts in the usual way, that is p.(zx) = (p · zx).
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The following proposition describes the �rst properties of sθ.

Proposition 4.1.1. (1) The functors from sZJ -mod to sZ-mod mapping M 7→ ZJ{2} ⊗sZJ M
and M 7→ HomsZJ (ZJ ,M) are naturally equivalent.

(2) The functor sθ = ZJ ⊗sZJ − : ZJ −mod→ ZJ −mod is selfadjoint up to a shift.

Proof. (cf. [41], Proposition 5.10, and [13], Proposition. 5.2) By Lemma 4.1.1, {1, αs} is a sZJ -
basis for ZJ . Let 1

∗
, αs
∗ ∈ HomsZJ (ZJ , sZJ) a sZJ -basis dual to 1 and αs. We have an isomor-

phism of sZJ -modules ZJ{2} ∼= HomsZJ (ZJ , sZJ) de�ned by the mapping 1 7→ αs
∗ and αs 7→ 1∗,

since deg(1)−2 = −2 = deg(αs
∗) and deg(αs)−2 = 0 = deg 1

∗
. Now statement (1) follows from

the fact that ZJ is of �nite rank over sZJ and so HomsZJ (ZJ ,−) = HomsZJ (ZJ , sZJ)⊗sZJ −.
Now the second claim follows easily, since ZJ ⊗sZJ − and HomsZJ (ZJ ,−) are, resp., left and

right adjoint to the restriction functor.

Using the selfadjointness of sθ we get the following corollary

Corollary 4.1.1. sθ : ZJ −mod → ZJ −mod is exact.

4.1.2 Parabolic special modules

As in [13], we de�ne, inductively, a full subcategory of ZJ -mod.
Let Be ∈ ZJ -mod be the free Sk-module of rank one on which z = (zx)x∈WJ acts via

multiplication by ze.

De�nition 4.1.1.

(i) The category of special ZJ -modules is the full subcategory HJ of ZJ -mod whose objects are
isomorphic to a direct summand of a direct sum of modules of the form si1

θ ◦ . . . ◦ sir θ(Be){n},
where si1 , . . . , sir ∈ S and n ∈ Z.

(ii) The category of special sZJ -modules is the full subcategory sHJ of sZJ -mod whose objects
are isomorphic to a direct summand of s,onθ(M) for some M ∈ HJ .

Let Ω be a �nite subset of WJ . Then, we set

ZJ(Ω) :=

{
(zx) ∈

∏
x∈Ω

Sk

∣∣∣ zx ≡ zy ( mod αt
∨)

if ∃w ∈WJ s.t. y w x−1 = t ∈ T

}

If Ω ⊆WJ is s-invariant, that is sΩ = Ω, we may restrict sσ to it. We denote by sZJ(Ω) ⊆
ZJ(Ω) the space of invariants and, using Lemma 4.1.1, we get a decomposition ZJ(Ω) = sZJ(Ω)⊕
αs∨ · sZJ(Ω).

In the following lemma we prove, the �niteness of the special ZJ -modules, as Fiebig does in
[18] for special Z-modules.

Lemma 4.1.3.

(i) Let M ∈ HJ . Then there exists a �nite subset Ω ⊂WJ and an action of ZJ(Ω) such that ZJ

acts on M via the canonical map ZJ → ZJ(Ω).

(ii) Let s ∈ S and let N be an object in sHJ . Then there exists a �nite s-invariant subset Ω ⊂WJ

and an action of sZJ(Ω) on N such that sZJ acts on N via the canonical map sZJ → sZJ(Ω).
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Proof. (we follow [18]) We prove (i) by induction. It holds clearly for Be, since ZJ acts on it
via the map ZJ → ZJ({e}). Now we have to show that if the claim is true for M ∈ HJ , then it
holds also for sθ(M). Suppose ZJ acts via the map ZJ → ZJ(Ω) over M . Observe that we may
assume Ω s-invariant, as we can eventually consider Ω ∪ sΩ, that is still �nite. In this way the
sZJ -action on sθM via sZJ → sZJ(Ω) and so we obtain sθM := ZJ ⊗sZJM = ZJ(Ω)⊗sZJ (Ω)M .

Claim (ii) follows directly from claim (1).

4.1.3 Decomposition and subquotients of modules on ZJ

We recall some notation from [14]. Let S∅k := Sk[α−1 |α ∈ ∆] and, for any M ∈ ZJ −mod,

M∅ := M ⊗Sk S∅k . By [[18], Lemma 3.1], there is a decomposition M∅ := M ∩
⊕

x∈WJ M∅,x and

so a canonical inclusion M ⊆
⊕

x∈WJ M∅,x. For all subset Ω ⊆WJ , we may de�ne:

MΩ := M ∩
⊕
x∈Ω

M∅,x,

MΩ := M/MWJ\Ω = im

(
M →M∅ =

⊕
x∈Ω

M∅,x

)
.

For all x ∈WJ , we de�ne

M[x] := ker
(
M{≥x} →M{>x}

)
If x 6= sx and x < xs, we set moreover

M[x,sx] := ker
(
M{≥x} →M{≥x}\{sx}

)
Lemma 4.1.5 describes the action of sθ on the subquotientsM[x]'s. This is important in order

to show that HJ categori�es the parabolic Hecke algebra. Actually, to prove Lemma 4.1.5, we
need a combinatorial result.

Lemma 4.1.4. Let x ∈WJ and t ∈ S. If tx 6∈WJ , then tx = x.

Proof. If tx 6∈ WJ , then there exists a simple re�ection r ∈ J such that txr < tx and, since
x ∈WJ , xr > x. Using (the left version of) Lemma 3.1.2 (i) with s = t, v = xr and u = tx, we
get txr < x. Applying Lemma 3.1.2 (i) with s = r, v = x and u = txr it follows tx > x. Finally,
from Lemma 3.1.2 (ii) we obtain txr ≤ x, that, together with x < xr, gives txr = x.

Lemma 4.1.5. Let s ∈ S and x ∈WJ , then

(sθM)[x]
∼=

 M[x]{−2} ⊕M[sx]{−2} if sx ∈WJ , sx > x
M[x] ⊕M[sx] if sx ∈WJ , sx < x
M[x]{−2} ⊕M[x] if sx 6∈WJ

Proof. (cf. [18]) By Lemma 4.1.4, if sx 6∈WJ , then sx = x and M[x] ∈ sZpar-mod, so by Lemma
4.1.1 we get ZJ ⊗sZJ M[x] = M[x]{−2} ⊕M[x].

If x 6= sx, we have a short exact sequence 0 → M[x] → M[x,sx] → M[sx] → 0 and,
since sθ is exact (see Corollary 4.1.1), sθMx,sx = (sθM)[x,sx] = sθM[x] ⊕ sθM[sx]. Moreover
sθM[x,sx] = ZJ({x, sx}) ⊗sZJ ({x,sx}) M[x,sx] and the two isomorphisms follow taking in mind

that ZJ({x, sx})[x]
∼= S{−2} if x / sx, while ZJ({x, sx})[x]

∼= Sk if x . sx.

Using induction, we get the following corollary

Corollary 4.1.2. Every M ∈ HJ is isomorphic to a �nite direct sum of shifted copies of Sk.
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4.2 Special modules and Hecke algebras

In the �rst part of this section we recall the de�nition, due to Deodhar, of the parabolic
Hecke algebra HJ and of its canonical basis. To the Bruhat order on WJ we associate, as in
[[18], �4.5] a character map and in this way we get a map from the Grothendieck group of HJ

to HJ . Finally, we extend Proposition 4.3 of [18] to the parabolic setting, describing the action
of the translation functors on the character (up to a shift) via the multiplication by elements of
the canonical basis.

4.2.1 Hecke algebras

We start with giving the de�nition of the Hecke algebra associated to a Coxeter system
(W, S), that is a a quantisation of the group algebra of W. We adopt the notation (and the
renormalisation) of Soergel [40].

Denote by L := Z[v, v−1] the ring of Laurent polynomials in the variable v over Z.

De�nition 4.2.1. Let (W, S) be a Coxeter system, then its Hecke algebra H = H(W) is the
L-module having basis {Hx |x ∈W}, subject to the following relations:

HsHw =

{
Hsx if sx > s
(v−1 − v)Hx +Hsx if sx < x

(4.3)

It is well known that there exists exactly one such an associative L-algebra (cf.[6] or [22]).
It is easy to verify that Hx is invertible for any x ∈ W and this allows us to de�ne an

involution on H. This is the unique ring homomorphism − : H → H such that v = v−1 and
Hx = (Hx−1)−1.

In [29] Kazhdan and Lusztig showed the existence of a nicer basis for H, the so-called
canonical basis, that they used to de�ne complex representations of the Hecke algebra. The entries
of the change of basis matrix were given by a family of polynomials in Z[v]: the Kazhdan-Lusztig
polynomials. In [9] Deodhar generalised this construction to the parabolic setting. Kazhdan-
Lusztig polynomials and their parabolic analog will be the object of the next chapter.

Parabolic Hecke algebra and Kazhdan-Lusztig polynomials

Let us take J ⊆ S. We recall Deodhar's construction, following [[40], �3]. Let H = H(W)
be the Hecke algebra of W, then for any simple re�ection s ∈ S, by (4.3), we have (Hs)

2 =
(v−1 − v)Hs + He, that is (Hs + v)(Hs − v−1) = 0. If u ∈ {v−1,−v} and HJ := H(WJ) is the
Hecke algebra of WJ , then we may de�ne a map of L-modules ϕu : HJ → L by Hs 7→ u. This
provides a structure of HJ -bimodule to L, that we denote by L(u).

Consider now MJ := L(v−1)⊗HJ
H and NJ := L(−v)⊗HJ

H. It is easy to verify that the
map − : L(u)⊗HJ

H→ L(u)⊗HJ
H sending a⊗H 7→ a⊗H := a⊗H is a ring homomorphism.

For u ∈ {v−1,−v} denote by HJ,u
w := 1 ⊗ Hw ∈ L(u) ⊗HJ

H. We are now able to state
Deodhar's result.

Theorem 4.2.1 ([9]). 1. For all w ∈WJ there exists a unique element HJ,v−1

w ∈MJ such that:

(i) HJ,v−1

w = HJ,v−1

w

(ii) HJ,v−1

w =
∑
y∈WJ mJ

y,wH
J,v−1

y ,

where the mJ
y,w are such that mJ

w,w = 1 and mJ
y,w ∈ vZ[v] if y 6= w.
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2. For all w ∈WJ there exists a unique element HJ,−v
w ∈NJ such that:

(i) HJ,−v
w = HJ,−v

w

(ii) HJ,−v
w =

∑
y∈WJ nJy,wH

J,−v
y ,

where the nJy,w are such that nJw,w = 1 and nJy,w ∈ vZ[v] if y 6= w.

The polynomials mJ
y,w and nJy,w are called parabolic Kazhdan-Lusztig polynomials with re-

spect to the parameter v−1, resp. −v, while {HJ,v−1

w }w∈WJ is the canonical basis.
If J = ∅, then MJ = NJ = H and, for any pair of elements y, w ∈ W, we will denote

hy,w = m∅y,w = n∅y,w the corresponding regular Kazhdan-Lusztig polynomial.

We end this paragraph with recalling that the left multiplication by Hs for s ∈ S, on HJ is
given by (cf. [[40],�3])

Hs ·HJ,v−1

x =


HJ,v−1

sx + vHJ,v−1

x if sx ∈WJ , sx > x

HJ,v−1

sx + v−1HJ,v−1

x if sx ∈WJ , sx < x

(v + v−1)HJ,v−1

x if sx 6∈WJ

(4.4)

4.2.2 Character maps

Let M be a Z-graded, free and �nitely generated Sk-module; then M ∼=
⊕n

i=1 Sk{ji}, for
some ji ∈ Z. We can associate to M its graded rank, that is the following Laurent polynomial.

rkM :=

n∑
i=1

v−ji ∈ Z[v, v−1].

This is well-de�ned, because the ji's are uniquely determined, up to the order.

Let 〈HJ〉 be the Grothendieck group of HJ and let M ∈ HJ , then by Corollary 4.1.2, we
may de�ne a map h : 〈HJ〉 →MJ as follows.

h(M) :=
∑
x∈WJ

v`(x)rkM[x]H
J,v−1

x ∈MJ

Proposition 4.2.1. For each M ∈ HJ and for any s ∈ S we have h(sθM{1}) = Hs ·h(M), that
is the following diagram is commutative

〈HJ〉 h //

sθ◦{1}
��

MJ

Hs·
��

〈HJ〉 h //MJ

Proof. (cf. [18], Proposition 4.3) By Lemma 4.1.5, for any x ∈WJ we have

rk(sθM)[x] =

 v2
(
rkM[x] + rkM[sx]

)
if sx ∈WJ , sx > x

rkM[x] + rkM[sx] if sx ∈WJ , sx < x
(v2 + 1)rkM[x] if sx 6∈WJ
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Then,

h(sθM{1}) =
∑
x∈WJ v`(x)−1rk(sθM)[x]H

J,v−1

x

=
∑
x∈WJ ,sx∈WJ

sx>x

v`(x)+1
(
rkM[x] + rkM[sx]

)
HJ,v−1

x

+
∑
x∈WJ ,sx∈WJ

sx<x

v`(x)−1
(
rkM[x] + rkM[sx]

)
HJ,v−1

x

+
∑
x∈WJ ,sx6∈WJ (v`(x)+1 + v`(x)−1)rkM[x]H

J,v−1

x

Finally,

Hs · h(M) =
∑
x∈WJ v`(x)(rkM[x])Hs ·HJ,v−1

x

=
∑
x∈WJsx∈WJ

sx>x
v`(x)(rkM[x])(H

J,v−1

sx + vHJ,v−1

x )

+
∑
x∈WJ ,sx∈WJ

sx<x

v`(x)(rkM[x])(H
J,v−1

sx + v−1HJ,v−1

x )

+
∑
x∈WJ ,sx6∈WJ v`(x)rkM[x](v + v−1)HJ,v−1

x

=
∑
x∈WJ ,sx∈WJ

sx>x

[
(v`(x)v rkM[x]) + (v`(sx)rkM[sx])

]
HJ,v−1

x

+
∑
x∈WJ ,sx∈WJ

sx<x

[
(v`(x)v−1 rkM[x]) + (v`(sx)rkM[sx])

]
HJ,v−1

x

+
∑
x∈WJ ,sx6∈WJ (v`(x)+1 + v`(x)−1)rkM[x]H

J,v−1

x

= h(sθM{1})

4.3 Localisaton of special Zpar-modules

In this section, we focus our attention on the a�ne Grassmannian case. In particular, we
consider �nite intervals of Gpar far enough in the fundamental chamber, whose description has
been given in �3.2.3. Hereafter, we denote by Wpar the set of minimal representatives for the
equivalence classes of Wa/Wf and by Zpar the structure algebra corresponding to this parabolic
setting.

Let β ∈
�

∆+, we consider the following localisation of the symmetric algebra Sk:

Sβk := Sk[(α+ nδ)−1 |α ∈
�

∆+ \{β}, n ∈ Z] (4.5)

Fiebig used this localisation in [18], in order to relate the category of regular special modules
to a category introduced by Andersen, Jantzen and Soergel in [1].

Let us denote by Wβ the subgroup of Wa generated by the a�ne re�ections sβ,n, for n ∈ Z,
and by Wβ the set of orbits for the left action of Wβ on Wpar. Remark that the group Wβ is

isomorphic to Ã1. For any subset Ω ⊆Wpar, let us write moreover Zpar,β(Ω) := Zpar(Ω)⊗Sk Sk,β .
We get then an analog of the decomposition we used in �4.1.3.

Lemma 4.3.1 (cf. [18], Lemma 3.1). Let Ω ⊂Wpar be �nite, then

Zpar,β(Ω) =

{
(zx) ∈

⊕
x∈Ω

Sβk

∣∣∣ zx ≡ zy ( mod (β + nδ)
∨

)
if ∃w ∈Wf , n ∈ Z s.t. y w x−1 = sβ,n

}
=
⊕

Θ∈Wβ

Zpar,β(Ω ∩Θ)

Proof. Omitted, since Fiebig's proof of [[18], Lemma 3.1] works exactly the same in this parabolic
setting too.
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For M ∈ Hpar, we set Mβ := M ⊕Sk Sk,β . Because any special module is a module on Z(Ω)
for some Ω ⊂Wpar �nite (see Lemma 4.1.3), the decomposition of the previous Lemma gives us
the following decomposition.

Mβ =
⊕

Θ∈Wβ

Mβ,Θ (4.6)

In the following Lemma we show that this localisation procedure preserves special modules.
In particular, we prove that, under the localisation, a special module having support on a �nite
interval far enough in the fundamental chamber splits in a direct sum of special modules for the
parabolic structure algebra of the Bruhat graph of Ã1.

Lemma 4.3.2. Let M ∈ Hpar such that Zpar acts on it via Zpar(I), for I a �nite interval
far enough in C+ and Mβ =

⊕
Θ∈Wβ Mβ,Θ, then, for any Θ ∈ Wβ, Mβ,Θ is isomorphic to a

Zpar(sl2)-special module.

Proof. We prove by induction that any Mβ,Θ is a special module for the structure algebra of
G
par

|Θ . If M = Be, there is nothing to prove. Suppose the lemma holds for M ∈ Hpar; we

have to show that it is true also for sθ(M) =
⊕

Θ∈Wβ
sθ(M)β,Θ. Thus it is enough to show

it for an Mβ,Θ. In order to do this, we follow the proof of [[18], Lemma 3.5]. If Θ = Θs,
then sθ(M)β,Θ = Mβ,Θ ⊗sZparβ(Θ) Z

par,β(Θ), since, by Lemma 4.1.3, the inclusion sZpar,β(Ω) ⊂
Zpar,β(Ω) contains sZpar,β(Θ) ⊂ Zpar,β(Θ) as a direct summand. Otherwise, Θ 6= Θs and the
inclusion sZpar,β(Θ ∪Θs) ⊂ Zpar,β(Θ)⊕ Zpar,β(Θs) is an isomorphism on each direct summand.
It follows, sθ(M)par,β = Mβ,Θ ⊕Mβ,Θs. In both cases, we get the claim by induction because
Zpar,β acts on Mβ,Θ via Zpar,β(I ∩Θ) and clearly Zpar,β(I ∩Θ) = Zpar(I ∩Θ).

Now the statement follows since by Lemma 3.2.1, for any �nite interval I far enough in the
fundamental chamber and any Θ ∈Wβ , I∩Θ is isomorphic (as moment graph) to a �nite interval

of the parabolic Bruhat graph of Ã1.



Chapter 5

Categori�cation of Kazhdan-Lusztig

equalities

In 1979 Kazhdan and Lusztig ([29]) introduced a family of polynomials {hx,y} indexed by
pairs of elements in a Coxeter group W with S, the set of simple re�ections. Some years later,
Deodhar generalized this notion to the parabolic setting, de�ning two families of polynomials
{mJ

x,y} and {nJx,y}, where x and y are now varying in WJ , for J ⊆ S (see �4.2.1). If W was a
Weyl group, these polynomials were related to the intersection cohomology of the corresponding
(partial) Schubert variety (cf. Appendix A of [29] and [30]) and to the representation theory of
the complex Lie algebras (cf.[29]), resp. of the semisimple, simply connected, reductive algebraic
groups over a �eld of positive characteristic (cf.[36]), whose Weyl group is W.

The following conjecture motivates this chapter.

Conjecture 5.0.1 ([16], Conjecture 4.4). Let y, w ∈ WJ and let k be such that (GJ|[y,w]
, k) is a

GKM-pair. Then rk (B(w)J)y = v`(y)−`(w) ·mJ
y,w.

This conjecture is proved in characteristic zero and in this case it is equivalent to Kazhdan-
Lusztig's conjecture (cf.[14]). In characteristic p it is proved for p bigger than a huge (but explicit)
lower bound and it implies Lusztig's conjecture (cf.[18],[16]). Anyway, this conjecture motivates
this chapter: we try to interpret combinatorial properties of Kazhdan-Lusztig polynomials in
term of Braden-MacPherson sheaves. We have already presented the results of Sections 5.2 and
5.3 in the preprint [35].

5.1 Short-length intervals

We try here to illustrate the philosophy of this chapter by computing the stalks of the
canonical sheaves on Bruhat intervals having length ≤ 2.

For any pair of elements y, w ∈ W such that y ≤ w and `(w) − `(y) ≤ 2, it is know that
hy,w = v`(w)−`(y). If conjecture 5.0.1 is true, then rkB(w)y = 1, that is B(w)y ∼= Sk if (G, k)
is a GKM -pair. Clearly, there is nothing to prove if y = w. If `(y) = `(w) − 1, then y = tw
for some t ∈ T and the associated moment graph is a subgeneric graph with the edge labeled by
αt
∨. In this case, it is clear that B(w)δy = Sk/αtSk, whose projective cover is clearly Sk.

Suppose now `(w) − `(y) = 2. Then the Bruhat graph restricted to the interval I = [y, w]

47
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has to be of the following shape (cf. [[5], Lemma 2.7.3]).

w

sαy

γ∨
==

sβy

δ∨
aa

y
α∨

aa

β∨

==

For some α, β, γ, δ ∈ ∆re
+ .

By Proposition 2.1.2, showing that B(w)x ∼= Sk for all x ∈ [y, w] is equivalent to showing that
the corresponding structure sheaf is �abby. We know already that B(w)x ∼= Sk for x ∈ (y, w],
so we have only to prove B(w)y ∼= Sk. In particular, the claim will follow once we prove that all
sections z = (zw, zsαy, zsαy) ∈ Γ(I\{y},A) are extensible. By de�nition, there exist p, q1, q2 ∈ Sk
such that

zw = p, zsαy = p+ γ∨ · q1, zsβy = p+ δ∨ · q2

Clearly, there exists an element zy ∈ Sk extending z if and only if there exist q3, q4 ∈ Sk such
that

zsαy + α∨ · q3 = zsβy + β∨ · q4

Now, by hypothesis, sγsα = sδsβ , that is sβ = sδsγsα, so, for all λ ∈ h∗R,

λ− 〈λ, α∨〉α = λ− 〈λ, β∨〉β − 〈sβ(λ), δ∨〉δ − 〈sδsβ(λ), γ∨〉γ

Because of the GKM-property, β 6= ±α,±δ and so it is always possible to �nd a µ ∈ h∗R such
that

〈µ, β∨〉 = 0, 〈µ, α∨〉 6= 0, 〈sβ(µ), δ∨〉 = 〈µ, sβ(δ
∨

)〉 6= 0

Then, we might write α = a1δ + a2γ with a1, a2 ∈ R and a1 6= 0. Analogously, we get
β = b1δ + b2γ with b1, b2 ∈ R and b2 6= 0. Thus, if a2 = 0, it is easy to check that

q3 = a−1
1 (q2 − b1b−1

2 q1) q4 = b−1
1 q1

satisfy the requirements. While, for a2 6= 0, we set

q3 = a−1
2

(
(1− b2a1a

−1
2 (b1 + b2)−1)q1 − b2(b1 + b2)−1q2

)
q4 = a−1

2 (b1 + b2)−1(a1q1 + a2q2)

Thus we get the following lemma.

Lemma 5.1.1. Let y, w ∈ W be such that y ≤ w and `(w) − `(y) ≤ 2. If (G|[y,w]
, k) is a

GKM-pair, then B(w)y ∼= Sk.

5.2 Technique of the pullback

Let g ⊇ b ⊇ t be a symmetrisable KacMoody algebra, a Borel subalgebra and a Cartan
subalgebra. Let Π, resp. Π∨, be the corresponding set of simple roots, resp. of simple coroots.
From now on, we denote by G = (V,E, l,≤) the regular Bruhat graph we de�ned in �3.1.1.

In this section, we apply Lemma 2.2.2 in order to lift some equalities concerning KL-
polynomials to the moment graph setting. In particular, we will de�ne isomorphisms of k-moment
graphs to get isomorphisms between the stalks of the corresponding Braden-MacPherson sheaves.
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5.2.1 Inverses

Kazhdan and Lusztig gave an inductive formula to calculate the KL-polynomials ((2.2.c) of
[29]). From such a formula it follows easily (cf. Exercise 12, Chap.5 of [5]) that, for any pair
y, w ∈W, one has

hy,w = hy−1,w−1 . (5.1)

We translate this equality to an isomorphism of stalks of indecomposable canonical sheaves.

Lemma 5.2.1. Let W be a Weyl group. The anti-involution on W de�ned by the mapping
x 7→ x−1 induces an automorphism of the k-moment Bruhat graph G for any k.

Proof. fV : V→ V de�ned by the mapping x 7→ x−1 is obviously a bijection. Moreover, for each
pair of elements x, y ∈W, x ≤ y if and only if x−1 ≤ y−1. So fV : V→ V is a bijection of posets.

Observe that there exists a re�ection t ∈ T such that y = tx if and only if y−1 = rx−1, where
r = x−1tx ∈ T. So x−−− y ∈ E if and only if x−1 −−− y−1 ∈ E .

Thus, for every x ∈ W and any λ ∈ Q∨, we set fl,x(λ) := x−1(λ). Let E : x −−− y = tx
and recall that, for any w ∈ W and α ∈ ∆re, w(α)

∨
= w(α∨) (cf. [26], �5.1). Then we get the

following.

(a) fl,x(l(x−−− tx)) = x−1(αt)
∨

= x−1(αt
∨) = ±l(x−1 −−− y−1), where ±x−1(αt) ∈ ∆re

+ , because
x−1(αt) = ±αx−1tx (cf. [26], �5.1 ).

(b)
fl,y(λ) = y−1(λ)

= x−1(tλ)

= x−1(λ)− 〈αt, λ〉x−1(αt)
∨

≡ x−1(λ) (modx−1(αt)
∨

)

= fl,x(λ) (modx−1(αt)
∨

)

This proves that we have an automorphism of the k-moment graph G for any k.

From the lemma above we get the following corollary.

Corollary 5.2.1. Let w ∈ W. Denote by G the corresponding Bruhat graph and let f be as in
Lemma 5.2.1. Then B(w) ∼= f∗B(w−1) as k-sheaves on G for any k.

Proof. First observe that y 6≤ w if and only if y−1 6≤ w−1. So if y 6≤ w, B(w)y = 0 = B(w−1)y
−1

.
By Lemma 5.2.1, fV : x 7→ x−1 induces a k-isomorphism between the two complete subgraphs

Gw and Gw−1 , so we may apply Lemma 2.2.2; the statement follows.

5.2.2 Multiplying by a simple re�ection. Part I

Let y, w ∈W and s ∈ S such that y ≤ w, ws < w and y 6≤ ws. In these hypotheses Kazhdan
and Lusztig observed (proof of Theor. 4.2 of [29]) that

hy,w = hys,ws. (5.2)

In order to interpret (5.2) in our moment graph setting we will use the lifting Lemma, to de�ne
an isomorphism of k-moment graphs.

Lemma 5.2.2. Let y, w ∈ W and s ∈ S such that y ≤ w, ws < w and y 6≤ ws, then for any k
there is an isomorphism of k-moment graphs G|[y,w]

−→∼ G|[ys,ws] .
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Proof. We show that fV : [y, w]→ [ys, ws], x 7→ xs is a bijection of posets inducing the identity
map on the labels.

We verify that if x ∈ [y, w] then xs ∈ [ys, ws]. We see that xs < x; indeed, if it were not the
case, by Lemma 3.1.2 (ii) x ≤ ws, but this implies that y ≤ ws. In particular, this holds for y,
that is ys < y. Now, by Lemma 3.1.2 (i);

xs < x , ws < w ⇒ xs ≤ ws

ys < y , xs < x ⇒ ys ≤ xs.

We now show that if z ∈ [ys, ws] then zs ∈ [y, w]. Observe that zs > z; indeed, ys < z,
y = (ys)s > ys and if zs < z, then by Lemma 3.1.2 (ii), with u = ys and v = z, we would get
y = (ys)s ≤ z ≤ ws.

Moreover, z ≤ ws < w and, by Lemma 3.1.2 (ii),

zs > z , ws < w ⇒ zs ≤ w.

y = (ys)s > ys , z = (zs)s < zs ⇒ y ≤ zs.

This completes the proof that fV maps [y, w] to [ys, ws].
Let x, z ∈ [y, w], then x ≤ z if and only if xs ≤ zs. Indeed, we have already proved that

xs < x and zs < z so, by Lemma 3.1.2 (i), with u = x and v = z, we have xs ≤ zs. On the
other hand, x = (xs)s > xs and it follows from Lemma 3.1.2 (ii) with u = xs and v = z that
x = (xs)s ≤ z.

Finally from what we proved above, for each t ∈ T we have that x, tx ∈ [y, w] if and
only if xs, txs ∈ [ys, ws].This means that we have a bijection between sets of edges such that
fE(x→γ tx) = xs→γ txs.

Therefore f = (fV, {IdY }x∈V) is an isomorphism of k-moment graphs for any k.

So we have:

Corollary 5.2.2. Consider y, w ∈W such that ws < w, y 6≤ ws for some s ∈ S. Let f be as in
Lemma 5.2.2, then B(w) ∼= f∗B(ws) as k-sheaves on G|[y,w]

for any k.

Proof. The statement follows by combining Lemma 5.2.2 and Lemma 2.2.2 .

We recollect the results of this section:

Theorem 5.2.1. Let y, w ∈W, then

(i) B(w)y ∼= B(w−1)y
−1

.
Let s ∈ S be such that ws < w and y 6≤ ws, then

(ii) B(w)y ∼= B(ws)ys

All isomorphisms are isomorphisms of Sk-modules, for any k.

Proof.

(i) This follows from Corollary 5.2.1, since two k-sheaves are isomorphic only if their stalks are
pairwise isomorphic.

(ii) As before, the isomorphism descends from the isomorphism of k-sheaves we obtained in Corol-
lary 5.2.2.
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5.3 Invariants

Clearly not all equalities concerning Kazhdan-Lusztig polynomials come from k-isomorphisms
of the underlying Bruhat graphs. In this section we develop another technique and, as in the
previous section, we apply it in order to categorify two well-known properties of these polyno-
mials.

5.3.1 Multiplying by a simple re�ection. Part II

Another property that Kazhdan and Lusztig in [29] (2.3.g) proved is that if y, w ∈ W and
s ∈ S are such that y ≤ w and ws < w, then

hy,w = vchys,w, (5.3)

where c = 1 if sy > y and c = −1 otherwise.

It is clear that in this case there is no hope of �nding any k-isomorphism of moment graphs,
since the two Bruhat intervals [y, w] and [ys, w] obviously have di�erent cardinality.

The goal of this section is to prove the following theorem.

Theorem 5.3.1. For any pair y, w ∈ W and for any s ∈ S such that ws < w and ys, y ≤ w,
there exist

• an isomorphism of Sk-modules ϕy : B(w)y → B(w)ys

• a family of isomorphisms of Sk-modules ϕE : B(w)E → B(w)Es, where E : y −−− x ∈ E

and Es : ys−−− xs ∈ E

such that the following diagram commutes

B(w)y
ϕy //

ρy,E

��

B(w)ys

ρys,Es

��
B(w)E

ϕE // B(w)Es

(5.4)

and such that ϕys = (ϕy)−1.

5.3.2 Two preliminary lemmata

In order to prove our claim, we need two combinatorial lemmata.

Recall that

T = {sα |α ∈ R+} = {wsw−1 |w ∈W, s ∈ S}

and, for all x, y ∈W, denote

GL(x, y) :=
{
t ∈ T | tx ∈ (x, y]

}
Lemma 5.3.1. Let w, y ∈W and s ∈ S be such that y ≤ w, ws < w and ys < y, then

GL(ys, w) = GL(y, w) ∪
{
ysy−1

}
.



52 CHAPTER 5. CATEGORIFICATION OF KAZHDAN-LUSZTIG EQUALITIES

Proof. We show that for all t ∈ GL(y, w) we have ys < tys ≤ w as well, i.e. t ∈ GL(ys, w).
Indeed, if tys > ty, then ys < y < ty < tys and, by Lemma 3.1.2 (ii) with u = ty and v = w,
tys ≤ w . Otherwise, tys < ty ≤ w, y < ty, ys < y and, by Lemma 3.1.2 (i) with u = y and
v = ty, we obtain ys < tys.

Clearly, ysy−1 ∈ GL(ys, w) and this completes the proof that the set on the right hand side
is a subset of the one on the left.

Now we verify that if t ∈ T, tys ∈ [ys, w] and ty 6∈ [y, w], then t = ysy−1. Indeed, by Lemma
3.1.2 with u = tys and v = w, tys ≤ w and, if ty 6∈ [y, w], then ty < y. Moreover, ys < y and
so, by Lemma 3.1.2 (ii) with u = ty and v = y, tys ≤ y. So ys < tys ≤ y and we know that
[ys, y] = {ys, y}. Thus tys = y, that is, t = ysy−1.

Lemma 5.3.2. Let w, y ∈ W and s ∈ S be such that y ≤ w, ys < y and ws < w, then the set
[ys, w] \ {ys, y} is stabilized by the mapping x 7→ xs.

Proof. Notice that ys < y ≤ w, so it makes sense to write [ys, w]. Let I := [ys, w] \ {ys, y} and
let x ∈ I. If xs > x, then obviously ys < xs and, by Lemma 3.1.2 (ii) with u = x and v = w,
xs ≤ w. On the other hand, if xs < x, then xs < w and, by applying Lemma 3.1.2 (ii) with
u = ys and v = x, ys ≤ xs. Then, in both cases xs ∈ [ys, w] and, since xs 6= y and xs 6= ys, we
get x ∈ I.

Finally, if x ∈ I, then xs 6= y. Indeed xs = y if and only if x = ys 6∈ I.

5.3.3 Proof of the main theorem

We will prove Theorem 5.3.1 by induction on n = `(w)− `(y).
If n = 0, then y = w and there is nothing to prove. If n > 0 and ys > y, then `(w)− `(ys) =

n− 1 and by induction we get the desired isomorphisms.
Now, we may suppose n > 0 and ys < y. Let I = [ys, w] \ {y, ys}. From the inductive

hypothesis, for any x ∈ I we get

• an isomorphism of Sk-modules ϕx : B(w)x → B(w)xs

• a family of isomorphisms of Sk-modules ϕF : B(w)F → B(w)Fs, where F : x−−− z ∈ Eδy

and Fs : xs→ zs ∈ Eδys

such that the following diagram commutes

B(w)x
ϕx //

ρx,F

��

B(w)xs

ρxs,Fs

��
B(w)F

ϕF // B(w)Fs

(5.5)

and such that ϕxs = (ϕx)−1.
Observe that our claim will follow, once we prove that there is an isomorphism of Sk-modules

ϕy : B(w)y → B(w)ys compatible with the restriction maps. Indeed, for E : y → x ∈ Eδy there
exists exactly one Es : ys → xs ∈ Eδys, and ϕ

E would already have been given. If E : ys → y,
then we could set ϕE = Id. Finally, for x 6= ys, there exists an edge E : x → y ∈ E if and
only if there is Es : xs → ys ∈ E (cf. Lemma 5.3.1) and in this case B(w)E ∼= B(w)y/l(E) ∼=
B(w)ys/l(Es), since E = Es.

We will get ϕy by de�ning a surjective map from B(w)y to B(w)δys. Since B(w)ys is the
projective cover of the Sk-module B(w)δys, and, since rkSkB(w)y ≤ rkSkB(w)ys (cf. Lemma
3.12. of [15]), Theorem 5.3.1 will follow from the unicity of the projective cover.



53

Invariants

By Lemma 5.3.2, I is invariant with respect to the right multiplication by s and we may de�ne
an automorphism σs of the set of global sections of the Braden-MacPherson sheaf as follows. Let
m = (mx) ∈ Γ(I,B(w)), then we set σs(m) = (m′x), where m′x := ϕxs(mxs). Since the ϕ

x's are,
by de�nition, compatible with the restriction maps (see Diagram (5.5)), σs(m) ∈ Γ(I,B(w)).
Moreover, for any x ∈ I, ϕxs = (ϕx)−1 and so σs is an involution.

Let us denote by Γs the submodule of σs-invariant elements of Γ(I,B(w)), and by Γ−s the
elements m ∈ Γ(I,B(w)) such that σs(m) = −m.

Let us consider cs := (cs,x) ∈
⊕

x∈W Sk, where cs,x := x(αs
∨); then cs ∈ Z and so it acts on

Γ(I,B(w)) via componentwise multiplication.

Lemma 5.3.3. Let (G|I , k) be a GKM-pair, then we have Γ(I,B(w)) = Γs ⊕ cs · Γs.

Proof. (We follow [18], Lemma 2.4).
By de�nition, σs is an involution and 2 is an invertible element in k, then we get Γ(I,B(w)) =

Γs ⊕ Γ−s.
Let m ∈ Γs, then σs(cs ·m) = −(cs ·m), i.e. cs · Γs ⊆ Γ−s. Indeed, s(αs

∨) = −αs∨ and so
for any x∈I we have

(cs,x ·mx)′ = xs(αs
∨) ·mx = x(−αs∨) ·mx = −cs,x ·mx.

We have to prove the other inclusion, that is, every element m ∈ Γ−s can be divided by
(x(αs

∨))x∈I in Γ(I,B(w)).
If m = (mx) ∈ Γ−s then mx = −ϕxs(mxs) and so ρxs,xs→x(mxs) = −ρx,xs→x(mx), since the

following diagram commutes:

B(w)xs
ϕxs //

ρxs,xs→x

��

B(w)x

ρx,xs→x

��
B(w)xs→x

ϕxs→x
// B(w)xs→x

Butm is a section so ρxs,xs→x(mxs) = ρx,xs→x(mx). It follows that 2ρx,xs→x(mx) = 0; moreover,
by de�nition of the canonical sheaf, ker ρx,xs→x = α∨xsx−1B(w)x, that is, α∨xsx−1 divides mx in
B(w)x.

Notice that αxsx−1
∨ = ±x(αs

∨) = ±cs,x, i.e. c−1
s ·m ∈

⊕
x∈I B(w)x. We have to verify that

ρx,x−−−tx(c−1
s,xmx) = ρtx,x−−−tx(c−1

s,txmtx) for all t ∈ T:

(cs,txcs,x)(ρtx,x−−−tx(c−1
s,txmtx)− ρx,x−−−tx(c−1

s,xmx)) (5.6)

= cs,x(ρtx,x−−−tx(mtx))− cs,tx(ρx,x−−−tx(mx)) (5.7)

= (cs,x − cs,tx)ρtx,x−−−tx(mtx) + cs,tx(ρtx,x−−−tx(mtx)− ρx,x−−−tx(mx)). (5.8)

The term on line (5.8) is divisible by αt
∨; indeed, cs,x−cs,tx = x(αs

∨)−x(αs
∨)+〈αt, x(αs

∨)〉αt∨ ≡
0 ( mod αt

∨) and ρtx,x−−−tx(mtx)− ρx,x−−−tx(mx) = 0.
Using the GKM-property cs,txcs,x = tx(αs

∨) · x(αs
∨) is a multiple of αt

∨ if and only if
xsx−1 = t, that is xs = tx. So, mx = −ϕxs(mtx), cs,tx = −cs,x and, considering that diagram
(5.3.3) commutes, we obtain

ρx,x−−−tx(c−1
s,tmx) = −c−1

s,tx ρx,x−−−tx(mx)

= −c−1
s,tx (−ρtx,x−−−tx(mtx))

= ρtx,x−−−tx(c−1
s,txmtx)
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Otherwise, xsx−1 6= t and αt
∨ divides ρtx,x−−−tx(c−1

s,txmtx)−ρx,x−−−tx(c−1
s,xmx) and so ρx,x−−−tx(c−1

s,xmx) =

ρtx,x−−−tx(c−1
s,txmtx).

Building B(w)δys

Let us denote

Γ(I,B(w)) //

π1

22
� � //⊕

x∈IB(w)x //⊕
x∈Vδy B(w)x

⊕ρx,E //⊕
E∈Eδy B(w)E

Recall that B(w)δy = uy(Γ({> y},B(w))), where uy was de�ned as the composition of the
following maps

Γ({> y},B(w)) �
� //

uy

22
⊕

x>yB(w)x //⊕
x∈VδyB(w)x

⊕ρx,E //⊕
E∈EδyB(w)E

Remark 5.3.1. Since B(w) is �abby and I and {> y} are both open sets, we get

π1(Γ(I,B(w))) = uy(Γ({> y},B(w))) = B(w)δy (5.9)

Now, let us denote

Γ(I,B(w)) //

π2

22
� � //⊕

x∈IB(w)x //⊕
x∈Vδy B(w)xs

⊕ρxs,Es//⊕
E∈Eδy B(w)Es

and de�ne B̃(w)δys := π2(Γ(I,B(w))).

Lemma 5.3.4.

(i) B(w)δy = π1(Γ(I,B(w))) = π1(Γs)

(ii) B̃(w)δys = π2(Γ(I,B(w))) = π2(Γs)

Proof.

(i) Let m ∈ Γ(I,B(w)). Then, by Lemma 5.3.3, m = m′ + cs · m′′, with m′,m′′ ∈ Γs and, if
m′ = (m′x), m′′ = (m′′x),

π1(m) =
(
ρx,E(m′x)

)
x∈V:y→x∈E +

(
ρx,E(x(αs

∨) ·m′′x)
)
x∈V:y→x∈E

If E : y → x ∈ Eδy, then there exists a re�ection t ∈ T such that x = ty and we have

x(αs
∨) = ty(αs

∨) = y(αs
∨) + 〈αt, y(αs

∨)〉αt∨ (5.10)

But, by de�nition, ρx,E is a surjective map whose kernel is l(E)B(w)x = αt
∨B(w)x and

ρx,E(x(αs
∨) ·m′′x) = ρx,E(y(αs

∨) ·m′′x) + 〈αt, y(αs
∨)〉ρx,E(αt

∨ ·m′′x) = ρx,E(y(αs
∨) ·m′′x)

We conclude that π1(m) = π1(m′+y(αs∨) ·m′′), where y(αs∨) is the element of the structure
algebra, whose components are all equal to y(αs

∨). Clearly, m′ + y(αs∨) ·m′′ ∈ Γs and we get
the claim.
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(ii) As in (i).

Lemma 5.3.5. There is an isomorphism of Sk-modules τ : B(w)δy → B̃(w)δys given by
(mE)E∈Eδy 7→ (ϕE(mE))E∈Eδy , that is for all m ∈ Γs, τ ◦ π1(m) = π2(m).

Proof. (mE)E∈Eδy ∈ B(w)δy if and only if there exists an element m ∈ Γ({> y},B(w)) such
that uy(m) = (mE)E∈Eδy . We have already noticed that this is the case if and only if there is an
element m′ ∈ Γ(I,B(w)) such that π1(m′) = (mE)E∈Eδy . From the previous lemma, we know
that this is equivalent to the existence of an m̃ ∈ Γs such that π1(m̃) = (mE)E∈Eδy . But, since
the squares in the following diagram are all commutative,

Γs

Id

��

π1|Γs

**
//⊕

x∈Vδy B(w)x
⊕ρx,E //

⊕ϕx

��

⊕
E∈Eδy B(w)E

⊕ϕx

��
Γs //

π2|Γs

33

⊕
x∈Vδy B(w)xs

⊕ρxs,Es
//⊕

E∈Eδy B(w)Es

we get (ϕE(mE))E∈Eδy = ϕE ◦ π1(m̃) = π2(m̃) ∈ B̃(w)δys.

Analogously, (mEs)E∈Eδy ∈ B̃(w)δys if and only if ((ϕE)−1(mEs))E∈Eδy ∈ B(w)δy.

Let us denote by ρ : B(w)y → B(w)y/αs
∨ ·B(w)y the canonical quotient map.

Lemma 5.3.6. We have

B(w)δys =
{(
τ ◦ π1(my), ρ(my)

)
∈ B̃(w)δys ⊕ (B(w)y/αs

∨ ·B(w)y)
}

(5.11)

Proof.

B(w)δys = uys
(
Γ({> ys},B(w))

)
= uys

({
(m,my) ∈ Γ(I,B(w))⊕B(w)y |uy(m|{>y}) = dy(my)

})
by Remark 5.3.1

= uys
(
{(m,my) ∈ Γ(I,B(w))⊕B(w)y |π1(m) = dy(my)}

)
=
{(
π2(m), ρ(my)

)
|m ∈ Γ(I,B(w)), my ∈ By

w, π1(m) = dy(my)
}

by Lemma 5.3.4

=
{(
π2(m), ρ(my)

)
|m ∈ Γs, my ∈ B(w)y, π1(m) = dy(my)

}
by Lemma 5.3.5

=
{(
τ ◦ π1(m), ρ(my)

)
|m ∈ Γs, my∈B(w)y, π1(m) = dy(my)

}
=
{(
τ ◦ dy(my), ρ(my)

)
|my∈B(w)y

}
From the lemma above, it follows immediately, that there is a surjective map of Sk-modules

B(w)y → B(w)δys given by my 7→ (τ ◦ dy(my), ρ(my)) and this concludes the proof of Theorem
5.3.1.
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5.3.4 Rational smoothness and p-smoothness of the �ag variety.

We have an easy corollary of Theorem 5.3.1. Recall that if W is �nite, then there exists a
unique element of maximal length (cf. [[22], �1.8]) and we denote it by w0.

Corollary 5.3.1. Let W be a �nite Weyl group and w0 its longest element. Let k be such that
(G(W), k) is a GKM-pair. Then By

w0
∼= Sk for any y ∈W and any k.

Proof. We proceed by induction on n = `(w0)− `(y). If n = 0, by de�nition, B(w0)w0 ∼= Sk. If
n ≥ 1 then there exists a simple re�ection s ∈ S such that ys > y (so, `(w0) − `(ys) = n − 1).
Actually, w0s < w0 for any s ∈ S and, by Theorem 5.3.1 and inductive hypothesis, we have
B(w0)y ∼= B(w0)ys ∼= Sk.

Remark 5.3.2. If k = Q the result above corresponds to the (rational) smoothness of �ag
varieties, while if k is a �eld of characteristic p it gives their p-smoothness (cf. [19]). Our proof
is based only on the de�nition of canonical sheaf; we do not use Fiebig's multiplicity one results
(see [17]), nor the geometry of the corresponding �ag varieties.

5.3.5 Parabolic setting

Let J ⊆ S be such that WJ = 〈J〉 is �nite with longest element wJ . Let WJ be the set
of minimal representatives of the equivalence classes W/WJ . For w ∈ WJ , denote by B(wwJ),
resp. B(w)J , the corresponding indecomposable canonical sheaf on G, resp. on GJ . It is now
easy to see that:

Lemma 5.3.7. Let WJ and wJ be as above and consider x,w ∈ WJ such that y ≤ w, then
B(wwJ)x ∼= B(wwJ)xu for any u ∈WJ .

Proof. We proceed by induction on `(u). Clearly there is nothing to prove if `(u) = 0. If
`(x) > 0 then there exists an s ∈ S such that us < u and so by the inductive hypothesis, we get
B(wwJ)x = B(wwJ)xus. Now for any s ∈ J , wwJs < wwJ and by Theorem 5.3.1 we obtain the
claim.

Theorem 5.3.2. Let (GwwJ , k) be a GKM-pair and let WJ and wJ be as above. If y, w ∈ WJ

and y ≤ w, then there is an isomorphism of Sk-modules

B(wwJ)ywJ ∼= (B(w)J)y.

Proof. We proceed by induction on n = `(w)− `(y). If n = 0 the statement is trivial. Suppose
we have a collection of isomorphisms of Sk-modules ηx : (B(w)J)x → (B(wwJ))xwJ for any x
such that `(w)− `(x) < n.

There is a natural injective homomorphism,

j : Γ({> y},B(w)J)→ Γ({> ywJ},B(wwJ)),

de�ned by setting (mx)x∈(y,w]⊂WJ 7→ (m̃z)z∈(ywJ ,wwJ ]⊂W, where m̃z := ψz(ηx(mx)) if z ∈ xWJ

and ψz : Bx
wwJ → Bz

wwJ denotes the isomorphism in Lemma 5.3.7.
We will show that such a homomorphism induces an isomorphism (B(wwJ))δ ywJ ∼= (B(w)J)δy.

Then, by the unicity of projective cover, the statement will follow.
Let z ∈ (ywJ , wwJ ], z = xu, for some x > y ∈ WJ , u ∈ WJ and u = s1 . . . sr a reduced

expression with si ∈ J for every i. Moreover, let (nv) ∈ Γ({> ywJ},B(wwJ)). We prove
by induction on `(u) = r that there exists a section (pv) ∈ Γ({> ywJ},B(wwJ)) such that
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pxs1...si = ψxs1...si(ηx(mx)) for somemx ∈ (BJ
w)x for any i = 0, . . . , r and such that uywJ ((pv)) =

uywJ ((nv)).
For the base step we have r = 0 and there is nothing to prove.
If z = (xs1s2 . . . sr−1)sr then, by the inductive hypothesis, there exists a section (qv) ∈

Γ({> ywJ},B(wwJ)) and an element mx ∈ (B(w)J)x such that qxs1...si = ψxs1...si(ηx(mx))
and uy((qv)) = uy((nv)) for i = 0, . . . , r − 1. Thus, by Lemma 5.3.4, the element (pv) ∈⊕

v>ywJ
B(w)y such that

pys1...sr−1sr = ϕys1...sr−1(pys1...sr−1
)

and
pxs1...si = qxs1...si = ψxs1...si(ηx(mx)) ∀i < r

is a section on {> ywJ} and veri�es uywJ ((ñv)) = uywJ ((nv)).
Finally, from the proof of Lemma 5.3.7 it follows that

ϕys1...sr−1(pys1...sr−1) = ϕys1...sr−1(ψys1...sr−1(ηx(mx)) = ψxs1...sr (ηx(mx)).

Corollary 5.3.2. Let (G|≤wwJ , k) be a GKM-pair and let pJ : G → GJ the quotient map we
de�ned in �3.1.3. Then, p∗JB(w)J ∼= B(wwJ).

The theorem above is just the categori�cation of the following theorem, due to Deodhar:

Theorem 5.3.3 ([9]). Let W be a Weyl group with S, the set of simple re�ections, and J ⊆ S such
that WJ is �nite. Let wJ be the longest element of WJ and y, w ∈WJ , then mJ

y,w = hywJ ,wwJ .

5.4 A�ne Grassmannian for ŝl2

Using the inductive formula (2.2.c) of [29], it is easy to show that, if W is the in�nite dihedral
group, then hy,w = vl(y)−l(w) for all y, w ∈ W. Let us consider J = {sα}, then, from Theorem
5.3.3, it follows mJ

y,w = vl(y)−l(w) for any pair y, w ∈ WJ . In this section we categorify this
property. In particular, we prove that the structure sheaves on all �nite intervals of the moment

graph associated to the a�ne Grassmannian of ŝl2 (cf. �3.2.2) are �abby. As in �3.2.2, we will
denote by Gpar the corresponding moment graph, while, for a vertex w ∈ WJ , Bpar(w) is the
indecomposable canonical sheaf.

Recall that the set of vertices is in this case totally ordered, so we may enumerate the vertices
as follows, once identi�ed the �nite root α with the corresponding coroot α∨: v0 = 0, v1 = α,
v2 = −α, ... , vh = (−1)h+1[h+1

2 ]α, . . . .
From now on we denote the edges as Eh,k : (vh −−− vk) and the labels as lh,k := l(Eh,k);

we write moreover lh,k = α + nh,kc. Actually, the label of an edge Eh,k is by de�nition ±lh,k;
however, there exists an isomorphic k-moment graph with same sets of vertices and edges, but
this other label function and, by Lemma 2.2.2, the corresponding indecomposable canonical
sheaves are isomorphic.

We will prove in several steps that, if vj ≤ vi and (Gpar

|[vj,vi]
, k) is a GKM-pair, then (Bpar(vi))

vj ∼=
Sk by induction on i− j.

Fix once and for all I = {vi, vi−1, . . . , vj+1}.

Lemma 5.4.1. Let r ∈ N be such that r < i − j. If (Gpar, k) is a GKM-pair, and z ∈
Γ(I,Bpar(vi)){r}, then z is uniquely determined by its �rst r + 1 components, that is the re-
striction map Γ(I,Bpar(vi)){r} −→ Γ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} is injective.
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Proof. Let z ∈ Γ(I,Bpar(vi)){r} such that zvi = zvi−1
= . . . = zvi−r = 0. Observe that for any

j + 1 ≤ h < i− r ≤ k ≤ i one has zvh ≡ zvk = 0 ( mod α+ nh,kc).

By the GKM-property it follows that all the polynomials MCD(α + nh,kc, α + nh,lc) = 1
for any i − r ≤ k 6= l ≤ i. Since Sk is an UFD, zvh has to be divisible by (α + nh,i−rc)(α +
nh,i−r+1c) . . . (α + nh,ic). This is a polynomial of degree r + 1 while zvh was a polynomial of
degree r, so zvh = 0.

Lemma 5.4.2. Let r ∈ N be such that r < i− j. We have dimkΓ(I,Bpar(vi)){r} =
(
r+2

2

)
.

Proof. By Lemma 5.4.1, dimkΓ(I,Bpar(vi)){r} = dimkΓ({vi, vi−1, . . . , vi−r},Bpar(vi)){r}.

Clearly, Γ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} ⊆
⊕r

0(Sk){r} and dimk

⊕r
0(Sk){r} = (r + 1)2.

By de�nition an elementm ∈
⊕r

0(Sk){r} is in Γ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} if it satis�es
some (linear) conditions given by the labels of the edges. If we prove that such conditions are
linearly independent, then we know that

dimkΓ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} = dimk

r⊕
0

(Sk){r} − ] edges.

We noticed in �3.2.2 that in the ŝl2 case all the vertices are connected, so the number of
vertices is equal to the number of pairs of di�erent elements in a set with r+ 1 elements, that is(
r+1

2

)
. Then,

dimkΓ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} = (r + 1)2 −
(
r + 1

2

)
=

(
r + 2

2

)
.

Hence now we show that the conditions are linearly independent.

Let i− r ≤ h < k ≤ 1 and de�ne the element (m(h,k)) ∈
⊕r

0(Sk){r} in the following way:

m(h,k)
vl

:=
{ c

∏
m∈{i,i−1,...,i−r}\{h,k}(α+ nh,mc) if l =h

0 otherwise

Now m
(h,k)
vl = m

(h,k)
vm for any l,m 6= h and c

∏
(α + nh,mc) ≡ 0(mod α + nh,mc). By the

GKM-property, lh,k does not divides m
(h,k)
h , while m

(h,k)
k = 0.

So for any condition coming from the edge El,m we built a r + 1-tuple which veri�es all
conditions except the El,m-th. It follows that all conditions are linearly independent.

Denote by mα,mc ∈ Γ(I,Bpar(vi)){1} the constant sections mα,v = α, mc,v = c for all v ∈ I.
Denote moreover by uvj := ⊕ρvh,Eh,j , where ρvh,Eh,j : Sk → Sk/(Eh,j ·Sk) are just the canonical
quotient maps.

Lemma 5.4.3. Let r ∈ N and let (Gpar, k) be a GKM-pair. The vector subspace of (Bpar
vi )cvj

generated by

uvj (m
r
α), uvj (m

r−1
α mc) . . . uvj (mαm

r−1
c ), uvj (m

r
c)

has dimension equal to r + 1 if r < i− j or dimension equal to i− j otherwise.
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Proof. As �rst notice that (Bpar(vi))
Ej,k = Sk/(lj,k · Sk) ∼= k[c] by the mapping α 7→ −nj,kc.

Then
uvj (m

k
αm

t−k
c ) = ((−nj,i)k, (−nj,i−1)k, . . . , (−nkj,j+1))c.

We obtain the following matrix

N =


1 1 . . . 1
−nj,i −nj,i−1 . . . −nj,j+1

(−nj,i)2 (−nj,i−1)2 . . . (−nj,j+1)2

...
...

...
(−nj,i)t (−nj,i−1)t . . . (−nj,j+1)t


By the GKM-property it follows that nj,k 6= nj,h for all pair j + 1 ≤ k 6= h ≤ i and N is a

Vandermonde matrix. In particular, such a matrix is not singular and so it has maximal rank,
i.e. rk(N) = t+ 1 if t < i− j and rk(N) = i− j otherwise.

Lemma 5.4.4. There exists a section m0 ∈ Γ(I,Bpar(vi)){1} such that uvj (m0) = 0 and m0,v 6=
0 for all v ∈ I.

Proof. Let vj = rα. De�ne m0,vh := (r − s)lj,h = (r − s)(α+ (r + s)c) if vh = sα.
Notice that (m0) ∈ Γ(I,Bpar(vi)); indeed for any pair of vertices vh = sα, vk = tα, one has

lh,k = α+ (s+ t)c and

m0,vh −m0,vk = (r − s)(α+ (r + s)c)− (r − t)(α+ (r + t)c) =

= −sα− s2c+ tα+ t2c = α(t− s) + c(t2 − s2) =

= (t− s)(α+ (s+ t)c) ≡ 0 ( mod α+ (s+ t)c).

Moreover, by de�nition m0,vh 6= 0 for any vh ∈ I and uvj ((m0)) = 0.

Lemma 5.4.5. Let r ∈ N be such that r < i−j. The collection of monomials {ml
αm

h
cm

k
0 | l, h, k ≥

0, l + h+ k = r} is a basis of Γ(I,Bpar(vi)){r}.

Proof. Since the number of monomials in three variables of degree r is
(
r+2

2

)
and by Lemma

5.4.2 dimkΓ(I,Bpar(vi)) =
(
r+2

2

)
as well, it is enough to prove that all monomial in mα, mc, m0

are linearly independent. We prove the claim by induction on r.
Let r = 1. If xmα + ymc + zm0 = 0, then clearly 0 = uvj (xmα + ymc + zm0) = xuvj (mα) +

yuvj (mc) + zuvj (m0). By Lemma 5.4.4 uvj (m0) = 0, so xuvj (mα) + yuvj (mc) = 0. But by
Lemma 5.4.3 uvj (mα) and uvj (mc) generate a vector space of dimension 2, then x = y = 0.
Finally, from zm0 = 0 and Lemma 5.4.4 it follows z = 0.

Now let r > 1. Let z =
∑
l+m+n=r xl,m,nm

l
αm

m
c m

n
0 = 0. We can write z = z1 + z0m0, z1

is such that m0 does not appear. Then by Lemma 5.4.3 uvj (z) = uvj (z1) + uvj (z0)uvj (m0) =
uvj (z1) = 0. From Lemma 5.4.3 we know that all uvj (m

l
αm

r−l
c ) are linearly independent and so

0 = uvj (z1) = uvj (
∑

l+m=r

xl,m,0m
l
αm

m
c ) =

∑
l+m=r

xl,m,0uvj (m
l
αm

m
c )

implies xl,m,0 = 0 for all pair l,m, i.e. c1 = 0. Thus we obtain c0m0 = 0 and we conclude
by Lemma 5.4.4 that c0 = 0. Finally, 0 = c0 =

∑
l+m+n=r−1 xl,m,n+1m

l
αm

m
c m

n
0 is a linear

combination of monomials in mα,mc,m0 of degree r− 1 and so by inductive hypothesis we have
xl,m,n+1 = 0 for all l,m, n.
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Theorem 5.4.1. If vj ≤ vi and (Gpar

|[vj,vi]
, k) is a GKM-pair, then (Bpar(vi))

vj ∼= Sk.

Proof. We prove that (Bpar(vi))
δvi coincides with the uvi image of the ring generated by mα and

mc. If r < i− j, by 5.4.5, Γ(I,Bpar(vi)){r} is generated by {ml
αm

h
cm

k
0 | l, h, k ≥ 0, l+h+k = r}.

From 5.4.4 it follows (Bpar(vi))
δvi = uvi(Γ(I,Bpar(vi)){r}) is contained in the ring generated by

uvi((mα)) and uvi((mc)).
Otherwise, r ≥ i− j and

⊕
Ei,k∈Eδvi

(Bpar(vi))
Ei,k ∼= k[c]i−j , having dimension i− j. Then

by Lemma 5.4.3 uvi(mα) and uvi(mc) generate (Bpar(vi))
δvi

Thus we have a surjective map Sk →
⊕

Ei,k∈Eδvi
(Bpar(vi))

Ei,k by the mapping α 7→ mα and

c 7→ mc. Then (Bpar(vi))
vj ∼= Sk.

Remark 5.4.1. If k = Q, this result corresponds to the rational smoothness of the corresponding
(partial) Richardson variety.



Chapter 6

The stabilisation phenomenon

In [37], Lusztig proved that the a�ne parabolic Kazhdan-Lusztig polynomials stabilise. Quot-
ing Soergel's reformulation (cf.[[40],Theorem 6.1]), the parabolic Kazhdan-Lusztig polynomials

mSf

A,B indexed by pairs of alcoves far enough in the fundamental chamber stabilise, in the sense
that, for any pair of alcoves A,B, there exists a polynomial qA,B with integer coe�cients such
that

lim
µ∈C+

mSf

A+µ,B+µ = qA,B

The qA,B 's are called generic polynomials and turn out to have a realisation very similar to the
one of the regular Kazhdan-Lusztig polynomials. Indeed, Lusztig in [37] associated to every
a�ne Weyl group Wa its periodic module M, that is the free L = Z[v, v−1]-module with set
of generators -or standard basis- indexed by the set of all alcoves A. It is possible to de�ne an
involution and to prove that there exists a self-dual basis of M: the canonical basis. In this
setting, the generic polynomials are the coe�cients of the change basis matrix. Our interest in
the periodic module is motivated by the fact that M governs the representation theory of the
a�ne Kac-Moody algebra, whose Weyl group is Wa, at the critical level (cf. [3]).

The aim of this chapter is to study the behaviour of indecomposable Braden-MacPherson
sheaves on �nite intervals of the parabolic Bruhat graph far enough in C+ (cf. �3.2.3).

6.1 Statement of the main theorem

Let Gpar denote the parabolic moment graph associated to the a�ne Grassmannian, whose
set of vertices we identify with the set of alcoves in the fundamental chamber (cf. �3.2.2), and let
I = [B,A] be an interval far enough in the fundamental chamber. Inspired by [[37], Proposition
11.15], we claim that, for all µ ∈ X∨ ∩ C+,

B(A)B ∼= B(A+ µ)B+µ. (6.1)

We showed in �3.2.3 that Gpar

|[B,A]
is in general not isomorphic to G

par

|[B+µ,A+µ]
as moment graph,

so we cannot use the pullback technique we developed in �5.2 to get the isomorphism of Sk-
modules above. On the other hand, we proved in Lemma 3.2.5 that, for all µ ∈ X∨, there is an
isomorphism of k-moment graphs

τµ : Gstab
|[B,A]

→ Gstab
|[B+µ,A+µ]

61
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Thus, by Lemma 2.2.2, we get an isomorphism between the indecomposable canonical sheaf
B(A) on Gstab

|[B,A]
and τ∗µB(A+µ), the pullback of the indecomposable Braden-MacPherson sheaf

B(A+ µ) on Gstab
|[B+µ,A+µ]

.

For any �nite interval I far enough in the fundamental chamber, consider the monomorphism
iI : Gstab

|I ↪→ G
par

|I , given by iI,V = idV and iI,l,x = id for all x ∈ I. We get the functor

·stab : ShG
par

|I
→ ShGstab

|I
, de�ned by the setting F 7→ Fstab := i∗I(F). The goal of this chapter is

to prove the following result.

Theorem 6.1.1. For all �nite intervals far enough in the fundamental chamber, the functor
·stab : ShGpar

|I
→ ShGstab

|I preserves indecomposable Braden-MacPherson sheaves.

We will prove this theorem via explicit calculations in the ŝl2 case, while for the general case
we will need deep results and methods developed by Fiebig in [18].

Once proved Theorem 6.1.1, we get Equality 6.1 by applying Lemma 3.2.5.

6.2 The subgeneric case

In this section, Gstab, resp. Gpar, denote the parabolic moment graph, resp. the stable
moment graph, for the Ã1 root system. Moreover, we suppose that k has characteristic zero and
we write S instead of Sk.

We have already proved that for any two vertices v, w with v ≤ w the stalk of the Braden-
MacPherson sheaf on G

par

≤w is B(w)v ∼= S, that is equivalent to the �abbiness of the structure

sheaf on G
par

≤w. In order to show that the functor stab preserves indecomposable canonical sheaves,

it is in this case enough to verify that, for any vertex w, the structure sheaf A on Gstab
≤w is still

�abby.
Recall that the set of vertices of Gpar (and so of Gstab) can be identi�ed with the �nite (co)root

lattice, that is Zα, where α = α∨ is the positive (co)root of A1. Moreover, Gpar is a complete
graph and the label function is given, up to a sign, by l(hα−−−kα) = α+(h+k)c. By de�nition,
we get Gstab from Gpar by deleting the non-stable edges, then hα −−− kα ∈ Estab if and only if
sgn(h) = −sgn(k) (where, by convention, we set sgn(0) = −).

Lemma 6.2.1. Let r ∈ Z>0. If n ∈ Z, set, for any h ∈ Z, with hα ≤ nα,

ezrnα,hα :=


0 if |h| ∈ [|n| − r + 1, |n|]∏r−1
i=0

[(
− α+ (|n| − h− i)c

)
(|n| − h− i)

]
if h ∈ (0, |n| − r]∏r−1

i=0

[(
α+ (|n|+ h− i)c

)
(|n|+ h− i)

]
if h ∈ [r − |n|, 0]

Then ezrnα = (ezrnα,hα) ∈ Γ({≤ nα},A){r}.

Proof. We verify that, for any h, k ∈ Z such that hα, kα ≤ nα, if hα−−− kα is an edge, then

ezrnα,hα −e zrnα,kα ≡ 0 (mod α+ (h+ k)c) (6.2)

We may clearly suppose h > 0 and k ≤ 0.
Let at �rst consider h ∈ [|n| − r + 1, n]. If −k ∈ [|n| − r + 1, n], then ezrnα,hα = ezrnα,kα = 0

and there is nothing to prove. Otherwise, k ∈ [r − |n|, 0] and

ezrnα,hα −e zrnα,kα = 0−
r−1∏
i=0

[(
α+ (|n|+ k − i)c

)
(|n|+ k − i)

]
. (6.3)
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Now, α + (h+ k)c divides
∏r−1
i=0

[(
α + (|n|+ k − i)c

)
(|n|+ k − i)

]
if and only if there exists an

i ∈ [0, r− 1] such that |n| − i = h, i.e. h− |n| = −i. But we supposed h ∈ [|n| − r+ 1, n] that is,
precisely, h− |n| ∈ [−r + 1, 0].

Let consider the case h ∈ (0, |n| − r]. If −k ∈ [|n| − r + 1, n], then

ezrnα,hα −e zrnα,kα =

r−1∏
i=0

[(
− α+ (|n| − h− i)c

)
(|n| − h− i)

]
− 0. (6.4)

Now, α+ (h+ k)c divides
∏r−1
i=0

[(
−α+ (|n| − h− i)c

)
(|n| − h− i)

]
if and only if there exists an

i ∈ [0, r − 1] such that |n| − i = −k, i.e. −k − |n| = −i. But we supposed −k ∈ [|n| − r + 1, |n|]
that is, precisely, −k − |n| ∈ [−r + 1, 0].

Otherwise, k ∈ [r − |n|, 0] and

ezrnα,hα −e zrnα,kα =

=
∏r−1
i=0

[(
−α+(|n| − h− i)c

)
(|n| − h− i)

]
−
∏r−1
i=0

[(
α+(k + |n| − i)c

)
(k + |n| − i)

]
≡

≡
∏r−1
i=0 [(k + h+ |n| − h− i)(|n| − h− i)c]+
−
∏r−1
i=0 [(−k − h+ k + |n| − i)(|n|+ k − i)c] = (mod α+ (h+ k)c)

= cr
∏r−1
i=0 [(k + |n| − i)(|n| − h− i)− (−h+ |n| − i)(|n|+ k − i)] = 0

Lemma 6.2.2. Let r ∈ Z>0. If n ∈ Z, for any h ∈ Z, such that hα ≤ nα, we set

ozrnα,hα :=


0 if |h| ∈ [|n| − r + 2, |n|]∏r−1
i=0

[(
− α+ (|n| − h− i)c

)
(|n| − h− i+ 1)

]
if h ∈ (0, |n| − r + 1]∏r−1

i=0

[(
α+ (|n|+ h− i+ 1)c

)
(|n|+ h− i)

]
if h ∈ [r + n− 1, 0]

Then ozrnα = (ozrnα,hα) ∈ Γ({≤ nα},A){r}.

Proof. The proof is very similar to the one of the previous lemma and therefore we omit it.

De�ne ez0
nα := (1)hα≤nα.

Lemma 6.2.3. Let r ∈ Z≥0, n ∈ Z and m ∈ Z be such that mα ≤ nα. For all z ∈
Γ([mα,nα],A){r}, there exist osik,

esjk ∈ S{i}, with i ∈ [0, r], j ∈ (0, r] and k such that kα ∈
[mα,nα], such that

z =

r∑
j=1

esjk(ezr−jkα )kα∈[mα,nα] +

r∑
i=0

osik(ozrkα)kα∈[mα,nα]. (6.5)

Proof. Let hα be the maximal vertex in [mα,nα] such that zhα 6= 0. We prove the statement
by induction on l = ][mα, hα].

If such a vertex does not exists, that is l = 0, then z = (0) and there is nothing to prove.
We should consider four cases: n > 0 and l > 0; n > 0 and l ≤ 0; n ≤ 0 and l > 0; n ≤ 0

and l ≤ 0. Actually, we will verify only the �rst case, since the others can be proven in a very
similar way.

Let n > 0 and h > 0. If h = n, then we set z′ = z − zenαz0
nα and the result follows from the

inductive hypothesis. Otherwise, h < n and then
∏n−h−1
i=0 (−α + (n − h − i)c) divides zhα in S

and we may set

esr−n+h
h :=

n−h−1∏
i=0

[(−α+ (n− h+ i)c)(n− h− i)]−1 · zhα ∈ S{r−n+h}. (6.6)
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Now z′ := z − esr−n+h+1
h · (ezn−hkα )kα∈[mα,nα] ∈ Γ([mα,nα],A){r} has the property that z′kα = 0

for all k ∈ [hα, nα] and we get the statement from the inductive hypothesis.

Corollary 6.2.1. For any n ∈ Z, the structure sheaf A on Gstab
≤nα is �abby.

Proof. We have to show that every local section z ∈ Γ(I,A), with I open can be extended to a
global section z̃ ∈ Γ(Gstab

≤nα,A). Since the set of vertices of Gstab is totally ordered, then any open

set of Gstab
≤nα is actually an interval, that is there exists an m ∈ Z such that I = [mα,nα].

Suppose z ∈ Γ(I,A){r}, then by Lemma 6.2.3, we can write

z =

r∑
j=1

esjk(ezr−jkα )kα∈[mα,nα] +

r∑
i=0

osik(ozrkα)kα∈[mα,nα]. (6.7)

By Lemma 6.2.1 and Lemma 6.2.2, z is a sum of extensible sections, and so it is extensible
as well.

Finally, we get the following theorem.

Theorem 6.2.1. Let g = sl2. In this case, for all �nite intervals I, the functor ·stab preserves
indecomposable canonical sheaves.

6.3 General case

In order to prove our claim, we have to show that, for any interval I far enough in the fun-
damental chamber, if B is an indecomposable Braden-MacPherson sheaf on G

par

|I , then Bstab is

indecomposable and satis�es properties (BMP1),(BMP2),(BMP3),(BMP4). Observe that prop-
erties (BMP1), (BMP2) are trivial and (BMP4) comes from the fact that Γ(I,F) ↪→ Γ(I,Fstab)
for any F ∈ ShG

par

|I
, so we only have to show that Bstab is a �abby indecomposable sheaf on

Gstab
|I .

6.3.1 Flabbiness

It is possible to de�ne a functor ·per : ShG → ShGper in a very easy way. Let F =
({Fx}, {FE}{ρx,E}), then we set (Fper)x = Fx for any x ∈ V, (Fper)E = FEfor any E ∈ E

and ρperx,E = ρx,E . A fundamental step in the proof of the �abbiness of Bstab consists in showing
that ·per maps canonical shaves to �abby sheaves. In order to get this, we will combine several
results of Fiebig that we are going to recall.

Hereafter we will consider translation functors on the category of Z-modules, where Z is the
structure algebra of G. From now on θs will denote the translation functor de�ned by Fiebig in
[13]. The de�nition is analogous to the one we have given in Chapter 4. We will moreover denote
by H the corresponding category of special modules. Thus the following theorem holds.

Theorem 6.3.1 ([13]). Let M ∈ Z −mod. Then M ∈ H if and only if it is isomorphic to the
space of global sections of a BradenMacPherson sheaf on G.
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In [14], Fiebig de�ned the localisation functor L : Z(K) − mod → ShK, for all k-moment
graphs K, that is left adjoint to the functor of global section Γ : ShK → Z(K)−mod (cf. [[14],
Theorem 3.5]). Using Fiebig's terminology, we may now say that an object M ∈ Z − mod is
�abby if the corresponding sheaf L (M) is �abby. So our claim is equivalent to the fact that
L (Γ(Fper)) = L (Γ(F))per is �abby if F is a Braden MacPherson sheaf. We will prove it using
translation functors.

When we de�ned translation functors, we did not use the partial order on the set of vertices,
since the structure algebra does not depend on it. Thus it makes sense to speak of the translation
functor θpers : Z(Gper)−mod→ Z(Gper)−mod and this clearly coincides with θs : Z(G)−mod→
Z(G) −mod. Then also the corresponding categories of special modules (see �4) coincide, but,
because of this di�erent order, we get a di�erent topology on the set of vertices and so M ∈ H =
Hper could be such that L (M) is �abby in ShG, while L (M)per is not in ShGper . In [13] Fiebig
proved the following fact (used actually in the proof of Theorem 6.3.1).

Theorem 6.3.2 ([13]). θs : Z(G)−mod→ Z(G)−mod preserves �abby objects.

The proof of the theorem above is rather long, so we omit it. However we want to point out
the fact that in order to get the previous result Fiebig used only three properties of the Bruhat
order, namely

(1) The elements w and tw are comparable for all w ∈ Wa and t ∈ Ta. The relations between
all such pairs w, tw generate the partial order.

(2) We have [w,ws] = {w,ws} for all w ∈Wa and s ∈ Sa such that w < ws.

(3) For x, y ∈ Wa such that x < xs and y ≤ xs we have ys ≤ xs. For x, y ∈ Wa such that
xs < x and xs ≤ y we have xs ≤ ys.

Since Lusztig in [37] proved that the generic order has also these properties, we get

Theorem 6.3.3. θs : Z(Gper)−mod→ Z(Gper)−mod preserves �abby objects.

We are now ready to conclude.

Proposition 6.3.1. Let F be a Braden-MacPherson sheaf on G then Fper is a �abby sheaf on
Gpar.

Proof. We want to show that F = Γ(F) is �abby. By Theorem 6.3.1, we know that F ∈ H, so
we may prove our result by induction. If F = Be, there is nothing to prove. We have to show
now that, if the claim is true for M ∈ H, then it holds also for θs(M), that, again by Theorem
6.3.1, is still isomorphic to the global sections of a Braden-MacPherson sheaf on G. But now by
the inductive hypothesis we get that M is a �abby object in Z(Gper)−mod and so, by applying
Theorem 6.3.3, θs(M) = θpers (M) is also a �abby object in Z(Gper)−mod.

Decomposition of the functor ·stab

The functor ·stab may be obtained as composition of the �ve following functors.

ShG
par

|I

i∗ //

·stab

33
ShGpar

p∗par // ShG
·per // ShGper

j∗ // ShG
per

|I

·opp // ShGstab
|I

Where
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• i : Gpar

|I ↪→ Gpar and j : Gstab
|I ↪→ Gstab are the inclusions of subobjects

• ppar : G→ Gpar is the quotient homomorphism we de�ned in �3.1.3

• ·opp is the pullback of the isomorphism of moment graphs f : Gstab
|I → G

per

|I de�ned as

fV = id and fl,x(λ) = x−1(λ) for all x ∈ I and λ ∈
� ∨
Q (this is proved to be an isomorphism

in Lemma 5.2.1).

Now, it is clear that i∗ and j∗ map �abby sheaves to �abby sheaves. Moreover, p∗par, resp.
·opp, by Corollary 5.3.2, resp. Lemma 2.2.2, preserves Braden-MacPherson sheaves, and so, in
particular, the �abbiness. Finally, Proposition 6.3.1 tells us that also the functor ·per preserves
the �abbiness. It follows that if we apply ·stab to a Braden-MacPherson sheaf we get a �abby
sheaf on Gstab

|I , as we wished. Thus we obtain the following result.

Theorem 6.3.4. Let F ∈ ShGpar

|I
be a Braden-MacPherson sheaf, then Fper ∈ ShGstab

|I
is a �abby

sheaf.

6.3.2 Indecomposability

Here we prove the only step missing in the proof of Theorem 6.1.1.

Proposition 6.3.2. Let I be a �nite interval of Gpar far enough in C+ and let B ∈ ShGpar

|I
be an

indecomposable Braden-MacPherson sheaf. Then Bstab is also indecomposable as sheaf on Gstab
|I .

Proof. Since B is indecomposable, by Theorem 2.1.1, B = B(w) for some w ∈ I, that implies
B(w)x = 0 = Bstab,x for all x > w (x ∈ I) and B(w)w ∼= S ∼= Bstab,w. Suppose that
Bstab = C⊕D, then for what we have just observed, we may take C and D such that Cx = Dx = 0
for all x > w, Cw ∼= S and Dw = 0. Let y ∈ I be a maximal vertex such that Dy 6= 0. For any
E : y → z ∈ Eδy, by de�nition of Braden-MacPherson sheaf, ρz,E : B(w)z = Bstab,z = Cz →
BE = Bstab,E is surjective with kernel l(E) ·Bz = l(E)Cz and this implies DE = 0.

We now localise Γ(B) at a �nite simple root β, as we have done in �4.3. Remark that, since
we are representing the parabolic Bruhat graph using alcoves, we are taking the quotient of Gopp

instead of G. It means that we have to twist the action of S on any vertex x by x−1. However,
once the action of the symmetric algebra is twisted, all the results in �4.3 still work in the same
way. By combining Theorem 6.3.1 and Lemma 4.3.2 we know that L (Γ(B)β) is a direct sum
of Braden-MacPherson sheaves on certain moment graphs, each one of them is isomorphic to a
�nite interval of the parabolic Bruhat graph for Ã1. From the de�nition of L , it follows that
L (Γ(Bstab)β) = (L (Γ(B)β))stab.

We have already proved that ρy,E(Dy) = 0 for any E ∈ Eδy ∩ ES and we want to show
that ρy,E(Dy) = for any E ∈ Eδy. If it were not the case, there would be a non -stable edge

F ∈ Eδy ∩ ENS such that ρy,E(Dy) 6= 0. Let β ∈
�

∆+ be such that l(F ) = β + nδ for some n ∈ Z.
Localising at β, we would get ρβy,F (Dy,β) 6= 0 and from the Ã1 case, it follows that ρ

β
y,E(Dy,β) 6= 0

for all E ∈ Eδy in β-direction, but we proved that this is not the case.
We are now ready to conclude. From what we showed, it follows that uy(Cy) = Bδy and this

implies Dy = 0, since (By, uy) is a projective cover of Bδy.
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