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Introduction

Moment graphs appeared for the first time in 1998, in the remarkable paper of
Goresky, Kottwitz and MacPherson (cf.[20]). Their aim was to describe the equivari-
ant cohomology of a "nice" projective algebraic variety X, where "nice" means that an
algebraic torus T acts equivariantly formally (cf.[[20], §1.2]) on X with finitely many
1-dimensional orbits and finitely many fixed points (all isolated). In these hypotheses,
they proved that Hp(X) can be described using data coming from the 1-skeleton of the
T-action. In particular, such data were all contained in a purely combinatorial object:
the associated moment graph. After Goresky, Kottwitz and MacPherson’s paper, several
mathematicians, as Lam, Ram, Shilling, Shimozono, Tymozcko, used moment graphs in
Schubert calculus (cf.[33], [34], [42], [43], [44]).

In 2001, Braden and MacPherson gave a combinatorial algorithm to compute the
T-equivariant intersection cohomology of the variety X, having a T-invariant Whitney
stratification (cf. [7]). In order to do that, they associated to any moment graph an
object that they called canonical sheaf; we will refer hereafter to it also as Braden-
MacPherson sheaf. Even if their algorithm was defined for coefficients in characteristic
zero, it works in positive characteristic too. In this case, Fiebig and Williamson proved
that, under certain assumptions, it computes the stalks of indecomposable parity sheaves
(cf.[19]), that are a special class of constructible (with respect to the stratification of X)
complexes in D%(X ; k), the T-equivariant bounded derived category of X over the local
ring k. Parity sheaves have been recently introduced by Juteau, Mautner and Williamson
(cf.[25]), in order to find a class of objects being the positive characteristic counterpart
of intersection cohomology complexes. Indeed, intersection cohomology complexes play
a very important role in geometric representation theory thanks to the decomposition
theorem, that in general fails in characteristic p, while for parity sheaves holds.

The introduction of moment graph techniques in representation theory is due to the
fundamental work of Fiebig. In particular, he associated a moment graph to any Coxeter
system and defined the corresponding category of special modules, that turned out to be
equivalent to a combinatorial category defined by Soergel in [41] (cf.[13]). The advantage
of Fiebig’s approach is that, as we have already pointed out, the objects he uses may be
defined in any characteristic and so they may be applied in modular representation the-
ory. In particular, they provided a totally new approach to Lusztig’s conjecture (cf.[37])
on the characters of irreducible modules of semisimple, simply connected, reductive alge-
braic groups over fields of characteristic bigger than the corresponding Coxeter number
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(cf.[18]). This conjecture was proved to be true if the characteristic of the base field is
big enough (by combining |31], |27] and [1]), in the sense that it is true in the limit, while
Fiebig’s work provided an explicit -but still hugel- bound (cf.[16]). The characteristic
zero analog of Lusztig’s conjecture, stated by Kazhdan and Lusztig a year before in [29],
and proved a couple of years later, independently, by Brylinski-Kashiwara (cf.[8]) and
Beilinson -Bernstein (cf.[4]), admits a new proof in this moment graph setting (cf.[14]). In
an ongoing project Fiebig and Arakawa are working on the Feigin-Frenkel conjecture on
the restricted category O for affine Kac-Moody algebras at the critical level via sheaves
on moment graphs (cf.[2], [3]). A very recent paper of Peng, Varagnolo and Vasserot
uses moment graphs to prove the parabolic/singular Koszul duality for the category O
of affine Kac-Moody algebras (cf.[39]), showing that the role played by these objects in
representation theory is getting more and more important.

The aim of this thesis is first to develop an axiomatic theory of moment graphs
and sheaves on them and then to apply it to the study of a fundamental class of mo-
ment graphs: the -regular and parabolic- Bruhat (moment) graphs. They are attached
to any symmetrisable Kac-Moody algebra and the associated indecomposable Braden-
MacPherson sheaves give the indecomposable projective objects in the corresponding
deformed -regular or singular- category O (cf.||14],86]). This is for us the most important
reason to consider Bruhat graphs, together with their intrinsic combinatorial interest.

Thesis organisation

Here we describe the structure of our dissertation and present briefly the main results.

From now on, Y will denote a lattice of finite rank, k a local ring such that 2 € k*
and Y, =Y ®z k.

In the first chapter, we develop a theory of moment graphs. In order to do that, we
first had to choose if we were going to work with moment graphs on a vector space (as
Goresky-Kottwitz and MacPherson do in [20]) or on a lattice. The first possibility would
enable us to associate a moment graph to any Coxeter system (cf.[13]), while the second
one has the advantage that a modular theory could be developed (cf. [18]). We decided
to work with moment graphs on a lattice, because our results of Chapter 5 and Chapter
6 in characteristic zero categorify properties of Kazhdan-Lusztig polynomials, while in
positive characteristic they give also information about the stalks of indecomposable
parity sheaves ([19]). Thus, from now on we will speak of k-moment graphs, where k is
any local ring with 2 € k*. However, our proofs can be adapted to moment graphs on a
vector space, by slightly modifying some definitions.

After recalling the definition of k-moment graph on a lattice Y, following [16], we
introduce the new concept of homomorphism between two k-moment graphs on Y. This
is given by nothing but an order-preserving map of oriented graphs together with a
collection of automorphisms of the k-module Y}, satisfying some technical requirements
(see §1.2). In this way, once proved that the composition of two homomorphisms of
k-moment graphs is again a homomorphism of k-moment graphs (see Lemma 1.2.1), we
get the category MG(Yy) of k-moment graphs on the lattice Y and in the rest of the
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chapter we describe some properties of it.

The following chapter is about the category Shy(G), of sheaves on the k-moment
graph §. We start with recalling some concepts and results from [7], [14], [15], [19];
in particular, the definition of canonical or Braden-MacPherson sheaves. Even if these
objects are not sheaves in the algebro-geometric sense but only combinatorial and com-
mutative algebraic objects, we define pull-back and push-forward functors (see §2.2). Let
f: G — ¢ be a homomorphism of k-moment graphs on Y, then we are able to prove
that, as in algebraic geometry, the adjunction formula holds.

Proposition 0.0.1. Let f € Homprgy,)(9,9'), then f* is left adjoint to f, that is for
all pairs of sheaves F € Shy(G) and H € Shy(G') the following equality holds

Homgp, ) (f*3,F) = Homgp, (5 (I, f:F) (1)

We end the chapter with proving a fundamental property of canonical sheaves, namely
we show that, if f: G — G’ is an isomorphism, then the pullback functor f* preserves
indecomposable Braden-MacPherson sheaves (see Lemma 2.2.2). This result will provide
us with an important technique to compare indecomposable canonical sheaves on different
k-moment graphs, that we will use in Chapter 5.

Let g be a Kac-Moody algebra, then there is a standard way to associate to g certain
k-moment graphs on its coroot lattice (cf. [15]), the corresponding regular and parabolic
(k-moment) Bruhat graphs. Denote by W the Weyl group of g, that it is in particular
a Coxeter group. Let 8 be its set of simple reflections, then, for any subset J C §
there is exactly one parabolic Bruhat graph, that we denote G/. These are the main
objects of Chapter 3. After giving some examples, we prove that all parabolic k-moment
Bruhat graphs associated to g are nothing but quotients of its regular Bruhat graph (see
Corollary 3.1.2). We then focus our attention on the case of g affine Kac-Moody algebra.
The most interesting parabolic Bruhat graph attached to g is the one corresponding to
the Affine Grassmannian, that we denote GP*" = GP2'(g), and we consider it in §3.2.2.
Once showed that the set of vertices of GP*" may be identified with the set of alcoves in
the fundamental Weyl chamber CT, we study finite intervals of GP2* far enough in €. We
are able to describe these intervals in a very precise way (see Lemma 3.2.1, Lemma 3.2.2,
Lemma 3.2.1, Lemma 3.2.4). In particular, we notice that the set of edges is naturally
bipartite and this gives rise to the definition of a new k-moment graph attached to g:
the stable moment graph (see §3.2.3), that is a subgraph of GP2r.

In Chapter 4, we generalise a construction of Fiebig. Let g be a Kac-Moody algebra,
then we may consider the attached Bruhat graphs. In the case of the regular Bruhat graph
g = 9@(9), Fiebig defined translation functors on the category of Z-graded Z-modules,
where Z is the structure algebra (see §2.1.1) of §. Moreover, in [18] he considered
a subcategory H of the category of Z-graded Z-modules and proved that it gives a
categorification of the Hecke algebra H of W. In a similar way, for any parabolic moment
graph G” attached to g, we are able to define translation functors {*6},cs and the category
7. Actually, if H’ is the parabolic Hecke algebra defined by Deodhar in [9], this
admits an action of the regular Hecke algebra H. Recall that Kazhdan and Lusztig in
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[29] defined the canonical basis of H, that we denote, following Soergel’s notation, by
{H,}sew. Then, if (3”) is the Grothendieck group of H”, we may define a character
map h : (H7) — HY (see §4.2.2) and, for any simple reflection s € §, we get the following
commutative square (see Proposition 4.2.1).

(37) M

590{1}i J/Hs'

(F7) LM

where {1} denotes the degree shift functor on the Z-graded category 7.

In Chapter 5 we report and expand results that have been already presented in our
paper [35]. We were motivated by the multiplicity conjecture (cf. [16]), a conjectural for-
mula relating the stalks of the indecomposable Braden-MacPherson sheaves on a Bruhat
graph G7 to the corresponding Deodhar’s parabolic Kazhdan-Lusztig polynomials for the
parameter u = —1 (cf. [9]), that we denote {miy} as Soergel does in [40]. The aim of
this chapter is then to lift properties of the miy’s to the level of canonical sheaves, that
is to categorify some well-know equalities concerning Kazhdan-Lusztig polynomials. We
mainly use three strategies to get our claims:

o Technique of the pullback. We look for isomorphisms of k-moment graphs and then,
via the pullback functor (see Lemma 2.2.2), we get the desired equality between
stalks of Braden-MacPherson sheaves (see §5.2).

o Technique of the set of invariants. For any s € § we define an involution o of the
set of local sections of a canonical sheaf on an s-invariant interval of §. In this
case, the study of the space of the invariants gives us the property we wanted to
show (see §5.3).

o Flabbiness of the structure sheaf. It is known (cf. [17]) that the so-called structure
sheaf (see Example 2.1.1) is isomorphic to an indecomposable Braden-MacPherson
sheaf if and only if it is flabby and this is the case if and only if the corresponding
Kazhdan-Lusztig polynomials evaluated in 1 are all 1. We prove in a very explicit
way that the structure sheaf is flabby to categorify the fact that the associated
polynomials evaluated in lare 1 (see§5.1 and §5.4).

The aim of the last chapter is to describe indecomposable canonical sheaves on finite
intervals of GP?* far enough in €*. Our motivation comes from the multiplicity conjecture
together with a result, due to Lusztig (cf. [37]), telling us that for any pair of alcoves
A, B C CT there exists a polynomial g4 g, called the generic polynomial of the pair A, B,
such that

lim mgﬁu,3+u:qz“73' (2)
HECT

Actually, this result relates the Hecke algebra of the affine Weyl group W to its

periodic module M. Our interest in M is motivated now by the fact that M governs the
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representation theory of the affine Kac-Moody algebra, whose Weyl group is W%, at the
critical level.

Suppose that A, B, A+ u, B + p are alcoves far enough in the fundamental chamber.
Then results of §3.2.2 show that the two moment graphs SﬂjljB] and Sﬁiuﬁw] are in
general not isomorphic, while there is always an isomorphism of moment graphs between

Sf[tjl;] and ST’SE B’ Since the stable moment graph is a subgraph of GP?' there is a
s I, m

monomorphism gstab  y gpar  The following diagram summarises this situation:

gpar par
l(a,B) (A4, B+l
i i
stab stab

9|[A,Bl 9\[A+H¢B+u1

We then get a functor -St8P .= j* . Shg‘par — Shglstab . The main theorem of this
[A,B] [A,B]
chapter is the following one.

Theorem 0.0.1. The functor -5t : Shk(S‘p[irB]) — Shk(S‘s[Z‘I;]) preserves indecomposable

Braden-MacPherson sheaves.

The stabilisation property, that is the categorification of Equality (2), follows by
applying the technique of the pullback to the previous result.

In the case of g = g[\z, we are able to prove the claim via the third technique we
quoted above, that is, for any finite interval of G5%8P we show that in characteristic
zero its structure sheaf is flabby, so it is invariant by weight translation for all integral
weights g € €T. On the other hand, we know already that the structure sheaf for the
affine Grassmannian is flabby (see §5.4) and this concludes the sl,-case.

For the general case, we apply a localisation technique due to Fiebig (that we recall
in Chapter 4), which enables us to use the sly-case, together with results of [18].

Perspectives

Since the theory of sheaves on moment graphs is related to geometry, representation
theory and algebraic combinatorics, we briefly present three possible applications or
developments of this theory on which we are interested in, one for each of these fields.

Equivariant cohomology of affine Bott-Samelson varieties.

In a joint project with Stéphane Gaussent and Michael Ehrig (cf.[12]), we try to
generalise to the affine setting the paper [21]| of Héarterich, where the author describes
the T-equivariant cohomology of Bott-Samelson varieties in terms of Braden-MacPherson
sheaves on the corresponding Schubert varieties.
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Periodic patterns and the Feigin-Frenkel conjecture.

The Feigin-Frenkel conjecture provides a character formula involving Lusztig’s peri-
odic polynomials (cf.[37]). In 28], Kato related these polynomials to the generic polyno-
mials. In particular, he showed that generic polynomials are sum of periodic polynomials
with certain multiplicities. We believe that a natural development of the results we got
in Chapter 5 is to prove an analog of this periodicity property for canonical sheaves. It
should correspond to a filtration of the space of global sections of the indecomposable
Braden-MacPherson sheaf. In an ongoing project with Peter Fiebig we try to understand
this phenomenon and to apply it to get a further step in the proof of the Feigin-Frenkel
conjecture. The representation theory of affine Kac-Moody algebras at the critical level
is very complicated and, thanks to the fundamental work of Frenkel and Gaitsgory, it is
related to the geometric Langlands correspondence.

Moment graphs and Littelmann path model.

In 2008, during the Semester " Combinatorial Representation Theory" at the MSRI of
Berkeley, Ram conjectured a connection between the Littelmann path model and affine
Kazhdan-Lusztig polynomials (the so—called "Théoréve"). Since in characteristic zero
the multiplicity conjecture is proved, our hope is that we may get a better understand-
ing of this connection via the study of indecomposable Braden-MacPherson sheaves, by
applying results we obtained in this thesis.
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Chapter 1

The category of £-moment graphs
on a lattice

Moment graphs were introduced by Goresky, Kottwitz and MacPherson in 1998, in
order to give a combinatorial description of the T-equivariant cohomology of a complex
algebraic variety X equipped with an action of a complex torus T, satisfying some tech-
nical assumptions (cf.[20]). A couple of years later, Braden and MacPherson, in [7], used
moment graphs to compute the T-equivariant intersection cohomology of X. Since 2006,
thanks to the seminal work of Fiebig (cf.[13],[14],[18],[16],[17]), moment graphs have be-
come a powerful tool in representation theory as well. Even if in the last years moment
graphs appeared in several papers, a proper "moment graph theory" has not been de-
velopped yet. The aim of this section is to define the category of moment graphs on a
lattice and to discuss some examples and properties of it.

1.1 Moment graphs

In [20] and [7], moment graphs were constructed from a geometrical datum, but it is
actually possible to give an axiomatic definition.

Definition 1.1.1 ([16]). Let Y be a lattice of finite rank. A moment graph on the lattice
Y is given by (V, €, <,1), where:
(MG1) (V,€) is a directed graph without directed cycles nor multiple edges,
(MG2) < is a partial order on 'V such that if v,y €V and E:x —y € &, then x Jvy,
(MG3) 1: & — Y \{0} is a map called the label function.

Following Fiebig’s notation ([16]), we will write x — y if we are forgetting about the
orientation of the edge.

Studying complex algebraic varieties, Braden, Goresky, Kottwitz and MacPherson

considered moment graphs only in characteristic zero, while they turned out to be very
important in prime characteristic (see [18], [19]).

1



2 CHAPTER 1. THE CATEGORY OF K-MOMENT GRAPHS ON A LATTICE

From now on, k£ will be a local ring such that 2 is an invertible element. Moreover,
for any lattice Y of finite rank, we will denote by Y; :=Y ®z k.

Definition 1.1.2. Let G be a moment graph on the lattice Y. We say that G is a k-
moment graph on Y if all labels are non-zero in Yy

Definition 1.1.3. [19] The pair (G, k) is called a GK M-pair if all pairs Ey, Eo of
distinct edges containing a common vertex re such that k- 1(Ey) Nk -1(E2) = {0}.

Observe that if (G, k) is a GK M-pair, then §G is a k-moment graph. This property is
very important and, in the next chapters, it will give a restriction on the ring k.

1.1.1 Examples

Example 1.1.1. The empty k-moment graph is given by the graph having empty set of
vertices. All the other data are clearly uniquely determined. We will denote it by ().

Example 1.1.2 (cf.[16]). A generic k-moment graph is a moment graph having a unique
vertex. As in the previous example, all the other data are uniquely determined.

Example 1.1.3 (cf.[16]). A subgeneric k-moment graph on'Y is a moment graph having
two vertices and an (oriented) edge, labelled by a non-zero element x € Y, such that x®1
1§ non-zero in Y} too.

Example 1.1.4. We recall here the construction, due to Braden an MacPherson, ap-
peared in [7]. Let G be an irreducible complex projective algebraic variety, with an al-
gebraic action of a complex torus T = (C*)?. Denote moreover by X*(T) the character
lattice of the torus. If G has a T-invariant Whitney stratification by affine spaces and
the action of T is nice enough (see [7], §1.1), then the associated moment graph is de-
fined as follows. Thanks to the technical assumptions made by Braden and MacPherson,
any I-dimensional orbit turns out to be a copy of C*, whose closure contains exactly two
fized points. Thus, it makes sense to declare that the set of vertices, resp. of edges, of
the associated moment graph is given by the set of fixed points, resp. of I-dimensional
orbits, with respect this T-action. Moreover, the assumptions on the variety imply that
any stratum contains exactly one fized point. Then, taken any two (distinct) fized points,
x,y, that is two vertices of the graph we are building, we set x < y if and only if the
closure of the stratum corresponding to y contains the stratum corresponding to x. Now,
we want to label all edges of the graph, in order to record more informations about the
torus action. Let E be an edge. Any point z of the one-dimensional orbit E has clearly
the same stabilizer Stabr(z) in T, that is the kernel of a character x € X*(T). We then
set I(E) := x. We obtain in this way a moment graph on X*(T).

In Chapters 3, 4, 5 and 6 we will focus our attention on a class of moment graphs
associated to a symmetrisable Kac-Moody algebra: the Bruhat graphs. These graphs are
nothing but an example of the Braden-MacPherson construction for the associated flag
variety that we described above (cf.[19], §7).
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1.2 Morphisms of k-moment graphs

In this section, we give the definition of morphism between two k-moment graphs.
Since a moment graph is an ordered graph, whose edges are labeled by (non-zero) elements
of Y having non-zero image in Y, a morphism will be given by a morphism of oriented
graphs together with a family of automorphisms of Y.

Definition 1.2.1. A morphism between two k-moment graphs
0, &,9,0) — (V, &, <40

is gwen by (fv, {fi.2}eecv), where

(MORPHI1) fy : V — V' is any map of posets such that, if vt —— y € &, then either
fo(z) — fy(y) € &, or fy(x) = fy(y). For a verter E : x —— y € & such that
fo(x) # foly), we will denote fe(E) = fy(x) — fo(y).

(MORPH2) For allx €V, fi,: Yy, = Yy € Auty(Yy) is such that, if E:x — y € € and
fv(x) # fv(y), the following two conditions are verified:

(MORPH2a) fi,(I(E))=h-U(fe(E)), for some h € k*

(MORPH2b) 7o f , = mofi,,, where m is the canonical quotient map 7 : Yy, — Yy, /U'(fe(E)) Y.
IFf:G=(V,8<0) =G = (V& < " and g: G — G = (V" &, <", 1") are two

) —

morphisms of k-moment graphs, then there is a natural way to define the composition.
Namely, g o f := (gv © fv, {90, fv(2) © fla}zev)-

Lemma 1.2.1. The composition of two morphisms between k-moment graphs is again a
morphism, and it is associative.

Proof. The only conditions to check are (MORPH2a) and (MORPH2b). Suppose that
E:x——y € & and gy o fy(z) # gy o fo(y), that is fy(z) # fv(v) and gv (fv(z)) #

gy (fo(v). I fi(I(E)) = K -U'(fe(E)) and gy g, 2)(I'(fe(E))) = h"-1"(ger o fe(E)), with
W W' € kX, then

(91 (2) © fr) UE)) = g po (o) (KU (fe(E))) = b -h" 1" (ger o fe(E)) = h-1"(ger o fe(E)),

and clearly h = &' - " € k*. Moreover,

A+l (fe(E)) =
y(A)Hn W' 1" (ger o fe(E ))—
yA) + 0" 1 (ger o fe(E)) +n' - B - 1"(ger o fe(E))

x) (fl
x)(fl
y)(fl

where n,n” € k.
Finally, the associativity follows from the definition. O

For any k-moment graph § = (V, €, 4,1), we set idg = (idy, {idy, }sev). Thus we
may give the following definition
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Definition 1.2.2. We denote by MG(Y}) the category whose objects are the k-moment
graphs on'Y and whose morphisms are as in Def.1.2.1.

Lemma 1.2.2. Let §= (V,&,<,0),9 = (V,&,<l') € MG(Yy). Then, any morphism
[ = (v, {fiz}) € Homprgv,)(9,9') can be written, in a unique way, as composition of
two morphisms f = got, where g = (fy,{idy,}) and t = (idy,{fi.}).

Proof. We have to show that there exists a k-moment graph H such that ¢t € Hompgg(y;) (9, 30),
g € Hompmigy,) (H, §') and the following diagram commutes

f o
N
H

Define H as the k-moment graph, whose set of vertices, set of edges and partial order
are the same as G and, for any edge x — y € &, the label function is defined as follows

ez — ) = { fralllw = y) i fol) = foly)

S

(1.1)

U(fv(z) = fv(y)) otherwise

Now, it is easy to check that ¢t € Hompyg(y,) (9, H) and g € Hompg(v,) (3, ). Clearly,
Diagram (1.1) commutes. Observe that 3 is not the only k-moment graph having the
desired properties, but this does not affect the uniqueness of the decomposition of f. [

1.2.1 Mono-, epi- and isomorphisms

Here we characterise some particular morphisms of k-moment graphs: monomor-
phisms, epimorphisms and isomorphisms in MG(Y%).

Lemma 1.2.3. Let§ = (V,€,3,1),9 = (V, &, < I") € MG(Yy) and f € Hompg(v,)(5,9).

(i) f is a monomorphism if and only if fy is an injective map of sets (satisfying condition
(MORPH1))

(ii) f is an epimorphism if and only if fv is a surjective map of sets (satisfying condition
(MORPH1))

Proof.

(i) f is a monomorphism if and only if, for any pair of parallel morphisms g1, g2 : H — G,
fogr = fogo implies g1 = ¢go. Then, f is a monomorphism if and only if fy is a
monomorphisms in the category of sets and, for any x € V, f;, is a monomorphism in
the category of the k-modules, but by definition it is an automorphism of Y}, so this
condition is empty.

(ii) Asin (i), we conclude easily that f is an epimorphism if and only if fy s a surjective
map of sets. O



Example 1.2.1. Consider the following map between graphs

If we set fi. = fiy = fiw = idy,, we get an homomorphism of k-moment graphs that is,
by Lemma 1.2.3, a monomorphism and an epimorphism.

A map between sets, that is both injective and bijective, is an isomorphism. Here, we
show that such a property does not hold for a homomorphism of k-moment graphs, even
if it is given by a map between the sets of vertices and an automorphism of Yj. This is
actually not surprising, since k-moment graphs will play in our theory (see next chapter)
the role that topological spaces play in sheaf theory and not all bijective continuous maps
between topological spaces are homeomorphisms.

Lemma 1.2.4. Let§ = (V,€,<,1),5' = (V, &, < I') € MG(Yy,) and [ = (fv, {fiz}zev) €
Hompre(vi,)(S,9'). f is an isomorphism if and only if the following two conditions hold:

(ISO1) fy is bijective

(IS02) for all u — w € &', there exists exactly one x — y € & such that fy(x) = u and
foly) = w.

Proof. At first, we show that a homomorphism satisfying (ISO1) and (ISO2) is invertible.

Denote by f~! := (fi, {f} ,Juev), where we set f, := fy' and f], = l_fl_l(u)' We
b b N V

have to verify that f~! is well-defined, that is we have to check conditions (MORPH?2a)

and (MORPHZ2b). Suppose there exists an edge F' : u — w € &', then, by (i), there is

an edge E : © — y € &€ such that fy(x) = wand fy(y) = w. Since f verifies (MORPH2a),

fiz(I(E)) = h-U(F) for h € k* and we get
fl,',u(l/(F)) = fljf];;l(u)(l/(F)) = fljxl(l/(F)) — h 1. U(E)

Now, let p € Y and take A := f_!(n). By (MORPH2a), i = fi4(A) = fiz(A) +7-U'(F)
for some r € k. It follows

i) = fig () = [ (fra(N) + U (F))
=Atr [ UF) = i) () +r -t U(E)
= [ (1) + 7/ - U(E)

Suppose f is an isomorphism. If (ISO1) is not satisfied, then fy, and hence f, is not
invertible. Moreover, (ISO1) implies that for all u — v € &', there exists at most one
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x — y € & such that fy(x) = v and fy(y) = v (otherwise fy would not be injective).
Now, let f be the following homomorphism, (we do not care about the f;,’s)

Condition (1S01) holds, but f is not invertible, since fy'(u) # fy ' (w) but fy, ' (u) —
fy H(w) & & (this contradicts (MORPH1)). O

Example 1.2.2. All the generic k-moment graphs are in the same isomorphism class
in MG(Yy). Then, we will say in the sequel the generic k-moment graph and we will
denote it by {pt}.

Example 1.2.3. If k is a field, then all the subgeneric k-moment graphs are isomorphic.

Example 1.2.4. The homomorphism in Ezx. 1.2.1 is surjective and injective but is not
an isomorphism.

Example 1.2.5. Let o, 8 be a basis of Y. Consider the following morphism of graphs

(fo, fe):
r1®¢—-————————=—————— — — — — — — > Y@
\ \
s me— - - === == By i > Yg®
T3@———— — — ——— — /e — — — — — — — > 13 o
\\ a+8
77777777777777777 > 1Y@
Define

fl’xl:_{/@H/B fl’x2:_{/8’—>ﬁ fl’xg:_{,BHOl‘i‘ﬁ fl’x4:_{/8'—>04+5

We have to show that these data define a morphism of k-moment graphs. Condition
(MORPHS3a) is trivially satisfied. Moreover, for any pair a,b € k,

fl,xl (aa + bﬁ) - fl,zz (aa + bﬂ) =0
fras(aa +08) — fiz,(aa+bB8) =0
fl,xl (CLO( + bﬁ) - fl,xg(aa + bﬁ) = —ba=-b- l(l’g — wl)
fras(aa +08) — fia,(aa+bB) = —ba = —b - (x4 — x2)

Then, condition (MORPHS3b) holds too. Since the fi 5 are all automorphisms of Yy, f is
an tsomorphism.



1.2.2 Automorphisms

For any § € MG(Y}), denote by Aut(9) the automorphisms group of §. Moreover,
we set

T:={f € Aut(9)| f = (idv, {fi2})} (1.2)
G :={f € Aut(9)|f = (fv, {idv, })} (1.3)

By combining results of the previous paragraphs, we get

Lemma 1.2.5. Let § € MG(Yy), then T is a normal subgroup of (Aut(§),o), while G
is not. Moreover, Aut(9) =T x G.

Proof. For any f € Aut(§) and t € T,
fﬁltf = (f\?l oidy o fy, {fl,_fi;(a:) Oty fy(z) © fre}) = (idy, {fl,_f:i;(:r:) Oy fy(x) © fiz) €T
For any f € Aut(9) and g € G,

f_lgf = (fv_l ogyo fy, {fl,—flv(x) oidy, o fl7$}) = (f\;l o gy o fy, {fl,_f{;(a:) © fl,x})

Clearly, such an element is not in general in G.
Now, T'N G = {idg} and the second statement follows by Lemma 1.2.1. O

1.3 Basic constructions in MG(Y})

1.3.1 Subgraphs and subobjects

Definition 1.3.1. Let G = (V,&,,0),9' = (V, &, <l') € MG(Yy). We say that §' is
a k-moment subgraph of G if

(SUB1) V' CV
(SUB2) €' C €
(SUB3) <'=<,,
(SUB4) I =1,,

Lemma 1.3.1. Any k-moment subgraph of G is a representative of a subobject of G.

Proof. We have to show that, for any §’, k-moment subgraph of G, there exists a
monomorphism ¢ : § — G. Define ¢ as iy/(x) := x and iy, = idy, for any z € V.
From Lemmal.2.3 (i), it follows that ¢ is a monomorphism. O
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1.3.2 Quotient graphs

Definition 1.3.2. Let § = (V,&,<,1) € MG(Y)) and ~ an equivalence relation on V.
We say that ~ is G-compatible if the following conditions are satisfied:
(EQV1) x1 ~ x9 implies x1 ~ x for all 1 Qx < x9

(EQV2) for all x1,y1 €V, if ©1 4 y1 and x1 — y1 € &, then for any xo ~ 1 there exists
a unique ya € V such that yo ~ y1, x2 — y2 and l(x1 — y1) = l(z2 — y2).

Definition 1.3.3. Let § = (V,&,<,1) € MG(Yy) and let ~ be a G-compatible equiva-
lence relation. We define the oriented labeled graph quotient of G by ~, and we denote it
by G/ ~= Vo, 0, D, 1), in the following way

(QUOTI1) V. is a set of representatives of the equivalence classes
(QUOT2) & ={([z] = [y]) [ Fz1 ~ z, y1 ~ y with z1 — y1 }
(QUOT3) <. is the transitive closure of the relation [z] < [y] if [x] — [y] € E~

(QUOTY) If [z] — [y] and x1 ~ x, y1 ~ y are such that x1 — y1, we set [.([x] = [y]) =
l(iL‘l —>y1).

Lemma 1.3.2. The graph G/~ is a k-moment graph on Y .

Proof. The only condition to be checked is that G/~ has no oriented cycles, but it follows
immediately from (EQV1I). O

Lemma 1.3.3. Let G € MG(Yy) and let ~ be a G-compatible equivalence relation. Then
the quotient of G by ~ is a representative of a quotient of G.

Proof. Suppose §' = G/~ and define p = (pv, pe, {p12}) € Homma(v,) (9, 9) as py(z) :=
[z], where [z] is the representative of the equivalence class of = and p;, = idy, for any
x € V. By Lemmal.2.3 (%), this is an epimorphism. O

Example 1.3.1. Consider the following map of graphs

a+




Set fi1 o = idy, for any vertex x. This is an epimorphism of k-moment graphs and it
is clear that the graph on the right is a quotient of the left one by the (compatible) relation
x ~y if and only if x and y are connected by an edge having the following direction

N

1.3.3 Initial and terminal objects
Remark 1.3.1. For any § € MG (Yy), |Hompe(v,)(0,9)] = 1, then 0 an initial object.
Lemma 1.3.4. If |Auti(Yy)| > 1, there are no terminal objects in MG(Yy).

Proof. Since in the category of sets the terminal objects are the singletons, all k-moment
graphs with more than one vertex cannot be terminal. Let § € MG(Y}) be a k-moment
graph with at least one vertex and let f € Hommg(y,) (9, {pt}). Then, fy is uniquely
determined, but, for any vertex x of G, f;, can be any automorphism of Y. Indeed,
since {pt} does not have edges, conditions (MORF3a) and (MORF3b) are empty. O

It follows
Corollary 1.3.1. MG(Yy) is not an additive category.

Proof. This is because there are no zero objects in MG(Y}). Observe, that this is true
also if Y 22 Z°. Indeed, in this case the generic graph is the (unique) terminal object but
it is not initial. O

Products

Lemma 1.3.5. If |Auti(Yy)| > 1, MG(Yy) has no products.

Proof. Suppose MG(Yy) had products. Then, for any § = (V,€,<,1) € MG(Yy)
it would exist the product (G x G,{p1,p2}). In particular, there would exist a g €
Homuma(v,) (9,9 x G) such that the following diagram commutes

5 (14)

9<79><9p24>9

Let G be the generic graph and let « be unique vertex. Then, from (1.4), we would get
the following commutative diagram

Y (1.5)

idy, idy-
!

Yi=— Y, —Y;
1 2
p by

gy (x) gy ()
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(where we denoted p; = (py,pk/, {pﬁy}) ). The commutativity of the triangles in

SRR _ (] 1 _ (2 —1 S _ .2 _.
(1.5) implies g, = (pl,w(m)) = (pl',gv(x)) , that is py ooy = D oo () = P gy(a)-
Now, choose f € Homyg(v,)(9, 9) such that f; . # idy, (such an f;, exists, since we
have by hypothesis [Auty(Yy)| > 1). There would exists an h € Hompyg (v, ) ({pt}, {pt} x
{pt}) such that the following diagram commutes

{pt}

{pt} < {pt} x {pt} -— {pt}

But this is impossible; indeed, the diagram above would give us the following commuta-

tive diagram
Yi
idy hl@&"
v
Y<— Y. ——Y,

P gy(@) P gy ()

Coproducts

Definition 1.3.4. Let {G; = (V;, &, <5,15) }jes be a family of objects in MG (Y},). Then
[ics G5 = (V.€,9,1)) is defined as follows:

(PROD1) V is given by the disjoint union [[;c;V; = U;c;{(v,j) [v € V;}

(PROD2) (x,j) — (y,i) if only if i =j and v — y € &;

(PRODS3) (z,7) < (y,i) if and only if i = j and x <; y
(PROD4) 1((x,5) — (y.7)) == lj(z — )

We get:

Lemma 1.3.6. MG(Y}) has finite coproducts

Proof. Denote by i; : §; — [[;c; §; the morphism given by i;,(v) = (v, j) and fi, = idy,
for any « € V;. Then, for any 5 € MG(Y}) with a family of morphisms f; : §; = H

there exists a unique morphism f : HjeJ G — H such that f; = f oi;. In particular, f
is given by fi1._ v, ((z,7)) = fj(x) and fy (2 5) = (fi)a- [



Chapter 2

The category of sheaves on a
k-moment graph

The notion of sheaf on a moment graph is due to Braden and MacPherson (cf.[7])
and it has been used by Fiebig in several papers (cf. [13],[14],[18],[16],[17]). In the first
part of this chapter, we recall the definition of category of sheaves on a k-moment graph
and we present two important examples, namely, the structure sheaf and the canonical
sheaf (cf.[7]). In the second part, for any homomorphism of k-moment graphs f, we
define the pullback functor f* and the push-forward functor f,. These two functors turn
out to be adjoint (see Proposition 2.2.1). We prove that, if f is a k-isomorphism, then
the canonical sheaf turns out to be preserved by f*. This result will be an important
tool in the categorification of some equalities coming from Kazhdan-Lusztig theory (see
Chapter 5).

2.1 Sheaves on a k-moment graph

For any finite rank lattice Y and any local ring k (with 2 € k*), we denote by
S = Sym(Y) its symmetric algebra and by Sy := S ®z k its extension. Sy is a polynomial
ring and we provide it with the grading induced by the setting (Sk){z} =Y. From now
on, all the Sy-modules will be finitely generated and Z-graded. Moreover, we will consider
only degree zero morphisms between them. Finally, for j € Z and M a graded Si-module
we denote by M{j} the graded Si-module obtained from M by shifting the grading by
j, that is M{]}{z} = M{j+i}-
Definition 2.1.1 ([7]). Let G = (V,€,<9,1) € MG(Y}), then a sheaf F on G is given by
the following data ({F*},{FE}, {pe.e})
(SH1) for all x € V, F* is an Sk-module;
(SH2) for all E € &, FF is an Sg-module such that (E) - F¥ = {0};

(SH3) forx €V, E€ &, ppyp:F* — FE is a homomorphism of Sy-modules defined if x
s in the border of the edge E.

11
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Remark 2.1.1. We may consider the following topology on G (cf. [7],§1.3 or [24], §2.4).
We say that a subgraph 3 of G is open, if whenever a vertex x us I, then also all the
edges adjacent to x are in JH. With this topology, the object we defined above is actually
a proper sheaf of Sp-modules on G. Anyway, we will not work with this topology in what
follows.

Example 2.1.1 (cf. [7], §1). Let G = (V,€,,1) € MG(Yy), then its structure sheaf %
1s given by

o forallz eV, Z* =5
o forall E€ &, ZF = Si/I(E) - Sy

o forallx €V and E € &, such that x is in the border of the edge E, py g : S —
Sk /U(E) - Sk is the canonical quotient map

Definition 2.1.2. [15] Let G = (V,&,<,1) € MG(Y}) and let F = ({F*}, {FE}, {pe.e}),
F = ({&"’x},{ff"'E},{pr7E}) be two sheaves on it. A morphism ¢ : F — F' is given by
the following data

(i) for all x € V, ¢ : F* — F'* is a homomorphism of Si-modules

(ii) for all E € &, o¥ : FF — FE is a homomorphism of Si-modules such that, for any
x €V on the border of E € &, the following diagram commutes

:}.x Px,E f},E

lso’” isoE
p;,E

9'/$ ?/E
Definition 2.1.3. Let § € MG(Yy). We denote by Shi(G) the category, whose objects
are the sheaves on G and whose morphisms are as in Def.2.1.2.

Remark 2.1.2. If§ = {pt}, then Shi(9) is equivalent to the category of finitely generated
Z-graded Sy-modules.

2.1.1 Sections of a sheaf on a moment graph

Even if Shy(§) is not a category of sheaves in the topological meaning, we may define,
following [14], the notion of sections.

Definition 2.1.4. Let G = (V,&,<,1) € MG(Yz), F = ({F*},{FF}, {pz.}) € Shi(9)
and J C V. Then the set of sections of F over J is denoted I'(J,F) and defined as

P(j, EF) = {(mx)xej € @3:1 |V$ —uy€ed px,E(m:c) = py,E(my)}

zed

We will denote I'(F) := I'(V, F), that is the set of global sections of F.
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Example 2.1.2. A very important example is given by the set of global sections of the
structure sheaf 2 (cf. Ex. 2.1.1). In this case, we get the structure algebra:

2:=01(%)= {(zw)mev € @Sk \VE:2 —y €& zp —zy€l(E)- Sk} (2.1)
zeV

Goresky, Kottwitz and MacPherson proved in [20] that, if G is as in Ex. 1.1.4, i.e. it
describes the algebraic action of the complex torus T on the irreducible complex variety
X, then Z is isomorphic, as graded Sy-module, to the T-equivariant cohomology of X.
It is easy to check that, for any F € Shi(9), the k-structure algebra Z acts on T'(F)
via componentwise multiplication. We will focus our attention on o subcategory of the
category of Z-graded Z-modules from Chapter 4.

2.1.2 Flabby sheaves on a k-moment graph

After Braden and MacPherson ([7]), we define a topology on the set of vertices of
a k-moment graph §. We state a result about a very important class of flabby (with
respect to this topology) sheaves: the BMP-sheaves. This notion, due to Fiebig and
Williamson (cf. [19]), generalizes the original construction of Braden and MacPherson.

Definition 2.1.5. ([7]) Let § = (V,&,<,1) € MG(Y}), then the Alexandrov topology
on V is the topology, whose basis of open sets is given by the collection {> z} = {y €
Viy>z}, forallz €V,

A classical question in sheaf theory is to ask if a sheaf is flabby, that is whether any
local section over an open set extends to a global one or not. In order to characterise the
objects in Shy(9) having this property, we need some notation.

Let § = (V,&,<,1) € MG(Yy). For any = € V, we denote (cf. [14], §4.2)

Ew ={E€&|E:z—y}

\75m::{y€\7|E!EEEgmsuchthatE:x%y}

Consider F € Shy(G) and define F%% to be the image of T'({>x},F) under the com-
position u, of the following maps

Doy,
P({pa}, )= B pa T’ —= Dyev, T —= Bpee, I° (2:2)

Uz
Moreover, denote

T

dy := (vaE)§EE<;x DI —— @EGS(;I&FE

Observe that m € I'({pz}, F) can be extended, via mg, to a section m = (m,my) €
I'({> z},9) if and only if d,(mg) = uy(m). This fact motivates the following result, due
to Fiebig, that gives a characterization of the flabby objects in Shy(9).
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Proposition 2.1.1 ([14], Prop. 4.2). Let F € Shi(G). Then the following are equivalent:
(i) F is flabby with respect to the Alexandrov topology, that is for any open I C 'V the
restriction map T'(F) — T(1,F) is surjective.

(ii) For any vertex x € V the restriction map T'({> a}, F) — T'({pa}, F) is surjective.

(i) For any vertez x € V the map ®pees, prp @ F* — Dpee,, FE contains FOF in its
image.

2.1.3 Braden-MacPherson sheaves

We introduce here the most important class of sheaves on a k-moment graph. We
recall the definition given by Fiebig and Williamson in [19].

Definition 2.1.6 ([19], Def. 6). Let G € MG(Y)) and let B € Shy(S). We say that #
1s a Braden-MacPherson sheaf if it satisfies the following properties:

(BMP1) for any x € V, B is a graded free Sip-module
(BMP2) for any E:x —y € &, pyp: BY — BE is surjective with kernel l(E) - BY
(BMP3) for any open set 3 C 'V, the map T'(B) — I'(J, B) is surjective
(BMP/) for any x €V, the map I'(#B) — B* is surjective
Hereafter, Braden-MacPherson sheaves will be referred to also as BMP-sheaves or

canonical sheaves. An important theorem, characterising Braden-MacPherson sheaves,
is the following one.

Theorem 2.1.1 ([19], Theor. 6.3). Let § € MG(Yy)

(i) For any w €V, there is up to isomorphism unique Braden-MacPherson sheaf #(w) €
Shi(G) with the following properties:

(BMP0) B(w) is indecomposable in Shy(9)
(BMP1a) B(w)? = S, and B(w)* =0, unless x < w

(ii) Let B be a Braden-MacPherson sheaf. Then, there are wy, ..., w, € Vandly...l, €7Z
such that
B =Bl © ... D B(w)l]

If # is an indecomposable BMP-sheaf, that is & = Z(w) for some w € V, then
conditions (BMP3) and (BMP/) may be replaced by the following condition (cf. [7],
Theor.1.4)

(BMP3’) for all x €V, with x Qw, d, : B(w)® — B(w)° is a projective cover
in the category of graded Sk-modules

Remark 2.1.3. If X s a complex irreducible algebraic variety with an algebraic action
of a torus T, as in Ex. 1.1.4, the associated k-moment graph turns out to have a unique
mazimal vertex, that we denote by w. For k = C, Braden and MacPherson proved in [7]
that the space of global sections of the sheaf #(w) can be identified with the T-equivariant



2.2. DIRECT AND INVERSE IMAGES 15

intersection cohomology of X. In positive characteristic, Fiebig and Williamson related
HB(w) to a (very special) indecomposable object in the T-equivariant constructible bounded
derived category of sheaves on X with coefficients in k: a parity sheaf. Parity sheaves
have been recently defined by Juteau, Mautner and Williamson (cf. [25]) and they have
applications in many situations arising in representation theory.

Remark 2.1.4. Canonical sheaves are strictly related to important conjectures in repre-
sentation theory. We will (briefly) discuss this connection in Chapter 5.

We end this section with a result, that connects structure sheaves and canonical
sheaves.

Proposition 2.1.2 ([17], Prop). Let § € MG(Yy)" and let w be its highest vertex. Then
B(w) = Z if and only if 2 is flabby.

Remark 2.1.5. The structure sheaf of a k-moment graph G is not in general flabby.
Actually, if G is as in Ex.1.1.4, the flabbiness of its structure sheaf is equivalent to the k-
smoothness of the variety X (cf. [19]). Indeed, if X is rationally smooth, its intersection
cohomology coincides with its ordinary cohomology.

2.2 Direct and inverse images

Let f = (fv.{fiz}): 9= (V& 1) =9 =V, <,1) be a homomorphism of k-
moment graphs. We want to define, in analogy with classical sheaf theory, two functors

5
T
Shy(9) Sh;(9)

\f_/

From now on, for any ¢ € Autg(Y%), we will denote by ¢ also the automorphism of
Sy that it induces.
We need a lemma, in order to make consistent the definitions we are going to give.

Lemma 2.2.1. Let s € Sy, f € Hompye(v,)(9,9), T € Shi(G) and I € Shy(5'). Let
E:z—yec&and F: fy(x) — fy(y) € &, then

(i) the twisted actions of Sy on FF defined via s . mp = fljxl(s) -mpg and $.mp =
ffyl(s) -mpg coincide on FE/I'(F) . FE (- denotes the action of Sy on FE before the
twist). Moreover, I'(F) . FF = {0} in both cases.

(i3) the twisted actions of Sy on HY defined via sanp = fiz(8) np and sanp = fi(s) nr
coincide on HY JI(EYHE (- denotes the action of Sy, on FE before the twist). Moreover,
I(E) .3 = {0} in both cases.

Proof. Tt is enough to prove the claim for s € (Sy){2y = Yk, since S is a k-algebra
generated by Y.
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(i) The statement follows from (MORPHZ2a), (MORPHZ2b) and the computations we made

in the proof of Lemma 1.2.4.

(i) It is an immediate consequence of conditions (MORPH2a), (MORPH2b). O

If ¢ is an automorphism of Sy, for any Sp-module M, we will denote Tw,, : M — M
the map sending M to M and twisting the action of Sx on M by .

2.2.1 Definitions
Definition 2.2.1. Let F € Shy(S), then f.F € Shi(9') is defined as follows

(PUSHI1) for any u eV,
(fF)" :==T(fy ' (), )

and the structure of Si-module is given by s. (ml‘)xef;l(u) = (s- m$)w€f\;1(u)

£ = P F°

B fe(E)=F

(PUSH2) for any u eV,

(fia (5) -

and the action of Sy is twisted in the following way: s .(Mmg)p.f.(5)=F =
mE)E:fg(E):F} where x s on the border of E
(PUSH3) for allu eV and F € &', such that u is in the border of the edge F,(fvp)u r is

defined as the composition of the following maps:
_ T @pz,E Tw
L(fy 1(“)» F)——> @z:fv(:p):u Fr— @E:fV(E):F Fr @E:fv(E):F gE,

where Tw = EBwa_1, We call f. direct image or push-forward functor.

Definition 2.2.2. Let H € Shi(9'), then f*H € Shy(S) is defined as follows
(PULL1) for allz €V, (f*3)" := H@) and s € Sy, acts on it via fi.(s)

(PULL2) for oll E:x —y €&

carmi | @BV if fo(x) = foly)
(f*50)F = { Ffe(B) otherwise

and of s € Sy, acts on (f*H)¥ via fi.(s).
(PULL3) for all x €V and E € &, such that x is in the border of the edge E,

. canonical quotient map if fv(z) = fv(y)
(f P)w,E = waljzl O Py (@),fe(E) © wa[; otherwise

We call f* inverse image or pullback functor.

Example 2.2.1. Let § € MG(Y)) and let p : § — {pt} be the homomorphism of k-
moment graphs having p,, = idy, for all x, vertex of G. Then, for any F € Shy(9)
p«(F) =T(F). Moreover p*(Sy) = Z, the structure sheaf of G.
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2.2.2 Adjunction formula

Proposition 2.2.1. Let f € Hompg(v,)(S,9'), then f* is left adjoint to f., that is for
all pair of sheaves F € Shi(G) and H € Shi(G') the following equality holds

HomShk(g)(f*fH,.’f) = HomShk(S’)(:}C? f*?) (23)

Proof. Take ¢ € Homgy, (g)(f*H, F), that is ¢ = ({¢” }zev, {pF} pee) such that, for all
x € Vand E € € such that x is on the border of E, the following diagram commutes

73y Rl 97 (2.4)

(f*p,)z, P, E
v i

(f* 30 —=35F
)

We want to show that there is a bijective map v : Homgp, (g)(f*3(, F) — Homgy, (¢ (I(, £+ )
and it is given by ¢ = ({¢"}aev, {9} pee) = ¥ = ({¢"}uev, { } reer), where

U z\T F . E
P o= (@nggl(u)Sp) ) Y= @Eefe—l(p)w

We start with verifying that this map is well-defined. We have to show that for
any h € 3¢, ¢U(h) € (f.F)* = T(fy (u),F), that is, for any x,y € f,*(u) such that
E:x—y €& pop(e¥(h) = pyp(e?(h))

From Diagram (2.4), we get the following commutative diagram

T

(f*3H)T = Ho(@) = gu d F (2.5)
|
(f*ﬁ,)z,E /’:cv,E
(F*H)E = H/I(B)HY ‘ FE

) |

(f*f,)y,E pz‘,E
(FIOY = W) = g0 5

But (f*p)y. 5 = (f*p)e,r by definition (they are both the canonical projection) and

we obtain
pep o9 =" o (f*Pap = 0% o (" Py = pyp o @

It is clear that the map ~ : Homgy, () (f*H,F) — Homgp, () (3(, fuF) we defined is
injective. To conclude our proof, we have to show the surjectivity of ~.

Suppose 1 = ({¢"}uevr, {¥ }reer) € Homgp, (g (3, f+F), where, for all u € V' and
F € & such that u is on the border of F', the following diagram commutes
pou ¥

L(fyt(u). ) (2.6)

\
pu,F Ga(wal’mop-’L‘,E)
v

(30" W@Eefgl(m FF
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We claim that there exist ¢ = ({¢"}) € Homgp, (g)(f*3, F) such that v(¢) = 9.
For any = € V, let us consider u := fy(x) and define ¢* as the composition of the
following maps

H e (5 (), T D L

SOI
For any E : x — y € & such that fy(z) # fy(y), that is there exists an edge F € &’
such that fe(E) = F, we define ¢ as the composition of the following maps

fly

g_fF wF ?LTW EFL StE
H@Lefgl(F) H@Lefgl(F) =

o

Now, it is clear that y(¢) = 9. Indeed, if u & fy(V), then ¥* = 0 and the claim is
trivial. Otherwise, u € fy(V) and we get the following diagram, with Cartesian squares

T

©
(7 wy - X
CH‘ —— T (W), N ®yefrr T —=7

| |

piL,F (f*p)ny Dpz,L Pz, E
g_(F vr i}'L wal’y Sr'L EFE
GBLefgl(F) ’ @Lefgl(F) -

B

As application of the previous proposition, we get the following corollary.

Corollary 2.2.1. Let G € MG(Y)) and let 2, resp. Z, be its structure sheaf, resp. its
structure algebra. Then the functors I'(—), Homgp, (5)(Z,—) : Shp(G) — Z — modules
are naturally equivalent. In particular, we get the following isomorphism of Sk-modules

= EndShk(S)(g)

Proof. Consider the homomorphism p : § — {pt}, where we set p;, = idy, for all z,
vertex of §. The structure sheaf of {pt} is just a copy of Sy and, for all ¥ € Shy(9), by
Prop. 2.2.1, we get

Homgn, (g)(p* Sk, F) = Homsn, ((pt}) (Sk, p«F)

Bu we have already noticed in Example 2.2.1 that p*Sy = 2 and p.F = I'(F).

Moreover, that Homg, (Sk, Z) = Z and we get the claim.
O
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2.2.3 Inverse image of Braden-MacPherson sheaves.

The following lemma tells us that the pullback functor f* preserves canonical sheaves
if f is an isomorphism.

Lemma 2.2.2. Let §,9' € MG(Yy)". Let w, resp. w’, be the (unique) mazimal vertex
of G, resp. G, and let f : G — G be an isomorphism. If B(w) and XB'(w') are the
corresponding indecomposable BMP-sheaves, then B(w) = f*%A'(w') in Shi(9).

Proof. Let § = (V,€,<,1), 9 = (V,&,<,U') and f = (fv,{fi.2})-

Notice that J C 'V is an open subset if and only if I’ := fy(J) C V' is an open subset.
We prove that #(w)|, = f*%#'(w’),, by induction on [J| = ||, for J open.

If 9] = 7| = 1, we have J = {w} and 7 = {w'}. In this case B(w)* = Sk,
B (W) = S}, and the isomorphism ¥ : B(w)¥ — ZB'(w' )™ is just given by the twisting
of the Sip—action, coming from the automorphism of Sj, induced by the automorphism
Jiw of Y.

Now let |J| = |7 =n > 1 and y € J be a minimal element. Obviously, ¥’ := fy(y) is
also a minimal element for J’. Moreover, for any E € & we set E' := fe(FE).

First of all, observe that z € Vs, if and only if 2’ := fy(z) € ng,. By the inductive

hypothesis, for all >y there exists an isomorphism ¢* : Z(w)* =% (w')* such that
©*(s-m) = fiz(s) - p*(m), for s € S and m € H(w)*. Moreover, if £ ¢ &5, and x
is on the border of E with = >y, by the inductive hypothesis we have an isomorphism
o+ B(w)F = B (W) such that P (s-n) = fi..(s)-¢P(n), for s € S and n € B(w)F
and such that the following diagram commutes

B(w)” > B(w)?

’ p;’,E/

%/(w/)x %/(w/)E’
Now, if F: y — x and E': ¢y — 2/, then
B(w)F = B(w)* /I(E)B(w)* and BT = B W) /I (ENB (w)*.

By assumption, f; ,(I(E)) = h-l'(E") for some invertible element h € k* and ¢* ({(E)%(w)*) =
fra((E))-B (0" =U'(E")% (w')* . Thus the quotients are also isomorphic and so there
exists ©F : B(w)F = %' (w')F such that the following diagram commutes:

Py,E

B(w)* —" B(w)?

. b

py/ E!

%/(w/)xl %)/(w/)E’

Now we have to construct Z(w)% and %' (w')%'. Observe that (%), induces an iso-
morphism of Si-modules between the sets of sections T'({>y}, Z(w)) 2 T ({p'y'}, B'(w'))
and, from what we have observed above, the following diagram commutes:
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Uy
//\
z JI @pm,E E
I({py}, B(w)) ——— Doy B(w)" ———— Biev,;, B(w)" ——— Dpee,;, A(w)
Bapyp” €Bz[>y¥’zl @mevéywml EBEeStSy('DE\L
I({>'y'}, B (W) —> By B (W) — Dorev,, ﬂ'(w')x/W Deee,, A (W)
z/ B/
\—//7
u;,

It follows that there exists an isomorphism of Sy-modules Z(w)% = 2'(w')%" and
by the unicity of the projective cover we obtain Z(w)? = %'(w')?. This proves the
statement.

O]

The lemma above will be a very useful tool in Chapter 5.



Chapter 3

Moment graphs associated to a
symmetrisable Kac-Moody algebra

The aim of this chapter is to recall standard notions related to the theory of Weyl
groups and to study some classes of moment graphs coming from this theory. At first,
we will define regular and parabolic Bruhat graphs associated to a symmetrisable Kac-
Moody algebra. In particular, we will see that parabolic Bruhat graphs are quotients of
the regular ones in the sense of §1.3.2. The second part of this section is devoted to the
affine and affine Grassmannian cases. The main result of this chapter is a characterisation
of finite intervals of the moment graph associated to the affine Grassmannian (see §3.2.2
and §3.2.3) that motivates the definition of the stable moment graph.

3.1 Bruhat graphs

Here, we define a very important class of moment graphs: the Bruhat graphs. As
unlabelled oriented graphs, moment graphs were introduced by Dyer in 1991 (cf.[10])
in order to study some properties of the Bruhat order on a Coxeter group; already in
1993, he considered them as edge—labelled oriented graphs. Actually, he was labelling the
edges by reflections of the Coxeter group (cf.[11]), instead of the corresponding positive
coroots (see Def.3.1.1). Even if his definition seems equivalent to ours, the extra structure
coming from the whole root lattice turns out to be fundamental when we are considering
morphisms between two Bruhat (k-moment) graphs (see §1.2). An important (and still
open) conjecture, the so-called combinatorial invariance conjecture (due to Lusztig and
Dyer, independently), states that the Kazhdan-Lusztig polynomial h, , (see §4.2.1) only
depends on the interval [z,y] in the Bruhat graph. As moment graphs, Bruhat graphs
constitute a very important example and in fact they have been introduced already in
[7].

We start with recalling some notation from [26]. Let g be a symmetrisable Kac-
Moody algebra, that is the Lie algebra g(A) associated to a symmetrizable generalized
Cartan matrix A, and b its Cartan subalgebra. Let I = {a;}i=1,..n C b*, resp. IIV =
{a;Y}iz1,..n C b, be the set of simple roots, resp. coroots; let A, resp. Ay, resp. A’f be

21
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the root system, resp. the set of positive roots, resp. the set of positive real roots; and
let Q =1 | Zay, resp. Q¥ = > | Za;", be the root lattice, resp. the coroot lattice.
For any a € A, we denote by s, € GL(h*) the reflection, whose action on v € h* is given
by

sa(v) = v — {v,a)a (3.1)
Let W = W(A) be the Weyl group associated to A, that is the subgroup of GL(h*)
generated by the set of simple reflections 8§ = {sq|a € II}. Recall that (W,8) is a
Coxeter system (cf. [26], §3.10).

However, W can be seen also as subgroup of GL(h), by the setting, for any A € b

Sa(A) == A — {a, \)a” (3.2)
We will denote by T C ‘W the set of reflections, that is
T={salae At} ={wsw ' |lweW, se8} (3.3)

Hereafter we will write oy to denote the positive real root corresponding to the reflection
t € 7. Finally, denote by £ : W — Z>( the length function and by < the Bruhat order
on W.

3.1.1 Regular Bruhat graphs

Definition 3.1.1. Let (W,8) be as above. Then the regular Bruhat (moment) graph
G =25(g) = (V,€&,<,1) associated to g is a moment graph on QV and il is given by

? =W, that is the Weyl group of g

) V=W, that is the Weyl f
(i) & = {x—>y’$<y,3a€Af suchthaty:sax}
! = {x—vylz<y, It €T such that y = tz}
(111) l(z — sqx) == aV

Remark 3.1.1. Such a moment graph has an important geometric meaning. If G is the
Kac-Moody group, whose Lie algebra is g, and B C G is a standard Borel subgroup, then
there is an algebraic action of a mazimal torus T C B on the flag variety B = G/B (cf.
[32]). Moreover, the stratification coming from the Bruhat decomposition is T-invariant
and satisfies all the assumptions of [[7],§1]. It turns out that this is a particular case
of Example 1.1.4. In fact, the vertices are the 0-dimensional orbits with respect to the
T-action, while the edges represent the 1-dimensional orbits (c¢f.§2.1 of [19]). The partial
order on the set of vertices is induced by the Bruhat decomposition B = | | X, where,
indeed, X, = Ly<w Xy

weW
X,

Example 3.1.1. If g = sly, then the corresponding root system is A1 = {+a} and
W = S,. The associated Bruhat moment graph is the following subgeneric graph (see
Ezample 1.1.3 ).

oV
ce ——— @5,

For any local ring k, this graph is clearly a k-moment graph and (G(sl), k) is trivially a
GKM-pair.
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Example 3.1.2. If g = sls, then the corresponding root system is Ay = {£ta, £6, £(a+
B)}, W= Ss. In this case, we get the following Bruhat graph.

SaSBSa = Sa+B8 = SBSaSs
/ K

S5B8Sa (oH—ﬁ)V SaSp

3.1.2 Parabolic Bruhat graphs

We introduce a class of Bruhat graphs, that generalizes the one we described in §3.1.1.
In order to do this, we need some combinatorial results.
Let W be a Weyl group and let § be its set of simple reflections. For any subset
J C 8, we denote Wy := (J) and W/ = {w € W|ws > w Vs € J}. The following results
hold.
Proposition 3.1.1 (|5], Prop. 2.4.4).

(i) Bveryw € W has a unique factorization w = w” -wy such that w’ € W’ and wy € W;.

(i) For this factorization, £(w) = £(w”) + L(wy).
Corollary 3.1.1 (|5], Cor. 2.4.5). Each left coset wWy has a unique representative of

minimal length.

It follows that W is a set of representatives for the equivalence classes in 'W /W .
In order to make consistent Definition 3.1.2, we prove the following lemma.

Lemma 3.1.1. Let W, 8, J be as before. Let x,y,z € W and let y/ = 27 # /. If there

exist a, f € A’ such that © = say = sgz, then a = 8 and so y = z.

Proof. Take v € h* such that W; = Staby(v). By hypothesis, 2/ = 3’ and then there
exists a w € Wy such that z = yw. It follows
say(v) = z(v) = sgyw(v) = spy(v)
That is
y(v) = (y(v), a")a = y(v) - (y(v),8')5

This equality holds if and only if (y(v),a¥)a = (y(v), 3Y)B. But this is the case if and
only if (y(v),a¥) = (y(v), 8") = 0 or «a is a multiple of .
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If it were (y(v),a¥) = 0, then (v,y '(a)’) = 0 too. But this would imply that
Sy-1(a) = vy lsay € Staby(v) = Wy, that is there would exist a u € W, such that
5o = yuy~'. But then we would get © = s,y = (yuy~ ')y = yu, that is 7 = y’/. This
contradicts the hypotheses.

If a is a multiple of 3, then @ = £ and, since a, 3 € A¢, we get a = 3. O

Definition 3.1.2. Let W, § and J be as above. Then the parabolic Bruhat (moment)
graph G/ = W) = (V,&,<,1) associated to W’ is a moment graph on QV and it is
given by

(i) V=W’

W) E={r =yl <y, JacA’, Jw € Wy such that ywr™ = s,

(i) yle<y ¥ y

(iii) 1(z — sqrw™1) := oV, well-defined by Lemma 3.1.1.

Remark 3.1.2. Clearly, S(W?) = G(g).

Remark 3.1.3. The moment graph we defined describes a geometric situation similar
to the one of Remark 3.1.1, once replaced the flag variety with the corresponding partial

flag variety (cf. [32]).
Example 3.1.3. Let g = sly. In this case, A = As, II = {«, 8,7}, W = Sy and

8 = {Sa,58.5¢}, where 545y = 5y5q4. If we chose J = {sq, sy}, the associated parabolic
Bruhat graph G” is the following octahedron.

588a5yS8

3.1.3 Parabolic graphs as quotients of regular graphs

Here we show that, if W, 8 and J are as in the previous section, then G” is a quotient
of § by a G-compatible relation (cf. §1.3.2). To give this characterisation of parabolic
Bruhat graphs, we recall two well-known results.
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The first one is the so-called lifting Lemma and it is a classical tool in combinatorics
of Coxeter groups.

Lemma 3.1.2 ([22], Lemma 7.4). Let (W, 8) be a Coxeter system. Lets € 8 andv,u € W
be such that vs < v and u < v.

(i) If us < u, then us < vs.
(ii) If us > u, then us < v and uw < vs. Thus, in both cases, us < v.

We will use this lemma several times in what follows.
The following proposition tells that the poset structure of W is preserved in W”.

Proposition 3.1.2 ([5], Prop.2.5.1). Let (W, 8) be a Cozeter system, J C 8 and z,y €
W. If z <y, then 2’ <y”’.

Using the previous results, we get

Lemma 3.1.3. Let (W, 8) be a Cozeter system and J C 8. Ify! ¢ W, y; € Wy, t €T
are such that (y?) "'ty & Wy. Then, ty’ <y’ if and only if ty’y; < y’y.

Proof. We prove the lemma by induction on ¢(ys). If [(y;) = 0, there is nothing to prove.
Suppose ty’ <y’ and let £(y;) > 0. Then there exists a simple reflection s € J such
that yys < 7, that is y’yss < y’ys. Now, by the inductive hypothesis t(y”yss) < y’yss
and, from Lemma 3.1.2, it follows ty”y; = (ty”'yss)s < y'y.
Viceversa, suppose ty”y; < y’ys and £(ys) > 0. Then there exists a simple reflection
s € J such that y;s < yy, that is y/yys < y’y;. By hypothesis, ty'y; <’/ y;. If
yy’yss < ty’ys, by Lemma 3.1.2 (i), we get ty’yss < y’yss and the claim follows
from the inductive hypothesis. Otherwise, ty”y; > ty’y; and, by Lemma 3.1.2 (ii),
ty’yss < y'ys and ty’y; < ylyss. I tylys £ ylyss, then ty’yss > y’yss and so
y'yss < ty¥yss < y’ys, that implies ty’y ;s = y’y;. But this is a contradiction, since
they are not even in the same equivalence class. Thus we get ty”/yss < y”y s and hence,
from the inductive hypothesis, the statement.
O

Lemma 3.1.4. Let g be o symmetrisable Kac-Moody algebra, W its Weyl group with 8,
the set of simple reflections, and let J C 8. Let G be the Bruhat graph associated to
g, then the equivalence relation on its set of vertices V, given by x ~ y if and only if
/) =y’ is G-compatible.

Proof. We have to check conditions (EQV1) and (EQV2).

(EQV1) From Proposition 3.1.2, if # < y and 2/ = y”, then for all z € [z,y], 2/ < 2/ <

y? =27, that is 27 =27,

(EQV2) Let x1,y1 € W and ¢t € T be such that x1 % y1Wy and x1 — y1 = txg €
E. If zog ~ x1, that is o = zjw for some w € Wy, then we set yo := yjw, clearly
X9 — Yo = txg € € and I(xe — y2) = l(x1 = y1) = 4. By Lemma 3.1.1, y5 is the only
element equivalent to y; and connected to z2. Finally, from Lemma 3.1.3, it follows that
T2 < Y2. O
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Corollary 3.1.2. Let g be a symmetrisable Kac-Moody algebra, W its Weyl group with
8, the set of simple reflections, and let J C 8. Let G be the Bruhat graph associated to
g and G the one associated to W’. Then G’ is the quotient of G by the G-compatible
equivalent relation defined in the previous lemma (in the sense of §1.5.2).

We will denote by p; : G — G’ the epimorphism given by (ps)v(z) := 2z’ and
(py)1z =id for all z € W.

Example 3.1.4. Let g = sl3 and J = {sq} C 8 = {sa,s3}. Then Ezample 1.3.1
describes the parabolic Bruhat graph G’ as quotient of the reqular one (see Example
3.1.2).

3.2 The affine setting

We want now to focus our attention on the affine case. Let A be a generalized Cartan
matrix of affine type of order [ + 1 and rank [. Let us enumerate its rows and columns

from 0 to [ (as Kac in [[26], §6.1 | does) , and denote by A the matrix obtained from A
by deleting the O-th row and the 0-th column. Then the Weyl group W® of g = g(A) is

the affinization of the (finite) Weyl group W/ of §= g(A) (cf. [26], Chapter 1). Take A

to be the root system of g, and IT and A+ the corresponding set of simple and of positive
roots, respectively. It turns out that the set of real roots of g has a nice description in

terms of the root system of . Let § € h* be such that A§ = 0 and § = > i icy, where
IT = {a;}i=0,..r and the a; € Z~ are relatively prime (such an element exists and it is
unique by point b) of Theorem 5.6 in [26]). Then (cf. [26], Proposition 6.3)

Are:{a+n6|aEA,nEZ} (3.4)
and
AT = {a+n5a€A,neZ>o}UA+ (3.5)
It follows that W is generated by the set of affine reflections
T ={s5|B € AT} = {San | €A, n € Lo} U {sa0|a €A}

Explicitly, the action of W on h* @4oC is given by
sa,n(()\,r)) = (sa(A), —n{\, o) + 1) (3.6)
For a given real root a + nd, we want now to describe the corresponding coroot (a+ 4)".
We have a decomposion of the Cartan subalgebra as b :l‘.) @Cc @ Cd, while h* = f)* @CH d CAg
(cf. [|26], §6.2]), where <5,fl) ®Cc) = 0. Because g is symmetrizable, by [[26], Lemma 2.1], there
is a bilinear form (, ) that induces an isomorphism v : I:)*% b* such that we may identify oV and

2
(TR Then,

(a+nd) =a + (a+nc). (3.7)
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3.2.1 The affine Weyl group and the set of alcoves

We recall briefly a description of W* as a group of affine transformations of h r, the R-span

of ay,...,qa;. This is obtained by identifying h g With the affine space 6*71 mod R§, where
b _;:={Aebg |()\,c> =1}

.k
Namely, it is possible to define an action of the affine Weyl group on §  as follows

(jna)> a = $4,0(N\) + na’ (3.8)

San(A) = — ((A,av> -

Y . Y
Denote by @ the root lattice of 9 and by T}, the translation by u € @ , that is the linear
transformation defined as T),(\) = A + p for any A € [) g- This is an element of the affine Weyl

.V
group, since Ty,qv = Sq.nSa. It is easy to check that for any w € W* and for any p € @ we
have wT,w™! = Tw(u)> o the group of translations by an element of the coroot lattice turns out

.V
to be a normal subgroup. A well known fact is that W* = Wfx @ (cf.[[22], Proposition 4.2]).

If 0 is the (unique) highest root of A, then a minimal set of generators for W is given by
8% = {5a,.0}i=1...1U{s01}, where 8/ := {s,, 0}i=1...; is the set of simple reflections of W/. Let
us set sg := sg,1 and call it affine simple reflection.

Denote by

Ho = {)\e be | aY) 2(a"a)} - {/\ €hp (N a) n}

and observe that the affine reflection s, ,, fixes pointwise such a hyperplane. We call alcoves the
connected components of

i)*R\ U Hoc,n

a€A+
nez

and denote by A the set of all alcoves.
The dominant -or fundamental- (Weyl) chamber is

eti={\ebhp | (NaY)>0VacA,}
and an element A € CT is called dominant weight. We denote by AT the set of all alcoves
contained in CT and by

.k 2 "
HO:{)\ebR|0<<)\,aV><(aa)VaeH}:{)\ehR|O<(A,a)<1 Vael‘[}

the fundamental boz.

We state now a 1-1 correspondence between W* and A (cf. [[22], Theorem 4.8]). In order to
do that, we fix an alcove AT, that is the unique alcove in A1 which contains the null vector in
its closure. AT is usually called fundamental alcove and it has the property that every element

A€ At is such that 0 < (A, @) < 1 for all @ €Ay (cf. [|22], §4.3]).
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The affine Weyl group W* acts on the left (by (3.8)) simply transitively on A (cf. [22],§4.5)
and so we obtain -
we = A
w = wAT. (3.9)
Example 3.2.1. Let g = sly. By (3.5), we know that A’¢ = {£a+nd|n € Zso}U{a}, where
is the (unique) positive root of sly and (o, ) = 2. The corresponding Bruhat graph is an infinite
graph, whose vertices are given by the words in two letters (s1 := s, and so) without repetitions.
Two elements are connected if and only if the difference between their lengths is odd and in this
case the edge is oriented from the shorter to the longer one. Thanks to the correspondence (3.9),
we may identify the set of vertices with the set of alcoves of g. If we restrict the Bruhat graph to

the interval [AT, s15051], we get the following

—a+2c¢ —a+c o a+tc a+2c
818081A+ 8180A+ 81A+ A+ 80A+ 8081A+
—a—+c @ a+c

We observe here that each wall of At is fixed by exactly one reflection s € §2. We say that
such a wall is the s-wall of A™. In general every A € A has one and only one wall in the W*-orbit
of the s-wall of AT. This is called s-wall of A.

The affine Weyl group acts on itself by right multiplication, so it makes sense to define a
right action of W® on A. It is of course enough define such an action for the generators of the
group. Thus for each alcove A let As be the unique alcove having in common with A the s-wall.

Two partial orders on the set of alcoves

Here we want to provide the set of alcoves with two partial orders (cf. [37]).
First of all, the Bruhat order on W induces a partial order on A. Indeed, for all alcoves
A,B e A with A=zA", B=yA", z,y € W* we may set

A<B < z<uy.

We still call it Bruhat order.

We observe that in general if we look at two fixed alcoves it is not obvious at all if they are
comparable with respect to the Bruhat order without knowing the corresponding elements in
We.

Now, we recall Lusztig’s definition of a nicer partial order < on A, in the sense that for all
pair of alcoves we will be able to say if they are comparable and, in case, to establish which one
is the bigger one.

Each H € |J A H, , divides b g in two half spaces: f) r= HTUHUH~, where HT is
a€Ay

neEZ
the half space that intersects every translate of €*. Let A € A, if H is the reflecting hyperplane

between A and As, s € 8%, we consider the partial order generated by

A< As ifAec H™.
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We notice that it is not clear in general how < and < are related. Actually, denoting by X
the lattice of (finite) integral coweights, that is

XVi={Ae by |(\a)€ZVa€eA), (3.10)
we have

Proposition 3.2.1 ([40],claim 4.4). Far enough inside A*, < and < coincide, that is for all
A€ XVNCT, A B c A the following are equivalent:

1. AL B;
2. nA+ A <nA+ B forn>>0.

Because of this result we call 5 generic Bruhat order. Remark that < is invariant under
translation by coweights.

The periodic moment graph

In section 3.1, we associated to any simmetrisable Kac-Moody algebra g with Weyl group W
its regular Bruhat graph G(g). If g is moreover affine, that is its Weyl group is an affine Weyl
group W%, we may give the following definition.

Definition 3.2.1. The periodic moment graph Gr¢" = GP*"(g) = (V, &, %,1) associated to W* is
a moment graph on QV and it is given by

(i) V =A, the set of alcoves of W*

(ii) &€= {zA" = yAT|zAT < yAT, Ja € A’¢ such that y = sqx}

(i1i) [(xAT — sz AT) = aV

Remark 3.2.1. We identified W* and A by (3.9) and so S(W*) and GP"(W*?) coincide as labeled
unoriented graphs.

Example 3.2.2. Let g = ;[; If we restrict the corresponding periodic moment graph to the
interval [s18051, 5051 AT], we get the following moment graph.
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3.2.2 Parabolic moment graphs associated to the affine Grassmannian

We consider in this section a very important class of parabolic moment graphs: the ones
associated to the Affine Grassmannians, that is G/, where W = W is an affine Weyl group and
J is the corresponding set of finite simple reflections, that is we are modding out by the finite
Weyl group.

There are actually two descriptions of this graph: one identifies the set of vertices with the

.V
coroot lattice @ , while the other identifies the set of vertices with AT, the set of alcoves in the
fundamental chamber. Hereafter, we will denote this graph by GP2r.

Since W; = Stabw(0) and W.0 = Qv, ‘W is in bijection with the coroot lattice via the
mapping w — w(0) and clearly there exist an element w € W; and a reflection ¢ € T such that
xy = tyyw if and only if z;(0) = ty;(0). And we get in this way the first description.

On the other hand, W” is clearly in bijection with W \ W via the mapping v’ — (w”)~
modulo W ;. The set of minimal representatives for the equivalence classes, under the correspon-
dence (3.9), is given by the set AT of the alcoves in the fundamental chamber. Moreover, we will
connect AT, yAt € AT, if and only if there exist an element on the finite Weyl group w € W

and an affine reflection ¢ € T such that z = wyt, that is 7! = ty~tw L.

1

Example 3.2.3. Let g = g[; Let us consider the interval [e, sgsaSgSo] C W then the two
descriptions of GP°" are as follows (we omit the labels).

(i) Description via the coroot lattice

(ii) Description via the set of alcoves in CT




31

As we can see in the previous example, in the description of GP*" via the alcoves in the
fundamental chamber, the set of edges seems to have a very complex structure, while in the
other one the order on the set of vertices is hard to understand. Since we are interested in the
study of intervals, the description via the coroot lattice turns out to be not that useful for our
purposes, unless g = 5/[\2 We will show later that finite intervals of GP* "far enough" in C* have
surprisingly a very regular structure.

The g@ case

Ifg= 5/[\2, it is actually possible to give a very explicit description of GP?". In this case we
may identify the finite root with the finite coroot lattice and then the set of vertices is V = Za.
For any pair n,m € 7Z, it is easy to check that

Sa,ntm(na) = ma, (3.11)

then GP?T is a fully connected graph. Notice that, even if (3.11) holds for any pairs of integers n
and m, we do not allow loops, so n # m always. Moreover, by (3.7) and (3.11), it follows

a+(n+m)c iftn+m>0
—a—(n+m)c ifn+m<0

I(na — ma) = { (3.12)

Finally, observe that o = s¢(0) and —a = $450(0); so, for any pair of n # m € Z, na < ma
if and only if |n| < |m| or n = —m > 0.

Example 3.2.4. The interval [0,—2a] of GP*" looks like in the following picture

3.2.3 Parabolic intervals far enough in the fundamental chamber

In this paragraph, we will consider only the description of GP?" in which the set of vertices
coincides with A*. Our goal is to study the structure of finite intervals of GP#* far enough in the
fundamental chamber. In this section, k is any field of characteristic zero.

Definition 3.2.2. Let \,u € CT. We say that
(i) A is strongly linked to p if A = u+ za, for some x € R and « eAL

(ii) X is linked to p if A = w(p 4 na), for somen € R, « €A, and w € WS

Remark that the fundamental chamber €% is a fundamental domain with respect to the left
action of the finite Weyl group (cf. [22], §1.12), so the element in point (%) is unique.

Proposition 3.2.2. There exists a K > 0, depending only on the root system A, such that if
A € €T and dy is the minimum of distances of X from the borders of €%, then all u € CT linked
to A, and such that |A — p| < K - dy, are strongly linked to \.
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Proof. For any )\, € G and any positive finite root o €A+ we denote by 7y o the line {A+ax |z €

R} C h r- It is clear that the set of dominant weights strongly linked to A corresponds to
U Tx,a) [1CT. On the other hand, we may describe the set of u € €7 linked to A as follows.

Fix « €A+ and consider the line 7 ,. Each time that such a line hits a wall of €T reflects it
along the wall and goes on this way. Denote by 7 , the piecewise linear path inside of C* so
obtained. Now [ A Th, is the set of dominant weights linked to A.

aEAL

(XEA+

Thus it is enough to show that there exists a K > 0 such that if u € 7 o, and |A — pu| <

K -dy, then p € 7y o. Notice that the finite Weyl group acts on b r as a group of orthogonal
transformations, hence we may reduce to show that for all w € W/ \ {e, s, }, the distance of the
weight w(A) from the line 7y 4 is not less than K - dy. Moreover, one may think to this reduction
as an "unfolding" back 7 o to ), and considering the conjugates of X instead of .

Since the distance of w(\) from the line 7y , is the minimum of the distances of w(A) from
A+ za for z € R, we have to show that |A —za — w(\)|? > K2d3 for all z € R. Computing the
square norm, and denoting A* := A — w(\), we have:

la22? + 2\, )t + |A\Y)? + K2d3 >0 VteR

Hence this is equivalent to show that the discriminant D¥ = (A%, a)? — |a|*| A\ >+ |a|> K2d3 < 0.
First notice that D% = DY since A% = X\ — w(A) + (w(A),aV)a = A + (w(A),a")a,
hence:

Dsaw

 O) 07 aft —JaPOY (e X+ (wi,a)e) + eI =
+2(w()), a")a (W, @) + (w(h), |a|4

TP 23, n ) — () s+ KR =

= (W)’ ~ a2\ + o K28 = D

)’ \

o)
aV)

(02~ afla e £ [o K2 =
(
(v

)?

Now if w™1 () is a finite negative root, then clearly (sqw)~!(e) €A, hence, using the invari-
ance property just proved, in what follows we may assume that w € W/ \ {e, s,} is such that

w () €Ay
W
Denote now by A 4 the set of positive roots sent to negative roots by w, let C* be the

(closed convex rational) cone ( Aw+>R+ generated by the elements of Aw+ and notice that «
is not in £C™. Indeed, « is not in C" since all elements of this cone are sent to non-negative
linear combination of negative roots by w~! and, on the other hand, « is a positive root while
all elements in —C" are non-negative linear combinations of negative roots.

Let L™ be the set of weights A%, where X runs in € and fix a reduced expression s;, ... s;,,
with s;; := 54, for a; € A. Then we have w(\) = A—(a1;, ... a,f;,), where B; = 54, ... 5;,_, ()

for j =1,...,r. Notice that a;, > 0 for all j since \ € C* and, moreover, {B;,,...,8i,} = A +
This shows that L* C C"%.

Let 7 : f) r \{0} — P( h r) the quotient map to the projective space of h r- Given two

non-zero vectors u,v € h r we denote by [u,v] the angle between them; clearly this symbol
depends only on the lines generated by u and v up to sign to change and up to supplementary

angles. In particular, the map P?( h* ) — R defined by (7[u], 7[v]) = cos?[u, v] is well- deﬁned

Since C™ is a closed convex rational cone we have that 7(C" \ {0}) is closed in P( f) R)-
Hence the map m(C* \ {0}) — R sending m(p) + cos?[y, ] achieves a maximal value M %% and
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this maximal value is less than 1 since m(a) & 7(C™ \ {0}). In particular we have cos?[\*,a] <
M** < 1for all A € €\ {0} since L C C™.

Finally, since there are only a finite number of pairs (o, w), we have M := max M*% < 1.
Now notice that w(A\) € CT, because w # e, so |A¥| > dy, as the segment from A to w(\) must
cross a wall of CT.

We are now in a position to conclude the proof. We have to show D™ < 0. Since

(A, ) = |A?||a] cos[AY, a],

our inequality becomes cos’[A¥,a] < 1 — K2d3/|A*|?>. But we have cos*[\¥,a] < M < 1 and
1— K2d3/|\"|* > 1 — K?. Hence it is enough to choose K such that M < 1— K?. This finishes
the proof.

O

Let p be half the sum of the finite positive coroots, that is p = %Z AL O Moreover, for
aEA+

any alcove A € A, let us denote by c4 its centroid.

By using Proposition 3.2.2, together with the identification oV = 2a/(«, a) for all €A, we
get the following characterisation of finite intervals of G that are far enough from the walls of
the dominant chamber.

Lemma 3.2.1. Let A, B € A", then there exists an integer ng = no(A, B) such that for any
A€ X Nnp+ CF | withn > ng, for any pair C,D € [A+ )\, B + )| there is an edge C — D if
and only if

(i) either D = Ct for somet € T
(ii) or D = C + aa for some a € Z.\ {0} and a €A .

Proof. Observe first that the statement is true for g = sly. Indeed, from §3.2.2, it follows that
ng = 0 satisfies already the requirements.

We may then suppose g # slo. The claim will follow once we prove that there exists an
ng € Z such that for all n € Z, n > ng and for all pair E, F € [A 4+ np, B + np|, we have

|CE—CF| <K-ch

where K > 0 was defined in Proposition 3.2.2. Indeed, the statement is equivalent to show
that for all n > ng, for any o €A, we have (A + np + Ra¥) Nw([A + np, B + np]) = 0
unless w = e, s,, but this is the case if and only if for all n > ng, for any « €A+ we have
(A+np+Rw(a¥)) N[A+np, B+ np] =0 unless w = e, sq4.

For any finite simple root « Eﬁ, let us denote by d., . the distance between cp and the
hyperplane H, . Let ¢, be the angle between p and a, then we get the following picture
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As we can see in the picture above, we have

dCD+n,p,(x =dep,a + n|p| - cos(va)

Moreover for all D € [A, B]

dCD+'rL/J = mam{dCDJrnp,a}

Let us denote 7 := maxp ge[a,p) lcp—cg| and let H € [A, B] and 8 €11 such that minpepa,p) dep,, =
dey g + |pl cos g (that is minpea, B dep,,,, = dey,p + nlp|cos g for all n > 0). Since g # sly,

for any v €11 it holds cos vy # 0 and we may set

T
mi=-—-—
K]l - cos o5

Define ng = [m]. Now, for any pair of alcoves E, F' € [A, B] and for any n € Z, n > ng

‘CE+np - CF+np| |CE' - CF‘

- K|p| - cos g

- K|p| - cos pg
-Klp|-cospg+ K -dey,
"MiNpe(a,B] dep g,

lepingp

A A ITIAIA TTIA
mARRS ISV

! CE+np

We say that the edges of type (i), that is given by reflections, are stable, while the ones of
type (ii), that is given by translations, are non-stable. We denote the corresponding sets &g,
resp. Ens.

Example 3.2.5. Let g = 5/[; and A = A%, B = s9s1s251AT. Then in the interval [A, B] of %"
there are edges that are neither stable nor non-stable, as the one between A and C = sgs  AT.
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It is enough to translate the interval of a4 B to get the structure described in Lemma 3.2.1.

Lemma 3.2.2. For any pair A,B € A", B < A and for any pair \y = nip, Ao = nap €
X Nnp+Ct (n1,ne > ng(4, B)) then §7*" and " are isomorphic as oriented
[[A+21,B+Aq] [A+ 20, B+20]

graphs.

Proof. Set p:= A2 — A1. The isomorphism we are looking for is given by C +— C + p. Observe
that, by Proposition 3.2.1, the Bruhat order coincides in the fundamental chamber with the
generic one and so it is invariant by weight translation; then the map we have just defined is
an isomorphism of posets. Moreover C is connected to D in GP*" if and only if C + p is

[A+x1.B+2q]
par

[ A+ 20, B4+A0]

connected to D + pin G , indeed:

(i) D = Ct for some t € T if and only if D = rC for some r € T, that is if and only if there exist

a €A, and n € Z such that D = Sa,n(C). It is now easy to check that this is the case if and only
if D+ 1= 8a,n4(u,a)(C +p), that is there exists a reflection ¢’ € T such that D +p = (C' + p)t'.

(i) D=C+acaifandonly if D+ p=C+aa+p=(C+p)+ ac. O

Remark 3.2.2. We want to stress the fact that in Lemma 3.2.2 we are not proving the exis-
tence of an isomorphism of moment graphs, but only between the underlying oriented graphs,
that is we are mot considering labels. QOur first hope was that we could find a collection of
{fccelata, B+ay satisfying condition (MORPh2a) and (MORPH2D). In the next two para-
graphs, we will see that it is not the case. In particular, it turns out that the labels of stable edges
are invariant by coroot translation (cf. Lemma 8.2.1), while the ones of non-stable edges are not
(c¢f. Lemma 3.2.4).

From now one we will denote by w € W the corresponding alcove wA™ € A, thanks to
the identification (3.9) of the affine Weyl group with the set of alcoves. In particular, if wA™ is
contained in the fundamental chamber, we will write w € A™T.
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Stable edges

Let |8 = n and fix a numbering of the simple reflections. We define the permutation

v
Oy € Sp, for A € Aand p € X , in the following way: o4 ,(i) = j if the image under the
translation by p of the s;—th wall of A is the s;—th wall of A+ (cf.§3.2.1). Let W the extended

__ . .V
affine Weyl group, that is W2 = W x 2, where Q := XV/ Q (cf. [38]).

Y
Lemma 3.2.3. For any p € X the permutation defined above is independent on A € A, i.e.
there exists o, € Sy, such that 04, = o, for any alcove A.

Proof. We know that Tipov = Sq,k5q,0 for any o €A. Since we are reflecting twice in the same
direction (orthogonal to «), the walls of A + ka" have the same numbering as the ones of A.

Y
Thus for any p € X there exists an element w € € and roots ay,...a, € R such that
T), = WSay k1 Sa; - - - San,k,.Sa, and the numbering of the walls of A + u only depends on w. O

We get the following lemma.
Corollary 3.2.1. Let x € W/, t € T, u € XV be such that z,xt, Tz, Tyt € A'. Then,
(T, — Tyat) = 0, (l(x — xt)).
Non-stable edges

Now we describe how labels of non-stable edges change. In order to do that we need the
following result

.V
Proposition 3.2.3 ([22],Proposition 4.1). Let z = T,(o)v, where 2(0) € Q and veWS . Then,

for any €A+ and for any n € Z,
ZSam? ' = Siy(a),r Withr= :l:((z(O),v(oz)v> +n), (3.13)
where the signs are such that v > 0 or r = 0 and +v(a) €A,

We may now prove

Lemma 3.2.4. Letx € AT and z = Ty 0)w, where w € W,

(i) If « €Ay and Tyova € A, then

(x — Tpovz) = +w H(a") F ((z(0),a¥) +a)c, (3.14)

(@, )
where F((z(0),a") +a) >0 or ((z(0),a") +a) =0 and £w™ () €eA;.

. Y
(11) Let y = Tyovx, for some a € Z and o €Ay. Let moreover p € XV, w e Q and v € Q be
such that T, = wT,. Then, if y,T,x, T,y € CT,

(T — Tuy) =o0u(l(zx —y)) F —"F——¢, (3.15)

where F((v + 2(0),a") +a) > 0 or ((v+2(0),a") +a) =0 and +o,(w™(a)) EA4.
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Proof.

(i) Since Tyave = Sq,a54,0%, we have to determine the positive root corresponding to the reflection
71 50,050,a50,02-
Since $4,084.450,0 = Sa,—a, by Proposition 3.2.3 with z =27, v = w™!, 2(0) = —w™!(x(0))
and n = —a, we get

27150,050,a50,07 = Saw1(a) £((—w-1 (2(0)),w-1 () ") —a)
Stw1(a), F((2(0),a%)+a)-

The result follows from (3.7) and the fact that w(c)” = w(a) for all @ €A and w € W/,
(ii) Observe that T)x — T,y = Tuov (Tpz). If 2 = Tyyw, then Tyx = T, pyw = Wl p)w

and we may apply point (i) of this Lemma with T,z instead of x. So, if £w™!(a) EA4, = —a,
we get
UTivz — Tiyvy) = Fou(w™ ' (a¥)) F 525 (v +2(0),aY) +a)c

k(y,aV
= ou(llz —vy))F 7&&)> c.

Stable moment graphs

Let GP®" be the same moment graph as before. We define here the stable moment graph G5t2b
as follows. This is the moment graph having as set of vertices the alcoves in the fundamental
chamber (that we identify with the corresponding elements of the Weyl group), equipped with
the Bruhat order (that here coincides with the generic one); we connect two vertices if and only
if there exists a reflection ¢ € T% such that y = x¢, and in this case we set [(z — xt) := oy V.

Then we have:

Lemma 3.2.5. For any interval [y,w] and for any p € XV there exists an isomorphism of
k-moment graphs Sf['ffi] — Sf[i‘fipm for all k.

Proof. Since the order on the set of vertices of G52 is invariant by weight translation, we have
an isomorphism of posets induced by the mapping z — 2z + . This map induces also a bijection
between set of edges, as we have already seen in the proof of Lemma 3.2.2.

The permutation of Lemma 3.2.3 gives an automorphism of the root system and then an
induced automorphism of the coweight lattice. Since it depends only on the (finite intergral)
coweight ;, we can set f; , = o, for any x and this gives us an isomorphism of k-moment graphs
for any k. O






Chapter 4

Modules over the parabolic
structure algebra

Let Z be the structure algebra (see §2.1.1) of a regular Bruhat graph §. In [13], Fiebig defined
translation functors on the category Z-mod, that is the category of Z-graded Z-modules that are
torsion free and finitely generated over Sj. Using it, he defined inductively a full subcategory H
of Z-mod and he proved that H, in characteristic zero, is equivalent to a category introduced by
Soergel in [41]. In [18], Fiebig showed that H categorifies the Hecke algebra H (and the periodic
module M), using translation functors. The aim of this chapter is to define translation functors
in the parabolic setting and to extend some results of [18].

4.1 Translation functors

Let W be a Weyl group, let 8 be its set of simple reflections and let J C 8. Hereafter we will
keep the notation we used in §3.1.2.

For all s € 8, Fiebig defined in [13] an involutive automorphism o of the structure algebra
of a regular Bruhat graph. In a similar way, we will define an involution ;o for a fixed simple
reflection s € § on the structure algebra Z7 of the parabolic Bruhat (k-moment) graph §7. In
this chapter, we suppose that (7, k) is a GKM-pair (see Definition 1.1.3).

Let z,y € W/. Notice that I(x — y) = o;" if and only if I(sx — sy) = s(ay"), because
sxw(sy)~! = szwy~ls = sts, where w € W ;. From now on, if z € W, we will write T instead of
z7.

Denote by 75 the automorphism of the symmetric algebra Sy induced by the mapping A\ —
s(A) for all A € QY. For any (2z),ews € 27, we set 0 ((22)pews) = (2h)zews, wWhere 2, :=
7s(2sz). This is again an element of the structure algebra from what we have observed above.

Let us denote by *Z” the space of invariants with respect to the automorphism .o and
by %27 the space of anti-invariants. We denote moreover by o,V the element of 2/ whose
components are all equal to a,". We obtain the following decomposition of Z7 as *Z7-module.

Lemma 4.1.1. 27 =°27 @ o,V - 527,

Proof. (We follow [13], Lemma 5.1). Because ;o is an involution and char(k) # 2, we get
27 =527 @ =527, Since @; € 27 and s(a;V) = —a,V, it follows so(asY) = —as" and so
.V %27 C 727 and we now have to prove the other inclusion, that is every element z € =527
is divisible by «aV in ~°Z7.

39
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If 2 = (2,) € ~°27, then, for all z € W/, 2, = —7,(255) = —2sz (mod a,") and z, = 25z (
mod a;"). It follows that 2z, =0 (mod "), that is oV divides z, in Sy, as char(k) # 2. We
have now to verify that 2’ := (a,V)~!-z € Z, that is 2}, — 2— = 0(mod «;") for any 2 € W’ and
t € 7. If tx = 37, there is nothing to prove; on the other hand, if tx # 5%, we get the following.

/ /

s - (2h — 22) = 2p — 2z

—=0(mod a;")

Since (G7, k) is a GKM-pair, a,¥ # 0 (mod «,") and we obtain z}, — 2 = 0 (mod «a;").

O
4.1.1 Left translation functors
In order to define translation functors, we need an action of Sy on *Z” and 2.
Lemma 4.1.2. For any A € Q" and any x € W, let us set
c(\)? = Z xx g (A). (4.1)

zgEW,
Then c(\)? == (c(N\)])pews € 527.

Proof. Tt is clear that, if ¢(\)? € 27, then it is invariant. So we only have to prove that
¢(A)7 € 27, that is ¢(\)] — ¢(A\)L = 0( mod a;). Since for any x; there exists an element y,

x

such that xz; = ttxy, (cf. Lemma 3.1.4), then

Zm"ewj v7(A) = ZmJEWJ EI'J(A) = ZQJGWJ tﬁyJ()‘) - ZyJGWJ %yJ(A)
= 1 (Syew, TwO) — X0, Ts (Y
(ZyJEWJ <at75yJ()\)>) atv

= 0(mod ay),
since oV is a multiple of a. O

For any x € W’, denote by 7, the automorphism of the symmetric algebra S; induced by
the mapping A — c(\)7 for all A € QY. Now, by Lemma 4.1.2, the action of Sy on 27 given by

p-(22)sews = (12(p)z2) pE€ Sk, 2 €27, (4.2)

preserves *Z7. Thus any Z7-module and any *Z”7-module has an Sj-module structure as well.
Let Z7-mod, resp. *Z7-mod, be the category of Z-graded Z”-modules, resp. *Z7-modules, that
are torsion free and finitely generated over Sg.

The translation on the wall is the functor °"6 : 27 -mod — *Z7-mod defined by the mapping
M — Res;z.}l.

The translation out of the wall is the functor *°“*4 : 27 -mod — Z7-mod defined by the
mapping N — Ind;%J. Observe that this functor is well-defined thanks to Lemma 4.1.1.

By composition, we get a functor *0 := %°%f o %°"f : 27-mod— Z7-mod that we call (left)
translation functor.

Remark 4.1.1. We want to stress the fact that, if J = 0, the translation functor we defined
does not coincide with the one defined by Fiebig in [13]. Indeed, we are twisting the action of
Sk, while in [13] Sy acts in the usual way, that is p.(zz) = (p - 2x)-
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The following proposition describes the first properties of *6.

Proposition 4.1.1. (1) The functors from *2Z7-mod to *Z-mod mapping M — 27{2} ®.4, M
and M +— Hom.». (27, M) are naturally equivalent.

(2) The functor 50 = 27 ®.45 — : 27 — mod — 27 — mod is selfadjoint up to a shift.

Proof. (cf. [41], Proposition 5.10, and [13], Proposition. 5.2) By Lemma 4.1.1, {1, @;} is a *2”-
basis for Z7. Let 1", @;* € Hom.4s(Z7,°27) a #27-basis dual to 1 and @,. We have an isomor-
phism of *27-modules 2Z7{2} = Hom.»,(Z”,*Z”) defined by the mapping 1 — a;* and @z + 1*,
since deg(1) —2 = —2 = deg(@;*) and deg(a@;) —2 = 0 = deg T . Now statement (1) follows from
the fact that 27 is of finite rank over *2”7 and so Hom:ys (27, —) = Hom:gs(27,°27) @sp0 —.
Now the second claim follows easily, since 27 ®.5, — and Hom. ., (27, —) are, resp., left and

right adjoint to the restriction functor.
O

Using the selfadjointness of 6 we get the following corollary

Corollary 4.1.1. *0: 27 —mod — Z7 —mod is ezact.

4.1.2 Parabolic special modules

As in [13], we define, inductively, a full subcategory of Z/-mod.
Let B, € Z7-mod be the free Sy-module of rank one on which z = (2,),cws acts via
multiplication by z..

Definition 4.1.1.

(i) The category of special Z7-modules is the full subcategory H” of 27 -mod whose objects are
isomorphic to a direct summand of a direct sum of modules of the form 5, 6o...0 s, 0(Be){n},
where s;,,...,8;, €8 andn € Z.

(ii) The category of special *Z7-modules is the full subcategory *H” of *Z”-mod whose objects
are isomorphic to a direct summand of 5 on0(M) for some M € H7.

Let Q be a finite subset of W/, Then, we set

Zy = 2y (mod ay")
if JweW;st. ywaz l=teT

27(Q) = {(zﬁ) e I] s»
€

If @ € W/ is s-invariant, that is sQ = Q, we may restrict ;o to it. We denote by *27(Q) C
27(£2) the space of invariants and, using Lemma 4.1.1, we get a decomposition 27 (Q) = *27(Q)®
asY - 27(Q).

In the following lemma we prove, the finiteness of the special Z”/-modules, as Fiebig does in
[18] for special Z-modules.

Lemma 4.1.3.

(i) Let M € H’. Then there exists a finite subset Q@ C W’ and an action of 27 () such that 2”7
acts on M wia the canonical map 27 — 27 ().

(i) Let s € 8 and let N be an object in H”. Then there ezists a finite s-invariant subset Q C W’
and an action of *Z7 () on N such that *Z” acts on N via the canonical map 27 — 527 (Q).
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Proof. (we follow [18]) We prove (i) by induction. It holds clearly for B, since 27 acts on it
via the map 27 — Z7({e}). Now we have to show that if the claim is true for M € H”’, then it
holds also for *6(M). Suppose 2”7 acts via the map Z7 — 27(Q) over M. Observe that we may
assume (? s-invariant, as we can eventually consider £ U s{2, that is still finite. In this way the
27-action on *0M via *27 — *Z7(Q) and so we obtain *0M = 27 ®.50 M = 27 (Q) ®: 5,10y M.

Claim (i) follows directly from claim (1). O

4.1.3 Decomposition and subquotients of modules on Z’

We recall some notation from [14]. Let S? := Si[a~!|a € A] and, for any M € Z7 — mod,
M? .= M ®g, S?. By [[18], Lemma 3.1], there is a decomposition M? := M N D.cwr M?% and
so a canonical inclusion M C @wewJ MY For all subset ) C WY, we may define:

Mg == M@ M,
z€eN

M® = M/Mysnq = im <M - M =P M‘“) :
€N
For all z € W’ we define

If z # 57 and = < xs, we set moreover
Myy oy 1= or (M2} Azantea))

Lemma 4.1.5 describes the action of *# on the subquotients Mj,’s. This is important in order
to show that 7/ categorifies the parabolic Hecke algebra. Actually, to prove Lemma 4.1.5, we
need a combinatorial result.

Lemma 4.1.4. Let x €¢ W/ and t € 8. If tx ¢ W/, then tx = x.

Proof. If tx ¢ W”, then there exists a simple reflection » € J such that tzr < tz and, since
x € W/, 2r > x. Using (the left version of) Lemma 3.1.2 (i) with s = ¢, v = 2r and u = tx, we
get txr < x. Applying Lemma 3.1.2 (i) with s = r, v = x and u = txr it follows tx > x. Finally,
from Lemma 3.1.2 (7i) we obtain txr < z, that, together with = < ar, gives txr = x. O

Lemma 4.1.5. Let s € 8 and x € W/, then
My{—=2} ® Mgp{-2} if szeW/ sz>u
(FOM)p) = M) © Mgy if steW/ sx<ua
Proof. (cf. [18]) By Lemma 4.1.4, if sz ¢ W”, then 5z = z and M|, € *ZP*-mod, so by Lemma
4.1.1 we get z7 Qsgg M[z] = M[w]{—Q} ©® M[m}

If x # sz, we have a short exact sequence 0 — M) — M, ) — M) — 0 and,
since °0 is exact (see Corollary 4.1.1), *0M, o = (*0M)(y 52) = *OMz) @ *0M[s,. Moreover
*OMiy s0) = 27 ({x, sx}) ®@s2({z,s2}) Miz,s2) and the two isomorphisms follow taking in mind
that 27 ({z, sz}) ;) = S{-2} if x < sz, while 27 ({z, sx})[5) = Sy if x> sa. O

Using induction, we get the following corollary

Corollary 4.1.2. Every M € H” is isomorphic to a finite direct sum of shifted copies of S.
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4.2 Special modules and Hecke algebras

In the first part of this section we recall the definition, due to Deodhar, of the parabolic
Hecke algebra H” and of its canonical basis. To the Bruhat order on W/ we associate, as in
[[18], §4.5] a character map and in this way we get a map from the Grothendieck group of 3
to H”. Finally, we extend Proposition 4.3 of [18] to the parabolic setting, describing the action
of the translation functors on the character (up to a shift) via the multiplication by elements of
the canonical basis.

4.2.1 Hecke algebras

We start with giving the definition of the Hecke algebra associated to a Coxeter system
(W, 8), that is a a quantisation of the group algebra of W. We adopt the notation (and the
renormalisation) of Soergel [40].

Denote by £ := Z[v,v™!] the ring of Laurent polynomials in the variable v over Z.

Definition 4.2.1. Let (W,S8) be a Cozeter system, then its Hecke algebra H = H(W) is the
L-module having basis {H, |z € W}, subject to the following relations:

H,, if st >s
HoHy = { (v'—v)H, + Hyy if sx<ux (4.3)

It is well known that there exists exactly one such an associative L-algebra (cf.[6] or [22]).

It is easy to verify that H, is invertible for any € W and this allows us to define an
involution on H. This is the unique ring homomorphism — : H — H such that 7 = v~! and
m = (Hx—l)_l.

In [29] Kazhdan and Lusztig showed the existence of a nicer basis for H, the so-called
canonical basis, that they used to define complex representations of the Hecke algebra. The entries
of the change of basis matrix were given by a family of polynomials in Z[v]: the Kazhdan-Lusztig
polynomials. In [9] Deodhar generalised this construction to the parabolic setting. Kazhdan-
Lusztig polynomials and their parabolic analog will be the object of the next chapter.

Parabolic Hecke algebra and Kazhdan-Lusztig polynomials

Let us take J C 8. We recall Deodhar’s construction, following [[40], §3]. Let H = H(W)
be the Hecke algebra of W, then for any simple reflection s € 8, by (4.3), we have (H,)? =
(v! —v)Hg + H,, that is (Hs + v)(Hs — v~ 1) = 0. If u € {v~!, —v} and H; := H(W;) is the
Hecke algebra of W, then we may define a map of £-modules ¢, : H; — £ by Hs; — u. This
provides a structure of H; -bimodule to £, that we denote by £(u).

Consider now M7 := £(v™!) ®, H and N7 := £(—v) @y, H. It is easy to verify that the
map — : £(u) @i, H — L(u) @, H sending a® H + a ® H :=a® H is a ring homomorphism.

For v € {v™!, —v} denote by H)" := 1 ® H,, € L(u) ®a, H. We are now able to state
Deodhar’s result.

Theorem 4.2.1 ([9]). 1. For all w € W there exists a unique element ﬂijv_leM" such that:

1

(i) Hy"' = Hy"
. -1 -
W) L =30 s my )

where the m;) , are such that my, ,, =1 and m;) , € vZ[v] if y # w.
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2. For allw € W there exists a unique element H::""€ N’ such that:

@) i -

(i) Hy " =3 ewr iy H 7,

where the n;) , are such that ny, ,, =1 and n; ,, € VZ[v] if y # w.

w

The polynomials m; . and n; are called parabolic Kazhdan-Lusztig polynomials with re-

y,w y,w
spect to the parameter v—', resp. —v, while {ﬂi’”il}wew‘z is the canonical basis.
If J = 0, then M7 = N7 = H and, for any pair of elements y,w € W, we will denote

hyw = mgyw = ng_’w the corresponding regular Kazhdan-Lusztig polynomial.

We end this paragraph with recalling that the left multiplication by H, for s € §, on H” is
given by (cf. [[40],83])

H;]‘,;ff1 + ijvUil if steW’,sx>z
H, - Hi]’v = Hs"é”_l + v’ng’”_l if szteW sx<uzx (4.4)
(v 4o HYH if szg W’

4.2.2 Character maps

Let M be a Z-graded, free and finitely generated Sy-module; then M = @), Si{ji}, for
some j; € Z. We can associate to M its graded rank, that is the following Laurent polynomial.

kM = Z'U*ji € Zv, v 1.
i=1

This is well-defined, because the j;’s are uniquely determined, up to the order.
Let (H”) be the Grothendieck group of 3/ and let M € H”, then by Corollary 4.1.2, we
may define a map h : (H”) — M7 as follows.

h(M) = Y "k My H e MY
zeEWJ

Proposition 4.2.1. For each M € H’ and for any s € 8 we have h(*0M{1}) = H-h(M), that
is the following diagram is commutative

(37) M7

590{1}J/ lHS»

(97) ——M
Proof. (cf. [18], Proposition 4.3) By Lemma 4.1.5, for any x € W/ we have
v? (gM[w] +¢M[sz]) if szxeW’,sz>uzx

tk(*OM)p) = § tkMy) + rkM . if sxeW/ sz<zx
(v + 1)rk M, if sz g W’
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Then,
—1
MCOM{L)) = X, cyp o' K (OM)  H }
Y rew? spews VY (tkMy) + tkM(g,) H

x
sr>x

ZxEW‘],stW‘] Ué(m)il (gM[l] + g‘]\4[690]) Héf,v_l

sT<

+ o+

ZxEWJ szg W’ (U€($)+1 + ve(z)_l)gM[z]HgﬂFl

Finally,

-1
BM) = D v M H, - H
erW":g:EW‘] UZ(I) (gM[ar])(Hgiv + ,UH&I’U )

S e swerw? V'O kM) (HLY ™ + o~ HE )

sr<x

+ o+

> rew? sogw VM (v + v HYHIT
e srere! [(”e(x)ng[x]) + (ve(s‘”@M[sx])]H;’wr

sTr>x

ZmewJ,sxewJ |:(U€(x)v_1 &M[x]) + (Ue(gm)gM[sz])} Hi]7v71

sr<x

1

+ o+

erwJ,sxgng (Ul(z)Jrl + Ul(z)fl)gM[x] H:L],Ufl

h(*0M{1})

4.3 Localisaton of special ZP*-modules

In this section, we focus our attention on the affine Grassmannian case. In particular, we
consider finite intervals of GP?" far enough in the fundamental chamber, whose description has
been given in §3.2.3. Hereafter, we denote by WP2' the set of minimal representatives for the
equivalence classes of W*/W/ and by ZP*" the structure algebra corresponding to this parabolic
setting.

Let 8 €A4, we consider the following localisation of the symmetric algebra S:

SP = Spl(a+nd) "t aeAy\{B}, neZ (4.5)

Fiebig used this localisation in [18], in order to relate the category of regular special modules
to a category introduced by Andersen, Jantzen and Soergel in [1].

Let us denote by Wg the subgroup of W* generated by the affine reflections sg ., for n € Z,
and by W# the set of orbits for the left action of W5 on WP3'. Remark that the group W is
isomorphic to A;. For any subset 0 C WP#" let us write moreover ZParB (Q) 1= 2P (Q) @, Sk.5-
We get then an analog of the decomposition we used in §4.1.3.

Lemma 4.3.1 (cf. [18], Lemma 3.1). Let Q C WP be finite, then
2y = 2, (mod (8 +nd)")

par,3 _ 8 - s
Z (Q)_{(zm)e@sk‘ ifIweW neZ st ywal=ssn }— P zrmf(ane)
zeQ , ocv0,

Proof. Omitted, since Fiebig’s proof of [[18], Lemma 3.1] works exactly the same in this parabolic
setting too. O
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For M € HP* we set MP := M &g, Sk . Because any special module is a module on Z(f2)
for some 2 C WP?" finite (see Lemma 4.1.3), the decomposition of the previous Lemma gives us
the following decomposition.

M= @ mMPe (4.6)
SIS

In the following Lemma we show that this localisation procedure preserves special modules.
In particular, we prove that, under the localisation, a special module having support on a finite
interval far enough in the fundamental chamber splits in a direct sum of special modules for the
parabolic structure algebra of the Bruhat graph of A;.

Lemma 4.3.2. Let M € HP* guch that ZP*" acts on it via ZP*"(J), for J a finite interval
far enough in €t and MP = Docws MP®, then, for any © € W8, MP® is isomorphic to a
27 (sly)-special module.

Proof. We prove by induction that any M?® is a special module for the structure algebra of
Sf:r. If M = B,, there is nothing to prove. Suppose the lemma holds for M € HP?T; we

have to show that it is true also for *0(M) = @geyps “0(M)>©. Thus it is enough to show
it for an M?®. In order to do this, we follow the proof of [[18], Lemma 3.5]. If © = Os,
then *0(M)"© = MP© ®.5pus (@) ZP?"#(O), since, by Lemma, 4.1.3, the inclusion *2F*"(Q) C
2pamB(Q) contains *ZP*A(Q) C ZPa8(O) as a direct summand. Otherwise, © # Os and the
inclusion *2ZP*8(© U ©s) C 2Pa5(0) @ ZPa8(Os) is an isomorphism on each direct summand.
It follows, *0(M)Par# = MPBO g MPO5. In both cases, we get the claim by induction because
Zparf acts on MP© via ZPa5(J N @) and clearly ZP*7(1N Q) = ZP¥ (I N O).

Now the statement follows since by Lemma 3.2.1, for any finite interval J far enough in the
fundamental chamber and any © € W? INO is isomorphic (as moment graph) to a finite interval
of the parabolic Bruhat graph of :4: O



Chapter 5

Categorification of Kazhdan-Lusztig
equalities

In 1979 Kazhdan and Lusztig (|29]) introduced a family of polynomials {h, ,} indexed by
pairs of elements in a Coxeter group W with 8, the set of simple reflections. Some years later,
Deodhar generalized this notion to the parabolic setting, defining two families of polynomials
{m],} and {nJ ,}, where x and y are now varying in W/, for J C 8 (see §4.2.1). If W was a
Weyl group, these polynomials were related to the intersection cohomology of the corresponding
(partial) Schubert variety (cf. Appendix A of [29] and [30]) and to the representation theory of
the complex Lie algebras (cf.[29]), resp. of the semisimple, simply connected, reductive algebraic
groups over a field of positive characteristic (cf.[36]), whose Weyl group is W.

The following conjecture motivates this chapter.

Conjecture 5.0.1 ([16], Conjecture 4.4). Let y,w € W’ and let k be such that (9ﬁy k) is a

GKM-pair. Then rk(#(w)’)Y = v*®)—tw) My -

w]’

This conjecture is proved in characteristic zero and in this case it is equivalent to Kazhdan-
Lusztig’s conjecture (cf.[14]). In characteristic p it is proved for p bigger than a huge (but explicit)
lower bound and it implies Lusztig’s conjecture (cf.[18],[16]). Anyway, this conjecture motivates
this chapter: we try to interpret combinatorial properties of Kazhdan-Lusztig polynomials in
term of Braden-MacPherson sheaves. We have already presented the results of Sections 5.2 and
5.3 in the preprint [35].

5.1 Short-length intervals

We try here to illustrate the philosophy of this chapter by computing the stalks of the
canonical sheaves on Bruhat intervals having length < 2.

For any pair of elements y,w € W such that y < w and ¢(w) — £(y) < 2, it is know that
By = v/ =W If conjecture 5.0.1 is true, then rk B(w)? = 1, that is B(w)¥ = Sy, if (G, k)
is a GK M-pair. Clearly, there is nothing to prove if y = w. If £(y) = {(w) — 1, then y = tw
for some ¢t € T and the associated moment graph is a subgeneric graph with the edge labeled by
a;". In this case, it is clear that 2(w)% = Si/a;Sk, whose projective cover is clearly Sj.

Suppose now {(w) — ¢(y) = 2. Then the Bruhat graph restricted to the interval J = [y, w]

47
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has to be of the following shape (cf. [[5], Lemma 2.7.3]).

/\

Saly

For some a, 3,v,6 € AT.

By Proposition 2.1.2, showing that Z(w)* = Sy, for all © € [y, w] is equivalent to showing that
the corresponding structure sheaf is flabby. We know already that Z(w)* = Sy for = € (y,w],
so we have only to prove Z(w)Y = Si. In particular, the claim will follow once we prove that all
sections z = (2w, Zs,.y, Zs.y) € ['(I\{y},A) are extensible. By definition, there exist p, ¢1,¢2 € Sk
such that

Zw =Py Zsay :P+’YV'CI17 Zsgy :p+5v © g2
Clearly, there exists an element z, € Sy extending z if and only if there exist ¢3,q4 € Sy such
that
Zsay + av ‘g3 = ZS[-jy + ﬁv q4

Now, by hypothesis, s,s, = 5553, that is s5 = 555,54, so, for all A € bz,
A=\ a)a=X—=(\BY)B = (s5(N),0")8 — (sss5(N),7")y

Because of the GKM-property, 8 # o, £J and so it is always possible to find a p € hg such
that

<N7ﬂv> = Oa <:u’av> 7£ Oa <5ﬁ(:u)75v> = <M, Sﬁ(év» 7é 0
Then, we might write « = a1 + agy with a;,a2 € R and a; # 0. Analogously, we get
B =010 + byy with by,b2 € R and by # 0. Thus, if ay = 0, it is easy to check that

s=0a7" (@2 —biby ')  @a=b'q
satisfy the requirements. While, for as # 0, we set
a3 =a5" (1 —boaray ' (b1 +b2) ")gr — ba(b1 +b2) 'q2) s = a3 (b1 +b2) Harq1 + a2q0)

Thus we get the following lemma.

Lemma 5.1.1. Let y,w € W be such that y < w and {(w) — €(y) < 2. If (G, ,.k) is a
GKM-pair, then #(w)Y = Sk.

5.2 Technique of the pullback

Let ¢ O b O t be a symmetrisable KacMoody algebra, a Borel subalgebra and a Cartan
subalgebra. Let II, resp. IV, be the corresponding set of simple roots, resp. of simple coroots.
From now on, we denote by § = (V, &,[, <) the regular Bruhat graph we defined in §3.1.1.

In this section, we apply Lemma 2.2.2 in order to lift some equalities concerning KL-
polynomials to the moment graph setting. In particular, we will define isomorphisms of k-moment
graphs to get isomorphisms between the stalks of the corresponding Braden-MacPherson sheaves.
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5.2.1 Inverses

Kazhdan and Lusztig gave an inductive formula to calculate the KL-polynomials ((2.2.c) of
[29]). From such a formula it follows easily (cf. Exercise 12, Chap.5 of [5]) that, for any pair
y,w € W, one has

Ry = hy=1 1. (5.1)

We translate this equality to an isomorphism of stalks of indecomposable canonical sheaves.

Lemma 5.2.1. Let W be a Weyl group. The anti-involution on W defined by the mapping
x> 271 induces an automorphism of the k-moment Bruhat graph G for any k.

Proof. fy :V — V defined by the mapping x — ! is obviously a bijection. Moreover, for each
pair of elements z,y € W, z < y if and only if 27! < y~'. So fy : V — V is a bijection of posets.
Observe that there exists a reflection ¢ € T such that y = tz if and only if y~! = ra~!, where
r=x 4tz €T Sor—ycifandonlyifz™! — gyt c €.
Thus, for every x € W and any A € QV, we set f1,(A\) =27 1(\). Let E: 2 —y =tz
and recall that, for any w € W and o € A, w(a)” = w(a") (cf. [26], §5.1). Then we get the
following.

(@) fio(l(x —tx)) = x_l(at)v =z HapV) =£l(z7! — y71), where 27 (o) € AT, because
7 () = Fa, 14, (cf. [26], §5.1).

(b)
fiyN) =yt (N
= z7Y(t))
20 ~ (o N~
() (moda:_l(ozt)v)
= fiz(A) (modz~Ya)")

\%

This proves that we have an automorphism of the k-moment graph G for any k. O

From the lemma above we get the following corollary.

Corollary 5.2.1. Let w € W. Denote by G the corresponding Bruhat graph and let f be as in
Lemma 5.2.1. Then B(w) = f*#(w™1) as k-sheaves on G for any k.

Proof. First observe that y £ w if and only if y=! £ w='. Soif y £ w, B(w)Y =0 = Bw1)¥ .
By Lemma 5.2.1, fy : x — 2~ ! induces a k-isomorphism between the two complete subgraphs
G and G,,-1, so we may apply Lemma 2.2.2; the statement follows. O

5.2.2 Multiplying by a simple reflection. Part I

Let y,w € W and s € 8 such that y < w, ws < w and y £ ws. In these hypotheses Kazhdan
and Lusztig observed (proof of Theor. 4.2 of [29]) that

hyw = Pys ws- (5.2)

In order to interpret (5.2) in our moment graph setting we will use the lifting Lemma, to define
an isomorphism of k-moment graphs.

Lemma 5.2.2. Let y,w € W and s € 8 such that y < w, ws < w and y £ ws, then for any k

there is an isomorphism of k-moment graphs 9|[y ) L)SH

ys,ws] *
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Proof. We show that fv : [y, w] — [ys,ws],  — xs is a bijection of posets inducing the identity
map on the labels.

We verify that if = € [y, w] then xs € [ys, ws]. We see that xs < x; indeed, if it were not the
case, by Lemma 3.1.2 (ii) < ws, but this implies that y < ws. In particular, this holds for y,
that is ys < y. Now, by Lemma 3.1.2 (i);

rs<z,ws<w = xs < ws

ys<y,rs< T = ys < TS.

We now show that if z € [ys,ws] then zs € [y, w]. Observe that zs > z; indeed, ys < z,
y = (ys)s > ys and if zs < z, then by Lemma 3.1.2 (ii), with v = ys and v = 2, we would get
y = (ys)s < z < ws.

Moreover, z < ws < w and, by Lemma 3.1.2 (ii),

z2s>z,ws<w = zs < w.

y=(ys)s >ys, z=(28)s<zs = y < zs.

This completes the proof that fy maps [y, w] to [ys, ws].

Let z,z € [y,w], then z < z if and only if s < zs. Indeed, we have already proved that
xs < x and zs < z so, by Lemma 3.1.2 (i), with v = z and v = 2, we have zs < zs. On the
other hand, z = (zs)s > zs and it follows from Lemma 3.1.2 (ii) with v = xs and v = 2z that
x=(xs)s < z.

Finally from what we proved above, for each t € T we have that x,tz € [y,w] if and
only if zs,txs € [ys,ws].This means that we have a bijection between sets of edges such that
fe(x Btx) = xs Btxs.

Therefore f = (fv,{Idy }+ev) is an isomorphism of k-moment graphs for any k.

So we have:

Corollary 5.2.2. Consider y,w € W such that ws < w, y £ ws for some s € S. Let f be as in
Lemma 5.2.2, then %(w) = f*%(ws) as k-sheaves on G for any k.

Proof. The statement follows by combining Lemma 5.2.2 and Lemma, 2.2.2 . O

We recollect the results of this section:

Theorem 5.2.1. Let y,w € W, then
(i) Bw)’ = Bw ).

Let s € 8§ be such that ws < w and y £ ws, then
(i) B(w)Y = B(ws)v*

All isomorphisms are isomorphisms of Si-modules, for any k.

Proof.

(i) This follows from Corollary 5.2.1, since two k-sheaves are isomorphic only if their stalks are
pairwise isomorphic.

(ii) As before, the isomorphism descends from the isomorphism of k-sheaves we obtained in Corol-
lary 5.2.2.
O
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5.3 Invariants

Clearly not all equalities concerning Kazhdan-Lusztig polynomials come from k-isomorphisms
of the underlying Bruhat graphs. In this section we develop another technique and, as in the
previous section, we apply it in order to categorify two well-known properties of these polyno-
mials.

5.3.1 Multiplying by a simple reflection. Part II

Another property that Kazhdan and Lusztig in [29] (2.3.g) proved is that if y,w € W and
s € 8 are such that y < w and ws < w, then

hyw = 0 hys,w, (5.3)

where ¢ = 1 if sy > y and ¢ = —1 otherwise.

It is clear that in this case there is no hope of finding any k-isomorphism of moment graphs,
since the two Bruhat intervals [y, w] and [ys, w] obviously have different cardinality.

The goal of this section is to prove the following theorem.

Theorem 5.3.1. For any pair y,w € W and for any s € 8§ such that ws < w and ys,y < w,
there exist

o an isomorphism of Sy-modules @Y : B(w)¥Y — B(w)Y?

e a family of isomorphisms of Si-modules ¥ : B(w)¥ — B(w)¥*, where E: y — x € €
and Es :ys — xs € &€

such that the following diagram commutes

Y

B(w)¥ ——— B(w)¥® (5.4)

py,E\L lpys,ES
E

Bw)? L= B(w)Ps

and such that p¥s = (p¥) 1.

5.3.2 Two preliminary lemmata

In order to prove our claim, we need two combinatorial lemmata.
Recall that

T={sa]a€ R} ={wsw ' |weW,sec8}

and, for all z,y € W, denote
Gr(z,y) == {t € T|tz € (z,y]}
Lemma 5.3.1. Let w,y € W and s € 8§ be such that y < w, ws < w and ys <y, then

Gr(ys,w) = Gr(y,w) U {ysy ' }.
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Proof. We show that for all ¢t € G (y,w) we have ys < tys < w as well, i.e. t € Gp(ys,w).
Indeed, if tys > ty, then ys < y < ty < tys and, by Lemma 3.1.2 (ii) with v = ty and v = w,
tys < w . Otherwise, tys < ty < w, y < ty, ys < y and, by Lemma 3.1.2 (i) with « = y and
v = ty, we obtain ys < tys.

Clearly, ysy~! € G1(ys,w) and this completes the proof that the set on the right hand side
is a subset of the one on the left.

Now we verify that if t € T, tys € [ys,w] and ty & [y, w], then t = ysy~!. Indeed, by Lemma
3.1.2 with u = tys and v = w, tys < w and, if ty ¢ [y, w], then ty < y. Moreover, ys < y and
so, by Lemma 3.1.2 (ii) with v = ty and v = y, tys < y. So ys < tys < y and we know that
[ys,y] = {ys,y}. Thus tys =y, that is, t = ysy~!. O

Lemma 5.3.2. Let w,y € W and s € 8§ be such that y < w, ys < y and ws < w, then the set
[ys, w] \ {ys,y} is stabilized by the mapping x — xs.

Proof. Notice that ys < y < w, so it makes sense to write [ys, w]. Let J:= [ys,w] \ {ys,y} and
let € J. If s > =, then obviously ys < xs and, by Lemma 3.1.2 (ii) with v = 2 and v = w,
xs < w. On the other hand, if s < z, then zs < w and, by applying Lemma 3.1.2 (ii) with
u=ys and v = x, ys < xs. Then, in both cases xs € [ys,w] and, since zs # y and zs # ys, we
get z € J.

Finally, if x € J, then xs # y. Indeed zs = y if and only if z = ys & J. O

5.3.3 Proof of the main theorem

We will prove Theorem 5.3.1 by induction on n = £(w) — £(y).

If n =0, then y = w and there is nothing to prove. If n > 0 and ys > y, then ¢(w) — £(ys) =
n — 1 and by induction we get the desired isomorphisms.

Now, we may suppose n > 0 and ys < y. Let J = [ys,w] \ {y,ys}. From the inductive
hypothesis, for any = € J we get

e an isomorphism of Sp-modules ¢* : B(w)* — B(w)**

e a family of isomorphisms of Si-modules ¢ : Z(w)F — B(w)F*, where F : 2 — 2 € €%
and Fs:xs — zs5 € %8

such that the following diagram commutes

Bw)® — = B(w)" (5.5)

pz,Fl \Lpzs,Fs
F

B(w)F —> B(w)"

and such that ¢ = (p*)~ 1.

Observe that our claim will follow, once we prove that there is an isomorphism of Si-modules
oY B(w)Y — B(w)¥® compatible with the restriction maps. Indeed, for E : y — x € &4, there
exists exactly one Es : ys — xs € €55, and ¢ would already have been given. If E : ys — y,
then we could set 0¥ = Id. Finally, for  # ys, there exists an edge E : 2 — y € & if and
only if there is Es : s — ys € & (cf. Lemma 5.3.1) and in this case ZBw)? = B(w)Y/I(E) =
PB(w)¥® [1(Es), since E = Es.

We will get ¥ by defining a surjective map from Z(w)? to %(w)°¥*. Since Z(w)¥* is the
projective cover of the Sy-module Z(w)?%*, and, since rkg, B(w)? < rkg, B(w)¥® (cf. Lemma
3.12. of [15]), Theorem 5.3.1 will follow from the unicity of the projective cover.
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Invariants

By Lemma 5.3.2, J is invariant with respect to the right multiplication by s and we may define
an automorphism o of the set of global sections of the Braden-MacPherson sheaf as follows. Let
m = (my) € I'(J, B(w)), then we set o5(m) = (ml,), where m/, := ©®*(m,s). Since the ¢®’s are,
by definition, compatible with the restriction maps (see Diagram (5.5)), o4(m) € I'(3, B(w)).
Moreover, for any = € J, ¢®° = (¢%)~! and so o, is an involution.

Let us denote by I'* the submodule of o4-invariant elements of I'(J, #(w)), and by I'"* the
elements m € I'(J, (w)) such that o5(m) = —m.

Let us consider ¢ := (cs,2) € @, Sk, Where ¢, := x(a,"); then ¢, € Z and so it acts on
I'(J, B(w)) via componentwise multiplication.

Lemma 5.3.3. Let (G),,k) be a GKM-pair, then we have I'(J, B(w)) =T° © ¢, - T*.

Proof. (We follow [18], Lemma 2.4).

By definition, o is an involution and 2 is an invertible element in &, then we get I'(J, B(w)) =
rsel——-.

Let m € I'®, then o5(cs - m) = —(¢cs - m), i.e. ¢s-I'* CT75. Indeed, s(as”) = —as" and so
for any = €J we have

(Cs,:r . mz)/ = xs(aSV) My = x(—asv) *Mgy = —Cgp - My

We have to prove the other inclusion, that is, every element m € I'"° can be divided by
(x(asY))zes in T'(J, B(w)).

If m = (my) € T7° then my; = —p®*(Mys) and 80 Pus gs—a(Mas) = =Pz ws—a (M), since the
following diagram commutes:

xs

B(w)"s —— B(w)*
|

Pxs,xs—x Pz, x&%w
)xs—m'

%(w)zs—hc (’U}

Ts—x

But m is a section so pgs zs—az(Mas) = Pu,as—z(Mg). It follows that 204 ys—yz (M) = 0; moreover,
by definition of the canonical sheaf, ker p; ys—z = axsw,l,%(w)x, that is, a;/srl divides m, in

Notice that a1 = Fa (oY) = £e5q, 16, ¢; ' m € @,y B(w)*. We have to verify that
Puo—tz(Cs. 1mm) = Ptaz—ta(Cs, +omyg) for all t € T

)

)
)

(Cs,tzcs,x)(ptx,z-tx (C;tlmmtx) p:z: z’tm( mx))
= Cs,x (ptm,r—tz (mtx)) Cstx (p'r r—tr( r))
)-

- (Cs,w - Cs,tw)ptz,m—tw (mtw) + Cs,tz (ptw,a:—tw (mtm) pw rx—tx (mw)

0~ O

(5.
(5.
(5.
The term on line (5.8) is divisible by o V; indeed, ¢; —¢s 12 = (5" )—x (s )+ {0, z(asY)) oy
0 (mOd atv) and ptz7w—tz(mtw) - px,w—tz(mw) =0.

Using the GKM-property ¢ 1z¢s» = tz(as”) - x(a,”) is a multiple of o if and only if
rsz~! = t, that is xs = tz. So, m, = —p™ (M), Cs4z = —Cs.. and, considering that diagram
(5.3.3) commutes, we obtain

p”«',ﬂﬂ—tw(cs_ﬂ}mw) = _C;% pw,x—tx(mx)
_c;tm (_ptz,la:Atz(mtz))
ptz,z—tz(c;tzmtz)
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Otherwise, zsz~! # t and o,V divides pm’x_m(c;,}xmm)—px,x_m(c;}cmz) and 80 Py x— 1o (C5 yMa) =

Pta,x—rtx (C;%zmtl ) .

O

Building %(w)%*
Let us denote

I(9, B(w) > By Bw)” — By, Bw)” 22 e, Blw)”

™1

Recall that Z(w)% = u,(D'({> y}, Z(w))), where u, was defined as the composition of the
following maps

T({> v}, B(w) > @, B(0)" —= By, Bw) 2 Dy, Blw)”

Remark 5.3.1. Since B(w) is flabby and I and {> y} are both open sets, we get
m (D3, B(w))) = uy(C({> y}, B(w))) = B(w)* (5.9)
Now, let us denote

D3, B(w) > B, s B W) — By B0)* LE D e Bw)P
and define @Wys = mo(I'(3, B(w))).
Lemma 5.3.4.
(i) B(w)’" =m (DI, #(w))) = m(T*)

—_~—

(ii) B(w)*s = my(T(J, B(w))) = w2 (I'*)

Proof.

(i) Let m € I'(J, Z(w)). Then, by Lemma 5.3.3, m = m' + ¢, - m”, with m/;m” € I'* and, if
' = (), m'" = (m),
™ (m) = <p$vE(m;))m€V:y~>I€8 + (pa.p(@(0s) .mg))ze\?:y%reﬁ
If £:y — x € Esy, then there exists a reflection ¢ € T such that = ty and we have
w(os”) = ty(as”) = ylas") + (o, ylas))ar (5.10)

But, by definition, p, g is a surjective map whose kernel is [(E)Z(w)” = oY B(w)* and

pa,e(@(as”) - mll) = pup(y(as”) - ml) + (o, y(as”)) pee (o’ - ml) = po p(yles") - ml)

We conclude that 71 (m) = 71 (m/ +y(asV)-m”), where y(a;Y) is the element of the structure
algebra, whose components are all equal to y(a,Y). Clearly, m’ + y(asY) - m” € 'S and we get
the claim.
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(ii) Asin (). O
Lemma 5.3.5. There is an isomorphism of Sy-modules 7 : B(w)® — i%’/(_u:)/éys given by
(mE)Eees, = (ng(mE))EEgsy, that is for allm € %, 7 o m(m) = ma(m).

Proof. (mg)gee;, € #(w)® if and only if there exists an element m € T'({> y}, Z(w)) such
that u,(m) = (mg)pee;,. We have already noticed that this is the case if and only if there is an
element m’ € I'(J, #(w)) such that m,(m’) = (mg)pee,,. From the previous lemma, we know
that this is equivalent to the existence of an m € I'* such that 7 (m) = (mg)gee,,. But, since
the squares in the following diagram are all commutative,

771\1—‘5

P @y, B0) L B, Bw)E

Id Bp”® Sp”

!

I ®$€V5y %(w)ms

T2 s

—_~

we get (¢ (mp))pee;, = ¢F o m(m) = ma(m) € B(w)ovs.

Analogously, (mpgs)gee,, € B(w)%%* if and only if ((¢7)~(mps))pee;, € B(w)®.

O
Let us denote by p : Z(w)? — B(w)?/as" - B(w)? the canonical quotient map.
Lemma 5.3.6. We have
B(w) = { (7 om(my), plmy)) € Bw) & (B(w)” /o, -Blw)")} (5.11)
Proof.
Bw)* =y (L({> ys}, B(w)))
= uys ({(m,my) € O, B(w)) & Bw)? |, (my..,,) = dy(my) })
by Remark 5.3.1
= uys({(m,my) € T(J, B(w)) & B(w)? | m1(m) = dy(my)} )
= {(Wg(m),p(my)) |m € I'(J, Z(w)), my € B}, m(m) = dy(my)}
by Lemma 5.3.4
= {(m2(m), p(my)) |m € T*, my € B(w)¥, m(m) = dy(my)}
by Lemma 5.3.5
= {(7' o7y (m), (my)) |meTl?, myeﬁ(w)y, T (m) = dy(my)}
= { (T ody(my), p(my)) |my € B(w)}
O

From the lemma above, it follows immediately, that there is a surjective map of Si-modules

B(w)Y — B(w)%* given by m, +— (1 od,(m,), p(m,)) and this concludes the proof of Theorem
5.3.1.
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5.3.4 Rational smoothness and p-smoothness of the flag variety.

We have an easy corollary of Theorem 5.3.1. Recall that if W is finite, then there exists a
unique element of maximal length (cf. [[22], §1.8]) and we denote it by wy.

Corollary 5.3.1. Let W be a finite Weyl group and wy its longest element. Let k be such that
(G(W), k) is a GKM-pair. Then $Y, = Sy for any y € W and any k.

Proof. We proceed by induction on n = £(wg) — £(y). If n = 0, by definition, Z(wg)*° = Sj. If
n > 1 then there exists a simple reflection s € 8§ such that ys > y (so, £(wo) — €(ys) = n — 1).
Actually, wgs < wg for any s € § and, by Theorem 5.3.1 and inductive hypothesis, we have
f@(’wO)y = %(’wo)ys = Sk. O

Remark 5.3.2. If k = Q the result above corresponds to the (rational) smoothness of flag
varieties, while if k is a field of characteristic p it gives their p-smoothness (cf. [19]). Our proof
is based only on the definition of canonical sheaf; we do not use Fiebig’s multiplicity one results
(see [17]), nor the geometry of the corresponding flag varieties.

5.3.5 Parabolic setting

Let J C 8 be such that W; = (J) is finite with longest element w;. Let W’ be the set
of minimal representatives of the equivalence classes W/W ;. For w € W/, denote by Z(ww;),
resp. %B(w)”’, the corresponding indecomposable canonical sheaf on G, resp. on G7. It is now
easy to see that:

Lemma 5.3.7. Let W; and w; be as above and consider x,w € W’ such that y < w, then
Bwwy)® = B(wwy)™ for any u € W.

Proof. We proceed by induction on ¢(u). Clearly there is nothing to prove if ¢(u) = 0. If
£(x) > 0 then there exists an s € § such that us < u and so by the inductive hypothesis, we get
PB(wwy)* = Blwwy)™5. Now for any s € J, wwys < ww; and by Theorem 5.3.1 we obtain the
claim. 0

Theorem 5.3.2. Let (Syuw,, k) be a GKM-pair and let W/ and w; be as above. If y,w € W/
and y < w, then there is an isomorphism of Si-modules

B(wwy)""7 = (B(w)”)".

Proof. We proceed by induction on n = ¢(w) — ¢(y). If n = 0 the statement is trivial. Suppose
we have a collection of isomorphisms of Sg-modules 7, : (B(w)”)* — (B(wwy))*®’ for any
such that ¢(w) — £(z) < n.

There is a natural injective homomorphism,

J:T{> v} Z(w)”) = T({> yw,}, Blwwy)),

defined by setting (mx)xe(y,w]CWJ = (nfi/z)ze(wa,wa]CW= where m., 1= ¢*(n,(my)) if z € 2W,
and ¢* : By, — #r,, denotes the isomorphism in Lemma 5.3.7.

We will show that such a homomorphism induces an isomorphism (Z(ww))° ¥’ = (B (w)”)%.
Then, by the unicity of projective cover, the statement will follow.

Let z € (ywy,wwy], z = xu, for some x >y € W/, u € Wy and u = s1...5s, a reduced
expression with s; € J for every i. Moreover, let (n,) € T'({> yw;}, B(wwy)). We prove

by induction on ¢(u) = r that there exists a section (p,) € I'({> ywys}, B(wwy)) such that
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Dasy...s; = W15 (ny(my)) for some m, € (B))* for any i = 0,...,7 and such that uy.,, ((p,)) =
uwa((nv))'

For the base step we have r = 0 and there is nothing to prove.

If 2 = (zs182...5-—1)s, then, by the inductive hypothesis, there exists a section (g,) €
L({> yws}, B(wwy)) and an element m, € (B(w)’)* such that gus,. s, = V=515 (ne(my))
and uy((¢y)) = uy((ny)) for ¢ = 0,...,7 — 1. Thus, by Lemma 5.3.4, the element (p,) €
PB(w)Y such that

v>yw g

yslw‘srfl(

DPysi...sp—15, = P py81..-sr_1)

and
pmsl...si = ql’sl...si = ,l/]ZSI.“Si (nﬂf(mm)) V'L < r

is a section on {> yw;} and verifies wy.,, ((Ny)) = Uyw, ((100))-
Finally, from the proof of Lemma 5.3.7 it follows that

QYT Dy, sy ) = @UIE (YR (g (my)) = T (1 ().
O

Corollary 5.3.2. Let (9|Sww‘],k) be a GKM-pair and let py : G — G the quotient map we
defined in §3.1.3. Then, p5;%B(w)’ = B(wwy).

The theorem above is just the categorification of the following theorem, due to Deodhar:

Theorem 5.3.3 ([9]). Let W be a Weyl group with 8, the set of simple reflections, and J C 8 such
that Wy is finite. Let wj be the longest element of Wy and y,w € W”, then miw = hyw, wwy -

5.4 Affine Grassmannian for 5/[\2

Using the inductive formula (2.2.c) of [29], it is easy to show that, if W is the infinite dihedral
group, then hy ., = ! W= for all y,w € W. Let us consider J = {54}, then, from Theorem
5.3.3, it follows m;’w = o'W~ for any pair y,w € W’. In this section we categorify this
property. In particular, we prove that the structure sheaves on all finite intervals of the moment
graph associated to the affine Grassmannian of 5/[\2 (cf. §3.2.2) are flabby. As in §3.2.2, we will
denote by GP* the corresponding moment graph, while, for a vertex w € W7 2P (w) is the
indecomposable canonical sheaf.

Recall that the set of vertices is in this case totally ordered, so we may enumerate the vertices
as follows, once identified the finite root o with the corresponding coroot av: vg = 0, v = a,
vy = —q, ... ,vp = (-1, L

From now on we denote the edges as Ej,  : (v, — vi) and the labels as Iy := [(Ep 1);
we write moreover I, , = a + np pc. Actually, the label of an edge Ej, i is by definition %lj, x;
however, there exists an isomorphic k-moment graph with same sets of vertices and edges, but
this other label function and, by Lemma 2.2.2, the corresponding indecomposable canonical
sheaves are isomorphic.

We will prove in several steps that, if v; < v; and (§P* . k) is a GKM-pair, then (#P? (v;))vs

|[U]"Ui

Sk by induction on i — j.
Fix once and for all = {v;,v;—1,...,vj41}.

Lemma 5.4.1. Let r € N be such that r < i — j. If (S, k) is a GKM-pair, and z €
(3, B (vi))(ry, then z is uniquely determined by its first r 4+ 1 components, that is the re-
striction map T'(3, B (v;)) (ry — T({vi, viz1, .-, Vi b, BPY (Vi) gy 18 injective.
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Proof. Let z € T'(J, P (v;))(r} such that z,, = z,,_, = ... = 2,,_, = 0. Observe that for any
j+1<h<i—r<k<ionehasz, =z, =0(mod a+ npic).
By the GKM-property it follows that all the polynomials MCD(« + np ke, + npic) = 1
for any ¢« —r < k # | <. Since Sy is an UFD, z,, has to be divisible by (o + np i—rc)(a +
Nhi—r41€) - .. (@ + np;¢). This is a polynomial of degree r 4+ 1 while z,, was a polynomial of
degree r, 50 z,, = 0.
L

Lemma 5.4.2. Let r € N be such that r <i— j. We have dimy.I'(J, B7*" (v;)) () = (“52).

Proof. By Lemma 5.4.1, dim;.I'(J, Z°* (v;) )y = dimpT'({vi, vio1, ..o vir }, BP¥(04)) {1} -
Clearly, T({v, vi-1, .-, Vir }, B (03)) ry € @p(Sk)(ry and dimy, @(Sk) () = (r + 1),
By definition an element m € @ (Sk){ry is in D({vi, vim1, ..., vi—p }, B2 (v;)) 1 if it satisfies
some (linear) conditions given by the labels of the edges. If we prove that such conditions are
linearly independent, then we know that

dimg I ({vi, vi—1, .., Vi }, B (03)) {ry = dimy @(Sk){r} — # edges.
0

We noticed in §3.2.2 that in the 5/[; case all the vertices are connected, so the number of
vertices is equal to the number of pairs of different elements in a set with r + 1 elements, that is
(H'l) Then

2 ): J

1 2
dimkF({vi,vi_l,. .. ,’Ui_r},%par(vi)){r} = (’I“—f— 1)2 — (T; ) = <T_|2— )

Hence now we show that the conditions are linearly independent.
Let i —r < h < k <1 and define the element (m"¥)) € @ (Sk)} in the following way:

(hok) . { cIlmegiiot,imrp (@ +name)  if1=h

m .
vt 0 otherwise

Now mq(,}l“k) = mq(}ﬁ;k) for any I,m # h and c[[(a + np,me) = 0(mod « + np mc). By the
GKM-property, [j, 1 does not divides mglh”k), while m,gh’k) =0.

So for any condition coming from the edge E;,, we built a r 4+ 1-tuple which verifies all
conditions except the Ej ,,-th. It follows that all conditions are linearly independent.
O

Denote by me,m. € I'(J, °* (v;)) {1y the constant sections mq,, = @, mc, = c for all v € J.
Denote moreover by u,; := ©py,, g, ;, where p,, g, . : S, — Sk/(Ep ;- Sk) are just the canonical
quotient maps.

Lemma 5.4.3. Let r € N and let (3%, k) be a GKM-pair. The vector subspace of (#5*")s

generated by

Yme) ... Uy, (mamih), Uy, (M)

u'Uj (mg)7uﬂj (mf; c

has dimension equal to r +1 if r <1i — j or dimension equal to i — j otherwise.
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Proof. As first notice that (#°¥ (v;))¥* = Si/(Ljx - Sk) = k[c] by the mapping a — —n; yc.

Then
Uy; (mﬁmf;k) = ((_nj,i)kv (_nj,ifl)ka tey (_n;?,jJrl))C'
We obtain the following matrix
1 1 - 1
—MNyi —MNyji-1 . —Nj41
N= | ) (Fnjic)? o0 (Fngj4)?
(=nj)" (=nji)' oo (=ngg)t

By the GKM-property it follows that n;; # n;p for all pair j +1 <k # h <iand N is a
Vandermonde matrix. In particular, such a matrix is not singular and so it has maximal rank,
ie. rk(N)=t+1if ¢t <i—j and rk(N) =i — j otherwise. O

Lemma 5.4.4. There ezists a section mg € I'(J, B"(v;)) (1) such that u,,(mo) = 0 and mo ., #
0 for all v € 7.

Proof. Let v; = ra. Define mg ,, = (1 — 8)l;, = (r — s)(a + (r + s)c) if vp = sa.
Notice that (mg) € T'(J, %" (v;)); indeed for any pair of vertices v, = sa, v, = to, one has
Ihe =a+ (s+t)cand

Mo, — Mo, = (r—8)(a+ (r+s)c) —(r—t)(a+ (r+t)c) =
= —sa— s’cHta+tic=a(t —s)+c(t® —s%) =
=(t—s)(a+(s+t)c)=0 (mod a+ (s+t)c).

Moreover, by definition mq ., 7# 0 for any v, € J and wu,,((mo)) = 0.
O
Lemma 5.4.5. Letr € N be such that r < i—j. The collection of monomials {m! mPmk |1, h, k >
0, +h+Fk=r} is a basis of T'(J, BPY (vy)) {ry -
r+2
2

Proof. Since the number of monomials in three variables of degree r is ( ) and by Lemma

5.4.2 dim,I'(J, 272" (v;)) = (HQ'Q) as well, it is enough to prove that all monomial in m, me, Mg
are linearly independent. We prove the claim by induction on r.

Let r = 1. If 2mq 4 ym. + zmg = 0, then clearly 0 = u,, (xmq +yme + 2mg) = Ty, (Ma) +
Yy, (Me) + 2uy; (Mo). By Lemma 5.4.4 u,,(mo) = 0, 50 2uy, (Ma) + yu,, (me) = 0. But by
Lemma 5.4.3 u,,(mq) and u,,(m.) generate a vector space of dimension 2, then » = y = 0.
Finally, from zmg = 0 and Lemma 5.4.4 it follows z = 0.

Now let r > 1. Let z = ZHern:r xl,m’nmlamf:”mg = 0. We can write z = z1 + 2gmg, 21
is such that mg does not appear. Then by Lemma 5.4.3 u,,(2) = wy,; (21) + Uy, (20) s, (Mo) =

Uy, (21) = 0. From Lemma 5.4.3 we know that all u,, (m’,m. ") are linearly independent and so

0 = ty, (21) = Uy, ( Z xlym’omflmzn) = Z T m,0 U, (mlm™)

I+m=r l+m=r

implies x;,, 0 = 0 for all pair I,m, i.e. ¢; = 0. Thus we obtain cymy = 0 and we conclude
by Lemma 5.4.4 that ¢ = 0. Finally, 0 = co = Y, 1norq Tlmmns1mymimg is a linear
combination of monomials in mg, m., mg of degree » — 1 and so by inductive hypothesis we have
Zimmt1 = 0 for all [, m,n.

O
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Theorem 5.4.1. If v; <v; and (Sﬁar ],k) is a GKM-pair, then (BPY (v;))% = Sy.

vj,v4

Proof. We prove that (%P (v;))%" coincides with the u,, image of the ring generated by m,, and
me. I r <i—j, by 5.4.5, T(J, B (v;)){,} is generated by {mlm!m{ [l,h, k>0, l+h+k=r}.
From 5.4.4 it follows (2P (v;))%" = u,, (I'(J, #P* (v;)){,}) is contained in the ring generated by
Uy, ((Ma)) and uy, ((me)).

Otherwise, r > i —j and @y,  ce,.
by Lemma 5.4.3 u,, (mq) and u,, (m.) generate (AP (v;))

Thus we have a surjective map Sy — @p,  ce,. (%P2 (v;))Fix by the mapping « — m,, and
¢+ me. Then (AP (v;))" = Sy. O

(P (v;))Fik = k[c]*~7, having dimension i — j. Then
ov;

Remark 5.4.1. If k = Q, this result corresponds to the rational smoothness of the corresponding
(partial) Richardson variety.



Chapter 6

The stabilisation phenomenon

In [37], Lusztig proved that the affine parabolic Kazhdan-Lusztig polynomials stabilise. Quot-
ing Soergel’s reformulation (cf.[[40],Theorem 6.1]), the parabolic Kazhdan-Lusztig polynomials
mfﬁ‘{ p indexed by pairs of alcoves far enough in the fundamental chamber stabilise, in the sense
that, for any pair of alcoves A, B, there exists a polynomial g4 g with integer coefficients such
that

lim miﬁ_u B4p — dA,B

peet ?
The ga,p’s are called generic polynomials and turn out to have a realisation very similar to the
one of the regular Kazhdan-Lusztig polynomials. Indeed, Lusztig in [37] associated to every
affine Weyl group W its periodic module M, that is the free £ = Z[v,v~!]-module with set
of generators -or standard basis- indexed by the set of all alcoves A. It is possible to define an
involution and to prove that there exists a self-dual basis of M: the canonical basis. In this
setting, the generic polynomials are the coefficients of the change basis matrix. Our interest in
the periodic module is motivated by the fact that M governs the representation theory of the
affine Kac-Moody algebra, whose Weyl group is W*, at the critical level (cf. [3]).

The aim of this chapter is to study the behaviour of indecomposable Braden-MacPherson

sheaves on finite intervals of the parabolic Bruhat graph far enough in C* (cf. §3.2.3).

6.1 Statement of the main theorem

Let GP* denote the parabolic moment graph associated to the affine Grassmannian, whose
set of vertices we identify with the set of alcoves in the fundamental chamber (cf. §3.2.2), and let
J = [B, A] be an interval far enough in the fundamental chamber. Inspired by [[37], Proposition
11.15], we claim that, for all p € XV N E*,

B(A)P = B(A+ p) B+, (6.1)

par
: [1B+p, Atp)
so we cannot use the pullback technique we developed in §5.2 to get the isomorphism of Sj-

modules above. On the other hand, we proved in Lemma 3.2.5 that, for all ;4 € XV, there is an
isomorphism of k-moment graphs

We showed in §3.2.3 that SﬂZrA] is in general not isomorphic to as moment graph,

stab stab
Tu - —
s 9\[B,A] 9\[B+u,A+uJ

61
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Thus, by Lemma 2.2.2, we get an isomorphism between the indecomposable canonical sheaf
PB(A) on QTFZ‘DA] and 7, %(A + 1), the pullback of the indecomposable Braden-MacPherson sheaf

%#(A +p) on S\SEB;E Atp)”
M I
For any finite interval J far enough in the fundamental chamber, consider the monomorphism

ig ST:ab — S‘I’fr, given by igy = idy and ig;, = id for all z € J. We get the functor

stab . Shgper — Shguan, defined by the setting F - Fstab .= j¥(F). The goal of this chapter is
J J

to prove the following result.

Theorem 6.1.1. For all finite intervals far enough in the fundamental chamber, the functor
.stab Shg‘pw — Shgff“b preserves indecomposable Braden-MacPherson sheaves.
J
We will prove this theorem via explicit calculations in the 5/[5 case, while for the general case
we will need deep results and methods developed by Fiebig in [18].
Once proved Theorem 6.1.1, we get Equality 6.1 by applying Lemma 3.2.5.

6.2 The subgeneric case

In this section, Smi’) resp. GP?") denote the parabolic moment graph, resp. the stable
moment graph, for the A; root system. Moreover, we suppose that k has characteristic zero and
we write S instead of Sg.

We have already proved that for any two vertices v, w with v < w the stalk of the Braden-

MacPherson sheaf on §%, is #(w)” = S, that is equivalent to the flabbiness of the structure

par stab

sheaf on G2, . In order to show that the functor preserves indecomposable canonical sheaves,

it is in this case enough to verify that, for any vertex w, the structure sheaf A on Ssgzb is still
flabby. -

Recall that the set of vertices of GP2* (and so of §5**P) can be identified with the finite (co)root
lattice, that is Za, where a = oV is the positive (co)root of A;. Moreover, GP?' is a complete
graph and the label function is given, up to a sign, by {(ha — ka) = a+ (h+k)c. By definition,
we get G5%2P from GP?' by deleting the non-stable edges, then ha — ka € €52 if and only if
sgn(h) = —sgn(k) (where, by convention, we set sgn(0) = —).

Lemma 6.2.1. Let r € Z~q. If n € Z, set, for any h € Z, with ha < na,

0o if |kl €llnl—7r+1,n]
“Zna,ha = Hth [(—a+(nl=h=dc)(In| —h—9)] i h e (0,|n| =]
[Tizo [(e+ (nl+h=dc)(n| +h =] if h e lr—nl,0]

Then °z),, = (°2) 4 na) € TS nat, A) -

na,ha

Proof. We verify that, for any h, k € Z such that ha, ka < na, if ha — ka is an edge, then

ez -z =0 (mod a+ (h+k)c) (6.2)

na,ha na,ka

We may clearly suppose h > 0 and k£ < 0.
Let at first consider h € [|[n| —r + 1,n]. If —k € [|n| — 7 + 1,n], then °z] ., =2}, 1o =0
and there is nothing to prove. Otherwise, k € [r — |n|, 0] and

r—1

— 2nore =0 [J [(e+ (In| + & —i)e) (In] + &k — )] (6.3)
1=0

e_r
Znoz,ha
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Now, o + (h + k) divides [T/~ [( + (|n| + k — i)c) (|| + k — i)] if and only if there exists an
i € [0, — 1] such that |n| —¢ = h, i.e. h—|n| = —i. But we supposed h € [|n| — r + 1, n] that is,
precisely, h — |n| € [-r + 1,0].
Let consider the case h € (0, |n| —r]. If =k € [|n| — r + 1,n], then
r—1

ez;a,ha =€ z;a,ka = H [( —a+ (|n| —h— ’L)C)(|TL| —h— Z)] = 0. (64)

=0

Now, a+ (h+ k) divides [T}y [(— a+ (In| = h—1i)c)(|n| — h —i)] if and only if there exists an
i€ [0,7" — 1] such that |n| — i = —k, i.e. —k —|n| = —i. But we supposed —k € [|n| — r + 1, |n]]
that is, precisely, —k — |n| € [-r + 1,0].

Otherwise, k € [r — |n|,0] and

e_r

Zna,ha - Zna ka —
= ILise[(—a(nl = A= )e)(In| = h = ] = TTiZg[( (k + Inl = i)e) (k + n] = i) =
=11 [(k:+h+|n| h—0)(|n] —h — i)+

—H [( k— h+k+|n|—i)(|n\+k—i)c]: (mod a + (h + k)c)
=" [[i5o[(k + [n| —i)(|n| = h = i) = (=h + [n| = i)(In| + k — )] =0

Lemma 6.2.2. Letr € Z~q. If n € Z, for any h € Z, such that ha < na, we set

0 if |hl€(ln]—r+2,|n]]
hona =4 Iz [(—a+(nl—h=dc)(n| —h—i+1)] if  he(0|n]—r+1]
= [(a+(|n|+hﬂ+1)c)(|n| +h—1i)] if helr+n—1,0]

Then °zp, = (°2pa.na) € TH{S nat, A) oy

Proof. The proof is very similar to the one of the previous lemma and therefore we omit it. [
Define 20, = (1)ha<na-

Lemma 6.2.3. Let v € Z>o9, n € Z and m € 7Z be such that ma < no. For all z €
I([ma,nal, A)¢ry, there exist "s}c,esi € Sgiy, with i € [0,7], j € (0,7] and k such that ka €
[ma, nal, such that

T T

= Z es{c( Zk(;j)kae[ma,na] + Z 082(022a)ka€[mo¢,no¢]~ (65)
j=1 i=0

Proof. Let ha be the maximal vertex in [ma, na] such that z,, # 0. We prove the statement
by induction on I = §[ma, ha.

If such a vertex does not exists, that is [ = 0, then z = (0) and there is nothing to prove.

We should consider four cases: n > 0and [ >0;n>0and [ <0;n<0and!>0;n<0
and [ < 0. Actually, we will verify only the first case, since the others can be proven in a very
similar way.

Let n >0 and h > 0. If h = n, then we set 2’ = z — 28,20 and the result follows from the
inductive hypothesis. Otherwise, h < n and then [T}, "H—a+ (n— h—i)c) divides zpq in S
and we may set

n—h—1
esp "= [ [(—a+(n—h+i)e)(n—h—i)]"" zha € Spronin}- (6.6)
=0
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Now 2/ := 2z — es};_"J’hH . (ez,f;h)kae[ma’m] € I'([ma, nal, A){,y has the property that z;, = 0
for all k € [ha,na] and we get the statement from the inductive hypothesis.

O

Corollary 6.2.1. For any n € Z, the structure sheaf A on G%¢® is flabby.

<na

Proof. We have to show that every local section z € I'(J,.A), with J open can be extended to a
global section z € I'(G%%P ' A). Since the set of vertices of 5% is totally ordered, then any open

set of G%¥P is actually an interval, that is there exists an m € Z such that J = [ma, na/.

Suppose z € I'(J,A){ry, then by Lemma 6.2.3, we can write

T

r
= Z esfc(eZI:;])kaE[ma,na] + Zosﬁc(ozza)kae[ma,na} (6.7)
=0

Jj=1

By Lemma 6.2.1 and Lemma 6.2.2, z is a sum of extensible sections, and so it is extensible
as well.

O

Finally, we get the following theorem.

Theorem 6.2.1. Let g = sly. In this case, for all finite intervals J, the functor -5t

indecomposable canonical sheaves.

preserves

6.3 General case

In order to prove our claim, we have to show that, for any interval J far enough in the fun-
damental chamber, if £ is an indecomposable Braden-MacPherson sheaf on QFIM, then %52 is
indecomposable and satisfies properties (BMP1),(BMP2),(BMP3),(BMP/). Observe that prop-
erties (BMP1), (BMP2) are trivial and (BMP/) comes from the fact that T'(J, F) — T'(J, F5tab)
for any F € Shg‘pjar, so we only have to show that %°%2P is a flabby indecomposable sheaf on
g

6.3.1 Flabbiness

It is possible to define a functor -P" : Shg — Shgper in a very easy way. Let F =
({F*},{FFH ps.£}), then we set (FP)* = F2 for any x € V, (FP*)F = FPfor any E € &€
and pi°; = po.p- A fundamental step in the proof of the flabbiness of 4" consists in showing
that -P°" maps canonical shaves to flabby sheaves. In order to get this, we will combine several
results of Fiebig that we are going to recall.

Hereafter we will consider translation functors on the category of Z-modules, where Z is the
structure algebra of §. From now on 6, will denote the translation functor defined by Fiebig in
[13]. The definition is analogous to the one we have given in Chapter 4. We will moreover denote
by H the corresponding category of special modules. Thus the following theorem holds.

Theorem 6.3.1 ([13]). Let M € Z — mod. Then M € H if and only if it is isomorphic to the
space of global sections of a BradenMacPherson sheaf on G.
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In [14], Fiebig defined the localisation functor .£ : Z(X) — mod — Shy, for all k-moment
graphs X, that is left adjoint to the functor of global section I' : Shge — Z(X) — mod (cf. [[14],
Theorem 3.5]). Using Fiebig’s terminology, we may now say that an object M € Z — mod is
flabby if the corresponding sheaf # (M) is flabby. So our claim is equivalent to the fact that
Z(T(grer)) = Z(T(F))Per is flabby if F is a Braden MacPherson sheaf. We will prove it using
translation functors.

When we defined translation functors, we did not use the partial order on the set of vertices,
since the structure algebra does not depend on it. Thus it makes sense to speak of the translation
functor 6P : Z(GP') — mod — Z(GP®") — mod and this clearly coincides with 6, : Z(G) — mod —
Z(9) — mod. Then also the corresponding categories of special modules (see §4) coincide, but,
because of this different order, we get a different topology on the set of vertices and so M € H =
HPer could be such that £ (M) is flabby in Shg, while .Z (M )P is not in Shgrer. In [13] Fiebig
proved the following fact (used actually in the proof of Theorem 6.3.1).

Theorem 6.3.2 ([13]). 0, : Z(G) — mod — Z(G) — mod preserves flabby objects.

The proof of the theorem above is rather long, so we omit it. However we want to point out
the fact that in order to get the previous result Fiebig used only three properties of the Bruhat
order, namely

(1) The elements w and tw are comparable for all w € W* and ¢ € T*. The relations between
all such pairs w, tw generate the partial order.

(2) We have [w,ws] = {w,ws} for all w € W* and s € 8 such that w < ws.

(3) For z,y € W such that z < zs and y < xs we have ys < zs. For z,y € W? such that
zs < x and xs < y we have zs < ys.

Since Lusztig in [37] proved that the generic order has also these properties, we get
Theorem 6.3.3. 0, : Z(57°") — mod — Z(GP°") — mod preserves flabby objects.
We are now ready to conclude.

Proposition 6.3.1. Let F be a Braden-MacPherson sheaf on G then FP¢" is a flabby sheaf on
gpar,

Proof. We want to show that F = I'(F) is flabby. By Theorem 6.3.1, we know that F' € 3, so
we may prove our result by induction. If ' = B,, there is nothing to prove. We have to show
now that, if the claim is true for M € X, then it holds also for 65(M), that, again by Theorem
6.3.1, is still isomorphic to the global sections of a Braden-MacPherson sheaf on §. But now by
the inductive hypothesis we get that M is a flabby object in Z(GP®") — mod and so, by applying
Theorem 6.3.3, 6;(M) = 0°°* (M) is also a flabby object in Z(SP®") — mod.

O

Decomposition of the functor -staP

The functor -***° may be obtained as composition of the five following functors.

*
s Ppar .per

Shgper Shg Shgper —> Shgpe: ——> Shguua,
J J

— T -

Shgper

Where



66 CHAPTER 6. THE STABILISATION PHENOMENON

°i: Sf’fr <GP and j : Slsfab < G%tab gre the inclusions of subobjects
® Ppar : § — GP?" is the quotient homomorphism we defined in §3.1.3

e -°PP ig the pullback of the isomorphism of moment graphs f : 9|S§ab — Sf’jer defined as

.V
fv=idand f,.(A\) =27 1(\) forallz € Jand A € @ (this is proved to be an isomorphism
in Lemma 5.2.1).

Now, it is clear that i. and j* map flabby sheaves to flabby sheaves. Moreover, py,,, resp.
-9PP by Corollary 5.3.2, resp. Lemma 2.2.2, preserves Braden-MacPherson sheaves, and so, in
particular, the flabbiness. Finally, Proposition 6.3.1 tells us that also the functor -P®" preserves
the flabbiness. It follows that if we apply -*%*P to a Braden-MacPherson sheaf we get a flabby
sheaf on ST;ab, as we wished. Thus we obtain the following result.

Theorem 6.3.4. Let F € Shgz‘m be a Braden-MacPherson sheaf, then FP" € Shg.lstab is a flabby
J J
sheaf.

6.3.2 Indecomposability
Here we prove the only step missing in the proof of Theorem 6.1.1.

Proposition 6.3.2. Let J be a finite interval of GP*" far enough in C* and let B ¢ Shgz‘m be an
J

indecomposable Braden-MacPherson sheaf. Then 5% is also indecomposable as sheaf on Slsjt“b.

Proof. Since £ is indecomposable, by Theorem 2.1.1, Z = Z(w) for some w € J, that implies
B(w)® =0 = P2 for all z > w (z € J) and B(w)¥ = S =2 $*Pv. Suppose that
#5tP = @D, then for what we have just observed, we may take € and D such that €% = D* =0
for all z > w, €¥ 2 S and D = 0. Let y € J be a maximal vertex such that DY # 0. For any
E :y — z € &, by definition of Braden-MacPherson sheaf, p, p : Z(w)* = $°@>* = ¢* —
BE = #5%2P.F i5 surjective with kernel [(E) - % = [(E)C* and this implies DF = 0.

We now localise I'(#) at a finite simple root 3, as we have done in §4.3. Remark that, since
we are representing the parabolic Bruhat graph using alcoves, we are taking the quotient of G°PP
instead of G. It means that we have to twist the action of S on any vertex z by ~'. However,
once the action of the symmetric algebra is twisted, all the results in §4.3 still work in the same
way. By combining Theorem 6.3.1 and Lemma 4.3.2 we know that .Z(I'(%)”) is a direct sum
of Braden-MacPherson sheaves on certain moment graphs, each one of them is isomorphic to a
finite interval of the parabolic Bruhat graph for A;. From the definition of %, it follows that
L(D(B40)%) = (L (D(B)P)b,

We have already proved that p, (DY) = 0 for any E € &5, N Eg and we want to show
that p, g(DY) = for any E € Es,. If it were not the case, there would be a non -stable edge

F € &5, N Eng such that p, (DY) #0. Let 8 €A, be such that [(F) = 8 +né for some n € Z.
Localising at 3, we would get pf}F(Qyﬂ) # 0 and from the A; case, it follows that ij(Dy’ﬁ) £0
for all £ € &5, in [-direction, but we proved that this is not the case.
We are now ready to conclude. From what we showed, it follows that u,(€Y) = %°¥ and this
implies DY = 0, since (%Y, u,) is a projective cover of Z%Y.
O
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