
Università degli Studi “Roma Tre”

Scuola dottorale in “Economia e metodi quantitativi”

XXIII Ciclo

STRUCTURAL LEARNING OF BAYESIAN

NETWORKs FROM ORDINAL DATA

Flaminia Musella

A.A. 2010/2011

Supervisor:

Prof. Paola Vicard

Coordinatore:

Prof. Julia Mortera

To Massimiliano

Abstract

In observational studies many features are measured on a sample in a

given time. When the measurement scale is ordinal, observed variables

are categorical ordinal variables. Their increasing presence in databases

has influenced the development of methods for ordinal data analysis (Joe

1971; Clogg and Shihadeh 1994; Agresti 2010). Frequently, researchers are

interested in the multivariate analysis and dependencies (Cox and Wermuth

1996). Graphical models (Lauritzen 1996) can be useful for this purpose:

they are a family of multivariate statistical models that study dependencies

among variables and provide a representation of them by means of graphs.

Among these models, Bayesian networks (Cowell et al. 1999) represent the

joint distribution of a set of variables using directed acyclic graphs (DAGs).

When the structure of phenomenon is unknown (or partially known), building

the DAG manually may be difficult, but the network can be learnt directly

from data. This phase, called structural learning, can be performed following

different approaches. However, there are few methods suitable for ordinal

data. The main task of this PhD thesis is to perform the structural learning of

Bayesian networks in presence of ordinal variables. As original aspect, a new

procedure able to take into account information provided by ordinal variables,

has been developed. The new algorithm, called OPC, represents a variation

of one of the most used and well-known constraint-based algorithms, namely

PC (Spirtes et al. 2000). A nonparametric test, appropriate for ordinal

variables, has been used in the OPC procedure. Some simulation studies

have been conducted in order to evaluate and compare the performance of

PC and OPC algorithms. On the basis of results, the main features and

limitations of the OPC procedure are discussed.

Acknowledgements

This thesis contains the research I have conducted during PhD course

of studies in “Metodi Statistici per l’Economia e l’Impresa”†. First of all I

would like to thank Prof. Julia Mortera, who coordinates the PhD activities,

and all professors that, with their courses and seminars, have contributed to

my training over these years. I desire to warmly acknowledge Prof. Paola

Vicard: she introduced me to the area of graphical models and she patiently

supervised my work. I have appreciated very much her willingness.

I am also grateful to Department of Economics, Roma Tre University, and

PRIN2007 project of MIUR∗ for having given me the opportunity to attend

extra courses and to take part to some conferences both in Italy and abroad.

I am particularly grateful for having financed me during my stay in Oxorfd,

UK. About this, I am deeply indebted to Prof Steffen Lauritzen who gave me

the opportunity to study at the Department of Statistics, Oxford University,

for four months. He involved me in writing the R code with Prof. David

Edwards who is another professor I desire to warmly thank.

I am also grateful to Prof. Anna Gottard for the time she dedicated me at

Warwik University - UK.

A special thank to Prof. Pierluigi Conti and Prof. Alan Agresti that

suggested to me some relevant references. Many thanks to Dr. Roberto

Di Manno who helped me getting started.

I would also like to thank Prof. M. Francesca Renzi who involved me in some

†Statistical Methods for Economics and Enterprise
∗Italian Ministry of Education, University and Research

1

applied research projects in these years.

Many thanks to my colleagues that have shared with me this experience and

to my friends (Chiara, Emanuele, Francesca, Roberta) that have shared with

me the stress.

My deepest thank to my husband and to my family that have always sup-

ported and encouraged me during these three years.

2

Contents

1 Introduction 5

1.1 Categorical variables . 5

1.2 Association for ordinal variables 7

1.3 Goals and contribution . 9

1.3.1 Purpose and objectives 10

1.3.2 Data and software . 10

1.4 Thesis overview . 11

2 Basics on Bayesian networks 13

2.1 Elements of graph theory . 14

2.2 Conditional independence . 19

2.2.1 Independence graphs and Markov properties 22

2.2.2 Markov properties on undirected graphs 24

2.2.3 Markov properties on directed acyclic graphs 26

2.3 Bayesian networks and further properties of DAGs 30

3 Structural learning 37

3.1 PC algorithm . 40

3.1.1 Entropy, cross entropy and conditional cross entropy . 41

3.1.2 Algorithm structure . 43

3.1.3 Some variations on the PC algorithm 48

3.2 Rank-based tests . 50

3

CONTENTS CONTENTS

3.3 OPC algorithm . 60

3.4 NOPC algorithm . 62

4 Applications and results 66

4.1 Performance measures . 67

4.1.1 True positive rate, false positive rate and true discovery

rate . 68

4.1.2 Structural Hamming Distance 70

4.2 Empirical evaluation . 73

4.2.1 Costumer satisfaction data 73

4.2.2 Political Action data 79

4.3 Further considerations . 83

Conclusions 89

Bibliography 93

Appendices 100

A A suite of R functions 102

A.1 Setting the type of variable 102

A.2 Conditional Independence tests 104

A.3 PC algorithm . 105

A.4 OPC algorithm . 108

A.5 NOPC algorithm . 111

B R code 115

4

Chapter 1
Introduction

This thesis deals with structural learning of Bayesian networks from categor-

ical ordinal data. The aim is to propose a constraint-based procedure that

is a variation of PC algorithm. The advantage of our algorithm is that it is

appropriate for ordinal data. For this reason, we start providing preliminaries

on categorical variables and, in particular, on ordinal variables.

1.1 Categorical variables

Statistical variables can be classified in different ways according their nature

(qualitative or quantitative variables), according to the set of values over

which the variable is defined (continuous or discrete variables), according to

the measurement scale (nominal, ordinal or ratio). We are interested in those

variables whose measurement scale is based on a set of categories and that are

called categorical variables. These variables are common in several research

areas such as social science, biostatistics, genetics, education and marketing.

The increasing presence of them in datasets has stimulated the development

of appropriate methods for analysing categorical variables (Agresti 2002).

Many types of variables can be labelled as categorical; they are:

• nominal variables: these take distinct values on a qualitative scale. The

categories of nominal variables do not have an ordering. Some examples

are gender (that takes categories “male” or “female”), eye color (“blue”,

5

1.1 Categorical variables

“brown”, “green”, “gray”, “other”), favorite type of residence (“house”,

“flat”, “tower”, “other”). Levels of nominal variables are qualitatively

different but not quantitatively since they are a list of nouns.

• ordinal variables: levels of such variables are clearly and naturally

ordered but distance among categories cannot be established. Ordinal

scales are used in many situations. For instance, can be used for mea-

suring attitudes and opinions such as satisfaction degree (that can take

levels “very dissatisfied”, “little dissatisfied”, “moderately satisfied”,

“very satisfied”), for expressing stages of a disease (“first”, “second”,

“third”), for classifying levels of education (“none”, “high school”,

“bachelor’s”, “master’s degree”, “doctorate”). Number of levels depend

on what we are measuring and how we decide to measure. Scales can

have an odds or even number of categories. Also discrete variables

having few levels and continuous variables collapsed in a small number

of ordered classes can be considered as ordinal. Some examples are the

number of cars in a family (0,1,2) and the annual incoming measured

on a continuous scale and summarised in distinct ordered classes.

The type of variable determines which statistical method is more appropriate

in the data analysis. Nevertheless, since ordinal variables are hierarchically

higher than nominal, some techniques for nominal variables are commonly

used with ordinal data. Following this method, the ordering among categories

is not considered. Ignoring such ordering produces a (sometimes relevant)

loss of information. Furthermore, results gained with nominal methods

may be quite different from those achieved using ordinal variables (Clogg

and Shihadeh 1994; Agresti 2002). In detail, Agresti (2010) discusses some

advantages coming from treating ordinal variables as ordinal rather than

nominal. The most relevant are:

• ordinal models can be more parsimonious and can be simpler to adopt

and interpret;

• ordinal analysis can give more powerful results.

6

1.2 Association for ordinal variables

The last consideration is essentially the reason why we are interested in

preserving the ordering also in graphical modelling. As it will be clear in

Chapter 2, graphical models are multivariate statistical models for studying

independence between variables. Methods for testing independence between

ordinal variables can be more powerful than those between nominals. How-

ever, there are few ordinal sensitive procedures for learning Bayesian networks

structure from ordinal data. So, the motivation of this dissertation is to

propose an algorithm that takes into account information provided by ordinal

variables. The notion of association for ordered categories is a key concept

for our purpose and is introduced in the following Section.

1.2 Association for ordinal variables

Relationships between categorical variables are commonly displayed by means

of tables. Let X and Y be two categorical variables with T and C categories

respectively. It is possible to classify units on both variables by a table

with T rows and C columns. The cells of the table represent all possible

outcomes and contain frequency counts. Such a table is called contingency

table or cross-classification table or T × C table (see Table 1.1). Using the

common notation, the generic cell (i, j) stands for the pair with response

(X = i;Y = j); the frequency count of outcome (X = i;Y = j) is denoted

by nij.

Y
X 1 2 C Total
1 n11 n12 n1C n1+

2 n21 n22 n2C n2+

....
T nT1 nT2 nTC nT+

Total n+1 n+2 n+C n++

Table 1.1: A generic contingency table

The table can also display the probability distribution πij, that is the

7

1.2 Association for ordinal variables

joint distribution of (X = i;Y = j), and marginal distributions of X and

Y , that are respectively denoted by πi+ =
∑

j πij and π+j =
∑

i πij. Two

variables, X and Y are said to be independent if πij = πi+π+j, for all i and

all j.

Given a contingency table, we can summarise the association between vari-

ables by a single index. Measures of association for categorical variables are

largely discussed in the literature (Agresti 2002, e.g.). In this Section, we

recall some measures of association for categorical ordinal variables only.

Categories of ordinal variables have an inherent ordering that provides an

additional information beyond that possessed by nominal variables. For

this reason some appropriate measures of association have been developed

(Agresti 2010). In particular, in presence of ordinal variables it is common

looking for a monotone trend. Generally speaking the monotone association

is the tendency of Y to increase/decrease as X does. So, it is frequent to

deal with the concept of positive dependence (or concordance) and negative

dependence (or discordance). In detail, a pair of observations is concordant

if the the subject ranked higher on X, ranks higher on Y too. A pair is

discordant if the subject ranked higher on X, ranks lower on Y . A pair is

tied if subjects rank the same on both variables.

Several measures are based on the number of concordant and discordant pairs

of observations. Some of the most used measures are:

• Gamma (Goodman and Kruskal 1979): is a symmetric measure denoted

by γ and varying between −1 and 1. It takes positive values when

variables are positive associated; it is negative if the association is

negative. Independence implies that γ = 0 but the converse is not

true;

• Yule’s Q (Yule 1912): this measure is the Gamma index computed on

a 2× 2 table;

• Kendall’s tau-b (Kendall 1945): is a symmetric measure less sensitive

than γ; it is mainly based on the difference between concordant and

discordant pairs. It assumes values between −1 and 1 but it reaches |1|
only for square tables. It is equal to 0 when variables are independent.

8

1.3 Goals and contribution

Here, we only use Gamma as measure of monotone association. Formula of

Gamma index and an illustrative example is available in Section 3.4.

Having introduced the key concepts of ordinal variables and association for

ordinal variables, a summary of the aim of this dissertation and an overview

of the thesis are provided in the following Sections.

1.3 Goals and contribution

This dissertation deals with Bayesian networks modelling. A Bayesian net-

work is a graphical model that provides a representation of independence

structure between variables by a Directed Acyclic Graph (DAG). When the

dependence structure of phenomenon is known, the graph can be manually

built on the basis of expert knowledge; if the structure is unknown, the

network can be automatically learnt from data. The last case is largely

studied and discussed in the literature (Neapolitan 2003, e.g.) and it is

known as structural learning. The main approaches to structural learning

are the scoring and searching and the constraint-based. The first is based

on a searching, in a specific space, of the model that has the best score

given a chosen metric; the second focuses on the conditional independence

relations revealed from the data. More specifically, algorithms belonging to

the constrain-based approach carry out a sequence of independence statistical

tests and draw the network in according to the test results. Even if the field

is quite mature, this work contributes by introducing a new procedure that is

appropriate for ordinal data. The technique is an attempt to learn a network

in presence of ordinal variables without demoting them in nominal. More

specifically, the focus is on a new constraint-based algorithm capable to learn

a DAG structure from ordinal data; the procedure involves a nonparametric

test for monotonic trend. The new algorithm, namely OPC (Ordinal PC)

algorithm, represents a variation of one of the most used algorithms based

on independence test and called PC algorithm. Applications here presented

show that, when ordinal variables occur and the sample size is small, the new

algorithm is a more efficient solution than PC algorithm.

9

1.3 Goals and contribution

1.3.1 Purpose and objectives

The purpose of this research is thus two-fold:

1. to develop a method for learning Bayesian networks structure without

ignoring the additional information provided by ordinal variables.

This is achieved by replacing the test used by PC algorithm and com-

puted on nominal-nominal tables with a nonparametric test on ordinal-

ordinal tables.

2. to test the structural accuracy of OPC algorithm in comparison with

that of PC algorithm.

Simulation studies have been conducted with the aim to measure and

compare algorithms performance.

A further objective is to introduce another algorithm called NOPC (Nominal-

Ordinal PC). This represents a natural extension of OPC algorithm. The pro-

cedure is appropriate in presence of mixed (nominal and ordinal) variables.

It includes some nonparametric tests that can be used to check conditional

independence for categorical data. The NOPC algorithm is presented and

discussed but its performance are not tested in this dissertation.

1.3.2 Data and software

Simulations have been conducted using two different datasets.

• Customer Satisfaction data: these data represents a portion of a dataset

coming from a real survey of customer satisfaction about services deliv-

ered by an Italian post-office; the sample is made of 228 units that have

been interviewed by means of a face-to-face questionnaire; variables

have been measured on three ordinal levels and concern the following

six aspects: reliability, reassurance capacity, tangible aspect, empathy,

response capacity and overall satisfaction.

• Political Action data: these data, well-known in literature (Barnes and

Kaase 1979), come from a cross-national survey conducted with the

10

1.4 Thesis overview

aim to measure attitude and opinions on politics. Data are a selection

of six variables measured on a six-point ordinal scale and linked to the

concept of political efficacy: NoSay, voting, complex, NoCare, touch,

interest. Only records without missing values (768) have been taken

into account.

Software used for implementing the algorithm is R (R Development Core

Team 2009). Some new functions have been written and some already

existing commands have been used. R packages used, additional to those

standard, are:

• pcalg (Kalisch and Bühlmann 2007) for structural learning algorithms.

In detail the package provides a version of PC algorithm by pcAlgo

function. This has represented the starting point for developing both

PC and OPC function.

• RHugin (Konis and Expert. 2010) for generating several datasets ac-

cording to a DAG;

• igraph (Csárdi and Nepusz 2006) for plots.

1.4 Thesis overview

The emphasis of this dissertation is to learn a Bayesian network when ordinal

variables occur. The innovative contribution is given by the OPC algorithm,

that is a constraint-based algorithm developed for handling the structural

learning from ordinal data. The thesis is organized in the following chapters:

Chapter 2 introduces some basic concepts of graph theory and conditional

independence. It provides an introduction on independence graphs as a

tool for summurising the interactions within a set of variables; Markov

properties are discussed as the formal link for merging probabilistic and

graphical aspects in graphical models. Finally, it deals with Bayesian

networks and their main features.

11

1.4 Thesis overview

Chapter 3 providing the main elements about structural learning and, more

specifically, about constraint-based algorithms, constitutes the core of

the thesis. The central topic is the PC algorithm and its procedure:

each step of the algorithm is analysed and the main limits are discussed.

This chapter also describes some nonparametric tests that are relevant

for checking conditional independence between discrete variables. The

main focus is on the Jonckheere-Terpstra test, appropriate for ordinal

variables, that is the tool used by OPC algorithm. This chapter also

describes the NOPC algorithm.

Chapter 4 introduces some performance indicators for comparing algo-

rithms. More specifically, the aim of this chapter is to compare perfor-

mance of algorithms. It describes the experimental studies developed

on 1000 samples simulated according to two different networks. Results

are presented with respect to different sample sizes (50, 100, 500).

Conclusion and discussion summurises the main research findings and

discusses the relevance of this research. It also highlights the further

developments related to the current work.

Appendices provide codes of functions written in R. In detail, Appendix

A includes a suite of R functions among which OPC and NOPC; in

Appendix B there is the R code used for carrying out simulations.

12

Chapter 2
Basics on Bayesian networks

Graphical models are multivariate statistical models that provide a pictorial

representation of probabilistic distributions. Diagrams used for displaying

the statistical model are graphs. The origins of graphical models can be

traced back to the beginning of 1900; the first applications were in physics

(Gibbs 1902) and genetics (Wright 1921) but they have been applied in

several fields such as economics (Wold 1954) and social science (Blalock

1971). More recently, graphical models have been discussed by Whittaker

(1990), Lauritzen (1996) and Cox and Wermuth (1996).

The large applicability of graphical models is mainly due to their relevant

features; one of the main advantages is that they can be applied for modelling

discrete, continuous and mixed variables. Furthermore, the appealing graph-

ical representation of model provides a natural and intuitive way to read off

the independences statements between variables. As a consequence of this,

graphical models make easy communication between experts of a specific

domain and statisticians. Another relevant aspect of some graphical models

is their ability to combine small problems in larger problem. This feature,

called modularity, makes the tool powerful to handle complex statistical

models involving many variables.

In recent years, the interest in graphical models increased with the use of

Bayesian networks in expert systems (Cowell et al. 1999). Bayesian networks

are a particular kind of graphical models based on directed acyclic graphs.

13

2.1 Elements of graph theory

Probabilistic expert systems combine Bayesian networks and computational

aspects with the aim to encode and summarise specialist expertises in a tool

approachable also by non experts.

Here, we focus on Bayesian networks and on their construction. Some basics

on graphical models and Bayesian networks are provided in this Chapter,

while the graphical modelling is dealt in Chapter 3. This Chapter is organized

as follow: Section 2.1 introduces some elements of graph theory; Section 2.2

introduces concepts of conditional independence and independence graphs;

finally, Section 2.3 deals with Bayesian networks and their properties.

2.1 Elements of graph theory

In this section some basics on graph theory are discussed. The first concept

introduced is the notion of graph (Berge 1973); then other concepts and the

nomenclature of graph theory are introduced.

A graph is a pair of sets V and E, denoted by G = (V ;E). In detail, V is

a finite set of vertices or nodes and E is the set of edges that is a subset of

the V × V set of ordered pairs of distinct nodes.

Given two distinct nodes a and b ∈ V , the edge (a; b) ∈ E is called undi-

rected if both (a; b) and (b; a) ∈ E or directed if (a; b) ∈ E but (b; a) /∈ E.

Undirected edges are displayed in the graph by lines, for instance a − b,

while directed edges by arrows, for instance a → b. If the graph has only

undirected edges, the graph is an undirected graph; if it has only directed

edges is a directed graph. An example of undirected and directed graph

is displayed in Figure 2.1. Graphs that have both directed and undirected

edges are called hybrid graphs.

Let a and b be two generic nodes in a graph. If there is a line between

them, a− b, they are said to be adjacent or neighbours and they are denoted

by a ∼ b; if a is linked to b by an arrow, a is said to be parent of b, while b is

said to be child of a; if there is a neither line or arrow between a and b, they

are non-adjacent, i.e. a � b. For instance nodes 1 and 2 in Figure 2.1(a) are

adjacent since they are connected to each other by a line; node 1 in Figure

2.1(b) is parent of node 2; it follows that the node 2 is the child of the node

14

2.1 Elements of graph theory

1 2

4

3

5

(a) An undirected graph

1 2

4

3

5

(b) A directed graph

Figure 2.1: An undirected graph and a directed graph

1. In both Figures 2.1(b) and 2.1(a) nodes 1 and 3 are non-adjacent since no

edge exists between them. A graph is complete if there is an edge between

each pair of nodes.

Let A be a subset of V , A ⊆ V , the set of parents, children or neighbours of

nodes in A are respectively denoted by:

• pa(A) =
⋃
a∈A pa(a) \ (A);

• ch(A) =
⋃
a∈A ch(a) \ (A);

• ne(A) =
⋃
a∈A ne(a) \ (A).

In addition it is possible defining the boundary of A, bd(A), as the set of

nodes in V \A that are parents, or neighbours of nodes in A and the closure

of A, cl(A), as the set constituted by A and its boundary:

• bd(A) = pa(A) ∪ ne(A);

• cl(A) = A ∪ pa(A);

15

2.1 Elements of graph theory

For instance, let A be the subset of nodes A : {4, 5} in the graph of Figure

2.1(a). The set of neighbours and the boundary of A are the following:

• ne(A) = bd(A) = {2, 3}.

• cl(A) = {2, 3, 4, 5};

For the subset A : {2, 4} in the graph of Figure 2.1(b), the set of parents,

children and the closure of A are the following:

• pa(A) = bd(A) = {1, 3}.

• ch(A) = 5;

• cl(A) = {1, 2, 3, 4};

Any subset A ⊆ V induces a subgraph GA = (A;EA) where the set EA

consists in those edges of E that have both endpoints in A. If the induced

graph is complete, then the subset A ⊆ V is called complete subset. A clique

is a subset A ⊆ V maximally complete, i.e. it becomes incomplete adding

another node.

A sequence of n distinct nodes a = vo, v1, ..., vn = b such that (vi−1, vi) ∈ E
for all i = 1, ..., n is called path of length n between a and b. The path that

leads from a to b is denoted by a 7→ b and it is said to be descendant if

edges are all oriented in the same direction (or some of them are oriented

in the same direction and others are undirected). If there is a descendant

path between a and b, a is called ancestor of b and b descendant of a. For

instance, consider the graph in Figure 2.1(b): the path 1→ 2→ 4→ 5 is a

descendant path since edges are all oriented in the same direction; the path

1 → 2 → 4 ← 3 is not descendant since there is an inversion of direction in

the path. In a descendant path, a 7→ b, the set of all ancestors of b is denoted

by an(b) and the set of all descendants of a is denoted by de(a). Two nodes,

a and b are connected to each other if there is a descendant path from a to

b and a descendant path from b to a. The set of non-descendants is denoted

by nd(a) = V \ (de(a) ∪ a).

A n− cycle is a path of length n where a = b, i.e. the starting point and the

16

2.1 Elements of graph theory

ending point coincide. The cycle is directed if it contains all arrows equally

oriented.

Let A be a subset of V , if bd(a) ⊆ A ∀a ∈ A, then A is an ancestral set.

The smallest ancestral set containing A is denoted by An(A). The notion

of ancestral set is relevant for reading conditional independences in directed

graphs.

Before concluding this introduction about theoretical aspects of graphs we

define an additional algebraic element providing a matrix representation of

graphs: adjacency matrix. The matrix denotes which vertices are linked to

each other by an edge in a given graph. It can be defined for every kind

of graph. Here, we only focus on matrices representing some typologies of

graph that we are going to handle. In this dissertation, we deal with:

• undirected graphs. An undirected graph, from now on UG, has all

undirected edges and it is generically denoted by G = (V ;E);

• directed acyclic graphs. A directed acyclic graph, from now on DAG,

has all directed edges and no directed cycle, i.e. it is not possible

starting from a node, go back to the same node following arrow direc-

tions. Usually, a DAG is denoted by GD = (V ;ED) where D stands

for directed.

We firstly define the adjacency matrix for undirected graphs.

Definition 2.1 (Adjacency matrix). Let G = (V ;E) be an undirected graph

on K nodes. The adjacency matrix of G is the K × K matrix, denoted by

A, whose entries Aij are given by

Aij =

{
1 if and only if (i, j) ∈ E
0 otherwise

Some properties of this matrix are:

• Aii = 0 for any node i in V ;

• if Aij = Aji = 0 then i 6∼ j in G and these zeros are also called

structural zeros;

17

2.1 Elements of graph theory

• if Aij = Aji = 1 then i ∼ j in G;

• the matrix A is real and symmetric.

Consider the graph in Figure 2.1(a); the matricial representation of this graph

is given by the following adjacency matrix:

A =

0 1 0 0 0

1 0 0 1 0

0 0 0 1 0

0 1 1 0 1

0 0 0 1 0

For DAGs, adjacency matrix can be defined as well. In the directed case,

entries of A are given by:

Aij =

{
1 if and only if (i→ j) ∈ E
0 otherwise

In this case, some of the previous properties do not hold. In particular, the

matrix is still real but, clearly, not symmetric. For instance, the adjacency

matrix associated with DAG in Figure 2.1(b) is the following:

A =

0 1 0 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

An equivalent representation of graph based on a matrix has been pro-

vided by Cox and Wermuth (2004). They define the edge matrix, here

denoted by E , as a triangular binary matrix whose entries Eij are 1 if and

only if j → i or j = i in the represented graph. As a consequence of this, the

edge matrix is a transpose of adjacency matrix with additional ones along

the diagonal, i.e.:

E = AT + I

18

2.2 Conditional independence

where the notation AT denotes the transpose matrix of A and I the identity

matrix.

This Section concludes providing a last notion for DAGs. Let GD = (V ;ED)

be a DAG; it is often useful referring to the moralized version of the graph.

The moral graph associated to GD is a graph Gm = (V ;Em) having the same

nodes of GD and a new set of edges, denoted by Em. The set Em consists

of edges in E, taken without considering directions, and edges obtained

by adding an undirected link between nodes with a common child. The

moral graph plays a crucial role for interpreting conditional independences

in directed graphs (see Section 2.2.3). In the following Section, we introduce

conditional independence notion and some properties.

2.2 Conditional independence

As previously said, a graphical model provides a pictorial representation of

independence structure of a set of variable, so it combines a probabilistic

and a graphical aspect. In the previous Section, some basics on graph theory

have been introduced; this Section deals with the conditional independence

concept that is the probabilistic aspect of graphical models.

Conditional independence has been formally discussed by Dawid (1980). We

provide the following definition.

Definition 2.2 (Conditional independence). Let X, Y and Z three random

variables with joint distribution P ; X is conditionally independent of Y given

Z (with respect to P), if for any measurable set A in the sample space of X,

there is a version of the conditional probability P (A|Y,X) which is a function

of Z alone.

According to the notation due to Dawid (1979), we write X ⊥⊥ Y |Z[P]

to say that X is conditionally independent of Y given Z under P . Generally,

P is fixed and we can use the simplified notation X ⊥⊥ Y |Z.

For three discrete random variables, X, Y and Z, the condition X ⊥⊥ Y |Z

19

2.2 Conditional independence

simplifies as

P{X = x;Y = y|Z = z} = P{X = x|Z = z}P{Y = y|Z = z} (2.1)

whenever P{Z = z} > 0

The factorization (2.1) is equivalent to several characterizations that are:

1. X ⊥⊥ Y |Z ⇐⇒ P{X = x; Y = y; Z = z} = P{X=x;Z=z}P{Y =y;Z=z}
P{Z=z}

2. X ⊥⊥ Y |Z ⇐⇒ P{X = x|Y = y; Z = z} = P{X = x|Z = z}

3. X ⊥⊥ Y |Z ⇐⇒ P{X = x; Z = z|Y = y} = P{X = x|Z = z}P{Z = z|Y = y}

4. X ⊥⊥ Y |Z ⇐⇒ P{X = x; Y = y; Z = z} = h(X = x; Z = z)k(Y = y; Z = z)

5. X ⊥⊥ Y |Z ⇐⇒ P{X = x; Y = y; Z = z} = P{X = x|Z = z}P{Y = y; Z = z}

Different expressions lead to some considerations about conditional inde-

pendence largely discussed in the literature (Dawid 1979; Pearl 1988). We

only focus on some of them. The first characterization states that the joint

distribution can be expressed as the product of marginal distributions of

conditional independent variables. The fourth expression states that the

factorization can involve also two generic functions non necessary coincident

with marginals. Another relevant aspect is that associated with the second

formulation: if X ⊥⊥ Y |Z, the distribution of X given Y and Z is entirely

determined by Z alone. This implies that Y is superfluous for determining

X once Z is given. This assertion recalls the logical concept of irrelevant

information. In detail, the conditional independence relation satisfies several

properties all interpretable in term of relevance that are:

(C1) if X ⊥⊥ Y |Z, then Y ⊥⊥ X|Z;

(C2) if X ⊥⊥ (Y ∪W)|Z, then X ⊥⊥ Y |Z and X ⊥⊥ W |Z;

(C3) if X ⊥⊥ (Y ∪W)|Z, then X ⊥⊥ Y |(Z ∪W);

20

2.2 Conditional independence

(C4) if X ⊥⊥ Y |Z and X ⊥⊥ W |(Y ∪ Z), then X ⊥⊥ (W ∪ Y)|Z.

These properties, formally discussed by Pearl (1988) and by Geiger and Pearl

(1993), can be interpreted as logical axioms of conditional independence. In

detail, (C1) property captures the symmetry property: given Z, if X does

not give any additional information about Y , then Y is irrelevant for knowing

X. (C2) stands for the decomposition axiom asserting that given Z, if two

combined sets, Y and W , are judged irrelevant to X, then each of them is still

irrelevant to X once taken separately. The weak union property is encoded

in (C3): given Z, learning the irrelevant information W does not allow to the

irrelevant information Y to become relevant to X. Finally, (C4) property

deals with the contraction axiom: if W is non informative to X after having

learnt Y and Z, then W must have been irrelevant to X also before having

learnt Y . The last two properties suggest that irrelevant information does

not alter the relevance state of other information.

Under the condition of positiveness of P , conditional independence satisfies

a further property that is the intersection axiom.

(C5) if X ⊥⊥ Y |(Z ∪W) and X ⊥⊥ W |(Y ∪ Z), then X ⊥⊥ (Y ∪W)|Z.

This property states that, if X and Y are separated by a set S1 = Z ∪W
and if X and W are separated by a set S2 = Y ∪Z, then the only intersection

of S1 and S2, i.e. Z, separates X and (Y ∪W).

(C1) − (C4) properties are also called semi-graphoid axioms and, as a

consequence of this, an algebraic structure that satisfies these axioms is

thus said to be a semi-graphoid; (C1) − (C5) are called graphoid axioms

and an algebraic structure that satisfies them is called graphoid. The main

advantage of semi-graphoids and graphoids concerns their graphical represen-

tation that makes easy reasoning about conditional independence. In order

to graphically interpret conditional independence, it is necessary to introduce

further elements that are discussed in the following Section.

21

2.2 Conditional independence

2.2.1 Independence graphs and Markov properties

Graphical models are an efficient and intuitive language that displays condi-

tional independence by graphs. A graph G = (V ;E) is thus a representation

of a model or, more specifically, of an independence model. An independence

model, generally denoted byM, is a set of conditional independence relations

and it is a graphoid whenever it satisfies the (C1)− (C5) axioms.

Graphically, the conditional independence statements can be portrayed by

separation concept in graphs.

Definition 2.3 (Separation). Let A, B and S be three disjoint subsets of

nodes in a graph G = (V,E). If every path between a node in A and a node

in B passes through at least one node in S, then A is separated from B by

S.

For instance, in Figure 2.1(a) nodes in the set A = {1, 2} are separated

from B = {5} by the set S = {3, 4}. Furthermore A ⊥⊥ B|S is a graphoid

since it is an algebraic structure that satisfies the graphoid axioms.

The separation property is similar to the decomposition and the weak union.

However, the separation is stronger then (C2) and (C3) properties. The

decomposition states that a single variable X may be independent of a

variable in the set Y even if it is dependent of the whole set; the separation

reflects that two sets of vertices are separated if there is no path between

an element of one set and an element of the other set. Furthermore, given a

graph, if A ⊥⊥ B|S, the separating set S can be enlarged without modifying

the independence relation between A and B; the (C3) property, instead, sets

out the conditions under which the conditional independence holds.

However, in some situation, vertex separation does not satisfy all conditional

independence dependence relations embodied in the model. Because of this

weakness, it is necessary to portray either conditional independences or

conditional dependences in a single graph that becomes a map of the model.

Generally speaking, an undirected graph G is a dependence map, D-map, of

M if there is a one-to-one correspondence between the elements of the model

and the nodes V of the graph. This correspondence ensures that the graph

is able to display some model properties. Formally speaking, G is a D-map

22

2.2 Conditional independence

if for any triplet of disjoint subsets of variables, A, B and S, verifying the

conditional independence relation between A and B given S in the model

M, then the same relation holds in the graph G as well. Denoting by:

A ⊥⊥M B|S ⇔ A and B are conditionally independent given S in the model

M,

A ⊥⊥G B|S ⇔ A and B are conditionally independent given S in the graph

G,

we can write that G is a D-map of M if:

A ⊥⊥M B|S ⇒ A ⊥⊥G B|S.

On the contrary, the model can be approximated by an independence map,

I -map. If A is separated from B by S in an I -map, then A is conditionally

independent by B given S in the model M:

A ⊥⊥G B|S ⇒ A ⊥⊥M B|S.

In I -maps each independence relation modelled in the graph has to be con-

sistent with the joint probability distribution P . However, the probability

distribution might imply additional independences not represented in an

I -map. A more interesting structure is thus a minimal I-map that does

not encode spurious relations. An I -map of a graphoid is minimal if it

immediately stops to be an I -map deleting an edge. A minimal I -map

obtained starting from a complete graph and by deleting every edge (a, b) for

which Xa and Xb are conditionally independent in the model is also called

conditional independence graphs (Pearl 1988).

Definition 2.4 (Conditional independence graph). Consider a set of random

variables associated with nodes V in a graph; the undirected graph G =

(V ;E) is a conditional independence graph if for every missing edge in G a

conditional independence statement holds, i.e.

(a, b) 6∈ E ⇐⇒ Xa ⊥⊥ Xb|XV \{a,b}

It is worth noting that a graph G is said to be a perfect map, P-map for

23

2.2 Conditional independence

short, if it is both a D-map and a I -map, i.e.

A ⊥⊥M B|S ⇐⇒ A ⊥⊥G B|S.

In this case, the model M is said to be graph-isomorph since there exists a

graph G that is a perfect map of M.

The formal link between conditional independence in probability and the

separation in graphs is given by Markov properties. We will discuss Markov

properties firstly with respect to undirected graphs and then with respect to

directed acyclic graphs.

2.2.2 Markov properties on undirected graphs

Different aspects of conditional independence can be caught by Markov prop-

erties that merge conditional independence in probability and separation in

graphs.

Let G = (V,E) be a graph and denote by (Xa)a∈V the set of random variables

associated with V taking values in probability space (Xa)a∈V . Note that to

simplify the notation we will denote the generic vector XA, with its index A.

So, we will write A ⊥⊥ B|C instead of XA ⊥⊥ XB|XC .

The joint probability distribution P satisfies the following Markov properties

according to G:

(P) Pairwise Markov property : for any pair (a, b) of non-adjacent nodes

a ⊥⊥ b|V \ {a, b}

(L) Local Markov property : for any vertex a ∈ V

a ⊥⊥ V \ {cl(a)}|bd(a)

(G) Global Markov property : for any triplet (A,B, S) of disjoint subsets

∈ V
A ⊥⊥ B|S

24

2.2 Conditional independence

The Pairwise property states that two non adjacent variables are condition-

ally independent to each other given the rest. This property represents the

starting point for building the independence graph since this has been defined

with respect to a pair of nodes. The Local Markov properties, instead,

is closely related to prediction and has the following meaning: a variable

can be explained by its neighbour variables corresponding to its boundary.

Finally, the Global Markov property provides a general criterion for simple

translating from the separation to the conditional independence. It is worth

noting that the (G) property is the strongest one. This determines that

the list of conditional independences implied by (G) contains the statements

associated with (P) and (L).

For any undirected graph G and any probability distribution P on X it holds

that:

(G) =⇒ (L) =⇒ (P).

The contrary does not hold in general; however, Pearl and Paz (1987) demon-

strated that, if (C5) property is verified, then (P) implies (L) that implies

(G) and the Markov properties are equivalent:

(G)⇐⇒ (L)⇐⇒ (P).

Both Markov properties and conditional independence are related to factor-

ization criterion that can be formally defined as follows.

Definition 2.5 (Factorization). A probability measure P on X is said to

factorize according to G if for all complete subsets A ∈ V there exists a

non-negative function ψA depending on elements of XA only, and there exists

a product measure µ so that

f(x) =
∏
A

ψA(x).

Without loss of generality, it is possible to express the factorization in

terms of cliques since each clique c in the set of cliques C is a maximally

25

2.2 Conditional independence

complete subset:

f(x) =
∏
c∈C

ψA(x).

If P factorizes, we say that P has the property (F). (F) implies (G), but

when P verifies the (C5) property, all Markov properties are equivalent

(Speed 1979):

(F)⇐⇒ (G)⇐⇒ (L)⇐⇒ (P).

2.2.3 Markov properties on directed acyclic graphs

In presence of DAGs, Markov properties assume a different formulation that

has been systematically studied by Kiiveri et al. (1984) and by other several

authors (Pearl and Verma 1987; Geiger and Pearl 1990; Lauritzen et al. 1990;

Verma and Pearl 1990a).

Firstly, the separation criterion needs to be redefined according to DAGs.

More specifically, it admits two equivalent formulations: the d-separation

criterion introduced by Pearl (1986) and the criterion based on the moral

graph due to Lauritzen et al. (1990). We start dealing with the d-separation

criterion.

Definition 2.6 (d-separation). Let A, B and S be three disjoint subsets of

a DAG GD. S d-separates A from B, if every path between a node in A and

a node in B is blocked by a node in S and we write A ⊥⊥D B|S.

The key concept of this definition concerns the notion of blocked path.

Let GD = (V ;ED) be a DAG and let π be a path between two nodes in

the graph, say a ∈ A and b ∈ B; π is said to be blocked by S if one of the

following two conditions is satisfied:

1. there is a node c in π having serial (→ c →) or diverging (← c →)

connection in S, or;

2. any node c in π having converging connection (→ c ←) neither is not

in S nor has descendants in S.

26

2.2 Conditional independence

An equivalent formulation of the d-separation has been provided by Cox and

Wermuth (1996). They use the alternative concept of active path. A path

in a DAG is active if it is not blocked, thus if:

1. every node with converging connection either is or has a descendant in

S, or;

2. every other node is outside S.

The d-separation criterion is a tool for finding conditional independences in

a DAG. The method can be really complex to apply when the graph is large.

A more suitable technique is based on the moral graph associated with the

DAG induced by the set An(A,B, S). The moral graph has been defined in

Section 2.1 as the undirected version of a DAG obtained marrying parents

with common children and ignoring arrow directions of every edge. Following

this method, firstly it is necessary to build the moral graph of the smallest

ancestral set of (A,B, S); once having transformed the DAG into its moral

graph, the conditional independences are read off in the moral graph as in

the undirected case.

It is worth noting that both criteria lead to the same conclusion as it is shown

in the following example.

Consider the DAG in Figure 2.2. Suppose we are interested in verifying if

1 ⊥⊥ 6|3 and 1 ⊥⊥ 6|(3, 4, 5).

1 2

3 4

5 6 7

Figure 2.2: A DAG on 7 nodes

Moral graphs associated with An(1, 3, 6) and An(1, 3, 4, 5, 6) are displayed

in Figure 2.3.

Observing those graphs it is possible to state that 1 6⊥⊥ 6|3 (note the

alternative path 1− 2− 5− 6 in Figure 2.3(a)) and that 1 ⊥⊥ 6|(3, 4, 5) (see

27

2.2 Conditional independence

1 2

3

5 6

(a) (GAn(1,3,6))m

1 2

3

5

4

6

(b) (GAn(1,3,4,5,6))m

Figure 2.3: Moral graphs

Figure 2.3(b)).

The d-separation criterion leads to the same conclusion: 1 is not d-separated

from 6 by 3 since the node 3 in the path 1 → 2 → 3 ← 5 → 6 belongs

to the separator set, thus the path is active; 1 is instead d-separated from 6

by (3,4,5) since all paths between 1 and 6 are blocked by the conditioning set.

Having discussed the concept of separation for directed acyclic graphs, it

is possible introducing the Markov properties for DAGs.

Let GD be a DAG, the probability measure P obeys to the following prop-

erties:

(DP) Directed Pairwise Markov property : for any pair (a, b) of non-adjacent

nodes with b ∈ nd(a)

a ⊥⊥ b|nd(a) \ {b}

(DL) Directed Local Markov property : for any vertex a ∈ V

a ⊥⊥ {nd(a) \ pa(a)}|pa(a)

28

2.2 Conditional independence

(DG) Directed Global Markov property : for any triple (A,B, S) of disjoint

subsets ∈ V
A ⊥⊥ B|S in Gm

An(A,B,S)

If the graph were undirected, de(a) = 0 so that nd(a) = V \{a} and pa(a) =

ne(a). As a consequence of this, (DP) would be equal to (P) and (DL) to (L).

Lauritzen et al. (1990) demonstrate that, in the directed case, (DL) and (DG)

are equivalent, even without any assumption on probability distribution.

This allows to build an I -map starting from local dependences directly and

bypassing the (DP) property that is the weakest Markov property in the

directed case. It is worth noting that a DAG is an I -map of probability

distribution P for a set of variables if every d-separation displayed in the

graph entails a conditional independence in the distribution.

For DAGs, the probability distribution P factorizes according to GD if the

joint probability can be expressed as the product of the conditional distribu-

tion of each node given its parents:

p(x) =
K∏
i=1

p(xi|pa(xi)). (2.2)

In this case, we say that P admits a recursive factorization and has (DF)

property. Expression (2.2) represents the reduced form of another formu-

lation that can be discussed after having introduced the well-ordering of

vertices.

Consider a numbering of the vertices V in GD so that (a, b) ∈ ED implies

that number(a) < number(b), i.e. b is parent of a. Such an ordering is

called well-ordering and it allows to define, for a generic node b, the set of

predecessors. This is usually denoted by pr(b) and it is the set of nodes

that have a numbering less to the numbering of b. Considering a given well-

ordering, the probability distribution P can be expressed as follow:

p(x) = p(xK |xK−i, xK−2, ..., x1) · ... · p(x2|x1) · p(x1), n = |V | (2.3)

where p(xi|xi−1, xi−2, ..., x1) = p(xi|pa(xi)). The expression (2.3) is called

29

2.3 Bayesian networks and further properties of DAGs

chain rule and it reduces to (2.2). Furthermore, it implies that P satisfies

the relation Xa ⊥⊥ Xpr(a)|pa(a), i.e. the Directed Ordered Markov property,

(DO) for brevity.

(DO) Directed Ordered Markov property : for any node a in V

a ⊥⊥ pr(a)|pa(a)

The well-ordering in a DAG is ensured by its acyclicity.

In the directed case, Markov properties are all equivalent, just assuming the

existence of a density (Cowell et al. 1999)

(DF)⇐⇒ (DG)⇐⇒ (DL)⇐⇒ (DO).

2.3 Bayesian networks and further properties

of DAGs

In previous Sections some elements of graph theory and some probabilistic

aspects of graphical models have been discussed. This Section deals with

some graphical models based on DAGs and called Bayesian networks; their

remarkable properties and some further aspects of DAGs are discussed.

Generally speaking, a Bayesian network is a probabilistic model for repre-

senting the multivariate probability distribution of a set of variables. The

pictorial representation of the model is provided by a DAG where nodes

represent variables of the model and arrows stand for influence directions

between variables.

Definition 2.7 (Bayesian network). Let P be a multivariate probability

distribution of a set random variables X and let GD = (V ;ED) be a DAG.

The pair (GD, P) is a Bayesian network if it satisfies the Directed Local

Markov property.

We could also refer to the (DL) property with the name of Markov

condition (Pearl 2000). As discussed in the previous Section, it represents

30

2.3 Bayesian networks and further properties of DAGs

the starting point for building an I -map of a probability distribution since

it entails that the missing edge between two nodes means there is not a

direct dependency between their associated variables. However, it would be

interested also saying that the presence of an edge between two nodes means

a direct dependency between variables. This is entailed by the faithfulness

condition (see Neapolitan (2003) for a formal and detailed treatment of the

condition).

Definition 2.8 (Faithfulness). Let P be a joint probability distribution of a

set of random variables and let GD = (V,ED) be a DAG. The pair (GD, P)

satisfies the faithfulness condition if, based on the Markov condition, GD

entails all and only conditional independences in P .

This condition states that:

• GD entails only conditional independences in P (so the Markov condi-

tion is verified),

• all conditional independences in P are entailed by GD.

When the faithfulness condition is satisfied, P and GD are said to be faithful

to each other. In other words, the faithfulness condition is verified if and

only if GD is a perfect map of P . As a consequence of this, if a probability

distribution is faithful then the perfect map is uniquely determined. The

faithfulness condition is crucial when the DAG structure is learnt directly

from data. In fact, the correctness of several algorithms for learning the

DAG structure has been proved under the faithfulness condition.

As just said, if the faithfulness condition is verified, then P satisfies this

condition with GD. Furthermore, P satisfies the condition also with those

DAGs that are Markov equivalent to GD or, generically speaking, that encode

the same d-separations of GD even though they have a different graphi-

cal structure. In fact, the conditional independences encoded in a DAG,

identifiable by the d-separation criterion, implies a unique set of probability

distributions, but the set of probability distributions does not determine

a unique DAG. Hence, different DAGs can encode the same conditional

31

2.3 Bayesian networks and further properties of DAGs

independence relations.

For instance, consider DAGs in Figure 2.4. Different situations involving a

pair of nodes, a and b, directly connected with the node c are displayed.

Node c plays the rule of transition node in the serial configurations, common

source node in the diverging structure or common sink in the converging

structure. A common sink is also called collider.

Definition 2.9 (Collider). A node c is a collider in a path if c has two

incoming edges.

a

c

b

(a) serial configu-
ration

b

c

a

(b) serial configu-
ration

a

b

c

(c) diverging
configuration

a

c

b

(d) converging
configuration

Figure 2.4: Different configurations for a triplet of nodes so that the first three
DAGs belong to the same equivalence class and the fourth DAG is contained in a
different one

Serial and diverging configurations encode both the relations a 6⊥⊥ b and

a ⊥⊥ b|c so that DAGs (a), (b) and (c) encode the same d-separations. On

the contrary, DAG (d) shows a converging connection, also called head-to-

head configuration or v-structure following the notation of Cox and Wermuth

(1996), and it entails a different relation that is a 6⊥⊥ b|c. It follows that

DAGs with the same d-separation properties are said Markov equivalent.

The definition of Markov equivalence for DAGs is due to Verma and Pearl

(1990b).

Definition 2.10 (Markov equivalence). Two DAGs are equivalent if and only

if they have the same skeleton (that is the structure of the graph dropping

directions) and the same v-structures.

For instance, consider DAGs in Figure 2.5. They have the same set of

nodes V representing a set of variables X = (X1, X2, X3, X4) but a different

32

2.3 Bayesian networks and further properties of DAGs

set of edges. Nevertheless, they are equivalent since they have the same

basic structure, displayed in Figure 2.6 and the same converging connection

in node X4.

X1

X2 X3

X4

(a) A DAG with E =
X1 → X2, X1 →
X3, X2 → X4, X3 →
X4

X1

X2 X3

X4

(b) A DAG with E =
X1 → X2, X3 →
X1, X2 → X4, X3 →
X4

X1

X3X2

X4

(c) A DAG with E =
X2 → X1, X1 →
X3, X2 → X4, X3 →
X4

Figure 2.5: Markov equivalent graphs

X1

X3X2

X4

Figure 2.6: Skeleton of DAGs in Figure 2.5

The Markov equivalence permits to partition the space of DAGs into

classes of models, namely equivalence classes, containing all the DAGs which

are Markov equivalent to each other. The notion of equivalence is of par-

ticular interest when the Bayesian network is learnt from data. Bayesian

networks belonging to the same equivalence class are statistically indistin-

guishable since they represent equivalent parameterizations of the same dis-

tribution (Chickering 1995). As a matter of fact, the probability distribution

implied by data can determine only an equivalence class rather than a specific

33

2.3 Bayesian networks and further properties of DAGs

DAG1. Thus, it is useful to provide a representation of equivalence class

with a single graph. More specifically, according to the definition of Markov

equivalence, we can display an equivalence class by an hybrid graph having

the same skeleton and the same v-structures as the DAGs in the class. Such

a graph is called Partially DAG (PDAG)2 A PDAG, usually denoted by

gp, contains both directed edges (between nodes involved in v-structures)

and undirected edges (between other nodes). For instance, the PDAG,

representing the Markov equivalence class to which DAGs in Figure 2.5

belong, is displayed in Figure 2.7.

X1

X2 X3

X4

Figure 2.7: PDAG of DAGs in Figure 2.5

It is worth noting that there are often additional edges, other than those

involved in head-to-head configurations, that has to be oriented in the PDAG.

For example, if all DAGs in the equivalence class have the edge Xa → Xc

and the same configuration Xa → Xc−Xb that is not a v-structure, then all

the DAGs in the equivalence class must have the edge Xc − Xb oriented as

Xc → Xb. In detail, only edges with the same directions in all networks

of the class are directed in PDAG, while edges differently orientated in

networks are displayed as undirected. Edges with invariant orientations in all

structures are said to be compelled and other edges are said to be reversible.

Given a generic gp, the set of compelled edge in graph is usually denoted

by CG while the set of reversible edges by RG. Consider DAGs in Figure

2.8. They are Markov equivalent to each other; none of them could have

1Notice that equivalence classes can be used instead of DAGs for reducing the searching
space in the structural learning phase. More details are discussed in the following Chapter
dealing with network structures learning from data.

2PDAG is also called DAG pattern (Neapolitan 2003).

34

2.3 Bayesian networks and further properties of DAGs

the undirected edges between nodes X4 and X5 because this would create

another head-to-head configuration. So, the set of compelled edges in PDAG

is CG = (X2 → X4, X3 → X4, X4 → X5).

X1

X2 X3

X4

X5

(a) A DAG with E =
X1 → X2, X1 →
X3, X2 → X4, X3 →
X4, X4 → X5

X1

X2 X3

X4

X5

(b) A DAG with E =
X1 → X2, X3 →
X1, X2 → X4, X3 →
X4, X4 → X5

X1

X3X2

X4

X5

(c) A DAG with E =
X2 → X1, X1 →
X3, X2 → X4, X3 →
X4, X4 → X5

Figure 2.8: Markov equivalent graphs

The PDAG representing the Markov equivalence class to which graphs in

Figure 2.8 belong is displayed in Figure 2.9.

X1

X2 X3

X4

X5

Figure 2.9: PDAG of DAGs in Figure 2.8

We conclude the Chapter providing an additional notion.

35

2.3 Bayesian networks and further properties of DAGs

A DAG GD is called a consistent extension of PDAG gp if:

• GD has the same skeleton and the same v-structures of PDAG;

• all edges directed in PDAG are directed in GD;

• GD does not contain any uncoupled head-to-head meetings that are

not in PDAG.

A PDAG admits a consistent extension if there is at least a DAG that is

a consistent extension of the PDAG. So, any DAGs in the same Markov

equivalence class is a consistent extension of the PDAG representing that

equivalence class.

36

Chapter 3
Structural learning

Building a Bayesian network requires to define three components (Cowell

et al. 1999):

• qualitative part that stands for the graphical structure of the model.

The directed graph represents variables of interests by nodes and dis-

plays relationships between them by arrows. In detail direct edges

represent direct relevance of one variable to another;

• probabilistic stage that requires to specify, according to the DAG, the

joint distribution defined on the variables;

• quantitative stage that is the numerical specification of probability

tables associated with each node in the graph.

These steps can be performed with the help of experts that are able to

suggest conditional independence relations between variables according to

the domain theory and to the previous knowledges. However, in many

situations domain expertise is not available and, more often, the domain

graphical structure is unknown (or partially known). In these cases, building

the network manually may become a really complex task to perform and the

model has to be estimated from data.

Model selection in Bayesian networks consists in determining the DAG struc-

ture representing the joint probability distribution implied by the avail-

37

able data. This phase, namely structural learning, has been largely dis-

cussed in the literature (Buntine 1994; Buntine 1996; Neapolitan 2003) and

it mainly can be supported through two approaches: scoring and searching

and constraint-based. Both approaches have advantages and limitations that

are briefly introduced below.

Scoring and searching

Algorithms following the scoring and searching approach (Cooper and Her-

skovits 1992; Heckerman 1995) span the space of all possible modelsM that

can be built for a set of random variables X. First a score function is chosen

and a score is computed for all possible models, then the model having the

maximum score is selected.

The main advantage of scoring and searching methods is that they compare

several alternative models using different (Bayesian or non-Bayesian) criteria.

One of the most used measures is the maximum (log-)likelihood l(θ̂m). For

a general model m this is:

l(θ̂m) = log(L(θ̂m)) := log p(D|m, θ̂m) (3.1)

where θm are Bayesian network parameters i.e. the conditional probabilities

of the variables given their parents in the DAG. So, this criterion consists

in choosing the model that maximises the probability distribution of data

D given the model m and the conditional probabilities of the variables.

The (3.1) measure, however, does not consider the complexity of the model.

In the estimation phase a trade-off between the complexity of the model

and the goodness of fit is often required. Some measures that consider the

models complexity are Akaile Information Criterion (AIC)(Akaike 1974) and

Bayesian Information Criterion (BIC)(Schwarz 1978). Both criteria penalize

the maximum likelihood value with a term that is represented by the degree

of freedom df of the model in the AIC and by 1
2
· df · log(n) in the BIC

where n is the sample size. The BIC measure is essentially similar to

another popular measure of goodness of fit coming from information theory,

38

namely Minimum Description Length (MDL) (see Rissanen (1978) for furhter

details). Many other measures and combinations of techniques (de Campos

et al. 2002; Blanco et al. 2003) can be used to maximise the evaluation

of the learnt structure. Nevertheless, finding the optimum DAG is a NP-

hard problem since the research space is large (Chickering et al. 1994). So,

score-and-search methods can get stuck at a local optimum of the scoring

function; furthermore, variations proposed to overcome this limitation can

be computationally expensive (Steck 2007).

Constraint-based

Constraint-based algorithms, carry out a sequence of independence tests

and, according to their results, draw a DAG encoding the learnt conditional

independence relations. These methods try to find the DAG that satisfy all

and only the conditional independences that can be estimated from data.

An advantage of these algorithms is that they are intuitive being based on

independence analysis; in addition, under some assumptions (see 3.1.2), a

DAG equivalent to the true one is selected. More specifically, they iteratively

check (conditional) independences by performing statistical tests on the data.

From the beginning, unchangeable decisions about independences are taken

according to each test result and, finally, a unique model is found. So, edge

presence or absence in the graph is due to the statistical test results that

can present mistakes (Moral 2004); a drawback of constraint-based methods

is that an erroneous decision in the procedure can influence the algorithm

future behaviour and can determine the selection of a suboptimal model.

This work proceeds along the constraint-based approach. Starting from

a well-known constraint-based algorithm, the work proposes some variations

that are able to improve the structural learning phase in presence of cat-

egorical variables. This Chapter is organized as follow: Section 3.1 deals

with one of the most popular constraint-based algorithms, PC algorithm:

the procedure is explained and some disadvantages are discussed; Section

39

3.1 PC algorithm

3.2 introduces some nonparametric independence tests appropriate for cat-

egorical variables necessary for new proposals; in Sections 3.3 and 3.4 two

new algorithms for ordinal and mix nominal-ordinal variables are presented.

Notice that, to simply notation, from now on we will denote a generic DAG

GD = (V ;ED) with G = (V ;E).

3.1 PC algorithm

One of the most widespread and well-known algorithms belonging to the

constraint-based approach is the PC algorithm (Spirtes et al. 2000). It is a

stepwise backward algorithm that starts from a complete undirected graph

and it tests the conditional independences for each pair of nodes in the graph

given a separator subset of increasing cardinality. Step by step, the algorithm

computes the conditional cross entropy (see Section 3.1.1) between pair of

variables and, according to test result, removes or maintains edges between

corresponding nodes in the graph.

The consistency of this algorithm is proved under some assumptions:

• DAG and the joint distribution probability P are faithful to each other

(see Section 2.3);

• data are infinite;

• statistical tests have no errors.

If these conditions are verified, the algorithm is able to discover a DAG

equivalent to the true one. The first condition guarantees that the estimated

DAG is a directed perfect map of a given joint probability distribution. This

means that the DAG entails all, and only, conditional independences induced

from observed data. The second assumption is quite restrictive and does

not necessarily happen. Dataset may be not large enough to ensure the

correctness of statistical tests and some errors can occur. Furthermore, the

number of statistical mistakes increases when the dataset is small or when

the conditioning set S is large. If the third assumption is not verified, it

is possible that the algorithm does not produce the true graph. Despite

40

3.1 PC algorithm

these limitations, PC algorithm is largely used since some good properties

(asymptotic consistency and correctness) have been proved (Kalisch and

Bühlmann 2007). In the following the general procedure of PC algorithm

is introduced.

3.1.1 Entropy, cross entropy and conditional cross en-

tropy

PC algorithm checks conditional independence between pairs of variables

using some information-theoretic principles. We firstly introduce the concept

of entropy developed by Shannon (1948).

The entropy H(·) of a random variable X with k states and probability mass

function P (x) is a measure of how much the probability mass function is

scattered over the states.

Definition 3.1 (Entropy). The entropy H(X) of a random variable X with

probability mass function P (x) is:

H(X) = −
∑
x

P (x) · logP (x).

Thus H(X) is a measure of X uncertainty and it only depends on X

probabilities (Cover and Thomas 2006). The maximum entropy is achieved

when X takes k distinct values each with probability 1/k so that H(X) =

log(k). The minimum is achieved when all the probability mass is located

on a single state so that H(X) = 0. Thus, the entropy, is a non-negative

quantity ∈ [0, log(k)].

A measure of the distance between two distributions, say P (x) and Q(x),

is the relative entropy also called Kullback-Leibler divergence D(P ||Q) (Kull-

back and Leibler 1951).

Definition 3.2 (Relative entropy). The Kullback-Leibler divergence be-

41

3.1 PC algorithm

tween two probabilities P (x) and Q(x) is

D(P ||Q) =
∑
x

P (x) · log
P (x)

Q(x)
.

This measure is not symmetric and it is supposed to be equal to zero if

and only if P = Q. The Kullback-Leibler divergence is infinite if P (x) >

0 and Q(x) > 0 ∀x.

Let X and Y be two random variables with joint distribution P (x, y) and

marginal distributions P (x) and P (y) respectively. The Kullback-Leibler

divergence can be used to measure the distance between the joint distribution

and the product of marginal distributions, thus, providing a natural measure

of dependence. The relative entropy between the joint distribution P (x, y)

and the product P (x) · P (y) is said cross entropy between X and Y .

Definition 3.3 (Cross entropy). The cross entropy between two random

variables X and Y with joint distribution P (x, y) and marginal distributions

P (x) and P (y) is:

CE(X, Y) =
∑
x,y

P (x, y) · log P (x, y)

P (x)P (y)
. (3.2)

Cross entropy takes non-negative values and it can be equivalently ex-

pressed as:

CE(X, Y) = H(X)−H(X|Y)

where H(X) is the entropy of X and H(X|Y) is the entropy of X given Y .

It is worth noting that (3.2) can be interpreted as the mutual information

between two variables, that is the information quantity gained about one

variable from having observed the other. Cross entropy is also symmetric

since it quantifies the mutual dependence between two variables, that is the

amount of information shared by them.

Another interesting measure is the conditional cross entropy between X

and Y given a non empty subset S. Generally speaking, for three random

42

3.1 PC algorithm

variables X, Y and Z, we have the following definition

Definition 3.4 (Conditional cross entropy). The conditional cross entropy

(CCE for brevity) between two random variables X and Y given Z is:

CE(X, Y |Z) =
∑
z

P (z)
∑
x,y

P (x, y|z) · log P (x, y|z)

P (x|z)P (y|z)
. (3.3)

The CE(X, Y |Z) can be also formulated as:

CE(X, Y |Z) = H(X|Z)−H(X|Y, Z)

where H(X|Z) is the conditional entropy of the variable pair X and Y and

H(X|Y, Z) is the entropy of X given the subset (Y, Z). The conditional cross

entropy is equal to zero when X and Y are conditionally independent given

Z.

Given a set of data D, we can test whether X and Y are conditional inde-

pendent given a set of variables S computing the conditional cross entropy

CE(X, Y |S). To test the degree of (conditional) independence of two or more

variables, PC algorithm uses theG2(X, Y, S) statistic which is 2nCE(X, Y |S)

where n is the sample size. Under the null hypothesis of independence, G2

follows a χ2 distribution (Lindgren 1976) with degrees of freedom equal to

(kx − 1)(ky − 1)
∏

z∈S kz where kx, ky, kz respectively denote the number of

values of variables X, Y and Z ∈ S. Given a significance level α:

• if G2(X, Y,∅) < χ2
(1−α,df) then X and Y are marginally independent

and we write X ⊥⊥ Y ;

• if G2(X, Y, S) < χ2
(1−α,df) then X and Y are conditionally independent

given S and we write X ⊥⊥ Y |S.

3.1.2 Algorithm structure

PC algorithm is a constraint-based algorithm to learn the DAG structure

from data. It takes observed data D stored in a dataset as input and it

provides a DAG G equivalent to the true one. Advantages of learning the

43

3.1 PC algorithm

Markov equivalence class represented by PDAG instead of the DAG have

been discussed in the literature (Chickering 2002, e.g.).

Given a set of K measured variables X = (X1, X2, ..., XK) the procedure

starts by drawing a complete undirected graph G′ with K nodes, representing

variables. At each iteration, the PC algorithm tests independences between a

pair of variables ∈X, say Xa and Xb, given a non empty subset of variables

S ∈ X \ {Xa, Xb} and it deletes recursively edge between nodes a and b if

Xa and Xb are conditionally independent given S.

The PC algorithm represents an improved version of two previous constraint-

based algorithms, namely SGS and IC (Pearl 2000). These algorithms search,

step by step, all possible subsets of V \ {a, b} such that Xa ⊥⊥ Xb|S. PC

algorithm, instead, considers in S only variables corresponding to nodes

belonging to the set of adjacent nodes of a, denoted by ne(a), at the current

iteration. The computational advantage of this, consists in limiting the

number of performed statistical tests.

The structure of PC algorithm consists in three main steps:

1. Find the skeleton of the graph;

2. find the head-to-head configurations;

3. orient the rest of the links without producing any cycle and any other

head-to-head configuration.

Find the skeleton of the graph.

Let X be a set of K random variables. Let V be a set of K nodes in a

graph so that each node in V represents a random variable in X. For each

pair of ordered nodes in the graph, conditional independence between the

corresponding variables is tested according to the procedure in Algorithm 1.

The first step of the algorithm starts with a complete undirected graph,

here denoted by G′, that is a graph where all nodes are connected to each

other. An example of complete undirected graph on 5 nodes is provided in

Figure 3.1. The Figure 3.1 shows a complete undirected graph where node

44

3.1 PC algorithm

Algorithm 1 PC algorithm: Find skeleton

Start with a complete undirected graph G′

` = 0
repeat

for each a ∈ V do
for each b ∈ ne(a) do

Test whether ∃S ∈ ne(a) \ {b} with |S| = ` and Xa ⊥⊥ Xb|S
if this set exists then

Make Sab = S
Remove link between a and b from G′

end if
end for

end for
` = `+ 1

until |ne(a)| ≤ ` ∀a

labels coincide with the names of the variables.

X1

X2

X3

X4

X5

Figure 3.1: A complete undirected graph

At the first iteration, the cardinality ` of the subset S is set equal to

zero, so the marginal independence between each pair of variables is tested.

For a generic pair of variables, Xa and Xb, if they are independent, the edge

between a and b is removed; if Xa and Xb are dependent the edge between

a and b is maintained. After having checked all marginal independences, the

cardinality of the subset S is increased by one. Given ` = 1, the procedure

tests the independence between each pair of adjacent nodes given another

node in ne(a). Also in this iteration, if the generic pair of variables Xa and

Xb are independent given S the edge between node a and node b is deleted,

45

3.1 PC algorithm

otherwise is maintained. This mechanism is repeated at every iterations.

The procedure stops when the number of nodes adjacent to a is less or equal

to the cardinality of S.

The output of this first step is the underlying undirected graph, also called

skeleton of the graph, that is the DAG basic structure that ignores the

directions. An example of DAG and its skeleton is displayed in the Figure

3.2 below.

X1

X2

X3

X4

X5

(a) A DAG

X1

X2

X3

X4

X5

(b) The skeleton

Figure 3.2: A DAG and its skeleton

Find the head-to-head configurations.

A head-to-head configuration has been introduced in Section 2.3. It is a con-

verging configuration, also called v-structure, containing a collider node. For

instance, Figure 3.3 shows a graph with three nodes called X1, X2 and X3.

Since X1 and X3 are not connected to each other while an arrow exists both

between X1 and X2 and between X3 and X2, X2 is a collider node.

X1

X2

X3

Figure 3.3: A collider

46

3.1 PC algorithm

A head-to-head configuration encodes a conditional dependence relation.

For instance, according to the graph in Figure 3.3, X1 and X3 are not

conditionally independent given X2.

The procedure to find the head-to-head configurations is in Algorithm 2.

Algorithm 2 PC algorithm: head-to-head configuration

for each a− c− b structure do
if c /∈ Sab then

Orient a− c− b as a→ c← b
end if

end for

So, according to the algorithm, if two generic variables Xa and Xb are not

conditionally independent given a subset Sab = Xc than Xc is a collider and

a v-structure a → c ← b exists; if Xa and Xb are conditionally independent

given a subset Sab = Xc then Xc is not a collider and, at this stage, edges

remain undirected a− c− b.

Orient the rest of links without producing any cycle and any other

head-to-head configurations.

In the last step of the algorithm some constraints must be fulfilled: no

new head-to-head configurations can be created; cycles in the graph are

forbidden. For these reasons some rules for properly orienting edges exist

and are encoded in Algorithm 3.

At the end of this step some edges can remain undirected. The output of

the third step of the algorithm is a PDAG, that represents the equivalence

class of those graphs Markov equivalent to the true unknown DAG.

A version of the PC-algorithm is implemented in the R-package pcalg. R

is an open source software consisting in many packages. Both R and some

packages can be downloaded from http://www.r-project.org. The PC

algorithm is implemented in the following others software:

• Hugin (available at http://www.hugin.com),

47

3.1 PC algorithm

Algorithm 3 PC algorithm: edges orientation

while more edges can be oriented do
for each a→ c− b structure do

Orient c− b as c→ b
end for
for each a− b such that there is a directed path from a to b do

Orient a− b as a→ b
end for
for each a− c− b structure such that a→ w;b→ w;c− w do

Orient c− w as c→ w
end for

end while

• Murphys Bayes Network toolbox (at http://bnt.sourceforge.net),

• Tetrad IV (at http://www.phil.cmu.edu/projects/tetrad).

3.1.3 Some variations on the PC algorithm

As previously said, the assumptions under which PC algorithm correctness is

proved, are often not verified. Over recent years, many other limitations have

been pointed out from different authors and some variations on PC algorithm

have been proposed in order to overcome the highlighted problems.

One of the best variation is the NPC algorithm (Steck 2001). This procedure

seeks to solve PC algorithm problems coming from limited dataset. The basic

mechanism is the same of PC algorithm but it introduces two innovations:

the necessary path condition criterion, from whom the algorithm takes the

name, and ambiguous regions concept. Given two variables in the graph

Xa and Xb, the necessary path condition criterion suggests to consider, as

possible conditioning set, only variables falling in an undirected path between

Xa and Xb. This allows to reduce the number of independence tests to

conduct and, therefore, possible mistakes. Errors can be further reduced

using the notion of ambiguous regions. Roughly speaking, if the presence of

an edge e1 is dependent on the absence of another edge e2, e1 and e2 are said to

be inter-dependent. In this situation PC algorithm would maintain/remove

the edge firstly tested. NPC algorithm, instead, does not decide immediately

48

3.1 PC algorithm

between e1 or e2 but treats both of them as uncertain links. All uncertain

links found by NPC constitute an ambiguous region. To solve ambiguities,

the NPC algorithm relies on the user interaction who has the opportunity

to decide on addition, removal or reversal direction of arcs using his subject

matter knowledge. As a consequence of this, NPC algorithm result does not

depend on the sequence in which test are conducted.

Another discussed limitation of PC algorithm deals with the fact it does

not possess a mechanism either to consider or to treat mistakes in indepen-

dence tests. Whit respect to this aspect, Fernandes et al. (2004) proposed

an extended version of the PC algorithm, namely XPC algorithm. Since

it combines some techniques of PC algorithm and some elements of NPC

algorithm, it represents a synthesis of PC and NPC algorithms capable to

reduce the number of structural errors. XPC algorithm has the following

procedure: it tests marginal and conditional independence by means of MDL

measure, i.e. on the basis of penalized maximum likelihood; it reduces the

number of tests considering only the necessary path condition; it identifies

ambiguous regions that will be solved by experts.

Many other procedures and combination of techniques have been developed

in the literature (Abellán et al. 2006). However, up to now nobody focused on

the fact that PC algorithm does not distinguish among categorical variables

and it handles ordinal variables as nominal variables when conditional inde-

pendence tests are conducted. In Sections 3.3 and 3.4 two variations on PC

algorithm are proposed. The first one, namely OPC algorithm, is useful

when ordinal variables occur; the second one, namely NOPC algorithm,

is appropriate in presence of mixed nominal and ordinal categorical vari-

ables. Both variations differ from PC algorithm in the test used for checking

conditional independence statements. For this reason, some appropriate

nonparametric tests for ordinal and nominal-ordinal variables have been

selected. We selected nonparametric methods for several reasons:

• they do not require stringent assumptions about the population distri-

bution from which sample are drown;

• they often are the most appropriate for categorical data expressing

49

3.2 Rank-based tests

order or counts of numbers in categories (Sprent and Smeeton 2001).

Further features of nonparametric tests and the illustration of selected tests

are discussed in Section 3.2.

3.2 Rank-based tests

In some studies such as behavioral, marketing, evaluation and medical sur-

veys, researchers are interested in testing hypotheses coming from specific

theories. Hypothesis tests are statistical techniques that help researchers

to this aim. After having built the hypotheses set, data are collected and

are used to decide about either accepting or rejecting a certain hypothesis.

The taken decision leads the researcher to understand if a specific theory is

confirmed or not by the set of data. Parametric techniques are usually the

first approach adopted in this kind of statistical analysis. However, since they

require sine assumptions, they may be difficult to apply. For these reasons,

techniques that do not require numerous or stringent assumptions have been

developed. These methods are known as nonparametric and they mainly

consist in a set of statistical tests. Nonparametric tests are often considered

as not systematic and wasteful, i.e. less efficient than parametric tests.

On the other hand, there are many advantages for adopting nonparametric

methods:

• they do not need assumptions about the distribution from which data

have been sampled (this is the reason why they are called “distribution-

free”);

• they are the only available for data expressing ranking;

• they are really useful when the sample size is small.

Pros and cons of nonparametric tests have been largely discussed by Siegel

and Castellan (1988).

Nonparametric tests can deal with different problems such as goodness of

fit, homogeneity, symmetry and independence. Here we consider tests of

50

3.2 Rank-based tests

independence, or more specifically, of homogeneity1. These tests are often

based on the notion of rank. In detail, ranks and order statistics are basic

tools of nonparametric methods, so they are briefly introduced below.

Let X1, X2,, Xn be a random sample with cumulative distribution function

F . Let X(i) be the i-th smallest observation in X1, X2,, Xn. Then X(i) is a

statistic called i-th order statistics. The first order statistic is the minimum

value of the sample and the last order statistic is the maximum value of the

sample so that X(1) ≤ X(2) ≤ ... ≤ X(n) is the sequence obtained ordering

observations in a non decreasing order. The vector of order statistics is

usually denoted by X(·) = (X(1), X(2), ..., X(n)). In the ordered sample, the

place occupied by Xi is said rank of Xi and is denoted by Ri. Roughly

speaking, ranks are serial numbers of observations arranged in an increasing

order. Specifically, the statistic Ri, rank of Xi, is the number of observations

smaller then or equal to Xi. The vector of ranks is usually denoted by

R = (R1, R2, ..., Rn).

Definition 3.5 (Ranks). Let X1, X2,, Xn be a random sample with cu-

mulative distribution function F . Let I(Xi ≥ Xj) be the following indicator

function:

I(Xi ≥ Xj) =

{
1 Xi ≥ Xj

0 Xi < Xj

Ranks are statistics defined by the following transformation:

Ri =
n∑
j=1

I(Xi ≥ Xj), i = 1, 2, ..., n (3.5)

1Two generic random variable X and Y are said to be independent if their joint
distribution can be factorized as follows:

P (X = x, Y = y) = P (X = x)P (Y = y)

As a consequence of this the conditional probability of Y given X = x is the following:

P (Y = y|X = x) = P (Y = y) (3.4)

When X and Y are independent the probability of Y does not involve the probability of
X; if the (3.4) hold for each level of X, it is possible speaking of homogeneity rather than
independence. This consideration can be extended for conditional independence between
two discrete variables given a third discrete variable.

51

3.2 Rank-based tests

The main idea of rank-based tests is to build a test based on a statistic

that is function of ranks only.

The theory of rank tests is usually based on the assumption that observed

variables come from a continuous distribution. This assumption ensures all

observations are distinct and ranks are well defined. However, in observa-

tional studies, measured variables are often discrete so observations with

the same magnitude, namely ties, can occur. In this case, ranks are not

well defined and it is necessary to use a method for dealing with ties. The

most frequently applied techniques for treating ties consists in computing an

average of the ranks which would have been assigned to tied. This mean

values are called midranks; here the vector of midranks is denoted by r.

Suppose to have n distinct observations on two variables, X with 2 levels

and Y with C levels. Data with ties can be arranged as in Table 3.1.

Y

X ỹ(1) ỹ(2) ỹ(C) Total
1 n11 n12 n1C n1+

2 n21 n22 n2C n2+

Total n+1 n+2 n+C n

Table 3.1: Data with ties arranged in a table

In the Table 3.1, the columns ỹ(1), ỹ(2),, ỹ(C) are the C distinct order

statistics of Y . Since Y is discrete, the vector ỹ(1), ỹ(2),, ỹ(C) is simply the

vector of the C levels of Y . The value in the generic cell nij represents the

number of observations in i level of X with Y = ỹ(j). For data arranged as

in Table 3.1 the generic midrank rj is the average between ranks τ + 1 and

τ + n+k, that is :

rj = τ +
n+j + 1

2

where

52

3.2 Rank-based tests

τ =

j−1∑
l=1

n+l.

In the following some rank-based tests are introduced. Specifically, the

Wilcoxon test is introduced firstly when distinct observations occur and then

for data arranged in tied form. Other nonparametric tests discussed in this

work are presented for data arranged in tied form only. We will use the

notation of Edwards (1995).

Wilcoxon test

It is often interesting to know if two random variables, say X and Y , have

the same cumulative distribution function (homogeneity between X and Y

distributions) or not. nonparametric tests checking this aspect are known as

test of homogeneity. One of the best known and probably most frequently

used among the two-sample rank tests is the Wilcoxon test. The Wilcoxon

test compares the null hypothesis of homogeneity against the alternative

hypothesis of no homogeneity between X and Y distributions and it makes

decision by using a statistic proposed by Wilcoxon (1945).

Let X1, X2,, Xn1 be an independent and identically distributed random

sample, from now on iid, and let F be the cumulative distribution function

of X. Let Y1, Y2,, Yn2 be an iid random sample and let G be the cumula-

tive distribution function of Y. The null hypothesis of homogeneity can be

expressed as follows:

H0 : F ≡ G

The alternative hypothesis can be formulated in different ways:

H1 : F 6≡ G

53

3.2 Rank-based tests

that means there is not homogeneity between X and Y ;

H1 : F > G, or

H1 : F < G, or

meaning that X stochastically dominates Y and that X is stochastically

dominated by Y respectively.

The test statistic used is given by the sum of observation ranks in the pooled

sample. Consider n = n1+n2 so that the sample X1, X2, ..., Xn1 , Y1, Y2, ..., Yn2

can be considered as a random sample. Let R1, R2, ..., Rn1 be the ranks of

X1, X2, ..., Xn1 and let Rn1+1, Rn1+2, ..., Rn2 be the ranks of Y1, Y2, ..., Yn2 .

The Wilcoxon statistic is the following:

W =

n1∑
i=1

Ri (3.6)

The statistic (3.6) gives the rank sum of (X1, X2, ..., Xn1). It can be expressed

in different ways. An alternative way to write (3.6) is by denoting:

C(i) =

{
1 i = 1, ..., n1

0 i = n1+1,, n

and

W =
n∑
i=1

C(i)Ri.

Another form of (3.6) is due to Mann and Whitney (1947). This form, not

referring to stochastic ordering, is based on the statistic test U that is the

number of pairs Xi, Xj with Xi < Xj, i = 1, 2, ..., n1, j = 1, 2, ..., n2.

U = n1n2 +
n1(n1 + 1)

2
−W

54

3.2 Rank-based tests

Consider now the case of n observations on three discrete variables X, Y

and S with T = 2, C and L levels respectively. Suppose we are interested

in computing a test for X ⊥⊥ Y |S. In this situation, data are arranged in a

T × C × L three way table. Tied observations occur therefore the Wilcoxon

statistic expression in (3.6) is not appropriate. The T × C × L three way

table can be alternatively expressed as L different T × C tables. For a fixed

level k of S, k = 1, ..., L, a slice of the T × C × L tables is Table 3.2.

Y
X 1 2 C Total
1 n11k n12k n1Ck n1+k

2 n21k n22k n2Ck n2+k

Total n+1k n+2k n+Ck n++k

Table 3.2: A slice of the 2× C × L table

Suppose the distribution of Y given X = i and S = k is denoted by

Fi,k(y). The hypothesis set of Wilcoxon test can be written as follow:

H0 : F1,k(y) = F2,k(y), ∀y,∀k

H1 : F1,k(y) 6= F2,k(y), ∀y and for some k

The test statistic W is the sum of the ranks of the first group over all

strata, that is:

W =
L∑
k=1

R1k

We generally denote by Rik the rank sum for the i-th level of X in the

k-th stratum, that is:

55

3.2 Rank-based tests

Rik =
C∑
j=1

rjknijk (3.7)

In the formula (3.7), rjk is the midrank of an observation of column j of Y

in stratum k of S.

Under the null hypothesis, in the conditional distribution, W has the follow-

ing mean:

E(W |H0) =
L∑
k=1

n1+k

n++k

C∑
j=1

rjkn+jk

and the following variance:

ˆV ar(W |H0) =
L∑
k=1

n1+kn2+k

n++k(n++k − 1)

C∑
j=1

[
rjk −

E(R1k|H0)

n1+k

]2

n+jk

Asymptotically and under H0, W posses a normal distribution and we have:

W − E(W |H0)√
ˆV ar(W |H0)

∼ N(0, 1)

and the two-sided p-value can be computed as:

p = P (|W − E(W |H0)| ≥ |Wobs − E(W |H0)||H0).

Here, the Wilcoxon test is used for testing homogeneity between a row binary

variable and a column discrete (nominal or ordinal) variable.

Kruskall-Wallis Test

The Kruskal-Wallis test was introduced by Kruskall (1952) and Kruskall and

Wallis (1952) as a tool for testing the null hypothesis of homogeneity among

several distributions (more than two), against the alternatives hypothesis of

56

3.2 Rank-based tests

no homogeneity for at least two distributions.

Consider two variables X and Y with T > 2 and C levels respectively.

Suppose we are interested in computing conditional test for X ⊥⊥ Y |S where

S is a conditioning variable with L levels. Suppose for the k-th level of S,

data are organized as in Table 3.3.

Y
X 1 2 C Total
1 n11k n12k n1Ck n1+k

2 n21k n22k n2Ck n2+k

....
T nT1k nT2k nTCk nT+k

Total n+1k n+2k n+Ck n++k

Table 3.3: A slice of the T × C × L table

Let Fi,k(y) denote the distribution of Y given X = i and S = k. The null

hypothesis of homogeneity and the alternative one can be written as follows:

H0 : F1,k(y) = F2,k(y) = = FT,k(y), ∀y,∀k, or

H1 : Fi,k(y) < Fj,k(y),∀y for some k and i 6= j, or

The alternative hypothesis suggests that there is at least one distribution

that dominates stochastically another distribution.

The test statistic used is:

KW =
L∑
k=1

fk

T∑
i=1

[
Rik − ni+k(n++k+1)

2

]2
ni+k

57

3.2 Rank-based tests

where

fk = 12

{
n++k(n++k + 1)

[
1−

∑C
j=1(n

3
+jk − n+jk)

n3
++k − n++k

]}−1

and Rik is the rank sum for row i and stratum k.

Under the null hypothesis the Kruskal-Wallis test statistic is asymptotically

χ2 distributed with L(T − 1) degrees of freedom.

Here, the Kruskall-Wallis test is used for comparing a row nominal variable

with a column discrete (nominal or ordinal).

Jonckheere-Terpstra Test

The Jonckheere Terpstra test was proposed independently and quite contem-

porary by Terpstra (1952) and Jonckheere (1954) as a nonparametric test

for trend among ordered alternatives. It is similar to the Kruskal-Wallis test

but it has a more specific alternative hypothesis. When researchers need to

entertain a more specific alternative hypothesis in the problem formulation,

the Jonckheere-Terpstra test can be useful. Generally speaking, given two iid

samples, the test compares the null hypothesis of no systematic trend across

samples against the alternative that samples are ordered in a specif a priori

sequence. Jonckheere-Terpstra test statistic counts the number of times an

observation of the i-th sample is preceded by an observation of j-th sample.

This amount is the Mann-Whitney statistic, so Jonckheere-Terpstra test is

the sum of certain Mann-Whitney statistics (Hollander and Wolfe 1999).

Consider now data are n observations on three variables X, Y and S.

Suppose we are interested in checking X ⊥⊥ Y |S where X and Y are both

ordinal with T and C levels respectively and S is a discrete variables with L

levels. Let Fi,k(y) be the distribution of Y given X = i and S = k. The null

58

3.2 Rank-based tests

hypothesis of Jonckheere-Terpstra test is that of homogeneity, that is:

H0 : F1,k(y) = F2,k(y) = = FT,k(y),∀y,∀k

This is tested against the alternative hypothesis of a stochastic ordering

among distributions.

Fi,k(y) > Fj,k(y), with i < j, ∀y,∀k, or

Fi,k(y) < Fj,k(y), with i > j, ∀y,∀k, or

The test statistic is:

JT =
L∑
k=1

T∑
i=2

C−1∑
j=1

{
C∑
s=1

wijsknisk −
ni+k(ni+k + 1)

2

}

where wijsk are Wilcoxon scores denoted by:

wijsk =
s−1∑
t=1

(nitk + njtk) +
(nisk + njsk + 1)

2

Under the null hypothesis the mean of JT is the following:

E(JT |H0) =

∑L
k=1(n

2
++k −

∑T
i=1 n

2
i+k)

4

The asymptotic variance, discussed by Lehmann (1975) and Pirie (1983), is:

ˆV ar(JT |H0) =
V1

72
+

V2

36(n++k(n++k − 1)(n++k − 2))
+

V3

8(n++k(n++k − 1))

where:

59

3.3 OPC algorithm

V1 = n++k(n++k − 1)(2n++k + 5)−
T∑
i=1

ni+k(ni+k − 1)(2ni+k + 5)−

−
C∑
j=1

n+jk(n+jk − 1)(2n+jk + 5)

V2 =
T∑
i=1

ni+k(ni+k − 1)(ni+k − 2)−
C∑
j=1

n+jk(n+jk − 1)(n+jk − 2)

V3 =
T∑
i=1

ni+k(ni+k − 1)−
C∑
j=1

n+jk(n+jk − 1)

Asymptotically, the test statistic is a standard normal and the two-sided

p-value is given by:

p = Pr(|JT − E(JT |H0)| ≥ |JTobs − E(JT |H0)||H0)

Here, the Jonckheere-Terpstra test is used for comparing a row ordered

variable with a column ordered variable. In detail, while the Wilcoxon and

Kruskall-Wallis tests have been used in NOPC algorithm only, the Jonckheere-

Terpstra test has been added in both PC and NOPC algorithm procedures.

3.3 OPC algorithm

Having recalled some nonparametric methods useful for this thesis, it is now

possible to introduce the new algorithms.

The Ordinal PC algorithm, OPC algorithm, is a variation on PC algorithm

capable to consider information provided by ordinal variables. PC algorithm,

in fact, is not able to consider variables class and it treats categorical variables

as nominal even if they are ordinal. This can produce information loss. It

would be worth to learn Bayesian network with a constraint-based approach

without demoting ordinal variables in nominal variables. OPC algorithm

represents the first attempt in this direction. A previous application of

60

3.3 OPC algorithm

graphical models to ordinal variables (Stanghellini 1999) do not manage the

problem according to the same approach used here.

The OPC algorithm structure is the same of PC algorithm. It is still a three

steps algorithm:

1. it starts with a complete undirected graph; it firstly checks checking

marginal independences and then conditional independences between

variables until the underlying graph is found;

2. it looks for head-to-head configurations;

3. it orients the rest of links without producing any cycle and any new

head-to-head configuration.

The difference between PC and OPC algorithm is in the statistical procedure,

i.e. the test used for checking conditional independences. Ordinal variables

have a natural ordering among categories but distance between categories

is unknown (see Section 1.1), so data have a ranking but not a numer-

ical interpretation. In these cases nonparametric methods are necessary.

For testing independence between two ordinal variables a rank-based test

is required. For this reasons, we use the Jonckheere-Terpstra test in the

OPC algorithm procedure. More specifically, the edge between two nodes

in the graph is removed if the p-value of Jonckheere-Terpstra test between

variables is less than a fixed significance level α. The procedure is available in

Appendix A. The function OPC has been written following the same scheme of

pcAlgo and substituting the original independence test with the Jonckheere-

Terpstra test. The test is implemented in MIM (Edwards 1995) a software

for graphical modelling. In MIM, the test is useful to check the conditional

independences for pairs of ordinal variables and can be used in the stepwise

model selection procedure. In order to add the test in the OPC procedure,

an R function that supports Jonckheere-Terpstra test, has been written. This

function, namely CI.discrete (see Appendix A for further details), is the

result of a joint work with D. Edwards. It checks conditional independences

for discrete variables (see Section 3.2) by previously discussed exact tests.

61

3.4 NOPC algorithm

3.4 NOPC algorithm

OPC algorithm is useful for learning a Bayesian network from ordinal data.

OPC algorithm accuracy is particularly appropriate when a monotone as-

sociation between variables can be reasonably assumed. Let X and Y be

two ordinal variables. A monotonic increasing (decreasing) trend exists if for

large values of X, large (small) values of Y are observed. A way to measure

the monotone association is by means of metrics based on concordance and

discordance (Agresti 2010). In Section 1.2 concordant, discordant and tied

pair have been introduced. Here, we provide an example. Consider the

following contingency table of simulated data where X is an ordinal variable

with three levels and Y is an ordinal variable with two levels.

Y
X y1 y2

x1 15 20
x2 10 50
x3 4 40

Table 3.4: A contingency table for two ordinal variables X and Y monotonically
associated

For a pair of units in the cell (x1; y1) and (x2; y2) the second subject ranks

higher than first both in X and Y . This means that the pair is concordant.

This occurs whenever a subject in (x1; y1) is compared with a subject in

(x2; y2). Each subject in (x1; y1) forms a concordant pair also with subjects

in (x2; y3). So subjects who rank higher than (x1; y1) both on X and Y are

15 · (50 + 40). There are also 10 · 40 subjects in (x3; y2) that rank higher

than (x2; y1) on both X an Y . The total number of concordant pairs in

observations is denoted by C. In this example C = 1200.

For a pair of subjects in the cells (x1; y2) and (x2; y1) the second subject is

higher than the first in X but it is lower than the first in Y . The pair is

discordant as also the pair of subjects in the cells (x1; y2) and (x3; y1). These

occur 20 · (10 + 4) times and 50 · 4 times respectively. The total number of

discordant pairs in observations is denoted by D. In this example D = 450

62

3.4 NOPC algorithm

and C > D. This suggests a tendency for those having higher levels of X

to be grater in Y too. We introduce the Gamma index in Section 1.2. This

is an association measure based on concordances an discordances. For more

details about the measure, see Goodman and Kruskal (1979). Let
∏

c and
∏

d

be the probabilities of concordance and discordance of a pair of independent

observations from a joint distribution πij.∏
c

= 2
∑
i

∑
j

πij(
∑
h>i

∑
k>j

πhk)∏
d

= 2
∑
i

∑
j

πij(
∑
h>i

∑
k<j

πhk)

where (i; j) and (h; k) are cells in a contingency table.

Gamma is a measure based on the distance between concordant and discor-

dant probabilities:

γ =

∏
c−
∏

d∏
c +
∏

d

The sample version of Gamma measure is:

γ̂ =
C −D
C +D

(3.8)

It has range −1 ≤ γ ≤ 1. For the data in our example γ = 0.45. This

suggests a monotone increasing association between X and Y in the table.

Since a monotone trend exists the Jonckheere-Terpstra test is appropriate.

The p-value associated with the JT test statistic is close to 0. This strongly

suggests to reject the null hypothesis.

However when the initial assumption of presence of monotone trend is

not verified, Jonckheere-Terpstra test may fail. Consider a third level of Y

that changes the association between X and Y . Data are displayed in the

Table 3.5.

The number of concordant pairs, 3225, is very close to the number of

discordant pairs, 3220, so γ is almost zero. In this case data strongly

63

3.4 NOPC algorithm

Y
X y1 y2 y3

x1 15 20 20
x2 10 50 15
x3 4 40 10

Table 3.5: A contingency table for two ordinal variables X and Y non
monotonically associated

suggest there is no evidence of monotonic association between X and Y .

In this example the Jonckheere-Terpstra test is not appropriate since there is

not a monotone trend. It gives a p-value equal to 0.99 suggesting there

is no evidence in data to refuse null hypothesis. However, γ = 0 not

necessarely implies independence. A type of association between variables

still exists and a different test would be able to catch it. The p-value

associated with the G2 test statistic, for instance, is equal to 0.000 and

it strongly suggests to reject H0. This example leads to the consideration

that a preventive analysis of contingency tables can be useful for choosing

the most appropriate test for checking conditional independence. A test

appropriate for a pair of variables could be non appropriate for another pair

of variables. This can happen when mixed nominal-ordinal data are observed.

In observational studies, for instance, both socio-demographic features and

opinions can be measured. In the first case variables are mainly nominal,

while opinions can be taken over ordinal scales. In this case, neither PC

nor OPC algorithm are appropriate. As previously said PC algorithm is not

able to take into account information provided by ordinal data; on the other

hand, OPC algorithm is suitable for ordinal data only. So, a constraint-based

algorithm capable to treat each possible pair of categorical variables could

be useful. Nominal-Ordinal PC algorithm, NOPC algorithm, is a proposal

for solving this problem. The algorithm is capable to choose the right test

according to each variable pair. In detail, it is firstly necessary to set the

class of each categorical variable: nominal or ordinal. A specific function

useful for this purpose is available in Appendix A. After having set the

class of variables, the test for checking conditional independence for discrete

64

3.4 NOPC algorithm

variables is automatically selected among those supported in CI.discrete

function. The procedure selects automatically one test among Wilcoxon,

Kruskall-Wallis and Jonckheere-Terpstra test. In detail, if variables are both

nominal, the conditional cross entropy, CCE, is computed; the Wilcoxon test

is adopted if one variable is ordinal and one variable is binary; the Kruskall-

Wallis test is chosen if one variable is ordinal and the other is nominal; when

variables are both ordinal, the Jonckheere-Terpstra test is selected. The table

3.6 summarises tests automatically selected for each categorical variable pair.

Nominal Binary Ordinal
Nominal CCE CCE Kruskal-Wallis

Binary CCE CCE Wilcoxon
Ordinal Kruskal-Wallis Wilcoxon Jonckheere-Terpstra

Table 3.6: Available tests in CI.discrete function

It is worth noting that the NOPC result depends on the sequence in

which tests are carried out and on the variable class. This is the reason

why a pre-ordering among variables in dataset, coherent with knowledge

about phenomenon and according to logical meaning of variables, can be

useful to improve the performance of the algorithm. In addition, setting the

variable class it is possible to take into account information gained studying

the contingency tables: for instance if there is not a monotone association

between two ordinal variables it can be more relevant to treat them as

nominal.

In this work the performance of NOPC algorithm are not going to be tested

but the procedure is available in Appendix A. The next Chapter deals with

OPC algorithm performance: two simulation studies are presented and some

results are discussed.

65

Chapter 4
Applications and results

In Chapter 3 the structural learning and its approaches have been discussed.

In Section 3.1 the PC algorithm, one of the most used constraint-based

algorithms, has been presented and some limitations have been pointed out.

One of these is that the PC algorithm handles all categorical variables as

nominal. In some contexts, such as biostatistics, evaluation, marketing or

psychological surveys, features are measured on ordered categories, so they

are ordinal variables. Ignoring the ordering among levels of these variables

can produce a loss of information that can affect the multivariate analysis of

data and, in graphical models framework, the structural learning. For this

reason a PC algorithm variation called OPC algorithm has been proposed

in Section 3.3. The new algorithm is able to perform the structural learning

taking into account information provided by ordinal variables; this is possible

since, step by step, the procedure checks associations and, thus, decides

about edges presence using a nonparametric rank-based test (see Section

3.2). However, the OPC algorithm is not able to handle mixed nominal

and ordinal variables, so a new variation called NOPC algorithm has been

proposed (see Section 3.4). The NOPC algorithm is able to automatically

select, according to the type of variables, the most appropriate nonparametric

test for checking independences.

In this Chapter, some applications of the OPC algorithm on ordinal data are

going to be presented. In order to evaluate the goodness of the OPC learning

66

4.1 Performance measures

and to compare the OPC and PC algorithm, some performance indicators

are introduced (see Section 4.1). In literature, several evaluation metrics

are available: they usually compare the true models structure, supposed to

be known, with that learnt from data. The common procedure to evaluate

algorithm performance consists in generating a training set of data according

to the true structure and in performing the structural learning on these data.

The simulation studies we are going to present follows these steps:

• in Hugin a network is learnt in from a dataset using the PC algorithm

and the estimated DAG is supposed to be the true structure;

• on the basis of the true DAG several datasets (1000) have been gener-

ated for different sample sizes (50, 100, 500);

• on simulated data, the structural learning has been performed using

both PC and OPC algorithm;

• the algorithms performance has been measured comparing the true

model the model learnt from generated data;

• results of the applications and a comparison between OPC and PC

performance are presented in Section 4.2.

We performed simulations in R following the code available in Appendix B.

4.1 Performance measures

The OPC algorithm has been proposed with the aim to increase the PC

algorithm performance when ordinal variables are observed. Algorithm per-

formance can be measured in term of completeness, reliability and accuracy

so, several different performance indicators can be used. Some researchers

measure the performance comparing the skeletons of both learnt and true

DAGs (Kalisch and Bühlmann 2007; Li and Wang 2009); others calculate

the structural distance between DAGs (Monti and Cooper 1997; Cooper and

Herskovits 1992; Cruz-Ramı́rez et al. 2006) or equivalence classes (Cano et al.

2008; Abellán et al. 2006; Tsamardinos et al. 2006; Perrier et al. 2008).

67

4.1 Performance measures

In this work the algorithms performance is measured by comparing the

ability of OPC and PC algorithm to reproduce, from simulated data, a given

graph. In detail, since the main difference between PC and OPC algorithm

is in the skeleton identification phase, three indexes based on underlying

graphs comparison are computed. These measures, discussed in Section 4.1.1,

compare the skeleton of the true DAG with the skeleton of the estimated DAG

in term of sensitivity, specificity and precision. The structural accuracy of

algorithms, instead, is measured by a performance indicator, introduced in

Section 4.1.2 that computes the structural distance between PDAGs.

4.1.1 True positive rate, false positive rate and true

discovery rate

In this Section we deals with some performance indicators used to evaluate

the ability of identifying the true skeleton.

Let G∗ be the skeletons of the true graph and H∗ be the skeleton of the

estimated graph. The measures are:

• True positive rate - TPR. This index is given by the number of edges

correctly found in H∗ over the number of true edges in G∗.

TPR =
edges correctly found in H∗

true edges in G∗
(4.1)

The TPR is equal to 1 when H∗ matches G∗ and it is 0 when the true

graph contains no edges.

Generally speaking, the TPR measures the proportion of actual posi-

tives which are correctly identified as such. In some fields, the TPR is

called sensitivity or recall rate that is a measure of completeness.

• False positive rate - FPR. This index is given by the number of edges

incorrectly found in H∗ over the number of true gaps (absent edges) in

G∗.

FPR =
edges incorrectly found in H∗

true gaps in G∗
(4.2)

68

4.1 Performance measures

The FPR is equal to 0 when H∗ matches G∗ and it is 1 when the true

graph contains no gaps.

The FPR measures the proportion of negatives which are correctly

identified; in our case it is the proportion of edges erroneously found.

The FPR is also known as the complement to one of specificity.

• True discovery rate - TDR. This index is the proportion of edges cor-

rectly found on the total number of found edges (both in the estimated

graph).

TDR =
edges correctly found im H∗

found edges in H∗
(4.3)

The TDR is supposed to be equal to 1 when edges are all correctly

found in the estimated graph. The TDR is conventionally equal to 1

when there are no edges in both true and estimated graph. If the true

graph is empty while the estimated one is not, TDR is zero. It coincides

with the positive prediction value that is a measure of exactness so, the

TDR is also known as precision.

An example of TPR, FPR and TDR is reported in the following. Let the

X3

X2

X1

X4

X5

(a) G* i.e. the skeleton of the
true DAG.

X3

X2

X1

X4

X5

(b) H* i.e. the skeleton of the
estimated DAG.

Figure 4.1: Graph skeletons

graph in Figure 4.1(a) be the skeleton G∗ of the true DAG and let the graph

in Figure 4.1(b) be the skeleton H∗ of the estimated DAG. G∗ has six edges

and H∗ has seven edges; six out of the seven edges in H∗ are correct but

there is an extra edge between X2 and X3. In addition, G∗ has four gaps.

For this example the TPR, the FPR and the TDR are:

69

4.1 Performance measures

• TPR = 6
6

= 1

• FPR = 1
4

= 0.25

• TDR = 6
7

= 0.86

In this example, all measures are quite satisfying. The TPR that represents

the sensitivity, achieves the maximum; the FPR that represents (1-specificity)

is quite small; the TDR, standing for precision, is high.

It is worth noting that the TPR and the FPR are closely related to the type

I and type II errors. In detail, the TPR is the complement to one of the

false negative rate that corresponds to the probability β of type II error; the

FPR corresponds to the probability α of type I error. When the sensitivity

is high, then β is low and the power of the test is high; when the FPR is low,

α is low as well.

These measures are largely discussed in the literature; for further details see

Baldi et al. (2000) and Dey et al. (2009). In R it is possible to compute these

indexes by means of the compareGraphs function of pcalg package (Kalisch

et al. 2009).

4.1.2 Structural Hamming Distance

The Structural Hamming Distance - SHD (Tsamardinos et al. 2006) - is a

performance measure that computes the structural distance between PDAGs.

A PDAG is graph containing both directed and directed edges and that

represent an equivalence class (see Section 2.3 for further details). SHD is

an overall metric that directly compares the learnt PDAG and the original

PDAG by counting the number of operations required to convert the fitted

graph into the true graph. Admitted operations are addition or deletion of

edges and addition, deletion or reversal of directions. In detail, SHD is the

sum of five components:

• extra edge error (EE): number of edges learnt in the estimated graph

that do not exist in the true one;

70

4.1 Performance measures

• missing edge error (ME): number of edges missing in the estimated

graph that are in the true one;

• extra direction error (ED): number of edge directions that appear in

the estimated graph but not in the true one;

• missing direction error (MD): number of edge directions that appear in

the true graph but not in the estimated one;

• reversed direction error (RD): number of edge directions in the esti-

mated graph that are opposite in the true one;

The last three metrics - ED, MD and RD - can be summarised in the

directional error (DE) that counts the number of edges incorrectly oriented

in the learnt graph. The score, thus, is a raw sum of EE, ME and DE; the

score is increased by 1 point for each required operation. Small values of

SHD suggest that H is close to G.

A pseudo-code of the procedure is shown in Algorithm 4 where, following the

notation of Tsamardinos et al. (2006), the learnt PDAG is denoted by H and

the true PDAG by G.

Algorithm 4 SHD (Learnt PDAG H versus True PDAG G)

shd = 0
for every edge E different in H than G do

if E is missing in H then
shd = shd+ 1

end if
if E is extra in H then
shd = shd+ 1

end if
if E is incorrectly oriented in H then
shd = shd+ 1

end if
end for

In the following we propose an example useful to describe the SHD

computation.

71

4.1 Performance measures

Let the graph in Figure 4.2(a) be the PDAG of the true DAG and let the

graph in Figure 4.2(b) be the PDAG of the estimated DAG.

X1

X2

X3

X4

X5

X6

X7

(a) The PDAG of G

X1

X2

X3

X4

X5

X6

X7

(b) The PDAG of H

Figure 4.2: Partially DAGs

The SHD value is the sum of operations required to make PDAGs match.

More specifically, comparing H with G we can observe that:

• there is an extra edge between X5 and X7 (this is the EE component);

• there is a missing edge between X6 and X7 (this is the ME component);

• there is a missing direction in the edge between X3 and X4 (this is the

MD component);

• there is a reverse direction in the edge between X4 and X5 (this is the

RD component);

• there is an extra direction between X6 and X5 (this is the ED compo-

nent).

We require five operations to transform H into G. Since each operation

increases 1 point the score, the SHD is equal to 5.

The reason for computing the SHD score on PDAGs rather than DAGs is

that DAGs are not statistically distinguishable. So, the SHD score should

be subject to another penalization if computed on DAGs. If only DAGs are

available, before calculating the score, it is necessary to convert DAGs to the

corresponding PDAGs using the algorithm in Chickering (1995). Generally

speaking, the Chickering algorithm converts a DAG in a PDAG through

72

4.2 Empirical evaluation

a local transformation of the DAG structure. The procedure consists in

two main steps: firstly a total ordering over edges is defined according to

the nodes ordering; then compelled edges are found. Since compelled edges

encode (conditional) independence statements that occur in all structures

of the class, the identification of compelled edges is the crucial point of the

Chickering algorithm .

In R it is possible computing the SHD metric by means of the shd function

of pcalg package (Kalisch et al. 2009).

In the following Section some empirical evaluations are presented.

4.2 Empirical evaluation

The aim of the experimental evaluation is to compare the PC and OPC

performance. Two simulation studies have been carried out. We used two

sets of ordinal data: the first one comes from a real customer satisfaction

survey, and the other deals with a survey well known in literature (Barnes

and Kaase 1979). For each dataset, a Bayesian network has been learnt using

the PC algorithm; the learnt network has been assumed as true and used as

gold standard. According to every network, we generated multiple datasets

for different sample sizes: 50, 100 and 500. In detail, we generated 1000

training sets for each sample size. For each simulated dataset two Bayesian

networks have been estimated: one using the PC algorithm and one using

the OPC algorithm, given a level of significance equal to 0.05. We compared

results of structural learning with the gold standard in term of (1) skeleton

identification ability and (2) structural accuracy. We computed a mean value

of each performance measure with respect to different sample sizes. We

present results of simulation studies for each experimental evaluation.

4.2.1 Costumer satisfaction data

The first experiment is conducted using data coming from a real customer

satisfaction survey. The survey has been carried out in 2008 with the goal

of measuring the citizens satisfaction about services delivered by an Italian

73

4.2 Empirical evaluation

post office. Data have been collected by a questionnaire consisting of several

items. Respondents answered the sentences using an anchored seven integer

scale going from 1 (I strongly disagree) to 7 (I strongly agree), so measured

variables are ordinal. The questionnaire has been administered to 228 users.

We considered a selection of six items of the questionnaire. Due to the

sparsity of contingency tables, variables categories have been merged in three

levels. Selected variables refer to the following concepts:

• Reliability : capability to deliver the service in a reliable and accurate

way;

• Reassurance capacity : employers competence and courtesy and their

capability to ensure customers;

• Tangible aspect: physical building and facilities aspect,

• Empathy : customer care and service customization;

• Answer ability : willing in helping customers and capability to deliver

the service quickly;

• Overall satisfaction: customers’ perception about global satisfaction.

Tangible

aspect

Answer

ability
Reliability

EmpahtyReassurance

Overall

satisfaction

Figure 4.3: The true DAG for customer satisfaction data

74

4.2 Empirical evaluation

The literature discusses many methods for analysing customer satisfaction

data (Grigoroudis and Siskos 1998; Zanella 2001; Hayes 1998; Cassel 2000)

and some applications of graphical models have been proposed (Salini and

Kenett 2007; Musella et al. 2007; Figini 2010; Renzi et al. 2009). Our goal

is to measure the OPC algorithm performance, so data have been used to

learn a network that has been considered as the gold standard. The DAG is

reported in Figure 4.3.

According to this structure 1000 datasets have been generated for each of

these different sample sizes: 50, 100 and 500. PC and OPC algorithm have

been performed and performance measures have been computed on each

learnt structure. The following tables show the average, over 1000 runs,

of the TPR, FPR and the TDR respectively for both algorithms.

Sample size
Algorithm 50 100 500

PC 0.42 0.64 0.97
OPC 0.69 0.87 0.97

Table 4.1: The TPR average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.3

Sample size
Algorithm 50 100 500

PC 0.11 0.04 0.02
OPC 0.04 0.03 0.02

Table 4.2: The FPR average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.3

We can observe that the skeleton learning ability of both algorithms

increases with larger sample sizes. In detail since more observations makes

statistical test more sensitive, when the sample size is equal to 500, the TPR

is really close to one for both algorithms. Furthermore, for the largest sample

size, algorithms have the same performance results considering every indexes.

75

4.2 Empirical evaluation

Sample size
Algorithm 50 100 500

PC 0.73 0.91 0.98
OPC 0.93 0.96 0.99

Table 4.3: The TDR average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.3

Despite that, when the sample size is 50 or 100 the TPR and the TDR of

OPC algorithm are larger than those of PC algorithm and the FPR of OPC

algorithm is smaller than that of PC algorithm. The gap of performance is

significant for the smallest sample size. On the basis of this results, the OPC

algorithm seems to be more sensitive, more accurate and more reliable than

PC algorithm above all for small samples.

Another performance measure that has been computed is the SHD. The Table

4.4 shows the average over 1000 runs of the SHD for both algorithms.

Sample size
Algorithm 50 100 500

PC 6.07 4.92 3.3
OPC 4.89 4.17 3.2

Table 4.4: The SHD average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.3

The SHD of both algorithms decreases when the sample size increases.

However, given the same sample size, the SHD of PC algorithm is larger

than the SHD of OPC algorithm. Since small values of SHD mean that less

operations are required to make the estimated PDAG and the true PDAG

match, the OPC algorithm outperforms the PC algorithm.

Figure 4.4 shows the behaviour of SHD for both algorithms.

Whit respect to each sample size, the SHD of OPC algorithm is smaller

than SHD of PC algorithm. This means that, according to this experiment,

76

4.2 Empirical evaluation

0
2

4
6

8

Structural distance

sample size

S
H

D
 a

ve

50 100 500

PC−algorithm
OPC−algorithm

Figure 4.4: The SHD average for PC algorithm (red line) and OPC algorithm
(blue line) with respect of different sample sizes for Customer Satisfaction data

the OPC algorithm outperforms the PC algorithm in term of structural

distance between PDAGs.

50 100 500

2
4

6
8

10

Sample size

Boxplot of SHD − PC algorithm

50 100 500

2
4

6
8

10

Sample size

Boxplot of SHD − OPC algorithm

Figure 4.5: Box plots of SHD according to different sample sizes for Customer
Satisfaction data.

77

4.2 Empirical evaluation

Figure 4.5 shows box plots of SHD for both algorithms according to

different sample sizes.

• PC: when the sample size is 50, the SHD distribution is symmetric

and it varies between 2 and 10. When the sample size is 100, the

distribution is still symmetric but it is concentrated between smaller

values (2 and 8). When the sample size is 500, the SHD almost always

assumes value 3.

• OPC: SHD distribution varies between 2 and 9 when the sample size is

50 and between 1 and 8 when the sample size is 100. When the sample

size is 500, the distribution is concentrated on 3. In this case there are

several outliers.

The Figure shows that the median value of SHD computed for OPC

algorithm is smaller than that computed for PC algorithm, when the sample

size is 50 or 100. For the largest sample, the behaviour of algorithms is

similar. Table 4.5 gives a summary of some statistics relating to SHDs.

Algorithm Statistics Sample size
50 100 500

PC

Lower whisker 2.00 2.00 3.00
Q1 5.00 4.00 3.00
Q2 6.00 5.00 3.00
Q3 7.00 6.00 3.00

Upper whisker 10.00 8.00 3.00
Cv 26.52% 23.81% 30.12%

OPC

Lower whisker 2.00 1.00 3.00
Q1 4.00 3.00 3.00
Q2 5.00 4.50 3.00
Q3 6.00 5.00 3.00

Upper whisker 9.00 8.00 3.00
Cv 28.33% 33.67% 31.95%

Table 4.5: Statistics relating to SHDs of Customer Satisfaction data

It is worth noting that the SHD distribution of OPC algorithm is more

variable (in term of coefficient of variation) than the SHD distribution of PC

78

4.2 Empirical evaluation

algorithm in each case (n = 50, 100, 500). In order to verify the reliability of

these results for different data, another simulation study has been conducted:

the results are presented in the following Section.

4.2.2 Political Action data

In this Section, we present another experimental study. Data used come from

a cross-national survey conducted by Barnes and Kaase (1979) with the aim

to gather information about political participation in industrial societies.

This survey, known in the literature as Political Action survey, was carried

out on a sample of persons 16 years and older. The Political Action Survey

collected data about attitude and opinions and contains several hundred

variables. However, only some variables have been used. Selected variables

refer to the definition of political efficacy that is “the feeling that individual

political action does have, or can have, an impact upon the political process”

(Campbell et al. 1954). Data taken into account in this work refer to the

opinions of a set of USA respondents about to the following six sentences of

the questionnaire:

• NoSay : people like me have no say in what the government does;

• Voting : voting is the only way that people like me can have any say

about how the government runs things;

• Complex: sometimes politics and government seem so complicated that

a person like me cannot really understand what is going on;

• NoCare: I dont think that public officials care much about what people

like me think;

• Touch: generally speaking, those we elect to Congress in Washington

lose touch with people pretty quickly;

• Interest: parties are only interested in peoples votes but not in their

opinions.

79

4.2 Empirical evaluation

Respondents answered the questions using a semi-ordinal scale with five

levels: strongly agree, agree, disagree, strongly disagree, don’t know. The

responses don’t know can not be considered as a category in an ordinal scale

and they are usually handle as missing values. However, in order to have a

complete dataset with ordinal variables, only full cases have been taken into

account. Dataset used for learning the DAG assumed as true is thus made

by six ordinal variables with four levels measured on 768 units.

The DAG of this data is displayed in Figure 4.6

�oSayVoting

Complex

�oCare Interest

Touch

Figure 4.6: The true DAG for Political Action data

The DAG in Figure 4.6 represents the structure from which a training

set of 1000 datasets have been generated using different sample sizes (i.e

50, 100 and 500). Both PC and OPC algorithm have been performed on

each dataset. The TPR, FPR and TDR average on 1000 runs have been

computed. The achieved results are presented in the following tables.

Sample size
Algorithm 50 100 500

PC 0.38 0.50 0.88
OPC 0.61 0.79 0.95

Table 4.6: The TPR average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.6

80

4.2 Empirical evaluation

Sample size
Algorithm 50 100 500

PC 0.11 0.07 0.00
OPC 0.02 0.01 0.00

Table 4.7: The FPR average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.6

Sample size
Algorithm 50 100 500

PC 0.76 0.86 0.99
OPC 0.96 0.98 0.99

Table 4.8: The TDR average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.6

Results seem suggest the same consideration as in the previous experi-

ment. Algorithms performance increase with the increasing of sample size.

In detail, OPC algorithm performance are more satisfying that that of PC

algorithm when the sample size is 50 or 100. When the sample size is 500

the behaviour of PC and OPC is almost equal.

The SHD values computed in this experiment are presented in Table 4.9.

Sample size
Algorithm 50 100 500

PC 7.22 6.73 5.41
OPC 6.56 6.38 4.50

Table 4.9: The SHD average for PC and OPC algorithm performed on 1000
datasets generated according to the DAG in Figure 4.6

The SHD values decrease when the sample size increase. The SHD values

are smaller if referred to OPC algorithm than to PC algorithm. Figure 4.7

shows the trend over the sample size.

Both algorithms significantly increase their capability to learn the PDAG

when the sample size is 500. Figure 4.8 shows box plots of SHD for both al-

81

4.2 Empirical evaluation

0
2

4
6

8

Structural distance

sample size

S
H

D
 a

ve

50 100 500

PC−algorithm
OPC−algorithm

Figure 4.7: The SHD average for PC algorithm (red line) and OPC algorithm
(blue line) according to different sample sizes.

gorithms across the different sample sizes. The Figure suggests the following

consideration:

• PC: both range and midspread reduces when the sample size increases.

When the sample size is 50, the distribution varies between 10 and 5 and

has a positive symmetry. When the sample size is 100, the distribution

is more symmetric and it varies between 4 and 9. When the sample

size is 500 the range reduces into 3 and the distribution has a positive

symmetry.

• OPC: When the sample size is 50, the third quartile coincides with the

median. This suggests that the distribution has a negative asymmetry.

When the sample size is 100, the first quartile coincides with the

median. In this case, the distribution has a positive asymmetry. This

holds also when the sample size is 500.

The SHD distribution of PC algorithm is more variable (in term of co-

efficient of variation) than that of OPC algorithm when the sample size is

50 or 100. When the sample size is 500, the SHD distribution of PC is less

variable. Table 4.10 gives a summary of some statistics relating to SHDs.

82

4.3 Further considerations

50 100 500

3
4

5
6

7
8

9
10

Sample size

Boxplot of SHD − PC algorithm

50 100 500

3
4

5
6

7
8

9
10

Sample size

Boxplot of SHD − OPC algorithm

Figure 4.8: Box plots of SHD according to different sample sizes for Political Action
data.

Algorithm Statistics Sample size
50 100 500

PC

Lower whisker 5.00 4.00 4.00
Q1 6.00 6.00 5.00
Q2 7.00 7.00 5.00
Q3 9.00 8.00 6.00

Upper whisker 10.00 9.00 7.00
Cv 18.75% 20.14% 14.83%

OPC

Lower whisker 5.00 5.00 4.00
Q1 6.00 5.00 4.00
Q2 7.00 6.00 4.00
Q3 7.00 7.00 5.00

Upper whisker 8.00 8.00 6.00
Cv 13.34% 13.52% 19.47%

Table 4.10: Statistics relating to SHDs of Political Action data

4.3 Further considerations

Results of simulation studies presented in Sections 4.2.1 and 4.2.2 suggest

that OPC algorithm outperforms the PC algorithm in presence of ordinal

83

4.3 Further considerations

data and when the sample size is small. However, these results verifies only

if a monotone association between variables exists. If variables are dependent

but not monotonically associated, the test used for checking conditional

independences in the OPC algorithm, the Jonckheere-Terpstra, fails. An

example can be useful for showing the OPC behaviour when the association

between variables is not monotonic.

Consider the DAG in Figure 4.9. The graph represents the conditional

independence relations among three ordinal variables. According to the

graph it is possible saying that X1 ⊥⊥ X3 given X2.

X1

X2

X3

Figure 4.9: A DAG on three variables non monotonically associated

Let X=(X1, X2, X3) be the set of variables belonging to the dataset from

which the DAG in Figure 4.9 has been learnt using PC algortihm. As

discussed in Section 3.1.2, the PC algorithm consists in three main steps:

(1) starting with a complete undirected graph the DAG skeleton is found by

checking independences; (2) the colliders are identified; (3) the rest of the

nodes are oriented without producing any cycle or other colliders. These

steps are the same for the OPC algorithm. The relevant difference between

PC and OPC algorithm is in the statistical test used in the first step: the PC

algorithm computes the mutual information between variables and it takes

decisions according to the value of G2 statistical test; the OPC algorithm

according to the results of the Jonckheere-Terpstra test. Despite that, both

algorithms proceed checking independences between pair of nodes giving a

subset of increasing cardinality.

In this example, we reproduce the output of the first step of both algorithms

in order to show the different behaviour of algorithms when variables are

non monotonically associated. The starting point of both algorithms is the

84

4.3 Further considerations

complete undirected graph in Figure 4.10. The significance level used is 0.05.

X1

X2

X3

Figure 4.10: The complete undirected graph associated with the DAG in Figure
4.9

We start setting the cardinality of the separator set equal to zero and

testing marginal independence between the following ordered pairs of vari-

ables:

• (X1, X2);

• (X1, X3);

• (X2, X3).

The first independence test is performed on the pair (X1, X2) with respect

to the contingency table in Table 4.11.

X2
X1 1 2 3 Sum

1 69.00 66.00 32.00 167.00
2 23.00 80.00 61.00 164.00
3 72.00 53.00 44.00 169.00

Sum 164.00 199.00 137.00 500.00

Table 4.11: Contingency table for variables X1 and X2

Analysing the contingency table, it is possible noting that X1 and X2 are

weakly associated. This is suggested by the Cramer index V (Cramér 1946)

that is a relative measure of association between two variables. V varies

between 0 (reflecting complete independence) and 1 (reflecting complete

85

4.3 Further considerations

dependence or association) and it is equal to 0.20 in this case. As discussed

in Section 3.4, in presence of ordinal variables a monotone association is

common so it could be interesting to verify if the association between X1

and X2 is monotone. An useful measure of monotone association is Gamma.

Close to zero it shows very little monotone association between variables. In

our example, γ is 0.03 that seems to be small enough to say there is not

a monotone association between X1 and X2. So, variables are dependent

but non monotonically associated. For these reasons, the test based on

the conditional cross entropy, on which the PC algorithm is based, and the

Jonckheere-Terpstra test, used in the OPC algorithm, give different results.

Performing the PC algorithm the p-value associated with independence test

between X1 and X2 is really close to zero: this suggests to reject the null

hypothesis of independence and the edge between X1 and X2 is kept in the

complete starting graph. On the contrary, performing the OPC algorithm,

the p-value is 0.5145 that suggests there is no evidence in data to reject the

null hypothesis and the edge between X1 and X2 is deleted from the complete

starting graph.

Consider the second pair of variables. The contingency table for (X1, X3) is

shown in the Table 4.12.

Again there is a weak association between variables (V = 0.11) and an

X3
X1 1 2 3 Sum

1 66.00 59.00 42.00 167.00
2 80.00 58.00 26.00 164.00
3 53.00 75.00 41.00 169.00

Sum 199.00 192.00 109.00 500.00

Table 4.12: Contingency table for variables X1 and X3

unimportant monotone association (γ = 0.06). The p-value obtained using

PC algorithm is equal to 0.011 while its value is 0.3014 when the OPC

algorithm is performed. Algorithms decide in a different way also in this

case. The edge between X1 and X3 is kept if the PC algorithm is performed,

is deleted using the OPC algorithm.

86

4.3 Further considerations

Consider the third pair of variables. The contingency table for the pair

(X2, X3) is the Table 4.13.

X3
X2 1 2 3 Sum

1 0.00 105.00 59.00 164.00
2 199.00 0.00 0.00 199.00
3 0.00 87.00 50.00 137.00

Sum 199.00 192.00 109.00 500.00

Table 4.13: Contingency table for variables X2 and X3

Variables are associated (V = 0.70) but the value of γ is quite small

again (γ = −0.07). For this pair of variable the PC algorithm decides to

keep the edge since the p-value associated with the independence test based

on conditional cross entropy between X2 and X3 is close to zero. Since the p-

value of Jonckheere-Terpstra test is equal to 0.10, the OPC algorithm deletes

the edge between X2 and X3.

At this point of the procedure, the cardinality of separator set is increased

by one. However, the OPC algorithm stops since, on the basis of the taken

decisions, there is no node with a number of adjacent nodes bigger than the

new cardinality of separator set (i.e. one). On the contrary, PC algorithm

checks the following conditional independences:

• X1 ⊥⊥ X2|X3: the test gives a p-value=0.000 that suggests to keep edge

between X1 and X2;

• X1 ⊥⊥ X3|X2: the test gives a p-value=0.988 that strongly suggests to

remove edge between X1 and X3;

• X2 ⊥⊥ X3|X1: the test gives a p-value close to zero that suggests to

keep edge between X2 and X3.

After having checked those conditional independences, the PC algorithm

stops since there is no node with a number of adjacent nodes greater than

or equal to the new cardinality of the separator set. Skeletons identified by

87

4.3 Further considerations

algorithms are displayed in Figure 4.11.

X1

X2

X3

(a) The skeleton estimated
through PC algorithm

X1

X2

X3

(b) The skeleton estimated
through OPC algorithm

Figure 4.11: Skeletons identified by algorithms

According to the graph in Figure 4.11(b) variables are all independent to

each other since no edge has been found by OPC algorithm. The PC algo-

rithm, instead, identifies the skeleton in Figure 4.11(a) where there are two

edges. Different skeletons are due to the behaviour of algorithms. Decisions

taken at each step of the OPC algorithm have been completely affected by

the absence of monotone association between variables. When variables are

ordinal but there is not a monotone association, the OPC algorithm is not

reliable and the PC algorithm has to be used for learning the dependence

structure.

88

Conclusions

Summary of the main results

This thesis dealt with the problem of learning a Bayesian network when

subject-matter knowledge is not available. In this situation it is necessary

to infer the network from data using automatic procedures for learning

the relations among variables. The main purpose of this dissertation was

to develop a new procedure for Bayesian networks structural learning in

presence of ordinal variables. A constraint-based approach has been adopted.

The motivation of the work is basically due to the fact that existent learning

algorithms do consider ordinal variables as nominal. This determines a

loss of a part of that information inherent to ordering among categories of

ordinal variables. The aim of the work has been achieved by proposing a

variation of the PC algorithm namely OPC algorithm. More specifically,

algorithm structures are the same, they differ in the test used for checking

conditional independence. The OPC statistical procedure is, indeed, based

on a nonparametric rank-based test appropriate for ordinal variables and

called Jonckheere-Terpstra test. As a consequence of this, the OPC algorithm

represents an opportunity to learn the network without demoting ordinal

variables in nominal. Its performance has been compared with that of PC

algorithm in term of sensitivity (computing the TPR), specificity (by the

FPR) and precision (using the FPR) as well as structural accuracy (by

means of SHD). In detail, TPR, FPR and TDR have been computed in

89

order to compare the ability of PC and OPC algorithms to estimate the

DAG skeleton; the SHD has been used to verify their capacity to draw the

true DAG. Empirical evaluations have been carried out for two different

sets of data: Customer Satisfaction data and Political data. Main results,

obtained by taking the mean over the 1000 replications, are encouraging and

are briefly summurised in the following:

1. Customer Satisfaction data: for small sample size (50 or 100) the

OPC algorithm is more precise in the skeleton identification and more

accurate in DAG estimation; for larger sample sizes (500), there is any

difference in algorithm behaviours.

2. Political data: for small sample size (50 or 100) the OPC algorithm

is more accurate than PC algorithm both in the skeleton identification

and in DAG estimation; for larger sample sizes (500) algorithms behave

similarly.

According to the empirical evaluation proposed in this work, in presence

of ordinal variables and restricted sample size, the OPC algorithm represents

a more suitable solution for the structural learning matter. However, the new

procedure shows some limitations that are discussed in the following Section.

Open problems

The OPC algorithm is an attempt to overcome the PC algorithm limitation

of treating all categorical variables as nominal. However, the PC algorithm

has some other relevant limitations. These, discussed and treated by different

authors (see Section 3.1.3 more details), have determined the development of

both alternative versions and variations of PC algorithm. Nevertheless, the

OPC algorithm evolves from the original version of PC algorithm so it inherits

all its growing limitations. In addition, the OPC algorithm has further

limitations concerning both the statistical procedure and the computational

aspect. In particular:

90

1. OPC algorithm is suitable when all variables are ordinal; realistically,

in observational studies some features are measured on a nominal scale

and other on an ordinal scale. Therefore datasets contain both nominal

and ordinal variables. The OPC algorithm is not appropriate for mixed

variables and it is necessary to resort to the PC algorithm treating all

variables as nominal.

2. The Jonckheere-Terpstra test only checks for monotone association be-

tween ordinal variables. When ordinal variables are associated but not

monotonically, the test fails. In addition, the Jonckheere-Terpstra test

requires that alternative hypothesis is arranged in a specific order. This

entails that ordering should be specified before the data are collected.

3. We did not treat the problem of sparse tables. Sparseness is common

in tables with very variables or when the sample size is small. In

presence of sampling zeros, some computational problems can verify.

For instance, p-value can not be available.

These considerations highlight some open problems and lead to some natural

extensions that can become objects of further research.

1. In order to respect all different types of categorical variables, a novel

algorithm, called NOPC, has been proposed in this dissertation. The

NOPC algorithm represents a natural development of OPC algorithm

and it is suitable to learn a network from mixed nominal and ordinal

data. The statistical procedure is based on a set of nonparametric rank-

based tests checking conditional independence between pairs of categor-

ical variables; in detail, after having settled the class of each variable in

the dataset (nominal, ordinal or binary), the procedure automatically

selects, at each iteration, the most appropriate test according to the

pair of variables involved. The OPC algorithm procedure is discussed

in Section 3.4 and the R code is available in Appendix A. However, we

did not test the performance of NOPC algorithm. This aspect can be

the object of further research.

91

2. There are some alternatives of computing tests. In presence of sparse

tables, an efficient way to estimate the p-value observed is by using

sequential Monte Carlo sampling. A future research could deal with

the algorithm improvement in presence of sparse tables.

92

Bibliography

Abellán, J., Gómez-Olmedo, M., and S., S. M. (2006). Some variations on the

PC Algorithm. In Proceedings of Probabilistic Graphical Models, pp. 1–8.

Agresti, A. (2002). Categorical Data Analysis. Wiley-Interscience, New

Jersey.

Agresti, A. (2010). Analysis of ordinal data. Wiley, New Jersey.

Akaike, H. (1974). A new look at the statistical model identification. IEEE

Transactions on Automatic Control, 19, 716–723.

Baldi, P., Brunak, S., Chauvin, Y., Andersen, C., and Nielsen, H. (2000).

Assessing the accuracy of prediction algorithms for classification: an

overview. Bioinformatics, 16, (5), 412–9.

Barnes, S. H. and Kaase, M. (1979). Political Action: Mass Participation in

Five Western Democracies. Sage Pubblications, Beverly Hills, California.

Berge, C. (1973). Graph and Hypergraph. North-Holland, Ansterdam.

Blalock, H. M. J. (1971). Causal models in the social sciences. Aldine-

Atheston, Chicago.

Blanco, R., Inza, I., and Larraaga, P. (2003). Learning Bayesian networks

in the space of structures by estimation of distribution algorithms.

International Journal of Intelligent Systems, 18, 205–20.

Buntine, W. (1994). Operations for learning with graphical models. Journal

of Artificial Intelligence Research, 2, 159–225.

Buntine, W. (1996). A guide to the literature on learning probabilistic

93

Bibliography Bibliography

networks from data. IEEE Transaction on Knowledge and Data

Engineering, 8, 195–210.

Campbell, A., Gurin, G., and Miller, W. E. (1954). The Voter Decides. Row

and Peterson, Evanston, IL.

Cano, A., Gómez-Olmedo, M., and Moral, S. (2008). A Score Based Ranking

of the Edges for the PC Algorithm. In Proceedings of the Fourth European

Workshop on Probabilistic Graphical Models, pp. 41–8.

Cassel, C. M. (2000). Measuring customer satisfaction on a national level

using a superpopulation approach. Total quality management, 11:7, 909–

15.

Chickering, D. M. (1995). A transformational characterization of Bayesian

network structures. In Proceedings of the Eleventh Conference on

Uncertainty in Artifcial Intelligence (UAI-95), pp. 87–98. Morgan

Kaufmann, San Francisco. CA.

Chickering, D. M. (2002). Learning Equivalence Classes of Bayesian-Network

Structures. Journal of Machine Learning Research, 2, 445–498.

Chickering, D. M., Heckerman, D., Meek, C., and Madigan, D. (1994).

Learning Bayesian networks is NP-hard. Technical Report MSR-TR-94-

17, Microsoft Research, Microsoft Corporation, Redmond, Washington.

Clogg, C. C. and Shihadeh, E. S. (1994). Statistical Models for Ordinal

Variables. Sage Pubblications, Thousand Oaks, California.

Cooper, G. and Herskovits, E. (1992). A Bayesian method for constructing

Bayesian belief networks from databases. Machine Learning, 9:(4), 309–

47.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory.

John Wiley and Sons, New Jersey.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999).

Probabilistic Networks and Expert Systems. Springer, New York.

Cox, D. and Wermuth, N. (1996). Multivariate Dependencies. Models,

analysis and interpretation. Chapman and Hall/CRC, Boca Raton,

Florida.

94

Bibliography Bibliography

Cox, D. and Wermuth, N. (2004). Joint response graphs and separation

induced by triangular systems. Journal of the Royal Statistics Society,

B, 66, 687–717.

Cramér, H. (1946). Mathematical methods of statistics. Princenton, Uppsola,

Swedan.

Cruz-Ramı́rez, N., Acosta-Mesa, H.-G., Barrientos-Mart́ınez, R.-E., and

Nava-Fernández, L.-A. (2006). How Good Are the Bayesian Information

Criterion and the Minimum Description Length Principle for Model

Selection? A Bayesian Network Analysis. In MICAI, pp. 495–504.

Csárdi, G. and Nepusz, T. (2006). The igraph software package for complex

network research. InterJournal, Complex Systems, 1695.

Dawid, A. P. (1979). Conditional independence in statistical theory (with

discussion). Journal of the Royal Statistical Society, Series B, 41, 1–31.

Dawid, A. P. (1980). Conditional independence for statistical operations.

Annals of Statistics, 8, 598–617.

de Campos, L. M., Fernandez-Luna, J. M., Gomez, J. A., and Puerta,

J. M. (2002). Ant colony optimization for learning Bayesian networks.

International Journal of Approximate Reasoning, 31, 511–49.

Dey, D. K., Ghosh, S., and Mallick, B. K. (2009). Bayesian Modeling in

Bioinformatics. Chapman and Hall/CRC, Boca Raton, Florida.

Edwards, D. (1995). Introduction to Graphical Modelling. Springer, New

York.

Fernandes, C. M., Silva, W. T. D., and Ladeira, M. (2004). An algorithm

to handle structural uncertainties in learning Bayesian network. In

Proceedings of Ibero-American Symposium on Software Engineering and

Knowledge Engineering (JIISIC’04). Jornadas Iberoamericanas de

Ingenieria de Software e Ingenieria del Conocimiento (JIISIC), Madrid,

Espana. Jornadas Iberoamericanas de Ingenieria de Software e Ingenieria

del Conocimiento (JIISIC).

Figini, S. (2010). Statistical models for customer satisfaction data. Journal

of quality technology and quality management - to appear, 7.

95

Bibliography Bibliography

Geiger, D. and Pearl, J. (1990). On the logic of casual models. In Uncertainty

in artificial intelligence IV, pp. 136–47. (ed. R.D. Schacter, T.S. Levitt,

L.N. Kanal and J.F. Lemmer), North-Holland, Amsterdam.

Geiger, D. and Pearl, J. (1993). Logical and algorithmic properties of

conditional independence and graphical models. Annals of Statistics, 21,

2001–21.

Gibbs, W. (1902). Elementary Principles of Statistical Mechanics. Yale

University Press, NewHaven, Connecticut.

Goodman, L. A. and Kruskal, W. (1979). Measures of association for cross

classification. Springer-Verlag, New York.

Grigoroudis, E. and Siskos, Y. (1998). Customer Satisfaction Evaluation.

Methods for measuring and implementing services quality. Springer,

Milwaukee, Wisconsin.

Hayes, B. E. (1998). Measuring Customer Satisfaction: Survey Design,

Use, and Statistical Analysis Methods, (2nd edn). ASQ Quality Press,

Milwaukee, Wisconsin.

Heckerman, D. (1995). A tutorial on Learning with Bayesian Networks.

Technical Report MSR-TR-95-06, Microsoft Research.

Hollander, M. and Wolfe, D. (1999). Nonparametric Statistical Methods, (2nd

edn). John Wiley and Sons, New York.

Joe, H. (1971). Multivariate Models and Dependence Concepts. Chapman

and Hall/CRC, Boca Raton, Florida.

Jonckheere, A. (1954). A distribution-free k-sample test against ordered

alternatives. Biometrika, 41, 133–45.

Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional directed

acyclic graphs with the pc-algorithm. Journal of Machine Learning

Research, 8, 613–636.

Kalisch, M., Maechler, M., and Colombo, D. (2009). pcalg: Estimation of

CPDAG/PAG and causal inference. R package version 0.1-9.

Kendall, M. G. (1945). The treatment of ties in rank problems. Biometrika,

33, 239–51.

96

Bibliography Bibliography

Kiiveri, H., Speed, T., and Carlin, J. (1984). Recursive casual model. Journal

of the Australian Mathematical Society, Series A, 36, 30–52.

Konis, K. and Expert., H. (2010). RHugin: RHugin. R package version 0.9-1.

Kruskall, W. H. (1952). A nonparametric test for several sample problem.

AMS, 23, 525–40.

Kruskall, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion

variance analysis. JASA, 47, 583–621.

Kullback, S. and Leibler, R. (1951). On information and sufficiency. The

Annals of Mathematical Statistics, 22, 79–86.

Lauritzen, S. L. (1996). Graphical Models. Clarendon press, Oxford.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H.-G. (1990).

Independence properties of directed markov fields. Networks, 20, 491–

505.

Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based On

Ranks. Holden-Day, San Francisco.

Li, J. and Wang, Z. J. (2009). Controlling the false discovery rate of the

association/causality structure learned with the PC algorithm. Journal

of Machine Learning Research, 10, 475–514.

Lindgren, B. W. (1976). Statistical Theory, (3rd edn). Macmillan Publishing,

New York.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two

random variables is stochastically larger than the other. AMS, 18, 56–60.

Monti, S. and Cooper, G. F. (1997). Learning Bayesian belief networks with

neural network estimators. Neural Information Processing Systems, 9,

579–584.

Moral, S. (2004). An empirical comparison of score measures for

independence. In Proceedings of the Tenth International Conference

IPMU 2004, pp. 1307–14.

Musella, F., Renzi, M. F., and Vicard, P. (2007). Un modello di valutazione

della qualitá basato su sistemi esperti probabilistici. In Valutazione e

97

Bibliography Bibliography

Customer Satisfaction per la Qualitá dei servizi, pp. 213–6. Centro

stampa universitá, Roma – Italy.

Neapolitan, R. E. (2003). Learning Bayesian Networks. Pearson Prentice

Hall, NewHaven, Connecticut.

Pearl, J. (1986). A constraint-propagation approach to probabilistic

reasoning. In Uncertainty in Artificial Intelligence. (ed.L.N. Kanal and

J.F. Lemmer), North Holland, Amsterdam, The Netherlands.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems:networks of

plausible inference. Morgan Kaufmann, San Francisco, CA, USA.

Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge

University Press, New-Yprk.

Pearl, J. and Paz, A. (1987). Graphoids: a graph based logic for reasoning

about relevancy relations. In Advances in Artificial Intelligence - II,

pp. 357–63. North-Holland, Amsterdam.

Pearl, J. and Verma, T. (1987). The logic of representing dependecies

by directed graphs. In Proceedings of the 6th conference of American

Association of Artificial Intelligence, pp. 374–9. American Association of

Artificial Intelligence.

Perrier, E., Imoto, S., and Miyano, S. (2008). Finding optimal bayesian

network given a super-structure. Journal of Machine Learning Research,

9, 2251–86.

Pirie, W. (1983). Jonckheere tests for ordered alternatives. Encyclopaedia of

Statistical Sciences, 4, 315–8.

R Development Core Team (2009). R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vienna,

Austria. ISBN 3-900051-07-0.

Renzi, M. F., Vicard, P., Guglielmetti, R., and Musella, F. (2009).

Probabilistic expert systems for managing information to improve

services. The TQM Journal, 21, 429–42.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14,

465–471.

98

Bibliography Bibliography

Salini, S. and Kenett, R. S. (2007). Bayesian networks of customer

satisfaction survey data.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of

Statistics, 6, 461–464.

Shannon, C. (1948). A mathematical theory of communication. Bell System

Technology Journal, 27, 379–423.

Siegel, S. and Castellan, N. J. J. (1988). Nonparametrics: Statistical Methods

Based On Ranks. McGraw-Hill International Editions, New York.

Speed, T. P. (1979). A note on nearest-neighbour gibbs and markov

probabilities. Sankhya, Series A, 41, 184–97.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction,

and Search, (2nd edn). MIT Press, Cambridge, Massachusetts.

Sprent, P. and Smeeton, S. N. (2001). Applied Nonparametric Statistical

Methods. Chapman and Hall/CRC, Boca Raton, Florida.

Stanghellini, E. (1999). The use of graphical models in consumer credit

scoring. In Proceedings of the 52nd International Statistical Institute,

pp. 279–82.

Steck, H. (2001). Constraint-Based Structural Learning in Bayesian Networks

using Finite Data. PhD thesis, Institut für Informatik der Technischen

Universität München.

Steck, H. (2007). On a Non-Local Search Strategy for Learning in Bayesian

Networks.

Terpstra, T. J. (1952). The asymptotic normality and consistency of Kendalĺs

test against trend when ties are present in one ranking. Indagationes

Mathematicae, 14, 327–333.

Tsamardinos, I., Brown, L. E., and Constantin, F. A. (2006). The max-

min hill-climbing Bayesian network structure learning algorithm. In

Proceedings of the 52nd International Statistical Institute, pp. 31–78.

Machine Learning.

Verma, T. and Pearl, J. (1990a). Casual networks: semantic and

expressiveness. In Uncertainty in artificial intelligence IV, pp. 69–76.

99

Bibliography Bibliography

(ed. R.D. Schacter, T.S. Levitt, L.N. Kanal and J.F. Lemmer), North-

Holland, Amsterdam.

Verma, T. and Pearl, J. (1990b). Equivalence and synthesis of causal

models. In Proceedings of the Sixth Conference on Uncertainty in

Artificial Intelligence, pp. 255–70.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics.

John Wiley and Sons, Chicester, England.

Wilcoxon, F. (1945). Individual comparison by ranking methods. Biometrics

Bull., 31, 405–14.

Wold, H. (1954). Causality and econometrics. Econometrica, 22, 162–77.

Wright, S. (1921). Correlation and causation. Journal of Agricultural

Research, 20, 557–85.

Yule, G. U. (1912). On the methods for measuring association between two

attributes. Journal of Royal Statistics Society, 75, 579–642.

Zanella, A. (2001). Measures and models of customer satisfaction: the

underlying conceptual construct and comparison of different approaches.

In Proceedings of The 6th TQM World Congress. Saint Petersburg.

100

Appendices

101

Appendix A
A suite of R functions

In this Appendix we provide a suite of R functions developed for learning network structure
from data. In detail, functions concern (1) the setting of variable type; (2) tests for
checking conditional independence; (3) PC algorithm; (4) OPC algorithm; (5) NOPC
algorithm.

A.1 Setting the type of variable

When the set of data contains all nominal variables we can set each variables of the dataset
as a factor. The function appropriate for this purpose is factor.data.

Function factor.data: this function permits to set each variable of dataset as factor.

Argument: dataset, a data frame containing the variables of interests.

Output: a data frame which columns are factors.

factor.data<-function(dataset){

new<-c(1:nrow(dataset))

for(i in 1:ncol(dataset)) {

dataset[,i]<-factor(dataset[,i], ordered=F)

new<-data.frame(new,dataset[,i])

}

new<-new[,-1]; colnames(new)<-names(dataset)

return(new)

}

102

A.1 Setting the type of variable

When the set of data contains all ordinal variables we can set each variable of the
dataset as an ordered factor. The function appropriate for this purpose is ordered.data.

Function ordered.data: this function permits to set each variable of dataset as
ordered factor.

Argument: dataset, a data frame containing the variables of interests.

Output: a data frame which columns are ordered factors.

ordered.data<-function(dataset){

new<-c(1:nrow(dataset))

for(i in 1:ncol(dataset)) {

dataset[,i]<-as.ordered(dataset[,i])

new<-data.frame(new,dataset[,i])

}

new<-new[,-1]

colnames(new)<-names(dataset)

return(new)

}

When the set of data contains both nominal and ordinal variables we can set the right
type of each variable. The function appropriate for this purpose is SetVarType.

Function SetVarType: this function permits to set the type of each variable by means
of an editor window.

Argument: dataset, a data frame containing the variables of interests.

Output: a data frame which columns are either factors or ordered factors.

SetVarType<-function(dataset){

list<-edit(data.frame(node=colnames(dataset), varType=c(rep

("Factor",(length(dataset)-1)),rep("Ordered", 1))))

varType<-list[,2]

new<-c(1:nrow(dataset))

for(i in 1:nrow(list)) {

if(varType[i]=="Ordered") dataset[,i]<-as.ordered(dataset[,i])

else dataset[,i]<-factor(dataset[,i], ordered=F)

103

A.2 Conditional Independence tests

new<-data.frame(new,dataset[,i])

}

new<-new[,-1]

colnames(new)<-list[,1]

return(new)

}

A.2 Conditional Independence tests

The PC algorithm checks conditional independence between variables computing the
conditional cross entropy, known as mutual information. The R function for computing
the conditional cross entropy has been declared cond.cross.entropy.

Function cond.cross.entropy: this function permits to compute the conditional cross
entropy between a pair of variables given a conditioning set.

Arguments: m, an ftable; d1 and d2, dimensions of the table.

Output: the value of conditional cross entropy CCE; the G2 statistic; the degrees of
freedom; the p-value.

cond.cross.entropy<-function(m,d1,d2){

m[m==0]<-1e-10

cross.entropy<-function(t,d1,d2){

dim(t)<-c(d1,d2); t1<-addmargins(t)

cm <- t1[d1+1,1:d2]; rm <- t1[1:d1,d2+1]; N<- t1[d1+1,d2+1]

cm[cm==0]<-1e-10; rm[rm==0]<-1e-10; N[N==0]<-1e-10

pr<-t/N; pcm<-c(cm/N); prm<-c(rm/N)

pr[pr==0]<-1e-10

dim(pcm)<-c(1,d2); dim(prm)<-c(d1,1)

kl<-prm%*%pcm

kl[kl==0]<-1e-10

CE<- sum(pr*log(pr/kl))

}

ans<-apply(m,1,cross.entropy,d1,d2)

fcond<-addmargins(m)[1:dim(m)[1],dim(m)[2]+1]

tot<-addmargins(m)[dim(m)[1]+1,dim(m)[2]+1]

CCE<-sum((fcond/sum(fcond))*(ans))

104

A.3 PC algorithm

dof<-(d1-1)*(d2-1)*(dim(m)[1]); g2<-2*tot*CCE ;pvalue<-pchisq(g2,lower.tail=F,df=dof)

return(list(CCE=CCE, df=dof,g2=g2,P=pvalue))

}

A.3 PC algorithm

Here, we provide a function, namely PC, for computing the PC algorithm. The function
is a variation of an already existing function called pcAlgo in the pcalg package of R. For
this reason it requires the library pcalg.

Function PC: this function permits to compute the PC algorithm given a nominal
dataset. The variables can be set as factors by means of the factor.data function.

Arguments: dm, a data frame; n, number of observations; alpha, significance level
(default 0.05); verbose, a logical argument for obtaining a short output (default ver-
bose=FALSE) or a detailed output (verbose=TRUE); G, the adjacency matrix; NAdelete,
a logical argument for deleting edges when the p-value is not available (default NAde-
late=TRUE).

Output: it is an object of a customized class called myPCalgo. The short output
provides the fitted skeleton of the graph; the detailed output provides results of each test,
the adjacency matrix of the final graph and the fitted skeleton.

PC<-function (dm = NA, n = NA, alpha=0.05, verbose = FALSE,

G = NULL, NAdelete = TRUE) {

if (any(is.na(dm))) {

stopifnot(!is.na(n) > 0)

}

else {

n <- nrow(dm)

p <- ncol(dm)

}

n <- as.integer(n)

cl <- match.call()

sepset <- vector("list", p)

n.edgetests <- numeric(1)

if (is.null(G)) {

105

A.3 PC algorithm

G <- matrix(rep(TRUE, p * p), nrow = p, ncol = p)

diag(G) <- FALSE

}

else {

if (!(identical(dim(G), c(p, p)))) {

stop("Dimensions of the dataset and G do not agree.")

}

}

seq_p <- 1:p

for (iList in 1:p) sepset[[iList]] <- vector("list", p)

done <- FALSE

ord <- 0

dm.df <- as.data.frame(dm)

while (!done && any(G) && ord <= Inf) {

n.edgetests[ord + 1] <- 0

done <- TRUE

ind <- which(G, arr.ind = TRUE)

ind <- ind[order(ind[, 1]),]

ind <- subset(ind, ind[,2]>ind[,1])

remainingEdgeTests <- nrow(ind)

if (verbose)

cat("Order=", ord, "; remaining edges:",

remainingEdgeTests, "\n", sep = "")

for (i in 1:remainingEdgeTests) {

x <- ind[i, 1]

y <- ind[i, 2]

if (G[y, x]) {

nbrsBool <- G[, x]

nbrsBool[y] <- FALSE

nbrs <- seq_p[nbrsBool]

length_nbrs <- length(nbrs)

if (length_nbrs >= ord) {

if (length_nbrs > ord)

done <- FALSE

S <- seq(length = ord)

repeat {

n.edgetests[ord + 1] <- n.edgetests[ord +

1] + 1

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$P

106

A.3 PC algorithm

T<-CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$g2

if (verbose)

cat("x=", x, " y=", y, " S=", nbrs[S],

"p-value =", prob, ifelse(prob<alpha,"dip","---"),"\n", sep="\t")

if (is.na(prob))

prob <- ifelse(NAdelete, 1, 0)

if (prob >= alpha) {

G[x, y] <- G[y, x] <- FALSE

sepset[[x]][[y]] <- nbrs[S]

break

}

else {

nextSet <- getNextSet(length_nbrs,

ord, S)

if (nextSet$wasLast)

break

S <- nextSet$nextSet

}

}

}

}

}

ord <- ord + 1

}

if (verbose) {

cat("Final graph adjacency matrix:\n")

print(adjMatrix(G))

}

if (sum(G) == 0) {

Gobject <- new("graphNEL", nodes = as.character(seq_p))

}

else {

colnames(G) <- rownames(G) <- as.character(seq_p)

Gobject <- as(G, "graphNEL")

}

setClass("oldPCalgo", contains="pcAlgo", "VIRTUAL")

setClass("myPCalgo", representation(graph="graph", adj="matrix"),

contains="oldPCalgo")

res <- new("myPCalgo", graph = Gobject, adj=adjMatrix(G), call = cl, n = n,

107

A.4 OPC algorithm

max.ord = as.integer(ord-1), n.edgetests = n.edgetests, sepset = sepset)

res

}

A.4 OPC algorithm

Here, we provide a function, namely OPC, for computing the OPC algorithm. The structure
is similar to PC function; it requires the library pcalg.

Function OPC: this function permits to compute the OPC algorithm from an ordinal
dataset. The variables must be ordinal. We can set of data frame as ordered factors by
means of the ordered.data function.

Arguments: dm, a data frame; n, number of observations; alpha, significance level
(default 0.05); verbose, a logical argument for obtaining a short output (default ver-
bose=FALSE) or a detailed output (verbose=TRUE); G, the adjacency matrix; NAdelete,
a logical argument for deleting edges when the p-value is not available (default NAde-
late=TRUE).

Output: it is an object of a customized class called myPCalgo. The short output
provides the fitted skeleton of the graph; the detailed output provides results of each test,
the adjacency matrix of the final graph and the fitted skeleton.

OPC<-function (dm = NA, n = NA, alpha=0.05, verbose = FALSE,

G = NULL, NAdelete = TRUE)

{

if (any(is.na(dm))) {

stopifnot(!is.na(n) > 0)

}

else {

n <- nrow(dm)

p <- ncol(dm)

}

n <- as.integer(n)

cl <- match.call()

sepset <- vector("list", p)

n.edgetests <- numeric(1)

108

A.4 OPC algorithm

if (is.null(G)) {

G <- matrix(rep(TRUE, p * p), nrow = p, ncol = p)

diag(G) <- FALSE

}

else {

if (!(identical(dim(G), c(p, p)))) {

stop("Dimensions of the dataset and G do not agree.")

}

}

seq_p <- 1:p

for (iList in 1:p) sepset[[iList]] <- vector("list", p)

done <- FALSE

ord <- 0

dm.df <- as.data.frame(dm)

while (!done && any(G) && ord <= Inf) {

n.edgetests[ord + 1] <- 0

done <- TRUE

ind <- which(G, arr.ind = TRUE)

ind <- ind[order(ind[, 1]),]

ind <- subset(ind, ind[,2]>ind[,1])

remainingEdgeTests <- nrow(ind)

if (verbose)

cat("Order=", ord, "; remaining edges:",

remainingEdgeTests, "\n", sep = "")

for (i in 1:remainingEdgeTests) {

x <- ind[i, 1]

y <- ind[i, 2]

if (G[y, x]) {

nbrsBool <- G[, x]

nbrsBool[y] <- FALSE

nbrs <- seq_p[nbrsBool]

length_nbrs <- length(nbrs)

if (length_nbrs >= ord) {

if (length_nbrs > ord)

done <- FALSE

S <- seq(length = ord)

repeat {

n.edgetests[ord + 1] <- n.edgetests[ord +

1] + 1

109

A.4 OPC algorithm

if (!(class(dm.df[,x])[1]=="ordered" &

class(dm.df[,y])[1]=="ordered")) {

stop("invalide procedure")

}

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="jt")$P

T<-CI.discrete(x, y, nbrs[S], dm.df, test="jt")$JT

if (verbose)

cat("x=", x, " y=", y, " S=", nbrs[S],

"p-value =", prob, ifelse(prob<alpha,"dip","---"),"\n", sep="\t")

if (is.na(prob))

prob <- ifelse(NAdelete, 1, 0)

if (prob >= alpha) {

G[x, y] <- G[y, x] <- FALSE

sepset[[x]][[y]] <- nbrs[S]

break

}

else {

nextSet <- getNextSet(length_nbrs,

ord, S)

if (nextSet$wasLast)

break

S <- nextSet$nextSet

}

}

}

}

}

ord <- ord + 1

}

if (verbose) {

cat("Final graph adjacency matrix:\n")

print(adjMatrix(G))

}

if (sum(G) == 0) {

Gobject <- new("graphNEL", nodes = as.character(seq_p))

}

else {

colnames(G) <- rownames(G) <- as.character(seq_p)

Gobject <- as(G, "graphNEL")

110

A.5 NOPC algorithm

}

setClass("oldPCalgo", contains="pcAlgo", "VIRTUAL")

setClass("myPCalgo", representation(graph="graph", adj="matrix"),

contains="oldPCalgo")

res <- new("myPCalgo", graph = Gobject, adj=adjMatrix(G),

call = cl, n = n, max.ord = as.integer(ord - 1),

n.edgetests = n.edgetests, sepset = sepset)

res

}

A.5 NOPC algorithm

Here, we provide a function, namely NOPC, for computing the NOPC algorithm. The pro-
cedure selects the most appropriate test for checking conditional independence according
to the type of variables. In order to set the type of each variable, the SetVarType function
can be used. The NOPC function requires the library pcalg.

Function NOPC: this function permits to compute the NOPC algorithm from a dataset
made of mixed nominal-ordinal variables.

Arguments: dm, a data frame; n, number of observations; alpha, significance level
(default 0.05); verbose, a logical argument for obtaining a short output (default ver-
bose=FALSE) or a detailed output (verbose=TRUE); G, the adjacency matrix; NAdelete,
a logical argument for deleting edges when the p-value is not available (default NAde-
late=TRUE).

Output: it is an object of a customized class called myPCalgo. The short output
provides the fitted skeleton of the graph; the detailed output provides results of each test,
the adjacency matrix of the final graph and the fitted skeleton.

NOPC<-function (dm = NA, n = NA, alpha=0.05, verbose = FALSE,

G = NULL, NAdelete = TRUE)

{

if (any(is.na(dm))) {

stopifnot(!is.na(n) > 0)

}

else {

111

A.5 NOPC algorithm

n <- nrow(dm)

p <- ncol(dm)

}

n <- as.integer(n)

cl <- match.call()

sepset <- vector("list", p)

n.edgetests <- numeric(1)

if (is.null(G)) {

G <- matrix(rep(TRUE, p * p), nrow = p, ncol = p)

diag(G) <- FALSE

}

else {

if (!(identical(dim(G), c(p, p)))) {

stop("Dimensions of the dataset and G do not agree.")

}

}

seq_p <- 1:p

for (iList in 1:p) sepset[[iList]] <- vector("list", p)

done <- FALSE

ord <- 0

dm.df <- as.data.frame(dm)

while (!done && any(G) && ord <= Inf) {

n.edgetests[ord + 1] <- 0

done <- TRUE

ind <- which(G, arr.ind = TRUE)

ind <- ind[order(ind[, 1]),]

ind <- subset(ind, ind[,2]>ind[,1])

remainingEdgeTests <- nrow(ind)

if (verbose)

cat("Order=", ord, "; remaining edges:", remainingEdgeTests,

"\n", sep = "")

for (i in 1:remainingEdgeTests) {

x <- ind[i, 1]

y <- ind[i, 2]

if (G[y, x]) {

nbrsBool <- G[, x]

nbrsBool[y] <- FALSE

nbrs <- seq_p[nbrsBool]

length_nbrs <- length(nbrs)

112

A.5 NOPC algorithm

if (length_nbrs >= ord) {

if (length_nbrs > ord)

done <- FALSE

S <- seq(length = ord)

repeat {

n.edgetests[ord + 1] <- n.edgetests[ord +

1] + 1

if (class(dm.df[,x])[1]=="ordered" & class(dm.df[,y])[1]=="ordered"){

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="jt")$P

T<-CI.discrete(x, y, nbrs[S], dm.df, test="jt")$JT

} else{

if (class(dm.df[,x])[1]=="factor" & class(dm.df[,y])[1]=="ordered"

& nlevels(dm.df[,x])==2) {

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="wilcoxon")$P

T<-CI.discrete(x, y, nbrs[S], dm.df, test="wilcoxon")$W

} else{

if (class(dm.df[,x])[1]=="factor" & class(dm.df[,y])[1]=="ordered") {

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="kruskal")$P

T<-CI.discrete(x, y, nbrs[S], dm.df, test="kruskal")$KW

} else{

if (class(dm.df[,x])[1]=="factor" & class(dm.df[,y])[1]=="factor") {

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$P

T<-CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$g2

} else{

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$P

T<-CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$g2}

}}}

if(prob=="NaN"){

prob <- CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$P

T<-CI.discrete(x, y, nbrs[S], dm.df, test="CCE")$g2

}

if (verbose)

cat("x=", x, " y=", y, " S=", nbrs[S],

"p-value =", prob, ifelse(prob<alpha,"dip","---"),"\n", sep="\t")

if (is.na(prob))

prob <- ifelse(NAdelete, 1, 0)

if (prob >= alpha) {

G[x, y] <- G[y, x] <- FALSE

sepset[[x]][[y]] <- nbrs[S]

113

A.5 NOPC algorithm

break

}

else {

nextSet <- getNextSet(length_nbrs,

ord, S)

if (nextSet$wasLast)

break

S <- nextSet$nextSet

}

}

}

}

}

ord <- ord + 1

}

if (verbose) {

cat("Final graph adjacency matrix:\n")

print(adjMatrix(G))

}

if (sum(G) == 0) {

Gobject <- new("graphNEL", nodes = as.character(seq_p))

}

else {

colnames(G) <- rownames(G) <- as.character(seq_p)

Gobject <- as(G, "graphNEL")

}

setClass("oldPCalgo", contains="pcAlgo", "VIRTUAL")

setClass("myPCalgo", representation(graph="graph", adj="matrix"), contains="oldPCalgo")

res <- new("myPCalgo", graph = Gobject, adj=adjMatrix(G), call = cl, n = n,

max.ord = as.integer(ord -

1), n.edgetests = n.edgetests, sepset = sepset)

res

}

114

Appendix B
R code

In this Appendix we provide the R code used for comparing performance of PC and OPC
algorithm.

Load packages.

library(RHugin)

library(pcalg)

Choose functions path.

path=choose.dir(getwd(), "Directory containing functions")

flist<-list.files(path)

for (i in 1:length(flist)) source(paste(path,"\\",flist[i],sep=""))

Load and compile the real network. Here, the network is a Hugin object.

network<-read.rhd("file.net",type="net")

compile.RHuginDomain(network)

Use a more suitable class graph and build the real skeleton of the DAG.

tDAG<-as.graph.RHuginDomain(network)

RealSkel<-ugraph(tDAG)

Build an adjacency matrix representing the real PDAG. Firstly, build a matrix from
the real skeleton, then change manually elements of matrix according to DAG v-structures.
Define the generic element aij in the matrix as 0 if the arrow from node j to node i is
compelled. Finally, provide a graphical representation of the PDAG using an object of
class graph.

115

matrixPDAG<-as(RealSkel, "matrix")

matrixPDAG[i,j]<-0

.....

RealPDAG<-as(matrixPDAG, "graphNEL")

Plot the network in R.

library(igraph)

Vertex.names<-c(get.nodes(network))

Real_DAG<-igraph.from.graphNEL(tDAG)

tkplot(Real_DAG, vertex.label=Vertex.names, vertex.size=50, vertex.size2=20)

detach("package:igraph")

Simulate k samples with n cases from the real network. Here, k = 1000 and n = 50.
Set a seed s.

k<-1000

n<-n

set.seed(s)

seeds<-sample(1:(k*100),k)

data<-list()

for (i in 1:k){

data[[i]]<-as.data.frame(simulate.RHuginDomain(network,n, seeds[[i]]))

}

Apply to each generated dataset the PC function to estimate the skeleton by PC
algorithm.

PCskel<-list()

for(i in 1:k){

data[[i]]<-factor.data(data[[i]])

PCskel[[i]]<-PC(data[[i]])

}

Find the PDAG of each learnt structure by means of function udag2pdag of pcalg

package.

PCpdag<-list()

for(i in 1:k){

PCpdag[[i]]<-udag2pdag(PCskel[[i]])

}

Apply to each generated dataset the OPC function to estimate the skeleton by OPC
algorithm.

116

OPCskel<-list()

for(i in 1:k){

data[[i]]<-ordered.data(data[[i]])

OPCskel[[i]]<-OPC(data[[i]])

}

Find the PDAG of each learnt structure by means of function udag2pdag of pcalg

package.

OPCpdag<-list()

for(i in 1:k){

OPCpdag[[i]]<-udag2pdag(OPCskel[[i]])

}

Evaluate the accuracy of algorithms. Firstly, compare the skeleton of each learnt
structure with the real skeleton and compute TPR, FPR and TDR. Store the results as
vectors and compute the mean values for each index.

comparison_PC_50<-list()

comparison_OPC_50<-list()

for (i in 1:k){

comparison_PC_50[[i]]<-compareGraphs(PCskel[[i]]@graph, RealSkel)

comparison_OPC_50[[i]]<-compareGraphs(OPCskel[[i]]@graph, RealSkel)

}

comparison_PC.50<-matrix(nrow=k,ncol=3)

for (i in 1:k){

comparison_PC.50[i,]<-as.vector(comparison_PC_50[[i]])

}

dimnames(comparison_PC.50)<-list(c(),c("TPR", "FPR", "TDR"))

comparison_PC_50<-apply(comparison_PC.50,2,mean)

comparison_PC_50

comparison_OPC.50<-matrix(nrow=k,ncol=3)

for (i in 1:k){

comparison_OPC.50[i,]<-as.vector(comparison_OPC_50[[i]])

}

dimnames(comparison_OPC.50)<-list(c(),c("TPR", "FPR", "TDR"))

comparison_OPC_50<-apply(comparison_OPC.50,2,mean)

comparison_OPC_50

Compute the Structural Hamming Distance for each fitted PDAG.

117

shd_PC.50<-list()

shd_OPC.50<-list()

for(i in 1:k){

shd_PC.50[i]<-shd(RealPDAG,PCpdag[[i]]@graph)

shd_OPC.50[i]<-shd(RealPDAG,OPCpdag[[i]]@graph)

}

shd_PC_50<-matrix(nrow=1,ncol=k)

for (i in 1:k){

shd_PC_50[,i]<-as.vector(shd_PC.50[[i]])

}

dimnames(shd_PC_50)<-list(c("SHD"), c())

shd_PC_50<-apply(shd_PC_50,1,mean)

shd_PC_50

shd_OPC_50<-matrix(nrow=1,ncol=k)

for (i in 1:k){

shd_OPC_50[,i]<-as.vector(shd_OPC.50[[i]])

}

dimnames(shd_OPC_50)<-list(c("SHD"), c())

shd_OPC_50<-apply(shd_OPC_50,1,mean)

shd_OPC_50

Repeat the code using n = 100 and n = 500. Store results of skeletons comparison in
vectors properly labelled (e.g. comparison PC 100, comparison PC 500, comparison PC 100,

comparison PC 500). Save results of SHD using the appropriate labels (e.g. shd PC 100,

shd PC 500, shd PC 100, shd PC 500).

Compare the results and plot the SHD performance.

plot(shd_PC, type="b", col="red",main="Structural distance",

xlab="sample size", ylab="SHD ave", lwd=2, ylim=c(0,7), xaxt="n")

axis(1, 1:3, c(50,100,500)); lines(shd_OPC,col="blue", type="b", lwd=2)

legend("topright", legend=c("PC-algorithm", "OPC-algorithm"), col=c("red","blue"), lwd=3)

par(mfrow=c(1,2))

boxplot(as.numeric(shd_PC.50), as.numeric(shd_PC.100), as.numeric(shd_PC.500),

names=c(50,100,500),xlab="Sample size", outline=T)

title("Boxplot of SHD - PC algorithm")

boxplot(as.numeric(shd_OPC.50), as.numeric(shd_OPC.100), as.numeric(shd_OPC.500),

names=c(50,100,500),xlab="Sample size", outline=T)

title("Boxplot of SHD - OPC algorithm")

118

List of Figures

2.1 An undirected graph and a directed graph 15

(a) An undirected graph . 15

(b) A directed graph . 15

2.2 A DAG on 7 nodes . 27

2.3 Moral graphs . 28

(a) (GAn(1,3,6))
m . 28

(b) (GAn(1,3,4,5,6))
m . 28

2.4 Different configurations for a triplet of nodes so that the first

three DAGs belong to the same equivalence class and the

fourth DAG is contained in a different one 32

(a) serial configuration . 32

(b) serial configuration . 32

(c) diverging configuration 32

(d) converging configuration 32

2.5 Markov equivalent graphs . 33

(a) A DAG with E = X1 → X2, X1 → X3, X2 → X4, X3 → X4 . . 33

(b) A DAG with E = X1 → X2, X3 → X1, X2 → X4, X3 → X4 . . 33

(c) A DAG with E = X2 → X1, X1 → X3, X2 → X4, X3 → X4 . . 33

2.6 Skeleton of DAGs in Figure 2.5 33

2.7 PDAG of DAGs in Figure 2.5 34

2.8 Markov equivalent graphs . 35

119

LIST OF FIGURES LIST OF FIGURES

(a) A DAG with E = X1 → X2, X1 → X3, X2 → X4, X3 →

X4, X4 → X5 . 35

(b) A DAG with E = X1 → X2, X3 → X1, X2 → X4, X3 →

X4, X4 → X5 . 35

(c) A DAG with E = X2 → X1, X1 → X3, X2 → X4, X3 →

X4, X4 → X5 . 35

2.9 PDAG of DAGs in Figure 2.8 35

3.1 A complete undirected graph 45

3.2 A DAG and its skeleton . 46

(a) A DAG . 46

(b) The skeleton . 46

3.3 A collider . 46

4.1 Graph skeletons . 69

(a) G* i.e. the skeleton of the true DAG. 69

(b) H* i.e. the skeleton of the estimated DAG. 69

4.2 Partially DAGs . 72

(a) The PDAG of G . 72

(b) The PDAG of H . 72

4.3 The true DAG for customer satisfaction data 74

4.4 The SHD average for PC algorithm (red line) and OPC al-

gorithm (blue line) with respect of different sample sizes for

Customer Satisfaction data . 77

4.5 Box plots of SHD according to different sample sizes for Cus-

tomer Satisfaction data. 77

4.6 The true DAG for Political Action data 80

4.7 The SHD average for PC algorithm (red line) and OPC algo-

rithm (blue line) according to different sample sizes. 82

4.8 Box plots of SHD according to different sample sizes for Po-

litical Action data. 83

4.9 A DAG on three variables non monotonically associated . . . 84

4.10 The complete undirected graph associated with the DAG in

Figure 4.9 . 85

120

LIST OF FIGURES LIST OF FIGURES

4.11 Skeletons identified by algorithms 88

(a) The skeleton estimated through PC algorithm 88

(b) The skeleton estimated through OPC algorithm 88

121

List of Tables

1.1 A generic contingency table 7

3.1 Data with ties arranged in a table 52

3.2 A slice of the 2× C × L table 55

3.3 A slice of the T × C × L table 57

3.4 A contingency table for two ordinal variables X and Y mono-

tonically associated . 62

3.5 A contingency table for two ordinal variables X and Y non

monotonically associated . 64

3.6 Available tests in CI.discrete function 65

4.1 The TPR average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.3 . 75

4.2 The FPR average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.3 . 75

4.3 The TDR average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.3 . 76

4.4 The SHD average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.3 . 76

4.5 Statistics relating to SHDs of Customer Satisfaction data . . . 78

4.6 The TPR average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.6 . 80

122

LIST OF TABLES LIST OF TABLES

4.7 The FPR average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.6 . 81

4.8 The TDR average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.6 . 81

4.9 The SHD average for PC and OPC algorithm performed on

1000 datasets generated according to the DAG in Figure 4.6 . 81

4.10 Statistics relating to SHDs of Political Action data 83

4.11 Contingency table for variables X1 and X2 85

4.12 Contingency table for variables X1 and X3 86

4.13 Contingency table for variables X2 and X3 87

123

