JAMPNULIYADDA DMOQUADLGA BOGUAZZYA


```
2anmaile. 1276
```


HORDHAC

Buuggani waxa wooye buugga labasd ee xisaabta ah, looguna talagalay macalimiinta tababarka ku soo quadatay hal sano dugsiga Tababarka ee Macallimiinta ee ku yaalla Xalane. Macalimiintasi muddo laba sannadood eh ayey buuggan aqoon dirsi ahean ku baran doonaan.

Waxa buuggan qoray Guddi maculiniin oh 00100 saaray sannadkii 1976. Guddigaasina waxa uu ka koobnaa Jaallayaasha kala ah:Cali Iid Ibrahim Axmed, Faorax Maxamed Shire, Xirsi Caynob Maxemed, iyo Xuseon Cumar Geelle. Waxa buugga savirrada u sameeyoy Maxomed, Cabdalle Axmed, Waxana garaacay Cabdi Xirsi Qanyare. Dhammantoodna waa ay mahadsan yihiin.

Sidii buugga kowaad, buuggon waxa lagu koobay fikradaha xisaabeed ee ku jira manhajka saddexda sannodood ee u horreeya dugsiyada Sare; hase yeeshee, mawaadiicda buuggan ku jirta si tafatiran 00 sasan ayas looga hadlay. Kii kowasdse guud ahaon ayuunbaa 100 taataabtay mawaadiicdiisa. Waxa kale oo jirta in manhajka saddexda sannadood ee u horreeya dugsiga sare aan sidiisii 100 raacin, sababta oo ah waxa jirta in mowandiic monhajkn dugsiga sare ku jirte la isks dhaafay, gaar kale 00 aan ku jirimna lagu soo doray, sida manhajka xisaabta ee Tababarka macolliminta ku xusan.

Ujeedada buuggan laga leeyahay waxa weeye in uu aqoonta xisaabeed ee ardayga Xalane hal sano ku soo Jiray si qoto dheer kor ugu qaado. Barashada fikradaha buuggan ku jiran waxa ay hirgeli kartan 00 keliya haddii fixiradihii xisaabeed ee buugge kowad si dhab ah hore loogu soo dhuuxay.

Mawasdiicda buugga ku jirta waza 100 habeeyoy loona taxay sidii ay guddidu istidhi was ay ugu habbon tahoy. Hoso yeeshee, waa ay dhici kartao in toxa iyo horsaananto mawandiicuaanoy ahayn sidii ugu haboonayd. Markaa barayaasha loogu talagalay buuggan waxa lagu baraarujinayaa in ay u raacaan buugga sida ugu hawl yar ee ay u maali karaan fikradaha lagu bandhigay buugga.

Kifaaleyn kasta oo ku saabsan buugganna asd syaa 100 soo dhaweynayan.

URUR
Fikradda urur ee walaxyo waxe weeye aid ku caan ah xisaabta iyo nolosha guud shaanba. Fikrad zisaabeodde urur sida ay ugu dheehan tahay nolosha maze tusashayaal badan Lagaga bixiyey buugga kowaad ee xisaabta 4 yada oo 1 a qaatay tusaalooyin badan oo laga diodhansanayo macnaha urus sida ereyada kadin, euuto, raxan, iwn.

TUSAALE. 2 : Xayn asi ald Maa urur, Joxe un uriarku ka kooban yahay was noefaf ari ah. Neefafkeaena wazo 100 yaqarn lmitivannayaashn ururka; sababtoo ah xaynta waxa abuuray ana sameeyey neefaf la isu ururiyey Loona arkay inay aamaynayan wax dhan ama idil.

TUSAKLB 2: incooyinica mutuxan ee $1,2,3,5,7,11, \ldots \ldots$. waxa ay suubiyaan urur, tiro kasta oo mutuxanina waa lou-tirsane urur.

Sida runtu bahay Way adag tahay in goexid kooban oo sugan ayais eiino oroyge urur, hase yeeahee haddif aynu isku
 Wexa aynu u sumhinaynan sida soo socotu:

QBEXID: ahaaneed 05100 yaoaan $k u-t i x s a n a y e a s h a ~ u r u r i c a . ~$

Urus ada Maxa lasu isticnanlea xaruufta afka ee waaweyn si ay ugu tamgnaadaan ururada. Saraf kasta oo ka mid ah xuruufta voawoyn ayaa 4 becumean kara v.ros, Katalan vaxa Laga yaabaa In xarailca a uu u taagan yahay ururica ardayds ee fasalka kowaad ee dugeiyadis sare, Summad ahaanna waxa loo qori karaa A = \{ardayda fasalka kownad 50 dugsiynda sare $\}$. Sidix aynu horeba ugu soo sheegnay bumgga kowaad eo xisaabta, tidicyo ayaa lagu xiraa ururada. Tala morkaas xuruufta aflea ee yar-yar waxa aymu ku isticmaainaa inay u taagnaadaan ka-tirasnayaasha urur, Bal ica soo qaod in X ay is taagan tahay urus, a-na ay u taacan tahay
ku-tirsane ka mid ah ku-tirsaneyaasha ururka X, kolkaa sunnad ahaan waxaynu u qori karaa m E X (\sim waa ku-tirsane X). Sidoo kale bal ka soo qaad in X ay tahay urur, hase yeeshee n ay tahay ku-tirsane urur kaie, kolkaa waxaynu niraahnaa ma ma aha ku-tirsane X; summad ahaan waxa aynu u qoraa m \& X (a ma aha $\mathrm{ku}-\mathrm{tirsane} \mathrm{X}$).

TUSAALE: 1 Haddii A ay tahay ururke tirooyinka dhabanka
ah, kolkaa 2 E A laakiin 7 A.

Marka aynu urur sugayno labe darifqo ayuun baa aid la isticmaslaa. Labada dariioo waxa ay kala yihiin dariiqada taxidda (ama dariiqada roostar) ame dariiqada astaan qeexida. Haddaba haddii aynu ku horayno dariiqada taxidda, bal aan fiirino sida urur loogu sugo dariliqadan iyeda ah. Runtii dariiqada taxiddu aad bay u fududahay sababtoo ah si hawl yar ayeynu Leu taxnaa ku-tirsanayaasha ururka tidicyada dhexdooda.
Matalan haddii urur ay ku jiraan ku-tirsanayaasha a, b, c, kolkaa ururka waxa aynu u qorna
$A=\{a, b, c, \ldots . . .$.$\} - Ren aheentiina waxa aynu ka$ hadlaynaa, xooggana aynu ssaraynaa waa ku-tirsanayaasha ah a, b, c, \ldots, \ldots

TUSAALE 2:

$A=\{1,2,3,4\}$ waxa ay muujinaysaa in ururka A uu leeyahay ku-tirsanayaasha $1,2,3$, iyo 4 .
TUSAALE. $3: X=\{a, b, c\}$ waxa ay auujinaysaa in ururka X uu leeyahay ku-tirsanayaasha a, b iyo c.
TUSAALE 4: B $\{1,2,3,5,7,11, \ldots, \ldots$ waxa ay mujinaysaa in ururika B uu Leoyshay dhamaaan let-tirsanayaasha tirooyinka autuxan.
IUSAALE 5: $\mathrm{H}=\{\{1,2\},\{1,3\}\{2,3\}\}$ waxa ay muujinaysaa in ururka h uu leeyahay ku-tirsanayensha ah ururada $\{1,2\},\{1,3\}$, iyo $\{2,3\}$.

Ketaan - Bal itmikana aan milicsano side dariiqada qeexidda loogu sugo urur. Daríqadan iyade ahi waxa weeye dariiqo ku sal leh sifeyn. Dariigadan macneheedu waxa weeye sheecistä Is sheegayo in ku-tirsanihii kasta eo ke aid ah ururka uu raali elinayo ka tirsanapntiisa runta ah ee ururkaa isaga ah. Darifqada qeexidda waxa aynu ku isticaaslaa surnadda: oo aacneheedu tahay "ee ana oo " sida'ka auuqata tusaalooyinkan soo sooda:

TUSAALE 6: $B=\{X: X$ waa tiro mutuxan $\}$ waxa ay muujinaysaa in ururka B uu yahay dhamnaan ku-tirsanayaasha X ee X ay tahay tiro mutuxan. 'Tan oo macneheedu' yahay 3 waxa weeye dhamaan
Anh tirooyinlea mutuxan.
$\left\{\right.$ TUSAALE $7: A=\left\{x: x^{2}-3 x+2=0\right\}$ waxa ay muujinaysaa in ururka A uu yahay dhammaen ku-tirsanayaasha X ee X ay tahay mid raaligelinaysa isleegta ah $X^{2}-3 X+2=0$. Halkan waxa inooga caddaan ah in $A=\{1,2\}$.

LAYLI

Tax ku-tirsanayaasha ku jine dhamman ururadan soo socda adiga oo M u qaadanaya inay is tagean tahay ururica abyoonayaasha togan, B-na u oaadanaye inay u taagan. tahay ururka tirooyinka mutuxan.
2. $\mathrm{A}=\left\{\mathrm{x}: \mathrm{x}^{2}=25\right\}$
2. $H=\{x: 3 x+2=0$ ana $2 x+3=0\}$
3. $G=\left\{X: X^{2}-4 X+3=0\right.$ iyo $\left.2 x^{2}-3 x+1=0\right\}$
8. $\Omega=\{X: X E N$ iyo X oo dhaban $\operatorname{ch}\}$
5. $F=\left\{\begin{array}{llll}X & \text { : } X & E \text { b iyo } X \text { oo uu u qeybsano } 3\end{array}\right\}$
6. $C=\{X: X \in W$ iyo $X \in B\}$
7. $k=\left\{x: x^{3}-27\right\}$
8. $L=\left\{x: x^{3}=8\right\}$
9. $s=\{x: 4 x-2=0\}$
10. $\mathrm{N}=\left\{\mathrm{x}: \mathrm{x}^{2}-2 \mathrm{x}+1\right\}$

HORMO-URUR IYO ISLBEGAANTG URURADA

DEEXID: Ururka h waxa weeye horao-ururka B, haddii ku-tirsanihii kasta ee ku jira A uu isla markaasnaka jiro ururka B. Haddii, ururka B ay ku jiraan ku-tirsanayaal aan ku jirin ururka A, kolkaa ururka A waxa aynu nivaahnaa waa hormoururka quman ee B. Hormo-ururnimada waxa aynu ku nuujinaa sumnadda C.

$$
\text { TUSAALE 1: Haddii } A=\{1,3,4\}, B-n a=\{1,2,3,4,5,6\}
$$

Kolkaa A waxa weeye hormo-urur quaan ee B. Weedhan kore waxa si gaaban summad ahaan loogu qori karaa A C B.

2USAALE 2: Haddii $x=\{1,3\}, y-n a=\left\{x: x^{2}-4 x+3=0\right\}$
kolkaa X waxay hormo-urur u tahay Y; waxaana 100 qori karaa X C Y . Ogow in X aanay ahayn hormo-urur quman ee Y .

Waxa aynu niraahnaa urur A wexa un le'eg yahay urur B haddii iyo haddii oo keliyallabada ururba ay ku jiraan isla ku-tirsanayaal (ku-tirsanayaal isku aid ah); waxana suasad ahaan 100 qoraa $A=B$. Haddaba si aynu u muujino in laba urur, kaba soo qaad X iyo Y, ay isle'ee yihiin waxa inagu filan in aynu tusno in XCY isla aarkaasna in YCX.

TUSAALE_3: Haddii $A=\{1,2,3\}, B-n a=\{3,1,2\}$ tcolkaa $A=B$
2USAALE $4:$ Haddii $A \quad\{1,2,35\}$, $B-n a=\{X: X$ waa tiro mutuxan kana yar 6 \} kolkaa $\mathrm{A}=\mathrm{B}$.

Waxa aad kala ilaalisaa inasd isku qaladid marka ay labe urur isle'eg yihiin iyo marka ay laba urur isku dhicmaan. Way nagii hore u soo geexnay'isle'egeanta laba urup, bal iminkana ean ka bixino qeexid geaban isudhignaanta ee laba urur.

2EBXID: Labada urur A iyo B was ay isu dhican yihiio haddii isku beegnean aid-mid ahi ay, ka dhexayso ku-tirsanayaasha ururada. Ama si kaleba labeda urur A iyo B was ay isu-dhigan yihiin haddii qiinayeasha labada urur ay isle'eg yihiin. Sumad ahaanna waxa 100 qoraa $h \sim B$.

TUSAALE 5: Haddii $\mathrm{A}=\{1,2,3\}$ kolkaa qiimaha A waa 3. Waxaba iska dhici karta in and ku aragto weedhen qormada $n(A)=3$. Macnaha qormadanna waxa weeye ku-tirsanayaasha ururka A waa 3.

TUSAALE 6: Hadii $A=\{1,2,3\}, B-n e=\{5,6,7\}$ kolkae A iyo B waa ay isu dhigmaan; sababtoo ah $n(A)=3$ isla markaas $n(B)=3$. Kolka mar haddii $n(A)=n(B)=3$ markaa A iyo B waa ay isu dhignaan.

LAYLI:

1. Ururadan hoos ku taxan sheeg kuwa kooban iyo kuwa tirobeelka ah. Haddaba qaado kuwa kooban oo kala sheef kuwa isu dhigaa iyo kuwa isle'eg.
b) Ururka ka kooban labada tiro ee ugu horaysa tirsiimada kisiga ah.
c) Ururka ka kooban dhamaan tirooyinka tirsiimada kisiga ah.
, ee ka yar 5 .
j) Ururka ka kooben dhammaan tirooyinka tirsiimada kisiga ah.
x) Ururka ka kooban xarfaha ereyga "iUQDDISHO".
kh) Ururka ka kooban ku-tirsanayaasha kala ah 1 iyo 3.
2. U fiirso weedhahan soo socda dabcedna sheeg in weedh kastaa
ay tahay run ame been.
b) $x \in \in\{x, y, s\}$
t) $x \subset\{x, y, s\}$
j) $\{x\} \in\{x, y, s\}$
$76-$
3. Bal ka soo qaad in G ay tahay dhanaan ururka afar
geeslayaasha kalgalsan (cyclic quadrilaterals)
in B ay tahay dhammaan ururke barbaroolayaashe,
in Q ay tahay dhamaaan ururka afargeeslayaasha,
in, R ay tahay dhammaan ururka laydiyaasha,
in S ay tahay dhamman ururka laba jibbaaranayeasha,
in T ay tahay dhamman ururke kooraha,
in F ay tahay dhammaan ururka gandhaasaha,

Haddaba kuwan kuwee baa sax ah?
b) $S C R$
t) $F C B$
j) $R \subset B \subset \quad Q$
x) $T \subset B$
kh) $S \subset R, G B C T C Q$
d) $x \subset G \subset Q$

URURRQ GAAR AHAANEED

Ururka dhamaaan ay ku jiraan kn-eivaanayanehn inga sheekeenayaa ee mas'alo gaar ahaaneed ayza la yiraahdaa urur guwi; otan badanna waxa loo taagaa sumnadda U. Ogow in ururka guud aanu aheyn wax aan isbedciclin; hase yeeshee waxa uu isla beddelaa hadba ku-tirsanayaasha ururkaa aad ka hadlaysid. Haddii aynu isniraahno qeexid kooban ka bixiya ururka guud waxa uu noqon karaa sida soo socota:

23BxID : Ururka guud ee hadba la haystaa waxa weeye isku dhamaida ku-tirsanayaasha hadba 100 qaato inay yihiin ku-tirsanayaasha ururkaa.

QBEXID Ururka aanay ku jirin wax ku-tirsanayaali waxa loo yaqaan urur madhen, waxana loo taegee sumadda ah \emptyset

Ogow in ay tahay horno-ururica urur kasta. Waxa kale oo aad maskaxda ku haysaa in, sumaadaha \cup iyo aanay ahayn ku-tirsanayaal; hase yeeshee ay u taagan yihiin urur gaar ahaaneed.

QBEXID : Laba urur A iyo B waa kala eded haddí iyo haddii oo keliya aanay A iyo B lahayn ku-tirsanayaal ka dhexeeya.

QBEXID: Urur duleedka urur kasta A morke loo eego ama loo filriyo urur guud oo la isla ogyahay waxa weeye ururka ku-tirsanayeashe ururka guud ee aen ku jirin aaa isa nid ahayn usur A. Summad aheanna waxe 100 goras A^{1}. Kolka $A^{\prime}=\{x: x$ BUiyo x \& $A\}$

TUShati la $\$$ iyo $\{\oint\}$ waxa weeye labe wax oo aad u kale cedisan sna u kala joad ah. § waxa weeye urur madhenc. $\{\phi\}$ jyana waxa meeye urur uu ku jiro hal ku-tirsane oo ah g.

TUSAAIB_3: $f a x$ dhanman hormo-rururrada ururkan $\{a, b, c\}$. Imasaa ho-mo-urur rada-ah kuwa-quman?

FUREURTS: IIommo-umureda la rabaa waa
$\{a, b, c\},\{a, b\},\{a, c\},\{b, c\}$
$\{a\},\{b\},\{c\}, g$
Totdoba kuwan ka aid ihi waa hormo-ururro qumen. ra keliya ee aan ahayn hormo-urur quaaan waa $\{a, b, c\}$.
Ogow in urur kastaa uu isu noqon karo hormo-urur,
TUSAALE 3: tax thanaaan hormo-urarrada ururkan $\{1,2\}$?
EURPURTS: Hommontururrade la rabaa wee $\{1,2\},\{1\},\{2\}, \phi$.

Waxa ad moodaa in labada tusaale ee 2 iyo 3 ay inagu hogaminayaan $j \pm d$ lagu helo tirada horno-urur rada-urtur. Haddii aad dib ugu nogutid tusealaha labaad waxa aad arki kartan in tirei ahoan ay dhan yihiln sidjeed. haddaba $8=2 \times 2 \times 2$ ana 2^{3}. Bal si qiiosn u dheeho ku-tirsanayaasha tusaalaha. Runtii 3 ku-tirsane oo ah a, b iyo c ayaa ku jira tusaalaha. Haddaba ae kuu muugan kartaa in jibbaarika salka 2 uu u taagan yehay

ku-risanayaasha ururka. Sidoo kale hormo-ururrada ururka tusaal aha

 saddexaad waa $4=2 \times 2$ ama 2^{2}. Isla anrkaas ku-tirsanayaasha ururkani waa 2. Kuwas oo kala ah 1 iyo 2. Haddaba aa kuu muqqan kartaa in jibbaarka salka 2 uu u tagan yahay ku-tirsanayaasha ururka?TUSAATE 4: Immisa hormo-urur ayuu lecyahay urur ay ku jiraan n ku-tirsane?

FURFURIS:

Marka aynu dhisayno hormo-urur waxa aynu uga felceraa in aynu fiirinayno kolkiisa aid kasta oo ka nid ah ku-tirsanayaasha ururka ee n innaga oo ku-tirsane kasta u qoodaynayna laba suure oo ah in aynu haysan karo ama diidi karo. Haddaba marka aynu darilqadan raacno waxa jiri kara :
$2 \times 2 \times 2 \times 2 \ldots \times 2=2^{n}$ hormo-urur oo suuragal ah.

RUSAALE 5: Haddii ururka guud uu yahay dhamman ururka abyoonayaasha oc $A=\{x: x$ waa abyoone Chaban ah $\}$, kolkaa $A^{\prime}=\{x: x$ waa abyoone kisi ah .

TUSAALE: Waa maxay urur duleedka \varnothing ? Isla markaas waa maxay srur duleeclisa U ?

QEEXID ahaan $\phi^{\prime}=U t, U=\phi$.

XISAABFALADA URURRADA

Bal ka soo gaad inaad haysatid labada urur ee kala ah $B=\{a, b, c, d, e\} \pm$ yo $F=\{a, e, i, 0, u\}$. Haddii aad si fiican u Cheehatid labada urur ee kor lagymagacaabay waxay aad arki kartaa in labadooduba ay yihiln hormomurumroka mid ah dhamaan ururka ku-tirsanayansha xarfaha afka Soomaaliga. Haddaba ururka kutirsanayashiisu ay ku jiraan ururka B ana ururka F ama labadooduba wae ururka $D=\{a, b, c, d, e, i, 0, u\}$. Kolka ururka jaadkan
ah ayaa 100 yaqaan isutagga ururrada B iyo F. Ururka ku-tirsanayaashiisu ay, ku jirean B iyo F waa ururka $E=\{a, e\}$. Ururka E waxa 100 yagaan dhextaalka B iyo F.

QBEXID: Isutagga laba urur A iyo B Mexa weeye ururka ku-tirsanayaa-..... shiisu ay ugu yaraan ku jiraen labada urur aidkood ama 1 abadoodabe.

Isutagga laba urur A íyo B waxa lagu asteeyaa aaa 100 taagaa sumnadda ah A U B, loona akhriyo isutagea A iyo B. A 'U'B waxa qormo urur loogu gori karaa $A \quad U B=\{x: x E A$ ama x G aqa labadoodaba $\}$

QBEXID:

 Dhextaalka laba urur, A iyo B waxa weeye ururka ku-tirsanayaashiisu ay ku jiraan labada urur ee A iyo B.1. Dhextaalke laba urur A iyo B waxa lagu astecyaa sumnadda ah A \cap. J, loona akhriyo dhextatka A iyo B. A П B waxa

Ogow in haddii $\times \mathbb{B} A$ ama $\times E B$, kolkaa in $\times E \AA U B$. Isla markaas haddii $x \in A$ oo weliba $x \in B$ markaana x \boldsymbol{E} î \cap. Rogga weedhahan kore isna wan run. Taas oo ah haddii x © A U B, kolkaa x E 'A amanx-E Bxaba x may, ku jiri.kartanaA iyonB. Sidoo kale haddif x E A \cap bolkaa $x E \quad h$ islamarkaas $x \in B$. $\begin{aligned} \text { TUSAALE 1: } & \text { Haddii } A=\{1,2,3,4,5\}, B=\{2,4,6,8\} \\ & \text { Kolkaa } A \cup B\{1,2,3,4,5,6,8\}, A \cap B=\{2,4\} .\end{aligned}$ CUSAALE 2: Haddii A ay tahay dhammaen ururka eyda, isla markaasna B ay tahay dhamman ururka nukulaalaha ama bisadaha markaa A U B waa ururka xayawaanke ah ee ah eyda aaa aukulaalaba. Hase yeeshee $A \cap B=g$.

TUSAALE 3: Haddii A ay tahay urur kasta, kolkaa $A \quad U A^{\prime}=U$, isla markaas $A \cap A^{\prime}=\phi$

TUSAALE 4:

- Adiga oo dib ugu noqonaya weydiinta saddexaad ee laylig ku saabsan hormo-ururrada, kuwee baa weedhan sax ah.
b) $S=R \cap F$
(t) $R=C \cap B$
(j) $B=C \cap T$

Labada weedhood ee hore waa sax; lackiin ta saddexaad ma aha.

LAYLI

1.- Waxa lagu siiyey $A=\{3,5,7,9,11\}, B=\{3,4,5,6,7,8\}$, $c=\{2,4,6,8,10\}$; ururkaaga Euud waxa weeye $\{2,3,4,5,6,7,8,9,10,11\}$. Raadi
b) $A \cup B$
(t) $B \cap C$
(j) $A^{\prime} \cap \subset$
x) $A \cap(B \cup c)$
(kh) A^{\prime}
(3' $\cup c^{\prime}$)
(d) $\left(A^{\prime} \bigcup_{B^{\prime}}\right) \cup$
r) $(B \cup C)^{\prime}$
(s) (
ค) $U(A \cap$
2.- Waxa lagu siiyey in E ay tahay dhamaan xisaab yahanada afka ingiriiska ke hadla, in G ay tahay dhammaan xisaab yahanada afka jarmalka ku hadla, in R ay tahay dhammaan xisaab yahanada afka Ruushka ku hadla, iyo in U ay tahay dhamman xiscab yahanada aduunka. Haddaba ereyo ku sharax Hrurrada soo socda:
b) $E \cup G$
(t) $R \cap$
(j) R $\cap E^{\prime}$
(x) G' ${ }^{\prime} E$
kh) $(E \cap R)^{\prime}$
(f) $E \cup(G \cap R)$
(E) $\left(E^{\prime} \cup R^{\prime}\right) \cap G$
3.- Waxa lagu sifyey in ururka guud uu yahay dhamaaan ururka abyoonayaasha togan, in A ay tahay dhammaan ururka abyoonayaasha togan ee ka yar ama 1 deE 6, in E ay tahay dhamaan ururka abyoonayaasha togan ee dhabanka ah, iyo in if ay tahay dhammaan ururka abyoonayaasha togan ee ah dhufsanayaasha 3; kolka u raadi tibaaxo fudud oo ku tibaaxan A, E iyo is ururradan soo socda:
b) $\{3,6\}$
(t) $\{1,3,5\}$
(j) Dhamaean abyoonayaasha togan
ee ah dhufsanayaasha 6 .
x) Dhammaan abyoonayaasha togan ee ke weyn 6 .
kh) Ururka ay ku jiraan dhamaan dhufsanayaasha 3 iyo dhammaan abyoonayaasha kisica ah.
4. Ururka ka kooban dhamman hormo-ururradaurur lagu siiyey, ayaa 100 yaqaan urur jiboaxs. Sumaad thaanna waxa 100 qoraa B(A). Haddaba tus in tirada ku-tirsanayaasha $B(A)$ ay yihiin $2^{\mathrm{n}}, \mathrm{n}-\mathrm{na}$ waxa weeye tirada ku-tirsaneyaasha A. Haddii $A=\{a, b, c\} T=\{b, c, d\}$, kolkaa gor ku-tirsanayaasha urunada $B(A), B(T)$ iyo $B(A \cap i)$.

JAAN \mathcal{U} USYADA FEN

Had iyo jeer waxa aad u muhiim ah in aad sawir ahaan ku muujiso ururradasi aad u custid una xagiijisid xidhildhka ka dhexeeya ururro. Dariigo sawir ahean loogu muujin karo xidhildhkaas ayaa loo yaqaan jaantuska fen. Jaantuska fen ururka guud waxa lagu muujiyaa dhammaan ururka baraha ee laydi ku dhex jira. Ururada kale ee ururiee gund ku dhex jirana waxa 1 actu muujaa urur baroodyo ku dhex jira gobolo xiran ama oodan ama si kaleba goobooyin ku dhex jira laydiga. Adiga oo haraynaya aaa hoosaynaya bededka habboon, dhammaan racaynaha ururracta waxa lagu muujin karaa sawiro. Bal hadda aan tusaalooyin ku muujino fileradan:
TUSAALE 1: \quad ~

A 3

$A \quad \bigcap$

Sh. 1

Ururro kala edeg ah（ana $\mathrm{h} \cap \mathrm{B}=\emptyset$ ）

Sh． 2

CUSAALE 3：Xaqiiji xidhildhka ah $A \cup\left(A \bigcap^{B}\right)=A$

That artion

クローローロ

ancurn ixatwidly mill

\qquad

Jaantuskan isage ah gobolka A waxa loo hareeyey joog

 ahaan，gobolka A \cap B－na waxa 100 hareeyey jiif ahaan．$K U(A \cap B)$ waxa weeye gobolka joog ahaan u haraysan ama jiif ahaan u haraysan ama joog iyo jifba u haraysan．Kolka $A V(A \cap B)=h$ ．
TUSAALE 4：Xaqiiji xidhiidhka $A V(B \cap C)=(A \cup B) \cap(A \cup C)$

 Sh．4，B \cap C waa gobolka joog ahaan u haraysan，A－na wae gobolka jiif ahaan u haraysan．Haddaba $A \cup(3 \cap c)$ waxa weeye jobolka ku muujisan Sh． 4 kaas oo joog ahaan u haraysan ama jifif ahaan u haraysan ama joog iyo jiffba u haraysan．

Sh． 5

Sh．5，A UB waa goboika joos ahaun u haraysan，AU C－na waa robolka jiif ahaen u haraysan．Fiaddaba $(A \cup B) \cap(A \cup c)$ waa gobolka joog ahaan iyo jiif ahaanba u haraysan．Haddaba mar haddii gobolada ka boogan $A \cup(B \cap C)$ iyo $(A \cup B) \cap(A \cup C)$ ay midaalsan yihiin，kolkaa waa sax in $A \cup(B \cap C)=(h \cup B) A(A \cup C)$

LAYLI

1．－Adfige 00 u qnadanaya in A Lyo 5 acnay ahnyn ururro kala odeg ah ，ku muji ururuedian 500 socta jaantuska fen：
b）$A^{\prime} \quad(t) A^{3} \cap B^{\prime} \quad(1)(A \cup B) \quad(x) A^{t} \cap B$
kh）$A \cup E^{\prime} \quad(c) A^{\prime} \cup B^{\prime} \quad(5)(k \cap)^{\prime}$
Ka soo ohecg jaanteskaces 1 aba xithsith oo surur，
 socda $\{31 \mathrm{a}$ jaantus ama $s \leq k a l$ sbzumarrada jaantus keliya kuwada nuuil：
b）$A \cap B \cap c \quad$（t）$A \cap^{3} \cap^{4} \quad$（f）$A \cap^{\prime} \cap, c$
x）$A^{\prime} \cap B \cap C$
（kh）$A \cap B^{\prime} \cap C$
（d）$A^{\prime} \cap B \cap C^{\prime}$
r）$A^{\prime} \cap B^{\prime} \cap \mathrm{C}$
（a）$A=\cap B \cdot \cap C:$

Kolika Eududee suririta
$(A \cap B \cap C) \cup\left(A \cap B \cap C^{\prime}\right) \cup\left(A \cap B^{\prime} \cup C\right) \triangleq\left(A^{\prime} \cap a \cap c\right) \cup$ $\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right) \cup\left(A^{\prime} \cap A \cap C^{\prime}\right) \cup\left(A^{\prime} A^{B} \cap^{C}\right) \cup\left(A^{\prime} \cap B^{\prime} \cap C^{\prime}\right)$ ［Waxa aad u qaadan kartaa in $A \cap B \cap c=A(B \cap C)]$

3．－Iatscesal jacntuska 民en si nad u xagitjisid in
b） $\mathrm{A} U(A, \cap \mathrm{~B})=\mathrm{A} V \mathrm{~B}$
t）$A \cap(B \cup C)=(A \cap B) \cup(A \cap c)$
j）$(A \cup B) \cap\left(A^{\prime} \cup C\right) \cap(B \cup C)=(A \cup B) \cap\left(A^{\prime} \cup c\right)$

XEERARKA XISAABFG！KA
31 ayne ugh sasno dindibada midasindmadn aljobrada
uruerada vaxa ayou adeogsen kavas jaentuskr fen tana waxe aynu
raaci karaa dariiqadan soo soctan

Tusaale 1: Kuuji ama tus in $A \cup(A \cap B)=A$.
Dariiqada aynu raacaynaa waxa ay ku sal leedahay hubaasha ah haddii X Y isla markaasna YeX kolkaa waxa caddaan ah in $X=Y$. Doodeenu waxa ay u qaybsan tahay laba.
I. Bal ka soo qaad in \times E A

Kolkaa x E A $U(A \cap B)$
Markaa $A \subset A \cup(A \cap B)$ -
II. Bal ka soo qaad in $x \in A \cup(A \cap B)$

Kolkaa $\times \mathrm{B}$ A ana $\times \mathrm{E} A \cap^{\mathrm{B}}$
Taasi waxa u sii kala bixi lcarta
$x \in A$, ama $x \in A$ iyo $x \in B$
:. XEA

Haddaba $\AA U(A \cap B) \subset A \ldots-\ldots-\ldots)$
Haddaba jeedeeyooyinka (1) Iyo (2) waxa ay inna siinayaan in $A \cup(K \cap B)=A$
Tusarale 2: Tus in $(A \cup B)^{\prime}=A^{\prime} \cap D^{\prime}$.
Waxa aynu raacaynaa dariiqedii aynu tusaalaha hore ku isticmaalay.
I. Bal u qaado in $x \in(A \cup B)$ '

Kolkaa x \& $A \cup B$
i. x \& A iyo x \& 3
$\therefore \quad x$ E A^{\prime} iyo x E B^{\prime}
:. $\quad x$ E $A^{\prime} \bigcap B^{\prime}$

Haddaba $(A \cup B)^{\prime} \subset A^{\prime} \cap{ }^{\prime}$
IX.

Sidoo kale $A^{\prime} \cap B^{\prime} \quad E^{\prime}(A \cup)^{\prime}$
Kolka jedeeyooyinka (1) iyo (2) waxa ay inna siinayaan io $(A \cup B)^{\prime}=A^{\prime} \cap^{B}$.
B

Bal hadda aan taxno xeerarka saldhigga u ah aljebrada

 ururrada. Xeerarkan qaarkood dareen ahaan ayey u muuqan karaan, kuwa kale se aad cean uma aha. Dhisnaanta xeer kasta waxa 100 sugi karaa dariiqooyinka lagu isticmaalay tusaalooyinka kore.

```
    XEERARKA HORMOGELINTA
(2b) }A\cup(B\cupC)=(A\cupB)\cupC(2t) A\cap(B\capC)=(A\capB)\cap
XEERARKA KALA DAIGGA
(3b) AV(B\cupC)=(A\cupB)UC
``` XEERARKA ISKU NOQOD
(4b) A U A
(4t) \(A \cap A=A\) XEERARKA MUUGTSTA
(5b) \(A \cup(A \cap B)=A(5 t) A \cap(A \cup B)=A\) XEERARKA URUR-DULBEDNFIADA
(6b) \(A \cup A^{\prime}=V \quad(6 t) A \cap A^{\prime}=\emptyset\) XBER URUR=DUL-BEDNIMADA LABAALE
(7) \(\quad\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}\) XBERKA DXMOORGAN
(8b) \((A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}(8 t)\left(A \cap B^{\prime}=A^{\prime}\left(B^{\prime}\right.\right.\)

\section*{XEERARKA KU LUG LER \(£\) IYO U}

12. naddii \(\mathrm{A} \subset \mathrm{B}, \mathrm{B} \subset \mathrm{C}\) kolkae \(\mathrm{A}<\mathrm{C}\)
13. Haddii \(A \subset B\) C \(\mathrm{A} \subset \mathrm{C}\) kolkaa \(\mathrm{A} \subset \mathrm{B} \cap \mathrm{C}\) 14. naddii A \(C 3\) kolkaa \(A \subset B \cup C\left[\begin{array}{l}C \text { waa urur kasta } \\ \text { oo la iska qaato }\end{array}\right]\)
15. A C haddii iyo haddii oo keliya oo \(\mathrm{B}^{\prime} \mathrm{CA}^{\prime}\)

TUSAALE 3: Tus in haddii A C B, A C \(C\) kolkaa A CB \(\cap C\) Bal ka soo qaad in \(x\) E A Kolkae

\(x\) EB \(C\)
\& \(\subset B \cap c\)
CUSAALE 4: rus in A C B haddii iyo haddii oo keliya oo B'CA'
I. Siin \(B^{\prime} C A^{\prime}\), \(u\) qaado in
```

x E A
x \& A'
x (B' mar baddili B'C A'
x E B
A}\subset

```
II. Sin A CB, \(u\) qaado in \(x E B^{\prime}\)
\begin{tabular}{ll}
Kolkaa & \(x \in B\) \\
\(:\). & \(x \in A\) mar haddii \(A \subset B\) \\
\(\therefore\). & \(\times \in A^{\prime}\) \\
\(\vdots\). & \(3^{\prime} \in A^{\prime}\)
\end{tabular}

Haddaba \(h \subset 3\) haddii iyo haddii oo keliya oo \(B^{\prime} \subset A^{\prime}\)

\section*{L. YLI}
1. Tus in \(A \cup B=B \cup A\) iyo in \(A \cap B=B \cap A\)
2. Tus in \(A \cap(A \cup B)=A\)
3. Tus in \(A \cap(B \cup C)=(A \cap B) \cup(A \cap C)\)
4. Ius in \((A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}\)
5. Tus in (b) haddii A \(C B\), B C \(C\) kolkaa \(A \subset C\)
(b) haddii A \(\subset B\) kolkaa \(A \subset B \cup C\left[\begin{array}{l}C \text { waxa weeye urur } \\ \text { ogaan la isaga qaatay }\end{array}\right]\)
(j) A \(C\) B haddii iyo haddil oo keliya oo \(A \cap B \prime=\varnothing\)

\section*{शUDUDAYNTA TIBAAXAHA KU LUG LEA URURRADA}

Inaga oo isticmaalayna xeerarka saldhigea u ah aragtida urur, tibaaxaha ku lugta lohururrade tartiib tartiib ayaa 100 fududayn karaa \(\Delta i d e\) tibaaxaha aljebra caadiga ah loo fududeeyo. Bel tusaalayaal aon ku mutijino ujeedadeena.
```

TUSAALE 1: Tus in AU(A'\capB) = AUB

```
```

TUSAALE 2: Fududee {A N}(\mp@subsup{A}{}{\prime}\cupB)}\cup{BN(A,\cup\mp@subsup{B}{}{\prime})
{A\cap(A,UB)}
={{(A\capA)U(A\capB)}}U{(B\cap\mp@subsup{A}{}{\prime})U(B\cap\mp@subsup{B}{}{\prime})}---m.---(xeerka 3t)
={\&|(A\capB)}U{(B\capA')U\&6t)

```
\(=\{A \cap B) \cup\left\{\left(B \cap A^{2}\right) \cup \phi\right\}\) 10b)
\(=(A \cap B) \cup\{g \cup(B \cap A)\}\) 1b)
\(=(A \cap B) U\left(B \cap A^{*}\right)\) 10b)
\(=(B \cap A) \cup\left(B \cap A^{:}\right)\) 1t)
\(=B \cap\left(A \cup A^{\prime}\right)\) 3t)
\(=\mathrm{B} \quad \cap \mathrm{U}\) 6b)
\(=\mathrm{U} \quad \mathrm{B}\) 1t)
\(=B-\) (xeerka 10t)

TUSAALE 3: Tus in \((A \cup B U C)^{\prime}=A^{\prime} \cap B^{\prime} \cap^{C^{\prime}}\) iyo in
\[
(A \cap B \cap C)^{\prime}=A^{\prime} \cup B^{\prime} \bigcup C^{\prime}
\]

Guud mer ahaan u tus jedeeyooyinkan.
\(\begin{aligned}(A \cup B \cup C)^{\prime} & =\{A \cup(B \cup C)\}^{\prime} \\ & =A^{\prime} \cap(B \cup C)^{\prime}\end{aligned}\)
\[
=A^{\prime} \cap\left(B(\mathrm{C})^{\prime} \ldots-\cdots \text { xeerka dimoorean ee } 1\right.
\]
\[
\text { , } 1
\]
\[
=A^{\prime} \cap B^{\prime} \cap C^{\prime}
\]

Inaga oo mataanka (dual) jedeeyadan qaadanayna waxa aynu kolkiiba helaynaa \((A \cap B \cap C)^{\prime}=A^{\prime} \cup B^{\prime} \cup C^{\prime}\)

Jedeeyooyinkani waxa ay guud mar ahaen \(u\) noqonayaan
\[
\begin{aligned}
& \left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}-\cdots-\cdots A_{n}\right)^{\prime}=A_{1}^{\prime} \cap A_{2}^{\prime} \cap A_{3}^{\prime} \cap A_{4}^{\prime}-\cdots-\cap_{n}^{A_{n}^{\prime}} \\
& \text { iyo } \\
& \left(A_{1} \cap A_{2} \cap A_{3} \cap \cdots \cdots--\cap A_{2}\right)^{\prime}=A_{1}^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime} \cup-\cdots-\cdots A_{n}^{\prime}
\end{aligned}
\]

ZUSAALE \(\psi^{2}\) Fuducice \(\left(A \cap^{B)} \cup\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B^{B}\right) \cup\left(A^{\prime} \cap B^{\prime}\right)\right.\).
\[
\begin{aligned}
& (A \cap B) \cup\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right) \cup\left(A^{\prime} \cap B^{\prime}\right) \\
& =\left\{A \cap\left(B \cup B^{\prime}\right)\right\} \cup\left\{A^{\prime} \cap\left(B \cup B^{\prime}\right)\right\} \\
& =\{A \cap U) \cup\left(A^{\prime} \cap U\right) \\
& =\left\{A \cup A^{\prime}\right. \\
& =\{U
\end{aligned}
\]

TUSAALE 5: Fududee \(A^{\prime} U\) B' \(U \mathrm{C}^{\prime} U(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})\)
\[
A^{\prime} \cup B^{\prime} \cdot \cup C \cdot V(A \cap B \cap c)=(A \cap B \cap c) \cup(A \cap B \cap c)
\]
\[
=U
\]

2USAALE_6: Fududee \((A \cap B) \cup\left(A^{\prime} \cap C\right) \cup(B \cap C)\)
\[
\begin{aligned}
& \left(A \cap \cap^{B}\right) \cup\left(A^{\prime} \cap c\right) \cup(B \cap c) \\
= & (A \cap B) \cup\left(A^{\prime} \cap c\right) \cup\left\{(A \cap B \cap c) \cup\left(A^{\prime} \cap B \cap c\right)\right\} \\
= & \{(A \cap B) \cup(A \cap B \cap c)\} \cup\left\{\left(A^{\prime} \cap c\right) \cup\left(A^{\prime} \cap B \cap c\right)\right\} \\
= & (A \cap B) \cup\left(A^{\prime} \cap \cap c\right)
\end{aligned}
\]

IUSAALE 7: xus in \((A \cap B \cap C) U\left(A^{\prime} \cap C\right) \cup(B, \cap C)=c\) \((A \cap B \cap C) \cup\left(A^{\prime} \cap C\right) \vee\left(B^{\prime} \cap C\right)=\left\{(A \cap B) \cup A^{\prime} \cup B^{\prime}\right\} \cap c\) \(=\left\{(A \cap B) \cup(A \cap B)^{\prime}\right\} \cap c\)
\[
=U \cap c
\]
\[
=c
\]

LAXLI
1. Fududee
(b) \(\left(A \cap\right.\) B) \(U\left(A \cap B \cap C^{\prime}\right)\)
(t) \(A \cup\) B' \(U(A, \cap\) B)
(j) \(\{(A \vee\) Bi \(U\)
c) \(\cap(A, \cap\) B) \(\} V(A \cap B \cap c)\)
-19-
\[
(x)\left(A \cap B^{\prime} \cap c^{\prime}\right) \cup\left(A \cap B^{\prime} \cap C^{\prime} \cap \operatorname{d}\right) V\left(A \cap C^{\prime}\right)
\]
(kh) \((A \cap B) \bigcup\left(A \cap B^{\prime} \cap c\right)\)
(d) \((A \cap B \cap\)
c) \(V\left(A \cap B^{\prime} \cap\right.\)
c) \(U\left(A \cap C^{\prime}\right)\)
2. Fududee
(b) \((X \cup Y) \cap(X \| Y)\)
(t) \(\left(X \cup Y \vee s^{\prime}\right) \cap\left(X, \cap X^{\prime} \cap \mathrm{s}\right)\)
(j) \(\left\{x \quad\left(x \cap y^{\prime}\right)\right\} \cap\{x \quad V(y \cap s)\}\)
(x) \((x, \cup x) \cap\{x \cup x \cup(x \cap y)\}\)
(kh) \(\left\{(X \cup Y) \cap\left(X, \cup Y^{\prime}\right)\right\} \cup(X \cap Y)\)
(d) \(\left\{(x \cup \mathrm{x}) \cap(\mathrm{y} \cup \mathrm{s}) \cap\left(\mathrm{X}, \cup \mathrm{s}^{\prime}\right)\right\} \cup\left(\mathrm{X} \cap \mathrm{Y} \cap \mathrm{s}^{\prime}\right) \cup(\mathrm{Y} \cap \mathrm{s})\)
3. Fududee.
(b) \((A \cup b) \cdot \bigcup\left(A^{\prime} \cup B\right)^{\prime}\)
(t) \(\left(A^{\prime}\right.\)
B)' \(V\) (\(A \cup B)^{\prime}\)
(j) \(\{(A \cap\)
B) \(\left.V\left(A^{\prime} \cap B^{\prime}\right)\right\}^{\prime}\) (x) \(\left\{(A \cap B) \cup\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right\}^{\prime}\)
(kh) \((A \cup B \cup C), V(A, \cap B)\) '
(d) \(\{(A \cap\)
C) \(\cup(B \cap D)\}^{\prime} \cup\left\{\left(A, \cap^{B}\right) \cup(C \cdot \cap\right.\)
D) \({ }^{\prime \prime}\)

\section*{\(=20\) -}

\section*{KU ISTICMUALKA DHEEGIDDA ALJBBRADA MACNAWI}

Hab dhiska xisaabeed waxa un ka kooban yahay urur ku-tirsanayaal ah, hal ama wax ka bedian oo xisaabfallo ah kuna lug leh ku-tirsanayaasha ururka, iyo hawraaro ku saabsan ostaamaha ku-tirsenayaasha marka loo fiiriyo xisaabfalladaa 1a qaatay.

Marka la rabo in la sugo ana la dejo astaamaha habdhiska xisaabeed waxa la adeegsadaa fikrado dareen ahaan (intuitively) 1a fahmi karo, hase yeeshee aan xisebb ahaan loo qeexi karayn. Qaan ka mid ah tusaalayaasha tibxaha aaqeexsame (undefined terms) waa urur, tiro, bar iyo xarriiq. Waxase jiro fikrado xisaabeed oo la qeexi karo; waxaana ka mid ah isutag, dhextaal, islelegyada, ivm.

Qaar ka mid ah astaamaha tirooyinka maangalka ah ayeynu ay run yihiin. Hawraaraha ku sabbsan u
u qaadanaa in/qaadashooyinkaas ayaa la yiraa dhardhaarro. Bal
hndda dheeho tusaalahan ku saabsan sida aynu u gaarno u qaadashada ku saabsan isldegaanta. Waxaynu niri laba urur way isleg yihiin haddii iyo haddii oo treliya ay labada ururba ku jiraan ku-tirsanayaal isku nid ahi. Haddaba hawraarta ah \(A=B\) maxay innoo tilmaanaysaa in aynu ku isticaaalayno laba cicur magac oo kaia duwen isla urur keliye. Isla markaas hawraarta waxa aynu ka fehmi karaa in aynu magecyada laftooda isku beddeli karo.

\section*{Haddii fikradan aynu ku fidino ururka tirooyinka} aaangal ah, hawraarta ah \(a=b\) oo \(a, b \in R\{R\) waxay \(u\) teagan tahay ururka tirooyinka maangalka ah] waxay inoo tilaaamaysaa in a iyo b ay yihiin laba magac oo isla tiro keliya u tagan, iyo in kolba kii la doono lagu beddeli karo ka kale. Xeerkan cu beddelidda waxa si rasmi ah loogu soo gaabin karaa sida soo socota:
fiaddii \(a, b\) ER, oo weliba \(a=e^{b}\) marleaas tibixdii kasts be magacaabaysa tiro maangal ak, a Waxa lagu beddeli karaa b; ame sidaas oo kale b waxa lagu zeddeli karaa a. hawraartan iyada ah ayaa le yirae dhardhaarka ku beddelidda. Dhardhaarka ku beddelidu isagune markiisa waxa uu inna abaaveiinayaa astaamahauislegaanta ee soo socda; kuwaas oo a, b iyo o ay yihiin tirooyin maangal ah ama si kooban be \(\mathrm{c}, \mathrm{b}\), c ER.
1. Astaanta isku noqod oo lagu muujin karo: \(a=a\)
2. Astaanta wanqarene oo lagu muujin kero: Haddii \(a=b\), markaa \(b=a\)
3. Astaanta dhaxidia oo lagu muujin karo:
faddii \(a=b ; b=c\) markaas \(a=c\).

> Xidhiidhkii kasta ee leh sadidexden astaamood waxa
la yiraa xidhiidhka isu dhignaanta.

\section*{LAMMAANBEYAYAASHA XISAABFAL}

Marka labe tiro oo maangal ah la isu geeyo jedeeyadu waxa ay noqonaysae tiro kale oo maaneal ah. Sidoo kale aarka Laba tiro oo maangel ah la kala jaro jadeeyadu waxa ay noqonaysaa tiro kale oo maangel ah. Hadda isuceynta iyo kala goyntuba faxa weeye xeerdir rabaymeed oo markt lacu isticnaalo ku-tirsahayaasha, ururka tirooyinka maangalke ah dhaliya jadeeyo lafteedu ce mid ah ururkaas. Sidoo kale xisaabfalica isutaggu marke legu isticmaalo hormo-ururo urur guud waxa uu dhaliyan jadeeyo Iefteedu ah hormo-ururo ururkaa guud. Haddaba xisacofallada +, -, iyo \(U\) ee kor lagaga sheekeeyey waxa ay tusaale u yihin lemaaneeyaha xisaabfal ee hoos aynu si vasai ah ugu geexi doono.

2BEXID: Haddii lagu siiyo ururka ku-tirsanayaasha \(H\) markaa lamaaneeyeha xisaabfal * ee ururka \(M\) wax xeerice
racaynta ee ku toosiya lamasanihii horsan ee lessta
kaba dhie a, b E M, ku-tirsane madi ah c E V. Sumad ahaan waxa aynu \(u\) gorea \(o=a * b\)

\section*{ZUSAALE 1}

Bal ka soo qaad in A ay u tagean tahay dhamaen ururka abyoonayessha togan. Marke xiseabfalka isugeynta ee A waa lammaneeyaha xisaab-fal; sababtoo ah haddii a , b E A arkaas c E A.
Tusaalahen \(c=a+b\).

\section*{AUSAALE 2:}

Bal ka soo qead in \(X\) ay \(u\) tagen tahay dhammaen ururka abyoonayeesha togan ee kisiga eh. Haddaba xiscabfalka isugeynta ee ururka \(X\) ma \(a\) in lamaaneeye xisaabfal; sababtoo ah haddii a, b EX rarkea C © X. Tusaalahan \(c=a+b\). Iusselahaani waxa uu innoo sheegayaa in aanad heleyn tiro kisi ah haddii aad isu Ceysid lebe tiro oo kisi ah.

\section*{ZUSAALE 3:}

Bal ka soo qaad in \(M\) ay \(u\) eangen tahay dhammaan ururka abyoonayassha. Haddaba xisaobfalka qaybinta ee K ma aha lammaneeye xisaabfal; sababtoo ah \(c=a * b\) had iyo jeer ma noqon karto ku-tirsane \(K\) marka \(a, b \in M\). Haddii ayau qaadano tirooyin \(a=2, b=3\) kolkan \(c=0.6666\).. Taas oo ean ahayn ku-tirsane \(\%\).

\section*{LAYLI}

Kuwee bae ah kuwa soo socde lamaaneeyayaasha xisaabfal ee ururada hoos lagugu siiyey?
1. - Isku dhufashada dhammaan ururka abyoonayaasha toean
2. - Kala goynta chamaaan ururka abyooneyaasha togan.
3.- Kala coynta ee dhamman ururke abyoonayaasha.
4. - Isku dhufasheda dhammaan ururkn abyoonayaasha tocan dhabanka ah.
5. - Kala goynta dhamaan ururig tirooyinka lakabka ah .
6. - Dhextaalka dhamaan hormo-ururede urur ee urur guud.

Hore waxa aynu \(u\) sheegnay in aynu isku koobayno barashada dherdhaarada, astaamaha iyo arectiinaha saldhieea \(u\) ah ururka tirooyinka maangalka ah sababtoo ah gadaal ayeynu ka baran doonaa dhardhaarada iyo xeerarka saldhigga u ah ururka Eirooyinka maangalka ah. Bal hadde aen taxno dhardhaarada tirooyinka maangalke ah innaga oo ku filrinayna siyaabaha loogu isticmaalo lamaaneeyayaasha xisaabial ee isu geynta iyo isku dhufashada.
1. - Dhardhaarka oodnaanta ee isu geynta
dhamman tirooyinka \(a, b \in R, a+b \in \mathbb{R}\), kolkaa \(a+b\) mea madi \([R\) waxay u taacan tahay tirooyinka maangalike ah]
2. - Dhardhaarka hornogelinta ee isugeynta

Dhammaan tirooyinka \(a, b, c \in \mathbb{R}\),
\[
(a+b)+c=a+(b+c)
\]
3. - Dhardhaarka asal aadoorshaha ee isugeynta waxa jirta tiro madi ah O E \(R\) si tiro kasta a \(E R\) ay \(u\) raaligeliso \(a+0=0+e=a\)
- Dhardhaarka ieweydaarka ee isuceynta tiradii kasta a ER waxa ay leedahay tiro kale 00 andi ah - a E R, loona yaqaan tabaniaa a, si ay \(a+(-a)=(-a)+a=0\).
. - Dhardhaarka kela hormarinta ee lageynta Dhamaan tirooyinka \(a\), b E R,
\[
a+b=b+a
\]
6. - Dhardhaarka oodnaanta ee isku ditufashada Dhamaan tirooyinka \(a\), b E \(R\), ab ER.
7. - Dhardhaarka hormogelinta ee isku dhufashada Dhamaan tirooyinke \(a, b, c \in R\), \((\mathrm{a} b) \mathrm{c}=\mathrm{s}(\mathrm{bc})\)

8, - Dhardhaarka asal madoorshaha ee iaku dhufashad a waxa jirta tiro madi ah \(\mid E R\) si tiro kasta a \(\in \mathbb{R}\) ay u raaligeliso a. \(1=i, a=a \quad a \quad a=a\)
9. - Dhardhaarka isweydiarka ee isku dhufeshada tiradii kasta a E R, 0 mooyaane, waxa ay leciahay tiro kale \(\frac{1}{a} \in R\), loona yaqaan rogaalka \(a\), si ay \(a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1\)
10. Dhardhamrka kala hormarinta ee isku dhufashada * Dhamman tirooyinka a, b E R, \(a b=b a\)
11.-Dhardhaarka kela dhigga Dhamman tirooyinka \(a, b, c \in R\),
\(a(b+c)=a b+a c\)
isla narkaes
\((a+b) c=a c+b c\)

Kow iyo tobankan astaamood ee kor ku taxan ayae 100 yngaan astaamaha badka. Haddaba ururkii kasta ee ku-tirśanayaal ch lehna astaanahaan ayaa la yiraaheos bacl.

Neliba wexa aynu u baahan nahay in aynu raacino dhardhaerada tirooyinko maangalka ah tibnaxo sumado ku qoran oo iyana magacaaba tirooyin aaangal ah. Tibaaxahan sumnadeha ku goran deedada aynu ka leenahay waxa weeye in aynu ku dabaqno aina wafaqsiinoba lamaanecyaha xiscebfal. Bal hadda checho tuscalahan.. \(a+b+c\) usa qaadan karo lamaanecye xisaabfal sebabtoo ah waxa ay ka kooban tahay isugeynte saddex ku-tirsane, rolke \(a+b+c\) waxa eynu \(u\) qeexi karaa in ay la aid tahay anase la aacno tahay \((\mathrm{a}+\mathrm{b})\) to taas oo ku dabagen aaa waffaqsanba lammaneey xleabfal. Marka bel aan qaadanc taxa oaer ka aid ah qeexidyada aljebrada hoose, innaga oo \(u\) arkeyne cana \(u\) qaadanaynabs in Shazmaan doorsoomayaashu yihiin tirooyin aaangal ah.
\[
\begin{aligned}
& a+b+c=(a+b)+c \\
& a+b+c+d=(a+b+c)+d \\
& a+b+c+d+e=(a+b+c+d)+e
\end{aligned}
\]
!

8BEXID: Dhamaan tirooyinka \(a, b, b \in R\),
\(a b c=(a b) c\)
\(a b c d=(a, b c) d\)
\(a b c d e=\) (abod) e
;
QBEXID: Dhamaan tirooyinka \(a\), \(b \in R\),
\[
a-b=a+(-b)
\]

QEEXID: Dhamman tirooyinka \(a, b \in R\),
\[
\frac{a}{b}=a \cdot \frac{1}{b} \quad(b \neq 0)
\]

QEEXID: Dhannaan tirooyinka \(\mathrm{a}, \mathrm{b} \boldsymbol{\mathrm { E }} \mathrm{a}\), \(-a b=-(a b)\)

\section*{LAYLI}

Hawraartii kasta ee ka mid en weydiimaha 1-20 wexa lacu caddayn karaa ama lagu barixi karaa aid ka mid ah astaamaha xidihiidhka islelegaenta ama astaanahe tirooyinka aaangalka ah. Keddaba mayracaw astaanta barixi karta hewraar kasta. J gaado doorsoomayaasha oo dhanni in ay yihiln tirooyin maangel ah.

TUSAALEYAAL:
b) \(x+y=x+y\)
b) \(5+s \mathrm{ER}\)

Furfuris
b) Astaenta isku nogod
t) Dhardhaarka oodnaanta ee isugeynta.
1. \(-0+(x+y)=x+y\)
2. - Haddii \(x-7=3\), kolkaa \(3=x-7\)
3. \(-x+17\) ER
4. aaddii \(x=y, y=s+7\), markas \(x=8+7\)
5. \((x+y) \cdot \frac{1}{(x+y)}=1(x \neq-y)\)
6. \((x+y)(a+q)=(x+y) m+(x+y) q\)
7. \((x+2 y)+[-(x+2 y)]=0\)
3. haddii \((x+y)=s, s=(x-7)\), kolkaa \((x+y)=(x-7)\)
9. \((x y) \in R\)
10. \(\left(\frac{x}{y}+s\right)+\frac{\pi}{q}=\frac{x}{y}+\left(s+\frac{\square}{9}\right) \quad(y, q \neq 0)\)
11. \(3 x-(y+5)=3 x-(5+y)\)
12. \(\frac{x-7}{4}=\frac{x-7}{4}\)
13. \([(x+3)(x-2)](x+2)=(x+3)[(x-2)(x+2)]\). \((x)\)
14. \(\frac{x}{y} \cdot \frac{y}{5}=\frac{y}{5} \cdot \frac{x}{y} \quad(y, s \neq 0)\)

16. \((x+\sqrt{2}) \cdot\left(\frac{1}{(x+\sqrt{2})}=1 \quad(x \neq-\sqrt{2})\right.\)
17. haddii \(4=y+5\), kolkaa \(y-5=4 \ldots \ldots\)
18. \((x+y)+2\) ER
19. \(\sqrt{2}(x+3)=\sqrt{2} \cdot x+\sqrt{2} \cdot 3\)
20. \((X+Y)+[-(x+y)]=0\)

Sheeg qeexidda sugaysa ana caddoynaysa in tibaaxdii leasta ee ka mid ah weydiimaha 21-26 ay u taagan tahay tiro aamgal ah haddii dhamaan doorsoomayashu ay yihiin tirooyin asangal ah
21. \(x+y+2=(x+y)+2\)
22. 3. \(x \cdot y=(3 \cdot x) \cdot y\)
23. \(\frac{5}{x}=5 \cdot \frac{1}{x}(x \neq 0)\)
24. \(3 x-7 y=3 x+(-7 y)\)
25. \((x+y)(x+s)(x-y)=[(x-y)(x+8)](x-y)\)
26. \((2 x+3)-(x+4)=(2 x+3)+[-(x+4)]\)

\section*{2AAR KA MID AH ARAGTIIYAA SALDnLGGA U AA URURKA IIROOYINKA MAAUGALKA AA}

Waxa la filayao hatan in Maxoogen waayoaragniao ah 100 yeeshay sida si fudud loogu cadcieeyo aragtiiaaha dheegidda. fese yeeshee aar heddii fahanka ana earashada caddaynuhu ay
lee inid tahay dhinecyada ugu adag bareshada xisaabta waxa lagana acaraaan ah in aynu dib ugu noqno eeddeyneha qaar ka mid ah erectiimaha aasaasiga ah iyaga oo ay raacsan yihiin sacfidda caddaymuhu. Arectiimo kale ayeynu Gadoal kil taxi doonaa si ay \(u\) noqdaan tixraec loogana faariidaysto caddayaaha are tiimaha thud ahaan.

Hawraarte aragtiini waxa ay ka kooban tahay lapa qaybood: 1) Qaybta loo yagean afeefta, inta hadanna uu ku jiro ereyga" haddii"; qaybtas iyada ahna waxa had iyo jeerba 100 qaataa inay tahay run.
2) Qaybta labaad oo loo yaqaan gotaan, uuna ku jiro eregga "markaas ana kolkaas; qaybtan waxa sy si loojig ah uga soo mulaaxsantae ana uga soo dheegantaa afeefta.

Dariiqade dheegidda ee caddayatu waxay ku bilaabataa efeefta aragtiinta ama hawraar kale oo 1 c or yahay in ay run tahay. Had iyo jeerba was in aad maskaxde ku haysaa in gotaanku yehay himilada la robo in la gaaro, Iana doonayo in hawraar kesta markeeda lagu sugo ana lagu endieeyo qeexid, dhardhaar ama aragtiln hore 100 caddeeyey. Bal hadda aan saafno caddaynta aragtiinta mararka qaarkood 100 yagaan xeerka isugeynta. GRGGTIIN:

Haddii \(a, b, c \in R, a=b\) markaas \(a+c=b+c\)
OGOW:
Aragtiintanu sida ay \(u\) dhican tehay waa in ay kaga caddaataa in " \(a, b, c \in R, a=b "\) ay tahay afeefta isla markaesna in " \(a+c=b+c\) " ay tahay golaanka la rabo in la soo dheego.

\section*{C.DDAYN}

\section*{Hawraaro}
(1) \(a, b, c \in \mathbb{R}, a=b\)

\section*{Garaadayn}
(1) Afeef
(Go'sanku was in uu ka soo malaaxsazaa afeefta; laakifa waxa auuqata in go'sankh ay ku jiraan vadaro iyada oo haba yaraatee zanay madaro si cad uca muugan afeefta. Iyada oo go'aanka sarid lagala baxayo waxa aynu goreynaa.....)
(2) \((a+c) E R\)
(2) Oodneanta isugeynta
(1aakiin co'aanku waxa weeye hawrear ah isldegaanshaha laba wadarood. Dabeedna \(\qquad\)
(3) \(a+c=a+c\)
(3) Kstmanta isku noqod ee isletgaanta
(Haddaba mar haddii aynu qaadanay in \(\mathrm{a}=\mathrm{b}\) waxa aynu a ku beddeli karnae b dhinaca aidig ee, isletegta si aynu u helno....) (4) \(a+c=b+c\)
(4) Isku beddelid
(Marba haddii aynu gaarnay himiladii eo'ąanka, caddeyntu way dhan tahay).

Marar badan ayda waxa dhici kara in xirilirkan afeefta iyo colaanku uи Sidaa darteed ayan 1 aga ioicu xiea loo ratibi lahaa iyada oo ad waliba ka soo foran xiga 100 ratibi lahaa iyada oo sid waliba ka soo mulaaxsacaysa ta ka horeysa. Bal hadda fiiri caddaynta aragtiinta soo socota:
```

Haddii $a, b \in R$ markaas $a(-b)=-a b \quad$ b $\quad$, $b$

```
OGOW: Si, aynu u saafno hawraarta kore wan in aynu garanaa, in \(-b, a(-b)\), iyo \(-(a b)\) ay gebi ahaentoodba yihiin tirooyin maangal ah; laakiin runtii aed uma cadda xiriirkoodu. Mas'aladan auftaaxeedu waxa weeye taranta \(a(-b)\). Mar haddii -b aanay' ku jirin afeefta waa sandule in aynu caddaynta soo gelino. s

\section*{CADDAYN}

\section*{Howraaro}
1) \(A, b \in R\)
Garaadayn
2) \(-b E R, b+(-b)=0\)
(1) Bfeef
(2) Keerika isweydaarika isugeynta
3) \(a[b+(-b)]=\) a. 0
(3) Xeerka isku dhuf ashada
b) \(a \cdot b+a \cdot(-b)=a \cdot 0\)
5) \(a b+a(-b)=.0\)
6) \(a b \quad \mathbb{E}^{\prime}\)
(1) Xeerka kala dhigeh
(5) Xeorka isirka eber.
(6) Dhardhaarka oodneanta isku dinue ashada
(7) \(-a b\) ER, \(a b+(-a b)=0\)
(7) Xeerka isweydaarke isugeynta
(8) \(a(-b)=-a b\)
(8) Isweydaarka isuceynta waa medi.

Bal hadda aan taxno qaar ka nid ph aragtiiaahe laga nelo aljebrada hoose. Aractiimaha 1 ilaa 8 a, b, c ER. (\(R\) waa tiro mangal ah).

\section*{Xeerka isureynta}

Aractiin 1: Haddii \(a, b, C \in R, a=b\) aarkaas \(a+c=b+c\) Xeerka islcu dhufashada
fregtiin 2: Haddii \(a, b, c \in R, a=b\) aarkaas \(a c=b c\) Xeerka Isirka eber
Araptiin 3: Dhamman tirooyinka a ER, A. \(0=0\)

\section*{Xeerka isujaridda isugeynta}

Aractiin 4: Haddii \(a, b, c, E R, a c=b c\) markaas \(a=b\)

\section*{Xeorka Isu jaridda isku dhufashada}

Aragtiin 5: Haddii \(a, b, c \in R, a c=b c\) markaas \(a=b\)
fractin \(6:\)
\[
-a+(-b)=1-(a+b)
\]
frastiin 7:
\[
a \cdot(-b)=(-a) \cdot b=-(a \cdot b)
\]
\[
\text { Ersgtiin } 8 ; \quad(-a) \cdot(-b)=a \cdot b
\]

Aragtiimaha 9 ilaa \(16, a, b, c, d\) E J [J waa abyoone]
Aratitin 9
\(\frac{a}{b}=\frac{c}{d}\) haddii iyo haddii oo keliya oo \(a \cdot d=b, c(b, d \neq 0)\)
Arectiin 10: Xeerka salka u ah jajabyada
\[
\frac{a, c}{b, c}=\frac{a}{b} \text { weliba } \frac{a}{b}=\frac{a . c}{b \cdot c}(b, c \neq 0)
\]

EMectiinta 11:
\(\times-\frac{a+b}{c}=\frac{a+b}{c} \quad(c \neq 0)\)
hraptiinta 12:
\[
\frac{a}{b} \frac{c}{d}=\frac{a \cdot c}{b \cdot d} \quad(b, d \neq 0)
\]

Maadaama caddaynta aragtiimuhu ay adag tahay bal aan caddayno aragtiimo kale si caddaynte dheegidda aragtiimuhu ay innoogu sii fududaato.

\section*{ARAGTIIN}

Haddii \(a+b=0\) markaas \(b=-a+1 a b\)
CADDAYN:
Haddii aynu - a u geyno labada dhinac ee afeefta waxa
synu helaynaa \(-a+(a+b)=-a+0\). Hecidii synu isticnaalno dhavelhaarken homogelinta ee isugeynta waxa ay hawraarteenu noqonaysea. \((-a+a)+b=-a+0\). Mar haddii \(-a+a=0\) aarka aynu oadano dhinaca bidix, isla markaasna \(-a+0=-a\) marke aynu candano dhinaca midie waxa aynu helrynaa \(0+b=-a\). Sidaa derteedna \(b=-a\). Mar haddii b ay u teagan tahay tiro alaale tiradii kasta ee marka 100 geeyo a jedeeyadu ay noqoneyso eber, isla markaasna aynu caddaynay in \(b=-a\), run ahantii waxa eynu caddaynay in isweydaarka isugeyntu uu yahay aadi. Aragtiintan soo socota ce ku sabsan isku dhufashada iseguna waxa un caddaynayea in isweydaarka isku dhufahsadu yahay madi.

\section*{Aragtiin}

Haddii \(a b=1, a \neq 0\), markaas \(b=\frac{1}{a}\)
Caddaynta aragtiintan layli ahaan ayaa lagaaga tegey.

\section*{ARAGTIIN:}

Haddil \(a=b\) markaas \(-a=-b\)

\section*{CADDAYN:}

Mar had ii \(a=b\) waxa aynu ku dari karnaa dinnacii kasta ee isledegta afeefta \(-a\), taas oo u dniganta \(a+(-a)=\) \(b+(-a)\) inna siinaysana \(0=b+(-a)\), narba haddii \(a+(-a)=0\). Si aynu u gaarno go'aenka aynu rabno waxa aynu ku dari karnaa dhinacii kasta ee islebegta \(0=\mathrm{b}+(-\mathrm{a})-\mathrm{b}\). Maayo? Dabeedna waxa aynu helaynaa \(-b+0=-b+[b+(-a)]\); iyada oo tan 100 soo gaabin karo \(-b=-a\) waayo? iaddaba si aynu ugu dabaqno jedeeyadan eo'aankeena waxa aynu islegegta u dambaysa u çori karnaa - \(a=-b\).

\section*{ARAGCIIN:}

Haddii \(a b=0\), markaas \(a=0\) ama \(b=0\)
CADDAYN:
Haddii \(a=0\), aragtiinta waa la caddeeyey. Haddiise a \(\neq 0\) aarkaa a waxa ay leodahay isweydaar marka loo fiiriyo isku dhufashada kaasoo ah \(\frac{1}{a}\). Haddii dhinacii kasta ee isldegta \(a b=0\) aynu tcu dhufanno. \(\left\{\frac{1}{a}\right.\)) waxa aynu helaynaa \(\left(\frac{1}{a}\right),(a b)\)唯 marka la qaato dhinaca bidix, iyo \(\left(\frac{1}{a}\right), 0=0\) marka la qaato dhinaca aidig waxa aynu helaynaa go'aankii la rabay.

\section*{LAYLI}

Weydiiapha 1 ilaa 10 ku caddee ana tou garaadee hawraartii kasta mid ka mid ah aragtiimaia lilaa 16. Dhamman doorsoomayaasha ku jira weydiimuhu waxa ay u taagan yihiin tirooyin maangal ah. Haddii aragtiinta magac la siiyey,
magacaas ayaad ku bixin kartaa jawaabtaada.

\section*{TUSAALAYAAL}
b) \((x+y) \cdot 0=0\)
t) \(\frac{x}{4}+\frac{y}{4}==\frac{x+y}{4}\)

\section*{FURFURIS}
b) Aragtiinta 3 aad ana xeerka isirka eber a. \(0=0\)
t) Aragtiinta \(4 \mathrm{aad} \frac{\mathrm{a}}{\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{c}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}\)
1. Haddii \(x+4=7\), kolkaa \(x+4+(-4)=7+(-4)\)
2. Haddii \(10 x=30\) kolkaa \(10 \times\left(\frac{1}{10}\right)=30\left(\frac{1}{10}\right)\)
3. \(\frac{(x+5)}{2} \cdot 0=0\)
4. \(-2 x-1(-3 y)=-(2 x+3 y)\)
5. \((-2 x)(-3 y)=(2 x)(3 y)\)
6.Haddii \(\frac{x}{4}=\frac{y}{3}\), kolkaa \(3 x=4 y\)
7. \(\frac{1}{\frac{2}{3}}=\frac{3}{2}\)
8. \(\frac{x+2}{3} \cdot \frac{x-1}{5}=\frac{(x+2)(x-1)}{3.5}\)
9. Haddii \(7(x+y)=3(x-y)\), kolkaa \(\frac{x+y}{3}=\frac{x-y}{7}\)
10. Haddii \(x+(y-2)=y+4\) kolkaa
\[
x+(y-2)+[-(y-2)]=y+4+[-(y-2)]
\]

Weydiimaha 11 ilaa 16 ku sug ana ku caddee hawraar kasta oo ku jirta caddaymaha soo socda dhardhaar, qeexid, ama aragtiin hore 100 caddeeyey. Runtii caddaymaha soo socda aad una taftitira; aase yeeshee taleabooyinka la qaaday way ku filan yihiin caddaynta weydiin kasta.
11. Araptiinta 2aad
(b) \(a, b, c \in R, a=b\)
(t) ac ER
(j) \(a c=a c\)
(x) \(\mathrm{ac}=\mathrm{bc}\)
12. ARAGTIIITA 3aac

Dhamaan tirooyinka a E R, a. \(0=0\).
(b) a ER
(t) \(0+0=0\)
(j) \(a(0+0)=a(0)\)
(x) \(\mathrm{a} .0+\mathrm{a} .0=\mathrm{a} .0\)
(ki) \(\mathrm{a} .0+\mathrm{a} .0+[-(\mathrm{a} \cdot 0)]=\mathrm{a} .0+[-(\mathrm{a} .0)]\)
(f) \(a .0+0=0\)
(s) \(a .0=0\)
13. ARAGSIINTA 11 aad

Haddii \(a, b, c \in j, o \neq 0\), markaas \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\)
(j waa abyoone)
(b) \(\frac{a}{c}+\frac{b}{c}=a \cdot \frac{1}{c}+b \cdot \frac{1}{c}\)
(t) \(a \cdot \frac{1}{c}+b \cdot \frac{1}{c}=(a+b) \frac{1}{c}\)
(j) \((a+b) \cdot \frac{1}{c}=\frac{a+b}{c}\)
(x) \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\)
14. ARAGTITITA 12ead

Haddii \(\frac{a}{5}\), \(\frac{c}{\mathrm{c}} \mathrm{E}\) \& , narkaas \(\frac{\mathrm{g}}{\mathrm{s}} \cdot \frac{\mathrm{c}}{\mathrm{d}}=\frac{\mathrm{a} \cdot \mathrm{c}}{\mathrm{b}}\)
[Q vaa tiro lakab ah]
(b) \(\frac{a}{b} \cdot \frac{c}{d}=\frac{a}{b} \cdot \frac{c}{d}\)
\((t)=a \cdot \frac{1}{\frac{1}{5}} \cdot c \cdot \frac{1}{d}\)
\((j)=a \cdot \frac{1}{b} \cdot c \frac{1}{d} \cdot b \cdot d \cdot \frac{1}{d} \cdot d\)
\(\left.(x)=a \cdot c \cdot \frac{1}{b d} \cdot\left(\frac{1}{b} \cdot b\right)^{\left(\frac{1}{d} \cdot d\right.}\right)\)
\((\mathrm{lch})=\mathrm{a} \cdot \mathrm{c} \cdot \frac{1}{\mathrm{~b} \cdot \mathrm{~d}} \cdot 1.1\)
\((f)=a . c \cdot \frac{1}{b \cdot a}\)
\((E)=\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}\)

\section*{15. ARAGTIINTA Saac}

Haddii \(a, b, c \in R, c \neq 0, a c=b c\), aarkaas \(a=b\)
(b) a, b, c ER, \(a c=b c\)
(t) \(\frac{1}{c} \in R\)
(j) \(\mathrm{ac}, \frac{1}{\mathrm{c}}=\mathrm{bc} \cdot \frac{1}{\mathrm{c}}\)
(x) a \(\left(c \cdot \frac{1}{c}\right)=b\left(c . \frac{1}{c}\right)\)
(thi) \(\mathrm{a} .1=\mathrm{b} .1\)
(a) \(a=b\)

\section*{16. AZAGTLINTA 1Saad}

Haddii \(\frac{a}{5}, \frac{b}{a} \underline{E} 2\), markaas \(\frac{\frac{1}{b}}{\frac{b}{b}}=\frac{b}{a}[0\) waa tiro lakab ahi \(]\)
(b) \(\frac{a}{b}, \frac{b}{a} \in R\)
(t) \(\frac{1}{a} E R\)
(j) \(\frac{a}{b} \cdot \frac{1}{\frac{a}{5}}=1\)
(x) \(\frac{a}{b} \cdot \frac{b}{a}=\frac{a, b}{b, a}\)
(teh) \(\frac{a, b}{b, c}=1\)
(d) \(\frac{a}{b} \cdot \frac{1}{\frac{a}{5}}=\frac{a}{b} \cdot \frac{b}{a}\)
(r) \(\frac{1}{\frac{a}{b}}=\frac{b}{a}\)
17. Caddee in \(-\frac{a}{b}=-\frac{a}{b}=\frac{a}{b}\)
18. Haddii \(c \neq 0\), caddee in \(\frac{a+s}{c}=\frac{a}{c}+\frac{b}{c}\)
19. Adige oo u qaadanaya in \(b \neq 0\), cacidee in
\(\left(\frac{a}{b}\right)=c\) haddii iyo haddii oo keliya oo \(a=b c\).
20. Adige oo \(u\) gaadanaya in \(b \neq 0\), caddee in
\(\left(\frac{a}{b}\right)=c+\left(\frac{d}{b}\right)\) haddii iyo haddii oo keliya oo \(a=b c+d\)

\section*{200L (GROUF) IYO XERO}

Qool waxa weeye fikradda ugu muhiimean uguna fudud dhlangaasha xisabageed ee aljeprada macnawi ururlea ku-tirsanayaabia G \(\left\{\begin{array}{l}\text { a,b,c,...\} iyo xisaabfalka * ayaa }\end{array}\right.\) la yiraa waxa ay samaynayaan qool haddii dhardhaarada soo socda la raaligeliyo.
1. Astaanta oodnaanta ee G
* waa lammaneeye xisaabfal. Macnee haddii \(a, b\) E G markaa \(a\) *b E G.
2. Xeerka hornogelinta \(G\)
\(a \%(b * c)=(a \% b)\) \#c marka dhammaan \(a, b, c \in G\).
3. Jiritaantea esal aadoorshaha G

Waxa jira ku-tirsane e EGsi \(a \neq e=e * a=a\) midkii kasta a E G,
4. Jiritaanka weydaartca \(G\)

Tiradii kasta a E G waxa ay leedahay ku-tirsane a \({ }^{-1}\) EG si ay \(u\) raaligeliso
\(a \operatorname{an}^{-1} \operatorname{ma}^{-1} * a=e \cdot \bar{a}^{-1}\) ayaa loo yagaan weyciaarka \(a\).

OGOW IN: (\((\mathrm{S})\) in laga tegi karo sumaedda lennaaneeyaha xisaabfal marlca aanay wax lohalkial ah keenaymin. Haddaba xeorka horaogelinta maxa loo gori taraa a(bc) \(=(\mathrm{ab}) \mathrm{c}\) marka a, b, © E G.
(t) Haddii ku-tirsanayaasha qqoolka \(G\) ay weliba raaligeliyaan xeerka \(a b=b a z a r k a b, b E G\), colkaas qoolke waxa aynu \(u\) bixinaynaa qoolica kela hormarineed (commutative group).
(1) Asal aadoorsihaha e un yahay madi. Sababtoo ah haddii \(e_{1}\) iyo \(e_{2}\) ay labedube yihiin asal madoorsiayeal markaas \(e_{1} e_{2}=e_{2}\) mar haddii \(e_{1}\) ay tahay asal madoorsize, iyo \(e_{1} e_{2}=e_{1}\) ay tahay asal madoorshe. Kolka \(e_{2}=e_{2}\).
(x) Weydaarka ku-tirsane a E G uu yahay madi. Sababtoo ah haddii a ay leedahay laba weydaar
x iyo y aarkaas
\(a x=x a=e\)
\(a y=y a=e\)
(2)

Radda iyada oo la isticaaalayo (1) waxa aynu helaynaa
1. yax = ye
\[
\operatorname{yax}=y
\]

Sidoo kale iyeda oo la isticmaalayo (2) waxaynu helaynaa
2. yax = ex
```

$y a x=x$
tolles $x=y$

```
(kh) Waxa markiiba (x) laga heli karaa in haddii \(a, b\) ay yihiin ku-tirsanayaasina qoolka \(G\), markaas isle'egta \(a x=b\) ay leedehay furfur nadi ah marka loo eego G. Marka isle'egta chinac walba lagaca chufto a \(^{-1}\) waxa aynu helaynaa in
\(\mathrm{a}^{-1} \mathrm{ax}=\mathrm{a}^{-1} \mathrm{~b}\)
\[
x=a^{-1} b
\]
(a) Aynu a.a u qorayno \(a^{2}\), a.a.a na \(a^{3}\), iva. sicia aljebreda caadiga ah. Ke thibana in aynu muujino in \(a^{\text {ma }} a^{n}=a^{n} a^{n}=a^{n+n}\) iyo \(\left(a^{a}\right)^{n}=a^{\text {an }}\)
a iyo \(n\) waa abyoonayaal togan.
(r) Tirada ku-tiroanayaasha qool , G ay koobnaan karaan ama tirobeel noçon karaan. Haddii qool kooban G ay ku jiraan \(n\) ku-tireane marleaas waxa aynu oranaynae qoolka \(G\) wae horsilmada n-aad.

TUSAALE 1: Dhanaan ururka abyoonayaesha f ee xisababalke isugognta waa'g̣ool. Sababtoo ain:
I. Xisaabfalta iouceynta ee ururka f waa lamaaneeye xisaebfel.
II. \(a+(b+c)=(a+b)+c\) aarka \(a, b\), c E J
III. \(a+0=0+a=a\) tiradii kasta a e J; sidae darteedne 0 waa asal ma doorshe.
IV. \(a+(-a)=(-a)+a=0\) tiradii kasta aEJ; sidaa
*. darteedna ku-tirsaniliii kasta a E J waxa uu leegakay woydaar aadi ah (-a) E J. 1

TUSAALE 2: Dhamaan ururka tirooyinka lakablea ah, 8 oo uu eber ka reeban yehay ame ka baxean yahay waa çool manka loo eego xisaabfalke isteu chufe ehada. Sababtoo -u-bil :
I. Xisaasfalka isku chufashada ee ururka \(Q\) waa lamaaneeye xisaabfal.
II. \(a(b c)=(a b)\) c marka thamaan \(a, b, c \in \&\)
III. a.1 = l.a = a tiradii kasta aE \& sababtoo ah 1 waa asal nadoorshaha istety dhufeshade.
IV. a. \(\frac{1}{a}=\frac{1}{a}, a=1\) tiredii kasta a E \(\Omega\); sidaa darteed ku-tirsane kasta a E ? waxa uu leeyahay weydear \(\frac{1}{2}-E\).

Ogor in 0 laga reebayo sababtoo ail 0 ma laha weydaar marke 1a haysto chamaan ururka tirooyinica lakabka ah lana isticmaalo xisaabfalka istcu dhufasiada.

\section*{TUSAALB: 3}

Ururka J ee diamman abyoonayaaalau ee xisaabfalica iaku dhufasiadu ma aha ģool.

Sababtoo ah haddii a E J, waxa dhici karta in a aanay yeelanin weydaar \(\mathrm{a}^{-1}\) E J. Tusaale ahan 2 E J, hase yeeshee ta jiro ku-tirsane XE J si \(2 . x=x .2=1\). Urur ku-tirsanayaal ahi waxa uu samaynayaa xero haddii:
I. Ku-tirsanayaasha ururku ay samaynayaan ģool kala hormarineed marka la qaato xisaabfalka isugeynta.
III. Ku-tirsanayaasha ururka ay raaligelinayaan xeerka hornogelinta isku-dhufashada.
IV. Ku-tisanayaasha ururku ay raaligelinayaan xeerka kala dhigea isku dhufashada ee isugeynta .

\section*{LAYLI}
1. Tus in ururka abyoonayaashu aanay samaynin qool marka la haysto xisaabfalka isku dhufashada.
2. Tus in ururka ka kooban labada ku-tirsane + 1 iyo -1 uu samaynayo qool kala hormarineed narka la haysto xisaab falka isku dhufashada.
3. Tus in dhamaaen ururke abyoonayaasha dhabanka ahi uu yahay gool marka la haysto xisaabfalka isugeynta.
4. Ma yehay dhamsaan ururka abyoonayaasha kisiga ahi qool marka la haysto xisaabfalka isku dhufashada?
5. Tus in dhamman ururka horma-ururada ee urur guud aanu ahayn cool marka le haysto xisaabfalka isu tagga (U).

\section*{STROOYNNKA KAKAS}

Hntet11 atd nagtifn ahaan ugu naqotid buucii kowaad ee xisaebte, waxa acd arki doontaa in abla-ablaynta habdhiska tirada \(n i\) fixioen oo behaaran logrula joex jcexay buugaas isaga dh. Bucgens isage eh waxe ayau ky theegnay in tirooyinke kekan 100 kele gaybin karo laba qaybood oo waaweyn; kuwass oo bh tifocy inka maongazka ah iyo timooyinka maangacke eh. Hase yecehco Easr-bhann wora aymu hadde vixil ka horreoyey si' tafotiken uga harilaynay qaybea throuyiaka maangalka ah. \(3 \times 1\) se haddl aan u zoo joesano guad ahaan tirooyinka kakan innage oo isku deyt doone in aynu aii balamino fikradda tirooyinka kukan goas dinanna xinaab eallade la xivilira, astaanahs salke u ah iyo xivileke ke chexoeya tirooyinka maangadte nh iyo leuwa moangellta ah.

QEEXID: Teutacta ururita throoytuks manggalke ah iyo ururke tirooyinika asengadke ah syea beneoye uruake tirno-
 \(a \div b j\), a iyo bria wae tirooyin agangel ah.

Tipada kekan 00 a 4 bi vaxa aad marar badan ku artid doontas iysda 00 ku govon ama u qoran sidil lamaane horesa oo tircoyin taangal ah apa sanseankanba \((a, b)\).
. - Inte aynean goosjo xícaabralleda salke, u ah ana kuba lue leh tircoyinica kaken bal aen rasdraacno astasmeha xubinta maangadka a. ce i. Qeybte maengelke ch co tirade a + bi vaa a; qaybta meangadka ahina woa b;
daddaba waxa isweydifin leh nitda jibbearada i 100 fududayn kave. Home ayoynt it boo shergnay in ay i \(=\sqrt{\text { F-I }}\). Haddobs hoddtl aynu laba jibbasro didntcii kasta ee isle'egtan waxa aynu helaynas in \(i^{2}=-1\). Yaxa kale oo aad xiriirkan kala soo bixi kertea in \(j^{2}=\) i. Kolta innega oo ka faa'iidaysanayna xisilicidan wasa aynu chiai lgnrae jibbaerada sare ee i iyada oo Legu inticranl nyo xleanbfaxka isku chufashada. Jibbaarad.a \(4=\) horreoya oo \(i\) waxs weoye: \(i^{3}=\cdots\),
- 40 -
\(i^{4}=1, i^{5}=i, i^{6}=-1, i^{7}=-1, i^{8}=1\), \(i\) wan. Halkan waxa kaaga muugan kara in guud ahaan \(i^{n}\), \(n\) waa tirsiimo, lagu soo gaabin karo 1, i, -1 , ama \(-i\). Fiiro gaar ah bal sii habka aeertada ah ee jedeeyooyinka kore adiga oo dhuganaya ama nilicsanayaba in \(i^{n}=1\) aar alleale markii \(n\) ay \(u\) qaybsenayso 4. Halkan waxa aynu ka soo dheegan karnaa in \(i^{n}\) m \(i^{4 \mathrm{r}+\mathrm{s}}=i^{s}\). Tibaaxdan \(u\) dambaysa ee ay jibbaaradu saaran yihiin macneheedu vaxa weeye markii n loo gaybiyo 4 waxa ay noçona saa in 4 ay \(u\) qaybsanto \(n\) oo aanu haraa soo bixin, ama in haraa soo baxo. Haraageas oo nag̣on kara 1, 2, 3 oo keliya. Ogow in halkan qaybsheheenu yehay 4, la qaybshuhuna yahay \(n\), qaybtune tahay \(r\), haraaguna yahay \(s\). Haddeba \(4 \sqrt{n}=4 \cdot r+s\). Mar haddii salkeenu uu ahaa \(i\), \(n\)-na ahayd jibbaar, kolkaa tibaaxdeentl ahayd \(i^{n}=i^{4 n+s}=i^{s}\).

Marka fududaynta \(i^{n}\) vexe lagu eaari karaa iyada oo 4 100 qaybiyo \(n\); dabeedna jedeeyada lagu tibaaxo ana lagu metelo \(1,4,-1\), ama \(-i\) haddii uu haraagu noqdo \(0,1,2\), ana 3 sida ay u kala horreeyaan. Tan macneheedu waxa weeye haddii haraagu uu nogdo 0 kolkae jedeeyada \(i^{n \prime}\) waxa ay nogonaysaa 1, haddii haraagu uu nog̣do 1 kolkeana jedeeyadu waxa ay nogonaysae \(i\), haddii uu 2 nog̣dona waxa ay nogonasaa -1 , haddiise uu noqdo 3 kolkaana waxa ay noqonaysaa \(-i\).

TUSAALB 1: \(i^{35}=i^{4.8+3}=i^{3}=-1\)
TUSAALE 2: \(\quad i^{36}=i^{4 \cdot 9+0}=i^{0}=1\)
TUSMALE 3: \(i^{37}=i^{4 \cdot 9+1}=i^{1}=i\)
TUSARLE 4: \(i^{38}=i^{4.9+2}=i^{2}=-1\)

2EEXID: Laba tiro oo kakani (a+bi) iyo (c+di) way isle'ee yihiin haddii iyo haddii oo keliya oo ay \(a=c, b=d\).

Afarta xisaabfal ce saldhigea \(u\) ah tirooyinka leakan waxa lagu qeexi karaa isle'egyadan soo socde markh a + bi iyo of di ay yiniin labedii tiro ee kasta eo tiro kakan ah: ISUGEYN: \((a+b i)+c+d i)=(a+c)+(b+d) i\) KALA GOMN: \((a+b i)-(c+d i)=(a-c)+(b-d) i\) ISKU DHUFASHO: \((a+b i)(c+d i)=(a c-b d)+(a d+b c) i\) ISU QAYBIN \(=\frac{(a+b i)}{(o+d i)}=\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}\)

Waxa se isu qaybinta \(u\) shardi ah in aanay c iyo d nogonin eber labadoodube.
QBEXID: Dhamaaan tirooyinka kakan ee (a+bi) xietige (a+bi)
waxa weeye \((a-b i)\). Sidoo kale xistiga (\(a-b i\)) waxa weeye \((a+b i)\).
TUSAALE: \(1:(2+3 i)+(4-i)=6+2 i\)
TUSAALE \(2:(3+7 i)-(-4+2 i)=+7+5 i\)
TUSAALE 3: \((2+5 i)(3-i)=(2 \cdot 3-5(-1), 2(-1) i+5.3 i)\)
\[
\begin{aligned}
& =(6+5,-2 i+15 i) \\
& =(11+13 i)
\end{aligned}
\]

TUSAALE 4: \(\frac{2+5 i}{1+2 i}\)
\(=\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}}\)
\(=\frac{(2.1+5.2)+(5.1-2.2) 1}{1^{2}+2^{2}}\)
\(=\frac{(2+10)+(5-4) i}{1+4}\)
\(=\frac{12+i}{5}=\frac{12}{5}+\frac{1}{5} i\)
TUSAALE 5: (b) Yaa maxay xistiga \((3+4 i)\) ?
(t) Naa maxay xistica (\(3-4 i\))?

FURFURIS: (b) Xistiga (3+4i) waa (3-4i).
(t) Xistiga (3-4i) waa \((3+4 i)\).

Isu qaybinta ti rooyinka kakan waxa si fudud loogu furfuri karaa isticaaalke xistiga. \(3 e 1\) hadda dieeio sida twalaha 4aad ee isu gaybinta loogu furfuri karo iaticnaalka xistiga.

TUSAALE 6: Ku fuctudee \(\frac{2+5 i}{1+2 i}\) isticnasllea xistica.
FURFURIS: Sarreyale iyo hooseeyaina jajable \(\frac{2+5 i}{1+2 i}\) ku dhufo xistiga \(1+2 i\) Lrolkaa maxa aynu helaynaa
\[
\frac{(2+5 i)(1-2 i)}{(1+2 i)(1-2 i)}
\]

Dabeedne ku isticmal sarreeyaha iyo hooseeyahaba qeexidda isku chufashadia tirooyinka kakan. Narka vaxa ar nu helaynaa
\[
\frac{((2.1)-5(-2))+(2 \cdot(-2)+5 \cdot 1) i}{(1.1-2 \cdot(-2))+(1 \cdot(-2)+2 \cdot 1) i}
\]
\(-\frac{(2-(-10))+(-s+5)}{(1)-1}+4\) and
\[
(1-(-4)+(-2+2) i
\]
\[
=\frac{(12)+(1) i}{(5)+(0) i}=\frac{12+i}{5}=\frac{12}{5}+\frac{1}{5} i
\]

Xirilr'ca ka diexeeya ururka tirooyinica aameallea ai Iyo ururice tirooyinka kakani wae iske caddaan sababtoo ah haddif aynu S-icala afd cifeno ebor maxe eynu holaynaa a oo celiye oo ah tiro meancal ei. Sidar darteed waxa innoo auucan learte in ururka tirooyin'ce zaagalka ehi" ut yahay horno-urur urur'te tirooyinka kakan. Sidoo kale haddii aynu cala mid difeno eber make innoo mưoaneysa in diammaan tirooyinke bi ay abuuraaysen; ururken Lsaca cina vrexa 100 yagaan ururlta asliga ail ee tirooyint:a mancadita ah.

ASHAVATA E IROOYIHKA KAKAII A. NA. Dal hadda aan filro gaar ah siino woydilinta ah na sameeyean ururica tirooyinke kelceni back sidii tirooyinka mancalka ahi ay u samaynayoen sadka? Runtii
jawaabtu maa haa; astanihil eear ahaaneed ec badtcu uw \(u\) baahhaane wae ktuwan soo bocda. Sidn badan xaraflea weyn ee C ayaa 100 qaataa inuu u taagnaado ururka tirooyinka kakan. Waa inagii hore \(u\) soo ahcegnay in tiro kasta oo kakan loo qori karo sumad aha an sansa anka lamaane horsen; lcolka, aarka aynu astaamaha taxayno wexa aynu isticaaali do ona a sansaanka lamaanaha horsan si muujinta astaamuiu ay inoogu fududaato.

\section*{Haddii \((a, b),(c, d)\), iyo \((e, f) \boldsymbol{E} C\), marlcaas ast aa-} maha soo socdaa waa run.
I. Oodnaanta istcu dhufashada iyo isu-geynta .
b) \((a, b),(c, d)\) E C
t) \((a, b)+(c, d)\) E \(c\)
II. Isugeynta iyo isku dhufashadube waa ay raaligeliyaan kala hormarinta
(b) \((a, b)+(c, c)=(c, d)+(c, b)\)
(t) \((a, b) \cdot(c, d)=(c, d) \cdot(a, b)\)
III. Ieugeynta iyo isku dhufaahaduba way raeliceliyam hormogelinta.
b) \(((a, b)+(c, d))+(c, f)=(a, b)+((c, d)+(c, f))\)
t) \(((a, b(,(c, d)) \cdot(c, e)=(a, b) \cdot((c, d) \cdot(e, f))\)
IV. Xeerika kala đhicea
\[
(a, b) \cdot((c, d)+(e, f))=(a, b) \cdot(c, d))+((a, b) \cdot(e, f))
\]
V. Asal me doorsiade isugeyte waxa jirta tiro kakan \((0,0)\) si. ay tiro kasta oo kakani \((2, b)\) u raaligeliso isle' efta \(a h(a, b)+(0,0)=(a, b)\)
VI. Maydaarka isugeynta

Tiro kasta oo kakani \((a, b)\) waxa ay leedahay tiro kale oo kakani \((-a,-b)\) si ay \((a, b)+(-a,-b)=(0,0)\).
VII. Asal aadioorahaha isku diuf ashada. Wexa jirta tiro kakan \((1,0)\) ai ay tiro kasta oo kakan \((a, b)\) ay u raali celiso is ldegta ah \((a, b) .(1,0)=(a, b)\).
VIII. Weydaarka isku dhufashada.

Tiro kasta oo kakani (\(a, b\)) waxa ay leedahay tiro kale \(\infty\) kakan \((x, y)\) si ay \((a, b) .(x, y)=(1,0)\).
Astaamaha badidoodu waxa ay 31 toos ah uga yimaadeen ama ugu dabaqan yihlinba qeexidaha tirooyinka kakan, kuwo kale oo ka mid ah astaamahan \(s 1\) hawl yar baa 100 caddayn karaa; hase yeeshee waxa aad mooddaa Inay yar adag tahay caddaynta sideedaad. Bal kolka aanu lisku dayno in aynu caddayno astaantaa ku lug leh weydaarka isku dhufashada.

\section*{CADDAYN}

\section*{HAWRAAR}

\section*{XAQIIJIN}
1. \(a, b, x, y \in R\)
1. Qeexidda tirooyinka kakan
2. Afeef
2. \((a, b) \cdot(x, y)=(1,0)\)
3. Qeexidda isku dhufashada Hive. yinka kakan.
4. \(a x-b y=1\)
4. Qeexidda isle'okannshaha tíooyinka kakan

Haddil lammannhan \(\overline{i s} e^{\circ}\) egyadn aymu hábdhis ahaan \(u\) furfura, waxa aynu helaynaa:
\[
x=\frac{a}{a^{2}+b^{2}} \text {, iyo } y=\frac{-b}{a^{2}+b^{2}}
\]

Kolka, mar haddii la tusi karo in isle'egyada havmaacta afraad (4) ay yihiin isle'egyo toosan oo madaxhanaan, ururfurfurku waa in uu noqdo mid madi ah; weliba haddil (a,b) ay leedahay weydaar isku dhufasho, waa inuu noqdaa \(\left(\frac{a}{a^{2}+b^{2}}, \frac{-b}{a^{2}+b^{2}}\right) \cdot\)./ Tiradan kakani waxa ay \(11 r i\) kartaa haddif iyo haddii 00 keliya \(00 a^{2}+b^{2} \times 0\). Mideed kaleeto \(a^{2}=0\) waxa ay run tahay haddii iyo haddif 00 keliya \(00 \quad \mathrm{a}=0, \mathrm{~b}=0\). Hadda tiro kasta oo kakani waxa ay leedahay weydaar marka laga reebo \((0,0)\).

Marka aynu isgarab dhigno astaamaha tirooyinka maangalka ah iyo kuwa tirooyinka kakan waxa aynu helaynaa in ay ku kala duwan yihiln oo keliya astaamaha horsanaanta, sababtoo on ne orava
ah ma oran karo tiro kakani waxa ay ka weyn tahay ama ka yar tahay tiro kale oo kakan. Waxa aynu oran karnaa oo kellya laba tiro oo kakani way isle'eg yihiin ama isma le'ega.

\section*{LAYLI}
1. \(1^{5}\)
Su tibaax weyddiimaha 1 11aa \(12,1,-1,-1\), ama 1.
7. \(61^{2}\)
2. \(1^{6}\) 3. \(21^{4}\)
4. \(51^{8} \quad 5 \cdot-1^{1}\)
6.-1 \({ }^{10}\)
11. \(-1^{123} 12 \cdot 1^{346}\)

Ku qor tibixaale kasta \(o o \mathrm{ka}\) mid ah weyddimaha 1311 aa 20 sansaanka \(a+b i\).
13. \(21^{6}+31^{5}-41^{3}+10\)
17. \(31^{7}+31^{5}-21^{2}+7\)
14. \(51^{9}+71^{8}-21^{6}+41^{3} \quad 1841^{8}+21^{7}+41^{2}-31\)
15. \(71^{14}-81^{13}-21^{8}+1^{7} 19 \cdot 21^{9}-1^{8}-31^{7}+1^{6}-51^{5}+41^{4}+21^{2}\) 16. \(31^{5}-21^{6}+81^{9}-51^{10} \quad\) 20. \(41^{13}+51^{12}+21^{11}+31^{10}-21^{8}+31^{6}\)

Qor wadarta, faraqailyo taranta tirooyinkan kakan ee 300 socda:
1. \((4+2 i)+(6-3 i)\)
\[
\text { 12. }(-4-7 i)(-3-21)
\]
2. \((3-7 i)+(-1+41)\)
3. \((-5-24)+(3-41)\)
13. \((3-7 i)+(2+5 i)\)
4. \((-6-31)+(-1-41)\)
5. \((5+31)-(2+1)\) 14. \((-12+31)-(7-51)\)
6. \((3-2 i)-(4-1)\)
15. \((4+81)(2-31)\)
7. \((-6-21)-(-5-31)\)
\((5+1)-2(3+5 i)+6(-2-1)\)
18. \((3 \sqrt{2}+21)(3 \sqrt{2}-21)\)
8. \((-7-51)-(-8-41)\)
19. \((1+5)(1-2)+(2+3 i)(1+1)\)
9. \((5+1)(2+61)\)
10. \((2-31)(3+71)\)
11. \((-6-4 i)(2-5 i)\)
21. Haddii \((2+5 i)(3+2 i)(1-i)=(a+b i)\), raadi a iyo b?
22. Haddif \((3+1)(8+51)=(19+\times i)\), raadi \(\times\) ?

U fududee mid kasta oo ka mid ah kuwa soo socda sansaanka \(a h(a+b i)\).
23. \(\sqrt{-16}+3-\sqrt{-9-7}\)
24. \(\sqrt{-25-1}\)
25. \((3+\sqrt{-3})(2-\sqrt{-3})\)

Qor xistiga tiro kasta oo kakan 00 soo socota:
1. \((3+v i)\)
2. \((5+7 i)\)
3. \((2-i)\)
4. \((6-2 i)\)
5. \((-3+41) 6 \cdot(-5+101)\) 7. \((3+\sqrt{21}) 8 \cdot(5+\sqrt{51})\)
9. \((2+31) \cdot 10 \cdot\left(-5-\frac{1}{7}-1\right)\)

Ku tibaax qaybta weyddiimahan tirooyin kakan ee sansaankan ah (a \(\times\) bi)
1. \(\frac{4+21}{1+1}\)
2. \(\frac{5-1}{3+21}\)
3. \(\frac{3-7 i}{2-3 i}\)
4. \(\frac{1-81}{4-21}\)
5. \(\frac{8+21}{3 i}\)
6. \(\frac{7-51}{21}\)
7. \(\frac{1}{1}\)
8. \(\frac{2}{31}\)
9. \(\frac{2+1 \sqrt{3}}{2-1 \sqrt{3}}\)
10. \(\frac{\sqrt{5}-1 \sqrt{3}}{\sqrt{3}+i \sqrt{5}}\)
1. \(U\) qor asal madoorshaha isugeynta ee ururka tirooyinka kakan sansaanka ah \(a+b 1\).
2. U qor asal ma doorshaha isku dhufashada ee ururka tirooyinka kakan sansaanka ah \(a+b 1\).
3. Qor weydaarka isugeynta \(a+b i\)
4. Qor weydaarka 1 sku dhufashada ee \(a+b i\), haddi1 \(a, b \neq 0\)

QEEX: \(\quad a^{m}\) waa taranta \(m\) isir 00 mid waliba yahay a. macnee a.a.a...an \& Maadaam m ay tahay tirada isirada, ma nogon karto tabane ama jajab, waxa se ay tahay abyoone togan. Inaga oo qeexdaa isticmaaleyna ayeynu dheegi karaa xeerarka asaaska \(u\) ah jibbaarada.
1. \(a^{m} \cdot a^{n}=a^{m+n}\)
2. \(a^{m}+a^{n}=a^{m-n}, a \neq 0\) haddi1 \(m>n\)
\[
=\frac{1}{a^{n-m}} \quad \text { haddi } m<n
\]
3. \(\left(a^{m}\right)^{n}=a^{m n}\)
4. \((a b)^{m}=a^{m} b^{m}\)
5. \((a / b)^{m}=a^{m} / b^{m}, b \neq 0\)

\section*{Caddeymaha Xeerarka}
1. \(a^{m} \cdot a^{n}=a^{m+n}, m, n \in A^{+}=\{1,2,3, \ldots\}\)

Caddayn: \(a^{m}=\) a.a.an...a
\[
a^{n}=\sqrt{a \cdot a \cdot a \ldots \ldots}
\]
\(i \cdot a^{m} \cdot a^{n}=(a_{a \cdot a \cdot a \ldots a)}^{m} \quad \overbrace{(a \cdot a \cdot a \cdot \ldots a}^{n})\)
\(=\frac{x+n}{a . a \cdot a \ldots a}\)
\(=a^{m+n}\)

Xeerkan waxa lagu dabiqi karaa tiro kasta ooghoogaga a
\[
\begin{aligned}
& \text { Marka } a^{m} a_{n}^{n} a^{r}=(m+n) a^{r}=(m+n+r) \\
& a^{m} \cdot a_{0}^{n} a^{r} \cdots=a^{m+n+r+\cdots}
\end{aligned}
\]
2. \(\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0\) haddil \(m>n\)
\[
=\frac{1}{a^{n-m}} \quad \text { haddii } m<n \quad m, n \in A^{+}
\]

Caddayn : \(\quad a^{m}=\overbrace{a \cdot a \cdot a \ldots a}^{m}\)
\(a^{n}=a_{a, a, a \ldots a}^{a}\)
\(\therefore \quad \frac{a^{m}}{a^{n}} \frac{m}{\frac{a \cdot a \cdot a \ldots a}{n}}\)
(1) \(m>n\)

Maadaam \(m=(m-n)+n, q-d a\) isir ee sarreeyaha ayaa 100 qaybin karaa laba kooxood, kooxda hore waxa weeye (\(m-n\)) isir, ta danbena waa \(n\) isir.

(11) H

Maadaam \(n=(n-m)+m, n\)-da isir ce nooseeyaha ayaa 100 qaybin karaa laba kooxood, kooxda hore, waxa weeye (\(n-m\)) isir, ta danbena misir.
\[
\begin{aligned}
\therefore \frac{a^{m}}{a^{n}} & =\frac{\overbrace{a \cdot a \cdot a \ldots a}^{m}}{(a \cdot a \cdot a \ldots a)(a \cdot a \cdot a \ldots a)} \\
& =\frac{1}{a \cdot a, a \ldots a}
\end{aligned}
\]
\[
\frac{1}{a^{n-m}}
\]
3. \(\left(a^{m}\right)^{n}=a^{m n}, m, n \in A^{+}\)

Caddeyn:

\(a^{m+m+m+\cdots}\) (xeerka koowaad)
\(=a^{m n}\)
4. \((a b)^{m}\)
\(=\overbrace{a b, a b, a b \ldots a b}\)
\(=(\overbrace{a, a, a, \ldots a}^{m} \overbrace{b \cdot b \cdot b, \ldots b}^{m}\)
\(=\quad a^{m} \cdot b^{m}\)
5. Xeerka 5 aad \((a / b)^{m}=a^{m} / b^{m} \quad, b \neq 0\) caddeyntilsa
waxan \(u\) dhaafayaa ardeyga.
TUSAALOOYIN (Jibbaaradu dhammaantood waa abyoonayaal togan)
Tusaale 1: Fududee \(\frac{3 m^{3} n^{2} \cdot 4 m n^{3}}{18 m^{2} n^{6}}\)
Furfuris: \(\frac{3 m^{3} n^{2} \cdot 4 m n^{3}}{18 m^{2} n^{6}}=\frac{3 \cdot 4 \cdot m^{3+1} n^{2+3}}{18 m^{2} n^{6}}\)
\[
=\frac{2 m^{(3+1-2)}}{3 n^{6-(2+3)}}=\frac{2 m^{2}}{3 n}
\]

Tusaale 2: Fududee
\[
\frac{2^{2 \cdot} \cdot 8 \cdot 8!}{2^{6} \cdot 27^{2}}=\frac{2^{2} \cdot 2^{3} \cdot 3^{4}}{2^{6 \cdot\left(3^{3}\right)^{2}}}=\frac{2^{5} \cdot 3^{4}}{2^{6 \cdot 3^{6}}}=\frac{1}{2 \cdot 3^{2}}=\frac{1}{81}
\]

Tusaale 3: Fududee: \(\frac{10 \cdot 2^{7}-48 \cdot 2^{4}}{48 \cdot 2^{5}-2^{8}}=\frac{5 \cdot 2 \cdot 2^{7}-3 \cdot 2^{4} \cdot 2^{4}}{3 \cdot 2^{4} \cdot 2^{5}-2^{8}}\)
\[
=\frac{5.2^{8}-3.2^{8}}{3.2^{9}-2^{8}}
\]
\[
=\frac{2^{8}(5-3)}{2^{8}(6-1)}=\frac{2}{5}
\]

\section*{LAYLI}

Fududee:
1. \(a^{4} \cdot a^{2}\)
2. \(3 a^{2} \cdot 4 a^{4}\)
7. \(\left(2 a^{2} b\right)^{2} \cdot 2 a b^{2}\)
-
8. \(\frac{2 a^{3} b \cdot\left(2 a b^{2}\right)^{2}}{16 a^{4} b^{4}}\)
3. \(\frac{a^{7}}{a^{3}}\)
9. \(\frac{\left(3 a^{2} b\right)^{3} \cdot 2\left(a b^{2}\right)^{2}}{18\left(a^{2} b^{2}\right)^{3}}\)
4. \(\frac{2 a^{5}}{3 a^{2}}\)
10. \(\frac{\left(a^{3} b\right)^{2}}{c^{2}} \cdot\left(\frac{b^{3} c}{a^{2}}\right) \cdot\left(\frac{c^{3} a}{b^{2}}\right)\)
5. \(2\left(a^{3}\right)^{4}\)
6. \(\left(2 a^{3}\right)^{3}\)
11. \(\frac{6.10^{3} \cdot 5}{15 \cdot 20^{3}}\)
\[
\text { 12. } \frac{\left(4.3^{2}\right)^{3} \cdot 6}{18 \cdot\left(3.2^{2}\right)^{4}}
\]

Dhammeystir weedhahan soo socda:-.
13. \(2^{6}+2^{3}=2^{3}\)
1
14. \(4^{2}+2^{2}=2^{2}\)

15. \(9^{2}+27=3^{3}\)
(
-
16. \(3 \cdot 9^{3}+9.3^{3}=3^{5}\) \(\qquad\)
)
, ,

\section*{Fududee:}
17. \(\frac{4.3^{5}-3.3^{3}}{11 \cdot 3^{6}}\)
18. \(\frac{3^{6}+3^{5}+3^{4}}{3^{6}+3^{4}+3^{2}}\)
19. \(\frac{2.3^{2}+3.2^{2}}{3.4^{2}-4.3^{2}}\)

Waxa aynu qeexnay \(a^{m}\) haddi1 \(m \in A^{+}=\{1,2,3, \ldots\}\), haddaba aan qeexno \(a^{m}\) haddii \(m=0, m \in A^{-}\), \(m \boldsymbol{\in}\) \{tirooyinka lakab\} - \{Abyoonayaasha\}.
Sidaas darteed waa in aan qeexno tibaaxaha ay ka mid yihiin \(a^{\circ}\), \(a^{-m}, a^{m / n} m, n \boldsymbol{E} A, n \not 00, n \neq 1\) tibaaxahan waxaynu qeexi karnaa marka aynu \(u\) qaadano in weedha \(a^{m} \cdot a^{n}=a^{m+n}\) ay run tahay f, \(n \in M, M=\) ururka tirooyinka maangalka ah

\section*{B. J1bbaarka Eber:}

Si aan u qeexno a \(a^{\circ}\)
\(a^{0} \cdot a^{m}=a^{0+m}\)
haddif aan haddaba dhinac kasta \(u\) qaybino \(a^{m}\) waxa aynu heli in \(a^{\circ}=1\) haddil \(a \times 0\).
t. J1bbaarada taban
\[
\text { Si aan } u \text { qeexno } a^{-n}
\]
\[
a^{n} \cdot a^{n}=a^{-n+n}
\]
\(=a^{0}\)
\(=a^{0}\)
\(=1\)
\(\therefore \quad a^{-n}=\frac{1}{a^{n}} \quad\left(\right.\) dhinac kasta \(u\) qaybi \(\left.a^{n} \neq 0\right)\)
Maadaam a \(\subset M\), \(a \neq 0\).
\[
5^{0}=1, \frac{(-2)^{0}}{3}=1,\left(x^{2}\right)^{0}=1
\]

Ogow: \((2 x)^{\circ} \neq 2 x^{\circ}\), madaaim \((2 x)^{\circ}=1,2 x^{\circ}=2.1=2\)
\[
\begin{aligned}
& \text { wellba } 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \\
& \frac{(3)^{-2}}{4}=\frac{1}{\left(\frac{3)^{2}}{4}\right.}=\frac{(4)^{2}}{3}=\frac{16}{9} \\
& (-3)^{4}=\frac{1}{(-3)^{4}}=\frac{1}{81} .
\end{aligned}
\]

Ogow \((2 x)^{-3} \times 2 \bar{x}^{-3}\), maadaam \((2 x)^{-3}=\frac{1}{(2 x)^{3}}=\frac{1}{8 x^{3}}\)
Lakifn \(2 x^{-3}=2\).

THsaalooyin (jlbbaaradu waxa ay katirsan yihiln ururka abyoonayaasha \(\mathrm{A}=\{0, \pm 1, \pm 2, \ldots\}\)
Tusaale_1: Fududee:
\[
\begin{aligned}
& \left(3 a^{-2} b\right)^{-1} \cdot 2\left(a b^{-3}\right)^{-2} \\
& \left(3 a^{-a} b\right)^{-1} \cdot 2\left(a b^{-3}\right)^{-2}=-3^{1} a^{2} b^{-1} \cdot 2 \cdot a^{-2} b 6
\end{aligned}
\]
\[
\begin{aligned}
& =\frac{2}{3} a^{2-2} \cdot b^{6-1} \\
& =\frac{2}{3} a^{0} b^{5} \\
& =\frac{2}{3} \cdot 1 \cdot b^{5} \\
& =\frac{2}{3} b^{5}
\end{aligned}
\]

Tusaale 3: Haddii \(a=4 \cdot 10^{-2}, b=5^{-1} \cdot 10^{3}\) doon
qiimaha (1) \(a b^{2}\) (1i) \(a^{3} b^{-2}\) (una dhig sansaanka ah \(m \cdot 10^{n}, 1<m<10, n \in A \quad\{0, \pm 1, \pm 2, \ldots\}\)
(1) \(a b^{2}=4 \cdot 10^{-2} \cdot\left(5^{-1} \cdot 10^{3}\right)^{2}\)
\(=4.10^{-2} \cdot 5^{-2} \cdot 10^{6}\)
\(=4.5^{2} \cdot 10^{4}\)
\(=\frac{4}{5^{2}} \cdot 10^{4}\)
\(=\frac{4}{5^{2}} \cdot \frac{2^{2}}{2^{2}} \cdot 10^{4}=\frac{16.10^{4}}{10^{2}}=16.10^{2}=1.6 \times 10^{3}\)
(11) \(a^{3} b^{-2}\)
\(=\left(4 \cdot 10^{-2}\right)^{3}\left(5^{-1} \cdot 10^{3}\right)^{-2}\)
\(=\left(4^{3} \cdot 10^{-6}\right)\left(5^{2} \cdot 10^{-6}\right)\)
\(=4^{3} \cdot 5^{2} \cdot 10^{-12}\)
\(=\frac{4^{3} \cdot 5^{2} \cdot 10^{-12} \cdot 2^{2}}{2^{2}}\)
\(=\frac{4^{3} \cdot 10^{2} \cdot 10^{-12}}{4}=4^{2} \cdot 10^{-10}=16 \times 10^{10}\)
\(=16 \times 10^{-1} \times 10^{9}\)
\(=1.6 \times 10^{9}\)
LAYLI Fududee, (Jawabahana kor ku qor jibbaaro togan)
1. \(\left(x^{-4}\right)^{0}\)
6. \(x y^{-3}\)
2. \(\frac{\left(x^{-1}\right)^{-1}}{x^{2}}\)
3. \(\frac{(2 x)^{-1}}{2 x^{2}}\)
7. \(2 x^{-1} 9\)
4. \(\frac{2 x^{2}}{(3 x)^{-3}}\)
5. \(\frac{3 x^{\circ}}{2 x^{-2}}\)
8. \(2 x^{-2} y^{2}\)
9. \(\frac{(2 x)^{-2}}{3 x^{2} y^{-2}}\)
10. \(a^{2} b^{-2} \cdot\left(2 a^{-1} b\right)^{2}\)
11. \(\left(\frac{x}{y}\right)^{-1} \cdot \frac{(y)^{-1}}{x} \cdot\left(\frac{m}{x}\right)^{-1}\)
12. \(\left(a^{-} b^{2}\right)^{-2}+\left(a^{2} b^{-1}\right)^{-2}\)
13. \(a^{2} \frac{\left(2 x^{-1}\right)^{-2}}{(4 a x)-1}\)
14. \(\left(3 x^{-2} y^{3}\right)^{-1}+\left(2 x y^{2}\right)^{-2}\)
15. \(\frac{\left(2 a^{2}\right)^{-2} \cdot 3\left(b^{2}\right)^{-1}}{\left(2 a^{-1}\right)^{-3} b^{-2}}\)
16. \(\frac{a b^{-1}-a^{-1} b}{b^{-1}-a^{-1}}\)
17. \(\frac{1-a^{2} x^{-2}}{a^{-1}-x^{-1}}\)
18.

19. \(\frac{x^{2}+x^{-2}+2}{x^{2}-x^{-2}}\)
20. \(\frac{x^{2}-x y^{-1}-2 y^{-2}}{2 x^{2}-x y^{-1}+2 y^{-2}}\)

Dhammeystir weedhahan soo socda
21. \(x+x^{-1}=x^{-1}\)
22. \(x^{2}+2+x^{-2}=x^{-2}\)
23. \(x^{2}-2+x^{-2}=x^{-2}\)
24. \(x^{2}-x^{-2}=\left(x-x^{-1}\right)\)
25. \(x^{3}+x^{-3}=\left(x+x^{-1}\right)\)
26. \(x^{2}+1 x^{-2}=\left(x+1+x^{-1}\right)\)
27. \(1-3^{-1}=3^{-1}\)
28. \(4^{2}+4^{-2}=2^{-4}\)
29. \(4^{-2}-8^{-2}=2^{-6}\)
30. \(2 \cdot 3^{-2}+3 \cdot 2^{-2}=2 \cdot 3^{-2}\)
31. \(\frac{2^{-2} \cdot 6^{4}}{3^{-2} \cdot 4^{-4}} \quad\) Fududee:
32. \(\frac{3^{2} \cdot 9^{-4}}{3^{-4}}\)
33. \(\frac{2^{3}}{15^{-5}} \cdot \frac{6^{-2}}{5^{5}}\)
34. \(\frac{4.2^{-2}-2^{-4}}{3 \cdot \cdot 2^{-1}}\)
35. \(\frac{2^{-2} \cdot 3-6^{-1}}{3^{-1} \cdot 7 \cdot 2^{-1}}\)

Jibbaaro jajabyo ah (fractional exponents)
Si aan u qeexno \(a^{-\frac{1}{\pi}}, n \in A-\{0\}_{a}=\{ \pm 1, \pm 2, \cdots\}\) \(a^{\frac{1}{\pi}} \cdot a^{\frac{1}{n}} \cdot a^{\frac{1}{\pi}} \ldots\) ilaa \(n\) isir \(=a^{\frac{1}{n}}+\frac{1}{n}+\frac{1}{n}+\ldots\) 11aa \(n\) tibxood)
\(=a^{n \cdot \frac{1}{n}}=a\)
\(\therefore\left(a^{\frac{1}{n}}\right)^{n}=\frac{a}{2}\)
\(\therefore a^{\frac{1}{n}}=\sqrt{a}\)
j) Si aan u qeexno \(a^{m / n}\),
\(a^{m / n} \cdot a^{m / n} \cdot a^{m / n} \cdots 11 a a n\) 1sir \(=a^{(m / n+m / n}+\cdots 11 a a n\) tibxood)
\(=a^{n \cdot m / n}=a^{m}\)
\(\therefore\left(a^{m / n}\right)^{n}=a^{m}\)
\(\therefore a^{m / n}=\sqrt{a^{m}}\)
Matalan \(16^{\frac{1}{2}}=\sqrt{16}=4\)
ana \(\quad \begin{aligned} & 8^{2 / 3}=\left(8^{\frac{1}{5}}\right)^{2}=(\sqrt[3]{8})^{2}=2^{2}=4 \\ & 8^{2 / 3}=\left(8^{2}\right)^{\frac{1}{3}}=\sqrt[3]{82}=\sqrt[3]{64}=4\end{aligned}\)
\[
(729)^{2 / 3}=\left(3^{6}\right)^{2 / 3}=3^{4}=81
\]
\(a+2 \sqrt{a b}+b=a+2 a^{\frac{3}{2}} b^{\frac{1}{2}}+b=\left(a^{\frac{3}{2}}+b^{\frac{3}{2}}\right)^{2}\)
Tusaalooyin
Tusaale 1:
\[
\text { Fududee } \begin{aligned}
\frac{(32)^{3 / 5} \cdot(2 / 3)^{-2}}{\sqrt{5 \frac{1}{16}}} & \left.=x 2^{5}\right)^{3 / 5} \cdot \frac{2^{-2}}{3^{-2}}+\frac{(81)^{\frac{1}{2}}}{16} \\
& =\left(2^{5}\right)^{3 / 5} \cdot \frac{2^{-2}}{3^{-2}}+\frac{\left(3^{4}\right)^{\frac{1}{2}}}{2^{4}} \\
& =2^{3} \cdot \frac{3^{2}}{2^{2}} \cdot \frac{2^{2}}{3^{2}}=2^{3^{3}}=8
\end{aligned}
\]

Tusaale 2: Haddil \(x=8, y=\frac{1}{9}\), doon qiimayaasha
(1) \(x^{-\frac{1}{3}}+y^{-\frac{1}{2}}\) (ii) \(\left(\frac{1}{3} x y\right)^{2 / 3}\)
\[
\text { (1) } \begin{aligned}
x^{-\frac{1}{3}}+y^{-\frac{1}{2}} & =(8)^{-\frac{1}{5}}+\left(\frac{1}{9}\right)^{-\frac{1}{2}} \\
& =\left(2^{3}\right)^{-\frac{1}{5}}+\left(\frac{1}{3^{2}}\right)^{-\frac{1}{2}} \\
& =2^{-1}+\frac{1}{3^{-1}} \\
& =\frac{1}{2}+3=3 \frac{1}{2}
\end{aligned}
\]
(2) \(\left(\frac{3}{3} \times y\right)^{2 / 3}=\left(5 \cdot 8 \cdot \frac{1}{9}\right)^{2 / 3}=\left(5 \cdot 2^{3} \cdot \frac{1}{2}\right)^{2 / 3}\)
\(=\left(\frac{2^{3}}{3}\right)^{2 / 3}\)
\(=3^{\frac{2^{2}}{2}}=\frac{4}{9}\)
Tusaale 3: Fududee:
\(\frac{x^{2 / 3} y^{2 / 3}+x^{2 / 3} y}{x^{4 / 3} y^{2 /}+x y^{2 / 3}}\)
\(\frac{x^{2 / 3} y^{2 / 3}+x^{3 /} y}{x^{4 / 3} y^{3 /}+x y^{2 / 3}}=\frac{x^{2 /} y^{2 / 3}\left(x^{3 / 3}+y^{\frac{1}{3}}\right)}{x y^{\frac{3}{3}}\left(x^{3}+y^{2 /}\right)}=\frac{y^{2 / 3}-3}{x^{2-3}}=\frac{y^{\frac{1}{3}}}{x^{2 / 3}}\)

\section*{LAYLI}

Doon qiimaha
1. \(2^{\frac{1}{2}} \cdot 2^{\frac{1}{4}}\)
12. \(8^{-2 / 3}\)
2. \(2^{\frac{1}{3}} \cdot 2^{-\frac{1}{5}}\)
13. \(26^{3 / 4}\)
3. \(3^{\frac{1}{2}}+3^{-\frac{1}{2}}\)
14. \(3^{\frac{4}{2}} \cdot 27^{\frac{1}{2}}\)
4. \(3^{-\frac{1}{2}} \cdot 3\)
15. \(2^{-\frac{1}{2}} \cdot 8^{\frac{1}{2}}\)
5. \(8+8^{\frac{1}{5}}\)
16. \(\left(x^{2}\right)^{\frac{1}{2}}\)
6. \(3^{-3 / 2}+3^{\frac{1}{2}}\)
17. \(\left(4 x^{2}\right)^{-\frac{1}{8}}\)
7. \(2^{\frac{1}{2}} \cdot 3^{-\frac{1}{2}}+2^{-\frac{1}{2}} 3^{\frac{1}{2}}\)
18. \(2\left(x^{3}\right)^{-\frac{1}{3}}\)
8. \(4^{\frac{1}{2}}\)
9. \(27^{\frac{1}{3}}\)
10. \(8^{-1 / 5}\)
19. \(\left(\frac{x}{4}\right)^{2-3}\)
20. \(3^{\frac{1}{2}} \cdot\left(\frac{1}{48}\right)^{-1 / 4} \cdot(108)^{-1 / 4}\)
11. \(9^{-\frac{1}{2}}\)
21. \(36^{\frac{1}{7}} \cdot \stackrel{3}{V}_{2}^{2}+81^{1 / 6}\)
22. \(8^{2 / 3} \cdot\left(\frac{y}{2}\right)^{-2} \cdot(64)^{-5 / 6}\)
23. Haddif \(x=16, y=9\), doon qiimayaasha.
(i) \(x^{\frac{1}{2}} y^{-\frac{1}{2}}\)
(ii) \(x^{-\frac{1}{2}}+y^{-\frac{1}{2}}\)
(1ii) \((x+y)^{-\frac{1}{2}}\)
24. Haddii \(x=4, y=27\), doon qiimayaasha
(i) \(\left(x^{2} y^{2 / 3}\right)^{1 / 4}\)
(ii) \((2 x y)^{-\frac{1}{3}}\)
(iii) \(\left.\frac{(12 x}{y}\right)^{3}\)
(iv) \(\frac{\frac{12 x}{y}}{\frac{2 y^{3}+x^{-1}}{2}}\)

TUSAALE 1:Doon qiimaha \(x\) haddi1
\[
2^{x+3}+2^{x+2}+2^{x+1}=\frac{7}{8}
\]

FURFURIS: \(\quad 2^{x+3}+2^{x+2}+2^{x+1}=\frac{7}{8}\)
\[
\begin{aligned}
& \therefore 2^{x+1}\left(2^{2}+2^{1}+1\right)=\frac{7}{8} \\
& \therefore 2^{x+1}(4+2+1)=\frac{7}{8} \\
& \therefore 2^{x+1}(7)=\frac{7}{8} \\
& \therefore 2^{x+1}=\frac{1}{8}=-\frac{1}{2^{3}}=2^{3}
\end{aligned}
\]
: \(x+1=-3\)
Markaa \(x=-4\).
TUSAALE 2: DOon qlimaha \(x\) haddil \(4^{x}-3.2^{x}+2=0\)
Furfuris: \(4^{x}-3 \cdot 2^{x}+2=0\)
!. \(2^{2 x}-2.2^{x}+2=0\)
\(\therefore\left(2^{x}\right)^{2}-3 \cdot 2^{x}+2=0\)
Ka dhig \(y=2^{x}\)
\(\therefore y^{2}-3 y+2=0\)
\(\therefore(y-1)(y-2)=0\)
\(\therefore y=1\) ama \(y=2\)
\(\therefore 2^{x}=1\) ama \(2^{x}=2\)
\(\therefore 2^{x}=2^{0}\) ama \(2^{x}=2^{1}\)
Markaa \(x=0\) ama \(x=1\)

\section*{LAYLI Doon qiimaha \(x\)}
1. \(2^{x}=8\)
2. \(3^{2 x}=3^{-2}\)
3. \(\left(3^{x}-3\right)\left(3^{x}-1\right)=0\)
4. \(\left(5^{x}-\frac{1}{25}\right)\left(5^{x}-25\right)=0\)
5. \(3^{2 x}-4 \cdot 3^{x}+3=0\)
6. \(2^{2 x}-5.2^{x}+4=0\)
7. \(4^{x}-9 \cdot 2^{x}+8=0\)
8. \(9^{x-10} \cdot 3^{x}+9=0\)
9. \(\left(\frac{2}{2}\right)^{x-1}=1\)
10. \(3 \cdot 2^{x}=24\)
11. \(\frac{2^{x 2}}{2^{2 x}}=\frac{8}{1}\)

\section*{LOGARDAMYADA}

Isle'egta \(2^{3}=8\) macneheedu waxa weeye "3 waa jibbaark saaran (raised) salka 21 ay \(u\) dhalato tirada \(8^{\prime \prime}\)

Logardam waa jibbaar, tusaalahan sarena, 3 waa lagardamka 8 marka salku yahay 2, waxana 100 qoraa:
\[
\log _{2} 8=3
\]

Labada isle'eg \(2^{3}=8\) iyo \(\log _{2} 8=3\) wa ay midaalsan yihiin (identical).

Guud ahaanna isle'egta \(y=a^{x}\) waxa ay la midaalsan tahay isle'egta \(\log _{a} y=x ;\) macnee
\(y=a^{x}\) haddis iyo haddif oo keliya oo ay \(\log _{a} y=x\)
u filrso iniisle'egta danbe, \(x\) ay tahay logardamka, isle'egta horena \(x\) ay tahay jibbaarka saaran \(a\).

QEEX: Logardamka tiro ee sal ogaali waa jibbaarka ku kacsan salka si ay tiradu \(u\) dhalato.

Labada isle'eg ee aynu tixgeliney midba ta kale ayaa 100 beddeli karaa

Tusaale 1: \(\log _{3} x=\frac{5}{2}\), doon \(x\)
Furfuris: \(\log _{3} x=\frac{5}{2}\) waxa ay \(u\) dhigantaa \(3^{5 / 2}=x\)
\[
\begin{aligned}
& 3^{2} \cdot 3^{\frac{3}{2}}=x \\
& 9 \sqrt{3}=x
\end{aligned}
\]

Tusaale 2: Haddi1 \(\log _{x} 27=\frac{3}{2}\), doon \(x\),
Furfuris: \(\log _{x} 27=\frac{3}{2}\) waxa ay u dhigantaa
\[
\begin{aligned}
& x^{3 / 2}=27 \\
& x^{3 / 2}=3^{3} \\
& \left(x^{3 / 2}\right) 2 / 3=\left(3^{3}\right)^{2 / 3} \\
& x=3^{2}=9
\end{aligned}
\]

Tusaale 3: Qiimee \(\log _{4} 81\)
Furfuris.
Ka dhig \(\log _{3} 81=x\), markaa
\[
\log _{13} 81=x \text { waxa ay } u \text { dhigantaa }(15)^{x}=81
\]
\[
\left(3^{-1}\right)^{x}=3^{4}
\]
\[
3^{-x}=3^{4}
\]
\[
\therefore \quad-x=4, x=-4
\]

\section*{LAYLI}

1:U qor sansaan logardam
(1) \(2^{3}=8\) (iii) \(3^{2}=\frac{1}{9} \quad\) (v) \(b=c^{x}\)
(ii) \(2=4^{\frac{1}{2}}\) (iv) \(5^{a}=x\)
2. U qor sansaan jibbaar
(i) \(\log _{2} 16=4(1 v) \quad \log _{x} 1=0\)
(11) \(\log _{3} \frac{1}{9}=-2\) (v) \(\log _{16} 1 / 4=-1_{5}\)
(i11) \(\log _{25^{5}}=\frac{3}{5} \quad\) (vi) \(\cdot \log _{q} r=n\)

\section*{Doon gifmaha \(x\), haddi i:}
3. \(\log _{2} x=3\) 9. \(\log _{3} x=-2\) 15. \(\log _{x} \frac{1}{16}=-4\)
4. \(\log _{3} x=4\)
10. \(\log _{1} x^{2}=-6\) 16. \(\log _{x} \sqrt{2}=1 / 4\)
5. \(\log _{\sqrt{2}} x=6\)
11. \(\log _{16} \frac{\sqrt{2}}{} x^{3}=-3 / 4\) 17. \(\log _{x^{2}}=3 / 2=-3 / 4\)
6. \(\log _{\sqrt{3}} x^{2}=8\)
12. \(\log 1^{x}=-2 / 3\)
18) \(\log _{x} 1 / 16=-2 / 3\)
7. \(\log \frac{x^{3}}{\sqrt{2}}=6\)
13. \(\log _{x} \overline{8}^{\frac{1}{7}}=3\)
19) \(\log _{x} 1 / 27=-3 / 5\)
8. \(\log _{12} x=4\)
14. \(\left.\log _{x} 27=3 / 4-\cdots 20\right) \log _{x} 1=0\)
21. \(\log _{2} 8\)
22. \(\log _{5} 125\)
23. \(\log _{2} 1 / 4\)
24. \(\log _{\frac{1}{2}} 4\)
25. \(\log _{3} 1 / 9\)
26. \(\log _{\sqrt{3}} 9\)
27. \(\log \sqrt{21}\)
28. \(\log _{9} \frac{1}{27}\)
29. \(\log _{\frac{1}{3}} 81\)
30. \(\log _{\frac{1}{9}} 27\)

Fiiro gaar ah(F.G』): Maadaam \(2=2^{1}, \log _{2} 2=1\)
Sideo kale \(\log _{3} 3=1, \log _{10} 10=1\)
guud ahaanna maadaam \(a=a^{1}\),
\(\log _{a} a=1, a \in M, a \neq 0\).

Weliba madaam \(1=2^{\circ}, \log _{2} 1=0\)
SIdoo kale \(\log 3^{1=0} \log _{10^{1}}=0\) guud ahaanna
Madaam \(1=a^{0}, a \neq 0, \log _{a} 1=0\)
Qeexda logardamku waxa ay inna garan siineysaa in
\[
\log _{3} 27=3, \log _{3} 9=2
\]
\(\therefore \log _{3} 27+\log _{3} 9=3+2=5=\log _{3} 3^{5}=\ldots . \quad . \quad\).
\[
\log _{3}(27.9)
\]
\[
\text { Sidoo kale } \log _{3} 27-\log _{3} 9=3-2=1=\log _{3} 3=\log _{3}\left(\frac{27}{9}\right)
\]
\[
\text { Weliba } \log _{2} 2^{3}=3=3.1=3 \log _{2} 2
\]

Kuwan sare waa tusaalooyin gaarahaaneed oo ka yimi xeerar guud. Xeerarkaas guud waa kuwa ku xusan aragtilinkan. ARAGTIIN: HaddII \(x, y \in M^{+}\), a
\[
m, n \in A=\{0, \pm 1, \pm 2, \cdots\}, n \neq 0
\]
markaa
1. \(\log _{a} x+\log _{a} y=\log _{a} x y\).
2. \(\log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}\).
3. \(\log _{a}\left(x^{n}\right)=n \log _{a} x\).
4. \(\log _{a} \sqrt[n]{x^{m}}=\frac{m}{n} \log _{a} x\).

\section*{Caddaymaha Xeerarka}
1. \(\log _{a} x y=\log _{a} x+\log _{a} y\)

Caddayn
\(K a\) dhig \(\log _{a} x=m, \log _{a} y=n\)
Markaa \(x=a^{m}, y=a^{n}\)
\(x y=a^{m \cdot} a^{n}=a^{m+n}\)
\(\therefore \log _{a} x y=m+n=\log _{a} x+\log _{a} y\)
2. \(\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y\)

\section*{Caddeyn}

Ka dhig \(\log _{a} x=m, \log _{a} y=n\)
Markaa \(x=a^{m}, y=a^{n}\)
\[
\frac{x}{y}=\frac{a^{m}}{a^{n}}=a^{m-n}
\]
2. \(\log _{a} \frac{x}{y}=m-n=\log _{a} x-\log _{a} y\)
3. \(\log _{a} x^{n}=n=\log _{a} x\)

\section*{Caddeyn:}

Ka dhig \(\log _{a} x=m\)
Markaa \(x=a^{m}\)
\[
\begin{gathered}
x^{n}=\left(a^{m}\right)^{n}=a^{m n} \\
\therefore \log _{a} x^{n}=m n=n \log _{a} x
\end{gathered}
\]

In kasta oo ay lagama marmaan tahay in xeerarkan 100 xusuusnaado sansaanka ay u qoran yihiin, waxa iyana lagama maarmaan ah in 100 xusuusnaado looguna dhaqmo sansaankan hoos ku yaalana;
1. \(\log _{a} x+\log _{a} y=\log _{a} x y\)
2. \(\log _{a} x-\log _{a} y=\log _{a} \frac{x}{y}\)
3. \(n \log _{a} x=\log _{a} x^{n}\)

Markaa tibaaxaha \(\log _{a} 2+\log _{a} 12, \log _{a} 3+\log _{a} 8\),
Iyo \(\log _{a} 4+\log _{a} 6\) waa 1 sku wada qiime, mid kastaabana wuxuu le'eg yahay \(\log _{a} 24 . \quad\) Sidoo kale tibaaxaha \(\log _{a} 12-\log _{a} 2\), \(\log _{a} 18-\log _{a} 3\), iyo \(\log _{a} 24-\log _{a} 4\) ayana waa.isku wada qiime, mid kastaabana wuxuu \(1 e^{\prime} \mathrm{eg}\) yahay \(\log _{a} 6\).
Tusaale 1: Ka dhig \(\log \frac{18^{\frac{1}{2}} \cdot 12^{\frac{1}{2}}}{6}\) tibaax ay ku jiraan
\(\log 2\) iyo \(\log 3\).
Furfuris: \(\log \frac{18^{\frac{1}{2}} \cdot 12^{\frac{1}{2}}}{}=\log \frac{\left(3^{2} \cdot 2\right)^{\frac{1}{2}} \cdot\left(2^{2} \cdot 3^{\frac{1}{2}}\right)}{2 \cdot 3}\)
\(=\log \frac{3 \cdot 2 \frac{1}{2} \cdot 2 \cdot 3^{\frac{1}{2}}}{2 \cdot 3}\)
\(=\log \left(2^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}\right)\)
\(=\log 2^{\frac{1}{2}}+\log 3^{\frac{1}{2}}\)
\(=\frac{1}{2} \log 2+\frac{4}{4} \log 3\)
- 62 -

Tusaale 2: Ka dhig \(\log _{\frac{a}{b}}^{c^{2 / 3}}\) tibaax leh \(\log _{n} a, \log b, \log c\) Furfuris: \(\log \frac{a \sqrt{D}}{c^{2 / 3}}=\log (a \sqrt{D})-\log c^{2 / 3}\)
\[
=\log _{a}+\log \sqrt{b}-\quad \log c^{2 / 3}
\]
\(=\log a+\sqrt{2} \log b-2 / 3 \log c\)
Tusaale 3: Haddi1 \(\log _{10^{2}}=0.30, \log _{10^{3}}=0.48\), xisaabi qiimayaasha:
(1) \(\log _{10} 6\) (i1) \(\log _{10} 432\) (ii1) \(\log _{10} 0.375\) (iv) \(\log _{10} 5\)

Furfurls: (1) \(\log _{10} 6=\log _{10}(2.3)=\log _{10} 2+\log _{10} 3\)
\[
=0.30+0.48=0.78
\]
(ii) \(\log _{10} 432=\log _{10}\left(2^{4} \cdot 3^{3}\right)\)
\(=\log _{10} 2^{4}+\log _{10^{3}} 3^{3}\)
\(=4 \log _{10} 2+3 \log _{10} 3\)
\(=1.2+1.44\)
- 2.64
(111) \(\log _{10} 0.375=\log _{10} \frac{375}{1000}\)
- \(\log _{10} 3 / 8\)
\(=\log _{10^{3}}-\log _{10} 8\)
\(=\log _{10^{3}}-\log _{10^{2}}\)
\(=\log _{10^{3}}-{ }^{3} \log _{10} 2\)
\(=0.48-0.90\)
\[
=-0.42=(9.58-10)
\]
1. U tibaax mid kasta Log 2 yo \(\log 3\)
(i) \(\log 12\) (1i) \(\log 18\) (1ii) \(\log 1 / 6\)
IIv) \(\log \sqrt{2 / 3}\)
(v) \(\log \left(2^{2} \cdot 3^{\frac{1}{2}}\right)\)
(vi) \(\log \left(3^{n} \cdot 2^{-n}\right)\)
2. Haddi1 \(\log _{10} 2=0.3010, \log _{10} 3=0.4771, \times 1\) saabi
(i) \(\log _{10} 5\)
(11) \(\log _{10} 6\)
(111) \(\log _{10}\)
0.1875
((jawabtaada qurubku ha noqdo togane)
3. Haddi1 \(\log _{2} 3=1.585\), doon (tuse uma baahnid) qiimayaasha
\[
\begin{aligned}
& \text { (i) } \log _{2} 6 \text { (ii) } \log _{2} 2 / 9 \\
& \text { (iii) } \log _{2} 72 \\
& \text { (Qurubku ha noqdo togane) }
\end{aligned}
\]
4. U gor mid kasta sidii logardam hal tiro
\begin{tabular}{ll}
(i) \(\log 2+\log 3\) & (vi) \(\log a+\log b\) \\
(i1) \(4 \log 2\) & (vii) \(\log (a b)-3 / 2 \log b\) \\
(iii) \(3 / 2 \log 3\) & (vii1) \(1 / 2(\log x-\log y)\) \\
(iv) \(-2 \log 3\) & (ix) \(1 / 2 \log (a b)-1 / 2 \log a\) \\
(v) \(3 \log 3-2 \log 2\) & (x) \(\log x+1 / 2 \log y\)
\end{tabular}
5. Haddii 10 yahay salka Logardamka, u qor mid kasta sidii Log hal tiro
(1) \(1+\log a+\log b\)

Lelsandif
-
(ii) \(\log (a b)-2 \log b-1 \quad x-6 a+b-a+\)
(iii) \(1-2 \log a\)
(1v) \(2-(\log a+2 \log b)\)
(v) \(2 \log (a b)-3 \log a+2\)
6. U qor mid kasta sidii xaddiyo Logardam wadartood ama faraqood.

Tusaale:
\[
\log _{b} \frac{(m n)^{3 / 2}}{r}
\]

Furfuris: \(\log _{b} \frac{(m n)^{\frac{1}{2}}}{r}=1 / 2 \log _{b} \frac{m n}{r}\)
\[
=\frac{1}{2}\left[\log _{b} m+\log _{b} n-\log _{b} r\right]
\]
(1) \(\log _{b} x y\)
(iv) \(\log _{b} x^{5}\)
(11) \(\log _{b} m n L\)
(v) \(\log _{b} x^{\frac{1}{2}}\)
(1iii) \(\log _{b} \frac{x}{y}\)
(vi) \(\log _{b} x^{3}\)

(IX) \(\log _{\mathrm{b}} \frac{\left(\mathrm{mn}^{2}\right)^{\frac{1}{2}}}{\mathrm{~L}}\)
(x) \(\quad \log _{b}(x y)^{1 / 4}\)
7. \(U\) gor sidil Logardam keliya oo weheliyinilisu yahay 1.

Tusaale : \(\quad \frac{1}{2}\left(\log _{b} x-\log _{b} y\right)\)
Furfuris: \(\frac{1}{2}\left(\log _{b} x-\log _{b} y\right)=\frac{1}{2}\left(\log _{b} \frac{x}{y}\right)=\log _{b}\left(\frac{x}{y}\right)^{\frac{1}{2}}\)
(i) \(\log _{b} x+\log _{b} y\)
(ii) \(2 \log _{b} x+3 \log _{b} y\)
(iii) \(3 \log _{b} x+\log _{b} y-2 \log _{b} n\)
(iv) \(\log _{10}(x-2)+\log _{10} x-2 \log _{10^{n}}\)
(v) \(1 /\left(\log _{10} x-3 \log _{10} y-5 \log _{10} n\right)\)

LAYLI
Tusaale: Haddii \(3.2^{1-x}=4.5^{x}\), doon qiimaha \(x\)
Furfuris: Haddii \(3.2^{1-x}=4.5^{x}\), markaa
\(\log 3.2^{1-x}=\log 4.5^{x}\)
\(\log 3+\log 2^{1-x}=\log 2^{2}+\log 5^{x}\)
\(\log 3+(1-x) \log 2=2 \log 2+x \log 5\)
\(\therefore \quad \log 3+\log 2-\times \log 2=2 \log 2+\times \log 5\)
\(\log 3-\log 2=x(\log 2+\log 5)\)
\(\begin{array}{ll}\log 3 / 2 & =\times \log (2.5) \\ \log 3 / 2 & =\times \log 10 \\ \frac{\log 3 / 2}{\log 10} & =\times\end{array}\)
Haddil uu salka Logardamku yahay 10 .
markaa \(x=\frac{\log _{10} 3-\log 10^{2}}{\log _{1} 0^{0}}\)
\(x=\log _{10} 3-\log _{10} 2\)
\(=0.4771-0.3010\)

Ogow: \(\log \frac{a}{b} \times \frac{\log a}{\log b}\)
Furfur isle'egyadan:
1. \(\log _{x} 2+\log _{x} 4+\log _{x} 8=12\)
2. \(\log _{3} x+\log _{3} x^{2}+\log _{3} x^{3}=3 / 2\)
3. \(\log _{x} 48+\log _{x} 24-2 \log _{x} 6=5 / 2\)
4. \(\log _{3}(x y)=6, \quad \log _{3}\left(\frac{x}{y}\right)=2\)
5. \(\log _{2}\left(x^{2} y^{3}\right)=-1, \log _{2}\left(\frac{x}{y^{2}}\right)=3\)
6. \(\log _{2}(2 x-5)-\log _{2}(x+3)=0\)
7. \(\log _{2}(5 x+1)-\log _{2}(3 x-5)=2\)
x kasta oo maangal ah waxa la xirifra hal tiro \(b^{x}\) (\(b \& M, b>0)\). Sidaa darteed isle'egta \(y=b^{x}(b>0) \ldots(1)\) waxa ay qeexdaa fansaar. Maadaam \(1^{X}=1 \forall \times \in M\), isleegta(1) waxa ay qeexdaa fanaaar madoorsoome ah, haddii \(b=1\). Haddil b \(\neq 1\), isle'egta (1) waxa ay qeexdaa fansaar jibbaar (exponential function). fansaarada fibbaarka waxa si dhab ah- 100 dersi karaa haddil la tixgeliyo garaafyadooda. Waxa aynu halkan marka hore ku dersi doonaa garaafka \(y=b^{x},(b>1)\).

Matalan, garaafka \(y=2^{x}\) waxa lagu heli karaa iyac \(a-00\) marka hore qifmayaal kala gedisan la silyo \(x\) dabeednaila \(\times 1\) saabiyo (compute) qiimayaasha ku aaddan ee y . Jadeeyooyinki waxa ay ka muqudaan tusaha 1 yo garaafka hoos ku yaal.
\(\left\{(x, y)\left\{y=2^{x}\right\}\right.\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline\(x\) & -3 & -2 & -1 & 0 & 1 & 2 & 3 & \\
\hline\(y\) & \(\frac{1}{8}\) & \(\frac{1}{4}\) & \(\frac{1}{2}\) & 1 & 2 & 4 & 8 & \\
\hline
\end{tabular}

Marka labaad aan derisno garaafka \(\left\{(x, y) \mid y=b^{x}, 0<b<1\right\}\) matalan, \(\left\{(x, y) \mid y=\left(l_{2}\right)^{x}\right\}\)
\(\left\{(x, y) \mid y=(1 / 2)^{x}\right\}\)

Shax.
2
gera=

Garaafka fansaarka ku qeexan \(y=\left(\gamma_{\xi}\right)^{x}\) midig buu hoos \(u\) aadaa. Garafka fansaarka \(y=2^{x}\)-na bidix buu hoos \(u\) aadaa. Sidaas darteed fansaarka \(\left\{(x, y) \mid y=b^{x}, b>1\right\}\) waa fansaar kordhaya, kan kale \(\left\{(x, y) \mid y=b^{x}, 0<b<1\right\}\) isna waa fansaar dhinmaya. Labada Jeerba, horaadku waa dhammaan ururka tirooyinka maangalka ah \(M\); macnee \(H=\{x \mid \times \boldsymbol{\in} M\}\), danbeedkuna waa \(\{y \mid y \in M, y>0\}\).

LAYLI Doon xubinta labaad ee lamaanayaashan horsan ee mid kasta.
1. \(y=3^{x} ;(0),,(1),,(2\),\() .\)
2. \(y=-2^{x} ;(-2),,(0),,(2\),\() .\)
3. \(y=\left(\frac{1}{5}\right)^{x} ;(-3),,(0),,(3\),\() .\)
4. \(y=10^{x} ;(0),,(1),,(2\),\() .\)
5. \(y=(1 / 4)^{x},(-1),,(-2),,(2\),\() .\)

Sawir garaafyadan
6. \(\left\{(x, y) \mid y=4^{x}\right\}\)
7. \(\left\{(x, y) \mid y=10^{x}\right\}\)
8. \(\left\{(x, y) \mid y^{\prime}=3^{-x}\right\}\)
9. \(\left\{(x, y) \mid y=(1 / 4)^{x}\right\}\)
10. \(\left\{(x, y) \mid y=(3)^{-x}\right\}\)

\section*{Fansaarada Logardamka}

Fansaarka jibbaarka \(\left\{(x, y) \mid y=b^{x},(b>0, b x 1)\right\}\)
ee aynu garaafkiisa soo aragnay isweydaarkiisu waa \(\left\{(x, y) x=b^{y}\right.\), \(b>0, b \neq 0, x>0\} \ldots\) (2)
R.G. Shardiga \(x>0\) waxa 100 sameeyey si \(y\) ay \(u\) noqoto maangal, maxaa yeeley majirto tiro maangal ah \(y\) oo by aaney togneyni.

Garaafyada fansaarada ku qeexan 1sle'eg (2) aan washero innaga oo tixgelineyna tusaalaha \(\left\{(x, y) \mid x=10^{y}(x>0)\right\}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(x\) & 0.01 & 0.1 & 1 & 10 & 100 & 1000 \\
\hline\(y\) & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline
\end{tabular}

Isle'egta (2) wixa 100 qori karaa sidan:
\(\left\{(x, y) \mid y=\log _{b} x(x>0, b>0, b \neq 1)\right\} \ldots\) (3)
Fansaarada ku qeexan isle'egta (3) ayaa la yiraahaa fansaarada logardamka.

Fansaarka logardamku wuxuu leeyahay astaamahan soo socda:
1. Horaadku waa ururka tirooyinka maangalka ah ee togan, \(\{x \mid x \in M, x>0\}\), danbeedkuna waa dhammaan ururka tirooyinka maangalka ah M.
2. Haddii b\(\rangle 1\), markaa \(\log _{\mathrm{b}} \mathrm{x}<0\), marka \(\mathrm{x}<1, \log _{\mathrm{b}} \mathrm{x}=0\), marka \(x=1, \log _{b} x>0\) marka \(x>1\).
3. Haddif \(0<\mathrm{b}<1\), markaa \(\log _{\mathrm{b}} \mathrm{x}>0\) marka \(\mathrm{x}<1\), \(\log _{b} x\) ck 20 marka \(x=11, \log _{b} x<0\) macka \(0<b \leqslant 1\). Garaafka fansaarka logardam marka \(0<b<1\) waa sidan:

Isle'egyada (2) Iyo (3) waa isle'egyo kala gedisan oo fansaar keliya wada sugaya sida ay isle'egyada \(x=y-1\) iyo \(y=x+1\) fansaar kellya u wada sugayaan. Sidaa awgeed weedhaha jibbaabaran iyo kuwa ku qoran sansaan logardam waa La isu bedeli karaa sidë aynu hore u soo sheegnay.
- 71 -

\section*{LOGARDAMYADA CAADIGA AH}

Qilmayaasha \(\log _{10} x\) ayaa la yiraahaa logardamyada caaliga ah, macnee \(\log _{10} x\) waa jibbaarka la saari doono 10 si 100 helo \(x\). Weydiinta aynu qaybtan kaga Jawaabeynaa waa, Waa maxay \(\log _{10} \mathrm{x}\), haddif \(\times \boldsymbol{\in} \mathrm{M}^{+}\)?
Marka ugu horreysa haddii \(x\) ay tahay Jibbaar abyoone ah oo saaran \(10, \log _{10} \times\) waxa 100 sugi karaa sidan:
\[
\begin{aligned}
& \log _{10} 10=\log _{10} 10^{1}=1 \\
& \log _{10} 100= \log _{10} 10^{2}=2 \\
& \log _{10} 1000= \log _{10} 10^{3}=3 \\
& \text { Sidoo kale } \log _{10} 1=\log _{10^{10}} 10^{\circ}=0 \\
& \log _{10} 0.1=\log _{10} 10^{-1}=-1 \\
& \log _{10} 0.01=\log _{10^{-1}} 10^{-2}=-2 \\
& \log _{10} 0.001=\log _{10^{2}} 10^{-3}=-3
\end{aligned}
\]
\[
\log _{10} \times \text { waxa laga heli karaa tusaha logardamka }
\]
haddif \(1 \leqslant x \leqslant 10\). bal fiirso qaybtan ka mid ah tusaha
logardamka.
\begin{tabular}{ccccccccccc}
\hline x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 3.8 & .5798 & .5809 & .5821 & .5832 & .5843 & .5855 & .5866 & .5877 & .5888 & .5899 \\
3.9 & .5911 & .5922 & .5933 & .5944 & .5955 & .5966 & .5977 & .5988 & .5999 & .6010 \\
4.0 & .6021 & .6031 & .6042 & .6053 & .6064 & .6075 & .6085 & .6096 & .6107 & .6117 \\
4.1 & .6128 & .6138 & .6149 & .6160 & .6170 & .6180 & .6191 & .6201 & .6212 & .6222 \\
4.2 & .6232 & .6243 & .6253 & .6263 & .6274 & .6284 & .6294 & .6304 & .6314 & .6325 \\
4.3 & .6335 & .6345 & .6355 & .6365 & .6375 & .6385 & .6395 & .6405 & .6415 & .6425 \\
4.4 & .6435 & .6444 & .6454 & .6464 & .6474 & .6484 & .6493 & .6503 & .6513 & .6522 \\
4.5 & .6532 & .6542 & .6551 & .6561 & .6571 & .6580 & .6590 & .6599 & .6609 & .6618 \\
4.6 & .6628 & .6637 & .6646 & .6656 & .6665 & .6675 & .6684 & .6693 & .6702 & .6712
\end{tabular}

Tiro kasta oo ku taal joogutaxa madaxa ay kaga taal \(x\) waxa ay \(u\) taagan tahay labada rug-cudoon ee ugu horreya \(x\); tiro kasta oo ku taal dhinac \(u\) taxa ka horjeeda \(x-n a\) waxa ay \(u\) taagan
tahay ru-cudoonka seddexaad ee \(x\). Godadka (digits) ku yaal isgoyska dhinac-u-tax iyo joogutax ayaa sameeya logardam \(x\). Matalan, si 100 helo \(\log _{10} 4.25\) waxa la eegi isgoyska dhinac \(u\) taxa ka horjeeda 4.2 ee ku hoos yaal \(\times\) iyo joog u taxa ay madaxa kaga taal tirada 5 , kolkaa waxa aynu arki in
\(\log _{10} 4.25=0.6284\)
\(\begin{aligned} \text { Sidoo kale } \log _{10} 4.02 & =0.6042 \\ \log _{10} 4.49 & =0.6522\end{aligned}\)
Matalan waxa aynu rabnaa in aan helo \(\log _{10} x\) iyada \(000<x<1\)
ama \(\times>10\). Marka ugu horreysa tirada aan ku qoro qormo saynis; macnee waxaan tirada u qoreynaa sansaan ah \(\mathrm{m} .10^{\mathrm{n}} \circ 01<\mathrm{m}<10\), \(\mathrm{n} \boldsymbol{\in} A=\{0, \pm 1, \pm 2, \ldots\}\)
Tusaale: \(\log _{10^{4} 2.5}=\log _{10} 4.25 \times 10^{1}=\log _{10^{4}} 4.25+\log _{10} 10^{1}\)
\(=0.6284+1=1.6284\)
\[
\log _{10} 425=\log _{10}\left(4.25 \times 10^{2}\right)=\log _{10} 4.25+\log _{10} 10^{2}
\]

U filrso in qaybta jajab toban laha ee logardamku ay had iyo jeer tahay 0.6284 qaybta abyoonaha ahina ay tahay Jibbaarka saaran 10 marka tirada lagu qoro qormo saynis.
\(\log _{10} x\) wuxuu ka koobmaa laba qaybood, qayb abyoone ah (oo la yiraaho abyan) iyo qayb ah jajab tobanle 00 aan tabaneyn lana Yiraaho Qurub. Kolkaa tusaha qiimayaasha \(\log _{10} x ; 1<x<10\) waa tusaha qurubka \(\log _{10} \times, \forall x>0\).

Si aan \(u\) helo \(\log _{10} 43700\), marka hore waxa aynu qori \(\log _{10} 43700\) \(=\log _{10}\left(4.37 \times 10^{4}\right)\), dabeedna waxa aynu ka eegnaa tusaha \(\log _{10} 4.37\) \(001 \mathrm{e}^{\mathrm{t}} \mathrm{eg} 0.6405\).
\(\therefore \log _{10} 43700=4.6405\)
Imikana waxa aad tixgelisaa tusaale sansaankan leh
\(\log _{10} x, 0<x<1\) sida \(\log _{10} 0.00402\)
Marka hore aan tirada ku qoro qormo saynis
\(: \log _{10} 0.00402=\log _{10}\left(4.02 \times 10^{-3}\right)\), dabeedna aan tusaha ka baadhno \(\log _{10} 4.02\), waxa aynu hel1 in \(\log _{10} 4.02=0.6042\). Haddif aynu isugeyno 0.6042 iyo abyanaha -3 waxa aynu heli in \(\log _{10} 0.00402=-2.3958\) oo aanu qurubka logardamku ahayn 0.6042 ,
sidil uu ahaan firey marka \(x>1\), seddexda rug-cudoon ee ugu horreeya \(x\)-na ay yihiin 402. Si haddaba aan taas uga badhbaadno waxa caado ah in logardamka 100 qoro sansaan uu qurubku togan yahay. Matalan tusaalahan waxa aynu qorl
\(\log _{10} 0.00402=0.6042-3\)
\(=0.6042+(7-10)\)
\(=7.6042-10\) (oo qurubku togan yahay)
Waxa kale oo la qori karaa
\(\log _{10} 0.00402=6.6042-9\)

\section*{Laakifn 7.6042 - 10 (00 laga gooyey dhufsane 10 ayaa caado ah)}

Waxa suurgal ah in la kala rogo habka aynu halkan ku sharraxney \(\infty\) aynu raadino \(x\) iyadoo aynu heysano \(\log _{10} x\). Markaas \(x\) waxa la yiraahaa Lidlogardam (Lidlog 10) \(\mathrm{ka}_{\log }^{10} \mathrm{x}\). Matalan, ildiog 1.6395 waxa lagu heli karaa iyada oo laga baadho qurubka 0.6395 tusaha \(\log _{10} 00\) dabeedna la arko in \(11 \mathrm{~d} \log _{10}\) uu yahay 4.36. Kolkaa \({ }^{11} \operatorname{dlog}_{10} 1.6395=4.35 \times 10^{2}=43.6\).

Haddii aan rabno in aan helo logardamka caadiga ah ee tiro aan ku jirin tusaha(sida \(\log 3712\)), ama aan rabno \(x\), iyada oo \(\log _{10} x\) aanu u ku jirin tusaha, waxa caado ah in aan isticmaallo habka 100 yaqaan DHEXBEEGIDDA TOOSAN. Tusaha Logardamku waa urur ka kooban lamaanayaal horsan, tiro kasta \(x\) waxa la xirlira \(\log _{10} x\), dabeedna waxa aynu haysanaa \(\left(x, \log _{10} x\right)\) oo tuse ku muujisan. Dulalaatiga oo aan inagu fileyn darteed, tusaha waxa ku yaal 3 god (digit) \(\infty 0\) ay leedahay x iyo 4 ay leedahay \(\log _{10} x\).

Habka dhexbeegidda toosan ayaalinna awood siinaya in aan tusaha ka helo logardamyada tirooyin 4 god ah.
Aan joomateri ahaan u fiirino fikradda dhexbeegidda toosan. Qayb ka mid ah garaafka \(y=\log _{10} x\) ayaa \(k u\) yaal shaxan 5. Aan u sticmaalo in xarriiqda toosan ee isku xireysa baraha \(\mathrm{B}_{1}\) iyo \(B_{2}\) ay tahay xoodka mara barahaa dhexdooda. Haddil aynu heysano garaaf weynooo \(y=\log _{10} x\), qiimaha \(\log _{10} 4.257\) waxa lagu heli karaa isticmaalidda q4inayaasha ordineytka RT ee xoodka (curve) marka \(x=4.257\). Maadaam aanu tuse-qiimayaal keligif inaga kaalmeyneyn taas, waxa aynu isticmaali doonaa qilmaha ordineytka RS ee xarrilqda toosan.

Shax. 5

Taas waxa toos looga heli karaa ururka tirooyinka ah ee ku yaal tusaha logardamka.
Tixgeli shaxan 6. \(00 \mathrm{~B}_{2} \mathrm{~B}_{3}\) iyo \(\mathrm{B}_{4} \quad \mathrm{~B}_{5}\) ay ku qotomaan \(\mathrm{B}_{1} \quad \mathrm{~B}_{3}\). \(\Delta B_{1} B_{4} B_{5} \sim \Delta B_{1} B_{2} B_{3}, \ldots\) dhinacyada isku beegani waa ay saamigalsan yihiin, kolkaa
\[
\frac{x}{x} \quad \frac{y}{y}
\]

Haddii aynu ognahay 3 ka mid ah tirooyinkaa, waa aynu sugi karnaa ta afraad. Aan u qaadano in tirooyinkeena oo id111 ay yihiin tirooyin 4 god leh, macnee waxa aynu qaadan 4.250 halki1 aynu ka qaadan lahayn 4.25 1yo 4.260 halkii aynu ka qaadan lahayn 4.26. Aan ogaano in tirada 4.257 ay ku dhacdo bar ah \(7 / 10\) masaafada ay ku dhacaan baraha 4.250 iyo 4.260 sida ay u kala horreeyaan

\section*{- 75 =}

Qiimaha \(y(0.0010)\) waa faraqa \(u\) dhexeeya logardamyada 0.6284 1yo 0.6294 . Qiimayaasha haddil aan ku beddelo isle'egta waxa aynu heli \(\quad 7 / 10=y / 0.0010=\boldsymbol{m}=\boldsymbol{y}=7 / 10\) (0.0010) haddii aan isku darno 0.6284 Iyo 0.0007 , waxa aynu heli logardam 4.257. Macnee \(\log _{10} 4.257=0.6291\). Lidlogardamka tirona waxa lagu heli karaa habkaas oo kale.

Tusaha \(\log _{10} x\) 1yo xeerarka (1) \(\log _{a} x+\log _{a} y=\log _{a} x y\)
(2) \(\log _{a} x-\log _{a} y=\log\) \(\qquad\) (3) \(\log _{a} x^{n}=n \log _{a} x-\) haddil wadajir 100 isticmalo waxa ay fududeeyaan xisaabo leh tarano qaybo, xoogag iyo xidido. Waxa kale oo ay inna awoodsilyaan furfurida isle'egyo hal doorsoome leh oo doorsoomuhu uu yahay jibbaar inta aynaan u gelin isticmaalka xeerarka sare aan sameyno 3 kawraarood oo run ah.
(1) Haddii \(M=N(M, N>0)\), markaa \(\log _{b} M=\log _{b} N\)
(2) Haddii \(\log _{b} M=\log _{b} N\), markaa \(M=N\)
(3) Haddi1 \(M=N\), markaa \(b^{m}=b^{n}\)

TUSAALE Xisaabi \(\frac{(8.21) \frac{1}{2}(2.17)^{2 / 3}}{(3.14)^{3}}\)
Furfuris: Ka dh1g \(N=\frac{(8.21)^{1 / 2}(2.17)^{2 / 3}}{(3.14)^{3}}\)
\[
\begin{aligned}
\therefore \log _{10} N & =\log _{10} \frac{(8.21)^{\frac{1}{2}}(2.17)^{2 / 3}}{(3.14)^{3}} \\
& =\log _{10}(8.21)^{\frac{1}{2}}+\log _{10}(2.17)^{2 / 3}-\log _{10}(3.14)^{3} \\
& =1 / 2 \log 8.21+2 / 3 \log _{10} 2.17-3 \log _{10} 3.14 \\
& =1 / 2(0.9143)+2 / 3(0.3365)-3(0.4969) \\
& =0.4572+0.2243-1.4907
\end{aligned}
\]
\(=-0.8092=9.1908-10\)
\(\therefore N=L 1 d \log _{10}(9.1908-10)\)
\(\therefore N \approx 0.155\)

LAYLI
I. Logardamyadan ka soo saar tusaha \(\log _{10} \times\).
1. \(\log _{10} 6.73\)
2. \(\log _{10} 891\)
3. \(\log _{10} 0.813\)
4. \(\log _{10} 0.00214\)
5. \(\log _{10}\left(2.48 \times 10^{2}\right)\)
6. \(\log _{10}\left(5.39 \times 10^{-3}\right)\)

Doon Lidlog \(_{10}\)
7. \(\mathrm{Lidlog}{ }_{10} 0.6128\)
8. Lidlog \({ }_{10} 0.5647\)
9. Lidlog \(_{10}(8.8075-10)\)
10. Lidlog \({ }_{10} 0.2504\)
11. \(\operatorname{Lid} \log _{10} 3.9258\)
12. \(\operatorname{Lidlog}_{10}(3.9722-5)\)
II. LOGARDAM KASTA : KU raadi dhexbeegidda toosan

TUSAALE : \(\log _{10} 4257\)

\[
\frac{7}{10}=\frac{y}{0.0010}
\]
\(y=0.0007\)
- 77 -
\(\therefore \log _{10} 4.257=\log _{10} 0.6284+0.0007\)
\(=0.6284+0.0007\)
\(=0.6291\)
1. \(\log _{10} 4.213\)
2. \(\log _{10} 203.4\)
3. \(\log _{10}{ }^{8.184}\)
4. \(\log _{10} 0.5123\)
5. \(\log _{10} 1522\)
6. \(\log _{10} 0.008351\)

1L3.en.
III. LIDLOGARDAMYADAN ku raadi dhexbeegidda toosan

TUSAALE : Lid \(\log _{10} 0.6446\)

Isugee qiimaha y iyo 4.410
\(\therefore \operatorname{Lidlog}_{10} 0.6446=4.410+0.002\)
\(=4.412\)
1. \(L \operatorname{Lig} \log _{10} 0.5085\)
2. Lidlog 101.0220
3. \(\operatorname{Lid} \log _{10}(8.7055-10)\)
4. \(\mathrm{Lidlog}_{10} 0.8087\)
5. Lidlog \({ }_{10} 3.0759\)
6. \(\operatorname{Lidlog}_{10}(9.8742-10)\)
IV. Xisaabi adiga oo kaalmeysanaya logardamyada

Furfuris: Ka dhig \(R^{+}=\frac{(23.4)(0.681)}{4.31}\)
Markaa \(\log _{10} R=\log _{10} 23.4+\log _{10} 0.681-\log _{10} 4.31\)
\(=(1.3692)+(9.8331-10)-(0.6160)\)
\(=0.5863\)
\(\therefore\) Lidlog \(_{10} 0.5863=3.857\)
1. \((2.32)(1.73)\)
2. 3.15 1.37
3. \((2.3)^{5}\)
4. \(\sqrt[3]{8.12}\)
5. \((0.421)^{2}(84.3)\)
\[
\sqrt{21.7}
\]
6. \((0.0128)^{4}\)
7. \(\frac{6.49 \sqrt[3]{8.21}_{8.21}^{17.9}}{1}\)
8. \(\sqrt[5]{0.0471}\)
V. Furfur isle'egta \(3^{x-2}=16\) haddii salka logardamku
yahay 10.
\[
\begin{aligned}
& \text { Furfuris: } \begin{array}{c}
3^{x-2}=16 \quad \therefore \log _{10} 3^{x-2}=\log _{10} 16 \\
\therefore x-2 \log _{10} 3=\log _{10} 16 \\
\\
\therefore-2=\frac{\log _{10} 16}{\log _{10} 3} \\
x=\frac{\log _{10} 16}{\log _{10} 3}+2
\end{array} \\
& \therefore x=\frac{1.2041}{0.4771}+2=2.2524
\end{aligned}
\]
1. \(3^{x+1}=8\)
2. \(4^{x^{2}}=15\)
3. \(2^{x-1}=9\)
4. \(8^{x^{2}}=21\)
5. \(3^{x+2}=10\)

\section*{BEDDELAADDA SALKA LOGARDAMYADA}

Matalan waxa aynu heysanaa tuse aan ka heli karo \(\log _{a} x\). Waxa aan rabnaa in aan helo \(\log _{b} x\) inagacoo aan isticmaalin tuse.

Ka dhig \(\log _{b} x=m\)
\[
\begin{aligned}
x= & b^{m} \\
\log _{a} x & =\log _{a} b^{m} \\
\log _{a} x & =m \log _{a} b \\
m & =\frac{\log _{a} x}{\log _{a} b}=\frac{1}{\log _{a} b} \cdot \log _{a} x \\
& =\log _{b} x=\frac{1}{\log _{a} b} \cdot \log _{a} x
\end{aligned}
\]

Tusale 1 : Qlimee \(\log _{2} 5\)
Furfurls: Maadaam \(\log _{y} x=\frac{\log _{a} x}{\log _{a} y}\)
\[
\log _{2} 5=\frac{\log _{10} 5}{\log _{10} 2}=\frac{0.6990}{0.3010}=2.32
\]

TUSAALE 2: Qiime \(\log _{3} 0.25\)
\[
\begin{aligned}
\log _{3} 0.25 & =\frac{\log _{10} 0.25}{\log _{10} 3} \\
& =\frac{9.3979-10}{0.4771} \\
& =-\frac{0.6021}{0.4771} \\
& =-1.26=8.74-10
\end{aligned}
\]

\section*{LAYLI}

Qilmee
(1) \(\log _{2} 7\)
(2) \(\log _{3} 0.5\)
(3) \(\log _{3.6} 27.8\)
(4) \(\log _{5} 10\)
(5) \(\log _{3} 100\)

\section*{Abla Ablaynta isku aadinta}
1. B T Kutirane kasta oo soocan oo ku jira horaadka B, ku aad soocan ayuu ku leeyahay urur dambeedka \(T\). Isla mar ahaantaas ma jiro kutirsane \(\mathrm{T} \circ \mathrm{o}\) an ahayn ku aad kutirsane B. Isku aadkaas \(\infty\) kale was mid-mid wasa dhammays; waxana la yira fansaar isku beegnaan-mid-mid ah.
2. B T Isku aad mid-mid ah oo aan dhammays ahayn waxa la yiraa fansaar isku begnaan-mid-mid ah oo aan dhammays ahayn.
3.

Isku ad badi-mid ah oo dhammays ah waxa
la yiraa fansaar isku beegnaan-badi-mid ah.
4.

Isku aad badi-mid ah oo aan dhammays ahayn
waxa la yiraa fansaar badi-mid ah 00 aan dhammaysa ahayn.

\section*{1. Garaafka fansaar}

Garaafka fansaar waa urur barood; oo til kasta ee ka mid ahba ay xubinteeda hore tahay kutirsane urur horaad; xubinteeda dambena tahay kutirsane urur dambeedka. Kutirsane urur horeed wuxuu xubin \(u\) noqon kara bar keliya ah oo ka mid ah baraha garaafka.
Haddaba haddif aan doonno in aan hubino in garaaf sawirani yahay fansaar iyo in kale, waxan jeexaynaa xarri1q dhidibka y barbarro la ah; haddif ay xarrifqdaaso bar wax ka badan ka jarto garaafka, markaa xirifrkaasu ma aha.fansaar.

TUSAALE \(I:\) Haddii, \(H=\{1,2,3,4\}\)
\[
D=\{1,2,3\}
\]

Garaafkani ma yahay fansaarz

Jawaabtu waa maya. Xarrilqda ligan ee marta barta dhidibka \(x\) yahay \((1,0)\) waxa ay ka gooysaa garaafka hal bar in ka badan.

TUSAALE II: Shaxanka soo socdaa ma yahay garaaf fansaar?

Shax. 2
Haat Barta goobaysani waa ay ka reeban tahay garaafka. Xarri1q kasta oo liganna kama goyn karto garaaf kaas bar keliya wax ka badan.

\section*{LAYLI}

Keebaa garaafyada soo socda ah fansaar? Horaad : \(\{1,2,3,4\}\), Dambeed: \(\{-1,0,1,2\}\)

2.

4.

10. Keebaa \(\times 1 r i 1 r a d a n ~ s o o ~ s o c d a ~\) ah fansaar?
\(b=\{(1,2)(1,3)(4,-1)\} \quad t=\{(1,-1),(2,0),(3,1),(4,2)\}\)
\(y=\{(1,-1)(2,-1),(3,0)\} x=\{(2,0)(3,0),(4,0)\}\)
\(k h=\{(2,4),(1,2),(4,2),(3,0)\}, d=\{(1,2)(2,2),(3,2),(4,2)\}\) \(r=\{(3,0)(4,-1),(3,2),(1,1)\} ., s=\{(4,-1),(3,2)(1,0),(4,2)\}\).

\section*{Fansaarada Maangalka ah}

Haddif \(f\) ay tahay fansaar, \((x, y) \in f, \infty \quad\) waliba kutirsaneyaasha urur horaadkiisu wada yihiln tirooyin maangal ah, markaa \(f\) waxa la yiraa fansaar doorsoome maangal leh. Haddil ku aadyada \(x\) oo dhan ay yihiin ururka tirooyinka maangalka ah, markaa f waxa la yiraa fansaar maangal ah. Summad ahaan, in til aan dhigi lahayn \((x, y) \in f, x \in M, y \in M\), iyadoo \(M\) ay \(u\) taagan tahay ururka tirooyinka maangalka ah, waxa aan dhigaynaa oo kaliya (\(x, y\)) \(\in f\), marba haddii aan shardi kale lagu xirin.

\section*{QORMO FANSAAR}

Fansaarka (\(x, y\)) e \(f\)
waxa kale 00100 qoraa \(f: \times\) \(\qquad\) Y
madaama qiimaha \(f\) uu yahay \(f(x)\), sidaa darteed fansaarka f waxa 100 dhigaa ama 100 qoraaba
\[
f: x \longrightarrow f(x)
\]

Haddil aan doonno in aan \(f u\) qorno sansaan urur
\[
f=\delta\{(x, y) / y=f(x)\}
\]

\section*{Tusaale 1:}
\[
\text { Hadd11 } \begin{aligned}
f(x)= & 2 x+3 \text { raadi } f(-4), f(-3), f(1) \\
& f(-2), f(0)
\end{aligned}
\]

\section*{FURFURIS}
\(x\) kasta ku beddel qilmaha lagu silyey:
\[
\begin{array}{l|l}
f(-4)=2(-4)+3=-8+3=-5 & f(-2)=2(-2)+3=-1
\end{array}
\]
\[
\begin{aligned}
& f(-3)=2(-3)+3=6+3=-3 \\
& f(1)=2(1)+3=2+3=5
\end{aligned} \quad f(0)=2(0)+3=3
\]

Qilmayaalkan waxa aan isugu soo ururin karnaa tusahan:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(y\) & -4 & -3 & -2 & 0 & 1 & \\
\hline\(f(x)\) & -5 & -3 & -1 & 3 & 5 & \\
\hline
\end{tabular}
```

1. Haddli }f(x)=3\mp@subsup{x}{}{2}-4x+1\mathrm{ , Eaadi }f(-2),f(-1),f(0),f(1),f(2)
2. Haddi1f(x)=
3. Hadd1! f(t) =\frac{t}{3}+2t
4. f(x)=\sqrt{}{x}}:\mathrm{ Raadi a) f(1), b) f(36), t) f(100) f) f(0.001),
f(16).
```
TUSAALE II: \(U\) qor isle'egtan \(3 x+5 y=1\) sansaanka \(y=f(x)\)
FURFURIS
```

3x+5y=1
5y=1-3x
y=1-\frac{1x}{5}}\mathrm{ waa la m1d }f(x)=\frac{1-3x}{5

```

\section*{LAYLI}

5, U qor isle'eg kasta 00 soo socda sansaanka \(w=f(s)\)
(b) \(4 S=-7 w+2\) (t) \(\frac{2 S+3 w}{5}=7\)
(1) \(W-3 S+2 S=6,(x) W S+3=8 S\)
(kh) \(3 W+45=2 S+9 \quad\), (d) \(-16 S+W=-8 S-6 W-18\)
6. Haddi1; \(f(x)=3 x-2\), raadi:
(a) \(f\left(\frac{a}{\square}\right)(b) f\left(a^{2}\right),(t) f(a+2)\)
7. Hadd1! \(f(x)=x^{2}-5\), raadi:
(a) \(f\left(\frac{a}{2}\right)\)
(b) \(f(a+b)\)
\((j) f\{f(a)\}\)

\section*{FANSAAR TOOSAN}

Ka soo qaad in aan haysanno fansaarka \(f(x)=2 x+3\). Si aan u sawiro fansaarkan waxaan qaadanaynaa qifmeyaal \(x\) si aan \(u\) helno \(k u\) aadkilsa, \(f(x)\). Sida ugu sahlani waa inago
\begin{tabular}{l|l|l}
\(x\) & \(2 x+3\) & \(f(x)\) ama \(y\) \\
\hline-1 & \(2(-1)+3=-2+3=1\) & 1 \\
\hline-2 & \(2(-2)+3=-4+3=-1\) & -1 \\
\hline-3 & \(2(-3)+3=-6+3=-3\) & -3 \\
\hline 0 & \(2(0)+3=3\) & 3 \\
\hline 1 & \(2(1)+3=2+3=5\) & 5 \\
\hline 2 & \(2(2)+3=4+3=7\) & 7 \\
\hline
\end{tabular}

Baraha: \((-1,1),(-2,-1),(-3,-3),(0,3),(1,5),(2,7)\) waxayay ka mid yihiin \(f(x)=2 x+3\), oo garaafkeedu yahay Shax. 14

Waxa aan aragnaa in garaafka fansaarkaasi yahay xarrifq toosan. Sidaas awgeed fansaarka \(f(x)=2 x+3\) waxa la yiraa "fansaar Xarriigeed"- ama "fansaar toosan". U fiirso \(f(x)\) waxa ay ku xiran tahay qiimaha ay \(x\) qaadato; sidaas awgeed "x"waxa la yiraa "doorsoomaha madaxa banaan \(f(x)\) na waa dabajoog".

QEEXID: Fansaar sansankiisu yahay \(f(x)=a x+b\), lyaga oo a lyo b ay yihiin madoorsameyaal, waxa la yiraa "fansaar xarrilqeed" ama "fansaar toosan"

TUSAALE: \(f(x)=x+2,(a=1, b=2)\)
\(f(x)=-3 x, \quad(a=-3, b=0)\)
\(f(x)=4, \quad(a=0, \quad b=4)\)

\section*{FANSAAR MA DOORSAME}

Haddi1 aad \(u\) f11rsatid fansaarka \(f(x)=0 . x+4\), waxa aad arkaysaa in qiima kasta oo ay "x" qaadataba ay \(f(x)=4\). Fansaarka caynkaas oo kale ah waxa la yiraa "fansaar ma doorsame". Intii 100 qori lahaa \(f(x)=0 . x+b\), waxa lagu soo gaabiyaa \(f(x)=\) b.

TUSAALE I: Sawir garaafka \(f(x)=4\)

\section*{Furfuris.}

Qifma kasta \(00 \times\) la silyaba \(f(x)=4\), garaafkeeduna waa xarrilq dhidibka \(-x\) barbarro la ah, dhidibka y-na ka goysa barta \((0,4)\) (Piliri shax. 4)

Xusulas 1
Shax. 4
\(f(x)=y\)

Ogow!
Shax.5,

Fansaar ma doorsame waa "fansaar isku beegnaan - badi-mid ah"

\section*{LAYLI:}

Sawir garaafka fansaarada soo socda sheeg in fuu yahay isku-beegnaan badi mid ah ama isku beegnaan mid-mid ah
1) \(f(x)=3\)
(2) \(f(x)=-2\)
(3) \(f(x)=2\)
4) \(f(x)=2 x+2\)
(5) \(f(x)=2 x-2\)
(6) \(f(x)=2 x\)
7) \(f(x)-x=0\)
(8). \(f(x)=\frac{1}{3} x+1\)
9) \(f(x)=\underline{x+1}\)
10) \(f(x)=-x-4 \quad\) (11) \(f(x)=-2 x+1 \quad(12) f(x)=-\frac{1}{2} x+4\)

\section*{FANSAARKA SAABLEY}

Fansaarka leh sansaan tibxaale heerka labaad ah, \(a x^{2}+b x+c, 00\) ay \(a, b\), iyo \(c\) yihiin tirooyin maangal \(a h\), \(a \neq 0\), ayaa la yiraa rfansaar tibxaale oo heerka labaad ah" ama "fansaarka saabley".

Fansaarka Saabley ee sansaanki1su yahay \(f(x)=a x^{2}\) \(f(x)=a x^{2}\) waa sansaanka \(u\) sahlan ee saabley taas oo ay \(b=0\), \(c=0\). Bal aan ku billawno marka \(a=1\); fansaarki1 wuxu isugu soo ururayaa \(f(x)=x^{2}\). Haddif aan damacno in aan sawirno - 2za ain scevyeznc vnsa fustha 220 scod
waxa aan samaysanaynaa tusaha soo socda oo kale.
\begin{tabular}{c|c|c|c}
\(x\) & \(x^{2}\) & \(f(x)\) & \\
\hline-3 & \((-3)^{2}\) & 9 & \\
\hline-2 & \((-2)^{2}\) & \((4)\) & \\
\hline-1 & \((-1)^{2}\) & 1 & \\
\hline 0 & \(0^{2}\) & 0 & \\
\hline 1 & \(1^{2}\) & 1 & \\
\hline 2 & \(2^{2}\) & 4 & \\
\hline 3 & \(3^{2}\) & 9 & \\
\hline & & &
\end{tabular}

Tusahaasi wuxuu la mid yahay inagacoo u qorna sansaan horsiimo lammaaneyaal, sida
\(\{\ldots . .(-3,9),(-2,4),(-1,1),(0,0),(1,1),(2,4),(3,9) \ldots\}\) markk aan barahan ku sawlrno kulannada kartis" garaafka shaxanka soo socda ayaa soo bexaya.

Shax.b

Shax.t

Xarriiqda xoodan ee isku xiraysa baraha shax.b ayaa inna silsay shax.t; waana garaafka fansaarka \(f(x)=x^{2}\) ama \(y=x^{2}\), maadaama ay \(f(x)\) iyo \(y\) isku mid yihiin. Malaha, waa aad aragta in baraha: \((-1,1)\) iyo \((1,1)\); \((-2,4)\) iyo \((2,4) ;(-3,9)\) iyo \((3,9)\) qiimaha \(f(x)\) uu isla mid yahay; hase yeeshee qiimaha \(x\) in midba kan kale tabane \(u\) yahay. Haddil fansaar leeyahay astaanta \(f(x)=f(-x)\) marka garaafka \(y=f(x)\) waxa la yiraa "wuxuu ku wanqaaran yahay dhidibka \(y\) ". Micnuhu waxa weeye, haddil aan garaafkaas ka laabno dhidibka y, barba bar ku aad ah ayey dul fuulaysaa waana ay isku sargo'naanayaan.
(shax.2, (\(-1,1\)) iyo (1,1) isku in bay \(u\) wada jiraan dhidib -y; baraha isku lammaan ee soo socdaana waa sidoo kale (\(-2,4\))
Iyo \((2,4)\); \((-3,9)\) iyo \((3,9)\) iw.m.).
Fansaarka \(f(x)=x^{2}\) wuxu leeyahay bar uqu giime yaruguna hooseysa, markif la filrsho baraha garaafka \(f(x)=x^{2}\) oo dhan.

Ugu dambayn, fansaar \(f(x)=x^{2}\) wuxu Inna sifyaa xarriig xoodan 00 kor \(u\) furan lana yiraa SAAB.

Isku day in aad bardhigto baro badan si ay kugu suurtowdo in aad sawirto garaafka \(f(x)=2 x^{2}, f(x)=1 / x ; f(x)=2 x^{2}\),

Shax. 8

Waxaad aragtaa in garaafyada \(F(x)=2 x^{2}, f(x)=1 / x^{2}\), \(f(x)=3 x^{2}\) ay barta ugu yar tahay unugga, ayna kor \(u\) wada furan \(y 1 h i 1 n\); hase yeeshee garaafka fansaarada \(f(x)=-x^{2}\), \(f(x)=-3 x^{2}\) waxayay \(u\) furan \(y\) ihín hoos, unuguna waa barta uqu weyn ama uqu sarraysa

Barta ugu weyn ama ugu yar garaafka fansaarka saabley waxa la yiraa gees.

Marka \(h(x)\) kor ayey \(u\) furan tahay, waxa ayna ku wanqaaran tahay dhidib-y, sida \(f(x)\); hase yeeshee geeskeedu waxa uu ku yaal \((0,5)\). Sidoo kale garaafka \(g(x)=x^{2}-5,5\) halbeeg ayey ka hooseeysaa geeska \(f(x)\); wuxuna \(u\) furan yahay kor; isla markaas waxa uu wanqaaran yahay dhidib -y . Ka warean sida

Shax. 7
garaafyada \(y=-3 x^{2}+3\) iyo \(y=-x+5\) ay noqonayaan.

\section*{Bal u filrso fansaarka}
\(f(x)=(x-1)^{2}\). Tusihilsu waa kan soo socda, garaafkilsana waxa ku tusaya shax.9.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(x\) & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline\(f(x)\) & 9 & 4 & 1 & 0 & 1 & 4 & 9 \\
\hline
\end{tabular}

Kor ayuu \(u\) furan yahay; barta ugu yarna waa (1,0). Baraha \((4,9)\) iyo \((-2,9)\); \((3,4)\) iyo \((-1,4)\); \((2,1)\) iyo \((0,1)\) waxa ay lecyihifn qiima \(y\) oo isku mid ah; waxa ayna isku in \(u\) jiraan xarrifqda \(x=1\).

Hadda saabka, \(f(x)=(x-1)^{2}\) wuxu ku wanqaaran yahay xarriiqda \(x=1\), sida Shax. 9 muujinaayo. Waliba barta ugu yar garaafka, \((1,0)\), waa halka "saabku ka gooyo dhidib-x. Marka waa ay inno caddahay in garaafka \(f(x)=(x-1)^{2}\) u la mid yahay garaafka \(f(x)=x^{2}\) oo hal halbeeg 100 durkiyay xagga midig, marka la raaco dhidibka -x.

Xarriiqda \(x=1\) waxa kale oo ay tahay dhib - wanqaaranka garaafka fansaarka \(f(x)=-(x-1)^{2}+2\), (filri Shax. 10; hase yeeshee geeska garaafkan waa (1,2).

Fansaarkan saabley hoos ayey \(u\) furan tahay geeskeedunz waa ugu weyn yahay.

\section*{GABAGABO}

Garaafka fansaar \(f(x)=a(x-h)^{2}+k, a \neq 0\), wuxu ku wangaaran yahay xarriiqda \(x=h\), geeskeeduna waa barta \((h, k)\). Haddaba \(k\) waxa aan niraahnaa q1ımahá gees. Sansaanka lyo hadba dhinaca uu i furmayo garaafiku waxa ay ku xiran tahay wehellyaha \(x^{2}\), oo aha.

Haddii a \(>\) O\{amase a ay tahay tiro togan) geesku waxa uu. noqonayaa barta, uqu yar, saabkuna kor ayuu u furmayaa. Haddii a \(<0\) (amase a ay tahayं \(£ 1 r o\) taban), geesku wexa uu noqonayaa barta uqu weyn, saabkuna hoos ayuu u furmayaa.

\section*{WEYDAARKA FANSAAR}

Horay waxa aan \(u\) soo aragnay in uu fansaar yahay xirlir gaar ah. Weydaarka xirlirna, \(\overline{9}^{-1}\), waxa weeye xiriirkil 900 horaadkil=11 iyo dambeedkiisil la isku beddelay. Sidoo kale weydaarka \(f\), oo 100 qoro \(f^{-1}\), waa xirilirka dhasha marka la isku beddelo horaadka lyo dambeedka \(f\). Bal u filrso fansaarkan:
\(f=\{(2,3),(-2,3),(-3,2),(3,2)(4,1),(-4,1)\}\)

Sawirka garaafkan waa ka hoos ku muujisan:

Weydaarka fansaarka f waa xirilr
\(f^{-1}=\{(3,2),(3,-2),(2,-3),(2,+3),(1,4),(1,-4)\}\).
\(f^{-1}\) waa xiriir, mana-aha fansaar, garaafkiisuna waa kan soo socda:

Mar labaad dheeho fansaarka
\(g=\{(1,0),(2,1),(3,2),(0,-1),(-1,-2)\}\)
Weydaarka fansaarkaa waa xiri1r \(g^{-1}=\{(0,1),(1,2),(2,3)\)
\((-1,0), \quad(-2,-1)\}\).
\(\mathrm{g}^{-1}\) waliba waa fansaar, maadaama ayna jirin laba barood oo leh kulan kowaad oo isku mid ah.

TUSAALE: Ka soo qaad In fansaarka
\(h=\{(x, y) / y=2 x-6\}, h^{-1}\) ma yahay fansaar? Ku sawir \(h\) iyo \(h^{-1}\) isku sallax.

\section*{FURFURIS}
h: waxa aan aragnaa \(\ln y=2 x-6\) ay tahay fansaar toosan, sawirkeedana waxa inagaga filan in la helo laba barood oo keliya ; dabadeedna la isku xiro barahaas.
```

y=2x-6
Aan qaadanno barahan (0,-6),(1,-4),(2,-2),

```
\(\mathrm{h}^{-1}\) : waxa ay 1 a mid tahay inaga oo doorsoomaha madaxa banaan ka dhigna y oo isle'egta \(\times\) ku tibaaxna.
\(h^{-1}=\{(y, x) / y=2 y \quad 6\}\),
\(h^{-1}\) iyana waa fansaar toosan.
\[
x=2 y-6
\]

Waa ay mưqata in \(h^{-1}\) ay tahay fansaar. Maadaama fansaar toosani yahay fansaar 1 sku beegnaan - mid-mid ah, weydaarki1suna waa fansaar. Fansaarka \(y=x\) waxa la yiraa fansaar asal madoorshe ah. Weydaarkilsu waa isla isagil. Haddaba garaafka fansaar kasta iyo weydaarkilsu waxa ay ku wanqaaran yihiin xarrilqda \(y=x\).

TUSAALE II. Sawir garaafka \(g=\{(x, y) / y=f x \mid\}\) iyo \(\bar{g}^{-1}\).

\section*{FURFURIS:}
1. \(y=|x|\). Samee tuse si ay kuugu fududaato bardhigidda baraha.

2. S1 aad \(u\) sawirtid \(g^{-1}\), marka hore isku beddel \(\times\) iyoy ee fansaarka \(g\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline\(x\) & 1 & 2 & 3 & 0 & -1 & -2 & -3 \\
\hline\(y\) & 1 & 2 & 3 & 0 & 1 & 2 & 3 \\
\hline
\end{tabular}

\(\mathrm{g}^{-1}\) ma aha sfansaar. \(g\) waxa ay ahayd fansaarilsku beegnaan-badi -mid ah, markaa weydaarkeedu ma aha fansaar.

\section*{LAYLI}
1. Raadi weydaarka xirilr kasta ee soo socda, dabadeedna sheeg weydaarku in uu yahay fansaar ama in aanu ahayn.
i) \(\{(1,2),(3,4)(5,6)\}\).
11) \(\{(2,1),(3,2),(4,3)\}\).
111) \(\{(1,-1),(1,1),(2,-2),(2,2),(3,-3),(3,3)\}\).
iv) \(\{(1,1),(2,4),(3,9),(4,16),(1,1),(-2,4),(-3,9),(-4,16)\)
v) \(\{(1,3),(2,5),(3 ; 7),(4,9),(5,11)\}\)
2. Sawir weydaarada weydiinta kore.
3. Xirilrada \(s 00\) socda ma yihiin fansaaro? Ku tijaabi xarrilq taagan.
1) \(\{(x, y) / y=2 x+4\}\)
(vi) \(\left\{(x, y) / y=(x, 2\}^{2}\right.\)
11) \(\{(x, y) / y=/ .2 x /\}\).
(vi1) \(\left\{(x, y) / y=(x-2)^{2}+1\right.\)
1ii) \(\left\{\left(x, y \circ / y=4 x^{2}\right\}\right.\)
(viii) \(\{x, y) / y=(x+1)^{2}\),
(v) \(\left\{(x, y) / y=\frac{x}{|x|}\right.\)
(ix) \(\left\{(x, y) / y=-(y-1)^{2}\right.\)
v) \(\left\{(x, y) / x^{2}+y^{2}-4\right\}\)
(x) \(\left\{(x, y) / y=\frac{1}{x}, x \neq 0\right\}\)
4. Raadi weydaarka xiriirakasta ee weydilnta, sheegna in uu yahay fansaarifo in kale.

Buuggli kowad waxa aynu ku soo qaadanay in haddii, laba xarriiq 00 barbarro ah \(u\) gudbane jaro in ay lammaane xagallo-gudeed talantaali ah ay isleeg yihiln, iyo lammaane xagllo-gudbooni iyaguna isleeg yihiln. Hase-yeeshee isleekaanshahaa waxa aynu \(u\) qaadanay in ay run yihiin innaga oon caddeynin.

Haatan waxa aynu tusi isleekaanshahaasu in uu run yahay waxa aynu kaashana caddaynta dadban.

\section*{ARAGTIIN:}

Laba xarrifq oo sallax ku wada yaal, isku xarrifqna ku wada qotoma waa barbarro.

Siln a iyo b \(\perp c\)
Caddee in a \(/ / \mathrm{b}\)

\section*{Hawraar (Caddayn)}
1. a Iyo b waa //
ama \(X\)
2. Ka soo qaad in aanay \(X\)
3. Markaa waxay ku kulm1 bar sida B.

\section*{Garaadayn}
1. Laba xarrilq oo sallax ku wada yaal, way isjari ama waa barbarro.
2. U qaadasho
3. Xarríqyo aan barbarro ahayni sallaxna ku wada yaal, way is jaraan.
4. Markaa waxa jiri laba xarrilq oo sallax ku wada yaal, bar debada ahna ka wada yimid, qotona xarrilq \(u\) wada ah.
5. Hase-yeeshe tani caqliga ma gelayso
5. Bar debadda oh sida B, xarriiq qudha ah oo qoton u ah xarriiq kale ayaa laga soo jeexi karaa.
6. Xarrilqyo sailax ku wada yaal,oo inkastoo ia fidiyo aan kulmaynı waa // .

Xiqasho: Laba xarrilq oo sallax ku wadayal isku

Siin a lyo b waxay b//c
Caddayn in a // b.

\section*{Hawraar}
1. a 1yo b waa // ama \(X\)
2. Ka soo qaad in ay
is jaraan, // .
3. Markaa, bar ayay ku kulmi sida B
4. Markaa, waxa fira laba \(x\) xarrifq 00 bar ka soo wada dusay, barbarrana
\(u\) ah xarriiq seddexaad.

Ganaadayn
1. Laba xarríg oo sallax ku wada yaal, wae // ama /X
2. U qaadasho.
3. Xarri1qyo aan barbarro ahayn, AT sol2axna ku wada yaal, way is jaraan
4.
5. Hase-yeeshe tans ma j1rto.
6.:. a lyo b ma kulmi karaan markaa a // b
5. Bar lagu silyay xarifq quaha ayaa laga jeexi karaa //-na u ah xarrilq kale.
6. Xarrilqyo sallax ku wada yaal, inkastoo la fidiyana aan kulmayni waa //.

ARAGTIIN: Haddii xarriiqi qotome \(u\) tahay laba xarriiq oo barbarro ah, mid ahaan, markaa ka kalena waa u qotome.

CADDAYN

\section*{Hawraar}
1. Sawir xarrilqa fisagoo maraya E qotome-na ha
\(u\) ahaado c

Siin a // b, c/a barba: D, c haddana waxay ka jartay b barta E .

Caddee in: \(\mathrm{c} \perp \mathrm{b}\) barta E
2. \(a \perp c\)
2. Siin
3. : f f//a
4. Hase-yeeshe b // a
3. Laba xarrilq oo sallax ku wada yaal, isku xarrifqna qotome \(u\) ah1, waa //
5. b iyo f waa in ay is dul dhacaan
6. Hase-yeeshe \(f \perp c\)
7. \(: b / b\)
5. Qumatiga bar lagu sifyay xarriiq qudha ayaa laga sawiri karaa oo la // ah xarriiq lagu siiyay.
6. Dhisme, '
7. Xarriiq wuxuu qaadan astatnaha xarriqa, u u dul dhacoo idil.

XIGASHO: Laba xarrilq oo barbarroah, haddil mid waliba leeyahay qotome, markaa qotomaduna waa barbarro.

Siln \(A B / / C D ; E F \perp A B ; G H \perp C D\)
Caddee in EF // GH
CADDAYN

\section*{Hawraar}
1. Fidi EF si u CD u ka jaro barta K
2. \(E F \perp A B\)
3. : . EF 00 la fidiyay waxay I u tahay CD

\section*{Garaadayn}
2. Dhisme
2. Siln
3. Haddis Xarriiq laba xarriiq \(00 / /\) ah mid qoto u yahay, ka kalana was u
4. Hase-yeeshe \(G H \quad / \mathrm{CD}\) \(C D\)
5. \(\therefore \mathrm{EF} / / \mathrm{GH}\)
\[
\begin{aligned}
& \text { 4. 51:n } \\
& \text { 4. } 5 \text { abo }
\end{aligned}
\]

ARAGTIIN: Haddil 2 aba xarrifa'oo barbas ro ab, u sudbane jaro
-
jaro xagla gudeedka talantaaliga ahi way 2 eleeg yihiln.
\[
\begin{aligned}
& \text { 4. Labe karri1q oo sallax ku } \\
& \text { wace yaaz, iaku xarriiqna } \\
& \text { ku gotoraa, waa //. }
\end{aligned}
\]

Siin a // b, mid waloa waxa jara guobenna \(t\) Waxaanu ke ;:=na C iyo D sida ay u kala horeeyoon. daxeann/i - 2mooyaan xaglo gudeedka talantasilga ah \(\underline{L}^{2}, \Lambda_{2}^{2}\) Iyc \(\sum_{-}^{3}, \Lambda_{4}^{4}\).

Caddee in \(\left\{\underline{1}=\underline{L}^{2} ; \underline{Z}^{3}=\underline{L} 4\right.\)

Saafid: si aad u heshid in L_ luhu ialeeg yih:in isku day

Caddayn) qaybaha isku aada ee \(\Delta \simeq\)

\section*{Hawraar}
1. O ahna bar badhtameedka \(C D\), ku sawir qotomaha MN, ee_ a,
b-na ka Jara barta \(N\).
2. \(M N \perp b\)
3. 1 m 1yo \&. n wad 810 quman

\section*{Garasday}
1. Xarriljin waa la kala dadbl karan. Bar sallaxa debadda ka ahna_qoton was looga soo sawiri karaa.
2. Laba xarrifig \(00 / /\) ah hadds1 xarcilic .ild_u yahay, ka kalana waa u_.
3. Dhinacyo isku qotoma aya sameeysy.
4. \(\underbrace{5}=\underbrace{6}\)
5. \(C D=D D\)
6. \(\Delta \mathrm{ka}\) quman ee \(O C M \cong \Delta \mathrm{ka}\) quman ee ah ODN
```

7. :. < 1= 4'2
```
7. :. < 1= 4'2
8. \(\& 3=44\)
```

4. \&Lo :0 foodsaar ah
5. O waxay kala badhaa $(\mathbb{D}$
6. Shakaal iyo xagal (SH.X)
7. Qisi =
8. Xaglo isleegi waxay leeyihiin xaglo buuxsha 0 isleeg.

ARAGTIIN: Haddii laba xarrilq ay la sameeyaan gudbane xaglo gudeed talantaali ah, oo isleeg, markaa labada xarrifq waa barbarro.

Aragtilnkani
waa rogga
Araqtilnki1 5 aad


Siln: a iyo b waxa jaray gudbanaha $t$
00 Jaray C iyo D sida ay ${ }^{\mathrm{U}}$ kala horeeyaan, waxaana sameysmay xaglo-gudeedka isleeg ee ah \& 1 yo \& ${ }^{2}$.

## Caddee in $a / / b$

Saafid a // b, haddii labaduba ay / u yihiin, isku xarriiq. Caddayn

## Hawraar

1. Barta 0 ahna bar badhtameedka CD, ka sawir MN oo barta $\mathrm{M}-$ /uga aha, kana jaraya b barta N .

## Garaadayn

1. Xariljin waa la kala badh1 karaa. Bar sallaxa debedda ka ahna qotome xarrilq waa looga soo sawiri karaa.


ARAGTIIN: Haddil laba xarrilq 00 berbarro ah $u$ gudbane jaro, xaglaha gudboone way isleeg yihilin.


Siin: a // b, mid walba waxa jaray gudbaraha $=$ waxaana sameysmay xaglaha qudboonee ah $\mathbb{K}^{1}$ iyo $\leqslant 2$.

Caddee In 6́_ $1=\leq 2^{2}$ ?
Saafid: $\dot{1} 1 / 0 \underset{\sim}{Z} 2 \mathrm{mid}$ walba tus in ay la mid sahay ama le'eg tahay $\leq 3$.

## Caddayn

## Hawraar

```
1. &_1 = & 3
2. < '3}=\mp@subsup{L}{}{2
```

3. $: \leq 1=42$

## Garoadayn

1. Xeallo foodsaar ah
2. Xag 110 qudeed talantaalls ah, ee xarrilqyo // ah.
3. Astaanta dhexidda.

Xigarho: Maddif 1 aba xarri1q ay 1 a sameeyaan gudbare, xag2lo-gudboon oo isleeg, markaa labada xarriiq waa barbarzo.


S115: a 1 yo b waxa Jeray gudbanaha $t$ waxaena sbmeeystaay xagiaha gudboon ee ah \&_2 iyo it.

## Caddee in $a / 1 / b$

Saaf1d: Caddee in xarrilqyadu ay la sameeyeen gudbanaha, xagilo-gudeed talantaali ah oo isleeg.

## Caddayn

## Hawrear

1. $11=\Delta \underbrace{3}$
2. $\Delta 1=L .2$
3. $44^{2}=4^{3}$
4. : a // b

## Garaacayn

1. Xeglo foodeace ah.
2. Siin
3. Xaddiyo leeg, xaddi isku mid ah, iyaguna way isleeq yihiln.
4. Haddif laba xar:1:q, ay 1 a samesyaan gucbane xag110-qW aced talantaall: ah oo 1512 e markae xarrllqyeds waa //f

XIGASHO: Hadd11 laba xarriiq oo barbarro ah u gudbane jaro, labada xagal-gudeed ee dhinac ka wada xiga gudbanaha, way 1 sbuuxshaan.


Siin: a // b, waxaana jaray gudbanaha $t \& 1$ 1yo \& 2 waa laba xagal-gudeed.

Caddee in $\mathbb{L}-1+\angle 2=180^{\circ}$
Saafid: Raadi 1 aba xaglood oo isbuuxsha, debeedna 1 sku beddel.

Caddayn
Hawraar Garaadayn

1. $\angle 1+\angle 3=180^{\circ}$

$$
\text { 2. } 4-3=4-^{2}
$$

3. : $\angle 1+\angle Z^{2}=180^{\circ}$
markaa xagluhu way isbuuxshaan.
4. Wadarta xaglaha ee bari, dhinacna ka wada xiga xarri1q toosan $=180^{\circ}$.
5. Xag1o-gudeedka xarrifqyo barbarro ahi way isleeg yihiln.
6. Astaanta 1 sku-beddelidda xagla-isbuuxsha wadartoodu waa $=180^{\circ}$.
7. X1qasho Haddil laba xarrifq iyo gudbane ay sameeyaan, xagllo-gudeed dhinac ka wada xiga gudbanaha; markaa labada xarrilq waa barbarro //.

- 108 -


2. Si add $u$ caddaysid in laba xarriiq ay barbarro yihiin, ka eog shaxenka ins.
a) Xaglo-gudeedka talantaaliga ahi ay isleeg yihiln.
b) Xaglaha gudbconi ay isleeg yihiln.
c) Labade xagal-gudeed dhinaena ka wada xiga gudbanaha ay isbuuxshaan.

Tussalahant cadideyntilsa waxa aynu adeegsanaynaa aragtimihii iyo xigashooyinki ku saabsanaa xarriiqyada barbarrada ah.



Hawraar

1. $\& 1+\& 3=180^{\circ}$
2. $\angle 1 \&^{2}=180^{\circ}$
3. Wadarta xaglaha ee bari, dhinacna ka wada xigao. xarrifq toosani $=180^{\circ}$
 $4 \cdot: L^{3}=\&^{2}$ 5.:.a//b
4. Siln
5. Dhadhaarka isku-beddelidda.
6. Dhadhaarka kala go'ynta.
7. Haddif laba xarrifq ay la

Gudbanaha $t$, wuxuu jaray a $i$ yo $b$, si uu $u$ sameeyc xaglo gudeedyada, $\mathbb{Z} 1$ iyo $\not \subset 2, \not \subset 1+\not \subset 2=180^{\circ}$
caddee in a // b
Saafid: Caddee in xarriiqyadu, la sameeyaan gudbanaha xaglo -gudeed isleeg
caddayn sameeyaan gudbane, xaglio gudeed isleeg, markaa-labada xarriiq waa // barbarro.

## DARIICOOYINKA GUUD

1. Si aad u caddaysid in labo xaglood ay isleeg yihiln, ka eeg shaxanka in:
a) Xagluhu yiniln, xagllo-gudboon ee xarrilqyo barbarro ah.
b) Xagluhu yihiln, xagllo-gudeed ee xarrilqyo barbarro ah.
2. $B E=D B$
3. : $\triangle k_{\text {ka MBD }}^{\cong} \simeq \Delta^{k}$. DBT
4. : $4^{3}=4^{4}$ $\qquad$
5. Badhadhka laba xarri1q oo isleegi way isleeg yihinn. 6. Ka dhexeeye (Madoorshe)
6. dh. $x$. dh.
7. Qisi= (qaybaha isku aada ee seddex-xagllo isku sargo'an way isleeg yihiind.
8. : . DM // TB
9. Haddii laba xarriiq ay la sameeyaan gudbane xagllogudeed isleeg; markaa labada xarrilq waa //.

Weeydiimahan soo socda adeegso aragtiimihil iyo xigashooyinkii ku saabsanaa xarrilqyada barbarrada ah.

Weydilmaha 1-4 adeegso shaxanka 1aad.

1. Siln: $A B=C Q$ waana // $C D$ Caddee in $\& 3=64$
iyo $A D / / B C$
2. Siin : $A B / / D C, A D / / B C$

Caddee in $\mathbb{L} A=\mathbb{L}$

3. Siin: $A B / / D C, A D / / B C$.

Caddee in $A B=D C$
iyo in $A D=B C$.
4. Siin : $A B=D C, A D=B C$ iyo in $A D / / B C$
Caddee in: $A B / / D C$
iyo in $A D$ / $B C$
5. S1in: $A E=E D, B E=E C$


Caddee in: AB//CD
6. Siin Gudbanaha $A B$ wuxuu jaray xarriiqyada miyo $n$

$$
1 a=4 a^{2} ; 4 b=4 b^{2}
$$

$$
\angle a+\angle b=90^{\circ}
$$



Caddee in $\mathrm{m} / / \mathrm{n}$

## HORDHAC

## QEEXID: Gudbane

Laba xarrilq gudbanahoodu waa xarrilqa toosan ee labada xarrilq ka jara laba barood.

OGSOONOW: S1da qeexidu ina leedahay, haddil laba xarrilq ay isjaraan, xarrilqda marta barta ay iska jaraan ma aha gudbane. Shaxannada hoose fiirl:


Siln: // yaasha $A B, C D, E F$ iyo $G H$ waxa faray gudbanayaasha $A G$ lyo $B H$, markaa $A C=C E=E G$.

Caddee: In $B D=D F=F H$.
Saafid: Marka hore raedi qaybaha isku aada ee $\triangle 10 \cong$ dabeed isticmaal dhardhaarka isku beddelidda.

Caddayn:
Hawraar

1. SawirkAK, CL; EM // BH
2. AK, CL, iyo EM waa //

## Ha1. A

3. $\angle L^{1}=\underline{L}{ }^{2}=\angle 3$
4. $\forall^{4}=\&^{5}=\&^{6}$
5. $A C=C E=E G$
6. $\triangle \mathrm{ka} \mathrm{ACK} \cong \triangle \mathrm{ka} \mathrm{CEL}$

ARAGTIIN: Haddil 3 ama in ka badan ee xarriiqyo barbarro ah1 ay gudbane ka tikraaran xarriljimo isleeg, markaa gudbane kasta waxa ay ka tikraaraan
7. $A K=C L=E M$
7. Qisi =

> 8. Hase-yeeshe
> $A K=B D, C L=D F$,
> $E M=F H$.
9. $B D=D F=F H$
8. Xarrifjimo ee xarrilqyo barbarro ahi oo ay Jareyn xarrilqyo barbarro ahi way isleeg yihiln.
9. Astaanta isku beddelidda.

ARAGTIIN: Haddii xarrilci ay barbarro la tahay dhinac seddexagal, (A) dhinac kalana ay kala badho, dhinaca seddexaadna waa ay kala badhtaa.

3. :. Mar kale $1 / / \mathrm{DE}$
4. Hase yeeshe $A D=D C$
5. :. $C E=E B$
3. Laba xarrilq oo lsku sallax ah, isku xarriiqna // $u$ ahi waa barbarro.
4. Sida (2)
5. Haddii seddex ama in ka badan 00 xarrilqyo barbarro ahi ay gudbane ka tikraaraan xarrifj1mo isleeg, markaa gudbane kasta waxay ka tikraaraan xarriljimo isleeg.

## Xarriiq - badhtameedka seddexagal

Qeexid: Xarri1q-badhtameedka seddexagal waa xarriiqa 1sku xidhaya bar-badhtameedyada laba dhinac ee seddexagale.

ARAGTIIN : Xarrifq-badhtameedka seddexagal waa u barbarro dhinaca seddexaad badhkii.

## S11n: $\quad \triangle \mathrm{ka} \mathrm{ABC}, \mathrm{DE} / / \mathrm{AB}, \mathrm{AD}=\mathrm{DC}$

 Caddee in : $\mathrm{CE}=\mathrm{EB}$Saafid: Raadi 3 xarriiqoo // $\mathrm{h}^{1}$, oo gudbane ka jaraya xarriijimo isleeg.

## Caddayn:

## Hawraar

1. $C$ ka sawir xarríqa $1 / / \mathrm{AB}$
2. Hase-yeeshe $D E / / A B$

Garaadayn

1. Bar debedeed xarriiq waa laga sawiri karaa xarrif //u ah xarrifq lagu silydy
2. Siln.

## Caddeyn <br> Hawraar

1. Sawir DK 31// AB

## Garaadayn

1. Bar debedeed xarrilq waa laga sawiri karaa // $u$ ah xarrifq lagu silyay.

## 2. DK way badhaa BC

## 3. Hase-yeeshe DE wuu kala badhay 3. Siln. <br> BC <br> 4. : $K$ iyo E way isdul dhaceen. <br> 4. Xarriifin waxa laga badhay bar qudh ah. <br> 5. : . DK 1 yo DE way isdul dhacaan.5. Laba barood qumaatigooda xarrilq toosan oo qudha ayaa laga sawiri karaa.

6. : . DE // AB :

7. Sawir si EF // AC $\qquad$ xarriiq isdul-dhacaan astamihilsa oo idil.
8. EF waxay badhaa $A B$, ama $A F=\frac{1}{2} A B$
9. SIda (2)
10. Haddi1 xarriiq barbarro la yahay dhinac $\Delta u$ badhana dhinac kale ka seddexaadna wuu ka badhaa. -... $:$ Xarrilq wuxu qaadan
11. $A F=D E$
12. $2 \cdot \mathrm{DE}=\frac{1}{2} \mathrm{AB}$

TUSAALE: Tusaalahan furfuristilsa waxa aynu kaashan aragtilnka $A$ iyo $B$.

## $\rho$

S11n: $\triangle$ ka $A B C$ m Iyo $n$ waa barobadhtameedyada AC iyo BC sida ay u kala horeeyaan. MD, $\mathrm{CH}, \mathrm{NE}$ mid waliba waa $\perp \mathrm{AB}$.


Caddee at $\mathrm{MD}=\mathrm{NE}=\mathrm{CH}$
caddayn

## Hawres.

1. $\mathrm{MD} / \mathrm{CH}$
2. : D wan bar-badhtameedka


## Garaadayn

1. Labn Karriะq aq xarri2q ku wada gotomeb wa ?/.
2. Rattif xark-2G u barbarro u Ychsy ethinac socdox-xagal, Chinac kalentna uu botho, mavkas wuu badhea thinaca eedideyrad.
3. $M D=$ is C - Xarr12q -cedntanzecka $\Delta$ = $y_{2} \mathrm{kz}$ cininacd seddexaad.
4. Slcil oo kala NE $=\frac{1}{2} \mathrm{CH}$
5. Sal2ablouyhnixa $:-3$ ee itynu ku isticrasalay $\Delta \mathrm{ks} \mathrm{CBH}$.
6. $\mathrm{NE}+\mathrm{ND}=\mathrm{CH}$
 ABCO, $\infty \quad \mathrm{R}, \mathrm{C}, \mathrm{T}$ 2yo S Ey yililin
baro-bachtaneedyada
dhinacyada.
Caddee In $Q R=T S$.
Bint $1 x$ : Sowir BD edoo esar goesoolaha u qsybinaya labd S. Dabeed kaazho xorri£q-badhtameedyo.
7. Caddee $\operatorname{In} \times a r r i 1 q y a d a ~ i s k u-x i d h a y a ~ b a r e-b a d h t a m e e d y a d a ~$ seddexagai in ay u qoybinayaan seddexagalka afar retdexaga?
oo 1aku saryo'an:
(Binilx: Kaacho dh.dh.dh. = dh.dh.dh.).
8. Sifn: $\angle$ ka ABC . oo baraha $D, M, 1 y o$ Ea ay u qaybinayaan dhinaca $A B$ afar qaybood 00 isleeg. T iyo Q waa baro-badhtameedyada AC / iyo BC. Caddee in : DT // EQ.

## LAYLI

4. S1in: $\triangle A B C D O D$ T ay tahay bar-badhtameedka $D C$, $Q$ waa bar kutaal $A C, C Q=\frac{1}{2} A C$;
TQ 00 la fidiyayna waxa ay ka jaraysaa $B C$ barta $R$. Caddee in R ay tahay bar-badhtameedka BC.

Binilx: Sawir BD.
5. Siln : Laba jibaaranaha $A B C D$ oo $T, Q, R$ iyo $S$ ay yihiln baro-badhtameedyada dhinacyada.

Caddee in TQRS $u$ yahay laba jibaarane.

6. Siln: $T, 1$ yo $Q$ waa bar-badhtameedyada

OEEXID: Dhexfurka koori waa xarriljinta isku xidha baro-badhtameedyada dhinacyada aan barbarrada ahayn ee koorta.


ARAGTIIN:
Dhexfurka koori waa u barbarro salalka waxaanu le'eg yahay badka wadartooda.


SIIN: Koorta $A B C D$ dhexfurkeeda $E F$ wuxuu badhayaa $A D$ iyo $B C$ Caddee in : EF // AB iyo $C D, E F=\frac{1}{2}(A B+C D)$
Saafid: Kaasho caddaynta dadban, iyo aragtiinkil xarriiqbadhtameedka.

## Caddayn

1. SawirEX // AB
2. EK waxay badhaa BC
. Hase-yeeshe EF way kala badhad BC
3. Siln
4. : . K iyo $F$ way isdul-dhacaan.
5. EK waxay dul dhacday EF
6. : EF // AB
7. : EF // CD
8. Sawir DB ha kana jaro EF barta $H$.
9. E waa bar-badhtameedka DB

ja:o zr $\rightarrow \cdot \rightarrow 3$,
10. $\therefore \mathrm{EF}=\frac{1}{2} \mathrm{AB}$
11. $\therefore E F=\frac{1}{2}(A B+C D)$

## Garaadayn

1. Qumaatiga bar debedeed xarriiq baa 0 . laga sawirl karaa $00 / / \mathrm{u}$ a xarrilq silsmo.
. Xarrifq // la ah koor salkeeda 00 lugna kala badhaya, lugta kalena wuu kala badha.
2. Xarriijin waxa laga badhay bar qudha.
. Raddii xarrifq u barbaero la yahay dhinac $\Delta$, u dhinac kalena badho, dhinaca seddexaadna wuu kala badhaa.
3. Xarriiq-badhtameedka $\Delta=$
$y_{2}$ dhinaca seddexaad.
4. Qumatiga laba barood waxa laga sawiri karaa xarriiq toosan oo qudha.
5. Xarriiq euxuu qaataa xarriiqu ku duldhoco astaamihiisa oo idil.
6. Laba xarrifq oo isku sallax ah! barbarrona $u$ wada ah xarriiq 3aad waa barbarro iyaguna
7. phisme.

Dndeme.
11. Dhardhaarada isugaynta Iyo isku beddelidda,

XIGASHO I:- Xagio-saleedka ee koor labaale ahi way isleeg yihiln.


Binilx: Sawir CE iyo $D F / A B, C E=D F ?$
$\triangle \mathrm{ka}$ quman ee $\mathrm{BEC} \cong \triangle \mathrm{ka}$ qumán ee AFD ? $\_\mathrm{A}=\underline{1}$ ?
XIGASHO II: Xaglagooyayaasha eelkoor labaale ahi way isleeg yihiin.

Biniix : Hawka tegin xagashadil kowad.
L
$A B C=6$

- DAB .
$\triangle$
ka $A B C \cong$
$\triangle$ ka $D A B ? A C=B D ?$


$$
-123-,
$$

Siln: $\Delta$ ka $A B C$ oo baraha $D$ iyo $E$ ay ku yaalaan dhinaca BC. Markaa $B D=E C$. DF iyo EG // AB Caddee in $G E+D F=A B$.

## CADDAYN

## Hawraar

## Garaadayn

1. Sawir xarriiq-badhtameedka MN $\mathrm{MN} / / \mathrm{AB}$
2. Xarri1q-badhtameedka $\Delta$ wad $u$ // dhinaca 3 xaad.
3. $A N=N C, B M=M C$
4. $B D=E C$
5. : . $D M=M E$
6. $\mathrm{PD} / / \mathrm{MN} / / \mathrm{GE}$
7. $\mathrm{FN}=\mathrm{NG}$
8. $M N=\frac{1}{2}(G E+F D)$

9. $M N=1 / A B$
10. Xarrilq-badhtameedka $\Delta=$

1/2 dhinaca $3 x a a d$.
9. $: \frac{1}{2}(G E+F D)=\frac{1}{2} A B$
9. Isku beddelid
9. $G E+F D=A B$
10. Isku-dhufasho.

AYLI: Layliyadan $u$ kaasho aragtilinkil hore.

3in: Koorta ABCD OO dhexfurka MN uu ka jarayo xagla gooyayaasha batta
T I yo Q.

QADDEE IN: T ay tahay bar-bedhtameedka AC Iyo in Q ay tahay bar-badhtameedka BD.

2. Siin : $\triangle$ ka $A B C O 0 M$ iyo $Q$ ay seddex goor badhayaan $A s_{\text {; }}$ MR iyo QT waa // BC.

Caddee In : $M R+Q T=B C$



Biniix: Sawir XY, $\infty$ a xarriiq ka yimaada bar-badhtameedka ilaa iyo bar-badhtameedkia MQ.
$\triangle$ ka $A B C, X Y=$ ? shaxanka MQTR, $X Y=$ ? Isku beddel.
3. Caddee in shaxanka ka sameeysma marka laysku $\times 1$ dho barobadhtameedyada lugaha iyo baro-badhtameedyada salalka koor $u$ yahay qardhaas.

Siln : Koorta ABCD
Oo dhexfurkeeda MN
uu ka jarayo xagla-
gooy tha AC barta $T$,
iyo xaglagooyaha BD
barta Q.
Caddee in: $T Q=\frac{1}{2}(A B-C D)$.
Binilx: MQ - MT = ?
$M Q=$ ? $M T=$ ?

## SAAMI IYO SAAMIGAL

Ka soo qaad in laba xarrilijimood mid tahay 18', ta kalena tahay 24." Marka aynu labada xarriljimood is garab dhigno innaga oo kaashanayna qaybinta, waxay nu odhan karnaa ta gaabani waa $18 / 24$ ama $3 / 4$ marka 100 eego tan dheer. is garab dhigaas $\infty$ lagu magacaabo saami waa laga dhaxaysiin karaa laba tiro 00 kasta bishardi in aan hooseeyu eber ahayn. Haddis ay tirooyinku yihiin qaar cabbir waa inay isku hal-beeg yihiin. Tusaale ahaan saamiga ka dhexeeya $4^{\prime \prime}$ lyo 1 waar waa $4 / 36$ ama 1/9.

QEEXID: Saamigal laba tiro waa qaybtooda.
S1 loogu feejignaado is garabdhigga la saamiyaynaaya, saamigan 3/4 oo kale waxa 100 qoraa, 3:4 waxaana 100 akhriyaa 3 11aa 4 ama seddex afraad.

Tirooyinka saamiga ku jira waxa lagu magacaabaa tibixaha saamiga. Haddiliba saamiga iyo jajabkuba ay qayb yihiln si isku mid ah ayaa loola macaamilaa.


Saamiga ka dhexeeya balaadhka iyo dhererka laydiga $A$ waa $\frac{1}{2}$.
Kan B waa $3 / 6$. Isleekaanshaha labadan saami waxa uu suura gelinayaa in aynu $u$ gori karro in $\frac{1}{2}=3 / 6$ ama $1: 2=3: 6$. Jajabyada $\frac{1}{2}, 3 / 6$, a/b 1 yo $\mathrm{x}+\mathrm{y}$ waa saamlyo: Addimada labadan laydi way saamigalsan yihifn.

QEEXID: Saamigal : Saamigal waa isleekaanshaha laba saami marka is leegyadan $9 / 15=3 / 5$ ama $a / b=c / d$ waa samigalyo .

## TIBIXO

Afarta xaddi ee saami-galku mid kastaaba waa tibix, Markaa saamigalka $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$, a waa tibixda kowaad, b waa tibixda labaad, c waa tibixda seddexaad, dna waa tibixda afraad.

Tibixda kowad iyo ta seddexaad a,c, waa horrad ta labaad iyo ta afraad waxa weeye gadaaleeye tibixda kowaed Iyo ta afraad a, d waxa la yidhaa cidhifyo, ta labaad iyo ta seddexaadna b,c waxa la yidhaa tiro sia.


Tibixda afraad ee d waxay saamigalka afraad u tahay seddexda tibixaad ee kale $a, b, c, \infty$ horsilmadaas $u$ yaalla.

## Saamigal isdaba yaal ah

Gadaaleeyaha saami kastaa waa antecedentka saamiga ku xiga, markaa, $a / b=b / c=c / d=d / c$ ama $\frac{1}{2}=2 / 4=4 / 8=8 / 16$ waa samigal is daba yaala ah.

Haddii saamigalka isdaba yaalka ah ay firaan laba saaml 0 qudha sida $a / b=c / d$, markaa a waa tibixda kowaad ee saamigalka, b waa tibixda labaad. cna waa tibixda seddexaad.

Haddaba b oo tibixda labaadi waa tiro-sinta saamigalka u dhexeeya labada tibixood ee kale ee ah a, iyo c, c oo tibixdi seddexaad ahina waxay saamigalka seddexaad $u$ tahay,
a, iyo b oo horsiimadaas ah.

> Astaamaha saamigalka

1. Haddii afar xaddi ay saamigal yihiln, taranta tiro sin waxay le'eg tahay taranta cidhifyada, taasu waxay tahay haddif $a / b=c / d$ markaa $a d=b c$

Caddayn
$a / b=c / d$ jajabka ay $u$ dhigan tahay waxa aynu kaga beddeli innagoo labada dhinac ee isleegta ku dhufanna hooseeyaha ugu yar ee ay wadaagaan, $\infty$ ah $b d: b d a / b=c / d$ bd $=a d=b c$.
2. Haddii taranta laba xaddi leeg tahay taranta laba xaddi oo kale labada lammaane mid ahaan waxallaga dhigi karaa tiro sinta ka kalena cidhifyada samigal, taasi waxay tahay, haddif $x y=t q$ markaa $y / t=q / x$.

## Caddeyn: $\quad x y=t q$

Waxaynu kaashan dhardhaarka qaybta innagoo u qaybinayna labada dhinac ee isleegta taran seddexaad oo ka timi xaddi taranta kowaad ah 1 yo xaddi taranta labaad ah sida 1 xt.

## Markaa $\frac{x y}{x t}=\frac{t q}{x t}$

$\therefore \frac{y}{t}=\frac{q}{x}$, haddaba tan waxa suura gala afar samigal kuwaasoo ah:

$$
\begin{aligned}
& \text { 1. } \frac{x}{t}=\frac{q}{y} \text { ama } \frac{y}{t}=\frac{q}{x} \\
& \text { 2. } \frac{t}{x}=\frac{y}{q} \text { ama } \frac{t}{y}=\frac{x}{q}
\end{aligned}
$$

Ta hore $x$ iyo $y$ waa cidhifyo $t$ iyo $q$ waa tiro sin, ta danbena $x$ iyo $y$ waa tiro sin $t$ lyo $q$ waa cidhifyo.
3. Haddii (horradka) saamigal ay isleeg yihiln (gadaaleeyuhuna) waa isleeg yihiln. Taasi waxay tahay, haddii
$\mathrm{a}=\mathrm{c} \infty \mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$ markaa $\mathrm{b}=\mathrm{d}$.
Caddeyn: Astaantil (1aad $a d=b c$ ) $u$ qaybi $a=c: d=b$.
4. Haddil gadaaleeyaha saamigal ay isleeg yihiin horradyaduna way isleeg yihiln taasoo ah haddil $y=w 00 \frac{x}{y}=\frac{r}{w}$,
markaa $X=r, \quad$ (Caddayntu waa til seddexaad oo kale) $X=R$.
5. Haddii afar xaddi ay saamigal yihiin talantaalina waa ku saamigal. Taasu waxay tahay haddli $a / b=c / d$ markaa $a / c=b / d$.

Caddeyn: Astaant if 1aad ad $=$ bc. Labada dhinac ba u qayb $\mathrm{dc}:$. $a / c=b / d$, markan waxa aynu tallantaalli u qornay labada tiro sin, haddaba sidaa oo kale haddii aynu u talantaalli u qomo cidhifyada waxa aynu dilri saamigalkan (d/bue/h
6. Haddii afar xaddi ay saamigal yihiln isweydaar ahaanna waa $k u$ saami gal. Haddii $a / b=c / d$, markaa $b / a=d / c$, Caddeyn: Astaantil laad be $=$ ad, labada dhinac ba $u$ qaybi ac. Markaa waxa aynu helaynaa saamigalka $b / a=d / c$.
7. Haddii afar xaddi ay saamigalsan yihiin isugoynna waa ku saamigal. Taasi waxay tahay haddil $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$ markaa
$\frac{a+b}{b}=\frac{c+d}{d}$.
Caddeyn: $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$ labada dhinacba $\{u$ gee sidan $a / b+1=c / d+1$. Marka aynnu fududaynona

$$
\text { waxaynu hell sidan: } \frac{a+b}{b}=\frac{c+d}{d}
$$

8. Haddil afar xaddi ay saamigal yihiin qayb ama kala go'yna waa ku saamigal. Haddil $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$.
Markaa $\frac{a-b}{b}=\frac{c-d}{d}$
Caddeyn: $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}$, labada dhinacba kagoo 1 Sidaan $\mathrm{a} / \mathrm{b}-1=\mathrm{c} / \mathrm{d}-1$, fududayntu waxay nogon sidan $\frac{a-b}{b}=\frac{c-d}{d}$
9. Haddil afar xaddi saamigal yihiin, isugayn iyo kala goyna waa ku samigal.

Haddil $a / b=c / d$, markaa $\frac{a+b}{a-b}=\frac{c+d}{c-d}$
Caddayn: (7) u qaybi (8)
10. Haddif $a / b=c / d=e / f=g / h$, marka

$$
\frac{a+c+e+q}{b+c+f+f}
$$

## Caddayn

$$
b+d+f+f
$$

$$
a s+(1) a=b=c / d=e / f=g / h=r
$$

dr, $g=h r$

1sirayn : $a+c+e+g=r(b+d+f+h)$
Isuqaybin: $\frac{a+c+e+q}{b+d+f+h}=r$
$b+d+f+h$
Isku beddelid: $\frac{a+c+e+g}{b+d+f+h} ; a / b$ $b+d+f+h$
11. Haddil seddex tibixood ee hal saamigal sida ay u kala horreeyaan $u$ leeg yihiin seddexda tibixood ee saamigal kale, tibixaha afraadna way isloeg yihiln tasi waxay tahay haddif $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d} 1$ yo $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{e}$, markaa $\mathrm{d}=0$
Caddeyn : Ast. (1) ad a bc
$a e=b c$
Markaa ad mae
Qaybahaan $d=e$.

[^0]-130 -

## SAAMIGALYADA KU JIRA SEDDEXAGLLO

Xarrifq barbarro $u$ ah hal dhinac ee seddexagal.

-aco man extive

- 04 4.4.0.avuah

Shaxanadan haddii aynu dhinacyada silno dhereradaa waxa aynu samayn karnaa saamigalyadan.

$$
\text { A. } \begin{array}{rlr}
\frac{y}{2}=3 / 6, \frac{h}{=}=2 / 6, & \text { B. } \frac{u}{t} & =\frac{x}{y}, \\
\frac{1+2}{2}=\frac{3+6}{6}, & \frac{t}{u} & =\frac{y}{x} \\
\frac{1+2}{1}=\frac{3+6}{3}, & \frac{b}{t} & =\frac{a}{y}, \\
\frac{b}{u} & =\frac{a}{x}, \\
\frac{b}{a} & =\frac{t}{y} \\
\frac{b}{a} & =\frac{u}{x} .
\end{array}
$$

U gaadasho I: Xarriiqa barbarro 1 a ah hal dhinac ee seddexagal jarayana labada dhinac ee kale wuxuu u qaybiyad dhinacyadaa saamigal shaan.

Odhaahda ah: Wuxuu u qaybiyaa dhinacyadaa saamigal ahaan, waxay tahay (in saamiyada (ratios) ee dhererad xarriljimaha isku aada ee labada dhinac ay

TUSAALE I: $\triangle \mathrm{ka} \mathrm{ABC}, \mathrm{DE} / / \mathrm{AB}$.
Haddii $C A=10, C D=7$
$C E=9$, Raadi CB
FURPURIS: U qaado dhererka CB X


TUSAALE II: $\triangle \mathrm{ka} \mathrm{ABC}, \mathrm{DE} / / \mathrm{AB}$, haddii $C A=8$,
$C D=5$,
$C B=10$,
Raadi CB.

FURPURIS: U qaado dhererka EB, X
Markaa $\frac{10-x}{10}=\frac{5}{8}$
$\therefore x=\frac{-30}{-8}$ ama $3 \quad \frac{3}{4}$
U qaadasho II: Haddif xarriiq u qaybiyo laba dhinac ee seddexagal saamigalsanaanhwaa utbarbarroadh:? dhinaca seddexaad.

TUSAALE:

$$
\triangle{ }^{k} a_{A B C}, A C=7, D C=5, B C=10.5
$$

$$
\mathrm{EC}=7.5 ; \mathrm{DE} / / \mathrm{AB} \text { ? }
$$

PURFURIS:

$\therefore D E / / A B$ (U qaadeshadii labaad).

## DARIIQOOYINKA GUUD

1. Markaad caddaynaysid in xarriijimo xarrilqiaylsaamigalsan yihiin, tus in ay yihiin xarriijimo ku:yáal laba dhinac ee seddexagal oo u sameeyay xarriiq barbarro la ah dhinaca seddexaadaoo jarayana labada-dhinac-
2. Markaad rabtid in aad caddaysid in laba xarriiq ay barbarro yihiin, caddee in uu hal xarriiq yahay dhinac seddexagal ka kalena uu u qaybinayo labada dhinac 0 soo hadhay ee seddexagalka xarriijimo samigal ah.

TUSAALE: : Tusaalahan iyo layliga soo socdaba waxa aynu kaashan astaamihil samigalka .

1. Raadi saamigalka afraad ee 2, 6 iyo 3 oo 100 qoray horsiimadaa.

Furfuris: Marka aynu $u$ bixino ka afraad $x$, afarta tibixood ee saamigalku waxay yihin $2,6,3$, iyo $\times$ sida ay u kala horeeyaan.

Markaa waxa aynu u qoray sidan $2 / 6=3 / x$, u diid.jajab markaa waxay noqon sidan:
$2 x=18$
$x=9 \quad$ saamigalka afraad wuxuu yahay 9.
2. Raadi tiro sinta saamigalka $u$ dhexeeya 8 iyo 2 .

FURFURIS: Weydiinta waxa aynu ka garan in ay cidhifyada saamigalku yihiln 8 iyo 2, markaa aan ku magacaawno tiros ste samigalka $x$. Taas 00 aynu $u$ qori karno sidan:
$8 / x=x / 2=x^{2}=16, x= \pm 4$.
LAYLI
Layliyada $1-6$ sheeg astaamaha saamigalka aynu kaashans)

1. Haddi1 $3 x=4 y$, markaa $x / y=4 / 3$.
2. Haddil $24 a=5 / \mathrm{b}$, markaa $\frac{2+a}{a}=\frac{5+b}{b}$
3. Haddii $\mathrm{a} / \mathrm{b}=3 / 4$, markaa $4 \mathrm{a}=3 \mathrm{~b}$.
4. Haddi1 $7 / 8=t / q$, markaa $8 / 7=q / t$.
5. Hadd11 $x / y=\frac{w}{t}$, markaa, $\frac{x+y}{x-y}=\frac{w+t}{w-t}$
6. Haddil $a / b=x / y$, markaa $y / b=x / a$
7. Raadi qiimaha $x$ ee ku jira saamigaladan soo socda:
a) $x / 8=\frac{1}{2}$,
(b) $15 / x=3 / 4$,
c) $2: 3=x: 9$, (d) $4: 5:: 16: x$
e) $a / b=c / x$
8. Lay 11
9. Talantaall ahaan ku samee saamigalka kale:.
a) $4 / 5=8 / 10$, b) $a / 2=b / 3$
c) $\frac{x+2}{5}=\frac{y+5}{3}$
d) $\frac{a-3}{b+3}=2 / 3$
e) $2 / L=8 / 4$.
10. Isugayn ku samee saamigalka kale:.
a) $a / 4=\frac{12}{24}$,
b) $a / 5=3 / 6$
c) $2 / x=4 / 3$.
11. Raadi saamiga $\times$ ilaa $Y$
a) $3 x=4 y \quad$ b) $4 x=y$
c) $\frac{a x}{b}=y / d$, d) $y / x=4 / 5$
e) $x / 2=y / 3$, f) $\frac{3 y}{5 x}=2 / 3$
12. Raadi tiro sinza saamigalka ee $u$ dhexaysa
a) 16 iyo 25 , b) 9 iyo 4
c) 81 yo 2, d) 25 iyo 1 .
e) $4 a^{2}$ iyo $166^{2}$, f) 3 a 1 yo $27 a^{3}$
13. Hawraarahan soo socda kuweebaa run ah, kuweebaase been ah.
a) $t / q$ waa saamigal
b) $a / b=b / c ; c$ waa samigalka afraad ee 1laa a iyo b.
c) $b / a=c / b, b$ waa tiro sinta saamigalka ilaa a iyo $c$.
d) $3=5 / 7$ waa run.
14. Taranadan isleeg ee soo socda ka samee inta aad kari karto ee saamigalyo ah.
a) $8 \times 3=2 \times 12$, b) 8 $=3 \times 16$ c) $\mathrm{tq}=\mathrm{rs}$.

## LAYLI

1. Kaasho shaxanka midigta ah $t / / q$, sheeg isleegyadan lammaan kuwa runta ah.

a) Haddii $x / y=\frac{1}{2}$ markaa $r / w=3 / 6$
b) Haddi1 $x / y=6 / 7$, markaa $r / w=3 / 5$
t) Haddil $x / y=t$, markaa $r / w=m / \mathrm{m}^{2}$
j) Haddi1 $x / y=\frac{m t}{a} / b$, markaa $r / w=a^{2} / b^{2}$
2. Layliyada $b-x$ u tixraac shaxanka midigta kaas oo DE // AB.

b. Haddil $E B=2, E C=5$
$A D=3$; Raadi $C D$.
t. Hadd11 $\mathrm{AC}=12, \mathrm{BC}=20, E B=15$, Raadi AD, iyo DC
3. Haddil $A D=\frac{1}{2} C D$, raadi saamida (ratio) CE llaa EB.
x. Haddif $A C=10, A D=2, E B=3$,

LAYLI Raadi BC iyo CE.
3. Shaxanka midigta ah, haddil $\mathrm{DE} / / \mathrm{BC}$.
Hadd11 $A B=6$,
$A D=2, E C=2 \frac{1}{\gamma}$
Raadi dhererka $A E$.

4. Shaxankan kale ee midigta,
haddil
$A C=15, B C=6$, A
$A E=25, A D=15$ $B D / /$ ma u tahay CE?


ARAGTIIN: Kala badhaha xagasha seddexagal wuxuu u qaybiyaa dhinaca ka soo horjeeda xarrilijimo saamigal $u$ ah dhinacyada deriska ah.


SIIN: $\triangle$ ka $A B C$
oo CDay kala
badhayso \& C ,
kana jarayso AB barta $D$.

## Caddee in $\frac{A D}{D B}=\frac{A C}{C B}$

Saafid: Si aynu u kaashano u qaadashooyinkif hore, salka $\Delta$ ka kale barbarro uga dhig $C D$.

## Caddayn

## Hawraar

1. Sawir $A E / / C D$ fidina $B C$
2. $\triangle$ ka $A B E, \frac{A D}{D B}=\frac{E C}{C B}$
3. $L 1=\mathbb{L}^{2}$

Mavgea
4. $\mathbb{1}^{2}=\mathbb{L}^{3}$
$5 \cdot \angle 2=\measuredangle 4$

## Garaadayn

1. Dhisme
2. Haddii xarrifq saamigal ahaan u qaybiyo laba dhinac ee $\Delta$,
waacu// dhinaca 3aad.
3. Siln, CD waxay kala badhaa \& ACB

## .9ataata!n

4. Xagllo-gudeedyo talantaali ah ee xarrilqyo // ah.
5. Xagllo-gudboon ee xarrilqyo
6. $\underbrace{3}=1^{4}$
7. $E C=A C$
8. $: \frac{A D}{D B}=\frac{A C}{C B}$
9. Dhardhaarka isku beddelidda.
10. $\Delta$, dhínacyada ka soo horjeeda xagllo = way $=$
11. SIda (6)

ARAGTIIN: Kala badhaha xagal-debadeed ee seddexagal isma le'eka ahi, wuxuu debeddaa ka qaybiyaa dhinaca ka soo horjeeda, waxaanu $u$ qaybiyaa xarrifijimo saamigal $u$ ah dhinacyada deriska ah.


Siin: $\triangle$ ka ABC 00 leh $\{$ debadeedka $\leq$ ACE waxa kala badha $C D, C D$ waxay ka jartaa BA oo la fidiyay Barta $D$.

Caddee In $\frac{D B}{D A}=\frac{C B}{C A}$
Saafid:Sawir xarriiq // u ah salka $C D$ ee $\triangle \mathrm{ka}$ BCD

Caddayn
Hawraar

## Garaadayn

1. Sawir $A F / / C D$
2. $\frac{D B}{D A}=\frac{C B}{C F}$
3. $\mathbb{L}^{1}=\mathbb{L}^{2}$
4. Dhisme
5. Haddii xarrifq //u yahay hal dhinac ee $\Delta$, jarayana labada dhinac ee kale wuxuu u qaybiyaa dhinacyada saamigal ahaan
6. Sifn, $C D$ waxay kala badhaa $\Varangle$ ACE.
```
4. \(\mathbb{L}^{1}=1^{3}\)
5. \(1^{2}=L^{4}\)
6. \(: \mathbb{L}^{3}=4\)
7. \(\therefore C A=C F\)
4. Xagllo-gudboon ee xarrilqyo //
ah.
5. Xagilo-gudeedyo ee xarrifqyo // ah.
6. Dhardhaarka isku beddelidda.
7. \(\triangle\) dhinacyada ka soo horjeeda \(\& \mathrm{LO}=\) way \(=\)
8. Sida (6)

Tusaalooyinkan waxa aynu u kaashan labadil aragtiimoodeee aynu 300 dhaafnay.

FURFURIS: Weydiintaa waxa aynu ku furfuri laba dariiqo.
DARIIQADA HORE: Aan \(u\) qaadano dhererka DC in \(u\) yahay \(X\)
: \(A D=(8-x)\); markaa haddii aynu kaashan aragtidii hore waxa ay noqon sidan:
\[
\frac{x}{8-x}=6 / 4 \quad: 4 x=48-6 x
\]
\[
\therefore 10 x=48
\]
\[
\therefore \quad x=4.8
\]
\[
\text { Markaa DC }=4.8=x
\]

\section*{DARIIQADA LABAAD}

Waxa aynu \(u\) qaadan in \(A D=4 x\) ay derisna \(u\) tahay \(A B\). Lyo \(D C=6 x\), derisna \(u\) eahay \(B C\).
- 139 -
\[
\begin{aligned}
\therefore & 4 x+6 x=8 \\
& 10 x=8 \\
\text { \&. } & x=0.8 \\
\therefore & D C=6 x=4.8
\end{aligned}
\]

TUSAALE II: Shaxanka midigta, DB waxay kala badhaa xagal-debadeedka
1 EBA ee \(\triangle k a \operatorname{ABC}\).
Haddii \(A B=6, B C=10\), \(A C=12\), raadi \(D A\).

FURFURIS: \(U\) qaado \(X=D A\)

\section*{Markaa \(D C=x+12\)}

Marka aynu kaashano aragtidil labaad
waxa ay noqon \(=\) sidan: \(\frac{D A}{D C}=\frac{A B}{B C} . K u\) beddel : \(\frac{X}{X+12}=\frac{6}{10}\)
\[
\text { Markaa, } 10 x=6 x+72 ; 4 x=72
\]
\[
D A=x=18
\]

\section*{Layli}
1. \(\triangle \mathrm{ka} A B C, B D\) waxay kala badhaa \(\leq B\). \(\operatorname{Hadd} 11 A B=4, B C=8\), \(A C=7\), raadı \(D C\).
2. \(\triangle \mathrm{ka} A B C, A D\) waxay kala badhaa \& A .

Haddi1 \(B C=12, B D=44 / 5\),
\(A B=6\), raadi \(A C\) ?
3. Dhererka dhinacyada \(\triangle\) ka ABC waa 12 hiish, 10 hilsh iyo 8 hilsh. Haddii dhinaca u dheer laga qaybiyo debedda, Lyadoo la kala badhayo xagal-debedeedda ka soo horjeedda, raadi dhererka xarrilijinteeda debedda xigta.
4. \(\Delta\) ka sec. xateilan Cu un- suva ou janer
iyo barta \(D\) oo ku tala dhinaca \(A B\) markaa \(\frac{A D}{B D}=\frac{A C}{B C}\). Caddee in CD ay kala badho \(\& C\)
\(\therefore\). Binlix eeg shaxanka aragtilinka labaad.

\section*{SEDDEXAGALLO ISU EG}

Buuggil kowad waxa aynu ku soo qaadanay isu ekaanshaha laba seddexagal, wuxuu yahay, 1 yo aragtiimo laba seddexagal ka dhigl kara qaar isu eg. Hase-yeeshee midnaba maynaan caddeynin, narkaa iminka waxa aynu unimi caddaynta aragtiimo ka dhigay laba seddexagal laba isu eg.

Haddaba haddii seddexagal noqday geesoole seddexagallo isu eq waxa aynu ogayn in ay ahaayeen kuwa dhinacyadooda iskuaadari
 guud ahaan ku saabsan geesoolayaashana waxa aynu ku aragnay in haddil labadaa xaladood mid qudhi jirto in aanay kufilayn isu ekaanshaha geesoolayaal. Hase-yeeshe arrin khaas ah ee seddexagallo waxa aynu caddeyn kari, haddii xaaladahaa midi jirto ama ay run tahay in seddexagalladu isu eg yihiin.

ARAGTIIN: Haddii dhinacyada laba seddex-xagal ay saamigalsan yihiin seddexagaladu way isu eg yihiin.

SIIN: \(\triangle\) lada \(A B C\) iyo \(A^{1} B^{1} C^{1} 00 a / a^{1}=b / b^{1}=c / c^{1}\)
Caddee in \(\triangle \mathrm{ka} A B C \cong \triangle \mathrm{ka} A^{1} B^{1} C^{1}\)
Salif: \(\triangle A B C\) dushilsa ka dhis \(\Delta\), dabeedna caddee in \(\triangle\) kaa dhismay uu \(u\) eg yahay \(\triangle A B C\) kuna sargo'an yahay \(\triangle A^{1} B^{1} C^{1}\).

\section*{Caddayn}

\section*{Hawraar \\ Garaadayn}
1. \(b\) dusheeda ka samee \(C D=b^{1}\)
a dusheedana ka samee
\(\mathrm{CE}=\mathrm{a}^{1}\), sawir DE kuna
magacaaw x
1. Dhisme
2. \(\mathrm{a} / \mathrm{a}^{1}=\mathrm{b} / \mathrm{b}^{1}\)
3. \(\& c=\underline{c} c\)
2. Slin
4. \(\triangle \mathrm{ka} \mathrm{ABC}\)
\(\triangle \mathrm{ka}\) DEC
3. Ka dhaxeeye.
4. Haddil laba \(\Delta \not \underset{\gamma}{ }\) sha midi ay \(=\npreceq\) sha \(\triangle\) ka kale dhinacyada xaghahar semecyaana ay saamigalsan yihiln \(\Delta\) ladu way \(\sim\).
\(\qquad\)
5. Dhinacyada isku aada ee \(\Delta \boldsymbol{N}\) way saamigalsan yihiln.
6. Siln
7. Haddil seddex xaddi ee saamigal ay \(=\) seddex xaddi ee saamigal kale sida ay u kala horeeyaan markaa xaddiyada 4 aad way \(=\).
8. dh.dh.dh.
9. Xaglahoodu way isleeg yiniin.

\section*{ARAGIIIN:}
- 143 -

Laba seddexagal oo dhinacyadoodu sida ay \(u\) kala horeeyaan barbarro yihiin, way isu eg yihiln.

\section*{numat:}

Siln: \(\Delta\) ka ABC iyo \(\Delta\) ka \(A^{1} B^{1} C^{1}\) oo ay dhinacyadoodu // Caddee in \(\Delta\) ka \(A B C \sim \Delta\) ka \(A^{1} B^{1} C^{1}\)
Saafid: Raadi xagla lamman oo gudboon ee xarriiqyo // ah iyo xaglo-gudeed talantaalli ah oo lamman ee xarrifqyo // ah dabeedna isku beddel.

\section*{Caddayn}

\section*{Hawraar}

Garaadayn
1. Fldi \(A C\) si ay ugu la kulanto \(A^{1} B^{1}\)
barta g. Fidina \(B C\) si ay
ugu la kuianto
1. Dhsme.
2. \(\dot{x}^{A}={\underset{x}{1}}^{1} A^{1} B^{1}\) Barta \(D_{2}\).
3. \(41=4 B^{1}\)
\(\underset{\sim}{ }\) LLO gudeed talantaalli ah ee xarrilqyo // ah.
3. \(\Varangle\) Li0-gudboon ee xarriliqyo // ah.
4. \(: \underset{X}{x} A=\underline{\not Y} B^{1}\)
4. Isku beddel.
5. Sidaas oo kale \(\angle B==\)
\(\not \psi^{2}=4 A^{1}\)
6. \(\underset{A^{1}}{\Delta B^{1} C^{1}} \sim \Delta k a\)
6. 2 xaglood ee \(\Delta=2 \times\) xaglood ee \(\triangle\) ka kale.

ARAGTIIN: Laba seddexagal oo dhinacyadoodu sida ay u kala horreeyaan isku qotomaan way isu eg yihiin.

SIIN: \(\triangle\) ka ABC iyo \(\triangle\) ka A \(\mathrm{B}^{1} \mathrm{C}^{1}\) oo dhinacyadoodu sida ay u kalahoreeyaan way isku / maan.

Caddee in \(\triangle\) ka AECC \(\sim \Delta\) ka \(A^{1} B^{1} C\)
Saafid: Radi laba lammaane 00 xagto isleeg ah.

Caddayn:
Hawraar
Garaadayn
1. Fidi \(A^{1} B^{1} 3 \mathrm{si}\)
1. Dhisme
ay kula kulanto \(C B\) barta \(D\) lyo \(B^{1} C^{1}\) oo kula kulmaysa AC barta \(\varepsilon\)
2. \(4 \operatorname{Lin}^{\circ}+4 D+4 C+4 E\)
2. L laha afargeesoole \(=4\) xaglood oo quman.
3. Hase-yeeshe \(4 \mathrm{D}+4 \mathrm{E}=180^{\circ}\) 3. 4 kastaa \(=4\) quman, dabeedna isugayn.
4. \(: 141+\& c=180\)
4. Kala gooyn.
5. Hase-yeeshe \(\leq 1+\left\{B^{1}=180^{\circ}\right.\)
5. Labadoodu waxay sameeyaan \(\&\) toosan.
6. \(: \& B^{1}=\& C\)

Gacaejev
7. Markaad \(C^{1} A^{1} u\) fidisid ilaa iyo \(A^{B}\) waxa la caddayn karaa in \(\& C^{1}=\& A\).

Bi. \(\triangle \mathrm{ka} \quad \mathrm{ABC} \sim \triangle \mathrm{ka} \mathrm{A}^{1} \mathrm{~B}^{1} C^{1}\)
8. Laba xaglood ee \(\Delta=2\) xaglood ee \(\Delta\) ka kale.
ARAGTIIN: Haddii xaglaha laba seddexagal ay isleeg yihiin seddexagalladu way isu eg yihiin.

\(\operatorname{SIIN} \mathbb{L}^{1} A B C\) iyo \(A^{1} B^{1} C^{1} 00 \leq A=\& A^{1} ; \leq B^{1}=\mathscr{C} B^{1}\) \(\Delta \cdot C=\left\{c^{1}\right.\).
Caddee in : \(\triangle\) ka \(A B C \sim \Delta\) ka \(A^{1} B^{1} C^{1}\)
Saafid:Haddiiba \(\angle-1 u=\), dulsaar \(\triangle\)
\(\Delta\) ka kale, dabeedna caddee in salka mid u // u yahay salka Lka kale.

Caddayn
Hawraar
Garaadayn
1. Dulsaar \(\triangle k a A^{1} B^{1} \quad C^{1}\)
1. Shaxan waa in la rari karaa. \(\triangle k a \operatorname{ABC}\) si \(\& C^{1} u\) dul dacdo \(\leq \leq\) sha leeg ee \(\leq C\), \(b^{1}\) ha dul fuusho \(b, a^{1}\) ha dul fuusho a

\section*{2. \(\underset{\sim}{ } A=\underset{A^{1}}{ }\)}
3. \(: c^{1} / / C\)
raviaser
4. :,\(b / b^{1}=a / a^{1}\)

\section*{2. Siin}
3. Maddif laba xarriiq ay la sameeyaan xaglo-gudboon 00 \(=\) gudbane, xarriiqyadu waa //.

\section*{Gamaadara}
4. Haddil xarriiq laga sawiro qumatiga laba dhinac \(0 \circ \Delta\) ta 3 xaadna \(u / / u\) yahay. Markaa saamigal ahaan buu \(u\) qaybiyaa dhinacyada.
5. Siddil oo kale haddil aad dul saartid \(\Delta^{k a} A^{1} B^{1} C^{1} \Delta\) ka \(A B C\) si \(\& B^{1}\) a, \(y\) u dul thacdo \(X, B, a^{1}\) ay fuusho a markaa waxa la caddayn karaa in \(a / a^{1}=c / c^{1}\)
6. \(:, a / a^{1}=b / b^{1}=c / c^{1}\)
6. Dhardhaarka isku beddeliđda.
7. \(: \Delta\) ka \(A B C \sim \Delta k a A^{1} B^{1} C^{1}\). 7. Xaglahooda isku aadaa way = dhinacyadooda isku aadaana way saamigalsan yihiln.

Xigasho: Haddii laba xaglood ee \(\Delta\) ay leeg yihiin laba xaglood ee \(\Delta\) kale seddexagaladu way isu eg yihiin.

Xigasho: Xarrilqa qumatiga u jara laba dhinac ee dhinaca kalana u barbarro ahi wuxu ka sameeyaa seddexagalkif hore mid u eg.

\section*{LAYLI .}
1. Caddee in laba seddexagale oo labaale ahi ay isu eg yihilin haddii xagal saleedka midi u leeg yahay xagal saleedka midka kale.
1.

Sifn:
Koorta ABCD,
oo xagla-gooyayaashu
ay iska farayaan barta E.
Caddee in \(\Delta^{k a}\) DCE \(\sim \Delta^{k a}\) ABE.

\section*{Layu:}
3. Siin: Laydiga \(A B C D\) oo \(T\) ay tahay bar ku taal xaglagooyaha \(\mathrm{AC}, \mathrm{TQ} \perp \mathrm{AC}\).

Caddee in:
\(\triangle\) ka ATQ \(\sim \Delta\) ka ACD.

4. \(A B\) waa shakaalka \(\triangle\) ka quman ee \(A B C\); xarriiq / uga ah \(A B\) barta A wuxuu kala kulmay \(B C\) oo la fidiyay barta \(T\), xarriiq/ uga ah AB barta \(B\) wuxuu kula kulmay isna \(A C\) oo la fidiyay barta Q. Caddee in \(\triangle\) ka \(A B T \sim \triangle k a B C Q\).

ARAGTIIN: Haddii xagal \(\Delta \mathrm{L}\) ay leeg tahay xagasha ku aada ee \(\Delta\) kale oo dhinacyada xaglकara sameeyana ay samigalsan yihiin marka seddexagaladu way isu eg yihiln.

Caddee in \(\triangle k a \operatorname{ABC} \sim \Delta k a A^{1} B^{1} C^{1}\)
Saaf1d: Haddiiba \({ }^{2} \not \underset{\sim}{ } 10=\), dulsaar \(\triangle\) \(\Delta\) ka kale, debeed caddee in salka \(\Delta\) in \(u / / u\) yahay salka \(\Delta\) ka kale.

\section*{Caddayn}
1. Dulsaar \(\triangle\) ka \(A^{1} B^{1} C^{1}\)
\(\triangle\) ka \(A B C\) si \(\propto c^{1}\) ay
u dul dhacdo \(\neq \mathrm{c}, \mathrm{b}^{1}\) ay \(u\)
fuusho \(b a^{1}\) ay \(u\) fuusho \(a\).
2. \(a / a^{1}=b / b^{1}\).

\section*{2. Siin.}

41:8:
3. \(: c^{1} / / c\)
3. Haddil xarrilq saamigal ahaan uu \(u\), q qaybiyo laba dhinac oo seddexagal waa \(u\) //ro dhinaca 3 xaadna.
4. : \(\underset{\sim}{x} A=\not A^{1}\),
\(\underset{\sim}{B}=B^{1}\)
4. Xagla-gudboon ee xarrilqyo // ah.
5. \(: \Delta k a \operatorname{ABC} \sim \Delta k a\) \(A^{1} B^{1} C^{1}\)
5. Xaglahooda oo idili way \(=\).

\section*{LAYLI}
1. Siin: \(\triangle\) ka \(A B C\) lehna \(D E A D=2, D C=4, B E=5\), \(C E=3\) caddee in \(\triangle\) ka \(A B C \sim \Delta\) ka \(C D E\)

2. Caddee in Seddexagalka ka sameysma marka laysku xidho bar-badhtameedyada dhinacyada \(\Delta^{k a} A B C\) inu \(u\) eg yahay \(\Delta\) ka \(A B C\).
3. Caddee in laba seddexagal oo labaale ahi ay isu eg yihiin haddil xagal geeska midi u leeg yahay xagal geeska ka kale.
4. Siln:
\(A B \perp C D ;\)
\(C B=4\),
\(A B=6\)

\(B D=9\) Caddee in
\(\triangle k a A B C \sim \Delta^{k a ~ A B D}\)
5. Shaxanka midigta \(A C . E C=B C . O D\)

Caddee in \(\Delta\) ka ABC \(\sim \Delta^{k a}\)
CDE.

LaY:L.:

7. Barta 0 kana tala seddexagalka \(A B C\) waxa lagu \(x\) idhay geesaha seddexagalka. Waxa kaloo laysku xidhay bar-badh tameedyada \(\mathrm{A}^{1}, \mathrm{~B}^{1}\), iyo \(\mathrm{C}^{1}\) ee \(O \mathrm{~A}, \mathrm{OB}\) 1yo \(O C\). Caddee in \(\Delta\) ka \(A^{1} B^{1} C^{1} \sim \Delta k a A B C\).
8. Boqonada \(A B\) iyo \(C D\) ee goobo waxay iska jaraan barta E. Caddee in \(\frac{C E}{E B}=\frac{A E}{E D}\)
9. \(\triangle\) ka \(A B C\) joogga \(A M\) iyo joogga \(B N\) waxay iska jarayaan barta T. Caddee in \(\frac{T N}{T M}=\frac{A N}{B M}\)
10. Seddexagalka quman ee \(A B C\), xagasha \(C\) waa xagasha quman, \(D\) waa bar \(k u\) taalla \(A C, D E _A B\). Caddee in \(\frac{E D}{B C}=\frac{A D}{A B}\)
11. Seddexagalka \(A B C\) waxa lagu dhexmeerlyay goobo; \(A E\) waa dhexroorka goobada \(A D\) na waa joogga seddexagalko Caddee in \(A B: A E=B D: C E\).
12. AB wáa dhexroorka goobo, BCna waa taanjentka, AC waxay kula kylantaa goobada barta \(D\). Caddee in \(\bar{A} \bar{S}=A C \cdot A D\).
13. Shaxanka midigta, \(E A \perp A B ; E D-1 A C\)
\(C B-\angle A B\).
caddee in \(\frac{C B}{A B}=\frac{A D}{E D}\)

SEDDEXAGALKA \(30^{\circ}-60^{\circ}-90^{\circ} \mathrm{ah}\).
Wેaxaynu soo ogaannay in dhinacyada seddexagalka quman la soo saari karo markaad haysatid laba lugood ama lug iyo shakaal, adigoo adeegsanaaya aragtiinka (Baytogaras) hasa yeeshee markead seddexagalka quman yahay aad haysatidna hal lug ama shakal oo qudha uma adeegan kartid aragtiinka (Bayt.). Hase-ahaatee waxaynu adeegsanaynaa taba kale oo ah tan xigashadanu ina leedahay,

\section*{XIGASHO}

Seddexagalada \(30^{\circ}-60^{\circ}-90^{\circ}\), shakaalku waa labanlaabka lugta ka soo horjeedda \(\& 30^{\circ}\) ah, lugta ka soo horjeedda xagasha \(60^{\circ}\) ahina waxay le'egtahay lugta ka soo horjeedda xagasha \(30^{\circ}\) ah oo lagu dhuftay xididka laba jibaar ee seddex \(\sqrt{3}\).

\section*{m=}

Shaxanka midigtu waa seddex-xagalkabaBCoooeseddexlenah.
Sidaa darteed dhinac walba waxaynu siln karnaa doorsome isku mid ah.

Sida shaxanku ku tusaayo waad raacin karta wehellye sida 2x, 3x iwm.

\(I\)

II
ku noqo seddexagalka \(A B C, A B=2 X=B C=A C\) ka soo jeex joogg geeska \(B\), Jooggaasuna ha badho xagasha \(\angle B\) iyo \(A C\), markaa gooni u qaado seddexagalka ABD, ogowna seddexagalka ABD waa mid quman dhl naca \(A D=X\). Markaa inagoo adeegsanayna aragtiinka Baysoogaraas \(\overline{B D}^{2}=\overline{A B}^{2}-A D^{2}\) markaa \(B D^{2}=4 X^{2}-x^{2}\)
\[
B D^{2}=3 x^{2}=B D=x \sqrt{3}
\]

U fiirso xidhildhka ka dhexeeya dhinacyada \(A B, B D A D\), \(A B=2 x, A D=x\) markaa \(A B\) waa labanlaabka \(A D\). \(B D\) waa \(A D 00\) lagu dhuftay \(\sqrt{3 \text {. }}\)

Gebageba ahaan isidani íwaa sida lagu helo thinacyada seddexagalka \(30^{\circ}-60^{\circ}-90^{\circ}\).
1. Markaad haysatid dhinaca ka soo horjeeda xagasha \(30^{\circ} \mathrm{ka}\) digiril ah.
a) Ku dhufo xiddidka laba jlbaaran ee seddex dhererka dhinaca ka soo horjeeda xagasha \(30^{\circ}\) ka digrii ah si aad \(u\) heshid dhinaca ka soo horjeeda xagasha \(60^{\circ}\) ah.
b) Si aad \(u\) heshid shakaalka ku dhufo 2 dhererka dhinaca ka soo horjeeda xagasha \(30^{\circ}\) ka digiril ah.
2. Markaad haysatid dhinaca eegaya xagasha \(60^{\circ} \mathrm{ka}\) digirif ah, si aad \(u\) heshid dhinaca ka soo horjeeda xagasha \(30^{\circ} \mathrm{ka}\) digrii ah.
a) U qaybi \(\sqrt{3}\) dhinaca eegaya xagasha \(60^{\circ} \mathrm{ka}\) digirif ah.
b). Markaad shakaalka rabtid, ku dhufo 2 dhererka dhinaca ka soo horjeeda xagasha \(30^{\circ}\) ka digril ah.
3. Marka lagu siiyo shakaalka.
a) U qaybi 2 shakaalka si aad \(u\) heshid dhinaca ka soo horjeeda xagasha \(30^{\circ} \mathrm{ka}\) digrii ah.
b) Ku dhufo \(\sqrt{3}\), dhinaca \(k a\) soo horjeeda xagasha \(30^{\circ} \mathrm{ka}\) digril ah, si aad \(u\) heshid dhinaca eegaya xagasha \(60^{\circ}\) ka digrii ah.

\section*{KIGASHO:}

Seddexagalka quman ee labaale ahi (\(\triangle\) a \(45^{\circ}-45^{\circ}-90^{\circ}\)). Shakaalku wuxuu leeg yahay labada lugood oo lagu dhuftay xiddidka laba jibaar ee laba \(\sqrt{2}\).

\section*{- 154 -}

Shaxanka midigta ka soo qaad in labada lugood ee is leegi midiba tahay x .

Markaa : \(A B^{2}=A C^{2}+B C^{2}\)
\[
A B^{2}=x^{2}+x^{2}
\]

\section*{\(\sqrt{A B^{2}}=\sqrt{2 x^{2}}\)
\(A B=x \sqrt{C}\)}

U filrso xidhildhka ka dhaxeeya shakaalka lyo lugaha.

Ogsoonowna in x u taagan tahay tira kasta oo ay x tahay madoorsoome.

\section*{GEBEGEBA AHAAN}

Sidani waa sida aad ku soo saari kartid dhinacyada seddexagalkt \(\left(45^{\circ}-45^{\circ}-90^{\circ}\right)\) kuna ogaan kartid xidhifdhka ka dhexeeya dhinacyada.
1. Markaad og tahay laba lugood oo isleeg mid ahaan ku dhufo xidlaka laba jibaaran ee laba si aad \(u\) heshid shakaalka.
2. Markaad ogtahay shakaalka u qaybi \(\sqrt{2}\) shakaalka si aad \(u\) heshid labada lugood ee isleeg mid ahaan.

\section*{LAYLI:}
1. Raadi xaglagooyaha laba jibaarare haddii dhiniciisu yahay 5 fuud.
2. Raadi lugaha seddexagalka \(30^{\circ}-60^{\circ}\) 1yo \(90^{\circ}\) se haddil shakaalkilsu yahay \(g^{\prime \prime}\).
3. Raadi xaglaqooyaha laydiga dhinacyadiisu yihiin \(8^{\prime}, 8^{\prime \prime}\)
4. Raadi dhinacyada seddexagal seddexlanah haddu jooggiisu yahay \(12^{\prime}\).
5. Haddil seddexagal quman 00 labaala ah shakaalkilsu yahay \({ }^{14^{\prime}}\) Raadi dhererka lugahilsa?
6. Soo saar wareegga seddexagalka \(30^{\circ}-60^{\circ}\) iyo \(90^{\circ}\) haddil dhinicilsa ka soo horjeeda \(\& 30^{\circ}\) ahi uu yahay \(8^{\prime}\) ?
7. Boqonbaa dhererkiisu yahay 48 hilsh, toban hilshna waxa u Jiraa xuddunta goobada. Raadi gacanka goobada?
8. Lugaha seddexagal labaale ahi mid waliba 34" , salkuna waa \(60^{\prime \prime}\). Raadi joogga salka ku taagan.

\section*{TIROOYINKA BAYSOGARAS}

Sida badan ba, marka la raadinaayo dhinacyada seddexagalka quman waxa raacaa xididka laba jibaar. Hayeeshee mararbaa jira ay dhinacyadoo idil abyoonayaal yihiln, mararka khaaska ahi halkan ayay ku muuqanayaan, ee waxa filcan in la xusuusnaado, badanaaba waxa lala kulmaa seddexagalada leh dhinacyada \(3,4,5\), ama \(5,12,13\) ama \(8 ; 15,17\) 1yo \(7,24,25\), ama dhufsanayaashooda ee kuwan rạayntooda uun ah.

Kooxahaa waxa 100 yaqaanaa tirooyinka (Baysogaras). Markan tirooyin badan 00 la mid ah waxa lagu soo saari karaa jidkan, (1) \(n, \frac{n^{2}-4}{4}, \frac{n^{2}+4}{4}\) markay \(n\) tahay tiro dhaban ahi ama
(2) \(n, \frac{n^{2}-1}{2}, \frac{n^{2}+1}{2}\) markay \(n\) tahay tiro kisi ah.

TUSAALE:
Bal eeg haddii 14= (dhaban)
\(n=14\)
\[
\begin{aligned}
& \frac{n^{2}-4}{4}=\frac{14^{2}-4}{4}=48 \\
& \frac{n^{2}+4}{4}=\frac{14^{2}+4}{4}=50
\end{aligned}
\]

Markay \(n\) tahay dhaban, dhinacyada seddexagalka quman waa \(14,48,50\).
2. Ha yeeshee haddii \(n\) tahay \(k i s 1\), ka soo qaad in ay tahay:11.
\[
\begin{aligned}
& n=11 \\
& \frac{n^{2}-1}{2}=\frac{11^{2}+1}{2} \\
&=60 \begin{array}{l}
\text { Haddana marka } n \text { tahay } k i s i, \\
\text { dhinacyada seddexagal qumani waa } \\
n^{2}-1
\end{array} \\
&=\frac{11^{2}+1}{2}=61
\end{aligned} \begin{aligned}
& 11,60,61 .
\end{aligned}
\]

LAYLI
Raadi dhinacyada seddexagalka quman adoo mar walba \(n\), ku beddelaya tirooyinkan, adeegsanayana labadil jed ee aad soo martay, kuna hubi jidka Baysogaras:
\[
1,2,4,3,5,13,17,7,15 \text {; }
\]

\section*{GEESOOLAYAAL}

Waa maxay geesoole?

Shaxanadan oo idlli waa geesoolayaal. Idilkoodna waa shaxanno oodan, shaxanno sallax ah, waxana ku wareegsan xarrilqyo toosan, waxaana lagu sawiri karaa dulfidsan. Geesoolayaasha xagal guudeedyadoodu ay ka yar yihiin \(180^{\circ}\) waxa la yidhaahdaa geesoolayaal tuur leh. Haddaba inkasta oo ay jiraan qaar kale waxa aynu ku koobnaan kuwa tuuraysan ama tuuzaha leh. Geesoolaha ugu fudud waxa la yidhaahdaa seddexagal, kaas 00 sidaad ogtahayba ay wadarta xagal gudeedilsu tahay \(180^{\circ}\).

Afar geesoole isna waa geesoole afar dhinac leh. Marka aynnu sawlrro xagllogooyaha \(A C\) shaxanka \(A B C D\) wuxuu \(u\) qaybsamay
laba seddexagal.

Haddil \(\angle D+\angle Y+\angle S=180^{\circ}\). Waayo? \(\angle B+\angle X+\angle W=180^{\circ}\) Waayo?

Haddaba waxa jirta haddii aynu xagllogudeedyada ABCD oo idil aynu isugayno waxa aynu heli sidan:
\[
\angle B+\angle D+(L Y+\angle X)+(\angle S+\angle w)=360^{\circ}
\]

\section*{\(\therefore \angle B+\angle D+\angle A \angle C=360^{\circ}\)}

Geesoolaha shanta dhinac leh waxa la yidhaa "shandhinac leh". Marka aynu samaynay xaglagooyayaasha AC lyo AD ee shaxanka ABCDE, imisa seddexagal baa samaysmaya?

Ma sheegi kartaa wadarta xagalgudeedyada geesoole shan dhinac leh? Eeg uun inta seddexagal ee uu ka samaysan yahay.

- 158 -

Geesoolaha \(11 x d a\) dhinac loh Isna waxa la yidhaahdaa lix dhinac leh. Xaglagooyayaasha \(A C, A D, A E\) ee shaxanka ABCDEF waxa ay inoo sameeyaan afar seddexagal. Waa imisa wadarta xagla gudeedyada \(1 i x\) dhinac leh.

Adigoo kaashanaaya falanqayntil hore iyo adoo samaysanaya washir ku habboon, dhamaystir tusahan.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Tirada dhínac- \\
yada geesoola- \\
ha
\end{tabular} & \begin{tabular}{l}
Tirada xagla- \\
gooyayaasha
\end{tabular} & \begin{tabular}{c}
Tirada Sed- \\
dexagalada
\end{tabular} & \begin{tabular}{c}
Wadarta xaglo- \\
gudeedyada iya- \\
goo xaglo quman \\
ah.
\end{tabular} \\
\hline 3 & 0 & 1 & 2 \\
4 & 1 & 2 & 4 \\
5 & - & - & - \\
6 & - & - & - \\
7 & - & - & - \\
8 & - & - & - \\
9 & - & - & - \\
10 & - & - & - \\
11 & - & - & - \\
12 & & - & - \\
\hline
\end{tabular}

Ma kuu muqqataa si gaar ah oo 100 raaci karo tusaha sare? Haddif geesooluhu uu leeyahay n dhinac, Imisa xaglogooye ayaa
 sheeg wadarta xagllo-gudeedyada geesoole \(n\) dhinac leh, kuna sheeg xagl1o-quman.

Markaad dhamaystiraysay tusihii hore amase aad ka jawaabaysay weydilmihil kale, waxa laga yaabaa talaabooyinkil aad qaaday in ay kuu hogaamiyeen Jawaabo sax ah ama suurogal ah, haseyeeshe kuma kalsoonaan karno.

Tusaala ahaan haddil aad is leedahay ka jawab weydiintan 300 socota maxaad odhan lahayd.
Ardayda Dugsiga ku jirta oo idili ma xidhan yihiin dhar isu eg?

In ay xidhan yihiin dhar isu eg was wax suuragal ah amase dhicl kara, hase-yeeshe markilba ma gaadhi karno gebegaba deg-deg ah oo aynu leenahay, waxay xidhan yinil maxaa yeelay haddif xeer

Haddaba xeerarka xisaabtu waa qaar guud ahaan 100 caddeeyay oo aan la jebin karin ama aan la beenayn karin, mana aha qaar marna jawabb sax ah ku silya mar kalana jawaab qalad ah ku silya.

Markaa tusihii hore iyo weydilmihilba waxa aynu u kashan aragtiimooyin soo socda oo kacraddeyey.

ARAGTIIN: Wadarta xag1o-gudeedyada ee geesoole \(n\) dhinac lehi waxay leeg tahay \((n-2)\) xagap-toosan ama \((n-2) 180^{\circ}\).

SIIN: Geesoolaha K
oo leh \(n\) dhinac

Caddee in: Wadarta
xaglo-gudeedyada
ee \(K=(n-2)\)
xaglo-toosan ama
\((n-2) 180^{\circ}\)
Saafid: Geesoolaha \(u\) qaybi seddexagallo.

\section*{Caddayn}

\section*{Hawraar \\ Garaadayn}
1. A ka soo sawir xagla gooyaasha
suuragalka ah oo idil
2. Xaglagooyayaashaasu geesoolaha waxay \(u\) qaybiyaan \((n-2) ~ A\)
3. Wadarta xagllo-gudeedyada xagal toosan
1. Dhisme.
2. Seddexagal baa ka samaysma dhinac kasta, marka laga reebo labada deriska \(u\) ah geeska \(A\).
3. Aragtiln hore.
4. Wadarta xagllo-gueedyada ee seddexagalada oo 1d111
- \((n-2) 180^{\circ}\)
5. Wadarta xagMo-qudeedyada 00 1d111
ee seddexagalada oo idili = 5. Wax dhami = wadarta qaywadarta \(\times\) ag 110 -gudeedyada ee bihiisa. geesoole.
6. Markaa wadarta xaglogudeedyada ee \(K^{\prime}=\) \((n-2) 180^{\circ}\).
6. Dhardhaarka isku beddelidda.

XIGASHO: Wadarta xaglaha afar geesoole waxay leeg tahay \(360^{\circ}\).

Binilx: Haddilba \(n=4\), xaglo-gudeedyadu \(=(4-2) 180^{\circ}\) \(=2 \times 180^{\circ}=360^{\circ}\).

XIGASHO: Xagal-gudeed kasta ee geesoole xaglihiisu isleeg yihiin, lehna n dhinac waxay leeg tahay \(\frac{(n-2) 180}{n}\)

ARAGTIIN: Haddil dhinacyada geesoole golxaysan 100 fidiyo s1 qaabsan markaa wadarta xagllo-debadeedyada sameeysmay waxay leeg tahay laba xaglood oo toosan ama \(360^{\circ}\).

\section*{- 161 -}

Siln: Geesoolaha \(K\) lehna \(n\) dhinae \(A B\) waxa 100 fidiyay qumatiga \(B, B C\) qumatiga \(C, C D\) qumatiga \(D\) iwm, si ay \(u\) sameeysmaan xaglb-debadeedyada
\(\underline{L} a^{1}, \& b^{1}, \leq c^{1}, \& d^{1}, \underline{e^{1}}\)

Caddee in: Wadarta xaglo-debedeedyada ee geesoolaha \(K=360^{\circ}\).
Saafid: Wadarta xagal-gudeeda iyo xagal-debadeeda ee gees kasta waxay tahay xagal toosan.

\section*{Caddayn}

\section*{Hawraar}
1. \(1 a+\underline{a^{1}}=\)
xagal toosan.
\(\underline{/ b}+\not b^{1}=\)
xagal-toosan.
2. Hase-yeeshe geesuhu waxay yihiin \(n\) gees

3:.Xag110-gudeedyo +
xagllo-debadeedyo \(=n x\)
xaglo-toosan.
4. Hase-yeeshe xagal-gudeed
- \(n\) Xaglo-toosan - 2 xaglotoosan.
5. Markaa wadarta xagliodebadeedyada \(K=\) : laba xaglood 00 toosan ana \(360^{\circ}\).

\section*{Garaadayn}
1. Wadarta xaglaha ka sameeysmay bar dhinac uun kaga taal xarrifq toosan \(=180^{\circ}\).
2. Siln
3. Isku dhufasho.
4. Wadarta xagllo-gudeedyada geesoole leh \(n\) dhinac waxay tahay \((n-2)\) xaglo toosan ah.
5. Kala goynta hawraart seddex ka go'o hawraarta afraad.

XIGASHO: Xagal-debadeed kasta ee geesoole ay xaglihiisu isleeg yihiin dhinacyadilsuna ay \(n\), yihiin waa \(\frac{360^{\circ}}{n}\).

TUSAALE I
Raadi wadarta xagal-gudeedyada geesoole 1.07 10 dhinac leh.

FURFURIS: Kaasho \(j 1 \mathrm{dk} 11\) ahaa \(w=(n-2) 180^{\circ}\).
Haddilba, \(n=10\) waxaynu ku beddeli \(n\).
Markaa, \(w=(10-2) 180^{\circ}=w=8 \times 180^{\circ}=1440^{\circ}\)

TUSAALE II: Wadarta xagal-gudeedyada geesoole waa \(1620^{\circ}\), inisa dhinac ayuu leeyahay geesoolahaasu?

FURFURIS: Kaasho jidkii hore.
\[
\begin{aligned}
& w=(n-2) 180 \\
& 1620^{\circ}=(n-2) 180^{\circ} \\
& 1620=180 n-360 \\
& 1620+360=180 n
\end{aligned}
\]

\(\mathrm{n}=11\) dhinac

TUSAALE III: Dhinacyada geesoole qaabsani waa 15 . Raadi qiimaha xagal-gudeed kasta.

FURFURIS: Kassho j1dki1 ahaa xagal-gudeed \(=\frac{(n-2) 180^{\circ}}{n}\), Haddilba \(n=15\)
\(\therefore \frac{(15-2) 180^{\circ}}{15}=\frac{13 \times 180^{\circ}}{15}=156^{\circ}\)
Xagal-gudeed kasta \(=.156^{\circ}\)

\section*{LAYLI}
1. Xagal-gudeed kasta ee geesoole qaabsan waa \(160^{\circ}\), Imisa dhinac ayuu leeyahay geesoolahasu?
2. Raadi wadarta xagal-gudeedyada geesoole 6 dhinac leh
\[
\text { " } 8 \text { dhinac leh }
\]

\section*{\(-163=\)}
3. Raadi tirada dhinacyada geesoole, wadarta xagal-gudeedyadiisu yihiin \(1800^{\circ}\), (b) \(1260^{\circ}\), (c) \(540^{\circ}\).
4. Raadi qiimaha xagal-gudeed kasta ee geesoole 5 dhinac leh (b) 9 dhinac 1 eh, (c) 12 dhinac leh.
5. Haddii seddexaglood ee afar geesoole yihiln, \(75^{\circ}, 85^{\circ}, 100^{\circ}\). Raadi xagasha afraad?
6. Imisa dhinac ayuu leeyahay geesoole, haddii wadarta xagalgudeedyadu ay tahay 5 , oo lagu dhuftay wadarta xagaldebadeedyada?

\section*{GOOBOOYIN, QAANSOOYIN, BOQONO IYO XAGLLO XUDUMEEDYO}
B. Qeexiddo hakhtiin ah oo ku saabsan goobooyinka.
1. Goobo waa xoodan oodan kuna jilfa ama ku lingaxan sallax barahoo Idilina in u wada jiraan bar sallaxa ah oo la yidhaa xuddun.
2. Gacanka goobo waa xarriiq toosan oo ka yimaada xuddunta kuna dhammaada bar goobada ku taal.
3. Dhexroorka goobo waa xarriiq toosan oo mara xuddunta kuna dhammaada laba barood oo goobada ku yaal.
4. Meeriska goobo waa dhererka goobada. Goobo waxa inooga waki11 ahaan kara xuddunteeda, markaa goobada 0 waxay tahay goobada xuddunteedu tahay 0 .

\section*{Xigashooyin laga dilray qeexo}
1. Gacanada isku goobada ah ama kuwa ka samaysama goobooyin is leegi way isleeg yihiin.
2. Dhexroorada isku goobada ahi way isleeg yihiin ama kuwa ka samaysama goobooyin isleeg way isleeg yihiln.
3. Dhexroorka goobo waa laba laabka gacanka goobada.

\section*{QAANSO}

Qaanso waa qayb kasta oo ka mid ah goobada
1. Goobo badh: waa qaansada leeg goobo badhkeed.
2. Qaanso weyn: waa qaansada ka weyn goobo-badh .

\section*{- 165 -}
3. Qaanso yar: Waa qaansada ka yar goobo-badh. Haddaba marka qaanso lagu silyo iyadoo aan laguu sheegin tay tahay waxa 100 fahmaa in ay tahay qaansada yar. Summadda laysku raacay ee qaansaduna waa xarriiq xoodan oo la dul dhigo xuruufta sheegaysa cidhifyeda qaansad. \(A B\) waxa 100 akhriyaa "qaansada \(\overparen{A B}\) " waxaanay tahay qaansada u dhaxaysa baraha A iyo B.
*-

4. Qaansooyinka isleeqi waa qaansooyinka saani isugu dul dhaca. Xagal xuddumeed: Waa xagasha geeskeedu yahay xuddunta goobada dhinacyadeeduna ay yihiln gacanada goobada.
1. Xagal xuddumeedku wuxuu tigraaraa qaansada taasoo ay Jaraan dhinacyada xagashu.
2. Qaansada la tigraarayaana waxay laashaa xagal-xuddumeedkeeda .
T. Bogon: waa xarriiq toosan oo cidhifyadiisu ku yaallaan goobada shaxanka hoose xarrilqda toosan ee DE wa boqon.
1. Boqonka goobo wuxuu laala qaansooyinka uu isagu ka jaro goobada. Haddil aan la sheegin qaansada la'laalay waxa 100 qaataa qaansada yar.
2. Qaansada goobo ee uu jaray boqon waxa laalay boqonka.
J. Si1kant: waa xarrifq toosan kana jara goobada laba barood.

\section*{GOOBOOYIN, QAANSOOYIN, BOQONO IYO XAGLLO XUDUMEEDYO}
B. Qeexiddo nakhtifn ah oo ku saabsan goobooyinka.
1. Goobo waa xoodan oodan kuna jilfa ama ku lingaxan sallax barahoo idilina in \(u\) wada jiraan bar sallaxa ah oo la y1dhaa xuddun.
2. Gacanka goobo waa xarrilq toosan oo ka yimaada xuddunta kuna dhammada bar goobada ku taal.
3. Dhexroorka goobo waa xarrifq toosan 00 mara xuddunta kuna dhammada laba barood 00 goobada ku yaal.
4. Meeriska goobo waa dhererka goobada. Goobo waxa inooga wakiil ahaan kara xuddunteeda, markaa goobada 0 waxay tahay goobada xuddunteedu tahay 0 .

\section*{Xigashooyin laga dilray geexo}
1. Gacanada isku goobada ah ama kuwa ka samaysama goobooyin is leegi way isleeg yihiin.
2. Dhexroorada isku goobada ahi way isleeg yihiin ama kuwa ka samaysama goobooyin isleeg way isleeg yihiin.
3. Dhexroorka goobo waa laba laabka gacanka goobada.

\section*{QAANSO}

Qaanso waa qayb kasta 00 ka mid ah goobada
1. Goobo badh: waa qaansada leeg goobo badhkeed.
2. Qaanso weyn: waa qaansada ka weyn goobo-badh.

\section*{- 165 -}
3. Qaanso yar: Waa qaansada ka yar goobo-badh. Haddaba marka qaanso lagu silyo iyadoo aan laguu sheegin tay tahay waxa 100 fahmaa in ay tahay qaansada yar. Summadda laysku raacay ee qaansaduna waa xarriiq xoodan 00 la dul dhigo xuruufta sheegaysa cidhifyada qaansad. \(A B\) waxa 100 akhriyaa "qaansada \(\widehat{A B}\) " waxaanay tahay qaansada u dhaxaysa baraha A iyo B.
\(\qquad\)

4. Qaansooyinka isleeqi waa qaansooyinka saani isugu dul dhaca. Xagal xuddumeed: Waa xagasha geeskeedu yahay xuddunta goobada dhinacyadeeduna ay yihiin gacanada goobada.
1. Xagal xuddumeedku wuxuu tigraaraa qaansada taasoo ay jaraan dhinacyada xagashu.
2. Qaansada la tigraarayaana waxay laashaa xagal-xuddumeedkeeda.
T. Bogon: waa xarriiq toosan oo cidhifyadilsu ku yaallaan goobada shaxanka hoose xarrilqda toosan ee DE wa boqon.
1. Boqonka goobo wuxuu laala qaansooyinka uu isagu ka jaro goobada. Haddil aan la sheegin qaansada la'laalay waxa 100 qaataa qaansada yar.
2. Qaansada goobo ee uu jaray boqon waxa laalay boqonka.
J. S11kant: waa xarri1q toosan kana jara goobada laba barood. Shaxanka hoose PG waa silkant.
1. Xubinta silkantka ee ku j1rta goobada waxay tahay xarrilifinta boqon ee silkantka. HK waa boqon xarriilimeedka silkantka FG.
X. Taanfent: waa xarrilq toosan oo dhererkiisu aanu xad lahayn, barqudhana ka taabanaaya goobada.
1. Barta ayay wadaagaan xarriiq iyo goobadu waxa la yidhaa "Barta taabashada " ama barta "Taanjetka". Shaxanka hoose AB waa Taanjent. D waa barta taabashada.

KH. Goobooyin Isku Xuddun ah
waa goobooyinka xuddun wadaaga gacanadooduna aanay is leekayn. Haddil goobooyinku aanay isku xuddun ahayn, xuddimahooda waxa laysugu xidhi karaa xarrifiln.
1. Xarrifq xuddumeedyada (ine of centres) laba goobo oo an isku xuddun ahayni waa xarriijinta isku xidha labadooda xudumood.

"Laba goobo oo isku xuddun ah"
- 167 -

XIGASHA 1: Laba goobo iskama Jari karaan laba barood wax ka badan.

XIGASHO 2: Goobo lagama sameyn karo qumatiga seddex barood oo si toos ah isu dabayaala ama isku toosan.

XIGASHO: Xarriiq toosani laba barood wax kabadan kama jari karo goobo.

ARAGTIIN: Isla goobada ama goobooyin isleeg, xagllo-xuddumeedyo isleegi-twaxay tigraaraan qaansooyin isleeg.

SIIN: Goobooyin isleeg 0 , iyo \(0^{2}\) oo xagllo-xuddumeedyada \(\angle A O B=\) xagal xuddumeedka \(\angle A^{1} 0^{1} B^{1}\).
Caddee in \(\qquad\) A B
Saafid: Qaansooyin way isleeg yihlin marka laga dhigo qaar is duldhaca.

\section*{CADDEYN}

\section*{Hawraar}

\section*{Garaadayn}
1. Goobada \(0^{1}\) dulsaar goobada 0 si \(0^{1}\)
ay \(u\) fuusho 0 iyo si \(0^{1} A^{1}\)
ay ugu dul dhacdo \(O A\).
2. \(A^{1}\) waxay fuushay \(A\).
2. \(O A=O^{1} A^{1}\)
3. \(O^{1} B^{1}\) waxay fuushay \(O B\)
3. sinn, \(\angle A O B=\angle A^{1} O^{1} B^{1}\).
4. \(B^{1}\) waxay fuushaa \(B\)
5. \(A^{1} B^{1}\) waxay dul dhacdaa \(\widehat{A B}\)
6. \(\therefore A B=A B^{1}\)

\section*{ARAGTIIN}

Isla goobada ama goobooyinka isleeg, qaansooyinka isleegi waxay laalaan xagllo-xuddumeedyo isleeg.

SIIN: Goobooyin isleeg 0 iyo \(0^{1} \circ 0 \mathrm{AB}=A B\) ?
Caddee in \(\& A O B=\& A^{1} O^{1} B\).
saafid: Shaxannada waxay isku sargo'an yihiin marka laga dhigo qaar is dul dhaca.

\section*{CADDEYN:}

\section*{Hawraar}

\section*{Garaadayn}
1. Goobada \(0^{1}\) dulsaar goobada 0 1. Shaxan waa la rari karaa si \(0^{1} u\) fuusho \(0,0^{1}{ }^{1}\) na \(u\) fuusho \(0 A\).
2. Markaa \(A^{1}\) waxay fuushay \(A\)
3. \(\overparen{A^{1} B^{1}}\) waxay fuushay \(A B^{1}\)
4. \(B^{1}\) waxay fuushay \(B\)
2. \(O A=O^{1} A^{1}\), gacanada goobooyin isleegi way is leeyihiln.
3. Qeexidil goobo.
4. \(\sin , \overparen{A B}=\widehat{A^{1} B^{1}}\)
5. \(0^{1} B^{1}\) waxay dul dhacday OB.
6. \(\therefore \operatorname{Lr} A O B=\& A^{1} O^{1} B^{1}\).

\section*{DARIIOQOXINKA GUUD}
1. \$i aad \(u\) caddaysid isleekaanshana labi xaglood, tus in ay yihiln xagllo-xuddumeedyo ay laaleon qaansooyin isleeg oo isku goobo ah ama goobooyin isleeg.
2. S1 aad \(u\) caddeysid isleekaenshaha laba qaanso tus in ay leeyihiin geat.vo xagllo-xuddumeedyo islesg \(\infty\) isku goobo ah ama goobooyin isleeg.

Tusaale. Tusaalahan waxa aynu kaashan aragtilinka labaad.

SIIN: Goobadda 0 oo leh \(C\) ay tahayna bar-badhtameedka AB. \(C D _\)gacanka \(O A, C E \perp\) gacanka \(O B\).
Caddee : \(C D=C E\)

\section*{CADDEYN}

\section*{Hawraar}

Garaadayn
1. Sawir OC si aad \(u\) heshid 1. Dhisme \(\mathbb{L}^{1}\) aad iyo \(\mathbb{L}^{\text {zaad ee baíta } 0 .}\)
2. \(\widehat{A B}\)
- CD
3. \(\angle 1=\angle 2\)
4. \(O C=O C\)
5. \(\angle 1 a h a\) ODC 1 yod \(O E C\)
waa xagllo-quman
6. \(\Delta^{k a}\) quman ee \(O D C \underline{\sim} \Delta^{k a}\) quman oo OEC .
7. \(C D=C F\)
3. Goobo dhexdeed, qaansooyin isleegi waxay laalaan xagllo xuddumeedyo isleeg.
4. Ka dhexeeye.
5. Silin_ yoal waxey bre 12 , s. sameeyaan xagllo-quman lidty
6. Sh. \(x\)
7. \(\mathrm{Q1si}=\)

LAYLI: Layliyadan \(u\) kaasho labadil aragtiimo ee hore:
1. \(C D\) iyo \(E P\) waa dhexroorro isjaraya ee goobo. Caddee in \(\widehat{C E}=\widehat{D F}\).
2. AOB waa dhexroorka goobada \(0 ; \leq \mathrm{CAB}=25^{\circ}\), \(\angle D O B=50^{\circ}\).
Caddee in \(\widehat{B D}=\overparen{B C}\).

Binilx: Sawir OC. Raadi \& debadeedda
3. \(A O B\) waa dhexroorka goobadda 0 boqonada \(A C ~ 1\) yo \(A D\) waxa laga soo sawiri \(A, A B\) waxa ay kala sameeyeen xagllo isleeg barta \(A\).
Caddee in \(\overparen{B D}=\widehat{B C}\)
9. Goobada 0, AOB
waa dhexroor CD waa boqon
barbarro \(u\) ah dhexroorka.
Caddee in \(\widehat{A C}=\widehat{B D}\).

ARAGTIIN:
Isla goobada, ama goobooyin isleeg qaansooyin isleegi waxay laalaan boqono isleeg.

SIIN: Goobooyin isleeg 0 iyo \(0^{1}\) \(\circ \widehat{A B}\) \(=\widehat{A^{1} B^{T}}\)

Caddee in: Boqonka \(A B=\) Boqonka \(A^{1} B^{1}\)
Saafid: Caddee in boqonadu yihiln qaybaha isku aada ee \(\Delta \approx\).

\section*{CADDAYN}

Hawraar

\section*{Garaadeyn}
1. Sawir gacanada \(0 \mathrm{~B}, \mathrm{OA}\), \(O^{1} B^{1} ; O^{1} A^{1}\).
2. \(O B=O^{1} B^{1} ; O A=O^{1} A^{1}\).
3. \(\widehat{A B}\)
\(=\overparen{A^{1} B}\)
4. \(\angle 0=\angle 0^{1}\)
5. \(: \Delta^{k a} 0 A B \cong \Delta^{k a}\) \(O^{1} A^{1} B^{1}\)
6. : Boqonka \(\mathrm{AB}=\) boqonka \(A^{1} \mathrm{~B}^{1}\) 6. Qisi - .

ARAGTIIN: Isla goobada, ama goobooyin isleeg boqono isleegi waxay laalaan qaansooyin isleeg.

SIIN: Gooboyinka 0 dyo \(0^{1} 00\) boqonka \(A B=\) boqonka \(A^{1} B^{1}\) Caddee in: \(\overline{A B} \quad=A^{1} B^{2}\).

Saafid: Lammane \(\Delta \simeq\), ka caddee in xagllo-xuddumeedyada laalani ay \(=\).

\section*{CADDAYN}

\section*{Hawraar}
1. Sawir gacanada
\(O A, O B, O^{1} A^{1}, O^{1} B^{1}\).
2. \(O B=O^{1} B^{1}, O A=O^{1} A^{1}\)
3. Boqonka \(A B=\) Boqonka \(A^{1} B^{1}\)
4. \(\triangle \mathrm{ka} O A B \cong \triangle \mathrm{ka} \mathrm{O}{ }^{1} \mathrm{~A}^{1} \mathrm{~B}^{1}\)
\(5 .: \leq 0=\leq 0^{1}\)
6. \(: \overparen{A B}=A^{1} B^{1}\)

\section*{Garaadayn}
1. Dhisme.
2. Gacanada goobooyinka isleeg! way =
3. Siln.
4. dh. dh. dh.
5. Qisi \(=\)
6. Xag110-xuddumeedyada \(=e e\) goobooyin = waxay tikraaraarn qaansooyin \(=\).

\section*{DARIICOOYINKA GUUD}
1. Si aad \(u\) caddaysid in laba xaglood isleeg yihiin, ka eeg shaxanka in ay xagluhu yihiin xagllo -xuddumeedyo isku goobo ah ama goobooyin isleeg ah iyo in ay laaleen qaansooyin isleegi.
2. Si aad \(u\) caddaysid in laba qaanso isleeg yihiin, ka eeg shaxanka in ay qaansooyinku isku goobo yihiin ama goobooyin isleeg, iyo in ay tikraareen xagllo-xuddumeedyo isleegi.

TUSAALE Tusaalahan waxa aynu kaashan aragtilnkii laad iyo "k11 2aad.

SIIN: Goobada 0 oo boqonada \(A B=B C=C D=D E\).
Caddee in \(A 0=B E\).

\section*{Garaadayn}
1. \(A B=B C=C D=D E\)
2. \(\overparen{A B}=\widehat{B C}=\widehat{C D}=\widehat{D E}\)
3. \(\widehat{A B}+\widehat{B C}+\widehat{C D}=\) \(\widehat{B C}+\widehat{C D}+\widehat{D E}\)
4. \(\widehat{A D}=\overparen{B E}\)
5. \(: A D=B E\)
1. SLin
2. Boqono = ee goobo waxay laalaan qaansooyin =.
3. Dhardhaarka isugaynta.
4. Dhardhaarka isku beddelidda.
5. Qaansooyin \(=\) ee goobo waxay laalaan boqono \(5 \mathbf{m}\).

\section*{LAYLI}

Layliyadan u kaasho aragtilnka laad iyo ka 1 abaad.
1. \(\triangle\) ka \(T Q R\) waxa lagu dhexmeeriyay goobo. \(\angle T=\angle Q\). Caddee in \(\overparen{T R}=\widehat{Q R}\).

5. Siin: 90 oo boqonka \(B C\) ka \(/\) gacanka \(O A\) barta \(D\) Caddee in: \(A B=A C\)

LAYLI
6. Siln : 90 , gacanka \(O A\) wuxuu ka badhaa boqonka \(B C\) barta
D. Caddee in \(A B=A C\)
7. Siin: \(90 \quad A B=A C\)

Caddee in OA ay badho BC.
8. \(A B\) waa dhexroorka goobo, boqonada isleeg ee \(A C\) iyo \(A D\) waxa laga sawiray thinacyada isu lidka ah ee \(A B\), Caddee in \(B C=B D\).
9. \(A O B\) waa dhexroorka goobada 0 . \(A C\) ilyo \(B D\) waa boqono isleeg iskana jara barta \(E\). Caddee in \(A D=B C\).

ARAGTIIN: Xarriiqa mara a qumatiga xuddunta goobo, qotona \(u\) ah boqon wuxul kala badhaa boqonka iyo qaansooyinka uu boqonku laalayba.

SIIN: Goobada \(0, \mathrm{AB}\) waxay maraysaa qumatiga xuddunta 0 qotona waxay uga tahay CD barta \(E\).
caddee In : \(C E=E D, \overparen{C B}=\widehat{B D}\),
\[
\overparen{A C}=\overparen{A D}
\]

Saafid: Caddee in xagllo-xuddumeedyada laal sarkrayy isleeg yihiln.

CADDAYN

\section*{Hawraar}
1. Sawir gacanada \(O C\), iyo \(O D\)
2. \(O C=O D\)

How
3. \(O E=O E\)
4. \(\mathrm{OE} \perp \mathrm{CD}\)
5. \(\triangle\) ka quman ee OEC \(\cong\) \(\Delta\) ka quman ee OED
6. \(: C E=E D\)
6. \(\mathrm{Qisi=}\)
7. \(\angle 1=\angle^{2}\)
8. \(\overparen{C B}=\overparen{B D}\)
9. \(\angle 3=\angle 4\)
10. : \(\widehat{C A}=\widehat{A D}\)
7. (6)
8. Isla goobada \(L\) Lo xuddumeedyo waxay tikraaraan qaansooyin \(=\).
9. L Lo isleegi waxay leeyihiln buuxsha isleeg.
10. (8).

XIGASHO: Qotome badhaha boqon wuxuu maraa qumaatiga xuddunta goobada waxaanu kala badhaa qaansooyinka uu boqonku laalay.

ARAGTIIN: Isla goobo ama goobooyin isleeg, boqono isleegi isku fogaansho ayay u jiraan xuddunta.

SIIN: Goobada 0 leh boqonka \(A B\) = boqonka \(C D\); \(O E / A B\) 1 yo \(O F \perp C D\).
Caddeer in: Fogaanta \(O E=\) Fogaanta \(O F\).
Saafid: Raadi qaybaha isku aada ee \(\searrow \sim\).

\section*{Caddayn}

\section*{Howraar}

\section*{Garaadayn}
1. Sawir gacanada \(O A\) iyo OC.
2. \(O A=O C\)
3. \(A B=C D\)
2. Goobo gacanadeedu way \(=\). 3. Sinn
4. \(O E \perp A B D\) of ha \(_C D\) 4. Siln
5. \(A E=1 / 2 A B\)
\(C F=1 / 2 C D\)
6. \(: A E=C F\)
5. Aragtiinkil hore
6. Badhadhka xaddiyo mway isleeg yihiin.
7. : \(\Delta\) ka quman ee OEA \(\cong\)
\(\Delta\) ka quman ee OFC.
8. \(: \mathrm{OE}=\mathrm{OF}\)
7. Sh. L.
8. Qisi \(=\)

OGOOW isla caddayntaas ayaad kaashan kartaa haddil laba goobo oo isleeg aad qaadatid.

ARAGTIIN: Isla goobada amase goobooyin isleeg, boqonada isku fogaansho u jira xuddunta way isleeg yihilin.

SIIN: Goobada 0 iyo boqonada \(A B\) iyo \(C D O O O E\) _ \(A B\)
OF - CD ;
FOgaanshaha \(O E=\) fogaanshaha \(O F\)
Caddee in \(A B=C D\)

\section*{CADDEYN}

\section*{Hawraar}

\section*{Garaadayn}
1. Sawir gacanada \(O B\) lyo \(O D\)
2. \(O B=O D\)
3. \(O E=O F\)
4. \(O E \perp A B\)
1. Dhlsme
2. Goobo gacanadeedu way \(=\).
3. Siin
4. Siln
5. \(\triangle\) ka quman ee \(O E B \cong \quad\) 5. \(S h . L=S h . L\)
\(\Delta\) ka quman ee OFD
6. : \(E B=F D\)
7. Hase-yeeshe
\(E B=\frac{1}{2} A B\)
FDna \(=\frac{1}{2} C D\)
8. \(\therefore A B=C D\)
6. Qisi \(=\)
7. Aragtin hore
8. Laba laabyada xaddiyo isleegi way \(=\).

TUSAALE I: Boqonbaa xuddunta goobo u j1ra 6 sm , haddil gacanka goobadu yahay 9 sm , raadi dhererka beqonka.

PURFURIS

Waxa aynu kaashan aragtilnkii Baysoogaras.
Markaa \(\overline{O A}^{2}-\overline{O M}^{2}=\overline{A M}^{2}\)
ama \(\overline{A M}^{2}=9^{2}-6^{2}=82-36=45\)
\[
A M=3 \sqrt{5}
\]

Hase-yeeshe \(A M=\frac{1}{2} A B\)
\(\therefore A B=6 \sqrt{5}\)

TUSAALE II: Boqonbaa 8 sm dhererkilsu yahay waxaanu u jiraa xuddunta 3 sm . Raadi dhererka gacanka? Mar kale raadi dhererka boqon kale oo u fira Xuddunta 2.5 sm .

FURFURIS: \(R\) waa bar-badhtameedka MN, amase 4 sm .
\[
\text { Markaa } \begin{aligned}
\overline{O M}^{2} & =\overline{O R}^{2}+\overline{M R}^{2} \\
& =4^{2}+3^{2}=25
\end{aligned}
\]
\(O M=5=\) gacan
\(\overline{A Q}^{2}=\overline{O A}^{2}-\overline{O Q}^{2}=5^{2}-(2.5)^{2}\)
\(A Q=2.5 \sqrt{3}\)
Hase ahate \(A B=2 A Q\)
Markaa \(A B=5 \sqrt{3} \not \approx 8.66 \mathrm{sm}\).

\section*{LAYLI}
1. Boqon dhererkilsu yahay 15 sm wuxuu u firaa xuddunta goabo 4 sm . raadi dhererka boqonka.
2. Boqonka \(A B\) iyo dhexroorka \(D D^{1}\) barta e waxay iskaga jaraan xagllo-quman, haddii dhererka boqonku yahay 16 sm ,
\(D C=4 \mathrm{sm}\) raadi gacanka goobada.
3. Boqonka dhererkiisu yahay 12 sm . Imisa santimeter buu u Jiraa xuddunta goobada gacankeedu yahay 18 sm .

4. \(A B\) waa dhexroor dhererkilsu yahay \(34 \mathrm{sm}, \mathrm{BC}\) na waa bogon dhererkiisu yahay 8 sm . Inteebay BC u firtaa xuddunta.
5. Laba boqon 00 isleegi \(A B\), 1yo CD waxay iskar-fareen blacto Caddee In \(A N\) De \(N D, B N=N C\).
6. Dhererada laba boqon 00 barbarro ahi waa 12 sm , iyo 8 st Hadd11 gacanku yahay 10 sm . Raadi fogaanshaha uu dhexsp labada boq̣on:
a) Marka ay dhinac kawada xiggaan xuddunta.
b) Marka ay 1id dhinacyada xuddunta kala yaallaan.
7. Raadi boqonka ay wadaagaan dhererkiisa marka laba goobo oo isleegi iska jaraan barta \(T\), iyo \(Q\), gacanadoodu waa 6
8. XYS waa seddexagal labaale ah, \(O 0 X S=Y S\).

Goobada xuddunteedu tahay \(S\) waxay ka jartay \(X Y\) baraha \(A\) iyo \(B\). Caddee in \(A X=B Y\).
9. Laba goobo oo leh xuddumaha \(0,0^{1}\) waxay iska jareen baraha A iyo B, caddee in xarriiqa xuddumaha isku xidhas yahay qotome-badhahe boqonka \(A B\).
10. SiIn: Dhexroorka \(A O D\) ge goobada 0 , boqonka \(A B=\) bogonka Caddee in \(A B / / C D\).

TAANJENTYO IYO GOOBOOYIN

Haddil la sawiro laba qoobo oo aan isjarin, imisa xarrifq oo taanjent \(u\) ah labada goobaba ayaa la, sawlri karaa?

Haddi1 goobo ku dhex jirto goobo kale barna aanay wadaagin, Imisa taanjent oo ay wadaagaanbaa jira?

Qeexidaha taanjentyadaay wadaagaan laba goobo waxa lagu fududeeyay iyadoo marka hore la qeexo xarriijinta isku xidha xud-

1. Xarri1q xuddumeedyada laba goobo waa xarri1qda isku xidha xuddumaha laba goobo.
2. Taanjent-gudeedka ay wadaagaan laba goobo waa xarrilqa taanJentka \(u\) ah labada goobaba, Jarayana xarriiq xuddumeedyadooda.

\section*{- 186 -}

ARAGTIIN:
Taanjentyada illaa goobo kana yimid bar-debadeed way is dherer leeg yihiin, xagllo isleegna waxa la sameeyaan xarrifqa isku xidhaya bar debadeedk I yo xuddunta.

SIIN: Goobada 0 lehna taanjentyada \(A B\) iyo \(A C\) laga sawiray bar-debadeedka A, xarrifqa AO wuxuu ka yimaadaa A 11 : xuddunta 0 .
\[
\text { Caddee in : } A B=A C \text {, iyo in }
\]
\[
\begin{aligned}
& A B=A C, \text { iyo in } \\
& L B A O=\{C A O
\end{aligned}
\]
Saafid: Raadi \(\triangle\) LDo \(\simeq\) , oo AB iyo AC, \& BAO iyo CAO ay yihiin qaybaha isku aada.

TUSAALE
Bar \(20^{1}\) y jlrta xuddunta goobo, ayaa taanjentyo laga soo sawlray lllaa lyo goobada. Haddil xagasha taanjentyada \(u\) dhexaysa tahay \(60^{\circ}\), raadi dhererka gacanka iyo taanjent kastaba.

FURFURIS:
\(\angle x=\angle y=30^{\circ}\), \(\angle O A T=90^{\circ}\)
\(\therefore O A=1 / 2 T=10\)
\(T A=O A \sqrt{3}=10 \sqrt{3}\)
: Gacan \(=10\), taanjent \(=10\)

\section*{\(\sqrt{\frac{3}{==0}}\)}

TUSAALE II Shaxanka midigta goobo waxa lagu dhexmeershay seddexagal. Raadi qilmaha \(X\).

FURFURIS: HaddIlba
\[
\begin{aligned}
B F & =5, \quad B D=5 \\
\therefore C D & =4, \quad C E n a=4 \\
\therefore A E & =6, \quad A F \text { ama } X=6
\end{aligned}
\]

\section*{LAYLI}
1. Caddee in dhererada taanjent-gudeedyada ay wadaagaan laba goobo oo aan isjarayni in ay isleeg yihiin?
2. Caddee in dhererada taanjent debadeedyada ay wadaagaan laba goobo oo aan:isjarayni in ay isleeg yihiln.
3. Haddi1 xagasha \(u\) dhexaysa laba taanjent ay tahay \(60^{\circ}\), caddee in boqonka isku xidhaya baraha taabashada in \(u\) leeg yahay taanjentyada mid ahaan.
4. Gacanka goobo waa \(6^{\prime \prime}\) taanjentyada laga soo sawiray bar-debadeedka T waxay sameeyaan xagasha \(60^{\circ}\). Inteebay T
u jirtaa xuddunta.
L.a: \(:=\)

5. Haddil \(A B, B D\)
iyo \(D E\) ay yihiin
taanjentyo
Caddee in \(A B+E D=B D\) (Eeg shaxanka sare)
6. EF waa dhexroorka goobo.

AEB waa taanjentka goobada taanjentna uga ah barta E, CPD wa taanjentika goobsda ee barta F.
Caddee in AEB // CRD.
7. Haddil laba goobo 00 aan isleegayni ey wodaaaran laba tam gudeed, caddee in xarrilj1maha tanjentyada ee \(u\) dhexeoya baraha taabashadu in ay isieeg yihiln.

Binilx: Barta ay iska jaraan, raadi laha xafls on islman debeedna isugee.
-
8. Haddif laba goobo oo aan Isleegayni ay wadaagaan laba taat jent-debadeed, caddee in xarrilifmaha un thin..
xeeya, baraha taabashadu in ay isleeg yihiin.
Binilx: Fidi taenjentyada 111 aa ay kulmayasn.
9. AT waxay taanjant iga tahay goobada 0 barta A, TB waa xart leeg TA, co kula kulmaya goobada barta \(B\),
Caddee in TB ay taanjent uga tahay goobada barta \(\mathrm{B}_{\mathrm{o}}\)

10. \(A B\) iyo \(D E\) waa taanjentyo barbarro ah 00 u jaray taanjentka seddexaad oe BD, caddee in \(L 1\) ay quman tahay.
\[
\text { Biniix: } \& B+\angle W=\left\{b=\angle b^{1} ?\right.
\]

Qeexid: Xagal dhexmeersan waasxagal ay sameeyaan laba boqo oo laga soo. jeexay, bar kali oo goobo dusheed ah.

Xagal ku dhexmeersani waxay tikraartaa qaansada labadeed dhinac \(u\) dhexaysa.

Xagal waxa lagu sheegi karaa xagal ku dhexmeersan qaanso dhexdeed haddii geeskeedu ku dul yaalo qaansada dhinacyadiisuna ay ku dhammaadaan qaansada dacaladeeda.

Xagasha ku dhexmeersan ee \(A B C\) waxay tikraartaa qaansada \(\widehat{A D C}\) waxana aynu odhan karnaa waxay ku dhexmeersan tahay qaansada \(\overparen{A B C}\).

ARAGTIIN: Xagal ku dhexmeersan cabbirkeedu waa gaansada ay tikraarto badhkeed.

SIIN: \(\triangle A B C\) waxay ku dhexmeersan tahay goobada 0. Caddee in 1 ABC \(\frac{1}{2} A C\)

Saafid: Waxa jirta seddex siyood oo lagama maarmaan ah in la tix geliyo.
(1) Xuddunta goobadu markay ku dultaal dhinaca xagasha.
(2) Xuddunta goobadu markay ku taal xagasha gudaheeda.
(3) Xuddunta goobadu markay ku taal xagasha debadenda. Labadi siyood ee 2 iyo 3 waxa lagu celin karaa sida kowaad marka la fidiyo dhexroorka mara geeska xagasha. Xagal xuddunee oo lagu cabbiro qaansadilsa awgeed, marka aad doonayso in aad caddayso xaaladda kowaad ee aynu hore u soo sheegnay
waxad Jeexdaa \(C O\) si aad \(u\) sameeyso xagal xudduneed dabeedna caddee in \(\& A B C=\frac{1}{2} \& A O C\). B

Xaaladda kowad xuddunta 0 waxay ku dul taala dhinaca \(A B\) ee xagasha.

\section*{CADDEYN}

\section*{Hawragr}
1. \(I\) ABC waxay ku dhexmeersan tahay goobada 0 dhexroorkeeduna yahay \(A B\)
2. Sawir CO
3. \(O C=O B\)
4. \(\Delta 2=08 \Delta \Delta^{3}\)
5. \(\leq 1=\underline{L}^{2}+\underline{L}^{3}\)
6. \(\boldsymbol{\underline { 1 }}=2 \underline{\underline{~}}^{2}\)
7. \(\triangle 1=\triangle A C\)

\section*{Garaadayn}
1. Siln
2. Qumaatiga laba barood waxa laga sawirl karaa har xáerilq 00 toosan oo qudha.
3. Gacanada goobo oo idili way isleeg-yihiin.
4. Xagal-saleedyada \(\Delta\) labaale ahi way \(=\).
5. Xagal-debadeedka \(\Delta\) waxay leeg tahay wadarta labada xagal-gudeed ee fog-fog.
6. Tiro kasta waxa lagu beddeli karaa mid leeg tibaax kastaba.
7. Xagal-xudduneed waxa laga cabbiray qaansadiisa la tikraaray.
- 192 -
8.: \(\frac{x}{\frac{1}{2} \widehat{A C}} A B C=x^{2}=\)

Xaaladda labad xuddunta 0 waxay ku taal gudaha xagasha.

\section*{CADDAYN}

\section*{Hawraar}
1. Sawir ama jeex dhexroorka BE
2. \(x 1 \xlongequal[m]{m} \widehat{E A}\)
3. \(x^{2}=\frac{1}{2}\) CE
4. \(\Varangle 1+\underline{\underline{y}} \frac{1}{2}(E A+C A)\)
5. : \(\underset{\text { CBA }}{\text { mis }}\) CEA

\section*{Garaadayn}
1. Qumatiga laba barrood waxa laga sawiri karaa hal xarris oo toosan oo qudha.
2.Xaaladda 1aad

3-Xaaradda 1aad
4. Haddii tirooyin isleeg 100 geeyo tirooyin isleeg, wadar hu way isleeg yihiln.
5. Ururka baraha qaanso ku du! yaal waxay \(u\) qaybiyaan qaanst da urur qaansooyin ah 00 1sto xuddun ah. Wadarta cabblrab dooduna ay la mid tahay cabblrka qaansada laysa sliyay.

Xaaladda seddexaad xuddunta 0 waxay ku dul taal debedda xagasha.

CADDEYN
Hawraar
1. Sawir dhexroorka BE
2. \(11 \xlongequal{m} \frac{1}{2} \widehat{E A C}\)
3. \(\angle 2=\frac{3}{2} \overrightarrow{E A}\)
4. \(\frac{1}{C 1} 1^{1-8}{ }^{2} \frac{m}{=} \sqrt{E A C}-\)
5. \(\therefore \& A B C=1 / \sqrt{A C}\)

\section*{Garaadayn}
1. Qumatiga laba barrood waxa lagu sawiri karaa hal xarrilq 00 toosan 00 qudha.

\section*{2. Xasrádda 1aad}
3.Xērradda 1aad
4. Haddii tirooyin isleeg laga jaro tirooyin isleeg
faraqyadu way isleeg yihiin.
1. XIGASHO: Xagal ku dhexmeersan goobo badh waa mid
5. La mid ah 5, ee xaraladaa 1abaad.
quman.
\(-194-\)
1
XIGASHO 2: Isla goobada ama goobooyin isleeg, haddii laba xaglood oo ku dhexmeersan ay tikraaraan isla quan. sada ama qaansooyin isleeg, xagluhu way isleeg ylhiln.

XIGASHO: 3: Goobo dhexroorkeedu yahay shakaalka seddexagal quman waxa uu maraa geeska xagasha quman ee \(\Delta k a\). XIGASHO:4: Xagal ku dhexmeersan qaanso ka yar goobo-badh waa xagal fiiqan.

XIGASHO 5:Xagal ku dhexmeersan qaanso ka weyn, goobo-badh waa xagal furan.

XIGASHO: 6: Xaglaha 1ska soo hørjeeda ee afargeesoole ku dhexmeersan goobo waa xagllo-1 sbuuxsha.

Dhinacyada \(\triangle\) lagu dhexmeershay goobo waxay sameeyaan qaansooyin saamigoodu yahay \(1: 3: 5\). Imisa digrii weeye xagal kastaa oo \(\Delta\) ku?

\section*{FURFURIS:}

Ka soo qaad in qaansooyinkunyihiin \(x, 3 x\), iyo \(5 x\) \(x+3 x+5 x=360^{\circ}\).
\(x=40,3 x=120,5 x=200\) sidaa awgeed xaglaha \(\Delta \mathrm{ku}\) waa
\(20^{\circ}, 60^{\circ}, 1\) yo \(100^{\circ}\).
(5) Dhinacyada \(\Delta\) ee lagu meershay goobo waxay laalaan qaansooyin ah \(120^{\circ}, 130^{\circ}, 110^{\circ}\). Imisa digril weeye \(\Delta\) ka
xagashísi kastaaba?
6. Shaxanka midigta ku muujisan, haddif

\section*{\(\Delta B=20^{\circ}\), qasissadx \(\mathbb{A C}\) \\ wailinisacdiginttre}
\(\triangle\) ka xagashiisil kastaaba?

7. Xagal kasta \(\infty\) shan geesle qaabsan ahl goobo lagu meershay waa imisa digrii?
8. Goobo ayaa 100 qaybshay seddex qaanso 00 saamigoodu yahay \(2: 3: 7\). Barahr qaybinta ayaa laysugu xidhay si is daba joog ah. Raadi tirada digrilyada ah ee xagal kasta
oo marka goobada lagu meersho sidaa ku samaysanta.

Xagasha u dhaxaysa laba bogon oo goobo dhexdeed
iska tikraara
ARAGTITN: Xagasha ay sameeyaan laba boqon 00 iska tikraaray
goobo dhexdeedocobbirkeedu waa wadarta qaansooyinka ay tikraa-
becihibadhkood.

\section*{TUSAALE:}

Raad1 \(\angle 1\) haddi1 \(\widehat{A D}=50^{\circ}\) \(\widehat{B C}=110^{\circ}\).

\section*{FURFURIS: \\ \(41 \stackrel{m}{4}\) (\(\mathrm{AD}+\) 合)}
m \(\sqrt{2}\left(50^{\circ}+110^{\circ}\right)\)
\(=80^{\circ}\)

\section*{LAYLI}

Suaalaha 1 -3 raadi \& 1 ee shaxankan I

Shaxanka I

1. Siln: \(\widehat{A D}=20^{\circ}, \widehat{B C}=60^{\circ}\)
2. Sisn: \(\widehat{A D}=70^{\circ}, \widehat{B C}=40^{\circ}\)
3. SIIn: \(\widehat{\mathrm{AB}}=90^{\circ}\); हिल \(=90^{\circ}\)
4. Haddil xagal saleedyada qardhaas goobo lagu meershay midkood yahay \(80^{\circ}\), raadi xaglaha kale, caddeena in qardhin tahay qarchaas labaale ah.
5. Shaxanka II, \(\widehat{A B}=60^{\circ}\)
\(\widehat{\widehat{C C}}=30^{\circ}, \widehat{C D}=40^{\circ}\),
Raadi cabbirka xagal kastaa
ee geesoolaha.

\section*{Shaxanka II}

Siin: Boqonada \(A B\) iyo \(C D\) waxay iska jaraan 0
Caddee in \(\langle 1 \stackrel{m}{=}(\widehat{B C}+\widehat{A D})\)
Saafld waxa aad raadisaa laba xaglood oo lagu meershay cabbirka midkilba yahay wadarta qaansooyinka lagu meershay badhkeed. Dabeedna waxa aad muujisaa in \(/ 1\) le'eg tahay vadarta labadaa xaglood.

\section*{Hawraar}
1. Boqonada \(A B\) iyo \(C D\) waxay

Iska jaraan barta 0 .
2. Waxad jeexdaa \(C\)
3. \(\measuredangle 1\) \(\Delta^{2}+\Delta 3\)

\section*{Garaadayn}
1. \(0 \operatorname{siin}\)
2. Laba barood waxa mari kara xarifq mid qudha ah oo keli ah oo toosan.
3. Xagal-debedeedka \(\Delta\) waxa uu leeg yahay wadarta labada xagal-gudeed ee fog fog.
4. \(\Delta L^{2}=\frac{1}{2} \widehat{B C}\)

6. \(\underline{12}^{2}+\underline{1}^{3}=\underline{y}\)
\((\widehat{B C}+\hat{A D})\)
7. \(\therefore \Delta 1=\frac{1}{2}(\widehat{B C}+\widehat{A D})\)

Qardhaasta labalaha ah ee ABC D waxa lagu meeriyey goobo. Haddii dhinacyada isleeg ee \(A B\) iyo \(D C\) ay laalaan qaansooyin ah \(60^{\circ}\) midiba, isla markaan salka gaabani laalo qaanso ah \(110^{\circ}\), raadi xaglaha qardhaastâ.

\section*{Aragtiin:}

Xagasha ka samaysanta meesha taanjanku ka taabto goobo ay sameeyaana taanjant iyo boqon cabbirkeedu wuxuu leeg yahay qaansada xagashu tikraarto badhkeed.

Siln: Goobada O lehna
 oo u sameeyay taanjentka ACB

Caddee in: \(\leq 1 \xlongequal[y]{m}\) CD
Caddayn aan dhamayn: Sawir DE // BA
Caddayn aan dhamayn: Sawir DE // BA
\[
\begin{aligned}
& \mathbb{L}^{1}=\frac{1}{2} \\
& \frac{C D}{E D} \\
& \underline{L}=\frac{1}{5} E C \\
& \mathbb{L}^{1}=1 / \frac{C D}{C D}
\end{aligned}
\]
4. Xagal qaanso lagu meershay cabbirkeed waa qaansada ay xagalshu tikraarto badhkeed,
5. Waxay la mid tahay 40 .
6. Haddil tiroooin 100 geeyo tirooyin ideeg wadarahoodu wey isleeg yihiin.
7. Astaanta isku beddelka:

\section*{Xagasha \(u\) dhaxaysa taanjent iyo bogon}

LAYLI
1. Shaxanka I, haddil
\(\widehat{E C}=80^{\circ}\), raadi \(\angle D C B\)

2. Haddii \(A B\) uu yahay boqon, \(c\) ay tahay badhtamaha qaansada \(A B, C D\) uu yahay tanjant, waxaad caddaysa in \(A B / / C D\).
3. Xarriiqda ABC waxay tanjant \(u\) tahay goobada waxayna ka taabataa barta \(B . \overparen{D B}=60^{\circ}, \angle \mathcal{L}=80^{\circ}\). Raadi \(\angle \mathrm{DBE}\).

Shaxankan stanasha 3 aad ayaa leh.
4. \(\triangle A B C\) waxa lagu meeriyey goobo. Boqonka \(A D \perp B C\), boqonka \(\mathrm{BE} \perp \mathrm{AC}\). Caddee in \(\widehat{\mathrm{DC}}=\widehat{\mathrm{CE}}\).

Shaxankan suaasha 4 aad ayaa leh.
5. Goobo dhexeed ayaa boqonada \(A B\) iyo \(C D\) iska gooyaan barta E. Caddee in \(\triangle\) AEC \(\sim \triangle\) DEB.

Xagasha ay sameeyaan laba silkant, laba tanjent, ama tanjant iyo siikant.

Aragtiin: Xagasha \(u\) dhaxaysa laba silkant, laba tanjant, ama tanjant iyo silkant iska jara goobo debedeeda cabbirkeeq, waa faraqa \(u\) dhexeeya qaansooyinka ay tikraaraan.

S1in: Goobada 0 ee xagásha A ay sameeyaan siikanada AC iyo AE; labo tanjant AC iyo AD; tanjant iyo siikanta AC 1yo AE oo goobada u qaybsha qaansooyinka \(T\) iyo \(Q\).
caddee: \(\quad \hat{A} \quad=\frac{m}{2} \quad(\hat{T}-\hat{Q})\)
Saafid: Xaalad kastaba Jeex CD.
Caddee in \(\angle A=\angle 1-\angle D C A\) sidaa awgeedna dabeeto ay leeg tahay \(\frac{1 / 2}{2}(t-q) t\) iyo \(q\) waa tirooyin togan.

\section*{Hawraar}

\section*{Garaadayn}
1. LA waxay leedahay qaansoo- 1. Siln yinka u kala tigraaran t iyo q
2. Xaalad kasta jeex \(C D\)
3. \(\triangle^{K a} A D C, \angle 1=\angle A+\angle C\)
4. \(\angle A=\angle 1-\angle C\)
5. \(\Delta 1 \geq y \in t\)
6. \(\Delta \mathrm{c} \underset{\mathrm{m}}{y_{2} \hat{q}}\)

7:. \(\Delta A A^{1 / 2}(\hat{t}-\hat{q})\)
2. Laba barood waxa mari kara xarrilq mid qudha ah oo keli ah.
3. Xagal debedeedka \(\Delta\) waxay leeg tahay wadarta labada xagal-gudeed ee fog-fog.
4. Haddis tirooyin isleeg laga jaro tirooyin is leeg farqiyadu way isleeg yihiin.
5. Xaaladaha 1 iyo 3, xagal lagu meerishay waxay leeg tahay qaansada ay tigraarto badhkeed xaalada 2 na xagasha ay tanjant iyo boqon ka ka sameeyaan meesha tanjantka iyo goobadu iska taabtaan waxay leeg tahay qaansada ay tigraarto badhkeed.
6. Xaalada 1 waxay 1 a mid tahay 5 ; xalada 2 waxay 1 a mid tahay 5 , xaalada 3 waxay 1 mid tahay xaalada 2.
7. Astaanta isku beddelka.

\section*{LAYLI}
1. Laba silkant \(A B C\) iyo \(A D E\) ayaa goobo ka jara baraha \(B, C\) yo \(\mathrm{D}, \varepsilon\) sida ay u kala horeeyaan. Haddil qaansada \(\widehat{\mathrm{BD}}=90^{\circ}\); quansada CEE \(=120, \operatorname{raadi} \angle C A E, \angle A D C, \angle D C A\).
2. Haddii MN i yo MR ay tanjano ku yihiin goobo kana yimaadaan \(M\), qaansada \(\widehat{M B}=10 \ell^{R}\) raadi \(\angle N M B, \angle M B N\), iyo \(\angle M N B\).
3. Taanjant \(Q R\) iyo ailkant \(Q W X\) ayaa goobo ka jara baraha \(R, W\), iyo \(X\). Haddi1-qaahsada \(\overparen{R X}=200, \overparen{R W}=100\), raadi \(\angle R Q W\), \(\angle R W X, \angle W R X\).

Barbaroolaha ABCD waxa, lagu meershay goobo. Xagashil la arkaaba waa imisa digrii? ,

\section*{Furfuris:}

Ka soo qaad in \(x=\widehat{A B}=\widehat{C D}\) isla marka \(y=\widehat{B C}=\widehat{A D}\).
\[
\begin{aligned}
& 2 x+2 y=360^{\circ} \\
& x+y=180^{\circ}
\end{aligned}
\]

Xagal kasta cabbirkeed waa \(4 / 2(x=9)=, \frac{1}{2},\left(180^{\circ}\right)\)
\(\therefore\) Xagal kastaaba waa \(90^{\circ}\).

Dariiqo: Si-aad u caddayso inilaba xaglood isleeg yihiln, waxaad tustaa in ay yihin xaglo lagu meershay goobo gell ah ama goobooyin isleeg oo sameeya ama jara qaanso kell ah ama qaansooyin isleeg.
\(\qquad\)

\section*{LAYLI:}

Raadi qiimaha \(x\) ee shaxanada 1-4

I

II

III

\section*{JEEB TOOBINAYDYO}

Bar

Xarriig

Jaantusyadu waxa ay tusayaan in qaabka xoodan la helayo ama la arki karaba marka sallax uu jaro toobin salkilsu yahay goobo, dhidibkilsuna ku qotomo sallaxa, iyada oo weliba la tixgelinayo xagasha \(u\) dhexaysa sallaxa iyo dhidibka toobinka. Haddaba, jarid kasta oo uu sallaxu sameeyaa waxa ay ku slinaysaa shaxan ka mid ah shaxanada magacyadoodu halkan ku taxan yihiin. Kuwaas oo kala ah, goobo, qabaal, saab, laba-saab, xarriiq, ama xarrifqo lammaan 00 isjaraya. Ururadaa baraha ah ee samaynaya shaxanada aynu kor ku magacawnay ayaa guud ahaan 100 yaqaan jeeb toobinaydyo.

QEEXID:
bo wa tub baro ah ee isku fogaansho u jira bar maguuraan ah.
Fogaanshaha waxa lagu magacaabaa gacanka goobada, barta maguuraanka ahna waxa lagu magacaabaa xuddunta goobada.

Shaxanka hoos ku yaal xudduntu waa unugga ama \((0,0)\), gacankuna waa 6 halbeeg.

Haddil goobadu ay leedahay xuddun leh kulanada (\(h, k\)), waxaynu u bixinaynaa xuddunta \(\times(h, k)\); gacankana waxa inooga taagmaan kara g. Bal u filrso shaxanka hoos ku yaal; waxa uu tusayaana marka aanay xudduntu ku oollin unugga.

Waxa jirta in xarriiq waliba ay leedahay isle'eg ama ha xoodnaado ama ha toosnaadee. Haddaba si aynu u raadino isle'egta goobo waa in aynu ogaano astaamaha gaarka ah ee ay leedahay bar kasta 00 ku taalla goobada; astaamahaa gaarka ah \(\infty\) aanay lahayn baraha aan ku oolini goobada.
S1 aynu u helo isle'egta goobo bal aan qaadano marka ay goobadu leedahay \(2 \times(h, k)\), 1yo bar ku taalla xudunta goobada dusheeda, lehna kulamada \(B(x, y)\); bal filro u yeelo
shaxanka hoose:
\[
X(h, k) g \quad B(x, y)
\]
\[
\xrightarrow{x(h, k) g \quad B(x, y)} x
\]

Markan, haddii aynu adeegsano Jidkil fogaanshaha, oo aynu raadino fogaansha \(u\) dhexeeya xuddunta \(x(h, k)\) iyo barta \(B(x, y)\) ee ku taalla goobada waxa aynulfogaanshahaas oo la mid ah gacanka wuxuuna noqonaya sidanteds; noocrayaa siden:
\[
\sqrt{(x-h)^{2}+(y-h)^{2}=9}
\]

Barckasta oo ku talla goobada leh xuddunta \(x(h, k)\) iyo gacanka \(g\), waxay leedahay kulanada \((x, y)\); kuwaas oo raall gelinaya isle'egta \(\sqrt{(x-h)^{2}+(y-k)^{2}}=9\)

Bar kasta oo leh kulanada \((x, y)\) raali gelinaysana
\(\sqrt{(x-h)^{2}+(y-k)^{2}}=g\), waxay ku taallaa goobada, xuddunteedu tahay \(x(h, k)\), gacankeeduna yahay \(g\).
Markaa isle'egtan \(\sqrt{(x-h)^{2}+(y-k)^{2}}=9\) waa isle'egta goobada leh xuddunta \(x(h, k)\) iyo gacanka, \(g\).
\(S 1\) aynu \(u\) soo saaro xididka isle'egta kore, waxa habboon in aynu marka hore ka saaro isle'egta calaamadda xiddidle. Sidan oo kale: \(\left(\sqrt{(x-h)^{2}+(y-k)^{2}}\right)^{2}=g^{2}\); kolkaa, waxa aynu helaynaa sidan \((x-h)^{2}+(y-k)^{2}=g^{2}\).
Inkkasta oo aynu laba jibbaarnay labada dhinac ee isle'egta, waxa aynu soo gelinay laba barrood oo cusub oo ay kulanadoodu raali gelinayaan isle'egta \((x-h)^{2}+(y-k)=g^{2}\), hase-yeeshe aan ku oollin goobada.

Haddaba, si aynu \(u\) tusno in \((x-h)^{2}+(y-k)^{2}=g^{2}\) ay tahay isle'egta goobada leh xuddunta ku taal (\(h, k\)) iyo gacanka \(g\), waa in aynu qaadanaa barta \(B\), taas oo kulanadeedu raals gelinayaan isle'egta \((x-h)^{2}+(y-k)^{2}=g^{2}\); markaana waa in aynu tusnaa in B ay ku taal goobada.
Haddif \(x\), iyo \(y\) ay raali geliyaan \((x-h)^{2}+(y-k)^{2}=g^{2}, \infty\) markaa aynu qaadano labada dhinac ee isleegta sare, xididkooda laba jibbaarka ah, \(x\), iyo \(y\) waxay bilqasab ku raaligelin isle'egtan \(\sqrt{(x-h)^{2}+(y-k)^{2}}=-9\) ama isletegtan \(\sqrt{(x-h)^{2}+(y-k)^{2}}\) hase-yeeshee \(\sqrt{(x-h)^{2}+(y-k)^{2} \text { mar kasta way togan tahay, }-g_{1}, ~ ; ~, ~ m a y ~}\) way taban tahay. Sidaa awgeed, isleegta \(\sqrt{(x-h)^{2}+(y-k)^{2}}=-g\), ma laha furfuris maangal ah.

Sidaa awgeed, kulanada \(x\) iyo y ee barta B way raali gelinayaan \((x-h)^{2}+(y-k)^{2}=g^{2}\), haddil iyo haddii oo keliya oo \(x\), iyo \(y\) ay raali geliyaan Isle'egtan \(\sqrt{(x-h)^{2}+(y-k)^{2}}=9\). Hase ahatee barta \(B(x, y)\), way raali gelinaysaa isle'egta \(\overline{(x-h)^{2}+(y-k)^{2}}\) haddil iyo haddil \(o o\) keliya \(\circ 0\) B ay ku taal goobada leh, xudunta (\(h, k\)) iyo gacanka \(g\). Waxa aynu tusnay in isle'egta \((x-h)^{2}+(y-k)^{2}=g^{2}\) in ay tahay isleegta goobada, leh xuddunta (\(h, k\)), iyo gacanka \(g\).

Marka aynu laba jibbaarno laba dhinac ee isle'eg, khatar weyn baa ku sugan, oo laga yaabaaba in aynu ku darro urur barro ah oo cusub, oo kulanadoodu ay aad u raali gelinayaan isleegta aynu helay, hase-yeeshee aan dul dhacaynin amase aan laga helayn xoodkii aynu ku bilownay. Markii aynu laba jibbaarnay labada dhinac eeilsleegtif ahayd \(\sqrt{(x-h)^{2}+(y-k)^{2}}=9\) maynaan helin, wax urur barro ah oo cusub.

Bal hadda \(u\) filrso isle'egta \(y=1\). Isle'egtaa iyada ah garaafkeedu waa xarriiq toosan, barbarrana la ah dhidibka -x, maraysana barta (0,1); sida shaxanka hoosaba ku tusayo:

Isle'egtii ahayd \(y=1\), haddil aynu labada dhinacba labajibbaarno, waxa aynu heli isleegtan, \(y^{2}=1\); haddaba, waxa isweydiin leh, sida uu noqonayo garaafkeedu.

Garaafkeedu waa laba xarriiqood 00 barbarro ah, maxaa yeelay kulanada raali gelinaya \(y=-1\) iyo \(y=1\), way raali gelinayaan \(y^{2}=1\); dheehana shaxanka hoose.

Haddaba, marka aynu laba jibbaarayno labada dhinac ee isleegta xoodka, si aynu \(u\) hello isle'eg cusub, waxa haboon in aynu hubinno, si aynaan u qaadanin, waxil barro cusub ah 00 kulanadoodu raali gelinayaan isle'egta inoo soo baxday; hase yeeshe aan laga helayn xoodka ama xarriqda isle'egta.

Bal aan \(u\) qaadano \((x-h)^{2}+(y-k)^{2}=g^{2}\) in ay tahay sansaankeena beeggal ee isle'egta goobo, leh xuddunta \(x(h, k)\) iyo gacanka g. Markaa isle'egtan \((x-h)^{2}+(y-k)=g^{2}\) garaafkeedu waa goobo, leh xuddunta \(x(h, k)\) iyo gacanka g; haddaba, haddil goobada xuddunţeedu tahay unagga \((0,0)\) gacankeeduna yahay g , markaa isle'egta sansaankeeda beeggal wuxuu yahay ama noqonayaa sidan: \(x^{2}+y^{2}=g^{2}\). Maxaa yeelay, \(h=0, k=0\) oo halkoodil aynu ku beddelay eber, sidan oo kale.
\[
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=9^{2} \\
& (x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}=9^{2} .
\end{aligned}
\]

Taasuna waa marka ay xuddunta goobadu ku dhacdo unugga \((0,0)\). TUSAALE : Raadi isle'egta goobada, xuddunteedu tahay \(\times(5,-3)\) gacankeeduna yahay 7 .

Furfuris: \(h=5, k=-3, g=7\)
Waxa aynu adeegsanaynaa isle'egteenii ahayd \((x-h)^{2}\), \((y-k)^{2}=g^{2}\). Waxa ayna noqonaysaa sidan:
\((x-5)^{2}+[y-(-3)] 7\)
\((x-5)^{2}+(y+3)^{2}=49\)

TUSAALE: II
Sawif garaafka goobada isle'egteedu tahay, \((x+2)^{2}\). \((y-4)^{2}=25\)
Furfuris: Isle'egtu waxay u taalaa sidii sansaanka beeggal, markaa waa isle'egta goobada xuddunteedu tahay \(x(-2,4)\), gacankeeduna yahay 5 . Sidaa awgeed, \(h=-2\), \(k=4, g=5\).

Haddifba aynu haysano xudduntil iyo gacankii goobada sawirka garaafkeedu aad buu u fudud yahay oo wuxuu noqonayaa sidan:

Marka hore, la soo bax xuddunta goobada; xudduntaas oo ah, barta \((-2,4)\). Marka xigana sawir goobo gacankeedu yahay 5 halbeeg, adoo ka bilaabaya xuddunta \((-2,4)\), sida shaxanka sare uu kuu tilmaamayo.

\section*{TUSAALE:III}

Raadi gacenka goobada xuddunteedu tahay \((-3,1)\) maraysana barta \((5,7)\).

Furfuris: Haddiiba goobadu ay leedahay xuddunta \((-3,1)\), isla markaana ay marayso barta \((5,7)\) gacanku wuxuu noqonayaa fogaanshaha \(u\) dhexeeya labada meelood xuddunta \((-3,1)\) iyo barta \((5,7)\).

Wuu inoo cad yahay jidka ay tahay in aynu qaadno; waana jidkil fogaanshaha
\(=\sqrt{\left(x_{2}-x_{1}\right)+\left(x_{2}-y_{1}\right)^{2}}\)
\(g=\sqrt{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)^{2}}\)
\(g=\sqrt{[5-(-3)]^{2}+(7-1)^{2}}\)
\(9=\sqrt{64+36}\)
\(g=\sqrt{100}=\)
10
Isle'egta goobaduna waa \((x+3)^{2}+(y-1)^{2}=100\)

\section*{LAYLI Jawaabo}
1. Raadi Isle'egta goobada xuddunteedu tahay \(\times(0,0)\) gacankeeduna yahay 5.
\[
\text { Jawaab } x^{2}+y^{2}=25
\]
2. Raadi Isle'egta goobada xuddunteedu tahay \(\times(4-2)\), gacankeeduna yahay 8 .
\[
\text { Jawaab: }(x-4)^{2}+(y+2)^{2}=64
\]
3. Raadi isle'egta goobada xuddunteedu tahay \(x(-4,-2)\), maraysana barta \((1,3)\) ?
\[
\text { Jawaab: }(x+4)^{2}+(y+2)^{2}=50
\]
4. Raadi isle'egta goobada xuddunteedu tahay \(x(-5,6)\), taanjantna \(u\) ah dhidibka \(\times\) (shaxan baa ku caawin kara)
\[
\text { Jawaab: }(x+5)^{2}+(y-6)^{2}=36
\]
5. Raadi islegegta goobada xuddunteedu tahay \(x(2,-8)\)
gacankeeduna yahay 5 .
Jawaab: \((x-2)^{2}+(y+8)^{2}=5^{2}\)
ama \(x^{2}+y^{2}-4 x+16 y+43=0\)
6. Soo saar isle'egta goobada taanjantka \(u\) ah dhidibka \(x\), xuddunteeduna tahay \(x(-3,5 / 3)\)
\[
\text { Jawaab: } \quad 3 x^{2}+3 y^{2}+18 x-10 y+27=0
\]
7. Raadi isle'egta goobada, dhexroorkeedu leeyahay kulanada \((-3,12)\) iyo \((7,16)\).
(Binilx: Marka, hore raadi kulanka xuddunta goobada tass oo ah bar-bartameedka dhexroorka goobada. Dabeedna raadi gacanka goobada.)
\[
\text { Jawaab: } \begin{aligned}
& (x-2)^{2}+(y-14)^{2}= \\
& \text { ama } x+y^{2}-4 x-28 y+171 z=0
\end{aligned}
\]

Haddil aynu rabno in aynu raadino isle'egta goobada xuddunteedu tahay \(x(5,2)\), gacankeeduna yahay 6 , waxa aynu odhan jirnay isle'egtu waa \((x-5)^{2}+(y-2)^{2}=36\), ama \(x^{2}+y^{2}-10 x-4 y-7=0\).
Ka soo qaad in aynu haysano isle'egtan \(x^{2}+y^{2}-8 x+2 y+8=0\). Haddaba, haddii ay taasu tahay, isle'egta goobo, waa in aynu ogaano xuddunta, iyo gacanka goobada labadaba. Ma malayn kartaa sidaynu ku heli karno xuddunta iyo gacanks goobada isleegtaa?

Innagoo raacayna ama kaashanayna darriiqadii BHAMAYSTIRKA LABAJIBBAAR, WAxa aynu ka dhigi karna isle'egteena sasaanks beeggal ee isle'egta goobo; sansaankaas oo ahaa sidan: \((x-h)^{2}+(y-k)^{2}=g^{2}\).

Haddii tibxaha \(x\), aynu ka soocno tibxaha \(y\), oo aynu madoorsoomahana \(u\) rarno midigta isle'egta \(x^{2}+y^{2}-8 x+2 y+8=0\) waxa aynu heli doonaa sidan
\(x^{2}-8 x+y^{2}+2 y=-8\).
Markaa, \(x^{2}-8 x\),
Markaa, \(x^{2}-8 x\), waxa aynu \(u\) dhigi karnaa sansaanka ah \((x-h)^{2}\), h waxay innooga taagan tahay tiro.
\(y^{2}+2 y\), waxa aynu \(u\) dhigi karnaa sansaanka ah \((y-k)^{2}\), \(k\) waxay innooga taagan tahay tiro.
Taasaana lagu magacaabaa dhamaystirka laba j1bbaar,
a. Haddaba si aynu \(u\) dhamaystirno laba j1bbaarka \(x^{2}-8 x\), aan qaadano 4 ; afartaas 00 ah badhka weheliyaha tibixda \(x\), taas 00 ah \((x-4)^{2}\).
Markaa, aynu isku dhufano \((x-4)(x-4)=x^{2}-8 x+16\), waxa aynu helayna saddex tibixle laba ka mid ahi, \(x^{2}-8 x\), ay ku Jiraan isleegteenil iyo tibix madoorsoome ah, 1600 aynaan \(u\) baahnayn. Si aynu tibxihii sisle'egteena ku jir u hello, \((x-4)^{2}\) waxa aynu ka goynaynaa 16 , sidan oo kale

\section*{- 211 -}
\((x-4)^{2}-16\). Tan 00 la mid ah \(x^{2}-8 x+16-16\)
b. SidII talaabadii hore 00 kale , si aynu \(u\) dhamaystirno laba jibbaarka \(y^{2}+2 y\), waxa aynu qaadan badhka weheliyaha tibixda \(y\); dabeedna waxa aynu ka dhigi sansaankan \((y+1)^{2}\) \(=y^{2}+2 y+1\).
Markaa sida aad ku aragtidba waxa aynu helnay laba tibxood \(\infty\) ah \(y^{2}\) iyo \(2 y\) kuna jira isle'egteenil iyo tibix madoorscome ah +1 , oo aynaan u bahnnayn. Haddaba si aynu tibxaha isle'egteenii ku jiray ula hadno, \(y^{2}+2 y+1\) waxa ka gooynaynaa 1 , sidan oo kale, \(y^{2}+2 y+1-1=(y+1)^{2}-1\). Isle'egteenii hore waxay ahayd \(x^{2}-8 x+y^{2}+2 y=-8\); markaa tibxaha \(x\) waxa aynu halkoodil dhigi qiimihii aynu tusnay In ay la mid yihiln; tibaxaha yha waxa iyana aynu halkoodii dhigi qiimihil aynu tusnay in uu la mid yahay sideeda tabanna waynu qaadan.
\((x-4)^{2}-16+(y+1)^{2}-1=-8\).
Madoorsoomayaasha oo idil marka aynu midigta isugu
wareejino, waxa aynu helnay sidan \((x-4)^{2}+(y+1)^{2}=17-8=9\).
Isle'egtani \((x-4)^{2}+(y+1)^{2}=9\), waxay tahay sansaanka
beeggal ee isle'egta goobo. Haddii aad qeexidihil baalaalka hore, ku qeexnaa la socotayne \(\%\), waxa cad in
aad sheegi kartid, xuddunta iyo gacanka goobada labadaba.

\section*{TUSAALE:}

Ka dhig isle'egtan \(x^{2}+y^{2}-6 x+4 y-3=0\)
sansaanka beeggal ee isle'egta goobo, soona saar
xuddunta iyo gacanka goobada.
Purfuris: Marka, aynu dhamaystirno labajibbaarka \(x^{2}+y^{2}-6 x+4 y-3=0\) vaxa aynu heli sidan:
\((x-3)^{2}+(y+2)^{2}\) 16
Xudduntu waxay tahay \((3,-2)\) gacankuna wuxuu yahay \(=4\).

LAYLI
Isle'egyadan soo socda mid walba ka dhig sansaanka beeggal; dabeed raadi xuddunta iyo gacankaba; sawirna garaafkooda haddii uu jiro.
1. \(x^{2}+y^{2}-6 x-4 y-3=0\)
2. \(x^{2}+y^{2}+8 x-10 y+32=0\)
3. \(x^{2}+y^{2}+18 x-2 y+82=0\)
4. \(x^{2}+y^{2}-8 x+14 y+1=0\)
5. \(x^{2}+y^{2}-12 x+6 y+70=0\)
6. \(x^{2}+y^{2}+D x+E y+F=0\) ?

\section*{SAAB}

\section*{GeEXID:}

Saab waa dhammaan ururka baraha ku yaalla sallax, kuwas
on isku fogaansho \(u\) wada jira bar ma guuraan ah, iyo xarriiq sa quuraan ah, kuna yaalla sallaxa.

Barta ma guuraanka ah waxa la yidhaahdaa kulmiska saabka, xarrifqda ma guuraanka ahna waxa la yidhaahdaa jeedshe.
\(\mathrm{f}=\) waxa ay innooga taagan tahay kulimiska
L = Waxa ay innooga taagan tahay jeedshe.
Q = Waxa ay innooga taagan tahay geeska saabka.

Haddi1 L ay tahay xarrilqda ma guuraanka ah, Fina
tahay barta ma guuraanka ah, markaa B waxa ay ku taallaa saabka dushilsa haddil \(/ B D /=/ B F /\).

Bal hadda, u fiirso shaxankan hoose.

Haddi1 \(A B=B F, M Q=Q F, C G=G F, E R=R F, N S=S F ;\) markaa baraha \(B, Q, R, S\), iyo \(G\), waa baro raaligelinaya qeexiddil saabka sida jeedshaha iyo kulmiskuba ay u raaligeliyeen. Haddil aynu sawirno xarrilq ku qotonta jeedshaha, maraysano kulmiska, sida aad shaxanka hoose ku aragtid, markaas barta G ee ku taalla saabka ma tahay badhtamaha jeedshaha iyo kulmiska?

Jawaabtu waa haa, waxana innoo caddaynaya qeexiddil saabka. Barta G ee saabka ku taallaa, waxay dhacdaa halka saabku ka jaro xarriiqda marta kulmiska, kuna qotonta jeedshaha; waxana la yidhaahdaa geeska saabka. Markaa, geesku wuxuu kala badhaa jeedshaha iyo kulmiska saabka.

Shaxanka hoose ku muuji xarrifqda jeedshaha, kulmiska,

Iminka waxa inala soo gudboonaaday waqtigii iyo sidil aynu \(u\) raadin lahayn isle'egta saab; markaa, waa in aynu dhisnaa hab kulan, kaas oo jeedshaha, kulmiska iyo geeskaba sida ugu
hawl yar loogu muujiyo sallaxa; isla markaa waa in aynu arki karna astaamaha qaarka \(u\) ah ee ay leedahay bar.kasta 0 ku taalla saabka, astaamahaas 00 aanay lahayn baraha san ku oollin saabka.
waxa jirta inuu yahay ma guuraan fogaanshaha \(u\) dhexeeya jeedshaha iyo kulmiska, haddaba hawl yaraysi awgeed fogaanshahaa waxa aynu ka dhigan sidan \(2 b>0\). Markaa, fogaanshaha 4 dhexeeya kulmiska iyo geesku waa b; fogaanshaha u dhexeeya geeska iyo jeedshuhuna waa b.

Haddaba inagoo maskaxda ku hayna qeexiddil saabka waxa aynu difí isle'egta saab; saabkaas oo leh kulmiska (b,0), jeedshuhuna uu leeyahay isle'egta \(x=-b, b=a, b>0\). Geeskuna uu ku dhacayo unugga dhidibada. Isle'egtana waxa aynu u diiri karnaa innagoo tusayna in bar kasta oo ku taalla saabka ay raaligelinayso isle'egta; bar kasta oo raaligelisa isle'egtana ay ku taallo saabka.
Bal aad ugu filrso shaxankan hoose, iyo tallaabooyinka aynu difridda isle'egta u qaadayno.
 markaa, \(/ \overline{\mathrm{BF}} /=/ \mathrm{BD} /\)
\[
\text { / } \overline{\mathrm{BF}} /{ }^{2}
\]

Hase-yeeshe haddii \(/\left.\overline{\overline{B F}}\right|^{2}=|\overline{\mathrm{BD}}|^{2}\)
Markaa, \(|\overline{\mathrm{BF}} /=| \overline{\mathrm{BD}} /\) ama \(/ \overline{\mathrm{BF}} /=-\mid \overline{\mathrm{BD}} /\)
Hase-ahatee \(/ \widehat{\mathrm{BF}}\) / iyo / \(\widehat{\mathrm{BD}} /\) labaduba way togan yihiin; sidaa awgeed ma jiraan baro raaligelinaya \(/ \overline{\mathrm{BF}} /=-/ \overline{\mathrm{BD}} /\), Markaa roggaal ahaan baynu ku tusnay in bar kasta 00 B ah oo raaligelisay \(/ \overline{\mathrm{BF}} /^{2}=/ \overline{\mathrm{BD}} /^{2}\) in ay haddana raaligelisay \(/ \overline{B F} /=/ \overline{B D} /\); sidaana ay ku noqotay mid ku taal saabka. Sidaa daraadeed isle'egta saabku waxay tahay \(/ \overline{\mathrm{BF}} /^{2}=/ \overline{\mathrm{BD}} /^{2}\) markaa, innagoo qaadanayna kulanadii aynu ku muujinay shaxanka, adeegsanaynona \(j i d k i 1\) fogaanshaha waxa aynu helaynad sidan:
\[
\left[\sqrt[v]{(x-b)^{2}+y^{2}}\right]^{2}=\left[\sqrt{(x+b)^{2}}\right]^{2}
\]
ama \((x-b)^{2}+y^{2}=(x+b)^{2}\)
Marka, aynu isku thufano isirada waxa aynu heli doonaa sidan:
\[
x^{2}-2 b x+b^{2}+y^{2}=x^{2}+2 D x+b^{2}
\]

Tanna waxa 100 sil fududayn karaa sidan:
\[
y^{2}=4 b x .
\]
waxa aynu tusnay in \(y^{2}=4 \mathrm{bx}, \mathrm{b}>0\) ay tahay isle'egta saab; saabkaas oo leh kulniska (\(\mathrm{b}, 0\)) 1yo jeedshaha \(\mathrm{x}=-\mathrm{b}\). Waxa jirta marka saebiku leeyahay kulmiska (b,0), jeedshuhuna yahay \(\mathrm{x}=-\mathrm{b}\), geesku wuxuu ku dhacayaa unugga, saabkuna wuxuu ku kanqaranayahay chidibka \(x\)) haddilba aan la beddelin isle'egta \(y^{2}=4 b x\), markaa saabkaasu wuxuu leeyahay qolxo u jeeda xagga midigta.

TUSAALE : I
Raadi 1sle'egta saabika kulmiskilsu yahay \((4,0)\), jeedshuhund yahay \(\mathrm{x}=-4\).

Furfuris: \(\quad \begin{aligned} 2 b & =8 \\ b & =4\end{aligned}\)
Markaa innagos :حəcayn: isle'egtil saabka, waxa aynu helaynaa \(\mathrm{y}^{2}=4 \mathrm{bx}\)
\[
\begin{aligned}
& y^{2}=4 \mathrm{Dx} \\
& \mathrm{y}^{2}=4.4 \mathrm{x} \\
& \mathrm{y}^{2}=16 x \\
& =\pi=-\infty=\pi=a=a
\end{aligned}
\]

\section*{TUSAALE :II}

Raadi kulmiska iyo jeedshaha ee saabkan \(y^{2}=8 x\); garaafkana sawir.
Purfuris: Isle'egtan \(y^{2}=8 x\), waxay \(u\) taallaa sidif sansaanka beeggal ee ahaa \(y^{2}=4 b x\), markaa, \(8 x=4 b x\) Kulmisku waa \((+2,0)\)
\(2=b=2\)

Haddii aynu rabno isle'egta saabka qolxadiisu u jeeddo xagga bidixda, haddana fogaanshaha \(u\) dhexeeya kulmiska iyo jeedshaha, waxaynu u qaadanaynaa 2 b . Hase-yeeshe iminka kulmisku wuxuu ku samaysmayaa bidixda jeedshaha. Sidaa awgeed kulmisku wuxuu yahay \((-b, 0)\), jeedshuhuna \(x=b, b>0\). Bal \(u\) filirso shaxankan hoose.

Marka aynu diirayno isle'egta saabka u golxaysan xagga bidixdt waxa aynu raaci isla dariiqadii hore ee saabku u golxaysnaa xagga midigta. Hase-yeeshe kulanada ayuunbaa isbeddel yar! ku dhacay sida ad ku aragtayba shaxankan ku qoran hoosta bogga 217. Isle'egtuna waxay noqonaysaa sidan: \(y^{2}=-4 b x\), 00 sansaanka beeggal ah. Bal isku day in ad diirtid isle'egta, Saabka isle'egtiisu tahay \(y^{2}=-4 b x\), kulmiskiisu waa \((-b, 0)\); jeedshihilsuna wuxuu leeyahay isle'egta \(x=b\). Sidaa awgeed wuxuu u golxaysan yahay xagga bidixda; waxaanu ku wangaran yahay dhidibka -x. Dhidibka -xna wuxuu yahay dhidibka sabba.

\section*{TUSAALE:I}

Raad! kulniska, 1yo jeedshaha saabka isle'egtiisu tahay \(y^{2}=-12 x\).
Furfuris:
Isle'egtan \(y^{2}=-12\), waxay \(u\) taallaa sidii sansaanka beeggal ee ahaa \(y^{2}=-4 b x\) ee saabka kulmiskiisu yahay \((-b, 0)\), jeodshihiisuna yahay \(x=b\).
\(: .-4 b x=12 x\)
\[
\text { b } a 3
\]

Markaa, kulmisku waa \((-3,0)\).
Jeedahuhuna waa 3

\section*{LAYLI :}
1. Saahakkan kuweebaa midigta u golxaysan, kuweebaase bidixda u golxaysan. Nid walbana sheeg jeedshaha iyo kulmiskeeda.
B. \(y^{2}=-4 x\)

ย. \(y^{2}=7 x\)
1. \(-y^{2}=-14 x\)
8. \(y^{2}=6 x\)
kh. \(y^{2}+16 x=0\)
di. \(y^{2}-10 x=0\)
 xagga sare.
Sidil labadif aynu soo dhaafnay, fogaanshaha \(u\) dhexeeya kulmiska 1 yo jeedshaha, waxa aynu \(u\) qaadanaynaa \(2 b\), (b

Hase-yeeshe \(1 m i n k a\) kulmisku wuxuu ku yaallaa dhidibka -y waxana uu yeelanayaa kulanada \((0, b)\), jeedshuhuna wuxuu yeelanayaa isle'egta \(y=-b\), sida ad shaxankan hoose \(k u\) aragtid:
\(y\)

Sidil hore oo kale barta \(\mathrm{f}(\mathrm{B}, \mathrm{y})\) waxay ku taallaa saabka haddil iyo haddii oo keliyaoo/BF/ =/ \(\overline{B D} /\) marka aynu isle'egtan labadeeda dhinac laba jibbaarnana wax baro ah, oo cusubi ma soo gelayaan. Sidaa darteed bartavi waxayakuaeaallaa saabka haddii iyo haddii 00 keliya \(00 / \overline{\mathrm{BF}} /^{2}=/ \overline{\mathrm{BD}} /^{2}\).

Haddaba, innagoo adeegsanayna jidki1 fogaanshaha iyo shaxankeena kore, waxaynu heli sidan:

Marka, aynu isku dhufano isiradana waxaynu heli sidan:
\[
\begin{aligned}
& x^{2}+y^{2}-2 b y+b^{2}=y^{2}+2 b y+b^{2} \\
& \tan 00 u \text { sil fududaanaysa sidan: } x^{2}=4 b y, b>0
\end{aligned}
\]

Markaa, sansaanka beeggal ee isle'egta saabka leh kulmiska \((0, b)\) 1yo jeedshaha \(y=-b\) wuxuu yahay \(x^{2}=4 b y\).
TUSAALE: Raadi Isle'egta saabka kulmiskiisu yahay \((0,4)\)
jeedshiniisuna yahay \(y=-4\).
Furfuris: Waxa aynu ogaan karnaa in ay \(2 b=8\)
\[
\begin{aligned}
& \therefore b=4 \\
& \therefore x^{2}=4 \cdot 4 y \\
& x^{2}=16 y \\
& \Rightarrow=m=m=m=m=m=m=m=
\end{aligned}
\]

Ilaa lyo hadda waxa aynu falanqaynay saddex saab oo kala duwan.
1. Saabka \(y^{2}=4 b x\), wuxuu lahaa kulmiska \((b, 0)\), iyo jeedshaha \(x=-b\). Golxadilsuna waxay \(u\) jeeday xagga midigta, waxaanuu ku wanqaarnaa dhidibka \(-x\).
2. Saabka labaad, \(y^{2}=-4 b x\) wuxuu lahaa kulmiska \((-b, 0)\), iyo jeedshaha \(x=b\). Golxadiisuna waxay \(u\) jeeday xagga bidixda, waxaanu ku wanqaarnaa isna dhidibka* \(x\).
3. Saabka saddexaad \(x^{2}=4 b y\), wuxuu lahaa kulmiska \((0, b)\), iyo jeedshaha \(y=-b\). Golxadiisuna waxay ujeeday xagga sare.
waxaanu ku wanqaarnaa dhidibka -y .
Saddexda xaalaba goeskuovaxúu ku yillunuga dhidibada mid afaraad baa inoo hadhay, kaas oo ah marka saabku u golxaysan yahay xagga hoose. Haddaba sidil kuwii hore oo kale, fogaanshaha \(u\) dhexeeya kulmiska iyo jeedshaha waxa aynu u qaadanaynaa \(2 \mathrm{~b}, \mathrm{~b}>0\). Sidaa awgeedna kulmisku wuxuu noqonayaa \((0,-b)\), jeedshununa waxa uu noqonayaa \(y=b\). Bal adigu diirisle'egta saabka marka uu hoos u jeedo ilaa aad ka gaadhaysid isle'egtan \(x^{2}=-4 b y\), oo ah sansaanka beeggal marka saabku hoos u golxaysan yahay.

TUSAALE Raadi kulmiska iyo jeedshaha ee saabka \(x^{2}=-12 y\), garaafkana sawir.

Furfuris: Isle'egteenil sansaanka beeggal ahayd, waxa ay ahayd \(x^{2}=-4 b y\)
\[
\therefore-4 b y=-12 y
\]
:. Kulmisku พ่\&a \((8,=3)^{3}\)
jeedshuhuna waa \(y=3\).

\section*{- 221 -}

Layliga sheeg saabab kan golxadoodu xagga ay u jeeddo. (Midig, bidix, hoos: ama sare)
1. \(x^{2}=-9 y\)
2. \(x^{2}-12 y=0\)
3. \(y^{2}-7 x=0\)
4. \(y^{2}-16 x\)
5. \(\mathrm{y}^{2}+8 \mathrm{x}=0\)

Layliga saababkan, raadi kulmisyadooda jeedshayaashooda, Iyo jahada ay \(u\) golxaysan yihiinba?
1. \(y^{2}=-20 x\)
2. \(y^{2}=-11 x=\)
3. \(x^{2}=-7 y\)
4. \(y^{2}=10 x\)
5. \(x^{2}-8 y=0\)

Layli:
1. Raadi isle'egta saab kulmiskiisu yahay \((3,0)\), jeedshuhuna \(y\) ahay \(x=-3\).
2. Raadi isle'egta saab, haddii kulmiskilsu yahay \((-6,0)\) geeskilsuna yahay \((0,0)\) ?
3. Raadi isle'egta saab, haddii geeskiisu yahay \((0,0)\) Jeedshuhuna yahay \(y=-8\)
4. Raadi isle'egta saabka kulmiskilsu yahay \((0,-2)\) geeskiisuna yahay \((0,0)\) ?
5. Raadi isle'egta saabka kulmiskifsu yahay \((0,8)\), jeedshuhuna yahay \(y=-8\).
6. Raadi isle'egta saabka u golxaysan xagga midigta, geeskilsuna yahay \((0,0)\), marayana barta \((8,8)\).
7. Haddii kulmisku yahay \((-6,0)\), geeskuna yahay \((0,0)\), saabku wuxuu u golxaysan yahay xagga \(\qquad\) - isle'egtuna waa sansaanka \(\qquad\) bna waxay " \(\qquad\) -.

QABAAL

\section*{Lkuna wanqarma labada}

Waxa aynu soo baranay saababka maraya unugga/dhidib mid uun. Baabkan waxa aynu ku baranaynaa shaxanada toobineysan mid ka mid ah oo la yidhaaho qabaal; waxase aynu ku koobnaan qabaalka xudduntilsa maraysa unugga, kuna wanqaran labada dhidib.
\(\mathrm{F}=\) waxa ay inooga taagan tahay kulmis.
\(\mathrm{F}^{1}=\) Waxa ay inooga taagan tahay kulmis kale
G. = Waxa ay inooga taagan tahay geeska.

\section*{QEEXID:}

Qabaal waa dhammaan ururka baraha ku Jira sallaxa, wadarta fogaanshahooda ay laba barrood, oo ma guuraan ahi ay u flraanna tahay madoorsoome.
Baraha maguuraanka ah waxa la yidhaa kulmisyada qabaalka.
Bal u fifrso shaxankan hoose. Ka soo qaad in ay \(F\) iyo \(F^{1}\) ay yihiln kulmisyada qabaal. Haddaba qeexidcahaan barta \(\mathrm{B}(\mathrm{x}, \mathrm{y})\) waxay ku taallaa qabalka haddil iyo haddil oo kaliya, \(\infty / \mathrm{FB} /+/ \mathrm{F}^{1} \mathrm{~B} /\) ay le'egtahay madoorsoome lagu silyay.

sida ugu dhib yar ee dhisi kara qabaal waxa aynu u raaci karnaa tallaabooyinka soo socda :
1. 500 qaado milq dun ah.
2. Cidhifyada miiqa isku gunud
3. Waxa kale 00 aad \(s 00\) qaadataa laba musmaar.
4. nul dhig mifigaad isku gunuday xaashi cad
5. Gudaha milqaguntan ee xaashida dul saaran ka taag labada musmaar oo aad ku kala taagto laba meelood oo kala duwan milquna waa in \(u\) gilgtiraadaa.
6. Soo qaado qalin kale gudaha milq saar hana taabto mifqa iyo xaashidaba.
7. Dhinaca aad rabtid \(u\) wareeji qalinka isagoo caaradisa marna aanaad ka qaadin xaashida.
Shaxanka aad heshay waa qabaal.
Si aynu u raadino isle'egta qabaal waxa aynu dhisi hab kulanno ah. Kulmisyadana waxa aynu \(u\) dhigi sida inoogu hawl yar.

Sida ugu fudud ee aynu ku dooranayno dhidibka - x waa isaga \(\infty\) mara kulmisyada \(F\) iyo \(F^{1}\), dhidibka-yna wuxuu inoogu qotona dhidibka \(-x\).

Mar haddii aynu dooranay dhidibadeenii, markaa kulmisyada kulanadoodu waxay noqonayaan sidan :
(a) \(F(c, 0)\) (b) \(F^{1}(-c, 0)\), i filirso shaxankan hoose.

Qeexidii qabaal inagoo la kaashanayna wadarta \(/ \overline{\mathrm{EB}} /+\overline{\mathrm{BF}}^{1} /\) waxay ahayd madoorsoome, waxaynuna \(u\) qaadanaa in ay le'eg tahay \(2 a\), ama sidan 00 kale \(/ \overline{\mathrm{FB}} /+\overline{B F}^{1} /=2 a\).
Haddii \(B(x, y)\) aanay ku oolin dhidibka-x saddexda barood \(F\), B iyo \(F^{1}\) waxay sameeyaan seddexagal dhinacyadiisu ay
dherer le'eg yihiin \(\sqrt{F B} /, \overline{B F}^{1} /\), iyo \({/ \overline{P F}^{1}}^{1}\) / ama \(2 c\).
Waxa aynu naqaanay in wadarta cheraka laba dhinac ee seddexagal ay had iyo jeer ka weyn tahay dhinaca seddexaad, ; marka waxa si dhib yar aynu ku gaadhi gebagebadan ah
\(/ \overline{F B} /+\overline{B F}^{1},>\bar{F}^{1} \mathrm{~F} /\) ama \(a>c\)
maxaa yeelay \(2 \mathrm{a}=\sqrt{\mathrm{FB}} /+\overline{\mathrm{BF}}^{1} /, \overline{\mathrm{FF}}^{1} /=2 \mathrm{c}\).
Haddil \(B(x, y)\) ay ku taallo qabaalka, oo waliba ay ku taallo dhidibka \(-x\) meel xarriijinta \(F F^{1}\) debedda ka ah, markaas \(\overline{F B} /+\overline{B F}^{1},>\overline{F F}^{1}\), ama a \(>c\).
Tan oo la mid ah xidhildhkil aynu hore \(u\) soo sheegnay ahaana a \(>c\).
Bal u filrso, shaxankan:

Hase-yeeshe haddii B ay ku taallo qabaalka ay kuna taallo xarriljinta \(\mathrm{FF}^{1}\) markaa \(/ \overline{\mathrm{FB}} /+\overline{\mathrm{BF}}^{1} /={\mid \overline{F F}^{1} / \text {, ama } a=c}^{1}\)

Tan waxa aad fahmi markaad qabaal qabatid geesaha kulmisyada ee aad kala jiidid ilaa barta \(B\) ay fuusho xarrifjinta \(F F^{1}\), qabaalkuna u noqdo xarriiq toosan; taas waxa aad sameeyn karta markaad isticmaashid dun ama wax kala jiidma. Rogaal ahaan haddii \(B\) ay ku taallo qabaalka \(\circ 0, a=c\), marka, waxa lama huraan ah in B kutaallo xarrifinta \(\mathrm{FF}^{1}\).
Waxa aynu tusnay marka aanay barta B ku oollin xarriljinta PF \({ }^{1}\) in \(a>c\); marka \(a=c\) qabaalka garaafkiisu waa
dhammaan ururka baraha ku yaalla xarriljinta \(\mathrm{FF}^{1}\).
Haddaba haddii a < c, ma jiraan wax baro ah oo raaligelinay qeexiddii qabaalka. Sidaa awgeed had iyo jeer waxa aynu \(u\) qaadan in a \(>\).
Barta B (\(x, y\)), waxay ku taallaa qabaalka haddii iyo haddii \(\infty\) keliya, \(\infty / \mathrm{FB} /+\mid \mathrm{BF}^{1} /=2 \mathrm{a}\).

Innagoo la kaashanayna jidkil fogaanshaha, barta B (\(x, y\))
waxay ku taallaa qabaalka haddii iyo haddii oo keliya, oo
\(\sqrt{(x-c)^{2}+y^{2}}+\sqrt{(x+c)^{2}+y^{2}}=2 a\)
Markaa (1) \(\sqrt{\overline{(x-c)^{2}+y^{2}}}+\sqrt{(x+c)^{2}+y^{2}}=2 a\) waa isle'egta
qabaalka leh. Kulmisyada (\(c, 0\)) iyo \((-c, 0)\), iyo fogaanshaha adoorsoomaha ah ee 2 a .
Isle'egta (1) Sidaa ku dayn mayno ee intil aynu fududeen karnaba waynu fududeyn.
Labada dhinac ee isle'egta (1) waxa aynu ka go'ynaynaa \(\sqrt{(x-c)^{2}+y^{2}}\). Jadeeyaduna waxa ay noqonaysaa sidan:
\(\sqrt{(x-c)^{2}+y^{2}}+\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}}\)
\(=\sqrt{(x-c)^{2}+y^{2}}=2 a-\sqrt{(x-c)^{2}+y^{2}}\). (2)
Isle'egta (2) si aynu uga saarno xididka laba jibbaar, labada thinacba waynu laba jibaari markaa waxa aynu heli sidan.
(3) \(\left(\sqrt{(x+c) 2}+y^{2}\right)^{2}=\left[2 a-\sqrt{(x-c)^{2}+y^{2}}\right]^{2}=(x+c)^{2}+y^{2}=\)
\(\left[2 a-\sqrt{(x-c)^{2}+y^{2}}\right]^{2}=x^{2}+2 c x+c^{2}+y^{2}=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}+x^{2}}\)
\[
-2 c x+c^{2}+y^{2}
\]

Isle'egta (4) aad marka aynu sil fududayno waxa aynu helaynaa sidan (5) \(2 c x=4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}}-2 c x 00\) la mid ah \(\tan\) (6) \(4 a\) \(\sqrt{(x-c)^{2}+y^{2}}=4 a^{2}-4 a c\).

Isle'egta Gaad marka aynu dhinac walba \(u\) qaybino 4 waxa ay noqon sidan \(\frac{4 a}{4} \sqrt{(x-c)^{2}+y^{2}}=\frac{4}{4}\left(a^{2}-c x\right)\).
Isle'egyadan ta ugu hoosaysa haddii aynu labada dhinacba laba jibbaarno waxay noqonaysaa sidan:
\[
\begin{aligned}
& {\left[a \sqrt{(x-c)^{2}+y^{2}}\right]^{2}=\left(a^{2}-c x\right)^{2}} \\
& a^{2} x^{2}-2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2}=a^{4}-2 a^{2} c x+c^{2} x^{2}
\end{aligned}
\]

Tan wixii isugo'aya marka aynu isugoyno waxa aynu heli sidan: \(a^{2} x^{2}+a^{2} c^{2}+a^{2} y^{2}=a^{4}+c^{2} x^{2}\). Tan markaynu tilxaha \(x\) iyo \(y\) marka aynu bidixda marino, madoorsoomayaashana midigta isugu waree-
jino waxa ay nogonaysaa sidan:
\(\left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{4}-a^{2} c^{2}\) ama \(\left(a^{2}-c^{2}\right) x^{2}+a^{2}\left(y^{2}\right)=a^{2}\left(a^{2}-c^{2}\right)\). isleegtan haddii aynu dhinac walba \(u\) qaybino \(a^{2}\left(a^{2}-c^{2}\right)\) waxa aynu heli sidan:
\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2} \cdots c^{2}}=1\)
Waxa aynu dilenay in isle'egta \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{z^{2}-f^{2}}=1\) ay tahay isle'egta qabaal. horana waxa aynü u tusånā్̄y in a \(>c\). Sidaa awgeed \(a^{2}-c^{2}>0\); sidaa darteedna waxa aynu meesha soo gelin xaddi cusub \(c o\) ah \(b=\sqrt{a^{2}-c^{2}}\) ama \(b^{2}=a^{2}-c^{2}, c^{2}+1\) ama \(b^{2}+c^{2}=a^{2}\) markaa haikil \(a^{2} c c^{2}=a^{2}\) waxa aynu dhigi \(b^{2}, 00\) waxa ay noqon isle'egta ugu dambaysaa sidan: \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)

Waana sansaanka beegga: ee isle'egta qabaal.
all filro gaar an \(u\) yeelo shaxankan hoose.

Si 100 helo geesha \(G^{1}\) iyo geeska \(G\) waa in aynu raadinaa tikraarada \(-x\) ee isle'egta qabaal.
Markaa \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\); hase yeeshee marka \(y=0\), waxa aynu
helaynaa \(\frac{x^{2}}{a^{2}}=1\) ama \(x^{2}=a^{2}\)
\[
\begin{aligned}
& G^{1}(-a, 0), G(a, 0) \text {. Sida aad shaxanka sare ku } \\
& \text { aragtid. }
\end{aligned}
\]

Sidaas oo kale kulanada B iyo \(\mathrm{B}^{1}\) waa in aynu raadinaa tikraarada \(-y\) ee isla sisle'egteenil markaa \(\frac{x^{2}}{a^{2}} \cdot \frac{y^{2}}{b^{2}}=1\); hase yeeshee \(x=0\). narka waxa aynu helaynaa
\[
\begin{aligned}
\frac{y^{2}}{b^{2}}=1 \text { ama } y^{2} & =b^{2} \\
y & = \pm b
\end{aligned}
\]

B \((+5,0), B^{1}(-b, 0)\)

\section*{OCSOONOW:}
1. Xarriiqda maraysa kulmisyada \(F\) iyo \(F^{1}\) waxa la -yidhaahdaa dhidibka weyn.
2. Ka ku qotomana waxa la yidhaa dhldibka yar
3. \(c=\) fogaanshaha \(u\) dhexeeya kulmiska iyo xuddunta.
4. \(b=\) fogaanshaha \(u\) dhexeeya xuddunta iyo geeska yar.
\({ }^{5}, a=\) fogaanshaha \(u\) dhexceya xuddunta lyo geeska weyn.
6. Dhererka dhidibka yari \(=2 b\)
7. Dhererka dhidibka weyni \(=2 a\).

TUSAALE. Raadi isle'egta qabaalka kulmisyadiisu yihiln (3,0) iyo \((3,0)\), geesihiisuna ay dhacayaan \((5,0)\) iyo \((-5,0)\) Ogoow in \(b^{2}=a^{2}-c^{2}\)

FURFURIS: Markaa \(a=5, c=3\)
\[
b^{2}=a^{2}-c^{2}
\]
\[
\therefore b^{2}=425-9=16 \text { ama } b=4
\]
\[
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\]
\[
=\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\]

Tusaale II Qabaalbaa wuxuu leeyahay isle'egtan
\[
\frac{x^{2}}{25}+\frac{y^{2}}{9}=1
\]

Raadi kulmisyada iyo geesaha qabaalka; garaafkiisna sawir.

FURFURIS: \(\quad a^{2}=25, \quad b^{2}=9\)
\(\therefore a= \pm 5, b= \pm 3\)
Waxa aynu naqaanay in
(Shaxan)
\[
\begin{aligned}
& a^{2}-c^{2}=b^{2} \\
& \text { - } 25-c^{2}=9 \\
& \therefore 25-9=c^{2} \\
& \therefore 16=c^{2}
\end{aligned}
\]

Maxaa yeelay waxa aynu naqaanay waxa \(a, b\), iyo \(c\) ay inooga taagnaayeen.

TUSAALE III: Haddil isle'egta qabaal tahay \(36 x^{2}+100 y^{2}=3,600\). Raadi dhererada dhidibka weyn, iyo ka yar, iyo kulanada kulmisyada lyo geesaha.

FURFURIS:
Marka u horraysaba isle'egteena waxa aynu u dhigi sidil sansaanka beeggal ee ahaa sidan:-
\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)
Markaa, dhinac walba waxa aynu \(u\) qaybin 3,600 . Sidan oo kale.

\(\therefore a^{2}=100, \quad b^{2}=36\) waxa kaloo jirtay in
\[
a= \pm 10 \quad b= \pm 6 \quad \therefore 100-c^{2}=36
\]
:. Dhidibka wayni \(=2 a=20\)
\[
100-36=c^{2}
\]

Dhidibka yari \(=2 \mathrm{~b}=12\)
\(64=c^{2}\)

Markaa geesuha \(=G(10,0), G^{1}(-10,0)\)
\[
\text { Kulmisyadu }=F(8,0), F^{1}(-8,0)
\]

Ilaa haatan waxa aynu falanqaynay marka kulmisyada qabaalku yihiin (\(c, 0\)) iyo (\(-c, 0\)), kuna yaallaan dhidibka -x. Dhidibka -xna uu ahaa dhidibka weyn ee qabaalka, dhidibka yarina ahaa dhidibka-y. Hase-yeeshe haddil aynu rabno in uu dhidibka-y noqdo dhidibka weyn ee qabaal, waa in aynu ka dhignaa kulmisyadeena dhidibka \(-\mathrm{y}, \infty\) ay yeeshaan kulanada \(F(0, \mathrm{c})\), iyo \((0,-c)\), fogaanshah1i madoorsoomahuna uu isla kli yahay \(2 a(a>c)\). Waxa aynu difri karnaa isle'egta qabaalka jaadkaas ah go'aankina waxa uu yeeshay sansaankan:

Bal hadda isku day in aaddilirtid una fiirso shaxankan.

TUSAALE I Haddil isle'egta qabaal ay tahay \(\frac{x^{2}}{9}+\frac{y^{2}}{25}=1\) Raadi dhererada dhidibada (ka yar iyo ka weyn) Iyo kulamada kulmisyada iyo geesaha.

\section*{:- Kulmisyadu}
\(=(0,4)\) 1yo \((0,-4) \cdot 25=9+c^{2} a=5\)
Geesuhu \(=(0,5)\) iyol0, \(25-9=c^{2} b=3\)
dhererada dhidibada \(\quad 16=c^{2}\)
ka yar iyo ka weyn waa \((0,-5)\)
(6 Iyo 10)

\section*{LAYLI}

\section*{1. Qor qeexida qabaal}
2. Adoo kaashanaya qeexiddil qabaal diir isle'egta qabaalka kulmisyadilsu yihiin \(F(c, 0)\) yo \(F^{1}(-c, 0)\) geesihilsuna yihiln \(G(a, 0)\) iyo \(G(-a, 0)\).

\section*{- 231 -}
3. Raadi isle'egta qabaal, haddii dhidibkilsa weyni leeyahay kulanada \((7,0)\) iyo \((-7,0)\); dhidibkiisa yarina leeyahay kulanada \((0,5)\) iyo \((0,-5)\).
4. Raadi isle'egta qabaalka kulanada kulmisyadilsu yihiin \((0,5)\) iyo \((0,-5)\); dhidibka yarina leeyahay kulanada \((7,0)\) iyo \((-7,0)\)
5. Raadi isleegta qabaalka geesihilsu leeyihiin kulanada \((9,0)\)
iyo \((-9,0)\) marayana barta \(\left(\frac{\sqrt{81}}{26}, 5\right)\)
6. Haddil isle'egta gabaal tahay \(\frac{x^{2}}{25}+\frac{y^{2}}{9}=1\).

\section*{Raadi (a) Kulmisyada}
(b) Geesaha
(c) Lyo dhererada dhidibka yar iyo ka weyn.

\section*{LAYLI}
7. Haddif isle'egta qabaal tahay \(\frac{x^{2}}{1}+-\frac{y^{2}}{3}=1\)
(a) Raadı dhererka dhidibkat yar
(b) Kulenada kulmisyada Lyo geesahaba, garaafkana sawie.
8. Haddil isle'egta gobas tahay \(x^{2}+7 y^{2}=7\). Raadi dhererka dhidlbike weyn tyo kulonada kulnisyada iyo geesahaba, garaafkane sowir.
"Tirignoometeri" waa eray girilg ah kana kooban (tirigoon 00 ah saddexagal lyo meteri oo cabbir ah). Waayadil hore waxa loogu dhaqmi jiray cabbiraadda xaglaha iyo fogaanta xiddigaha. Maantase waxay door weyn ka ciyaarta, baarista atoomigga, aragtida elegtrigga, gariirada kala duwan. Intaa waxaa dheer bedadkana idil waxay leeyihiln astaan soo noqnoqosho (periodic characteristics).

\section*{1-1. Kulanno iyo tirignoometeri}

Xagalo isku dhinac billow iyo isku dhinac dhamad ah waxa is yira xaglo dhamaad wadaag ah. Bar kasta, oo an ahayn unuga, kuna tal sallaxi kulan (\(x\) fyo \(y\)), waxay sugta xaglo aan kobnayn 00 dhamad wadaag ah; 00 mid waliba geeskeedu yahay unugga, dhinac billowgeeduna yahay dhanka togan ee dhidib-x; Fallaarta \(O D-n a\) waa dhinac dhamaadka xagasha xagal kasta 00 kuwaas ka mid ah waxa la yiraaha xagal-rug-beegeal-ah. Fiirso, cabbirada xaglo dhamad wadaag ahi waxay is dheer . yihlin dhufsane abyoone ah 00360 , macnee haddil \(x\) ay tahay xagal rug beeggal ah, \(x\) waxa la dhamaad wadaag ah dhamaan xaglaha ka mid ah ururka \(x+360 n n \in\{0, \pm 1, \pm 2, \ldots\}\).

Xaglo dhamaad wadaag ah oo rug beeggal ah.
(Shaxan) 1

Meele barta \(D\), haddif \(O D=3\), cabbirka xagal ka mid ah xaglo rugeed keeduna uu yahay -40 . Tus, sheegna cabbirka xagal rugeed togan ee \(D\).

\section*{FURFURIS}
1. Sawir fallaarta \(q\) ee la samaysa dhidib \(-x\) togan xagal cabbirkeedu yahay \(-40^{\circ}\).
2. q ka cabbir 3 halbeeg oo laga billaabo 0 . Barta la gaaray waa D .
3. Xagal rugeed togan ee D cabbirkeedu waa \(\left(-40+360^{\circ}\right)\), ama \(320^{\circ}\).

(Shaxan) 2

LAYLI
Barta inta ay ka fog tahay unugga iyo cabbirka xagal rugeedkeeda lagu siiyay, muufi. Waxaa kale oo aad muujisaa, ka sheegtaana cabbirrada laba xaglood oo kale, mid togan iyo mid taban, oo ayaguna ka mid ah ururka xaglo rugeedyada barta.
1. 2 (fogaanta laga billaabo unugga), \(180^{\circ}\) (cabbir xagal)
2. 3 ; \(210^{\circ}\)
3. \(4,60^{\circ}\)
4. \(1,-30^{\circ}\)
5. \(5 ;-45^{\circ}\)
6. \(7,240^{\circ}\)
7. \(3 / 2 ;-360^{\circ} 10\). \(14 ;-540^{\circ}\)
8. \(27,-225^{\circ}\)
9. 31 ; \(720^{\circ} 12.0,330^{\circ}\)
11. \(0 ; 150^{\circ}\)

Sawir fallaarta ah garaafka xirifr kasta ee soo socda, mulifna xagal rugeed togan iyo mid taban oo ay fallaartu \(u\) tahay dhinac dhamaad.
\[
\begin{aligned}
& \text { 13. }\{(x, y) / y=1 / 2 x, x \geq 0\} \\
& \text { 14. }\{(x, y) / y=16 .\{(x, y) / y=-5 x, x \geq 0\} \\
& \text { 15. }\{(x, y) / y=-4 x, x \leq 0\} \text { 18. }\left\{\begin{array}{l}
\text { 17. } \quad\{(x, y) / x=0, y \leq 0\}
\end{array}\right.
\end{aligned}
\]

Haddii barta D ay leedahay kulannada la isasiiyey, sawir falaarta OD, sheegna xirilrka ay \(u\) tahay garaaf; muujina xagal rugeed togan oo ay \(u\) tahay dhinac dhammad.

\section*{TUSAALE \(D(-3,4)\)}

\section*{Furfuris}

Tirada \(O D=\frac{4-0}{-3-0}=-\frac{4}{3}\)
: Fallaarta OD waa garaafka
\[
\{(x, y): y=-4 / 3 x, x \leq 0\}, \begin{gathered}
\text { Jawaab } \\
==m=m==
\end{gathered}
\]
19. \((6,8)\)
20. \((12,5)\)
21. \((-2,-1)\)
22. \((3,-6)\)
23. \((-5,10)\)
24. \((-9,3)\)
25. \((4,0)\)
26. \((0,-2)\)

\section*{1-2 GOOBO IYO KULANNO}

Tixgali barta \(D, 00 \mathrm{ku}\) waniineysa goobo gacankeedu yahay 1 , xuddunteeduna \(k u\) taal unugga (goobo halbeeg).

(Shaxan 3).

Haddaan isticmaalno Jidka fogaanty ama aragtiinka pythegorus \(O D=\sqrt{(x-0)^{2}+(y-0)^{2}}=1\) (oo waa gacanka goobada)

unugga, gacankeeduna le'eg yahay 1. (Xusuusnow:).

\section*{1-3. PANSAARADA SAYN IYO KOSAYN}

Tixgeli barta D oo ku wanifnaysa goobo halbeeg. Haddii D ka dhaqaaqdo barta (1,0) ayadoo u socota lid sacad wareeg, billaabma \(0^{\circ}\) ilaa \(360^{\circ}\) rugeedadu wuxuu qaadanaya qiimayaasha ka shax. 3).

Ugu noqnodadd, iyon haddayng D inay socodkeeda ifd saacad-wareeg Lsocodkeeda u wadaba, markasta waxaad cad wareeg saacad-wareeg ah, cabbirkeeda darajeedna ku aaddismaayo lammaanayaal horsan ee \((a, b)\). Marka D ay tagantahay \((1,0)\), OD.

OD waxay dul fuusha dhidib-x togan waxayna la samaysa xagal \(0^{\circ}\) ah. D marka ay marayso barta \((0.87,0.5)\), OD waxay la samaynaysa dhinac billawga (\(x\) togan) xagal \(30^{\circ} \mathrm{ah}\).
Sida oo kale marka D marayso \((0,1)\) xagashu waa \(90^{\circ}\); barta \((-1,0)\) xagashu waa \(180^{\circ}\); barta (\(D,-1\)) xagashu waa \(270^{\circ}\). Barta (1,0) xagashu waa \(360^{\circ}\).

Jibeybcoyinkan wake aynu isugu soo urunkin karnaa tuse
\begin{tabular}{|c|c|c|}
\hline Cabb1rka & \(a\) & \(b\) \\
\hline 0
\end{tabular}\(|\)\begin{tabular}{c|c|}
\hline \(0^{\circ}\) & 0.87 \\
\(30^{\circ}\) & 0.50 \\
\(45^{\circ}\) & 0.71 \\
\(20^{\circ}\) & 0.71 \\
225 & -0.71 \\
\(270^{\circ}\) & 0 \\
\(360^{\circ}\) & 1
\end{tabular}

Guuc ahstin, ka soo qaad in D tahay doorsoome urur horaadkilsu yahay xagio rugeedka sallaxa ku yaal oo dhan. Marka D ku wareegay 30 goohada, xagal rugeedkeeda \(\varphi\) ah oo keliyi isbeddeli maayo, laakisn kulannadeeduna (\(\mathrm{a}, \mathrm{b}\)) waa ay isbeddelayaan, bishardi in Eogaanta u chaxaysa \(\theta\) iyo unugu mar kasta ay noqoto 1 , oo macnaheedu yahay, \(\sqrt{a^{2}+b^{2}}=1\), logow: \(a\), iyo b waxa weeye lugnha eaddexagal quman, 1-na waa shakaalkilsa) sida kuu muuqata qiimi kasta oo xagasha 0 qaadataba waxa ku beegmaaya lammane madi ch , \((a, b)\), sida ka muuqata shaxanka 3 . Haddaan \(u\) dhabo galno, mar allaale markii ay \(\theta\) isbadasho, a-na (qiimiga x). waa ay is baddeleysaa; ururka dhammaan lammaanayaasha horsan \((\theta, a)\) ce sidaa lagu sugaana waxa la yiraa "Fansaarka Kosayn"; Sida 00 kale ururka dhamman la maanayaasha \((\theta, b)\), waxaa la yirea "PhMSAMRKA SAYN". Ma kuu muqqataa in horaadka Fansaar kasta ee kuwaa ka mid ahiba yahay ururka xaglaha rug beegaalka alh, cambeedkuna yahay ururka tirooyinka maangalka ah ee u dhexeeya 1 lyo 0.
Xagal kasta \(Q\), waxaan Fansaarkeeda niraahnaa "Kosaynka xagal D" iyo "Saynika xagal 9 ", sida qeexidda soo socotaaba ay sheegeyso. gesx (1)
Ka ciing in 2 u taagan tahay xagal kasta oo rug beeggal ah, Haddis \((0, E)\) u taagan yihiin kulannada bar unugga u fi=ta hal halbeeg, kuna taal dhinac dhammaadka 0 , markaa:
Kosaynka xagasha \(\theta=a\),
Sayika xagasha \(\theta=b\).

U filrso in (Cose, Sine) yihiin kulannada barta ay isku gooyaan goobada halbeeg \(t\) yo dhinac dhammaadka \(\theta\).

Haddii, Laysa silyo bar kasta T , aan ahayn unugga, kuna taal dhinac dhammadka xagasha \(\theta\) oo rug beeggal ah, waad sugi karta kulannadia barta \(D\) ee fallaarta OT ay ka gooysa goobada halbeeg, \(x x^{2}+y^{2}=1\).
\(\sin \theta\).
Taa micnoheedu waxa weeye waad heli karta \(\operatorname{Cos} \theta\) iyo TUSAALE I:
\(T(-4,3)\) waa bar xagal rugeedkeedu tahay \(\theta\). Raadi \(\operatorname{Cos} \theta\)
iyo \(S \ln 2\).

\section*{FURFURIS:}

Ka s00 gaed in D tanay barta ay isku gooyaan fallaarta OT iyo goobada \(x^{2}+y^{2}+1\).
1. Fallarta 0T waa garaafka
\[
\{(x, y): y=-3 / 4 x, x \quad 0\}
\]
2. Kulannada D waa inay raalli geliyaan saddexdan weer-xisaabeed ee furan:
a. \(x^{2}+y^{2}=1\) (isle'egga goohada hal beeg)
b.
b. \(\quad y=\frac{-3}{4} \times\) (1sle'ogga fallaarta) \(x \leqslant 0\) (macnis waxa weoye, maddaama or ay tahay fallaar marta unugga iyo \(T(-4,3)\). Baraha kale ee ku yaal waxaad IV ee raalli gelin kara isle'eg b, kuma jiraan).

(Shasan 4).
3. Fur fur 1sle'egyade wada jira \(x^{2}+y^{2}=1\), iyo \(y=-3 / 4 x\) \(x^{2}+y^{2}=1 \quad, \quad y=-3 / 4 x\)
\(y^{2}=1-x^{2}\)
\(y=v^{-}+x^{2}\)
\(\therefore-3 / 4 x=\sqrt{1-x^{2}}\)
\[
\begin{aligned}
& \frac{9}{16} x^{2}=1-x^{2} \\
& \frac{25}{16} x^{2}=1 \\
& x=4 / 5 \text { ama }-4 / 5
\end{aligned}
\]

Maaddaama \(4 / 5>0\), q1imigaas ka tag.
Marka \(x=-4 / 5, y=3 / 5\).

Lammanaha \((-4 / 5,3 / 5)\) ayaa raalli gelinaaya
saddexdii xirtirba.
: Kulannada \(D\) waa \(\left(7^{4 / 5}, 3 / 5\right) ;\) taosoo inna gaarsiineysa in
\(\operatorname{Cos} \theta-4 / 5, \sin 0=3 / 5\) Jnwab. \(\cos \theta-4 / 5, \sin \theta=3 / 5\) Jawaab.

Haddaad \(u\) filrsatid heoseayaha Jajnbyada \(-4 / 5\) iyo \(3 / 5\), oo ah 5 waxaad arik doontaa in uu yahoy fogaanta laga billaabo unugga 1laa \(\mathrm{T},\left(5=\sqrt{(-4)^{2}}+3^{2}\right.\), halka \(\left.\mathrm{g}=\mathrm{V}^{-}-\mathrm{a}^{2}+\mathrm{b}^{2}\right)\); natijada tusaalaha aan soo dhaafnay waxa 100 gori kara sidan:
\(\operatorname{Cos} \theta=\) ginmiga \(\times\) ec \(I, \operatorname{Sin} \theta=\) gitimiga y ee \(T\)
Tan1 waxay noo \({ }^{9}\) garqaadsyso aragt11nta soo socota.
ARAGTIIN (1). Heddii \((a, b)\) ay yihiin kulannada bar kasta 00 aan ahayn unugga, kuna taal dhinac dhammaadka \(\theta\), oo ah xagal rugeed, marka
\(\operatorname{Cos} \theta=a / g, \operatorname{Sin} \theta=b / g\), marka
\(g=\sqrt{a^{2}+b^{2}}\) (xusuuso \(11 d k a\) fogaanta) adoo raacaya aragtiin
(1) raadi \(\operatorname{Cos} \theta\) 1yo \(\operatorname{Sin} \theta\), haddif \(T(-2,1)\) ay ku taal dhinac dhamaadka \(\theta\) (811 l I shax. 5) ee bogga soo socda.

\section*{Figrunis:}
\[
\begin{aligned}
& a=-2, b=-1 ; g-\sqrt{(-2)^{2}+(-1)^{2}}=\sqrt{5} \\
& \therefore \cos 9=\frac{-2}{5}=-\frac{2 \cdot \sqrt{5}}{\sqrt{5}} \frac{\sqrt{5}}{\sqrt{5}}=-2 / 5 \sqrt{5} \\
& \sin 0 a \frac{-1}{\sqrt{5}} \quad \frac{-1 . \sqrt{5}}{\sqrt{5}}=-\frac{1}{5} \sqrt{5}
\end{aligned}
\]

5:3Y:I
(B) Xagal kaste se \(s 00\) socota \(\theta\) ku washir sallaxa kulan, adeo Lat!camalasya sago:-beegyo goobo gacankeedu yahay 1 ; dabadeedna qiyaas \(\operatorname{Cos} \theta\) tyo \(\operatorname{Sin} \theta\).
1. \(120^{\circ}\)
2. \(210^{\circ}\)
3. \(225^{\circ}\)
4. \(315^{\circ} \quad\) 7. \(-60^{\circ}\)
5. \(330^{\circ}\)
6. \(-385^{\circ}\)
8. \(-150^{\circ}\)
9. \(-225^{\circ}\)
10. \(1080^{\circ}\)
11. \(-810^{\circ}\)
12. \(720^{\circ}\)

Read. \(\operatorname{Cos} 7\) iyo \(\sin \theta\), haddii \(\theta\) tahay xagal rugeedka barta kulannedeeda 10 isa silyay. Ku tibaaxi xididlayaalka es fuclud.
13. \((-8,-15)\)
14. \((30,16)\)
16. \((0,-4)\)
17. \((-2,2)\)
18. \((5,-5)\)
19. \((4,2)\)
20. \((-6,-3)\).
25. \(\{-3,0)\)

\section*{1-4 FANSAARADA TIRIGNOOMETERI EE KALE:-}

Racaymo kale oo qiimayaasha sayn iyo kosayn ay u dhacaan ayaa magacyo gaar ah la silyaa. Haddii \(\theta\) tahay xagal rugeed, sida shax. 6 muujinaayo, \(\operatorname{Cos} \theta=\frac{8}{17}, \operatorname{Sin} \theta=-\frac{15}{17}\). Saamiga \(\frac{\sin \theta}{\operatorname{Cos} \theta}=\frac{\frac{-15}{17}}{\frac{8}{17}}=-\frac{15}{8}\) waa \(\operatorname{taanjentiga~}(\tan \theta)\)

\(\frac{1}{\cos \theta}\)
\(=\frac{1}{\frac{8}{17}}=\frac{17}{8}\) waa silkantiga xagasha \(\theta(\sec \theta)\)
\(\frac{1}{\sin \theta}=\frac{1}{-\frac{15}{17}}=\frac{17}{15}\) waa Kosiikantiga xagasha \(\theta\) (Csc \(\left.\theta\right)\)

(Shaxan 6).
Markan waxa aan qiri karna qeexida afar fansaar oo horaadkoodu yahay hormo urur ee ururka xaglaha \(\theta\) ee rag beeggal ka ah:

Fansaarka Cotanjentiga \(=\left\{(\theta, \tan \theta): \tan \theta=\frac{\operatorname{Cos} \theta}{\operatorname{Sin} \theta}, \operatorname{Sin} \theta \times 0\right\}\)
Fansaarka Cotanjentiga \(=\left\{(\theta, \operatorname{Cot} \theta): \operatorname{Cot} \theta=\frac{\sin \theta}{\operatorname{Cos} \theta}, \operatorname{Cos} \theta \neq 0\right\}\)
Fansaarka silkantiga \(=\left\{(\theta, \sec \theta): \sec \theta=\frac{1}{\operatorname{Cos} \theta}, \cos \theta \neq 0\right\}\) Fansaarka Cosiikantiga \(=\left\{(\theta, \csc \theta): \csc \theta=\frac{1}{\operatorname{Sin} \theta}, \sin \theta \times \theta\right\}\)

Sayn, Kosayn, taanjenti, kotaanjenti, silkanti iyo kosikanti waxa la yira Fansaarada tirignoometeri.

Haddaan isticmaalno qeexidada iyo aragtin (1), markaa waa beli karra qilmayaashooda innakoo ku soo saarayna kulannada (\(a, b\)) ee bar kasta \(D\), oon ahayn unugga, kuna taal dhinac dhamaadka xagasha 9 (eeg shax. 7)

Haddii \(\operatorname{Cos} \theta \neq 0\)
\(\tan \theta\)

garaadeyn-tan 1 a mic \(a{ }^{2}\) ! \(+b^{2}\) waxay keenaysa tibaaxaha \(\operatorname{Cot} \theta\),
Sece,iyo \(\operatorname{CSC} \theta\) ee aragtilinka soo socda :

\section*{Aragtiln (2)}

Haddii \(D(a, b)\) ay tahay bar ka gedisan unuga kuna taal dhinac dhammadka xagal rugeedka \(\theta\) markaa

\section*{TUSAA:A:}

Raadi qilmayaasha fansaarada tirignometeri ee xagal cugeedka \(\theta\), haddis \(D(-5,-12)\) ay ku taal dhinac dhammaadka \(\theta\).

U filrso, qiimayaasha fansaarada tirignoometeri waxay ku xiran yihiin rugta dhinac dhammadka xagasha 00 keli ah. Sababtoo ah cabbirka xagal rug beeggal ah wuxuu suga rugta dhinac dhammaadka; si aad \(u\) sheegtid xagashas oo kale waxaa kugu filan inaad sheegtid cabbirkeeda. Bil matal, waxad qori karta "Sin \(30^{\circ}\) " intaad qori lahayd "Saynka xagal rug beeggal ah oo cabbirkeedu yahay \(30^{\circ}\) ".

Xagallo rug beeggal ah waxaa badanaaba lagu kala hufaa hadba waaxda dhinac dhammaadkoodu ku yaal. Sidaa darteed xagasha \(\theta_{1}\) ee Shax. 8 waxa la yira "xagal waax-afraad", ta \(\theta_{2}\) waxa la yiraa "xagal waax-labaad". Marka dhinac dhammadka dul fuulo dhidibka \(-x\) ama \(-y\), sida xagasha \(\theta_{3}\), xagashaa waxaa la yiraa "xagal waaxeed".

Tusaha soo socda wuxu u kala dhigayaa qiimayaasha fansaarada tirignoomeeteri ee xagal rug beeggal ah oo aan ahayn xagal waxeed tirooyin togan ama taban.

Tuse 2

Tusahan waxad si fiican u garanaysaa haddaad xusuusatid waaxaha kulannada a iyo b oo kala qiimi \(x\) iyo y sey \(u\) kala horreeyaan, waaxaha ay togan yihiin ama taban yihiin.

Haddil la ogyahay waaxda ay \(\theta\) ku joogsato iyo qiimi fansaar tirignoometeri ee \(\theta\), markaa waad sugi kartaa qiimayaasha fansaarada kale.

\section*{TUSAALE}

Haddii \(\theta\) tahay xagal waax-1 abaad oo \(\operatorname{togan}, 00 \operatorname{Cos} \theta \frac{-2}{3}\), sawir \(\theta\), raadina qiimayaasha fansaarada tirig. ee kale.

\section*{FURFURIS:-}

Ka soo qaad in \(D(a, b)\) tahay bar aan ahayn unugga kuna taal dhinac dhammaadka \(\theta\)
1. Maadaama \(\operatorname{Cos} \theta=\underline{a}=-\underline{2}\), waxaad qaadan karta in \(a=-2\), g = 3. Markaa D waa barta waaxda labaad ku taal, halka xarri1qda \(x=-2\) ay ka goyso goobada xuddunteedu tahay unugga, gacankeeduna yahay 3 .
2. Muujin OD tahay ohinac dhammaadka \(\theta\)
3. Si 100 sugo b :
\(a^{2}+b^{2}=g^{2}\)
\((-2)^{2}+b^{2}=3^{2}\)
\(4+b^{2}=9\)
\(\therefore b=\sqrt{5}\)

- 245 -
4. Isticmaal aragtiin 2 si aad \(u\) heshid

LAYLI
(B) Sheeg qijmiyaasha fansaarada xagasha \(\theta\) ee lagu weeydiyey. Tusaale \(\cos \theta=\frac{-8}{17}, \operatorname{Sin} \theta=\frac{15}{17} ;\) waxaad tiraa \(\cot \theta=\frac{-8}{15}\)
1. \(\sin \theta=\frac{3}{8} ; \csc \theta=\frac{7}{2}\)
6. \(\sin \theta=\frac{\sqrt{3}}{2}, \cos \theta=\frac{1}{2}\),
2. \(\operatorname{Cos} \theta=-\frac{1}{5} ; \operatorname{Sec} \theta=\frac{2}{7}\)
\[
\cot \theta=2
\]
3. \(\sec \theta=-3 / 2 ; \cos \theta=\) ?
7. \(\tan \theta=4, \cot \theta=?\)
4. \(\sin \theta=-2 / 3 ; \cos \theta=\frac{-\sqrt{3}}{3}\)
8. \(\cot \theta=-5, \tan \theta=?\)
\(\tan \theta=\)
Magacaw waaxda dhinac dhammaadka \(\theta\) ay ku oolli
karto (ku noqo tusihii xagla aan aheyn xaglo-waaxeed)
9. \(\sin \theta\)
\(>0\) 11. \(\tan \theta\)
\(>0\)
\(<0\)
13. \(\sec \theta<0\)
10. \(\operatorname{Cos} \theta\)
\(>\)
\(12 \csc\)
0
14. \(\cot \theta<0\)

Maaxdeebaa ay tahay in dhinac dhammadka \(\theta\) inu yaal, si qiimayaasha lagu silyey ay dhab u noqdaan?

Sawir xagal rugeed togan \(\theta\) ee ugu yar oo baraha
la isasilyey ay ku yaallifn dhinac dhammaadkeeda, qilme fansaarada tirig ee \(\theta\).
1. \((-9,-12)\)
4. \((-1, \sqrt{-3})\)
7. \((0,4)\)
10. \((-5,3)\)
2. \((8,6)\)
5. \((2,-2)\)
8. \((-3,0)\)
11. \((-\sqrt{2}, \sqrt{6})\)
3. \((\sqrt{3,1})\)
6. \((-3,-3)\)
9. \((-1,7)\)
12. (VJ, \(\sqrt{15}\))

Ku sawir xagasha rug beeggalka ah ee \(\operatorname{taban} \theta\) ee cabbirka astirada ugu yar leh kuna dhamaata waaxda la isasiiyey; sheeg qiimiyada fansaarada tirig ee \(\theta\). \(\quad\) than anana
J) 13. \(\sin \theta=-2 / 5\); III
17. \(\operatorname{Cot} \theta=-2 ;\) IV
14. \(\cos \theta=3 / 7 ;\) IV
18. \(\operatorname{Tan} \theta=3 ; \quad I\)
15. \(\operatorname{Tan} \theta=5 / 4 ; \quad I\)
19. \(\sec \theta=1.5\); IV
16. \(\operatorname{Cot} \theta=\frac{1}{2} ; \quad\) III
20. \(\csc \theta=1.25\); III

Qiimayaasha fansaarada tirig ee xagal waaxeedo. Xariilq \((-)\), micnaheedu waa ma qeexna, ama qiimi sugan ma leh. TixreaceShax. 3.
\begin{tabular}{|r|r|r|r|c|c|c|}
\hline\(\theta\) & \(\sin \theta\) & \(\cos \theta\) & \(\operatorname{Tan} \theta\) & \(\csc \theta\) & \(\operatorname{Sec} \theta\) & \(\cot \theta\) \\
\hline 0 & 0 & 1 & 0 & - & 1 & - \\
90 & 1 & 0 & - & 1 & - & 0 \\
180 & 0 & -1 & 0 & - & -1 & - \\
270 & -1 & 0 & - & -1 & - & 0 \\
\hline
\end{tabular}

\section*{XAGAL TIXRAAC}

Waxaad buuggi kowad ku soo baratay \(3 i d a\) fansaarada xagal filqan oo togan looga raadiyo tusaha fansaarada tirig.

Si ay \(u\) suurowdo in isla tusahaas laga helo cabbirka iyo fansaarada xagal kasta, xagal kasta \(\theta\) oo was-kowaad ah waxan \(u\) bixinayna "xagal tixraaca 9 ". Ka dhig \(D(a, b)\) in ay tahay bar kasta ee ka mid ah dhinac dhammaadka \(\theta\), oo aan ahayn unugga, kana dhig in \(T\) ku taal waaxda kowaad kulanadeeduna yihiin (/a/, /b/). Xagasha fiiqan (ama quman) ee rug beeggalka ah, fallaarta 9 T-na tahay dhinac dhammaadkeeda waa xagal tixraaca \(\theta\) waxana lagu magac dara W. (fiiri Shax.9)

(Shax. 9)
Haddaad dheehatid Shax. 9 waxaad arki karaysaa in \(\angle D O M=W\). Sababto ah dherarada dhinacyadooda isu dhigma ee saddexagalada quman DOM iyo TON waa isle'eg yihiin, madaama \(M D=N T=/ b /, O M=O N=/ a /, O T=O D=\sqrt{a^{2}+b^{2}}\).

Haddaba, cabbirada xaglaha isku dhigma waa isle'eg yihiin. Taa micnaheedu waa inaad suqi kartid cabbirka w adoo helahaya cabbirka xagasha filqan ee dhinac dhammaadku \(\theta\) la sameeyo dhidib-x.

Summadda qiimayaasha fansaarada \(\theta\) ay qaadanaayan
(togan ama taban) waxaad ka helaysa Tuse 2.

TUSAALE 1: Raadi \(\sin 210^{\circ}\) iyo \(\operatorname{Tan} 210^{\circ}\) FURFURIS:
1. Washir xagasha rug beeggal ka ah
2. \(w=210^{\circ}-180^{\circ}=30^{\circ}\)
3. Maadaama xagashu ay ku dhammato waaxda III, \(\sin 210^{\circ}\) waa taban yahay,
\(\therefore \operatorname{Sin} 210^{\circ}=-\sin 30^{\circ}=\frac{1}{2}=-0.5000\)
\[
\operatorname{Tan} 210^{\circ}=\tan 30^{\circ}=\frac{\sqrt{3}}{3}=0.5774
\]

TUSAALE 2. Raadi \(\operatorname{Cos} 708^{\circ} 20^{\prime}\) 1yo
\[
\sin 708^{\circ} \quad 20^{\prime}
\]

FURFURIS:
1. \(708^{\circ} 20^{\circ}-1.360^{\circ}=348^{\circ} 20^{\circ}\)
2. \(360^{\circ}-348^{\circ} 20^{\prime}=11^{\circ} 40^{\prime}\)
\[
\cos 708^{\circ} 20^{\prime}=\operatorname{Cos} 11^{\circ} 40^{\prime}=0.9793
\]
\[
\sin 708^{\circ} 20^{\circ}=-\sin 11^{\circ} 40^{\prime}=-0.2022
\]

\section*{LAYLI}

Sawir xaglaha leh cabbirada la isasifyey. Raadi xagal tixraacooda:
(B) 1. \(120^{\circ}\)
\[
\begin{array}{ll}
\text { 5. }-150^{\circ} & \text { 9. }-20^{\circ}
\end{array}
\]
2. \(225^{\circ} \quad\) 6. \(-94^{\circ}\) 10. \(-315^{\circ}\)
3. \(330^{\circ}\) 7. \(760^{\circ}\) 11. \(-240^{\circ}\)
4. \(-60^{\circ}\) 8. \(1040^{\circ}\) 12. \(540^{\circ}\)

Ku tibaax fansaar xagal fiiqan oo togan.
13. \(\operatorname{Cos} 160^{\circ}\)
\[
\text { 17. } \operatorname{Cot} 440^{\circ}
\]
18. \(\sec 195^{\circ}\)
20. \(\operatorname{Cos}\left(-1045^{\circ}\right)\)
14. \(\operatorname{Sin} 130^{\circ}\)
19. \(\sin \left(-365^{\circ}\right)\)
21. \(\csc \left(-39^{\circ} 20^{\circ}\right)\)
15. \(\operatorname{Tan} 200^{\circ}\)
22. \(\operatorname{Cot}\left(-54^{\circ} 40^{\circ}\right)\)

Sheeg isbeddelka ku dhacaaya (b) \(\operatorname{Cos} \theta(t) \operatorname{Sin} \theta\) haddif \(\theta\) ay ka kordhayso laga bilaabo waaxda koowad ilaa tan labaad.

TUSAALE : \(0^{\circ}\) 11aa \(90^{\circ}\)

\section*{FURFURIS:}
(b) \(\operatorname{Cos} \theta\) wuxu \(u\) dhinmaaya: min 1 ilaa 0 .
(t) \(\sin \theta\) wuu kordhaayaa: min 0 ilaa 1.
1. \(90^{\circ}\) 11aa \(180^{\circ} \quad\) 4. \(90^{\circ}\) 11aa \(0^{\circ}\)
2. \(180^{\circ}\) 11aa \(270^{\circ}\)
5. \(-180^{\circ}\) flaa \(-90^{\circ}\)
3. \(270^{\circ}\) 11 aa \(360^{\circ}\)
6. \(360^{\circ}\) ilaa 450

Midaalada salka ah
Fansaaradil tirig. ee aad soo aragtay si xilsa leh faa'ildana leh ayey isugu xiran yihlin. Isku xirnaantaas 0 ah hub lagaga hortago xiraaleyaasha xisaabaadka sare.

\section*{\(1-5\) \\ MIDAALO HAL XAGAL AH}

Isle'eg ay ku jirto ugu yaraan hal doorsoome, oo urur horaadkiisuna yahay ururka xaglo rug beeggal ah waxaa la yira " isle'eg tirgnoometeri". Isle'eg tirignoometeri sida \((2 \sin \theta+1)(2 \sin \theta-1)=4(\sin \theta)^{2}-1\) ee qiima kasta oo \(\theta\) ay qaadataba dhab ka dhigaaya isle'egga, labadiisa dhinaena ay qeexan yihiin, waxaa la yira "MIDAALO TIRIGNOOMETERI".

Midaalada tirig. waxay ku xiran yihiin qeexihi fansaarada tirig iyo aljebrada tirooyinka maangalka ah. Ma sharxi karta sababta weer kasta ee soo socota ay run ugu tahay xagal walba \(\theta\) ee fansaarku qeexan yahay?
1. \(\operatorname{Tan} \theta\)
\(=\frac{\sin \theta}{\cos \theta}\)
3. \(\sec \theta\)
\(=\frac{1}{\cos \theta}\)
5. \(\cot \theta=\frac{1}{\operatorname{Tan} \theta}\)
2. \(\cot \theta=\frac{\cos \theta}{\sin \theta}\)
4. \(\csc \theta=\frac{1}{\sin \theta}\)

Midaalayaalka \(1-4\) waxay \(s i\) toos ah uga yimaadeen qeexihi fansaarada tirig. Madaalka \(5-n a\) waxay ka dhex dhalatay 1 iyo 2 , u fiirso haddii \(\sin \theta \neq 0, \operatorname{cs\theta } \neq 0 \%\) waxad heleysaa:

\section*{\(\frac{\operatorname{Cos} \theta}{\operatorname{Sin} \theta}\) \\ \(\operatorname{Cot} \theta\) (1sticmaal mid. 2)}

Haddaad xusuusatid, xagal kasta \(\theta\) ee rug beeggal ah, \((\operatorname{Cos} \theta, \operatorname{Sin} \theta)\) waa kulannada bar ku tal goobo halbeeg, isle'egeduna yahay \(x^{2}+y^{2}=1\), waxaad \(s o 0\) bandhigi karta midaalaha - \((\cos \theta)^{2}+(\sin \theta)^{2}=1\) ama

\section*{6. \(\sin ^{2}-\cos ^{2} \theta=1\)}

Hadd11 dhinac kasta ee midaal 6 aad u qaybisid \(\cos \theta\), waxad dhIraandhiria kartaa midaal kale,

. Mazkaad ku isticmaashid midaalada 1 iyo 2 waxaad helaysaa:
\(7.1+\operatorname{Tan}^{2} \theta=\sec ^{2} \theta\)
- \((\cos \theta)^{2}=\cos ^{2} \theta,(\sin \theta)^{2}=\sin ^{2} \theta\)

Ka sheegi karta sida 100 dhiraandhiriyay midaalkan soo socda?
8. \(1+\cot ^{2} \theta=\csc ^{2} \theta\)

Midaalada 1-8 waxaa la yira MMIDAALADA SALKA AH EE Adoo ku isticmaalaya iyaka iyo astaamaha tirooyinka maangalka ah, waxaad qori kartaa tibaax kasta oo ay ku jiraan qiimeyaasha fansaarada tiríg ee xagal \(\theta\) adoo ku soo saaraaya qiimaha Sing ama fansaar tirig oo xagal \(\theta\) ee kale.

Tusaale 1: \(\operatorname{Cos} \theta \mathrm{ku}\) tibaaxi \(\operatorname{Sin} \theta\)
Furfuris: \(\cos ^{2} \theta+\sin ^{2} \theta=1\)
(Midaal 6)
\[
\cos ^{2} \theta=1-\sin ^{2} \theta
\]
\(\therefore \operatorname{Cos} \theta=+\sqrt{1-\operatorname{Sin}^{2} \theta}\), haddif \(\theta\) ay ku taal waax
1 ama IV

ama III

Janaabta tusaale 1, waxay innoo sheegaysa habka soo socda ee 100 helo \(\operatorname{Cos} \theta\), haddif la isasifyo in \(\theta\) ay ku taal waaxda labaad \(\circ 0 \operatorname{Sin} \theta=3 / 5\).
\(\operatorname{Cos} \theta=-\sqrt{1-\operatorname{Sin}^{2} \theta}=-\sqrt{\left.1-\frac{3}{5}\right)^{2}}=-\sqrt{\frac{16}{25}}=-4 / 5\)
Tusaale 2. Ku tibaaxi \(\operatorname{Cos} \theta\), raadina tibaax \(u\) dhiganta
\((1+\operatorname{Sin} \theta)(\operatorname{Sec} \theta-\operatorname{Tan} \theta)\).

Purfuris:- Tibaaxda la isasiiyey waxay tilmamnyen i:m mannan ah.; bisharal \(\operatorname{cose}\) to. Tnticmanl midaalada 1 iyo 3.
\[
\begin{aligned}
(1+\sin \theta)(\sec \theta-\operatorname{Tan} \theta) & =(1+\operatorname{Sin} \theta)\left(\frac{1}{\operatorname{Cos} \theta}-\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}\right) \\
& =(1+\sin \theta)\left(\frac{1-\operatorname{Sin} \theta)}{\cos \theta}=\frac{1-\operatorname{Sin}^{2} \theta}{\cos \theta}\right. \\
& =\frac{\operatorname{Cos}^{2} \theta}{\cos 0} \quad=\underset{=0 n=m}{\cos \theta} \text { Jawaab }
\end{aligned}
\]
(B) LAYLI

Ku tibaaxi tibaaxaha soo socda hal fansaar oo tirig.
1. \(1+\operatorname{Tan}^{2} B\)
3. \(\operatorname{Tan} \theta \operatorname{Sec} \theta \operatorname{Cos} \theta\)
2. \(1-\operatorname{Cos}^{2} \theta\)
4. \(\operatorname{Csc} \theta \sin \theta\)
\(\operatorname{Cot}\).
5. \(\sin ^{2} A+\operatorname{Cos}^{2} A+\operatorname{Tan}^{2} \theta\)
8. \(\frac{\sqrt{\sec ^{2}-1}}{\sqrt{\csc ^{2} \theta-1}}\)
6. \(\operatorname{Csc}^{2} r-\operatorname{Cot} r+\operatorname{Tan}^{2} r\)
\[
\text { 9. } \sqrt{1-\sin ^{2} \theta}
\]
\[
\sqrt{1+\operatorname{Tan}^{2} \theta}
\]
7. \(\frac{\left.\left(\sin ^{2} d+\cos ^{2} d\right)\left(\operatorname{Sec}^{2} d\right)-\tan d\right)}{\tan r}\)
(T) \(\theta\) waxay ku dhammaataa waaxda la isasilyey; raadi qiimayaasha fansaaradeda tirig.
10. \(\mathrm{IV}_{\mathrm{i}} \operatorname{Cos} \theta=4 / 5\) 12. II; \(\operatorname{Csc} \theta=13 / 12\)
11. III; \(\operatorname{Tan} \theta=8 / 15\)
\[
\text { 13. III; } \sin \theta=-\frac{7}{25}
\]
14. Sina ku tibaaxi: \(\operatorname{Tan}^{2} A\left(\operatorname{Csc}^{2} A-1\right)+\operatorname{Tan} A \operatorname{Cos} A\).
15. \(\operatorname{Sec} \theta\) ku tibaaxi: \(\sin \theta \operatorname{Csc} \theta+\frac{\sin \theta}{\operatorname{Cos} 0 \operatorname{Cot} \theta}\)
(J) 16. Tan \(\theta\) ku tibaaxi : \(\operatorname{Csc} \theta^{2}\left(\operatorname{Sec}^{2} \theta-1\right)(\sin \theta \operatorname{Cos} \theta)\)
17. \(\cos \theta k u\) tibaaxi \(: 1+\tan ^{2} \theta-\frac{\sin ^{2} \theta}{\operatorname{Csc}^{2} \theta-1}\)

Sayn iyo Kosayn oo kall ah ku tibaax, fududeena.
18. \(\left.\frac{(\operatorname{Cos} r-\operatorname{Sec} r}{\operatorname{Sec} r}+\operatorname{Cos}^{2} r \operatorname{Tan}^{2} r\right) \frac{\left(\operatorname{Tan} r-\operatorname{Sin} r_{-}\right)}{\operatorname{Tan} r}\)
19. \((\operatorname{Tan} u+\operatorname{Sin} u)(1-\operatorname{Cos} u)+\frac{\operatorname{Cos} u}{\operatorname{Csc} u}\)
20. \(\operatorname{Sin} A \operatorname{Sec} A\left(\operatorname{Cos} A+\frac{\operatorname{Csc} A}{\operatorname{Sec}^{2} A}\right)+(\operatorname{Csc} A+\operatorname{Sec} A)\)

\section*{Midaallo ay ku jiraan labo xaglood}

\section*{1-6 Jidka Fogaanta}

Ka soo qaad in D iyo \(Q\) ay yihiin baraha ku muujisan shaxan 10.

(Shax. 10)

Si 100 raadiyo \(D Q\), waxaad qaadi karta tillaabooyinka hoos ku xusan.
1. Isticmaal aragtiin 1 , \(s i\) aad \(u\) sugtid kulannada \(\left(x_{1}, y_{1}\right)\)
ee D 1yo \(\left(x_{2}, y_{2}\right)\) ee \(Q\).

\[
\sin 150^{\circ}=\frac{y_{1}}{8} \longrightarrow y_{1}=8 \sin 150^{\circ}=8(y)=4
\]

Q: \(\operatorname{Cos} 30^{\circ}=\frac{x_{2}}{6} \Longrightarrow x_{2}=6 \cos 150^{\circ}=6\left(\frac{1}{2} \sqrt{3}\right)=3 \sqrt{3 ;}\)
\[
\sin 30^{\circ}-\frac{y_{2}}{6} \Rightarrow y_{2}=6 \sin 30^{\circ}=\left(\frac{y}{r}\right)=3 .
\]
2. Isticmaal jidka fogaanta:
\[
\begin{aligned}
& (D Q)^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \\
& (D Q)^{2}=(-4 \sqrt{3}-3 \sqrt{3})^{2}+(4-3)^{2}=49(3)+1=148
\end{aligned}
\]
\(\therefore D Q=\sqrt{148}=2 \sqrt{\sqrt{37}}=\)

Haddaad raacdid tallaabooyinkaa kore, waxaad dhirandhirin kartaa jidka fogaanta \(u\) dhaxaysa laba barood ee kasta D iyo \(Q\) adoo ku soo saaraaya xaglo rugeedkooda.

A iyo B sidey u kalahorreeyaan lyo fogaanta laga billaabo unugga, diyo q (eeg Shax. 11).

1. \(D: x_{1}=d \operatorname{Cos} A ; y_{1}=d \operatorname{Sin} A\)

Q: \(x_{2}=q \operatorname{Cos} B ; y_{2}=q \operatorname{Sin} B\)
2. \((D Q)^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\)
\(=(d \operatorname{Cs} A-q \operatorname{Cos} B)^{2}+(d \operatorname{Sin} A=q \operatorname{Sin} B)^{2}(\) Astaanta isku
\(=d^{2} \operatorname{Cos}^{2} A-2 d q \operatorname{Cos} A \operatorname{Cos} B+q^{2} \operatorname{Cos}^{2} B\)
\(+\frac{d^{2} \sin ^{2} A}{-2} d q \sin A \sin B+q^{2} \sin ^{2} B\)
\(=d^{2}\left(\cos ^{2} A+\sin ^{2} A\right)+q^{2}\left(\cos ^{2} B+\sin B\right)\)
\[
=2 d q(\cos A \cos B+\sin A \operatorname{Sin} B)
\]
(Isku dhufashadu way ku kala dhiganta isugeynta)
\(=d^{2}(1 n)+q^{2}(1)-2 d q(\operatorname{Cos} A \operatorname{Cos} B+\operatorname{Sin} A \operatorname{Sin} B)\)
\[
\text { (Midaal } 6 \text {) }
\]
\(\therefore \quad(D Q)^{2}=d^{2}+q^{2}-2 d q(\cos A \cos B+\sin A \operatorname{Sin} B\)

\section*{1-7 Kosaynka Fargiga laba xaglood:}

Ka soo qaad in \(A\) iyo \(B\) ay \(u\) taagan yihiin xagio kasta 00 rug beeggal ah; ka dhigna in barta D I oo ku taal dhinac dhammaadka A) iyo \(Q\) (oo ku taal dhinac dhammadka B) ay unugga \(u\) jiraan 1 halbeeg (filiri shax. 12)

(Shax. 13)
Isticmaal jidka fogaanta, kuna beddel 1 d iyo \(q\), \((D Q)^{2}=1^{2}+1^{2}-2(1)(1)(\operatorname{Cos} A \operatorname{Cos} B+\operatorname{Sin} A \operatorname{Sin} B)\) \(\therefore(D Q)^{2}=\underline{2}-2(\cos A \cos B+\sin A \sin B)\)

Markan, waxaad doorataa habdhis kulanno cusub oo Q tahay barta \((1,0)\); fallaarta \(0 Q\), dhinac thamunadka \(B\), waa dhidibka \(-x\) ee togan; xagasha \(A-B\) ayaduna waa rug beeggal (filri shaxan 13, ee 100 sawiray si 100 mamilyo in thitstion cusub ee \(x\) u yahay xarriiq j11f).

(Shax. 12)

Si loogu xisaabiyo (DQ) \({ }^{2}\) habdhiskan kulanno aad ugu filirso waxa soo socda:

Q 1 halbeeg ayey \(u\) jirta unugga, xagal rugeedeeduna waa \(0^{\circ}\). D 1 halbeeg ayey \(u\) jirta unugga, xagal rugeedeeduna waa A-B.
\[
\begin{aligned}
& \text { Haddaba, } \\
(D Q)^{2}= & 1^{2}+1^{2}-2(1)(1)\left[\operatorname{Cos}(A-B) \operatorname{Cos} 0^{\circ}+\operatorname{Sin}(A-B) \sin 0^{\circ}\right] \\
= & 1+1-2[(\operatorname{Cos} A-B) .1+\operatorname{Sin}(A-B) \cdot 0] \\
& \left(\text { Xusuuso } \operatorname{Cos} 8=1, \sin 0^{\circ}=0\right)
\end{aligned}
\]
\[
\therefore(D Q)^{2}=2-2 \operatorname{Cos}(A-B)
\]

U filrso isle'eg (b) iyo isle'eg (\(t\))
\(2-2(\operatorname{Cos} A \operatorname{Cos} B+\operatorname{Sin} A \operatorname{Sin} B)=2-2 \operatorname{Cos}(A-B)\).
(Labada dhinacba waxayiletegyihiin \(\left(D(D)^{2}\right.\),
tanilwaxay noo hogaaminaysa jidka Kosaynka farqiga laba xaglood:
9. \(\operatorname{Cos}(A-B)=\operatorname{Cos} A \operatorname{Cos} B+\operatorname{Sin} A \operatorname{Sin} B\)

Maaddaama A iyo B ay yihiin xaglo rugeed, jidka Cos (\(A-B\)) waa midaal aad \(A\) iyo \(B\) ku beddeli kartid xagal kasta.

Tusaale 1. Sug gilmaha \(\operatorname{Cos} 15^{\circ}\)
Furfuris:
\[
\begin{aligned}
\therefore \operatorname{Cos} 15^{\circ} & =\operatorname{Cos}\left(45^{\circ}-30^{\circ}\right) \\
& =\operatorname{Cos} 45^{\circ} \operatorname{Cos} 30^{\circ}+\operatorname{Sin} 45^{\circ} \operatorname{Sin} 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot 1 / 2
\end{aligned}
\]
\(\therefore \operatorname{Cos} 15^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}\), JAWAAB

Maaddaama jidka Cos (A-B) u dhab ku yahay xagal kasta A, waxay gaar ahaan dhab ugu noqonaysaa marka cabbirka A uu yahay \(90^{\circ}\).
Haddaba,
\(\operatorname{Cos}\left(90^{\circ}-\mathrm{B}\right)=\operatorname{Cos} 90^{\circ} \operatorname{Cos} \mathrm{B}+\operatorname{Sin} 90^{\circ} \operatorname{Sin} \mathrm{B}\)
\[
=0 \cdot \cos B+1 \cdot \sin B=0+\sin B
\]

Maaddaama isle'ega ugu dambeeysay ay tahay midaal ay ku firto \(B\), wallgeed dhab ayey ahaaneysaa markif B lagu baddelo \(90^{\circ}\) - B.

Sidaas ayaad ku helaysa
\[
\operatorname{Cos}\left[90^{\circ}-\left(90^{\circ}-\mathrm{B}\right)\right]=\operatorname{Sin}\left(90^{\circ}-\mathrm{B}\right)
\]
\[
\operatorname{Cos} B=\operatorname{Sin}\left(90^{\circ}-B\right), \text { ama }
\]
\[
\text { 11. } \sin \left(90^{\circ}-B\right)=\cos B
\]

Intaa waxaa dheer, maadaama
\(\operatorname{Tan}\left(90^{\circ}-B\right)=\frac{\operatorname{Sin}\left(90^{\circ}-B\right)}{\operatorname{Cos}\left(90^{\circ}-B\right)}=\frac{\operatorname{Cos} B}{\operatorname{Sin} B}=\operatorname{Cot} B\)
Haddaba,
12. \(\operatorname{Tan}\left(90^{\circ}-B\right)=\operatorname{Cot} B\), bishardi in qiimayaasha fansaaradu ay qeexan yihiin, caddaynta midaalada soo socda adaa layli ahaan lagugu daayey :
\(\operatorname{Cot}\left(90^{\circ}-B\right)=\operatorname{Tan} B, \operatorname{Sec}\left(90^{\circ}-B\right)=\operatorname{Csc} B\), \(\operatorname{Csc}\left(90^{\circ}-B\right)=\operatorname{Sec} B\).

\section*{LAYLI}

Ku tibaaxi layli kasta ee soo socda qaabka \(\operatorname{Cos} \theta\), ee \(\theta\) ku habboon tahay.
(B) 1. \(\operatorname{Cos} 260^{\circ} \operatorname{Cos} 190^{\circ}+\sin 260^{\circ} \sin 90^{\circ}\)
2. \(\cos 310^{\circ} \cos 50^{\circ}+\sin 310^{\circ} \sin 50^{\circ}\)
3. \(1 / 2 \operatorname{Cos} 40^{\circ}-\frac{\sqrt{3}}{2} \operatorname{Sin} 40^{\circ}\)

Ku tibaaxi kosaynka farqiga laba xaglood, qiimeena.
4. \(\cos 75^{\circ}\) 5. \(\cos 195^{\circ}\) 6. \(\cos 225^{\circ}\) 7. \(\cos 105^{\circ}\)

Jub1 midaalada soo socda:
8. \(\cos \left(45^{\circ}-B\right)=\frac{\sqrt{2}}{2}-(\cos B+\sin B)\)
9. \(\operatorname{Cos}\left(150^{\circ}-B\right)=-\frac{1}{2}(\sqrt{ } \quad 3 \quad \sin B)\)

Caddee in kuwa soo socda ay yihiin midaallo (ku noqo tusaale 1):
10. \(\operatorname{Cot}\left(90^{\circ}-B\right)=\operatorname{Tan} B\)
12. \(\operatorname{Csc}\left(9^{\circ}-B\right)=\operatorname{Sec} B\)
11. \(\operatorname{Csc} B=\operatorname{Sec}\left(90^{\circ}-B\right)\)
14. \(\operatorname{Sin}\left(180^{\circ}-B\right)=\sin B\) Fudude.
13. \(\cos \left(180^{\circ}-B\right)=-\cos B\) 15. \(\sin \left(270^{\circ}-B\right)=-\sin B\)
(T) 16. \(\operatorname{Cos}\left(90^{\circ}-A\right) \operatorname{Sin}\left(180^{\circ}-B\right)+\operatorname{Cos}\left(360^{\circ}-A\right) \operatorname{Sin}\) (\(90^{\circ}-\mathrm{B}\))
17. \(\operatorname{Cos}\left(A-90^{\circ}\right) \sin \left(90^{\circ}-B\right)+\operatorname{Sin}\left(B-270^{\circ}\right) \operatorname{Cos}\left(90^{\circ}-A\right)\)
18. \(\operatorname{Tan}\left(90^{\circ}-B\right) \operatorname{Tan}\left(180^{\circ}-B\right) \sec B+\operatorname{Csc} A \operatorname{Sin}\left(90^{\circ}-A\right)\) \(\operatorname{Csc}\left(90^{\circ}-A\right)\)
19. \(\operatorname{Csc}\left(90^{\circ}-\theta\right) \operatorname{Sec}\left(360^{\circ}-\theta\right)-\operatorname{Tan}\left(720^{\circ}+\theta\right) \operatorname{Cot}\left(450^{\circ}-\theta\right)\)

\section*{1-8 Fansaarada Wadarta iyo fargiyada xaglaha}

Midaallo badan ayaa ka dhasha jidka \(\operatorname{Cos}(A-B)=\operatorname{Cos} A\) \(\operatorname{Cos} B+\operatorname{Sin} A \operatorname{Sin} B\).
Tusaale ahoan, haddii A cabbirbantu .on, no waxaad helavsaa
in: \(\quad \operatorname{Cos}\left(0^{\circ}-B\right)=\operatorname{Cos} 0^{\circ} \operatorname{Cos} B+\operatorname{Sin} 0^{\circ} \operatorname{Sin} B\)
```

\operatorname{cos}(-B)=1.\operatorname{Cos}B+0.\operatorname{Sin}B

```
\(\therefore \operatorname{Cos}(-B)=\operatorname{Cos} B\).
Si aad Sin B ugu tibaaxdid Sin \((-B)\), \(B\) ku beddel \(-B\) midaalaha \(\sin \mathrm{B}=\operatorname{Cos}\left(90^{\circ}-\mathrm{B}\right)=\)
\(\operatorname{Sin}(-B)=\operatorname{Cos}\left[90^{\circ}-(-B)\right]\)
\(\left.\therefore \operatorname{Sin}(-B)=\operatorname{Cos} 190^{\circ} B\right)\)
\(=\operatorname{Cos}\left[B-\left(-90^{\circ}\right)\right]\)
\(=\operatorname{Cos} \mathrm{B} \operatorname{Cose}\left(-90^{\circ}\right)+\operatorname{Sin} \mathrm{B} \operatorname{Sin}\left(-90^{\circ}\right)\)
\(=\operatorname{Cos} \mathrm{B} \cdot 0+\operatorname{Sin} \mathrm{B} \cdot(-1)\)
\(\therefore \operatorname{Sin}(-B)\) \(\qquad\)
-m- -
Adoo isticmalaaya in \(A+B=A-(-B)\) ay run tahay, waxaad markan dhiraandhirin knrta 11 dka konaynka oe wadarta laba xaglood.
\(\operatorname{Cos}(A+B)=\operatorname{Cos}[A-(-B)]\)
\(=\operatorname{Cos} A \operatorname{Cos}(-B)+\operatorname{Sin} A \operatorname{Sin}(-B)\)
\(=\operatorname{Cos} A \operatorname{Cos} B+\operatorname{Sin} A(-\sin B)\)

\section*{\(\therefore(13) \operatorname{Cos}(A+B)=\operatorname{Cos} A \operatorname{Cos} B-\operatorname{Sin} A \operatorname{Sin} B\)}

Maaddaama saynka xagall uu le'eg yahay kosaynka xagasha ku sidkan, jid waad \(u\) heli karta \(\operatorname{Sin}(A+B)\) :
\[
\begin{aligned}
\operatorname{Sin}(A+B) & =\operatorname{Cos}\left[90^{\circ}-(A+B)\right] \\
& =\operatorname{Cos}[(90-A)-B] \\
& =\operatorname{Cos}\left(90^{\circ}-A\right) \operatorname{Cos} B+\operatorname{Sin}\left(90^{\circ}-A\right) \operatorname{Sin} B
\end{aligned}
\]
\(\therefore(14) \sin (A+B)=\operatorname{Sin} A \operatorname{Cos} B+\operatorname{Cos} A \sin B\)

Haddaad B ku beddeshid -B waxaad helaysa

\section*{(15) \(\sin (A-B)=\operatorname{Sin} A \operatorname{Cos} B-\operatorname{Cos} A \operatorname{Sin} B\)}

Tusaale 1: Fudude: \(\operatorname{Sin} 160^{\circ} \operatorname{Cos} 20^{\circ}+\operatorname{Cos} 160^{\circ} \operatorname{Sin} 20^{\circ}\) Furfuris: \(\operatorname{Sin} 160^{\circ} \operatorname{Cos} 20^{\circ}+\operatorname{Cos} 160^{\circ} \operatorname{Sin} 20^{\circ}=\operatorname{Sin}\left(160^{\circ}+20^{\circ}\right)\)
\(=\sin \left(180^{\circ}\right)=0\)
\(\therefore \operatorname{Sin} 160^{\circ} \operatorname{Cos} 20^{\circ}+\operatorname{Cos} 160^{\circ} \sin 20^{\circ}=0\), JAWAAB.
Tusaale 2: Sug \(\sin (A-B)\), haddii \(A\) ay tahay waax-saddexaadda \(\infty \operatorname{Cos} A=-3 / 5\), \(B-n a\) tahay waax-labaadda 00 wallba \(\sin B=8 / 17\).
FURFURIS:-

\section*{\(\operatorname{Cos} A=-3 / 5 ; \sin B=8 / 17 \quad\) Ogaal}
\(\therefore \quad \operatorname{Sin} A=-4 / 5 ; \cos B=-15 / 17\) Isticmaal kabka qaybta 1-4.
\(\operatorname{Sin}(A-B)=\operatorname{Sin} A \operatorname{Cos} B-\operatorname{Cos} A \operatorname{Sin} B\)
\[
\begin{aligned}
& =-\frac{4}{5}(-15 / 17)-(-3 / 5)(8 / 17) \\
& =60 / 85+24 / 85=84 / 85, \text { JAWAAB } \\
& ==\infty=m=0
\end{aligned}
\]

Jid ma u dhiraandhirin karta \(\operatorname{Tan}(A+B)\) ? Haddif
\(\operatorname{Cos}(A+B) \neq 0\),
\(\operatorname{Tan}(A+B)-\underset{\operatorname{Sos}(A+B)}{\operatorname{Sin}(A+B)}-\underset{\operatorname{Sin} A \operatorname{Cos} B+\operatorname{Cos} A \operatorname{Sin} B}{\operatorname{Cos} A \operatorname{Cos} B-\operatorname{Sin} A \sin n}\)

Haddaad \(u\) gaedatio in \(\operatorname{Cos} A \neq 0, \operatorname{Cos} B \neq 0\), waxaad jajabk midaalka dhinaciisa mıdig u beddeli karta jajab u dhigma. Markaad u qaybis!d sareeyaha iyo hooseeyahaba Cos A Cos B.
\(\operatorname{Tan}(A+B)=\frac{\operatorname{Sin} A \operatorname{Cos} B}{\operatorname{Cos} A}+\frac{\operatorname{Cos} A \operatorname{Sin} B}{\operatorname{Cos} A} \frac{\operatorname{Sin} B}{S}\)
\[
\frac{\operatorname{Cos} A \operatorname{Cos} B}{\operatorname{Cos} A \operatorname{Cos} B}-\frac{\operatorname{Sin} A \operatorname{Sin} B}{\operatorname{Cos} A} \frac{B}{\operatorname{Cos} B}
\]
16: \(\operatorname{Tan}(A+B) \quad \operatorname{Tan} A+\frac{\tan B}{1}-\tan \frac{B}{B}\)

Naqti in m!daaladif tyo ka shaqayn layliyadan:

\section*{LAYLI}

Fududee:
(B) 1. \(\operatorname{Cos}(-B) \operatorname{Sec}(-B)-\operatorname{Con} B \operatorname{Sin}(-B)\)
2. \(\operatorname{Tan} B \operatorname{Cos} B-\operatorname{Cot}(-B) \operatorname{Sec}(-B)-\operatorname{Csc} B-\operatorname{Sin}(-B)\)
3. \(\operatorname{Cos} 137^{\circ} \operatorname{Cos} 47^{\circ}+\operatorname{Sin} 137^{\circ} \operatorname{Sin} 470^{\circ}\)
4. \(\operatorname{Sin} 26^{\circ} \operatorname{Cos} 96^{\circ}+\operatorname{Cos} 26 \operatorname{Sin} 94^{\circ}\)
5. \(\operatorname{Cos} 708^{\circ} \sin 753^{\circ}-\operatorname{Sin} 708^{\circ} \operatorname{Cos} 753^{\circ}\)
6. \(\operatorname{Cos} 157^{\circ} \operatorname{Cos} 173^{\circ}-\sin 157^{\circ} \operatorname{Sin} 173^{\circ}\)
 \(u\) heshid qiimiga mid kasta ee soo soeda:
7. \(\operatorname{Tan} 75^{\circ}\)
11. \(\operatorname{Cos} 285^{\circ}\)
14. \(\cos 265^{\circ}\)
8. \(\operatorname{Sin} 75\)
13. S1. \(285^{\circ}\)
15. Sin \(195^{\circ}\)
9. \(\sin 15^{\circ}\)
16. \(\operatorname{Cot} 165^{\circ}\)
10. \(\operatorname{Tan} 15^{\circ}\)
17. Haddly \(A\) tahay xagal waax-kowaad oo \(\operatorname{Sin} A=4 / 5\), \(B-n a\) tohay xagal wasx-1abaad oo \(\operatorname{Cos} B=-51 / 149\), raadt (b) \(\sin (A+B) ;(t) \operatorname{Cos}(A+B)(j) \sin (A-B) ;\) (x) \(\operatorname{Cos}(A-B) ;(k h) \operatorname{Tan}(A+B)\).
18. Haddil A caha: xagni wask-nadifexard \(00 \mathrm{Csc} A=-13 / 5, B-n a\) tahay xagal waax-airaad \(00 \operatorname{Sec} B=23 / 7\), raadi (b) \(\sin (A+B)\); (t) \(\operatorname{Cos}(A+B) ;(j) \operatorname{Sin}(A-B) ;(x)\) ConiA-n): (inh) Tan \((A-n)\) Qiime:
19. \(\operatorname{Csc} 60^{\circ} \quad \frac{\operatorname{Tan} 47^{\circ}}{1-\operatorname{Te}}+\operatorname{Tan} 13^{\circ}\)
20. \(\frac{\tan 279^{\circ}-\operatorname{Tan}-64^{\circ}}{\cos -\sec 139^{\circ} \cos 139^{\circ}}\)

\section*{1-9 CABBIRKA QAANSO IYO XAGAL}

Shaxan 14 wuxuu muujinaya barta \(T(1,0)\) ee kutaal goobda halbeeg \(\left\{(x \not y y): x^{2}+y^{2}=1\right\}\), ee meriskeedu yahay \(2 \pi(1)=2 \pi\). Barta goobada ku wareegaysa ee ka dhaqaaqda \(T\) tagtana \(D\), waxay sameysey qaanso goobeed, TD.
Haddif aad ogtahay dherarka qaansadaa
\{C (\(\widetilde{\text { TD }})\) ama cabbirka \(\overparen{T D}\}\), lyo jihada wareegga ,
-markaa waad meelayn kartaa D.

\section*{(Shaxan 14.)}

Shaxan 15 wuxuu muujinasyaa rugaha kala duwan ee D kuna beegan dheerarka qaansooyinka kala jadka ah. U filrso in cabbir togan la siiyay qaansooyinka ka dhashay sodcaalka lid saacad wareeg, cabbir taban-na la silyey kuwa ka dhasha sodcaalka saacad wareeg.

Ma sharxi kartaa sababta ay xaglaha ku kala duwan dhufsane abyoone ee \(2 \pi\) ugu wada dhammadaan isku bar? Shaxan 16 wuxuu muujinaaayaa saddex qaanso oo dhammaad wadaag ah.

Waxaad joometerigaku soo baratay in dherar goobeedka qaanso, ee lagu aqoonsado \(S\), ay \(u\) saami galsan tahay therarkn gacanka goobada 9 lyo cabbirka xagal xudduneodda \(\theta\) ee ay qaansadu leesho (substended) sida shax. 17 uu muujinaayo,

\(\mathrm{S}=\mathrm{Kg} \theta\), halka \(\mathrm{K}=\) ma doorsoomaha saamigalsanaanta,
\(\mathrm{g}=\) gacanka, \(\theta\) cabbirka xagal xuddumeedda.

Haddatin halbeeg ku habboon \(u\) doornno cabbirka xagasha, waxaan ka dhigi karnaa madoorsoomaha samigalsanaanta K inuu noqdo 1. Marka \(S=1 . g \theta=g \theta\); taasoo haddaan tixgelinno goobo gacankeedu yahay 1 , aan helayno in
\[
S=1 \cdot \theta \text { ama } S=\theta, \theta=S .
\]

Haddaba, qaanso dhererkeedu yahay 1 oo ku taal goobo gacankeedu yahay 1 waxay leesha xagal cabbirkeedu yahay 1. Halbeeggan cabbir xagleed waxaan nira, 1 gacansin 00.100 goro \(1^{\mathrm{C}}\).

Ma saadin karta cabbirka gacansin ee xagasha \(180^{\circ}\) ah? Maaddaank xegashani ay leesho \(1 / 2\) goobada halbeeg ama qeanso dhererkeedu yahay halbeeg.
\[
180^{\circ}=\pi^{G}
\]

Taasi niacreneedu waa: Cabbirka gacansiin ee xagasha \(130^{\circ}\) waa
G. Hadcaba

Haddaad isticmaashid saddexdan xiriir, woxaad cabbirka gacansiin u rogi kartaa darajooyin (digiril) darajocyinkana gacansín .
Maaddaaran \(T P 3.1416\), waxaad helaysaa in 1.-57 \(18^{\circ}\) iyo in \(1^{\circ} \div 0.01745^{\mathrm{G}}\).

Tusaale 1: \(3_{2}^{G}\) u rog cabbir darajo.

\section*{Furfuris:}
\(y_{2}^{\mathrm{G}}=\left(\frac{1}{2} \cdot \frac{180^{\circ}}{\pi T}\right)=\frac{90^{\circ}}{T T} \div \frac{90^{\circ}}{3.1416} \div 28.65^{\circ}\), Jawaab
Tusaale 2. \(30^{\circ}\) u rog cabbir gacansiin
Purfuris:
\(30^{\circ}=\left(30 \cdot \frac{\pi}{180}\right)^{G}=\frac{\pi^{G}}{6} \quad \frac{3.1416}{6}=0.5236{ }^{G}\), JAWAAB

\section*{LAYLI}

\section*{Keen cabbirka gacansiin ee mid kasta oo soo socda}
(B) \(1.45^{\circ}\)
5. \(-330^{\circ}\)
9. \(-75^{\circ}\)
2. \(90^{\circ}\)
6. \(450^{\circ}\)
10. \(270^{\circ}\)
\(3.300^{\circ}\)
7. \(450^{\circ}\)
11. \(-360^{\circ}\)
\(4.180^{\circ}\)
8. \(-15^{\circ}\)
12. \(210^{\circ}\)

Adoo isticmaalaya \(\pi=3.1416\), u rog cabbir kasta gacansiin boqoleed ee ugu dhow.
13. \(11 \frac{k^{\circ}}{}\)
14. \(90^{\circ}\)
15. \(-160^{\circ}\) 16. \(430^{\circ}\)

LEEBAB

\section*{KALA GOYNTA LEEBABKA}

Buuggil hore ayaan ku soo aragnay in labadil leeb (ama in ka badan) ee kasta wadartoodu aydhiganto leeb kali ah; sida leeb wadareedka aan ku heli jirnayna waxay ahayd isugeynta xubnaha isku beegan ee biirooyinka. Waxa kale oo aan xusuusanahay in leeb kastaa uu leeyahay weydaar. Ka soo qaad in \(\vec{A}(a, b)\) uu yahay leeb; \(-\vec{A}\) waa weydaarka \(\frac{A}{A}\) xubnihiisuna waa -a iyo -b.
\(\vec{A}+(\overline{-B})\) waa isugeynta leeb \(\vec{A}\) iyo weydaarka \(B\), waxana niraaha kala goynta leeb \(\vec{A}\) iyo leeb \(\vec{B}\) sida 100 helo leeb \(u\) dhigmana waxa inuu sharxaaya qeexda soo socota:

QEEX: Faraqa laba leeb, \(\vec{A}\) iyo \(\vec{B}\) waxa lagu helaa faraqyada xubnahooda isu dhigma.
TUSAALE: Raadi faraqa \(\vec{A}=(3,4)\) iyo \(\vec{B}=(2,-3)\)
FURFURIS:
\[
\vec{A}-\vec{B}=(3,4)-(2,-3)=((3-2), 4-(-31))
\]
\[
=(1,7)
\]

\section*{LAYLI}
(1) Raadi leeb faraqa \(\vec{A}-\vec{B}\) haddil
(a) \(\overrightarrow{A^{+}}=(3,3), \vec{B}=(-1,-2)\); (b) \(\vec{A}=(0,-3), \vec{B}=(4,-6)\)
(t) \(\vec{A}=(6,3), \vec{B}=(-3,0) ;(j) \vec{A}=(4,-1), \vec{B}(1,1)\)
\((x) \vec{A}=(-2,-5), \vec{B}=(8,1) ;(k h) \vec{A}=(13,9), \overrightarrow{B^{+}}=(20,-5)\)
(d) \(\vec{A}=(-4,0), \vec{B}=(-6,-8) ;(r) \overrightarrow{A^{\prime}}=(-20,-30), \vec{B}=(-14,-8)\)
(2) Raadi leeb faraqa \(\vec{B}-\vec{A}\) ee 1 ayli 1

\section*{BAAXADDA LEEB}

Joometeri ahaan leeb wax kale mahee, waa un xarriljin jiho leh. Madaxa fallaartu wuxuu tilmaamayaa \(j\) ihada, dheerarka xarriljintana waxa mujliya baaxadda leebka.
- 266 -

Bal aan qaadanno leeb \(\vec{D}\) oo bar billaawgilsu tahay unugga sallax kulan.

(Shaxan 1)
Leebka \(\mathrm{OD}^{+}\)xubintilisa \(-x\) waaa \(a-0=a_{\mu} x u b i n t i i s a-y n a\) waa \(b-0=b\) (Waxana samaysmaaya saddexagal quman oo lugihiisu yihiln a iyo b, OD-na tahay shakal).

Haddaba, maaddaama aan helnay saddexagal quman, aan isticmaalno aragtilinka "Betagooras" si aan ku helno dhererka ठठ?
\[
O D=\sqrt{(a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}
\]

Summadda, fogaanshaha ama dhererka leeb \(\overline{O D}\) waa / \(\overline{O D} /\) oo kall ah, madddaama uu yahay leeb rug-beegal ah.

Guud ahaan, haddil bar billawgu ka duwan tahay unugga, lammaanayaasha ihorsan ec bar-billowga iyo bardhammaadkuna ay kala yihlin \(B\left(x_{1}, y_{1}\right)\), lyo \(T\left(x_{2}, y_{2}\right)\) sida ay \(u\) kala horreeyaan. Lammanayaasha horsan ee \(\overrightarrow{\mathrm{BT}}\) waa \(x_{2}-x_{1}, y_{2}-y_{1}\) (dheeho
shaxan 2).

\footnotetext{
.......jidka fogaanta
}

QEEX: Leebka dhererkiisu yahay 1, waxa la yira "leeb halbeeg ah". TUSAALE I: Raadi baaxadda leeb rugeed .
FURFURIS: \(\rightarrow(3,4)\)..
\[
\begin{aligned}
& \vec{A} \mid=\sqrt{(3-0)^{2}+(4-0)^{2}} \\
& =\sqrt{ }=\sqrt{9+16}=-5 . \\
& \text { TUSAALE II: Raadi dhererka leeb LM } \\
& \text { haddii } \mathrm{L}=(5,2), \mathrm{M}=(-3,8)
\end{aligned}
\]

\section*{LAYLI:}
1) Raadi dhererka leeb rugeedada soo socda:
\[
\begin{aligned}
& \vec{B}:(1,1) ; \vec{T}:(4,0), \vec{J}(3,-3), \overrightarrow{K^{2}}(-3,-2) \\
& D:(4,-4), \vec{R}:(0,-3), \vec{W}(12,5), \vec{M}:(5,4)
\end{aligned}
\]
2) Raadi dhererka leebabka soo socda, haddii bar billawyadoodu iyo bar dhammaadyadoodu ay yihiln sida ay u kala horreeyaan:
(b) \((3,4)\) iyo \((-3,-1)\); (t) \((4,-1)\) iyo \((0,3)\); (9\()(1,-3)\) iyo \((5,1)\); (x) \((-3,-2)\) iyo \((0,2)(k h)(30,10)\) iyo \((18,15)\); (d) \((0,5)\) iyo \((4,9)(r)(18,15)\) iyo \((30,10)\); (s) \((9,4)\) iyo \((5,0)\).

\section*{ISKU DHUFASHADA FOOL=WAA :-}

Marka aan leebabka ku hawlan nahay, waxa aan tirooyinka u qaadanaynaa foolwaa; waxa aan ku aqoon sanaynaa xaraf yar oo wehelfye \(u\) ah leebka, ama lammaanayaasha horsan.

QEEX: Hadd \(11 \overrightarrow{\mathrm{~A}}\) ay tahay leeb \((a, b)\), m-na tahay foolwaa, markaas \(\overrightarrow{m A}=m(a, b)=(m a, m b)\).

TUSAALE \(2(3,1)=(2 \times 3,2 \times 1)=(6,2)\);
\(-1(2,3)=(-1 \times 2,-1 \times 3)=(-2,-3)\)
\(0(a, b)=(0,0)\).
Haddil aan joometeri ahaan ku sharaxno isku dhufashada foolwaa markaxay metogan tahay, \(j 1\) hada leebku ma doorsoonto, hase yeeshee baaxaddiisu (dhererkiisu) waa ay isbeddeshaa, asaga 00 fidaaya ama gaabanaaya.

4. Haddil ay m taban tahay, \(j\) hhada leebka cusubi waxayay noqonaysaa lidka jihadil leebkiliboce; baaxaddilisuna waa ay fidaysaa, ama yaraanaysaa.

(Shaxan 4)

\section*{Astaamaha isku dhufashada foolwaa}
1. 1. \(\vec{A}=\overrightarrow{A \cdot 1}=\vec{A}\)
2. \(c(d \vec{A})=(c d) \vec{A}\), taasoo c iyo \(d\) ay yihiin foolwaa
3. \(c \overrightarrow{(A+}+\overrightarrow{B)}=c \vec{A}+e \vec{A}+c \vec{B}\)
4. \((c+d) \vec{A}=c \vec{A}+d \vec{A}\)
5. \(0 . \overrightarrow{\mathrm{A}}=0\)
6. \((-c) \vec{A}=-c \vec{A}\)

TUSAALE I:
U qor foolwayada soo socda qaabka (a,b), 1yagaooo a lyo b yihiin tirooyin maangal ah.
a) \(5(0.1)+(-2)(6,-3)\)
(b) \(2(-1,-2)+6(-3,0)+0 .(7,1)\)
FURFURIS
```

5(0,1)+(-2)(6,-3) 2(-1,-2)+6(-3,0)+0.(7,1)
=(0,5)+(-12,+6)=(0-12,5+6)=(-2,-4)+(-18,0)+(0,0)
=(-12,11), = JAWAAB = (-2-18+0, -4 +0+0)
"=====|=|=|====\pi=% =(-20, - 4) JAWAAB

```

PURFURIS

TUSAALE II: Radi \(\times 1\) yo \(y\)
\[
x(2,-3)+y(-1,0)=(0,-3)
\]
(1) \(x(2,-3)+y(-1,0)=(0,-3)\)
(2) \((2 x, 1-3)+(-y, 0)=(0,-3)\)
(3) \((2 x-y,-3 x+0)=(0,-3)\)
(4) 1) \(2 x-y=0\)

1i) \(-3 x=-3\)
Marka aan furfurno isle'egyada wada Jira, waxa aan heleynāa in
\[
\text { 1) } \begin{aligned}
x & =1 \\
\text { 1i) }-y & =-2(1) \\
y & =2
\end{aligned}
\]
(1) Siin
(2) Qeex isku dhufasho foolwaa
(3) Qeex isugeynta laba leeb.
(4) Laba leeb waxa ay isle'eg yihiln oo keliya haddii xubnahooda isu dhigmaa ay isle'eg yifhin.

\section*{LAYLI}
1) U qor foolwayada soo socda sansaanka \((a, b)\) :
(b) \(6(1,0)+4(-2,5) ;(t) 8(1,-1)+6(4,3)\)
(j) \(-2(7,11)+5(-3,6)\); (x) \(4(-3,1)-5(6,0)\)
(kh) \(-3(9,-2)+2(5,6) ;\) (d) \(6(1,8)-3(12,0)\)
2) Sheeg qiimaha \(x\) lyo kan y ee weeraha soo socda run ka dhigaya:
b) \(x(-4,-8)+y(3,6)=(1,5)\)
t) \(-10(0,0)+2(x+y, x-y)=(10,6)\)
j) \(3(x-1,3 y)-(2 x, 4 y)=(20,15)\)
x) \(2\left(x, \frac{3}{2} y\right)-3\left(2 x, \frac{15}{5} y\right)=(8,-10)\)

\section*{TARAN DHEXE}

Taranta dhexe ama taranta bar waa "xisaab falka ku aaddiya labadil leeb ee kastaba foolwaa
QEEX

\section*{Taranta dhexe ee labacleeb}
\(\vec{B}:\left(b_{1}, b_{2}\right)\) iyo \(\vec{T}:\left(t_{1}, t_{2}\right)\) waxa lagu qeoxaa inay tahay foolwaa \(b_{1} t_{1}+b_{2} t_{2}\).

Summadda tarantan waa bar \(u\) dhexaysa labada leeb, sida
\[
\text { B. } T=\left(b_{1}, b_{2}\right) \cdot\left(t_{1}, t_{2}\right)=b_{1} t_{1}+b_{2} t_{2}
\]

\section*{TUSAALE}
```

1. (3,-2). (1,4)=(3,)(1)+(-2)(4)=3-8=-5
2. (5,2). (1,1)=(5)(1)+(2)(1)=7
3. (-4,1) . (0,0)=(-4)(0)+(1) (0)=0
4. (1,0)}(0,1)=(1)(0)+(0)(1)=
```

\section*{Astaamaha TarantaDhexe}
1) \(\overrightarrow{A_{0}} \cdot \vec{B}=\overrightarrow{B_{0}} \vec{A}\) (kala hormarin)
2) \(\vec{A}(\vec{B}+\vec{T}=\vec{A} \cdot B+\vec{A} \cdot \vec{T}\) (hormogalin)
3) \(k(A, B)=(k A), B\), halka \(k\) ay tahay madoorsoome. 4) \(\vec{A} \cdot \vec{A}=0\) haddii iyo haddii oo keliya oo \(\vec{A}=0\)

\section*{\(\underline{\text { LAYLI }}\)}

Xisaabi tarantacdhexe ee soo socta:
b) \((2,1) .(1,2)\); \((t)(6,-2) .(-2,0)\); (g) \((1,3) \cdot(2,3)\);
x) \((4,-1) \cdot(-2,-1)\); \((k h)(3,0),(4,1):(r)(4,-2) \cdot(3,-5)\)
g) \((6,1),(0,0)\); \((\mathrm{sh})(3,1) \cdot(-1,-1)(\mathrm{dh})(3,4),(0,0)\)
c) \([3(4,1),(2,2)] ;(\mathrm{g})(3,2),(4,1)+(1,1)\)

GUNDHIG BEEGGALKA LEEBABKA
Ka soo qaad \(\frac{n}{} \vec{B}=(1,0), \vec{T}=(0,1)\), markaas,,\(\vec{B}\),
\(=\sqrt{(1-0)^{2}+(0-0)^{2}}=1\), sidoo kale \(\overline{\mathrm{T}} /=1\)
Hore ayeynu \(u\) soo aragnay in ay leebabka jaadkaas ahi yihinnohalbeegyo, waxase \(s 00\) korodhay in leeb kastaa \((a, b)=\) \(a(1,0)+b(0,1)\) maaddaama \(a(1,0)+b(0,1)=(a, 0)+(0, b)=(a, b)\)

Leebabka \((1,0)\) iyo \((0,1)\) waxa la yiraa "Gundhiq beeqgalka, ururka leebabka laba addimaale" summaddiisuna waa: \((1,0)=\overline{1}\), \((0,1)=\frac{3}{3}\).

- 272 -

Haddaba, leeb kasta waxa aan ku tibaaxi karna leebabkan gundhigga ah.
TUSAALE: \(-\overrightarrow{\mathrm{A}}:(\mathrm{a}, \mathrm{b})=\vec{a} \overrightarrow{\mathrm{I}}+\mathrm{b} \vec{j}\)
\[
\vec{B}:(c, d)=c \overrightarrow{1}+d \vec{j}
\]

Bal hadda aan firino sida ay noqonayso taranta dhexe ee leebab gundhig ah.
1) \(T \cdot \vec{T}=\vec{J} \cdot \vec{T}=(1,0) \quad(0,1)=0+0=0\)
2) \(\frac{1}{1} \cdot \frac{T}{j}=(1,0) \cdot(1,0)=1+0=1\)
3) J\() \cdot \overrightarrow{\mathrm{J}}=(0,1) \cdot(0,1)=0+1=1\)

Haddaba, \(\overline{1} \cdot \mathrm{~T}=1\)
\[
\begin{aligned}
& \frac{T}{J} \\
& \frac{J}{T} \cdot \vec{J}=1
\end{aligned}
\]

\section*{Taranta Dhexe ee Sallax ku taal:-}

Ka soo qaad in leebabka \(A:\left(a_{1}, b_{1}\right)\) iyo \(\vec{B}:\left(a_{2}, b_{2}\right)\) ay yihiin rug beeggal, markaas taran dhexeds
\[
A \cdot B=\left(a_{1} m b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=a_{1} a_{2}+b_{1} b_{2}
\]

Bal aan dhisno saddexagalka OAB(Sida Shaxan 6 uu muujinayo):

> (Shaxan 6)

ARAGTIIN: Haddil \(A\) yo \(\vec{B}\) ay yihiln leebab sallax ku yaal, markaas \(A \cdot B=\vec{A} / \vec{B}\)
ay tahay xagasha \(u\) dhexaysa labada leeb.

\section*{CADDAYN}
1. \((\overline{\mathrm{AB}}) 1^{2}=1 \overline{\mathrm{OA}} \boldsymbol{1}^{2}+\overline{\mathrm{OB}}^{2}-2 / \overline{\mathrm{OA}}\)). \(10 \mathrm{~B} /\) Cosd (xeerka Kosayn)
2. \(/ A B /^{2}=\left(a_{2}-a_{1}\right)^{2}+\left(b_{2}-b_{2}\right)^{2} \quad\) (j1dka fogaanta)
\(=a_{2}^{2}-2 a_{2} a_{1}+a_{1}^{2}+b^{2}-2 b_{2} b_{1}+b_{1}^{2}\)
\(=\left(a_{1}^{2}+a_{2}^{2}\right)+\left(b_{1}^{2}+b_{2}^{2}\right)-2\left(a_{1} b_{2}+a_{1} b_{2}\right)^{2}\)
3. \(|0 A|^{2}=\left(\sqrt{\left(a_{1}-0\right)^{2}+\left(b_{1}-0\right)^{2}}\right)^{2}=a_{1}^{22}+b_{1}^{2}\)
\[
1 O B /^{2}=\left(\sqrt{\left(a_{2}-0\right)^{2}+\left(b_{2}-0\right)^{2}}\right)=a_{2}^{2}+b_{2}^{2}
\]
4. \(\overline{O A} /^{2}+10 B /^{2}-2 \cdot \overrightarrow{O A} \cdot \overline{O B}=\left.10 \vec{A}\right|^{2}+10 B /^{2}-2 / \sqrt{O R} b \cdot / O B \vec{O} C O z, 3\) (Ku beddel talaabada (2) \(a_{1}^{2}+b_{1}^{2}, 10 A /^{2} ;\left(a_{2}^{2}+b_{2}^{2}\right) \mathrm{ku}\) beddel \(10 B /^{2} ; \quad \overline{O A} \cdot \overrightarrow{O B}\) waa 1 a mid \(\vec{R} \cdot \vec{B}\))
5. \(\left.\left.-2 \cdot \overline{O A})^{\prime} \cdot \overline{O B}\right)=-2 \overline{O A}\right\rangle \cdot \overline{O B 7} \cos \gamma \quad \begin{gathered}\text { (isu bixi tibxaha isle'eg } \\ \text { ee laba dhinac ku jira) }\end{gathered}\) 6. \(\overrightarrow{O A} \cdot \overrightarrow{O B}=\quad \overrightarrow{O R} / \cdot \overrightarrow{O B} / \cos \gamma\) (isu bixi tibxaha isle'eg ee laba dhinac ku jira.
\(\therefore \quad A \cdot B=/ A / \cdot / B / \operatorname{Cos} \alpha\)
W. D.M.

Jidkan wuxu furayaa si fudud oo 100 helo xaglaha u dhexeeya leebab, maadaama

\section*{Cos}
\[
=\frac{\vec{A} ? \vec{B}}{\sqrt{B} / \cdot \sqrt{B} /}
\]

TUSAALE I: Raadi koska xagasha \(u\) dhexaysa \(\vec{A}:(2,1)\) iyo \(\overrightarrow{B!}(\mathbf{3}, 6)\).

\section*{FURFURIS:}
\(\vec{A} \cdot \vec{B}=(2,1) \cdot(3,6)=6+6=12\)
Dhererka leebabkuna waxa ay noqonayaan
\(/ A /=\sqrt{(2-0)^{2}+(1-0)^{2}}=\sqrt{5 ;} / B /=\sqrt{(3-0)^{2}+(6.0)^{2}}=\sqrt{45}\)
\(\therefore \operatorname{Cos}=\frac{12}{\sqrt{5}-\sqrt{45}}=\frac{12}{\sqrt{255}}\)

- 274 -

TUSAALE II. Raadi xagasha \(u\) dhexaysa
\[
\vec{A}: \quad(1,1) \text { i yo } \frac{1}{B}:(0,1)
\]

FURFURIS:
\[
\vec{A} \cdot \vec{B}=(1,1) \cdot(0,1)=0+1=1
\]

FURFURIS:
\(\vec{A} \cdot \vec{B}=(1,1) \cdot(0,1)=0+1=1\)
\(|A|=\sqrt{1^{2}+1^{2}}\)
- \(v\)
\(|\mathrm{B}|=\sqrt{0^{2}+1^{2}}\)
2

\(\cos \alpha=\frac{1}{\sqrt{2.1}}=\frac{1}{\sqrt{2}} \approx \frac{1}{1.414} \approx 0.707\)

Tusaha trig. waxan ka heleynaa in 0.707 ay tahay \(\operatorname{Cos} 45^{\circ}\). Haddaba 2 . \(45^{\circ}\).

Xigasho: Haddii / \(\vec{A} / \vec{B} / \operatorname{Cos} \alpha=0\), markaas ugu yaraan weeraha sco socda mid baa run ah: \(|\vec{A}|=0, \mid \vec{B} /=0\) ama \(\operatorname{Cos} \partial=0\). Maaddaama A iyo B aanay ahayn leeb-ebero, waxa markaas cad in \(\cos \gamma=0\). Haddaba \(\partial=90^{\circ}\). \(\vec{A}\) iyo \(\vec{B}\) waa ay isku qotomaan.
Summad ahaan : \(\vec{A} / \vec{B}\), haddil iyo haddil oo keliya oo ay \(\vec{A} \vec{B}=0\).

TUSAALE II:- Kala sheeg in leebabkan, \(\vec{A}\) : \((.1,2)\) iyo \(\vec{B}:(2,1)\) iyo in kale.
FURFURIS: Waxa aan raadinayna Coska xagasha \(u\) dhexaysa labada leeb. Haddil uu yahay eber, markaas waa ay isku qotomaan.
\(\cos 2=\frac{A}{\sqrt{R} / \cdot \sqrt{B} / ;} \cdot \vec{A} \cdot \vec{B}=(-1,2) \cdot(2,1)=-2+2=0\)
\(\cos 2=\frac{0}{/ \vec{A} / \cdot \sqrt{B} /}=0 \quad \therefore \alpha=90^{\circ}, \vec{A} \perp \vec{B}\)
TUSAALE IV. Raadi taranta dhexe ee leebabka \(-3 \overrightarrow{v_{-}}-4 \vec{j}\) iyo \(3 \vec{n}+4 \vec{j}\) ?

\section*{FURFURIS:}

Waxa aan \(u\) dhigi karna leebabkan sansaan lammanayaal horsan.
\[
-3 \overrightarrow{\mathrm{~T}}-4 \overrightarrow{\mathrm{~J}}=(-3,-4) ; \quad 3 \overrightarrow{\mathrm{~T}}+4 \overrightarrow{\mathrm{~J}}=(3,4)
\]

Tarantooda dhexena waa
\[
(-3,-4) \cdot(3,4)=-9-16=-\ldots 25
\]

\section*{LAYLI}
1. Raadi taranta dhexe ee lammanayaalka leeb ee soo socda:
a) \(5 \vec{i}-5 \vec{j}\) iyo o \(\overrightarrow{\hat{j}}+3 \vec{j}\);
(d) 2i-6j 4 yo \(5 i+7 j\)
b) \(3 \vec{i}+\vec{j}\) iyo \(-\vec{i}+3 \vec{j}\);
(e) \(101+4 j\) 1yo \(121-13 j\)
c) \(-2 \vec{T}+0 \vec{j}\) iyo \(4 \vec{T}+3 \vec{J}\).
(f) \(111+10 j\) iyo \(20 j+2 j\)
2. Raadi kosaynka xagasha \(u\) dhexaysa labadii leeb ee kasta.
b) \(\vec{B}:(1,0)\); \(\vec{T}:(4,3)\); \((t) \vec{B}:(-1,-2)\); \(\vec{T}:(3,6)\); j) \(\overrightarrow{B^{\prime}}:(4,0), \bar{T}\) ? \((-4,4)\); (x) \(\bar{B}\) ? \((3,3), T:(2,-2)\)
3. Labadeebaa isku qotoma leebabkan?
b) \((3,1)\) iyo \((1,3)\); \((t)(4,0)\) iyo \((0,2)\)
f) \((0,0)\) iyo \((6,3)\); \((x)(-5,-2)\) iyo \((4,10)\)
(kh) \((12,5)\) iyo \((0,3)\), (d) \((-13,-5)\) iyo \((17,6)\)

\section*{ASTAAMAHA GUNDHIGGA U AH TIRADA}

Haddif A lyo B ay yihlin ururo kooban, markaa, \(n(A X B)=n(A), n(B)\), macnee tirada kutirsanayaasha taranta Kaartis ee A iyo B waa taranta tirada kutirsanayaasha A iyo 3 kuwa B.

Matalan 5 wado-baabuur (urur A) ayaa isku xira magaalada \(R\) iyo ta \(N\), weliba 2 wado-baabuur ayaa isku xira magaalada \(M\) iyo ta \(S\) (urur B). Markaa ku tirsanayaasha A由id kastaa waxa uu leeyahay \(?_{n}\) ah kutirsanayaasha B. Wadarta wadooyinka suuragalka ah ee qof mari karaana waa \(n(A X B)\).
\[
n(A) \cdot n(B)=5.2=10
\]

QEEX: Raabaqaadka urur A waa horsilmeynta (Kowaad, Labaad, Snddexaad, ...) kutirsanayaasha \(A\).
ARAGTIIN: ka dhig Bn,n tirada raabaqaadyada kala gedisan ee ururka \(A, 00 n(A)=n\) markaa \(B n, n=n\) !
sumadda \(B n, n\) waxa 100 akhrlyaa, "tirada raabqaadyada \(n\) walaxood 00 marba la isku qaadey \(n "\).

CADDEYN: Ka dhig \(A_{1}\), ururka xulashooyinka koowaad ee suuragalka ah. Kolkas \(A_{1}=A\), dabadeedna \(n\left(A_{1}\right)=n(A)\). ka dhig \(A_{2}\) ururka xulashooyinka Labaad ee suurogalka ah. Markaa, \(A_{2} C A\) dabeedria \(n\left(A_{2}\right)=n\left(A_{1}\right)-1=n-1\), Habkaas 00 la sii wado \(\infty\) weliba lala kaalmeysto astaanta tirsilmo \(n(A X B)=n(A), n(B)\) waxa ay inoo horseedeysaa in \(B n, n=n\left(A_{1}\right) \quad n\left(A_{2}\right) \cdot n\left(A_{3}\right) \ldots n\left(A_{n}\right)\)
\(=n(n-1) \quad(n-2) \quad \ldots 1=n!\)

TUSAALE: Imisa siyood ayaa 5 ciyaaryahan 100 kala siln karaa rugo (positions), si ay u samecyaan koox ciyaarta kubadda koleyga?

PURFURIS: Ka dh1g ururka clyaaryahanada \(A\), markaa \(n(A)=5\). Wadarta siyaabaha 5 nin 100 kala siin karo 5 ruggood waa, \(B_{5}{ }^{\prime} 5=51=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120\)

ARAGTILN: \([n(A)=n]\) thig \(B_{n, r}\) tirada raabaqaadyada ururka \(A\) \([n(A)=n] \infty\) marba la isku qaadey \(r\); macnee, \(B_{n ' r}\) waa tirada horsilmooyinka kala gedisan ee r kutirsane marka aynu heysano ururka \(A\) oo \(n\) kutirsane leh.

Markaa
\[
\begin{aligned}
B_{n, r} & =n(n-1) \\
& (n-2) \\
& =n(n-1) \\
& (n-2)
\end{aligned} \ldots \quad[n-(r-1)]
\]

TUSAALE: Imisa siyood ayaa 100 sameyn karaa koox elyaartooy ah oo tiradoodu dhan tahay 5 haddil ururka aan kala baxeynaa uu ka kooban yahay 10 ciyaar-yahan?

\section*{FURFURIS: Ka dhig A ururka efyaaryahanada, markaa \(n(A)=10\)}
\(B_{10,5}=10.9 \cdot 8 \ldots(10-5+1)=\)
\[
10 \cdot 9 \cdot 8 \cdot 7 \cdot 6=30246
\]
\(B_{n, r}\) waxa kale oo 100 qori karaa sidan:
\(B_{n, r}=n(n-1) \quad(n-2) \ldots(n-r+1)\)
\(=n(n-1) \quad \ldots(n-r+1) \quad(n-r)!\)
\(B_{n, r}=\)

Weydilnta ah "doon tirada raabaqaadyada kala gedisan ee \(n\) walaxood oo marba la isku qaadey \(n\), haddii walaxaa qaarkood ay midaalsn yihiln", waxa ay u baahan tahay saafid. Tusaale ahaan, tixgeli tirada raabaqaadyada xarfaha ereyga KACAAMEYN saddexda "A" aan kala sifno hoosgalayaal si aynu \(u\) heysano 9 xaraf oo kala gedisan.
\(K, A_{1}, C, A_{2}, A_{3}, M, E, Y, N\)
Tirada raabaqaadyada 9 kaa xaraf waa 9 : Haddil xarfaha aan ahayn \(A_{1}, A_{2}\) iyo \(A_{3}\) lagu ilaaliyo meesha ay joogaan, \(A_{1}, A_{2}\) iyo \(A_{3}\) waxa dhexdooda lagu sameyn karaa 3 ! raabaqada. Haddil \(B\) ay tahay tirada raabaqaadyada kala gedisan ee xarfaha \(K, A, C, A, A, M, B, Y, N\),,\(\infty\) isla markaa rabaqaad kastaa uu leeyahay 31 siyood oo I-yada 100 horsiimeyn karo, markaa:
\(3: B=9:\)
\[
B=\frac{91}{3 t}
\]

TUSAALE: Tixgeli xarfaha ereyga "MAMMAL" waxa j1ri lahaa 61 raabaqaad oo kala gedisan haddil xaraf kastaa uu ka gedisan yahay midka kale, lakiln xarfaha \(M\) fyo \(A\) midina 3 jeer ayey
ereyga ku jirtaa, midina 2 jeer.
\(\therefore \quad 3!2!B=6!\)
\[
B=\frac{6!}{3!2!}=\frac{6 \cdot 5 \cdot \pi^{2} \cdot 3!}{2 \cdot 1 \cdot 3!}=60
\]

\section*{LAYLI:}

TUSAALE: Haddii \(\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{B}=\{\mathrm{c}, \mathrm{d}\}\), doon \(n(A \cup B), n(A \cap B), n(A X B)\)
\[
\text { FURFURIS: } \begin{aligned}
& A \cup B=\{a, b, c, d\} \quad \therefore n(A \cup B)=4 \\
& A B=\{c\}, \\
& A X B=\{(a, c),(a, d),(b, c),(b, d),(c, c),(c, d)\} \\
& \therefore n(A \cap B)=1 \\
& \therefore n(A X B)=6
\end{aligned}
\]
1. (b) \(A=\{d, e\}, B=\{e, f, g, h\}\)
(t) \(A=\{e\}, B\{a, b, c, d\}\)
(f) \(A=\{1,2,3\}, B=\{3,4,5,6\}\)
(x) \(A=\{1,2\}, B=\{3,4,5\}\)
\((k h) \cdot A=\{1,2\}, B=\{1,2\}\)
(d) \(\mathrm{A}=\varnothing, B=\{2,3,4\}\)
2. Imisa astiro 00 kala gedisan 00 midiba tahay laba god ayaa laga sameyn karaa astirooyinka 5 iyo 62
3. Imisa astiro oo kala gedisan 00 midiba tahay laba god ayaa laga sameyn karaa astirooyinka 7, 8, 92
4. Doon tirada raabaqaadyada kala gedisan ee xarfaha ereyga(i) LIMIT (1i) Soomaliya (1i1) Jabuuti.

\section*{RACAYMO}

Inta aynaan \(u\) tegin "Itimaal" waxa aynu \(u\) bahan nahay xeer tiro oo kale 00 la yiraahdo, doonidda tirada hormooyinka r-kutirsane leh ee kala geidsan ee urur n-kutirsane leh.

QEEX: Hormada r-kutirsane leh ee ururka n-kutirsarf leh ayaa la yirahaa racayn.

Markaa racayni waa urur walaxo ah oo horsilmadu aanay muhiim ahayn. Matalan, haddii afarta xaraf ee \(a, b, c, d\), aynu ka doorano kooxo midiba saddex xaraf tahay, waxa aynu heli 4 kooxood oo kala ah abc, acd, abd, bed.

Tirada racaymuhu waxa ay ku xiran tahay tirada raabaqaadyada . 15 Waxal aymu' haqaan in tiradan neabapaadyadaqawurka \(\mathbb{A}[n a(A)=n]\), marka marba la isku qaado \(r\) ay tahay:
\(B_{n, r}=n!\) Adiga oo taas madaxa ku haya, tixgeli

ARAGTIIN: Ka dhig \((\hat{r})\) tirada racaymaha kala gedisan ee kutirsanayaasha ururka \(A\) oo ka kooban \(n\) walaxood \([n(A)=n]\), oo hadba la isku qaaday \(r\), markaa
\(\binom{n}{r}=\frac{B_{n, r}}{r!}=\frac{n!}{r!(n-r)!}\)

TUSAALE: Imisa siyood ayaa guddi 5 qof ah looga dooran karaa urur 12 qof ah?

\section*{FURFURIS:}

Waxa aan rabnaa waa tirada hormooyinka midiba \(5 \mathrm{ku}-\) tirsane leedahay ee ururka 12 ka kutirsane leh; kolkaa

Maadaam tirooyinka (\(\begin{aligned} & \mathrm{n} \\ & \mathrm{r}\end{aligned}\)) ay yihiin weheliyayaasha fi dinta \((a+b)^{n}\) oo weliba weheliyayaashaasi wanqaaran yihlin (Symmetric), waxa aynu dheegi karaa aragtilnkan soo socda:

ARAGTIIN: \(\binom{n}{r}=(n \stackrel{n}{n})\)
CADDEYN: Waxa aynu ognahay in \(\binom{n}{r}=\frac{n!}{r:(n-r):}\)
\(\begin{aligned} & \text { iyo in }\binom{n}{n-r}=\frac{n!}{(n-r)![n-(n-r)]!}=\frac{n!}{(n-r)!r!} \\ & \therefore\binom{n}{r}=\left(n-{ }^{n} r\right) .\end{aligned}\)

\section*{LAYLI:}

Qilmee:
1. (i) 51 (ii) \(\frac{6!}{3!}\) (iii) \(\binom{5}{3}\) (iv) \(\binom{5}{2}\) (v) \(\binom{8}{4}\)
\(\begin{array}{ll}\text { (vi) } \frac{B_{8}, 5}{5!} & \text { (vii) } B_{4,4} \\ \text { (viii) } B_{7,4} & \text { (ix) }\binom{n}{3} .\end{array}\) 2. Doon qiimaha \(x:(1)\binom{x}{1}=3\) (1i) \(\binom{x}{2}=1\)
\[
\text { (iii) }\left(_{2}^{2 x}\right)=3 \text { (iv) } B_{x, 2}=3
\]

\section*{MUUNAD DULALAATI IYO WAQDHACYO}

\section*{Marka la sameeyo tijaabo, tijaabadaa waxa la xirilra} urur ah natiljooyinka suuragalka ah. Matalan marka laadhuu la tuuro, waxa ay istaagi doontaa iyadoo astirooyinka \(1,2,3,4,5,6\) midi uun ay sarreyso.

Qeex: Ururka ka kooban dhamaan natiljoopinka suuragalka ah ee tijaabo ayaa la yirahaa Muunad Dulalaatiga tijaabo.

QEEX: Kutirsane kasta 00 ka mid ah muunad dulalaatign waxa la yiraahaa natilijo ama bar-muunadeed.
Waxa suuroobl karta in tijaabo ay yeelato munad dulalaatiyo fara badan. Tixgeli sanduuq ay ku jiraan kubbado yaryari; kubbadahaa qaar ka mid ahi waxa ay ka sameysan yihiin quraarad, inta kalena waxa ay ka sameysan yihiln caag. Nooc kasta, qaarna waa gaduud, qaarna waa cagaar. Haddil aynu haddaba sameyno tijaabo ah "kubbad ka soo saar sanduuqa" waxa laga yaabaa in aynu u jeedno waxyaabahan soo socda miduun:
Sheyga ay kubbadu ka sameysan tahay:
Markaa haddli q ay ka taagan tahay quraarad, gantey caag. Muunad dulalaatigeenu f
(t) M1 dabka kubbadda:

Marka muunad dulalaatigeenu waa
\(\left\{g, c^{\prime}\right\} 00 \mathrm{~g}\) ay ka taagan tahay gaduud, \(c^{\prime}\)-na cagaar.
(j) M1dabka 1 yo sheyga ay ka sameysan tahay, Labadaba.

Markaa, haddii \(q, c, g, c^{\prime}\) ay yihiin waxa aynu ku soo sheegnay, muunad dulalaatigeenu waa;
\[
\left\{(q, g),\left(q, c^{\prime}\right),(c, g),\left(c, c^{\prime}\right)\right\}
\]

QEEX: Hormooyinka muunad dulalaatiga mid kasta waxa la yiraahaa WAQDHAC, waxana badanaaba lagu tilmaansadaa xarfka W.

Marka aynu tijaabo sameyno, waxa laga yaabaa in aynu madaxa ku heyno urur natilfooyin ah oo aynaan rabin natiljooyin keli keli ah (individual outcomes).
Matalan marka la tuuro laadhuu, haddii muunad dulalaatiga 100 qaato \(\{1,2,3,4,5,6\}\), kolkaa waqdhaca tilmaamaya abyoone kisi ah waa ururka \(\{1,3,5\}\).
Labadan waqdhac oo kale waxa la yiraahaa WAQDHACYO DULEEDINSAN. Tirada waqdhacyada suuragalka ah ee ku fira muunad dulalaati
n kutirsane lihi waa tirada hormooyinka suuragalka ah ee urur \(n\) kutirsane leh ama \(2^{n}\); macnee
\((8)+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n}\)
\(\infty\binom{n}{0}\) ay tahay waqdhaca \(\theta\).
LAYLI:
(1) Laadhuu baa la tuuray. Tax muunad dulalaatiga. Tax waqdhaca ah "astirada ay \(u\) dhacday waa ay ka weyntey 2 ".
(2) Kuumi baa la tuuray. Tax munad-dulalaatiga. Tax waqdhaca ah daabac ayuu \(u\) dhacay.
(3) Labs kuum ayaa la tuuray. Tax muunad dulalantlan - Tax waqdhaca ah in ay \(u\) dhacayaan laba daabac.
(4) Laba kuumi baa la tuuray. Tax munad dulalaatiga. Tax waqdhaca ah in ay \(u\) dhacayaan ama laba dur ama laba daabac.
(5) Imisa waqdhac ayaa ku Jira muunad-dulalaatiga \(\{1,2,3\}\) ?
(6) Imisa waqdhac 00 midkilba ugu yaraan leeyahay hal kutirsane ayaa ku jira muunad dulalaatiga \(\{1,2,3,4,5,6\}\) ?

\begin{abstract}
- 282 -

\section*{FANSAARADA ITIMAAL}

Marka aynu tijaabo sameyno, natiijooyinka tijaabadaas waxa aynu niraahaa waa natiljooyin siman haddii itimaalkoodu is wada le'eg yahay. Matal an marka aan tuuro laadhuu, natiijooyinka \(1,2,3,4,5,6\) haddii ay siman yihiln mid kasta itimaal-
\end{abstract} kilsu waa \(\frac{1}{6}\).

QEEX: Ka dhig M munad dulalaati ka kooban natijjooyin siman, \(\mathrm{H}-\) na ka dhig fansaar maangal ah oo horaadkilsu yahay dhammaan waqdhacyada \(W C M\), danbeedkilsuna yahay \(\{y \in M / 0 \leqslant y \leqslant 1\}\). Markaa \(H\) waa fansaar itimaal haddil iyo haddil oo keliya 00 xaaladahan soo socdaa ay rumoobaan.
(1) \(\mathrm{H}(W) \geqslant 0\), waqdhac kasta \(W C M\)
(2) \(H(M)=1\)
(3) Haddi1 \(W_{1} \cap W_{2}=\), markaa,
\[
H\left(w_{1} \cup w_{2}\right)=H\left(w_{1}\right)+H\left(w_{2}\right)
\]

\section*{QEEX: Itimaal Wagdhac: Ka dhig M muunad dulalaati kooban} oo kutirsanayaashiisu ay yihiin natiljooyinka siman ee tijaabo. Ka dhig \(W\) waqdhac ku jira \(M\), markaa itimaalka \(W\),
\[
H(w)=\frac{n(w)}{n(M)} .
\]

TUSAALE (1): Haddii laadhuu la tuuro, waa maxay itimaalka ay u dhici karto tiro dhaban ahi?

FURFURIS: \(H(W)\) \(\qquad\) ;
\[
n=\{2,4,6\}
\]
\[
\therefore n(w)=3
\]
\[
M=\{1,2,3,4,5,6\}
\]
\[
\therefore n(M)=6
\]
\[
\text { Markaa } H(W)=3 / 6=\frac{1}{2} \text {. }
\]

TUSAALE (2) 9 xaashadood 00 yaryar ayaa lagu kala qoray astirooyinka 1 llaa 9 , markaasaa la baandhecyey; kadibna waxa laga saarey mid. Waa maxay itimaalka ay xabada la saarey ku noqon karto mid ay tiro dhabani ku qoran tahay?

FURFURIS:
FURFURIS: \(H(W)=\frac{n(W)}{n(M)}\)
\(W=\{2,4,6,8\}\)
\(\therefore n(W)=4\)
\(M=\{1,2,3 \ldots 9\}\)
\(\therefore n(M)=9\)
- hlahtaray

Markaa \(H(W)=4 / 9\).

Haddii ashuun ay ka buuxaan kubbado eagaarani, itimaalka lagaga soo saarayo kubbad cagaarani waa 1. Maxaa yeelay \(W=M, \therefore n(W)=n(M)\), dabeedna,
\[
H(W)=\frac{n(W)}{n(M)}=1
\]

Markaas oo kale waxa aynu niraahnaa dhicitaanka waqdhaca \(W\) waa mid la hubaa (certain). Haddii se aan damacno In aan kubbad cad ka soo saaro ashuun ay ka buuxaan kubbado cagaarani, Itimaalka aynu kaga soo saareynaa waa 0. Maxaa yeelay \(W \notin, \quad \therefore n(W)=0\),
\[
\text { Kolkaa } H(W)=\frac{n(w)}{n(M)}=\frac{0}{n(M)}
\]

Markaas oo kalena waxa aynu niraahnaa dhicitaanka waqdhaca \(W\) waa mid aan suuragal ahayn (impossible). ARAGTIIN: - Haddil \(W\) ay tahay waqdhac kasta \(0 \leq H(W) \leq 1\).

ARAGTIIN: Haddil \(\bar{W}\) ay tahay duleedka \(w\), markaa \(H(\bar{w})=1-H(W)\).
TUSAALE 1) Haddii itimaalka uu dagaal uga dhici karo Bariga Dhexe uu yahay \(3 / 7\). Waa maxay itimaalka aanu dagaal uga dhici karini?

FURFURIS: Itimaalka aanu dagaal uga dhici karin Bariga Dhexe
waa \(1-3 / 7=4 / 7\).

TUSAALE 2: Haddil Ltimaalka uu raob ku da'ayo 1-da Majo uu yahay \(1 / 7\), waa maxay itimaalka aanu roob ku dil' doonini? FURFURIS: Itimaalka aanu roob ku dil' doonini waa \(1-1 / 7=6 / 7\).

\section*{WAQDHACYO MASIYAAB}

QEEX: - Labada waçhac \(W_{1}\) iyo \(W_{2}\) oo ku Ifra muunad dulalaati waxa ay yihiln wagdhacyo masiyaab, haddil dhicitaanka mid aanu wax raad ah ku lahayn dhicitaanka ka kale. Haddil laba waqdhac aanay masiyaab ahayn, waxa la yiraahaa waqdhacyo siyaab.

\section*{ITIMAALKA VAODHACYO MASIYAAB}

Itimsalka ay laba wagdhac oo masiyaab ahi iskaga daba dhici karasn wao taranta itimaalada ay mid kastaa ku dhici karto. Haddi1 \(\mathrm{H}\left(\mathrm{W}_{1}\right)\) ay tahay itmaalka waqdhaca \(\mathrm{W}_{1}\) ay ku dhici karto, isla morkacsna
\(H\left(W_{2}\right)\) ay tahay itimaalka waqdhaca \(W_{2}\) ay ku dhici karto, markaas;
\(H\left(W_{1}\right.\) iyo \(\left.W_{2}\right)\). \(H\left(W_{1}\right) . H\left(W_{2}\right)\), bishardi in \(W_{1}\) iyo \(W_{2}\) ay yiniin waqdhacyo masiyaab. Matalan itimaalka, H(b) ee Cali uu imtixabnka xisaubta ku 111 baani karaa waa \(3 / 10\). Itimaalka \(H(s)\) ee cnasha ay imtixaanka af Soomaaliga ku lifbaani kartaana waa \(\frac{8}{10}\) - Markaa maadaam
\[
H(b)=0.3, H(s)=0.8
\]

Itimanlka, \(\mathrm{H}(\mathrm{b}+5)\) ee labada wagthachn kil dhima kencoan waa:
\[
H(b+s)=H(b) \cdot H(s)=(0.3)(0.8)=0.24
\]

Ama, haddi1 laba kuumi la tuuro (iskumar ama la iska daba tuuro) itimaalka lagu heli karo daabac iyo dur waa \(1 / 4\). Itimaalka kuumiga hore uu ugu dhlcl karo daabac, H(d) waa 15 . Itimaalka kuuniga danbe ugu dhici karo dur \(H(t)\) waa \(\frac{1}{2}\).
\[
\therefore H(d) \cdot H(t)=\frac{1}{1} \cdot \frac{1}{2}=1 / 4 .
\]

\section*{TUSAALE 1}

Sanduuq ayey ku jiraan 4 kubbadood oo cagaaran iyo 2 cadcadi. Haddii kubbad laga soo saaro oo lagu celiyo, oo haddana kubbad labaad laga soo saaro, waa maxay itimaalka ay kubbadi1 hore ku noqon karto cagaar tif danbena caddaan?

FURFURIS: Itimaalka lagu soo saari karo kubbad cagaarani, \(H(c)\), waa 2/3. Itimalka lagu soo saari karo kubbad caddina, \(\mathrm{H}\left(\mathrm{c}^{\prime}\right)\), waa \(\frac{\text { h. }}{}\). Itimaalka lagu soo saari karo kubbad cagaaran iyo kubbad caddi waa
\(H(c) \cdot H\left(c^{\prime}\right)=2 / 3 \cdot \frac{1}{5}=2 / 9\).

\section*{TUSAALE 2:}

Itimaalka nin 40 jink ku gaadhi karo 96 waa 0.005 . Itimaalka naagtiisu oo 36 jiri ay ku gaadhi karto 96-na waa 0.005. Waa maxay itimaalka ay ninka iyo naagtuba ku gaadhi karaan 96 ?

\section*{FURUPIRIS:}

Itimaalka uu ninku ku gaadhi karo 96 waa \(H(M)=0.005\). Itimaalka ay naagtu ku gaadhi karto 96 waa \(H(n)=0.005\) \(H(m+n)=H(m) . H(n)=(0.005)(0.005)=0.000025\).

\section*{LAYLI}
1. Haddii laba kuumi la turo, waa maxay itimaalka lagu heli karo 2 daabac?
Laba dur? daabac iyo dur(labada horsiimaba)?
2. Haddii kuumi la tuuro 3 jeer, waa maxay itimaalka lagu heli karo daabac labada jeer ee hore.
3. Haddii 3 kuumi la turo, waa maxay itimaalka lagu heli karo 2 daabac iyo hal duv (ha tixgelin horsilmada)?
4. Haddi1 laadhuu 1 a tuuro 2 jeer, waa maxay Itimalka ay marka hore ugu dhacayso 3 , marka danbena 6 ?
5. Haddii laba laadhuu la tuuro laba jeer, waa maxay itimaalka lagu heli karo 7 iyo 11 ?

\section*{—. \\ WAQDHACYO KALA EDEG AH}

QEEX: Haddi1 laba (ama in ka badan) waqdhac aanay wada dhici karln mar keliya waxa la yiraahaa waqdhacyo kala edeg ah. Waqdhacyade \(W_{1}\) iyo \(W_{2}\) waa kala edeg haddii
\[
w_{1} \cap w_{2}=\theta
\]

ARAGTIN: Haddi waqdhacyada \(w_{1}\) iyo \(w_{2}\) ay kala edeg yihiin, markEd \(H\left(W_{-}, W_{2}\right)=H\left(W_{1}\right)+H\left(W_{2}\right)\).

TUSAALE: Ashuun ay ku jiraan 8 kubbadood oo cas, 4 cagaaran iyo \(s\) madoob. ayaa laga sco saarey kubbad. Waa maxay itimaalka kubladdauz 4 s soo saaray ay ku noqon karto madow ama casaan? FURGIRT:

Ka this N, waqdhaca ah "soo saaridda kubbad cas", \(W_{2}\)-na "300 saasidda kubbad madow".

Maadaan aynsan soo saari karin kubbad casaan iyo madow wada ah, \(W_{1}\), yo \(i_{2}\) wh warchacyo kala edeg ah.

Muuned dulalnetign waxa ku fira
\(4+3+4\) - 17 notilo. Markaas
\(H\left(W_{1}\right)=H / 17, K\left(W_{2}\right)=5 / 17\).
Waqdhera nyou rebnaa waa \(W_{1} U W_{2} 00\) ah wadarta kutirsanayaasha \(W_{1}\) Iyo \(W_{2}\).
Markaa \(\mathrm{K}\left(\mathrm{W}_{1} \cup W_{2}\right)=\frac{8}{17}+5=\frac{13}{17}\)

P-G (\(52 \mathrm{~L}=\mathrm{o}\) gaer ah) \(H\left(\mathrm{~W}_{1} \cup W_{2}\right)=\frac{8+5}{17}=\frac{8}{17}+\frac{5}{17}=H\left(W_{1}\right)+H\left(W_{2}\right)\)

\section*{LaycI:}

太shuun \(a y a s\) waxa ku 31 ra 16 kubbadood, 9 cas, 5 madow tys 2 escearan. Haddil kubbad laga soo saaro, waa taxay Lk1m9alka ay ku noqoneyso.
(1) Ceseon
(2) Madow
(3) Casaan \(\mathrm{a}=\mathrm{a}=\) radon
(4) Cagaar
(5) Mactor and cagane
(S) Caskan ana cegase
(7) Haddi1 la tuuro laadhuu, waa maxay itimaalka lagu heli karo 4 ama 5 ?
(8) Haddi1 sanduuq ay ku jiraan 19 qalin, 6 cagaar ah, 3 cas, 6 madow, 4 cad, lagana soo saaro sanduuqa qalin, waa maxay itimaalka uu ku noqon karo cagaar ama caddaan?
(9) Haddii fasal ay ku jiraan 20 will iyo 15 gabdhood, 00 macallinku uu arday ka doorto (doorashada wa ay u siman yihiin), waa maxay itimaalka uu ku noqon karo
(4) Wi£1 ama gabadh
(11) W \(1 \pm 1\)
(111) Gabadh
(10) Haddil tirsi1mooyinka 1 1laa 20 lagu qoro xaashiyo yar yar oo dabeedna mid laga saaro (saaridda wa ay u siman yihiin), was maxay itimaalka ay tirada xaashidaa ku qorani ku noqon karto :
(i) Mid ka weyn 10
(11) Mid 9 ka weyn ama ka yar 4.
(111)Ama kutirsane \(u\) ah \(\{5,7,11\}\)
ama ka weyn 15.
Waxa aynu aragnay in haddif \(W_{1}\) 1yo \(W_{2}\) ay kala edeg yihifn, markaa
\(H\left(W_{1} \cup W_{2}\right)=H\left(W_{1}\right)+H\left(W_{2}\right)\).

Mateion veqdhacyada \(W_{1}\) iyo \(W_{2}\) maaha kala edeg, macnee \(W_{1} \cap W_{2} \notin g\). Haddaba si aan \(u\) helo darilqada 100 raadiyo \(H\left(W_{1} U W_{2}\right)\) marka \(W_{1} \prod W_{2} \neq \emptyset\), aan tixgelino E1jaabo la tuuray laadhuu. Haddii \(W_{1}\) ay tahay wagdhaca ah "waxa soo sareeya tiro 3 ka yar" \(W_{2}\)-na ay tahay waqdhaca "dhinaca sare waxa ku yaal tiro kisi ah" markaa \(W_{1}=\{1,2\}, W_{2}=\{1,3,5\}\).
\(W_{1} \cup W_{2}=\{1,2,3,5\}, w_{1} \cap W_{2}=\{1\}\)

Maadaam \(W_{1}\) fyo \(W_{2}\) ay dhextaal leeyihiin, maaha kala edeg. waqdhaca \(W_{1} \cup W_{2}\) kutirsanayaashilsu waa 4 . Kolkaa \(H\left(W_{1} U W_{2}\right)=\frac{4}{6}\) \(-\frac{2}{3}\).

Haddii aynu isticmaali lahayn jidka isutagga waqdhacyo kala edeg ah, waxa aynu heli lahayn \(H\left(W_{1} U W_{2}\right)=H\left(W_{1}\right)+H\left(W_{2}\right)\) \(=2 / 6+3 / 6=5 / 6\).

Sababta ay labadaa qilme u kala gedisan yihiin waa: Marka aynu \(H\left(W_{1}\right)\) iyo \(H\left(W_{2}\right)\) u kala xisaabino gooni, natiijada "1" ayeynu tiriney 2 jeer. Marna \(W_{1}\) ayeynu ku tiriney, marna \(W_{2}\). Si aan u raadino itimaalka dhicitaanka \(W_{1}\) iyo \(W_{2} \circ \circ\) aan ahayn kala edeg waxa aynu isticmaali jidkan:
\[
\begin{aligned}
H\left(W_{1} \cup W_{2}\right) & =H\left(W_{1}\right)+H\left(W_{2}\right)-H\left(W_{1} \cap W_{2}\right) \\
& =2 / 6+3 / 6-1 / 6=2 / 3 .
\end{aligned}
\]

\section*{TUSAALE 1:}

Matalan 2 astiro oo ku jira \(\{1,2,3,5,7\}\) ayaa la bixiyey (bixinta wey \(u\) siman yihiin) si 100 sameeyo astiro 2 god ah. Waa maxay itimaalka 5 ama 7 ay ku jiri karaan astirada sameysantay?

\section*{FURFURIS:}

Ka dhig \(W_{1}\) waqdhaca "astiro 2 god ah , oo labada god mid yahay 5 " \({ }^{\prime \prime}\)-na waqdhaca "astiro 2 god ah, oo labada god mid yahay \(7^{\prime \prime}\). Waxa innoo filcan in aan taxno natiijooyinka suuragalka ah dhammaantood.

Maadaam \(W_{1}\) iyo \(W_{2}\) aanay kala edeg ahayn waxa aynu isticmaali jidka
\(H\left(w_{1} \cup W_{2}\right)=H\left(w_{1}\right)+H\left(W_{2}\right)-H\left(W_{1} \Pi W_{2}\right)\)
\[
=8 / 20+8 / 20-2 / 20=14 / 20=7 / 10 .
\]

TUSAALE 2:
1000 qof oo Soomaali ah ayey 420 ka midi cunaan qaadka, 105 kalena cabbaan sigaarka. 45 ayaa qaadkana cuna sigaarkana cabba. Waa maxay itimaalka ay ku dhici karto in qof dadkaas ka midi ama uu qaadka cuno ama uu sigaarka cabbo?

\section*{FURFURIS:}

Muunad-dulalaatigu wuxuu ka kooban yahay 1000 natiljo oo laga yaabo in uu mid waliba yahay qof ama qaadka cuna ama sigaarka cabba. Ka dhig Q ururka qaad cunada, S-na ururka sigaar cabyada.
Markaa \(n(Q)=420, n(S)=105, n(Q \cap S)=45\); dabeedna \(H(Q U S)=\frac{480}{1000}=0.48\).
ama madaam \(H(\) QUS \()=H(Q)+H(S)-H\left(Q \cap^{S}\right)\), \(H(Q\) US \()=\frac{420}{1000}+\frac{105}{1000}-\frac{45}{1000}=0.48\).

\section*{LAYLI:}

Sharrax sida 100 raadiyo itimaalka dhicitasnka ama waqdhaca \(W_{1}\) ama \(W_{2}\) marka:
(1) \(\mathrm{W}_{1}\) Iyo \(\mathrm{W}_{2}\) ay kala edeg yihiln.
(2) \(\mathrm{W}_{1}\) i yo \(\mathrm{W}_{2}\) aanay kala edeg ahayn.

Weydilmaha \(3-8\) waxa lagu silyey \(n(M), n\left(W_{1}\right)\),
\(n\left(W_{2}\right)\) iyo \(n\left(W_{1} \Pi_{W_{2}}\right)\). Sheeg
(b) in \(W_{1}\) lyo \(W_{2}\) ay kala edeg yihlin
(t) \(H\left(w_{1} U w_{2}\right)\)

TUSAALE:
\(n(M)=20, n\left(w_{1}\right)=10, n\left(w_{2}\right)=8, n\left(w_{1} \Pi_{2}\right)=3\).

\section*{FURFURIS:}
(b) \(W_{1}\) iyo \(W_{2}\) maaha kala edeg maxaa yeelay \(w_{1} \quad w_{2} \neq g\).
(t) Isticmaal \(H\left(W_{1} \cup W_{2}\right)=H\left(W_{1}\right)+H\left(W_{2}\right)-H\left(W_{1} \cap W_{2}\right)\) \(H\left(W_{1} U W_{2}\right)=10 / 20+8 / 20-3 / 20=15 / 20\) ama \(3 / 4\).
(3) \(n(M)=20, n\left(W_{1}\right)=12, n\left(W_{2}\right)=5, n\left(W_{1} \cap W_{2}\right)=0\)
(4) \(n(M)=20, n\left(W_{1}\right)=8, n\left(W_{2}\right)=8, n\left(W_{1} \cap W_{2}\right)=6\)
(5) \(n(M)=15, n\left(W_{1}\right)=8, n\left(W_{2}\right)=5, n\left(W_{1} \cap W_{2}\right)=0\)
(6) \(n(n)=15, n\left(W_{1}\right)=7, n\left(W_{2}\right)=3, n\left(W_{1} \cap W_{2}\right)=2\)
(7) \(n(M)=25, n\left(W_{1}\right)=10, n\left(W_{2}\right)=10, n\left(W_{1} \cap W_{2}\right)=5\)
(8) \(n(M)=100, n\left(W_{1}\right)=40, n\left(W_{2}\right)=20, n\left(W_{1} \cap W_{2}\right)=10\)

Ururka \(\{1,2,3,4,5,5,7,8,9,10\}\) ayaa laga saarey hal tiro
(Saaridda waa ay \(u\) siman yihitn). Hadd!i \(W_{A}\) ay tahay waqdhaca
"tirada la saarey waa ay ka yar tahsy 4 " P'na tahey weqdhaca
"tirada la saarey waa dhaban".
(9) \(W_{1}\) lyo \(W_{2}\) ma yihlin kala edeg?
(10) Imisa natilfo ayaa ku fiza
(b) \(W_{1}\) (c) \(W_{2}\) (j) \(W_{1} \cap W_{2}\) ?
(11) Waa maxay \(H\left(W_{1} \cup W_{2}\right)\) ?
12) Qor tusahan hoos ku yaal; kadsba buuxi meeloha maran:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Tirada ku tiraanayoasha ku ina} & \multirow[t]{2}{*}{\(H\left(W_{1}\right)\)} & \multirow[t]{2}{*}{\(\mathrm{H}\left(\mathrm{V}_{2}\right)\)} & \multirow[t]{2}{*}{\(H\left(W_{1} n^{W_{2}}\right)\)} & \multirow[t]{2}{*}{\(\mathrm{H}\left(\mathrm{W}_{1} \cup W_{2}\right)\)} \\
\hline \[
\begin{aligned}
& \text { Muunad } \\
& \text { dulalaat1 } \\
& \hline
\end{aligned}
\] & \(\mathrm{W}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{W}_{1} \quad \mathrm{~W}_{2}\) & & & & \\
\hline 15 & 5 & 7 & 2 & 5/15 & 7/15 & 2/15 & 2/3 \\
\hline 15 & 6 & 3 & 1 & & & & \\
\hline 15 & 11 & 7 & 3 & & & & \\
\hline 25 & 15 & 7 & 5 & & & & \\
\hline 25 & 18 & 10 & 5 & & & & \\
\hline 30 & 5 & 25 & 3 & & & & \\
\hline 30 & 17 & 6 & 0 & & & & \\
\hline
\end{tabular}
13. Ururka \(\{11,12,13, \ldots, 20\}\) ayaa laga saarey hal tiro. Haddii \(W_{1}\) ay tahay waqdhaca "tirada la saaray waa dhufsane 3 " \(W_{2}\)-na ay tahay wagchaca "tirada la saarey waa mid ka weyn \(16 \%\)
(i) \(W_{1}\) iyo \(W_{2}\) ma yihiin kala edeg ?
(ii) Imisa natiijo (outcome) ayaa ku jira \(W_{1}\),
\[
w_{2}, w_{1} \cap w_{2} ?
\]
(1ii) Waa maxay \(H\left(w_{1} \cup W_{2}\right)\).
14. Fasal 35 arday ah ayaa sidan \(u\) qaybsan:

20 arday af sawaaxiliga ayey taqaan laakiln af Soomaaliga ma taqaan. Tobanna af Soomaliga ayey taqaan laakiin af Sawaaxiliga ma taqnan; shanina labadaba waa ay taqaan. Haddil arday \(12 g a\) doorto fasalkaa, waa maxay itimaalka uu ku noqonatyo mid ama af Soomaaliga yaqaan ama af Sawaaxiliga yaqaan.

ITIMAAL ODOROSAN (SMPERICAL PROBABILITY)
QEEX: Itimas edorosan waa itimaal ku xiran jibeyto, tirokoob (Statistical data). Matalan macalin Cabdi ayaa fasal u dhigaayey Kimistriga 20 sanadood, fasalkaa waxa soo maray 2000 oo arday.
Labaatankaa sanadood wuxuu bixiyoy \(250 \mathrm{~A}, 550 \mathrm{~B}, 800 \mathrm{C}\), iyo 100 E . Waxa haddaba laga yaabaa in aan niraahno 1 timaalkn ue arday
fasalkaa ku firaa ku heli karo A waa \(250=1 / 8\), ams itimani-
ka uu arday fasalkaa ku jiraa ku helf \({ }^{20} \mathrm{gro}\) c waa \(\frac{800}{2000}=2 / 5\).
2000
Markaas on kale ayaa Itimaalka la oran karaa waa itimaal odorosan.
Helltaanka uu arday helayo A ama B ama C ama E waxa uu ku xiran yahay isiro fara badan 00 ay ka mid yihiin caafimaadkiisa, xisaab yaqaan-nimadiisa, dedaalkilsa lyo qaar kale oo badan.

Haddaba derejada uu arday helay waxa aymu-viar rasmi ah ka bixin karnaa ma:ka aynu 1 stradaa dhammantood warbixin sugan ka heymano.

Sidee aycad u qiyaasi kartaa in uu roob di'1 doono
blsha Majo kowdeeds 1977 ?

Haddil aad u qaadato in labada waqdhac "roob" iyo "roob la'aan " ay innoo siman yihiln maalin kasta, markaa H(roob ku da'ayo 1da Maajo) waa \(\frac{1}{2}\), Laakiin itimaalka uu roob ku di'i karo maalin ogaali (given day) waxa ay ku xiran tahay xilliga.

Haddil aad xafiiska war ururinta saadaasha hawada tagto 00 aad ogaato in kontonkii sanadood ee inna dhaafay uu 3 jeer roob da'ay 1da Maajo, markaa waxa aad oran kartaa \(H(r o o b ~ k u ~ d a ' a y o ~ 1 d a ~ M a a j o) ~=~ \frac{3}{50}\)

\section*{LAYLI:}

Ashuun ayaa waxa ku jira kubbado aanad tiradooda iyo midabadooda midna war ka hayn. 26 jeer ayaa waxa laga soo saarey kubbadaha midabkooda iyo tiradoodu ay ku muujisan yihiin tusahan: .
\begin{tabular}{|l|ccc|}
\hline Cagaar & \(H+H\) & 1 \\
\hline Caddaan & \(H\) & \(H+1\) & \(1 /\) \\
\hline Gaduud & \(H+\) & & \(11 /\) \\
\hline
\end{tabular}

Waa maxay itimaalka ay soo saaridda 27aad
ku noqon karto.
(1) Kubbad cagaaran
(2) Kubbad cad
(3) Kubbad aan gaduudneyn.

\section*{FILASHO XISAABEED (MATHEMATICAL EXPECTATION)}

Taranta H.L 00 H ay tahay itimaalka lagu heli kam hanti lacag ah \(L\) ayaa la yiraahaa filasho \(\times 1\) saabeed \(F\).
:. F \(=\) L.H

Bakhtiyaa-nasifb ayaa itimalka uu ku guuleysan karo ninka boqolkil bilyeyti mid haystaa uu yahay 0.01 . Waxa aynu \(u\) qaadaneynaa in dadka bilyeytiyada haystaa ay \(u\) siman yihiin guusha. Haddil ninka guuleystaa uu helayo 25 gini, filasho xisaabeedka ninka haysta hal bilyeyti waa \(F=(0.01)(25 \mathrm{G})=0.25 \mathrm{G}\).

\section*{TUSAALE 1:}

Bakhtiyaa-nasifb lagu helayo baabuur qiimahiisu yahay \(30,000 \mathrm{Sh}\). ayaa bilyeytiyada la iibshay ttradoodu tahay 1000. waa maxay filasho xisaabeedka ninka haysta 2 bilyeyti?

\section*{FURFURIS:}

Itimaalka uu ninka 2 biliyeyti haystaa wax ku heli karaa waa \(\frac{2}{1000}=0.002\) qiimaha baabuurkana waa \(30,000 \mathrm{Sh}\).
\[
\therefore F=(0.002)(30,000 \mathrm{Sh} .)=60 \mathrm{Sh} .
\]

\section*{TUSAALE 2:}

Itimaalka waqdhac uu ku dhici karaa waa 0.23 . Haddii waqdhacaasi dhaco, faarax wuxuu helayaa 500 Sh .
Waa maxay filasho xisaabeedkilsu?
```

FURFURIS: }\quad\textrm{F}=\textrm{HL}=(0.23)(500)=115 Sh

```

\section*{LAYLI \(1:\)}
1. Waa maxay filasho xisaabeedka ad ku heli kartid 35,75 gini haddii itimalka aad hantidaa ku heli kartaa yahoy \(1 / 25\) ?
2. Macallin ayaa ardaydiisii ku yiri, buug ayaan siinayaa ardayga \(100 \%\) hela imtixaanka soo socda. 21 imtixaan 00 sanadkan la qaaday ayuu Xasan 5 ka mid ah helay \(100 \%\). Haddil la tixraaco imtixaanadiisii hore, waa maxay filasho xisaabeedka haddil buugga qiimihilsu yahay 10 sh .?
3. Bakhtiyaa-nasilb ayaa lagu helayaa 50 gini , bilyeytiyada 1a gadayaana waa 70 . Waa maxay filasho xisaabeedka qofka haysta 2 bilyeyti? 3 Bilyeyti? 4 bilyeyti? 5 bilyeyti?
4. Baabuur qiimahilsu yahay \(25,000 \mathrm{Sh}\). ayaa la \(s 00\) dhigay bakhtiyaa-nasiib. Imisa bilyeyti 00 midkiiba yahay 1.00 Sh . ayaa la gadi doonaa haddil baabuurka laga rabo macaash ah 40\%?

\section*{ARAGTIINKA LABA TIBIXLE (THE BINOMIAL THEOREM)}
waa ay fududahay in isku dhufasho lagu sugo (determina tarahana
\((a+b)^{2}=a^{2}+2 a b+b^{2}\)
\((a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\)
\((a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}\).

Haddif aynu taranaha sare u filrsano waxa si toos ah inoogu muuqan kara hubaalahan:
(1) Fidinta \((a+b)^{n}, n \in\{1,2,3, \ldots\}\) waxa ay leedahay \((n+1)\) tibxood.
(2) b uma aha isir tibixda koowaad, a-na uma aha isir tibixda ugu danbeysa fidinta.
(3) Jibbaarka doorsoomaha tibixda koowaad iyo tibixda ugu danbeysaa waa \(n\).
(4) Marka tibxaha fidinta aad deristid, jibbaarada a mid ba kan ka horeeya ayuu 1 ka yar tahay, jibaaradda b-na midba \(k a n\) ka horeeya ayuu 1 ka weyn yahay.
5) Tibix kasta, haddii aad jibaarka a ku dhufato weheliyahs oo aad dabeedna tarantaas u qaybisid tirada tibixda, fadeeyada aad heshaa waa weheliyaha tibixda ku xigta.
(6) Tibix kasta, wadarta jibbaarada a yo b waa \(n\).
(4) Taranta \((a+b)^{4}\) waxa ku j1ra \(\left(\begin{array}{l}4 \\ 3 \\ 3\end{array}\right)=\frac{4.3 .2}{1.2}=4\) ama \(\left(\begin{array}{l}1 \\ \text {) }\end{array}=4 / 1=4\right.\) tibiood 00 ah \(a^{3} b\). Sidoo \(k^{3} 1^{3} e\), waxa aynu arki karaa in tirada tibxaha \(a^{2} b^{2}\) ay noqonayaan \(\binom{4}{2}=\frac{4.3}{1.2}=6 . \quad \operatorname{Kolkaa}(a+b)^{4}\) waxa 100 qori karaa sidan:
\((a+b)^{4}=a^{4}+\binom{4}{1} a^{3} b+\binom{4}{2} a^{2} b^{2}+\binom{4}{3} a b^{3}+b^{4}\) Isla sidaas ayeynu ku tusi karaa in
\((a+b)^{5}=a^{5}+\binom{5}{2} a^{4} b+\binom{5}{2} a^{3} b^{2}+\binom{5}{3} a^{2} b^{3}+\binom{5}{4}+b^{5}\) haddif \(\boldsymbol{\in}\) suurogal ah in aynu dheegno go'aanka ah,
 \(+(n-1) a b^{n-1}+b^{n}\) natijjariau ugu daniwegsa nyon \(1 a\) vi,oahon Aragtilnka laba tibixle.

TUSAALE 1 :
\[
\begin{aligned}
& \text { Ku isticmaal aragtiinka laba tibixle si aad } u \text { hesho } \\
&(x-2)^{6} \\
&(x-2)^{6}= x^{6}+6 / 1 x^{5}(-2)^{1}+\frac{6.5}{1 \cdot 2}\left(x^{4}\right)(-2)^{2}+\frac{6.5 \cdot 4}{1 \cdot 2 \cdot 3}\left(x^{3}\right)(-2)^{3}+ \\
& \frac{6 \cdot 5 \cdot 4 \cdot 3}{1.2 \cdot 3.4}\left(x^{2}\right)(-2)^{4}+\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}(x)^{1}(-2)^{5}+(-2)^{6} \\
&= x^{6}+6 x^{5}(-2)+15 x^{4}(4)+20 x^{3}(-8)+15 x^{2}(16)+6 x(-32)+64 \\
&= x^{6}+12 x^{5}+60 x^{4}-160 x^{3}+240 x^{2}-182 x+64 \\
& \text { Aan xasuusano in }\binom{6}{5}=\binom{6}{1} \text { iyo in }\binom{6}{4}=\binom{6}{2} \\
& \text { markaas lagama maarmaan maha in la wada qoro isirada } \\
& \text { ku jira "weheliyayaasha laba tibixle ee tibxaha 5aad } \\
& \text { iyo Gaad. }
\end{aligned}
\]

HUBSIIMO: Ka dhig \(x=1\)
\[
\begin{gathered}
(x-2)^{6}=x^{6}-12 x^{5}+60 x^{4}-160 x^{3}+240 x^{2}-192 x+64 \\
(1-2)^{6} 1^{6}-12(1)^{5} 60(1)^{4}-160(1)^{3}+240(1)^{2}-102(1)+64 \\
+1
\end{gathered} 1^{1-12+60-160+240-192+64} \begin{gathered}
1=1
\end{gathered}
\]

Marka aad isticmaleyso aragtilnka laba tibixle, waa
In aad ogataa in \(\binom{n}{r}=\binom{n}{n-r}\).
Taasi waxa ay gaabin doontaa qoritaanka "Weheliyayaasha laba tibixle " Sida
\[
\frac{6.5 \cdot 4 \cdot 3}{1.2 \cdot 3.4} \text { oo le'eg } \frac{6.5}{1.2}
\]

TUSAALE 2; Qor tibxaha 5aad iyo 6aad ee \((2 \mathrm{~W}+3)^{7}\)
FURFURIS: Aragtilinka laba tibixle ayaa inna tusaya in tibixda seddexaad ay tahay \(\binom{n}{3} a^{n-2} b^{2}\), tibixda tobmandna ay tahay \(\binom{n}{9} a^{n-9} b^{3}\), tibixda \(r\) and-na
(\({ }^{n}\)) \(a^{n-r} b^{r}\)
\(\therefore \quad \stackrel{r}{r}\) Tibixda 5 aad ee \((2 \mathrm{w}+3)^{7^{-}}\)waa
\[
\binom{7}{4}(2 w)^{3}(3)^{4}=\frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3} B w^{3}(81)=22,680
\]

S1doo kale tibixda 6 aad ee \((2 w+3)^{7}\) waa
\[
\begin{aligned}
\binom{7}{5}(2 w)^{2}(3)^{5} & =\frac{7.6}{1.2}\left(4 w^{2}\right) \\
& =20,412 w^{3}
\end{aligned}
\]

LAYLI_:
Raadi taran kasta adiga oo isticmaalaya aragtiinka laba tibixle.
1. \((x+y)^{4}\)
2. \((d+1)^{7}\)
3. \((1+2 x)^{6}\)
4. \((2 x-w)^{5}\)
5. \((2 x-w)^{5}\)
6. \((x-y)^{6}\)
7. \((m+2)^{5}\)
8. \((1-3 y)^{4}\)

Doon tibixda 3aad iyo ta 4aad ee taran kasta:
11. \((x+y)^{10}\)
14. \((1+d)^{15}\)
12. \((c-1)^{12}\)
15. \((1.03)^{6}\)
13. \((1.02)^{8}\).

\section*{Itimaal iyo Aragtiinka laba tibixle}

Haddif kuumi la tuuro 5 jeer, itimaalka lagu heli karo daabac saddexda jeer ee hore iyo dur labada jeer ee danbe waa \(\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}=1 / 32\). Itimaalka lagu heli karo saddex daabac iyo laba dur marka 5 jeer la tuuro waa:
\(\binom{5}{2}\left(\frac{3}{2}\right)^{3}\left(\frac{3}{2}\right)^{2}=10(1 / 32)=5 / 16\).
Wexa aynu aragnaa in ay taasi run tahay, maxaa yeelay saddexda daabac waxa laga yaabaa in lagu holo 3 oo kasta oo ka mid ah 5 ta jeer ee la tuuray:
Matalan tuurmooyinka koowaad, labaad iyo afraad; ama tuurmooyinka labaad, afraad iyo shanaad.

Waxa jira \(\binom{5}{2}=\binom{5}{3}\) racaymood oo tuurmooyin ah. Taasi waxa ay inoo sheegeysan in tibaaxaha aragtiinka laba tibixle ee \(\left(\frac{1}{2}+\frac{1}{2}\right)^{5}\) ay inna siinayaan itimaalada racaymaha daabac-dur ee kala gedisan.
\(\left(\frac{1}{2}+\frac{1}{2}\right)^{5}=\left(\frac{1}{2}\right)^{5}+\binom{5}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{1}+\binom{5}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}\)
Itimaal Sdaabac 4daabac, 1 dur 3 daabac, 2 dur
\(+\binom{5}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}+\binom{5}{1}\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{5}\)

\footnotetext{
2 daabac, 3 dur
1 daabac, 4 dur 5 dur.
}

Aragtiinka laba tibixle wuxuu ad \(u\) anfacaa sugidda itimaalka tijaabo la celceliyey (repeated trials).
TUSAALE: Laadhuu ayaa la turey 6 jeer, waa maxay itimaalka lage hell karo ugu yaraan 3 afaraad.

\section*{FURFURIS:}

Itimaalka 4 lagu heli karo tuurmo keliya waa \(1 / 6\), ta 4 aan lagu heleynina waa \(5 / 6\).
\((1 / 6+5 / 6)^{6}=(1 / 6)^{6}+\left(\begin{array}{c}6\end{array}\right)(1 / 6)^{5}(5 / 6)+\left(\frac{6}{2}\right)(1 / 6)^{4}(5 / 6)^{2}+\) \(\binom{6}{3}(1 / 6)^{3}(5 / 6)^{3}\)
\(+\ldots+\) tibxaha kale loogama baahna weydiintan

Matalan tibixda \(\left(\frac{6}{4}\right)(1 / 6)^{2}(5 / 6)^{4}\) waxa ay \(u\) taagan tahay itimalka lagu heli karo afar 2da tuurmo ee hore, laakif maha itimaalka lagu hell karo afar 4 ta tuurmo ee hale. Sidaas awgeed tibixdu kuma jirto tusaalahan.

\section*{LAYLI:}
1. Kuumi ayaa 1 a turey 3 jeer. Waa maxay itimaalka lagu heli karo 2 daabac 1 yo 1 dur? Lagu heli karo ugu yaraan 1 dur?
2. Kuuml ayaa la tuurey 7 jeer. Waa maxay itimaalka lagu heli karo 4 dabac 1 yo 3 dur? Lagu heli karo ugu yaraan 4 daabac?
3. Sanduuq ayaa waxa ku jira 3 kubbadood 00 cas, 3 ead, iyo 3 cagaaran. Haddi1 3 kubbadood laga saaro, waa maxay itimalka ay ku dhici kartaa in ay 3da midabba ka koobqandaan?

\section*{TIROKOOB}

Tirooyinka siyaabo badan ayeynu u isticmaalnaa si ay war tafatiran inooga sifyaan mawaadiic fara badan oo aad kala gedisan ayna matalan ka mid yihiln tirada dadka, wax soo saarka wershad, ciyaaraha ama isboortiga, cimilo-gooreedka, shilalka wadooyinka, iwm. Astirada warka ee jaadkan ah iyo habayntoodaba waxa saldhig \(u\) ah laanta xisaabta ah ee 100 yaqaan tirokoob.

Farsamada ururinta, isku dubaridida, saafidda iyo keenidda (presentation) jibayto ayaa 100 yaqaan tirokoobka sifeynta (descriptive statistics). Haddii tarjumidda jibayto ay soo marto heerar ama marxalado kalp duwan, oo ay ka mid tahay iska qaadashada hawraareed ilaa go'aamo iyo saadaalo cad 00 sugan la gaaro, waxaynu ku magacawnaa tirokoob-dhuuxideed (inferential statistics). Hase yeeshee halkan waxaynu kula jeex-jeexi doonaa sifeynta tirokoobka oo keliya.

Had iyo jeerba waxa aynu ka dhadhansanaa ama kuba jirta tirokoobka macno reebid. Cabbiraadda jibeytooyinka la soo ururinayaa waa reebidda tirooyin. Waxaba iska dhici karta in munadaha la qaataa aanay si filcan u matalin ama ugu taagnaanin jibeytada guud. Waxa had iyo jeerba kaaliya barashada tirokoobka laanta xisaabta ah ee 100 yaqaan itimaal sababtoo ah labada cutub si weyn ayey isugu xir-xiran yihiin 00 runtii aanay midina midda kale ka maarmi karin.

\section*{CABBIR DHEXAADYADA - TIROSINKA ARITMATIG}

Celcelisyada oo dhami waxa weeye cabbir dhexaadyo. Celcelis waxa weeye tiro u taagan ama metisha urur tirooyin ah. Celceliska caadiga ah waxa lagu helaa isugeynta tirooyinka ururka ku jlra 00100 qaybiyey tirada kutirsanayaasha ururka. Celceliska jaadkan ah ayaa wh tirosinka aritmatig_* Tusaale ahaan tirosinka aritmatig ee 89,73 , 1yo 92 waxi we....n \(89+73+92\) - \(842 / 3\). Sida runtu tahay waxaynu haw yaraan 1saga istic maalnaa marka aynu u jeedno tirosinka aritmatig magaen tirosin oo kellya.

Haddii X ay tahay doorsoome \(u\) taagan ku-tirsane kasta oo ku Jira urur Jibeyto, markaa tirosinka aritmatig \(\bar{X}\) (loona akhriyo \(X-j i i t i n)\) ee ticooyinka \(n\) waxa inna siiya jidka ah
\[
\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}
\]

Ogow in \(x_{1}, x_{2}, x_{3} \cdots x_{n}\) ay \(u\) taagan yihiin kutirsanayaasha ururka jibeytada. Waxa jirta summad, fududaysa, tustana wadarta urur tirooyin ah. Summaddan aynu ka hadlaynaa waxa weeye xaraf ka mid xarfaha waweyn ee afka Girilga. Xarafkaa isaga ah waxa loogu dhawaaqaa sigma, summad ahaanna waxa 100 qoraa (\(\Sigma\)). Summaddan iyada ah waxa lá yiraahdaa summad wadareed. Wadarta tibxo la caddeeyey waxa 100 s00 gaabin karaa sida soo socota.

\(1=1\)

Dhinaca bidix waxa 100 akhriyaa "wadaraynta \(x-1\) kú hoos dhaban 1yada \(00 i=111 a a n\) ". Summadda \(X_{i}\), waxay \(u\) taagan tahay ku-tirsanayaasha isxigga ee urur jibeyto marka i ay qaadato qilmayaal abyon oo isxigga 00 ka bilaabma 1 kuna dhammaada \(n\). Haddaba jidka tirosin aritmatig waxa uu dabeed noqonayaa:

TUSAALE: Raadi tirosinka aritmatig ee : \(17,18,19,20,21\).

\section*{EURFURIS:}

\[
\begin{aligned}
& N={ }_{n}^{5} \\
& \frac{1}{n} \sum_{1-1}^{5} x_{1}=1 / 5(17+18+19+20+21)=191 / 5
\end{aligned}
\]

Tirosinka aritmatig waxa looga fekeri karaa xurtionta milsaanka ee jibeyto hardis ku tirasnaynnahin ay yihtin culaysyo (weights).

\section*{LAYLI}
1. Raadi tirosinka \(87-2,68.5,74.8,94.0,82.2,96.1\)
2. Haddii nin beeraley ahi uu itbiyo jawaan galloy oh oo culayskoodu kala yahay 241 kg .305 Kg .289 kg .262 Kg . \(300 \mathrm{Kg}, 267 \mathrm{Kg}\). waa maxay tirosinka culaysada?
3. Xaas dhaqaalihiisu iska ladan yahay ayaa temeshle maalin Sabti ah ku tegey tuulo magaala-madaxda u jirta 329 Km , Axadiina tegey tuulo u jirta 401 Km , Isniintilna tegey tuulo u jirta 105 Km , Talaadadiina tegey 306 Km , Khamilstilna tegey tuulo u jirta 211 km , \$imeihiina tegey tuulo u jirta 511 Km . Haddaba raadi tirosinka fogaanshaha uu xaaskaasi socday?
4. Axmed shan imtixaan oo isxiga calaamaadkiisii waxa ay kala noqdeen sida soo socota, 84, 72, 91, 64, 83, Raadi tirosinka?
5. Tirosinka joog ee 5 will waa 67 inches. Haddil joogga hal will uu yahay 5 fdh , joogga mid kalena uu yahay 6 fdh bal keen ama sheeg joogagga suurtagalka ah ee 3da will ee haray?

\section*{DHEXFUR}

Mar marka qaarkood dhexfurka ayaa ah cabbir si aad ah uga fiican tirosinka aritmatig marka aad haysato koox jibeyto ah. Dhexfurka oo summad ahaan 100 qoro \(M_{r}\) waxa weeye qiimobadhtameedka urur jibeyto.

Inta aanad dhexfurka soo saarin waa in aad jibeytada ceerin teed ahaan u-qortaa. Tirooyinka aan sigaarjah \(u\) hor-. saneyn--ayaaoloo-yaqaanojibeytada. ceerín....Haddaba si aynu teed ahaan ugu qoro tirooyinkaas waa in aynu u ratibnaa susuntooda si horsan iyaga oo u kala horsan sida ay \(u\) kala baaxd weyn yihiin. Cigaalku waxa weeye faraqa \(u\) dhexeeya tirada ugu weyn iyo ta ugu yar ee tirooyin teedsan.

TUSAALE 1: Samee tirooyinka teedsan ee ah calaamadaha imtixaan ee arday. Waa maxay cigaalku?
\((82,79,21,57,71,87,64,95,73,75,62)\). FURFURIS:

Teedku waa: \(57,62,64,71,73,75,79,82,87,91\), 95 , elgaalkuna waa \(95-57=38\).
Dhexfurka tiro kisi ah ee tirooyin waxa weeye tirada badhtamaha ee teedkooda. Dhexfurka tiro dhmban ah ee tirooyin waxa weeye tirosinka aritmatig ee labada tiro oe teerlkooda badhtamaha dhaca.

TUSAALE 2:
Waa maxay dhexfurka tirooyinkan \(17,31,15,28,35\), \(30,29,19,19 ?\) Waa maxay cigaalku?

\section*{FURFURIS:}

Kolka hore samee teedka: \(15,17,19,19,28,29,30,31,35\). Waxa aynu haysanaa 9 tiro, kolkaa tirada badhtamaha ama tirada shanad marka dhinac kasta laga soo tiriyo waxa weeye 28. Haddaba dhexfurku waa 28. Cigaalkuna waxa weeye \(35-15=20\).

TUSAALE 3:
Waa maxay dhexfurka tirooyinkan .014, .019, .010,
.023 , .045, .009? Waa maxay cigaalku?

\section*{PURFURIS:}

Teedku waxa weeye: . 009, .010, .014, .019, .023, .045. Mar haddii tirooyinku yihiin lix oo ah tiro dhaban markaa dhexfurku waa tirosinka labada tiro ee badhtamaha dhacaya.
Haddaba \(\mathrm{M}_{\mathrm{d}}=\frac{.014+.019}{2}=.0165\)
Cigaalkuna waa \(.045-.009=.036\)

\section*{LAYLI}
1. - Raadi dhexfurka \(64 \mathrm{sh}, 82 \mathrm{sh}, 51 \mathrm{sh}, 90 \mathrm{sh}, 67 \mathrm{sh}, 71 \mathrm{sh}\), \(58 \mathrm{sh}, 94 \mathrm{sh}, 63 \mathrm{sh}\) ? Waa maxay Cigaalku?
2. - Waa maxay dhexfurka \(5^{\prime} 7^{\prime \prime}, 4^{\prime} 8^{\prime \prime}, 6^{\prime} 1^{\prime \prime}, 5^{\prime} 5^{\prime \prime}\), \(8^{\prime} 0^{\prime \prime}, 9^{\prime} 1^{\prime \prime}, 6^{\prime} 7^{\prime \prime}, 5^{\prime} 4^{\prime \prime} ?\) Waa maxay cigaalku?
3.- Raadi faraqa \(u\) dhexeeya tirosinka aritmatig iyo dhexfurka tirooyinkan soo socda. 144, 175, 192, 138, 166. 159, 171, 180, 162?
Haddii tirada 127 lagu daro jibeytada, sidee bay raad ugu yeelanaysa tirosinka iyo dhexfurka?
4. - Maxaa ku dhacaya dhexfurka haddii cidhifyada teedka la beddelo? Muxuuse isbeddelkani u keenayaa tirosinka? Marna ma is dul dhici karaan tirosinka iyo dhexfurku?
5. - Bal hadda dhugo tijaabadan soo socota. Ul bir ah 00 dhexerkeedu yahay hal mitir ayaa meel laga soo lulay iyada oo badhtamaha xarig lagaga xiray si ay u dheelitiranto. U qaado in culaysyo hal-garaam ah laga lulay gogaanshooyinka soo socda dacal ka mid ah dacalada
usha: \(5 \mathrm{sm}, 20 \mathrm{sm}, 37 \mathrm{sm}, 44 \mathrm{sm}, 52 \mathrm{sm}, 68 \mathrm{sm}, 71 \mathrm{sm}\), iyo 85 sm , waxa la arkay inaanay ushu ka dheelitirmayn calaamada ah 50 sm. Haddaba xagee baa laga lulaa hal-garaam oo kale si ay ushu \(u\) dheelitiranto? (sarid: mar haddii culaysyadu ay is le'eg yihlin 50 waa in uu noqdaa tirosinka sagaalka fogaanshooyin) Waa maxay dhexfurka fogaanshooyinka?

\section*{BADIDHACE}

Badidhacaha urur tirooyin waxa weeye tirada inta ugu badan laga helo ururka tirooyinka marka 100 eego tirooyinka kale ee ururka ku jira. Waxa si hawl yar 100 helaa marka tirooyinka 100 qoro teed ahaan. Badidhacaha tirooyinkan 1-29, .. \(2 . .5\) \(1.37,1.29,1.25,1.37\), 1yo 1.29 waxa weeye 1.29 . Tiradan iyada ah saddex jeer ayaa laga helayaa ururka; haddil se aad filrisid tirooyinka kale waxa aad arkaysaa in tirona aanay dhacayn ururkaas isaga ah wax laba jeer ka badan. Waxa mar marka qaarkood dhacda inaan la soo saari karin badidhacaha, gaar ahaan marka ururka tirooyinku uu yar yahay. Waxa kale \(\infty\) dhici karta in hal badidhace in ka badan, marar laga helo ururka tirooyinka ah. Jibeytada leh laba-badidhace waxa la yiraahdaa laba badidhacaale (bimodal). Badidhacuhu waxa uu muhiim yahay marka jibeytadeenu ku saabsan tahay banxadaha kabaha iyo dharka. Waa maxay sababtu?

\section*{LAYLI:}
1. Raadi badidbacaha \(36.1,42.4,63.5,51.7,60.8\), \(63.5,42.4,56.0,63.5,55.1\)
2. Raadi badidhacaha \(.412, .408, .410, .408, .401\), \(.401, .401, .420, .408\).
3. Haddii imtixaan aritmatig ah oo aad \(u\) fudud la silyo tiro aad \(u\) badan 00 arday ah, badidhacaha calaamaduhu ma laga yaabaa inuu ka weynaado ama ka yaraado tirosinka? Haddiise imtixaanku uu aad \(u\) adag yahay, badidhacaha-calaamaduhu ma laga yaabaa inuu ka weynaado ama ka yaraado tirosinka?

FIRIDHSANAANTA CABBIRYADA
TIROSINKA WEECSANAAN
Tirosinka aritmatig iyo dhexfurku waxa weeye cabbir dhexaadyo; haddaba waxa la oran karaa waa cabbirro wax ka sheegaya sifooyinka gaarka ah ee urur jibeyto. Hase-yeeshee marnaba waxba kama sheegaan firidhsanaanta jibeytada. Tusaale ahaan tirosinka 35,40 , lyo 45 waa 40 . Sidoo kale tirosinka 10, 40, iyo 70 isna waa 40 . Waxa halkan ka caddaan ah in firidhsanaanta tusaalaha danbe ay ka weyn tahay firidhsanaanta tusaalaha bore. Hase yeeshee tirosinku innooma sheegayo Aida urur jibeyto uu u firidhsan yahay.

Haddaba cabbirka firidhsanaantu waxa weeye tirosinka weecsanaanta urur \(j 1\) beyto 00 kasta 00 la qaato, wadarta ka weecsanaanada tirosinka waxa ay le'eg tahay eber. Summad ahaanna waxa lagu soo qaabin karaa jidka ah

Weecsanaanada tirosinku way togan yihiln, qaarna way taban yihiin. Kolka waxa si hawl yar kuugu muuqan karta in wadarta aljebra ee tirooyinka togan iyo kuwa tabani ay tahay eber.

Hase yeeshee haddii calaamadaha la iska dhaafo, taas oo macneheedu yahay in qiimaha sugan ee tirooyinka la qaato, waxa suurtagal ah in la helo celceliska weecsanaanada. Tirosinka aritmatig ee qiimayaasha sugan ee ka weecsanayaasha tirosinka urur jlbeyto ayaa 100 yaqaan tirosinka weecsanaanta. Tusaaleheenii ahaa 35,40 , iyo 45 ka weecsanayaasha tirosinku waa \(-5,0,+5\) sida ay \(u\) kala horreeyaan. Tirosinka aritmatio ee qilmayaasha sugan ee weecsanayaashani waxa weeye \(\frac{5+0+5}{3}\)
\(=\frac{10}{3}=3\) 4. Haddaba tirosinka weecsanaantu waxa weeye 3.3 ugu dhawaan ama marka la seebo. Tusaalaha dambe ka weecsanayaasha tirosinku waa \(-30,0,+30\) sida ay \(u\) kala horreeyaan.

\section*{- 304 -}

Kolka tirosinka weecsane waa \(\frac{30+0+30}{3}=\frac{60}{3}=20\)
Hadda si gaaban oo fudud ayaa 100 qori karaa jidka tirosinka weecsanaan, waxana weeye jldka leh sansaankan soo socda:
\[
\text { T.W }=\frac{1}{n} \sum_{1=1}^{n}\left|x_{1}-\bar{x}\right|
\]
(III)

\section*{LAYLI}
1. Waa maxay tirosinka weecsanaan ee: \(87.2,68.5,74.8,94.0\), 82.2, 96.1 ?
2. Raadi tirosinka weecsanaan ee : 84, 72, 91, 64, 83.
3. Raadi tirosinka weecsanaan ee: \(53,43,56,34,33,50,46,35\), \(38,57,44,63,37,31,47,28,34,46,60,41,40,39,40,34,42\), \(68,36,40,37,38\).
4. Raadi tirosinka weecsanaan ee: \(48,46,44,50,47,45,49,48,52\), \(46,43,48,45,48,47,45,50,46,45,48\).
5. Waa maxay tirosinka weecsanaan ee: \(56,48,59,53,46,50\), \(51,56,45,49,58,50,61,48,42,55,50,62,56,45\).

Mark11 aynu bllaabaynay cutubkan tirokoobka ah waxa aynu tilmaanay in aynu \(u\) bahan nahay tiro \(u\) taagnaan karta ama matili karta koox jibeyto ah. Ka bacdina waxa aynu qeexnay dhawr cabbir dhexaad oo kil la rabo 100 qaadan karo in uu \(u\) taagnaado kooxda tirooyinka ah. Haddana waxa aynu ka hadalay cabbir sheegaffiridh sanaanta tirooyin urur ku jira. Bal imminkana aan qeexno cabbir isna ku saabsan firidhsanaanta jibeyto, kaas oo Intabadanba ku xiran tirosinka aritmatig si tilmaan filican looga helo urur jibeyto. Cabbirka Jaadkan ah ayaa 100 yaqaan weecsanaanta beeggal. Sidil weocsanaanta tirosinka, weecsanaanta beeggal waa cabbirka celceliska xadiyada ay kutirsanayaasha ururka jibeytadu ka weecsan yihiin tirosinka aritmatig.

Weecsanaanta beeggal ee urur tirooyin ahi waa tirosinka weecsanaan 1 aba 11 bbaarada weecsanayaasha. Weecsanaan keli ahaaneed waa jadeeyada \(u\) dhexeeya tirosinka aritmatig lyo tiro keli ahaaneed \(o 0 \mathrm{ka}\) mid ah jibeytada. Summad ahaanna waa \(x\); \(-\bar{x}\). Sidil aynu horeba u aragnay, faraqyadaa qearkood waa ay taban yihiln, marba haddil la labajibbaarayo, jadeeyooyinku waa ay tognaanayaan. Haddif
\(\bar{x}\) ay \(u\) taagan tahay tirosinka, isla markaas \(x_{1}(i=1.2 \ldots n)\) ay iyana u taagan tahay tirooyinka keli ahaaneed ee ay fibeytadu ka kooban tahay, markaa weecsanaanta beeggal (sigma) ee jibeytadu waa:

TUSAALEheenii ahaa \(35,40,45\), waxa uu lahaa weecsanaanada kala ah \(-5,0,+5\), Kolka laba jlbbaarada weecsanaandan waa \(25,0,25\), sida ay u kala horreeyaan. Haddaba weecsanaanta beeggalku \(\sqrt{\frac{25+0+25}{3}}\)
\(=\)

\(=4.1\) ugu dhawaan
Weecsanaanta beeggal ee \(10,40,70\) waa
\[
6=\sqrt{\frac{(-30)^{2}+0^{2}+(+30)^{2}}{3}}
\]
\(=24.5\) ugu dhawaan.
Weecsanaanta beeggal ayaa कh ka ugu muhiimsan cabblrka firidhsanaanta.

\section*{TUSAALE 1 :}

Xisaabi tirosinka aritmatig 1 yo weecsanaanta beeggal ee tirooyinkan:soo socda: \(54,57,59,59,60,60,61,61,62,62\), \(62,63,63,63,64,65,65,66,66,67,68,68,68,68,69,69,69,70\), \(71,71,72,72,73,75,76,77,79,81,83,90\).
FURFURIS: \(\quad \bar{x}=1 / 41(54+57+\ldots+90)=68\). Dabeedna weecsanaanadu waa: \(54-68,57-68,59-68, \cdots+90-68\), ama \(-14,-11,-9, \ldots+22\). Laba jibbaarada weecsanaanaduna waa \(196,121,81, \ldots \ldots, 484\). Kolka tirosinka laba jibbaaradu waa 54.39. Haddaba weecsanaanta beeggal waa \(6 \sqrt{54.39}=7.3\)

\section*{\(\underline{\text { LAYLI }}\)}
1. Xisaabi weecsanaanta beeggal ee .6, .6, .7,.8, 1.0, 1.2, 1.4,
2. Xidigiye ayaa sameeyey 10 cabbir oo ku saabsan fogaansho xagleedka \(u\) dhexeeya laba xidigood. Cabbiraadii uu sameeyey xidigiyuhu watan hoos ku qoran iyada oo halbeegga cabbirku uu yahay digril.
Xisaabi weecsanaanta beeggal ee : \(11.21^{\circ}, 11.17^{\circ}, 10.93^{\circ}\), \(11.06^{\circ}, 11.20^{\circ}, 10.97^{\circ}, 11.10^{\circ}, 11.05^{\circ}, 11.23^{\circ}, 11.01^{\circ}\).
3. Xisaabi weecsanaanta beeggaliyo weecsanaanta tirosin ee tirooyinkan: \(46,83,74,49,58,65,72,41,75,63,66,57\), \(68,53,61\). Labada cabbir ee firidhsanaanta keebaa weyn?
4. Xisaabi weecsanaanta beeggal ee \(40,54,32,30,45,35\), \(72,48,65,23,36,10,58,43,16,50,40,45,38,60\).
5. Xisaabi weecsanaanta beeggal iyo weecsanaanta tirosin ee \(58,59,55,61,60,57,60,62,56,54,57,55,54,56,56\), \(60,57,62,58,60,56,59,63,61,54,56,58,57,55,60\), \(57,61,63,58,57,61,55,60,55,57\).

\section*{PILIQSANAANTA RAKAADKA}

Marka tirada ku-tirsanayaasha urur ee jibeyto ay bataan (qlyaas ahaanna noqdaan 50 iyo in ka badan) waxa 100 baahan yahay in 11 beytada 100 kooxeeyo habdhiska 100 yaqaan filiqsanaanta rakaadka . Kooxaynta waxa aynu uga jeednaa samaynta aynu samaynayno dhawr goosan si ku-tirsanayaasha goosanka 100gu taxi karo sarab ahaan la isuguna kooxayn karo. Bal aan tusaale ku muujino sida kooxaynta jibeyto loogu muljo filiqsanaanta rakaadka.

\section*{TUSAALE 1:}

Bal ka soo qaad in ay 20000 will dugsi ku jlraan; waxana 100 dhabogalay culaysyada kala duwan ee willashaas. Jibeytada markiiba waxa laga helayaa xaashiyaha difwaan gelinta caafimaadka dugsiga. Haddaba sideebbaa 100 diyaarin karayaa filiqsanaanta rakaadka?

FURFURIS:
Ugu horaynba jibeytada ceerin waa in laga sooguuriyaa xaashiyaha dilwaan gelinta caafimaadka dugsiga, laguna qoraa xaashiyaha jibeytada. Ka dibna waa in teed ahaan 100 taxaa jibeytada ceerin, dabeedna la soo saaraa cigaalka. Bal ka \(s 00\) qaad in culayska ugu yari uu yahay 99 Kg . ka ugu weynina uu yahay 203 Kg . Marka cigaalku waxa weeye \(203-99=104 \mathrm{Kg}\).

Hadda waa in jibeytada 100 kooxeeyo goosanno. Runtii waxa aynu imminka samayn karaa kow lyo toban goosan oo mid waliba uu ku fidsan yahay 11 aa 10 kg . Bal ka soo qaad in goosanka ugu hooseeya uu ka bilaabmo 95 Kg . 11 aa 105 Kg . Goosanka xigaana waxa uu ka bllaabmayaa 105 kg ilaa 115 Kg . Sidaas ayaa hanaanku u soconayaa ilaa tobanka goosanba la suubiyo. Tirooyinka ah \(95,105,115, \ldots \ldots\).... waxa 100 yaqaan xadadka goosanada.
Haddii culays uu dhaco mid ka mid ah xadadka goosannada sida 115 kg , markaa waa in aynu isku raacnaa in aynu culeyskaa u sarabayno goosanka sare ee ah 115-125 00 aan 100 sarabaynin goosanka hoose ee ah 105-115. Si hawl yaraan ah waxa aynu u soo saari karaa badhtamaha goosannada, waxana 100 yaqaan calaamadaha goosannada 00100 taago xarafka \(x\). Calaamadaha goosannadu waxa weeye susuntan ah \(100,110,120, \ldots, 200\).
Sansaanka filiqsanaanta rakaadku waa sida soo socota:

\section*{- 300 -}

Gaallska goosan waxa weeye hadbalinta goosankaa isaga ahl uu ku fidsan yahay. Narka aynu ka fekero cusaabeheenil hore, gaaliska goosanku waka ut ahaa 10. Side badanba waxa habboon in la quato gaalisyo goosaneedyo 1sweda le'eg marka la haysto filiqsanaan gaer ah.

Calaamadda goosanku wexa weeye celcelisika xadka hoose tyo ka sare ee goosanneda. Trrada goosennada filikgenaani waxa ay nogon kartaa inta \(u\) dhexeysa 5 liaa 20 Iyado co tiradanu ay ku xiran tahay çodobo badan sida cigaalka, tirada ku-tirsanayaasha jlbeytada ku fira, danta laga leeyahay kooxaynta, 1wn. F11!qsanayaasha rakcadko quarkood waxay yeelan karaan 5 goosan ana wax ka yar, ama 20 goosan tyo wax ka badan. Hase yeeshee wax 20 ka brdan sidcestaba yawa jecla. Sunmadda rakaadka eo \(F(x)\) waxa wecye wadarta sarabka ee goosan.

Waa in madaxa lagu heyaa in ku-tirsandivi kasta ee ku … jira jibeytade uu luminayo midacininadifsif marka ia suabinayo filiqsenaanta rakoad. Tan macnehnodu stsxa weeye marka kutirsanayaasha goosan 2 a snreaeoyo kutzrsone kasta oo ka mid ah ku-tirsanayaasha goosenka waxa \(1 a 1 a\) ksoxseyoy ku-tirsanayaasha kelencarkurs1rasgoorenke. Waxa aynu itela qaedenay in
 ama ugu flilqsan tahay goosankza isaga ah laftlisa. Iska qaadashadan Jadeeyadeedu waká weeye calaanoddil kasta ee goosan in ay tahay tirasinka jibeyteda goosenkaa isku j1rta.

\section*{TUSAALE 2:}

U samee filiqsenamta rakatka imeixann xiseab ah oo
laga qaaday arday ku J1rta fasalka shanaad kana kooban 20 su'aalood; calaamadklina sidan aycy u kala beleen: \(13,19,17,15,20,9,16,15\), \(17,14,10,16,19,20,13,17,25,13,12,16,14,18,16,7,17,19,25\).

FURFURIS: Hor 1 yo abaatabo samec teeditan oo oh \(7,5,10,12,13\), \(13,14,15,15,15,15,16,16,16,16,17,17,17,17,18,18,19,19,29,20\), 20.

Cigaalku waa 20-7si3. Eal haddo aan lsku dayno in aynu samayno 7 goosan-co \(-1 d\) wollba ay leedehay gaalis ah 2 .

S1 aynu u soo gelino tirada ugu yar ee jibeytada waa in xadka goosankee! goosankeena ugu hoosaysa ka bilowdaa 6.5 .
\begin{tabular}{|c|c|c|c|}
\hline \(\underline{\text { Xadadka goosanada }}\) & \(\underline{\text { Calaamadaha goosannada }}\) & Sarab & Rakaad \\
\hline \(6.5-8.5\) & 7.5 & & \\
\hline \(8.5-10.5\) & 9.5 & / & 1 \\
\hline 10.5-12.5 & 11.5 & // & 2 \\
\hline 12.5-14.5 & 13.5 & / & 1 \\
\hline \(14.5-16.5\) & 15.5 & /1/1 & 4 \\
\hline \(16.5-18.5\) & & HH1 1/1 & 8 \\
\hline \(18.5-20.5\) & 17.5 & HH 1 & 6 \\
\hline & 19.5 & HH & 5 \\
\hline
\end{tabular}

Wadar' 27

\section*{LAYLI}
1. Samee filiqsanaanta rakaadka ee tirooyinkan soo socda: \(64,71,57,67,74,65,59,62,67,75,72,84,60,68,72,91,55,69,71,\). \(93,69,71,69,75,59,60,70,76,62,66,77,62,68,81,68,63,79,88,57,78\).
2. Samee filiqsanaanta rakaadka ee tirooyinkan soo socda: \(445,460,460,475,475,500,500,500,520,525,530,550\).
3. Samee filiqsanaanta rakaadka ee cufka labaatan càbirood oo lagu cabbiray Kg . \(56,48,59,53,46,50,51,56,45,49,58,50,61,48,42,55\), 50,62,56,45.
4. Samee filiqsanaanta rakaadka ee calaamaadka 80 tartame oo imtixaan \(u\) wada fadhilstay:
\(60,56,59,58,79,91,46,50,54,51,76,52,76,70,46,64,78,58,53,50\), \(38,83,55,53,41,59,48,61,94,74,48,82,32,65,52,37,67,80,38,61,64\). \(77,57,88,57,85,29,66,72,59,42,34,44,54,88,97,43,69,56,75,56,60\), \(62,69,40,69,92,67,79,72,55,26,52,83,83,75,67,45,87,51\).
5. Samee filiqsanaanta rakaadka ee:
\(12.5,6.7,8,15,10.5,9.5,16,6.75,7.5,7.5,16,16\) \(12.5,6.7,10.5\).

\section*{KU MUUJINTA JIBEYTO GARAAFYO}

Mar haddil la sameeyo ama la suubiyo filiqsanaanta rakaadka wabay iska hawl yar tahay sida jibeyto loogu muujiyo garaaf. Calaamadaha dabaqadaha \(x\) waxa lagu cabbiraa dhidibka jiffa, rakaadkana \(F(x)\) waxa lagu cabbiraa dhidibka taagan. ' Dabeedna baar garaaf taagan 00 loo yaqaan bistoogaraam ayaa la suubin karaa. Hoos waxa ku muujisan histoogaraamka filiqsanaanta rakaadka ee tusaalaha labaad ee ku saabsan 27 arday oo fasalka shanaad dhigta, imtixaan xisaab ahna wada galay.

\section*{- 311 -}

Nooc kale oo ka mid ah garaafyada lagu muujo jibeytada tirokoobka waxa 100 yaqaan rakaad geesoole (frequency polygon). Mar marna waxaaba lagu magacaabaa garaaf xariliqeedka jajaban. Salka geesooluhu waxa weeye dhidibka jiffa. Hoos waxa ku muujisan rakaadka geesoole ee tusaalihil labaad ee histoogaraamkilsa aynu hadda dhow suubinay:

Garaafyada lagu muujo j1beytada tirokoobka runti1 waa ay badan yihiin. Hase yeeshee qaybtii hore ce tirokoobka, kuna jirtay buugga kowaad ayaaba si tafatiran uga hadashay noocyada kala duwan ee ah garaafyada lagu isticmaalo tirokoobka.

\section*{LAYLI:}
1.- Samee bistoogaraamka filiqsanaanta rakaadka tirooyinka soo socda: \(28,31,35,35,37,39,40,43,44,46,47,50,51,52\).
2.- Samee rakaadka geesoole ee: \(134,137,138,141,143,146,147\), 148,150,153,157.
3.- Samee histoogaraamka filiqsanaanta rakaadka tirooyinkan: \(29,40,44,45,49,51,52,56,56,59,63,65,67,71\).
4.- Samee rakaadka geesoole ee: \(12.9,13.0,13.3,13.6,13.7\), 13.9, 14.2 .
5.- Samee histoogaraamka iyo rakaadka geesoole ee filiqsanaanta: \(16,21,14,19,13,27,18,31,19,15,24,11,18\).
6.- Samee histoogaraamka iyo rakaadka geesoole oe filiqsanaanta: \(6,9,8,5,10,6,5,9,7,6,7,10,7,11,9,5,8,8\).
\(\square\) laakin, waxa 100 semaynayaa filtimo ligan halkii looga samayn jiray sakallo.
Markaa, \(\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=\left(\left.\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array} \right\rvert\,\right.\)
\[
=a_{11} a_{22}-a_{12} a_{21}
\]

TUSAALE
\[
A\left(\begin{array}{rr}
3 & 1 \\
-2 & 3
\end{array}\right)
\]

Marka \(\left(\left[\begin{array}{rr}3 & 1 \\ -2 & 3\end{array}\right)=\left\lvert\, \begin{array}{rr}3 & 1 \\ -2 & 3\end{array}\right.\right)=3.3-(-2) .1=9+2=11\)
\[
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad \text { waxa 1a }
\]
\[
-315-
\]

Haddana waxa aad isticmali kartaa derifqadi1 xaglogooyaha 00 kale, Iyada oo uu kaa caawinayo habkan kale ee hoos ku yaal:

Sida ad ku aragtana waxa-la dhigay midigta sugaha. Markaa waxa la qaadanayaa taramaha laga helay xaglogooyayaasha u jeeda xagga midigta; lana beddeli mayo calaamadaha (signs).

Taramaha laga helay xaglogooyayaasha u jeeda xagga bidixdana waxa lagu dhuftaa \((-1)\)

TUSAALE: Raadi sugaha
\[
\left|\begin{array}{rrr}
1 & 2 & 3 \\
2 & -1 & 4 \\
-2 & 1 & 2
\end{array}\right|
\]

FURFURID:

Waxa cad in taxanaha leh ama wata ku-tirsanayaal maangal ah, sugihilsuna yahay tiro maangal. Waxaynu ku tibaaxi doonaa tiradan maangal in ay tahay qiimaha sugaha.
Sida 100 soo saaro tirada waxa la yidhaa "FIDINTA SUGAHA"
Gaar ahaan, qiimaha sugaha taxanaha \(\left(a_{11}\right)\) waa \(a_{11}\).

TUSAALE: Taxanahan (3) sugihiisu waa \(\mid 3 \hat{l}=3\).
Darifqada xaglogooyaha ee fidinta sugaha waxa la yidhaa dariiqada saarus (Sarrus); waxana loogu magac daray xisaabyankif soo saaray ama sahamiyay dariiqada iyada ah.

\section*{DARIIQADA SAARUS (Sarrus' Method)}
(1) Guur1 taxanaha lagu silyay markaa joog-u-taxa u dambeeya midigtiisa ku celi oo marlabaad dhig ku-tirsanayaasha ku jira labada joog-u-tax ee \(u\) horreeya taxanaha, una dhig sidoodil hore, iyada oo aanay wax isbeddel ahi ku dhicin.
(2) Ku-tirsanihii kasta ee ku-jira dhinac u-taxa u horreeya waxaad ku-dhufataa ku-tirihil kasta. ee ku jira xaglogooyaha ka 300 fiday ku-tirsanahii kasta ee dhinac u-taxa u horreeya. Xagla gooyayaashu waa in ay ka yimaadaan bidix una socdan xagga midigta; markaa taramaha la helay waxay ina silinayaan saddexda tibixoole hore ee sugaha. Tibixahaasuna idilkood way togan yihiln.
(3) Sidaas oo kale.ku-tirsanihil kasta ee ku jira dhinac u-taxa \(u\) horreeya waxaad ku-dhufataa ku jirihii kasta ee ku jira xaglogooyaha ka soo fiday ku-tirsanihii kasta ee dhinac-u-taxa \(u\) horreeya. Xaglagooyayaashu waa in ay ka yimaadaan xagga midigta una socdaan xagga bidixda. Saddexda tibixood eetabani waxay ina siiyaan saddexda tibixood ee dambe ee sugaha.

\section*{LAYLI}

Raadi sugayaashataxanayaashan soo socda:
1. \(\left(\frac{1}{3}\right.\)
)
2. \(\overbrace{-2}^{-3}\)
\({ }^{6}\))
3. \(\left(\begin{array}{r}-1 \\ 4\end{array}\right.\)
4. \(\left(\begin{array}{rr}6 & -2 \\ -1 & 1\end{array}\right)\)
5. \(\left(\begin{array}{l}0 \\ 6\end{array}\right.\)
\(\left.\begin{array}{c}1 \\ -2\end{array}\right)\)
6. \(\left(\begin{array}{l}4 \\ 3\end{array}\right.\)
\(\left.\begin{array}{c}2 \\ -8\end{array}\right)\)
7. \(\left(\begin{array}{ll}6 & 0 \\ 0 & 1\end{array}\right)\)
\(\left.\begin{array}{l}0 \\ 1\end{array}\right) 8 \cdot\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\)
9. \(\left(\begin{array}{l}3 \\ 2\end{array}\right.\)
\(\left.\begin{array}{r}-5 \\ 2\end{array}\right)\)
10. \(\left(\begin{array}{rrr}1 & 2 & 3 \\ -2 & 1 & 4 \\ 3 & 0 & -2\end{array}\right)\) 11. \(\left(\begin{array}{rrr}1 & 2 & 3 \\ -2 & 4 & 1 \\ 0 & -8 & 5\end{array}\right)\) 12. \(\left(\begin{array}{rrr}5 & 0 & -6 \\ 0 & 8 & -2 \\ 5 & 1 & 0\end{array}\right)\)
13. \(\left(\begin{array}{lll}1 & 3 & 2 \\ 5 & 6 & 7 \\ 2 & 3\end{array}\right) \quad\) 14. \(\left(\begin{array}{rrr}8 & -2 & 4 \\ 3 & -1 & 4 \\ 6 & -3 & 5\end{array}\right)\) 15. \(\left(\begin{array}{rrr}3 & 6 & 5 \\ 2 & 1 & 3 \\ 4 & -5 & 6\end{array}\right)\)

QEEXID: Yaraha \(M_{15}\) ee ku-tirsanaha \(a_{15}\) waa sugaha ku soo hadha marka laga reebo dhinac u taxa i aad iyo joog u taxa j aad ee sugaha lagu sifyay.
\(M=\) waxay inooga taagan tahay yaraha.
Taasu waxay tahay, si 100 helo yaraha kutirsane kasta ee sugaha, waxaynu iska dhaafaynaa ama ka tegaynaa dhinac utax iyo joog u tax wadaag kutirsanahaa.

TUSAALE Haddil aynu haysano sugaha
\[
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
\]
1) Yaraha ku-tirsanaha \(a_{11}\) waa \(M_{11}\) :
\[
M_{11}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|
\]
taas oo aynu ka tagnay dhinac \(u\) taxa iyo joog \(u\) tax wadaaga ku-tirsanaha \(a_{11}\). Bal eeg hoos:
\[
\left|\begin{array}{lll}
a_{14} & a_{42} & a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
\]
2) Yaraha-kutirsanaha \(a_{23}\) waa \(M_{23}\) : \(M_{23}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right|\)
tanna waxaynu ka tagnay dhinac \(u\) tax iyo joog u tax wadaaga ku-tirsanaha \(a_{23}\); bal hoos eeg. (filiri bogga 318)

3) Yaraha ku-tirsanahe \(a_{31}\) waa \(M_{31}\) :
\[
M_{31}=\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|
\]

\section*{Tan oo annu ku helay sidan:}

Bal haddaba adigu raadi yaraha kutirsanaha \(a_{12}\).
Isticmaalidda fikrada yare waxaynu ku raadin karnaa sugaha horsilmo kasta leh kana weyn horsilmada 2aad. Tusaale ahaan hadda aan flirsano sugaha leh horsilmada saddex. Waxa jirtay in aynu sidan ku raadin-jlrnay:
\[
O(A)=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11^{a}{ }_{22^{a}}{ }_{33}-a_{11} a_{23^{a}}{ }_{32}+a_{12} a_{23} a_{31}}^{-a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32^{-a}}{ }_{13} a_{32} a_{31}}
\]

Haddil aynu isirayno tibxaha lammaan ee isir wadaaga ah, waxanu helaynaa sidan:
\[
\text { (A) }=a_{11}\left(a_{22^{a}} a_{33^{-a}}^{23^{a}} 32\right)+a_{12}\left(a_{23^{a}} a_{31}-a_{21} a_{33}\right)+a_{13}\left(a_{21} a_{32^{-a}} a_{21} a_{31}\right)
\]

Iminka haddil isirka laba tibixle ku jira tibixda dhexe uu yahay sidan:
\(-\left(a_{21} a_{33}-a_{23} a_{31}\right)\), waxaynu haysana

- 319 -
\(=a_{11}\left(a_{22} a_{33^{-a}}^{23^{a}}{ }_{32}\right)-a_{12}\left(a_{21} a_{33^{-a}}^{23^{a}}{ }_{31}\right)\)
\({ }^{a_{13}}\left(a_{21} a_{32}-a_{22} a_{31}\right)\)
00 la mid ah
\[
(A)=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\]
11) Markaa, waxaynu haysanaa ama ay la mid tahayba
\[
(A)=a_{11} y_{11}-a_{12} y_{12}+a_{13} y_{13}
\]

Tani waa fidinta sugaha inage oo isticmaalay yarayaasha ku saabsan dhinac utaxa uqu horreeya.

Guud ahaan waa aad fidin karta sugaha adoo isticmaalaya yarayaasha, taas 00 ku saabsan dhinac-utax ama joog utax.

\section*{Gebagebo:}
1. Ku dhufo ku-tirsane kasta ee ku jira dhinac utax ama joog
u tax aad dooratay yarahilsa.
2. Taran kasta ku dhufo 1 ama -1 , taas oo aad ku kala dooranayso wadarta hoosdhawgay wataan ladoe E__ is i. ia

taxu u : : h: Ln \& \& . An
Haddii ay kisi tahay qaado -1 , haddil ay dhaban tahayse qaado 1 .
3. Isugee taramaha soo baxa.

\section*{OGSOONOW Tibaaxdan \(\mathrm{a}_{11} \cdot \mathrm{y}_{11}-\mathrm{a}_{12}+\mathrm{a}_{13} \cdot \mathrm{y}_{13}\),}

Ku-tirsanaha \(a_{11}\) wuxu \(k u\) jiraa dhinac \(u\) taxa ugu horreeya iyo joog u taxa ugu horreeya, markaa, haddiiba \(1+1=2\) (abyoone dhaban ah), taranta ugu horreeysa waxa lagu dhufanayaa 1 (ama sida ay tahay u daa).
Ku-tirsanaha \(a_{12}\) wuxu ku jiraa dhinac \(u\) taxa ugu horreeya iyo joog utaxa labana; markaa, haddilba \(1+2=3\) (abyoone kisi ah),
taranta labaad waxa lagu dhufanayaa -1 ;
Wadarta tirada(hoos dhawyada) ee ku-tirsanaha \(a_{13}\) waa \(1+3=4\) (abyoone dhaban \(a h\)), markaa tarantassaddexaad waxa 100 deynayaa sideeda ama +1 baa lagu dhufanayaa.

Haddif \(A=\left(\begin{array}{rrr}3 & 2 & 1 \\ 0 & 1 & -2 \\ 1 & 3 & 2\end{array}\right)\), Raadi \(\begin{aligned} & (A) \text { adoo ku fidinaya } \\ & \text { joog u taxa ugu horreeya. }\end{aligned}\) PURFURID:

Waxa aad ogsoon tahay in \(a_{11}=3, a_{21}=0, a_{31}=1\),
\[
\begin{gathered}
\text { Markaa } \quad \begin{array}{c}
1+1=2, \\
(\text { dhaban })
\end{array}\left(K+1=3, \begin{array}{l}
3+1=4 \\
(\text { Kisi })
\end{array}(\text { dhaban })\right.
\end{gathered}
\]
\[
\begin{aligned}
& \text { Markaa, waxaynu helaynaa } \\
& \text { In } \because(A)=3 \cdot\left|\begin{array}{rr}
1 & -2 \\
3 & 4
\end{array}\right|=0 \cdot\left|\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right|+1\left|\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right|= \\
& (A)=3(4+6)-0+1[(-4)-1]=30+(-5)=25
\end{aligned}
\]

TUSAALE Ku fidi yarayaal sugaha adoo isticmaalaya ama adeegsanaya dhinac u taxa ugu horreeya.
\[
\left|\begin{array}{llll}
2 & 1 & 0 & 3 \\
4 & 2 & 5 & 1 \\
6 & 3 & 4 & 5 \\
1 & 0 & 0 & 2
\end{array}\right| \begin{aligned}
& \text { FURFURID } \\
& \text { afara u horaysa ka dhig sugaha leh horsiimada }
\end{aligned}
\]
weliba laga dhigi karo suge leh horsiimada labaad.
\[
\text { Markaa }\left|\begin{array}{llll}
2 & 1 & 0 & 3 \\
4 & 2 & 5 & 1 \\
6 & 3 & 4 & 5 \\
1 & 0 & 0 & 2
\end{array}\right|=+2\left|\begin{array}{lll}
2 & 5 & 1 \\
3 & 4 & 5 \\
3 & 4 & 5 \\
0 & 0 & 2
\end{array}\right|-1 .\left|\begin{array}{lll}
4 & 5 & 1 \\
6 & 4 & 5 \\
1 & 0 & 2
\end{array}\right|
\]
\[
+0-3 \cdot\left|\begin{array}{lll}
4 & 2 & 5 \\
6 & 3 & 4 \\
1 & 0 & 0
\end{array}\right|=
\]

Marka aynu fidino suge walba inagoo isticmaalayna dhinac \(u\) taxa ugu horreey= waxayn: helaynee sidan.
2. \(\left[2 \cdot\left|\begin{array}{ll}4 & 4 \\ 0 & 2\end{array}\right|-5 \cdot\left|\begin{array}{ll}3 & 5 \\ 0 & 2\end{array}\right|+1 \cdot\left|\begin{array}{ll}3 & 4 \\ 0 & 0\end{array}\right|\right]-\)
\(-\left[4 \cdot\left|\begin{array}{ll}4 & 5 \\ 0 & 2\end{array}\right| \quad-5 \cdot\left|\begin{array}{ll}6 & 5 \\ 1 & 2\end{array}\right|+1 .\left|\begin{array}{ll}6 & 4 \\ 1 & 0\end{array}\right|\right]\)
- 3. \(\left[4 \cdot\left|\begin{array}{ll}3 & 4 \\ 0 & 0\end{array}\right|-2 \cdot\left|\begin{array}{ll}6 & 4 \\ 1 & 0\end{array}\right|+5 \cdot\left|\begin{array}{ll}6 & 3 \\ 1 & 0\end{array}\right|\right]=\)
\(2(2.8-5.6+1.0)-(4.8-5 .(12-5) 4 .(-4))+\)
\(-3 \cdot(4 \cdot 0-2 \cdot(-4)+4 \cdot(-3))=2(-14)-(-7)-3(-7)=\)
\(-28+7-21=0\)

\section*{LAYLI}
I.- Ka shagee waydi1mahan
(1) \(\left|\begin{array}{ccc}-1 & 8 & 2 \\ -2 & 1 & 0 \\ 0 & 1 & -3\end{array}\right|\)
(2) \(\left.\right|_{5} ^{2}\)
\(\left.\begin{array}{rrr}1 & 4 \\ 2 & 6 \\ -3 & 10\end{array} \right\rvert\,\) (3) \(\left|\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & 4\end{array}\right|\)
(4) \(\left|\begin{array}{rrr}14 & 7 & 4 \\ 5 & 2 & 3 \\ 6 & 3 & 3\end{array}\right|\)
(5) \(\left|\begin{array}{lll}a & b & 1 \\ a & b & 1 \\ 1 & 1 & 1\end{array}\right|\) (6) \(\left|\begin{array}{lll}0 & 0 & x \\ 0 & x & 0 \\ x & 0 & 0\end{array}\right|\)
(7) \(\left|\begin{array}{rrrr}0 & 1 & 0 & 0 \\ 1 & 0 & 3 & 2 \\ 5 & -1 & 2 & 1 \\ 1 & 0 & 1 & 1\end{array}\right|\)
(8) \(\left|\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right|\)
II. - Fidi sugayaashan lagu silyay adoo mid walba adeegsanaya dhinac u taxa ama joog u taxalagu sifyay:
(9) \(\left|\begin{array}{lll}2 & 3 & 4 \\ 5 & 6 & 7 \\ 1 & 0 & 2\end{array}\right|\)
(10) \(\left|\begin{array}{rrr}-1 & 2 & -3 \\ 4 & 5 & 1 \\ 6 & 7 & 0\end{array}\right|\)
(11) \(\left|\begin{array}{ccc}0 & 4 & -1 \\ 2 & 0 & 3 \\ 4 & 5 & 6\end{array}\right|\)
Dhinac u taxa
labaad

OGSOONOW:
Kuwan iyo tusaalooyinka soo socdaba sugayaasha waxa lagu fidiyay iyadoo la isticmaalayo dhinac u taxa ugu horreeya.

ASTAANTA 2 Haddii laba dhinac \(u\) tax ama laba joog \(u\) tax ee suge ay isku mid yihiln, markaa, suguhu waa eber.

TUSAALE

ASTAANTA 3: Haddil dhinac \(u\) taxyadan iyo joog \(u\) taxyadan sugahi 00 Idil 31 habsami ah (in order) la isku beddelo, markaa sugahasoo baxaa wuxuu la mid yahay sugihil hore.

\section*{TUSAALE:}
\(S_{1}=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 0 & 2 \\ 3 & 1 & 2\end{array}\right|=6, S_{2}=\left|\begin{array}{lll}1 & 4 & 3 \\ 2 & 0 & 1 \\ 3 & 2 & 2\end{array}\right|=6\)

Ma arki kartaa kuwa la isku beddelay:
12300 ah dhinac \(u\) tax ugu horreeya ee \(8_{1}\) wax lagu beddelay 14 00 ah joog \(u\) taxa ugu horreeya ee \(S_{1}\), waaana dhinac \(u\) taxa ugu horreeya ee \(S_{2}\).

Sidaas 00 kale 40200 ah dhinac \(u\) taxa labaad ee \(S_{1}\) waxa lagu beddelay 201 oo ah joog \(u\) taxa labaad ee \(S_{1}\), wana dhinac \(u\) taxa labaad ee \(S_{2}\).

ASTAANTA 4 Haddil ku-tirsane kasta 00 ku Jira hal dhinac \(u\) tax ama joog u tax ee suge lagu dhufto tiro maangal ah \(k\), markaa sugaha soo baxaa waa \(K\) oo lagu dhuftay sugihil hore.

TUSAALE \(\quad S_{1}=\left|\begin{array}{lll}4 & 5 & 4 \\ 1 & 1 & 1 \\ 3 & 1 & 4\end{array}\right|=12-5-8=-1\)
\[
S_{2}=\left|\begin{array}{lll}
4 & 5 & 4.2 \\
1 & 1 & 1.22 \\
3 & 1 & 4.2
\end{array}\right|=\left|\begin{array}{lll}
4 & 5 & 8 \\
1 & 1 & 2 \\
3 & 1 & 8
\end{array}\right|+24-10-16=-2
\]

OGOOW
\(\therefore S_{2}=2 S_{1}\)

ASTAANTA 5: Haddii hal dhinac \(u\) tax
(ama hal joog \(u\) tax)uu gidigii wato ku-tirsanayaal eber ah, markaa suguhuna waa eber.

\section*{TUSAALE}
\[
\left|\begin{array}{lll}
1 & 1 & 0 \\
3 & 5 & 0 \\
2 & 7 & 0
\end{array}\right|=1 \cdot\left|\begin{array}{ll}
5 & 0 \\
7 & 0
\end{array}\right|-1 .\left|\begin{array}{ll}
3 & 0 \\
2 & 0
\end{array}\right| \geq+0 \cdot\left|\begin{array}{ll}
3 & 5 \\
2 & 7
\end{array}\right|
\]
\(=0.0+0=0\)
Bal adigu isku day marka hal dhinac \(u\) tax gidigif yahay eber dabeed eeg waxa soo baxa.

ASTAANTA 6: Haddii hal dhinac u tax (ama joog is tax) ee suge uu yahay dhufsanaha dhinac-u-tax (ame joog u tavi kale. markaa q11maha suguhu wuxuu noqon eber.

TUSAALE
\[
\begin{aligned}
\left|\begin{array}{rrr}
3 & 2 & 1 \\
-1 & -2 & 4 \\
6 & 4 & 2
\end{array}\right| & =3 \cdot\left|\begin{array}{rr}
-2 & 4 \\
4 & 2
\end{array}\right|-2 \cdot\left|\begin{array}{rr}
-1 & 4 \\
6 & 2
\end{array}\right|+ \\
1 \cdot\left|\begin{array}{rr}
-1 & -2 \\
6 & 4
\end{array}\right| & =-60+52+8=0
\end{aligned}
\]

Halkan dhinac \(u\) taxa saddexaad waa dhufsanaha dhinac u taxa ugu horreeya.

ASTAANT 7: Haddi1 ku-tirsane kasta ee dhinac u-tax (ama joog \(u\) tax) ee suge lagu dhufto tiro mangal ah \(K\), oo markaa taramaha soo baxa 100 geeyo ku-tirsanayaasha ku beegan ee dhinac \(u\) tax (ama joog u tax) kale, sida ay u kala horreeyaan, markaa sugaha la helaa muxuu le'eg yahay ama la mid yahay sugihil hore.

TUSAALE \(S_{1}=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 0 & 2 \\ 3 & 1 & 2\end{array}\right|\)
\[
K=2
\]

\section*{=ma=\#}
\(S_{2}=\left|\begin{array}{l}1+2.3 \\ 2\end{array}\right| \begin{aligned} & 3 \\ & 4+2.2 \\ & 3+2.2\end{aligned} 1\)
\[
=\left\lvert\, \begin{aligned}
& 7 \\
& 8 \\
& 7
\end{aligned}\right.
\]
\[
\left\lvert\, \begin{aligned}
& 7 \\
& 8 \\
& 7
\end{aligned}\right.
\]
\[
\left.\begin{array}{ll}
2 & 3 \\
0 & 2 \\
1 & 2
\end{array} \right\rvert\,=
\]

\section*{Markaa \(6=6\)}

ASTAANTA 8: Haddil ku-tirsane kasta oo ku jira dhinac u taw (ama joog u tax) ee suge 100 qoro wadarta zaba tibeood, markaa sugaha waxa 100 qori karaa wadarta laba suge. Sida ton socota:

\section*{TUSAALE:}
\[
\left|\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
1 & 1 & 5
\end{array}\right|=\left|\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0+1 & 0+1 & 4+1
\end{array}\right|=\left|\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right|+\left\lvert\, \begin{array}{ll}
4 & 0 \\
0 & 4 \\
1 & 1
\end{array}\right.
\]
\(4\left|\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right|\)
\(!\)
\(4(20-0)=\left|\begin{array}{ccc}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0+1 & 0+1 & 4-1\end{array}\right|=4\left|\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right|+4\left|\begin{array}{ll}4 & 0 \\ 1 & 1\end{array}\right|\)
80
\[
=4(16-0)+4(4-0)
\]
\[
64+16=80
\]

Ka shaqee

\section*{FURFURID}

TUSAALE
\(\left|\begin{array}{rrr}1 & 3 & 4 \\ 2 & 1 & 6 \\ -3 & 5 & 6\end{array}\right|\)
idinta sugaha waxaynu isticmaalaynaa astaanta 7aad, markaa \(s i 100\) helo suge la mid ah; hase-yeeshe leh dhinac \(u\) tax ama joog u tax ku-tirsanayaashiisu ay yihiin eber mid mooyaane. Hadda taa a \(u\) doorano joog \(u\) taxa ugu horreeya. \(\square\)
Talaabada I ku dhufo laba taban \((-2)\) dhinac \(u\) tax ugu horreeya dabeedna \(u\) gee waxa soo baxa dhinac \(u\) tax labad.
\[
\left|\begin{array}{ccc|c}
1 & 3 & 3 & 4 \\
2+(-2) & 1+(-6) & 6+(-8) \\
-3 & 5 & 6
\end{array}\right|=\left|\begin{array}{rrr}
1 & 3 & 4 \\
0 & -5 & -2 \\
-3 & 5 & 6
\end{array}\right|
\]

IALAABADA II: Ku dhufo saddex dhinac \(u\) taxa ugu horreeya dabeedna waxa soo baxa una gee, dhinac u taxa saddexaad.
\(\left|\begin{array}{cccc}1 & 3 & 3 & 4 \\ 0 & 5 & -5 & -2 \\ -3+3 & 5+9 & 6+12\end{array}\right|=\left|\begin{array}{rrr}1 & 3 & 4 \\ 0 & -5 & -2 \\ 0 & 14 & 18\end{array}\right|\)
\[
\left\lvert\, \begin{array}{rrr}
1 & 3 & 4 \\
0 & -5 & -2 \\
0 & 14 & 18
\end{array}\right.
\]

TALAABADA SADDEXAAD:
Ku fidi yareyaal, gaorlann loag it toven wipu boneravey
1. \(\left|\begin{array}{rr}-5 & -2 \\ 14 & 18\end{array}\right|-0 .\left|\begin{array}{rr}3 & 4 \\ 14 & 18\end{array}\right|+0 .\left|\begin{array}{rr}3 & 4 \\ -5 & -2\end{array}\right|\)
1. \([(-90)-(-28)]=-62\)

\section*{ISWEYDAARKA TAXANE}

QEEX: Taxanaha \(\mathrm{A}^{-1}\) waa 1 sweydaarka taxanaha \(A\), haddil tarantooda \(A \cdot A^{-1}=A^{-1} \cdot A=1\).

Markaa taxanaha A mar kale waa 1 sweydaarka taxanaha \(A^{-1}\). (A iyo \(\mathrm{A}^{-1}\), waxay yihiin taxanayaal labajibbaarane ah oo isku addimo ah))
\(\qquad\)
OGSOONOW: \(\quad A^{-1}\) la mid ma aha \(\frac{1}{A}\).

TUSAALE fududcbaynu u filirsan doonaa oo ah taxanayassha gah
\(2 \times 2\).

HADD11 aynu \(u\) qaadano in
\[
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), \quad A^{1} \text { na }=\left(\begin{array}{ll}
b & c \\
d & e
\end{array}\right)
\]

Markaa tarantoodu waxay noqon sidan:
\[
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
b & c \\
d & e
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\]

Tani waxay inoo hoggaaminaysaa
\(\left(\begin{array}{lll}a_{11} & b+a_{12} & d \\ a_{21} & b+a_{22} & d\end{array}\right)\left(\begin{array}{lll}a_{11} & c & a_{11} \\ a_{21} & c & \\ a_{22} & a_{22} & e\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\)

00 run ah, haddil iyo haddil oo keliya 00
\begin{tabular}{ll}
\(a_{11} b+a_{12} d\) \\
\(a_{21} b+a_{22} d\) & \(a_{11} c+a_{12} e\) \\
\(=0\) & \(a_{21} c+a_{22} e\)
\end{tabular}

Marka isle'egyadan wada Jir ahaan loogu furfuro b, \(\mathrm{c}, \mathrm{d}\), e waxaynu helaynaa sidan:
1. \(\left(a_{11} a_{22}-a_{12} a_{21}\right) b=a_{22}\)
2. \(\left(a_{11} a_{22}-a_{12} a_{21}\right) c=a_{12}\)
3. \(\left(a_{11} a_{22}-a_{12} a_{21}\right) d=-a_{12}\)
4. \(\left(a_{11} a_{22}-a_{12} a_{21}\right) e=a_{11}\)
(isle'egta laad waxa lagu helay sidan soo socota)

Markaa haddil aynu d ku beddello isle'egta kowaad (1) 00 aynu ku beddello inta d ay la mid tahay isle'egta saddexaad (3), waxaynu helaynaa sidan:
\[
a_{11} b+a_{12}\left(\frac{-a_{21}}{a_{22}}\right) b=1
\]

Tan waxaynu ka helaynaa isle'egtan \(a_{22} a_{11} b-a_{12} a_{21} b=a_{22}\)
\[
\left(a_{22} a_{11}-a_{12} a_{21}\right) b=a_{22}
\]

Markaa \(b=a_{22}\)
\[
a_{22 a_{11}-a_{12} a_{21}}
\]
(Sidaas oo kale ayeynu ku heli karnaa isle'egyada kale)
Markaa qiimayaasha \(b, c\), d, iyo e waxa ku siiya tibaaxahan \(b=a_{22}\)
\[
a_{11} a_{22}-a_{12} a_{21}
\]
\(d=\)
\[
\frac{-a_{12}}{a_{11} a_{22}-a_{12} a_{21}}
\]
\[
\frac{-a_{21}}{a_{12} a_{22}-a_{12} a_{21}}
\]
\[
E=\frac{a_{11}}{a_{11} a_{22}-a_{12} a_{21}}
\]

Shardi waxa ah in \(a_{11} a_{22}-a_{22} a_{21} \times 0\)
Waad arki kartaa, in hoosceyayaashg Jajabkanu uu la mid yahay ama le'eg yahay sugaha

Markaa, \(A^{-1}=\left(\begin{array}{ll}\frac{a_{22}}{\rho^{\prime}(A)} & \frac{-a_{12}}{\mathcal{S}^{(A)}} \\ \frac{-a_{21}}{\rho^{(A)}} & \frac{a_{11}}{\rho^{(A)}}\end{array}\right)=\frac{1}{\delta^{(A)}}\left(\begin{array}{cc}a_{22} & a_{12} \\ -a_{21} & a_{11}\end{array}\right)\)

Markaa toos la isugu dhufto, waxa la caddayn karaa in \(A^{-1} \cdot A=1\). Markaa, 31100 qoro isweydaarka taxanaha A ee laba jibbaarane (2X2), kaasoo \((A) \neq 0\), waxaynu isku beddeli karnaa ku-tirsanayaasha ku jira (xaglogooyaha door), labada kutirsanee kelna waxa aynu qaadan tabnaantooda, waxa soo baxana waxa aynu ku dhufan TUSAALE:Haddii \(A=\left(\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right)\), Raadi \(A^{-1}\) \(\qquad\)
FURFURID:
Marka hore waa in aynu helaa sugaha \(A\)
\[
\text { kaasoo ah } \quad \int(A)=\left|\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right|=-1-6=7
\]

Markaa, \(A^{-1}=\frac{1}{-7}\left(\begin{array}{rr}-1 & -3 \\ -2 & 1\end{array}\right)=\left(\begin{array}{cc}\frac{1}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{-1}{7}\end{array}\right)\)
Marka, aad heshid isweydaarka taxane, waa in aad had iyo jeer hubisaa waxa soo baxaa inaanay qalad lahayn.
Hadda, kii bal aynu hubino:
U filrso
\[
\begin{aligned}
\pi^{1} A & =-\frac{1}{7}\left(\begin{array}{rr}
-1 & -3 \\
-2 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 3 \\
2 & -1
\end{array}\right) \\
& =\frac{1}{7} \quad\left(\begin{array}{rr}
-7 & 0 \\
0 & -7
\end{array}\right)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
\end{aligned}
\]

Taxane kasta oo laba jibaarane ahiba wuu leeyahay isweydaar, haso yeeshe shardi waxa ah in sugaha taxanuhu aanu le'egaanin eber. Taxanaha isweydaarka leh, waxa la yidhaa weydaarle.

Taxanaha laba jlbaarane, ee suguhuna yahay eber, waxa lagu magacaabaa taxanaha weydaarlaawe (a singular matrix).

TUSAALE: Tus in ay \(\left(\begin{array}{rr}3 & 5 \\ 6 & 10\end{array}\right)\) yahay weydaarlaawe 00 aanu lahayr isweydaar.

FURFURID \(\int(A)=\left(\begin{array}{rr}3 & 5 \\ 6 & 10\end{array}\right)=3.10-5.6=0\)
Merkaa, isweydaar ma jiro.
Waayo?
ARAGTIIN: Haddii A 1 yo B ay yihiin taxanayaal laba jibbaarane oo weydaarle ah (non-singular), markaa, tarantoodu AB waxay leedahay isweydaar, taas oo ah \((A B)^{1}=B^{-1} \cdot A^{-1}\)

CADDAYN: Haddil aynu \(B^{-1} A^{-1}\) kaga dhufano midigta \(A B\). Waxaynu helaa sidan:
\(A B \cdot B^{-1} \cdot \bar{K}^{1}=\) Xeerka hormagelinta ee isku dhufashada
A \(\left(B \cdot B^{1}\right) A^{-1}=\) Astaanta isweydaarka taxanaha
A. \(1 . \bar{A}^{1}=\) Hormagelinta
\(A\left(1 . \bar{A}^{-1}\right)=\) Astaanta asal madoor she
A. \(A^{-1}=\) Astaanta isweydaarka

Sidaas oo kale haddil aynu \(B^{-1} A^{-1}\) kaga dhufano bidixda \(A B\), waxaynt helaa tif hore oo kale.
\(B^{-1} A^{-1}, A B=B^{-1} \cdot 1 \cdot B=B^{-1} B=\frac{1}{\AA} \times B=1\)
Markaa qeexiddil ahayd isweydaarka taxane, waxay ahayd sidan \((A B)^{-1}=B^{-1} \cdot A^{-1}\)

ARAGTIDIINA waxa 100 adeegsan karaa isweydaarka taranta marka la raadinayo tiro kasta oo taxanayaal weydaarlayaal ah (non-singular).
TUSAALE ahaan, haddil halkan ay yaalaan saddex isir, \(A, B\), iyo \(C\) markaa, \((A B C)^{-1}=((A B) \cdot C)^{-1}=C^{-1}(A B)^{-1}=C^{-1} \cdot B^{-1} \cdot A^{-1}\).

Waxaynu 300 aragnay dariiqada lagu helo ama lagu soo saaro isweydaarka taxane laba - j1bbaarane ah, \(2 \times 2\). Haddaba, runtu sida ay tahay ma fududa sida lagu raadiyo isweydaarka ee taxane leh horsiimo ka weyn 2. Markaa in kasta oo ay jiraan dariiqooyin lagu raadiyaa isweydaarka isaga ah, haddana buuggan \(r\) kuma soo hadal qaadayno.

Haddi1 aad shagadan fahmi waydo ku nogo baabki1 ahaa 1sweydaarka
taxane. \(\left[\left(\begin{array}{rr}1 & 4 \\ 0 & -2\end{array}\right)\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)\right]^{-1}=\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right) \cdot\left(\begin{array}{lr}1 & 4 \\ 0 & -2\end{array}\right)\)

FURFURID
\[
\left.\begin{array}{rl}
\text { a) }\left(\begin{array}{rr}
1 & 4 \\
0 & -2
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1.0+4.1 & 1.2+4.0 \\
0.0+(-2) 1 & 0.2+(-2) 0
\end{array}\right) \\
\left(\begin{array}{rr}
4 & 2 \\
-2 & 0
\end{array}\right) \\
4 & 2 \\
-2 & 0
\end{array}\right)=1 / 4\left(\begin{array}{cc}
0 & -2 \\
2 & 4
\end{array}\right)=\left(\begin{array}{cc}
0 & -\frac{2}{2} \\
\frac{1}{2} & 1
\end{array}\right)
\]
\[
\text { b) }\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right)^{-1}=-\frac{1}{2}\left(\begin{array}{rr}
0 & -2 \\
-1 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
\frac{1}{2} & 1
\end{array}\right)
\]
\[
\left(\begin{array}{rrr}
1 & 4 \\
0 & -2 &)^{-1}=-1
\end{array}\left(\begin{array}{rr}
-2 & -4 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & -\frac{1}{2}
\end{array}\right)\right.
\]
\[
\left(\begin{array}{ll}
0 & 1 \\
\frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
0 & -\frac{1}{2}
\end{array}\right)=\left(\begin{array}{ll}
0.1+1.0 & 0.2+1 \cdot\left(-\frac{1}{2}\right) \\
1 / 2 \cdot 1+0.0 & 1 / 2 \cdot 2+0 \cdot\left(-\frac{1}{2}\right)
\end{array}\right)
\]
\[
=\left(\begin{array}{cc}
0 & -\frac{1}{2} \\
1 / 2 & 1
\end{array}\right)
\]

Markaa, labada dhinac ee isle'egta waxaynu ka helay laba taxane oo isku mid ah, markaa waynu caddaynay in labadu ay isku mid yihiln.

LAYLI Raadi taxanayaalkan soo socda isweydaarkooda haddil aanay qaar isweydaar lahayn, sheeg sababta:
1. \(\left(\begin{array}{l}2 \\ 1\end{array}\right.\)
\(\left(\begin{array}{ll}2 & 4 \\ 1 & 0\end{array}\right), 2\),
\(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), 3\)
\(\left(\begin{array}{cc}-1 & -1 \\ -4 & 6\end{array}\right)\)
4. \(\left(\begin{array}{rr}6 & 0 \\ -3 & 0\end{array}\right) 5 \cdot\left(\begin{array}{l}1 \\ 0\end{array}\right.\)
\(\left.\begin{array}{r}4 \\ -2\end{array}\right) 6 \cdot\left(\begin{array}{l}0 \\ 0\end{array}\right.\)
\(\left.\begin{array}{l}0 \\ 0\end{array}\right)\)
7. \(\left(\begin{array}{ll}0 & 1 \\ 3 & 1\end{array}\right)\)
8. \(\left(\begin{array}{l}2 \\ 1\end{array}\right.\)
\(\left.\begin{array}{c}3 \\ -1\end{array}\right)\) 9. \(\left(\begin{array}{l}1 \\ 1\end{array}\right.\)
\(\left.\begin{array}{l}2 \\ 2\end{array}\right)\)
10. \(\left(\begin{array}{l}1 \\ 2\end{array}\right.\)
Raac
\(-1)^{3}\)
Xaq11)11 in ay
\(\left[\left(\begin{array}{rr}1 & 2 \\ -2 & 0\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)\left(\begin{array}{rr}2 & -1 \\ 0 & 1\end{array}\right)\right]^{-1}=\left(\begin{array}{rr}2 & -1 \\ 0 & 1\end{array}\right)^{-1}\left(\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right)^{-1}\left(\begin{array}{rr}1 & 2 \\ -1 & 0\end{array}\right)^{-1}\)

\section*{HABDHISKA ISLE'EGYADA TOOSAN}

Taxanayaashu waxay inoo sheegann nmes smambli ancoumen. raadiyo furfurista habdhiska isle'ogyada toosan.
Bal u filrso isle'egyadan soo socda.
\(a_{11} x+a_{12} y=c_{1}\)
\(a_{21} \cdot x+a_{22} y=c_{2}\)
Markaa hadd11 aynu raacno qeexiddil Isku dhufashada taxanaha, waxaynu odhan karnaa:

Si gaaban isle'egta waxa 100 qori karaa sidan \(\mathrm{AX}=\mathrm{B}\), taas 00 A tahay taxane laba jibbaarane, \(n \times n\), \(x\) iyo Bna yihiln taxanayaal joog u tax, \(n \times 1\).

QGSOONOW: Halkan waxaynu ku fiirinay taxane weheliye ah \(2 \times 2\) iyo taxanayaal joog \(u\) tax 00 ah \(2 \times 1\), maxaa yeolay waxa la ina silyay laba isle'eg oo toosan oo ay ku j1raan laba doorsoome.

Haddaba marka la haysto \(n\) isle'egyo toosan oo ay ku jiraan \(n\) doorsoome, waxaynu isticmaalaynaa \(n \times n\) taxane weheliye.

Bal dheeho isle'egtan guud ahaaneed \(n X=B\); haddif a tahay taxane weydaarle (non-singular matrix), markaa labada dhinac ee isle'egta waxaynu bidixda kaga dhufan karnaa \(A^{-1}\), \(s 1\) aynu \(u\) helo: \(A^{-1} \cdot A X=A^{-1} \cdot B \quad\) ama \(\left(A^{-1} \cdot A\right) X=A^{-1} \cdot B\).
Kol haddif \(A^{-1}: A=1\), waxaynu helaynaa \(1: X=A^{-1}, B\)
\[
\therefore \quad X=A^{-1} \cdot B
\]

HADDIIBA \(X\) iyo \(\pi_{1}^{-1}\) B ay isle'eg yihiin, kutirsane walloo ku jira \(x\) wuxuu le'egyahay ku-tirsanaha ku beegan ee ku jira \(\mathbb{A}^{-1}\). . Markaana ku-tirsanayaasha \(\mathrm{A}^{-1}\). waa xubnaha (solution set) ee habdhiska toosan ee la ina silyay.

OGSOONOW: Haddii A ay tahay taxane weydaarlaawe (singular), markaa ma yeelan karo isweydaarba, sidaa daraadeed habdhiskuna malaha furfurisba, ama furfuristu ma aha madi.

TUSAALE: RAADI urur-furfurada adoo adeegsanaya taxanayaal.
\[
\begin{aligned}
& 5 X+2 Y=12 \\
& 4 X-Y=7
\end{aligned}
\]

FURFURIS: Isle'egtan waxaynu u qorl karnaa sansaankan
\[
\left(\begin{array}{rr}
5 & 2 \\
4 & -1
\end{array}\right)\binom{x}{y}\left(\begin{array}{r}
12 \\
7
\end{array}\right.
\]

Markaa, waxa aynu raadinaynaa sugaha taxarnha woholiyotin (Co-efficient matrix):
\[
):
\]
\[
-\quad
\]
\[
-5-8=13
\]

Haddana waxa aynu raadinaynaa isweydaarka taxanihif
\(A=\left(\begin{array}{rr}5 & 2 \\ 4 & -1\end{array}\right) \circ 0\) ah \(\pi^{1}=\frac{1}{-13}\left(\begin{array}{ll}-1 & -2 \\ -4 & 5\end{array}\right)\)
Isle'egta taxane, dhinac walba xagga bidixda kaga dhufo \(A^{-1}\), sidan \(\infty\) kale
\(-\frac{1}{13}\left(\begin{array}{rr}-1 & -2 \\ -4 & 5\end{array}\right)\left(\begin{array}{rr}5 & 2 \\ 4 & -1\end{array}\right)\binom{x}{y}=\frac{1}{\sqrt{3}}\left(\begin{array}{rr}-1 & -2 \\ -4 & 5\end{array}\right)\binom{12}{7}\)
ama \(\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}=\frac{1}{-13}\left(\begin{array}{ll}-2 & 6 \\ -1 & 3\end{array}\right)\)
\(=\binom{x}{y}=\binom{2}{1}\)
Markaa halkan waxaynu ka helay in \(x=2, y=1\).
Marka, urur-furfurada habdhiskan la ina silyayna waa \(\{2,1\}\)
TUSAALE Furfur habdhiskan toosan
\[
\begin{aligned}
& 2 x+3 y=5 \\
& 6 x+9 y=10
\end{aligned}
\]

FURFURIS: "Marka \(u\) horraysa waxaynu \(u\) qoraynaa habdhiska sida isle'eg taxane.
\[
\left(\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right)=\binom{5}{10}
\]

Talaabada ku xigtaa waa in la raadiyo ama la helo sugaha taxanaha wehelfye, sidan \(\infty\) kale:
\[
\int\left(\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right)=18-18=0
\]

Sida aad \(u\) aragtidba suguhu waa eber, markaa taxanuhu waa weydaarlaawe (singular), \(\infty\) malaha isweydaar.

Haddil aad \(u\) filrsatid wehellyayaasha \(x\) iyo \(y\), waxa aad ku arki kartaa in weheliyaasha ku Jira isle'egta dambe ay saddex laab ka weyn yihiln waheliyaasha ku jira isle'egta hore.

Markaa, waxaabay yihiin saamigal ama way saamigalsan yihiln. Hase yeeshe tirooyinka ku jira dhinacyada midigta ee isle'egyadu saamigalkoodu ma aha sida wehellyaasha bidixda ee isle'egyada (toban laba jeer oo kaliya ayay ka weyn tahay shan). Markaa, haddiiba weheliyayaasha \(x\) iyo \(y\) ay saamigalsan yihiin, oo aanay tibxaha sugani saamigalsanayn, markaa habdhisku haba yaraatee malaha furfurid: Isle'egyadaas 00 kale waxa lagu magacaabaa surmaseegto.

Tan waxa aad looga arki karaa garaafka. Garaafyada isle'eg yadaasuna waa barbarro, bar ay wadaagaana haba yaraatee ma jirto.

TUSAALE
\[
\begin{aligned}
\text { Furfur } 2 x+3 y=5 \\
4 x+6 y=10
\end{aligned}
\]

Bal adigu samee garaafka labada xarrilqood barbarro ayay noqonayaan, barna ma wadaagi doonaan

FURFURIS: Sugaha taxanaha weheliye waa
\[
\left|\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right|=12-12=0
\]

Markaa taxanuhu malaha isweydaar. Wehellyayaasha isle'egta labaad oo idil waa laban laabka wehellyayaasha ku beegan ee isle'egta hore. ((weheliyayaasha oo idili way isu saamigal-san yihifn))
Labadaa isle'eg waxa lagu magacaabaa siyaab.
Furfuridda midkood ayaa ah furfuridda ana jawaabta labadoodaba. Markaas, waxaynu nidhaa habdhiskaanu wuxuu leeyahay furfuro tirobeel ah ama tiro beelay.
Garaafyada isle'egyadaasuna way isdul dhacaan, ama way isdul fuulaan.

TUSAALE: Furfur habdhiskan
\[
\begin{aligned}
& 3 x+4 y=2 \\
& 2 x+y=3
\end{aligned}
\]

FURFURIS :
Halkan waxaynu ku aragnaa in wehelfyayaasha ku jira isle'egyadani in aanay ahayn saamigal, dabeed halkaa waxa ka cad in habdhisku leeyahay furfurid.

Isle'egta taxane waxay tahay sidan: \(\qquad\)
\[
\left(\begin{array}{ll}
3 & 4 \tag{8ำ}\\
2 & 1
\end{array}\right) \quad\binom{x}{y}=\binom{2}{3}
\]

Haddana sugaha taxanaha wehellye wuxuu yahay: \(\qquad\)
\[
\left(\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right)=3-8=5
\]

Markaa, taxanuhu wuxuu yeelanayaa isweydaar; haddi1 uu isweydaar yeeshaan maxaad filaysaa in uu yeesho?

Markaa,

\[
\{2 ;-1\}
\]

LAYLI: Raadi furfurista habdhisyadan soo socda ((Haddil aanay lahayn furfuris sheeg sababta))
1. \(2 x-3 y=-1\)
2. \(2 x-3 y=0\)
. \(6 x-2 y=4\)
\(2 x+y=16\)
\(3 x-y=1\)
4. \(\begin{aligned} & 3 x-4 y=2 \\ & 6 x+12 y=36\end{aligned}\)
5. \(\begin{aligned} 4 x+4 y & =4 \\ x+3 y & =-4\end{aligned}\)
6. \(\begin{aligned} 3 x+2 y & =4 \\ 5 x+3 y & =0\end{aligned}\)
\(5 x+3 y=0\)
7. \(3 x+3 y=-1\)
\(x-4 y=-2\)
0. \(10 x+y=5\)
\(x+y=-4\)
9. \(2 x-y=3\)
\(6 x-3 y=9\)

XEERKA GARAAMAR
Marka 1 e ideegsenayo taxane siyaabaha lagu furfuro habdhisyada ee Ls le'egyo toosan, waxay ku lug leedahay ama ay ku xidhan tahayba isweydaarka taxanaha weheliye. Haddii taxanaha wehellye uu yahay taxane ah \(2 \times 2\), wax alaale wax dhibaato ahi ma jirayso.

Hase-yeoshe taxanayaasha leh adimo waaweyn, siyaabaha 100 raadinaayo iswoydaarkoodu aad buu \(u\) dhib badan yahay. Si haddabs aanay dhibaatadaasu u jirin ayaa waxa aynu adeegsanaynaa sugayaa!. kuwatas 00 aynu ku shagaynayno xeerka Garaamar, Inaga oo aen adeegsan taxanayaal.

Bal haddaba eeg \(\varepsilon\) Idn 200 dhisay xeerka Garaamar.
U flirso habdhtska zoo socda:
\[
a_{11} x+a_{12} y=c_{1}
\]
\[
a_{21} x+a_{22} y=c_{2}
\]

Aan \(u\) qaadano in \(D\) ay \(u\) taagan tahay sugaha taxanaha weheliye.
\[
D \quad\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\]

X kli dnufo (adeegmann astaanta 4aad ee sugayaasha).
\[
x D=x\left|\begin{array}{ll}
a_{11} & a_{2} \\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & x & a_{12} \\
a_{21} & x & a_{22}
\end{array}\right|
\]

Imminka, ku-tirsaneye waloo ku jira joog u taxa labaad ku dhufo tiro maangal ah \(y\); waxa soo baxana u gee ku tirsanayaasha \(k u\) beegan ee joog \(u\) taxa hore (waxaynu adeegsanaynaa astaanta 7aad markaa waxaynu helaynaa sidan:
\[
x D=\left|\begin{array}{ll}
a_{11} x+a_{12} y & a_{12} \\
a_{21} x+a_{22} y & a_{22}
\end{array}\right|
\]
\[
\text { Ugu dambayn, haddiba } a_{11} x+a_{12} y=c_{1}
\]
\[
a_{21} x+a_{22} y=c_{2}
\]
waxaynu haysanaynaa sidan:
\(X D=\)\begin{tabular}{ll}
\(c_{1}\) & \(a_{12}\) \\
\(c_{2}\) & \(a_{22}\)
\end{tabular}\(\quad\) taas oo (haddii \(D \neq 0\))
aynu helayno sidan:
\[
x=\frac{\left|\begin{array}{ll}
c_{1} & a_{12} \\
c_{2} & a_{22}
\end{array}\right|}{D}=\left|\begin{array}{ll}
c_{1} & a_{12} \\
c_{2} & a_{22}
\end{array}\right|
\]

S1 gaaban haddif aynu \(u\) qorno waxay nogonaysaa \(31 d a n X=\frac{D X}{D}\).
Ogsoonow: Sugaha DX waxa aynu ku helay marka joog u taxa hore ee ku Jira D halkeedii la dhigo tirooyinka madoorsoomayaasha ah kuna beegan ee ku jira dhinacyada midigta ee isle'egyada layna silyay.

Sidan 00 kale waxaynu tusi karnaa in \(Y\) =

DY waxaynu ka helay \(D\), taas oo joog \(u\) taxa labaad ee \(D\) ama sugaha halkeedil aynu dhignay madoorsoomayaasha isle'egta. Dariiqadan waxa lagu addeegsan karaa ama lagu shaqayn karaa habdhisyada isle'egyo kasta oo toosan kuwaas oo ay ku jiraan doorsoomayaal badan. Darilqadaa iyada ah waxa lagu magacaabaa xeerka Garaamar. Waxa uu xeerkaasi karti inoo sifnayaa in aynnu ku furfurro habdhisyada toosano ha yeeshee shardiga ku xidhani wuxu yahay in aanu sugaha taxanaha weheliye noqonin eber.

\section*{Tusaale:}

Adeegso xeerka Garaamar si aad u furfurtid habdhiska:
\[
\begin{array}{r}
-4 x+2 y-9 S=2 \\
3 x+4 y+S=5 \\
x-3 y+25=8
\end{array}
\]

FURFURIS: Marka hore qor taxanaha weheliye, raadina suganthitsa
\[
\begin{array}{rl}
A= & {\left[\begin{array}{rrr}
-4 & 2 & -9 \\
3 & 4 & 1 \\
1 & -3 & 2
\end{array}\right],} \\
& =-4\left|\begin{array}{rrr}
4 & 1 \\
-3 & 2
\end{array}\right|-2\left|\begin{array}{rrr}
-4 & 2 & -9 \\
3 & 4 & 1 \\
1 & -3 & 2
\end{array}\right| \\
1 & 2\left|\begin{array}{rr}
3 & 1 \\
1
\end{array}\right| \\
& -9\left|\begin{array}{rr}
3 & 4 \\
1 & -3
\end{array}\right|
\end{array}
\]

Markaa sidil aynu horeba \(u\) soo sheegnay, waxaynu ku tirsanayaasha ku jira joog u taxa uu horreeya halkooda dhigaynaa madoorsoomayaasha ku beegan ee ku jira isle'egta \(2,5,8\). Bal eeg:
\[
D X=\left|\begin{array}{rrr}
2 & 2 & -9 \\
5 & 4 & 1 \\
8 & -3 & 2
\end{array}\right|=2\left|\begin{array}{rr}
4 & 1 \\
-3 & 1
\end{array}\right|-2\left|\begin{array}{ll}
5 & 1 \\
8 & 2
\end{array}\right|-9\left|\begin{array}{rr}
5 & 4 \\
8 & -3
\end{array}\right|=
\]
\[
2.11-2.2 .9 \quad(-47)=441
\]

Sidii oo kale ku-tirsanayaasha ku fira joog u taxa labaad ayaynu halkooda dhigi doonaa madoorsoomayaasha ku beegan ee ku jira isle'egta. Madoorsoomayaashaas oo ah 2,5,8; markaa waxa aynu helaynaa:
\[
\begin{aligned}
D Y= & \left|\begin{array}{rrr}
4 & 2 & -9 \\
3 & 5 & 1 \\
1 & 8 & 2
\end{array}\right|=4\left|\begin{array}{ll}
5 & 1 \\
8 & 2
\end{array}\right|-2\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|-9\left|\begin{array}{ll}
3 & 5 \\
1 & 8
\end{array}\right|= \\
& -4(2)-2(5)-9(19)=-189
\end{aligned}
\]

Imminkana halkil joog u taxa saddexaad baynu dhigi madoorsoomayaasha isle'egta.
\[
\begin{aligned}
D S=\left|\begin{array}{rrr}
-4 & 2 & 2 \\
3 & 4 & 5 \\
1 & -3 & 8
\end{array}\right| & =-4\left|\begin{array}{rr}
4 & 5 \\
-3 & 8
\end{array}\right|-2\left|\begin{array}{ll}
3 & 5 \\
3 & 8
\end{array}\right|-2\left|\begin{array}{ll}
3 & 5 \\
1 & 8
\end{array}\right|+2\left|\begin{array}{ll}
3 & 4 \\
1 & -3
\end{array}\right|= \\
& =-4(47)-2(19)+2(-13)=-252
\end{aligned}
\]

Markaa haddii DX, DY iyo DS aynu u qaybino D waxa aynu helaynaa \(X, Y, S, S i d a\) ay \(u\) kala horreeyaan:
\[
\begin{aligned}
& X=\frac{D X}{D}=\frac{441}{63}=7 Y=\frac{D Y}{D}=\frac{189}{63}=-3 \\
& S=\frac{D S}{D}=-\frac{252}{63}-4
\end{aligned}
\]

Dabadeed, habdhiskan urur furufurkilsu waxa uu noqonayaa: (7, -3, -4)
TUSAALE: Furfur habdhiskan
\[
\begin{aligned}
x-2 y+s & =-1 \\
3 x+y-2 s & =4 \\
y-s & =1
\end{aligned}
\]
- 341 -

FURFURIS:
\[
\begin{aligned}
D=\left|\begin{array}{rrr}
1 & -2 & 1 \\
3 & 1 & -2 \\
0 & 1 & -1
\end{array}\right| & =\left|\begin{array}{rr}
1 & -2 \\
1 & -1
\end{array}\right|-3\left|\begin{array}{rr}
-2 & 1 \\
1 & -1
\end{array}\right| \\
& =1-3(1)=-2
\end{aligned}
\]
(Sugaha waxa lagu didinayaa joog u taxa ugu horreeya) Tusaalih11 hore waa in aad macdaa:
\[
\mathrm{DX}=\left|\begin{array}{rrr}
-1 & -2 & 1 \\
4 & 1 & -2 \\
1 & 1 & -1
\end{array}\right| \quad=-1\left|\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right|+2\left|\begin{array}{ll}
4 & -2 \\
1 & -1
\end{array}\right|+\left|\begin{array}{ll}
4 & 1 \\
1 & 1
\end{array}\right|
\]
\[
=-1+2(-2)+3=-2
\]
\[
D Y=\begin{array}{rrr}
1 & -1 & 1 \\
3 & 4 & -2 \\
0 & 1 & -1
\end{array} \quad=\begin{array}{rrrrr}
4 & -2 \\
1 & -1 & -3 & -1 & +1 \\
1 & -1
\end{array}=-2-3(0)=-2
\]
\[
\text { DS }\left|\begin{array}{rrr}
1 & -2 & -1 \\
3 & 1 & 4 \\
0 & 1 & 1
\end{array}\right|=\left|\begin{array}{rr}
1 & 4 \\
1 & 1
\end{array}\right|=-3\left|\begin{array}{rr}
-2 & -11 \\
1 & 1
\end{array}\right|=-3-3(-1)=0
\]

Markaa waxaynu helaynaa sidan
\[
\begin{aligned}
& X=\frac{D X}{D}=\frac{-2}{-2}=1, S=\frac{D S}{D}=\frac{0}{-2}=0 \\
& Y=\frac{D Y}{D}=\frac{-2}{-2}=1
\end{aligned}
\]

OGSOONOW: Haddilba sugaha taxanaha weheliyaha aanu la mid ahayn eber, xeerka Garaamar wuxuu kaa caawinayaa sida 100 fur furo habdhisyo isle'egyo toosan. Haddii D ay le'egtahay eber markaa habdhisku haba yaraatee malaha furfuris.

Ama habdhisku wuxuu leeyahay furfurisyo badan (taasu waa marka weheliyayaasha oo dhammi ay saamigal yihiin).

\section*{toosan:}

Dhammaan ardaydii dedaashay wey ku liibaaneen imtixaankil lagaga baxayey dugsiyada sare. Weedhan waxaynu ku wakililn karnaa jaantus fen-Euler.
G = \{dhamman ardaydil \(u\) fadhilsatey 1.1.d.s. \(\}\)
\(\mathrm{L}=\{\) dhammaan ardaydii ku lifbaantay 1.1.d.s. \(\}\)
D = \{dhammaan ardaydii dedaashay \}

\section*{(Shaxan 1)}

Weedhu waxay malagellneysaa ((implies) in \(D\) ay hormo \(u\) tahay \(L\) sida ka muuqata shax.1, oo sida runtu tahay inna tusaya weedha dhammaan ardaydil dedaashay wey ku lilbaaneen i.1.d.s. Bal aan imminka filrinno mitaal ka sii adayg badan (harder example). Aan weedha dhammaan laydiyadu waa barbarroolayaal iyo laydiyade qaarkood waa kooro (trapezoids) ku wada wakillino jaantus fen-Euler oo kellya.
\(L=\{\) Laydiyada dhammaantood \}
\(S=\{\) Barbaroolayaal dhammaantood \}
G = \{Kooraha dhammaantood \}

Labada weedhood waxa 100 qori LCS iyo Lng \(\neq 0\), dheeliga Lng \(\neq 0\) wuxuu summad ahaan kuu sheegayaa hubaasha ah "waxa fira laydiyaal kooro \(a h^{\prime \prime}\), oo ah weedh been ah, haddii laga eego xagga joomatriga.

(Shaxan 2)

Gobolka dhibceysan (dotted region) ee ka muuqda shaxan 2 waxa ka suurtooba labada arrimood ee kala ah in uu noqdo gobol madhan \(\neq\) yo in uu ka gedisnaado \(\emptyset\).

\section*{Asaas-qaraado, goatimo iyo jaantusyada fen-Euler}

Shax. 3 wuxuu wakill ka yahay weedha "dhammaan ardaydil dedaashay way ku 111 baaneen 1.1.d.s." haddaba haddi1 aynu adeegsano jaantuskan fen-Buler, waxa aynu gaadhi karnaa go'aanka runta ah "arday keliya oo dedaaley ma dhicin".

Barashada ururadu waxay faa'ildo gaar ahaaneed u leedahay doodaha loojigga, \(s 1\) aan taas u guda galno, aan tixgelino sida xeerarka ururada iyo jaantusyada fen-Bler ay inooga kaalmeeyaan saafidda doodo 10011 g oo gaar ah.
Bal tixgeli doodan:
Dhammaan labajibaaranayaashu waa laydiyo.......
Dhammaan laydiyadu waa barbarrooleyaal.
Markaa dhammaan labajibaaranayaashu waa barbarroolayaal (3)

Weedhaha (1) iyo (2) waxa la yiraahaa asaas-garaado ama afeefo, weedha 3 -na waxa la ylraahaa go'aanka haddeynu saafno doodeenan gaarka ah waxaynu ogaaneynaa in go'aanka laga soo dheegi karo afeefaha, markaa waxeynu oran doonaa doodeenu waa mid dhisan. Haddeynu si kale u dhigno waxaynu oran karnaa dooda ka kooban weedhaha (1), (2) iyo (3) qiime rumeedkeedu waa (Run),

Doodan waxaynu ku wakilifn karnaa jaantus fen-Euler sida ka muluata shax . 400

L = \{Dhammaan labajibbaaranayaasha \}
\(H=\{\) Dhammaan laydiyada \}
\(M=\) \{Dhammaan barbaroolayaasha\}

(Shaxnn 4)

Sida ku muujisan shaxan 4, L. waxay hormo quman \(u\) tahay \(H\), \(H\)-na waxay hormo qunan \(u\) tahay \(M\), macnee LCH \(\wedge\) HCM, markaa LCM (xeerka dhexidda ee hormonimada ururada). LCM waa 31 gaaban oo 100 qori karo go'aanka (3).

\section*{Dood dhisan iyo Go'aan Been ah}

Burco waxay ku taal Nugaal.
Nugaali waxay ku taal Masar
Markaa Burco waxay ku taal Masar.

\section*{(Shaxan 5)}

Doodda noocani waxay faa'iido gaar ahaaneed ku leedahay caddaynta xisaabta (mathematical proofs). Matalan si aan u caddayno in taanjentka goobo iyo gacanka ka jeexan barta, taabashada ay isku qotomaan, caddeynteena waxaynu ka bllaabi doonaa u qaadashada ah "Taanjentka goobo iyo gacanku iskuma qotomaan dabeedna marka aynu isticmaalo garaadeyn dhisan waxaynu gaadhi go'aanka ah "Taanjentku goobada wuxuu ka gooyaa laba barood" go'aankani wuxuu burinayaa qeexda taanjentka goobo \(\infty\) ah "Taanjentka, goobo waa xarrifq goobada ka taabata bar keliya. Haddaba Maadaama uu go'aankeenu been yahay, u qaadashadeenuna waa been, markaa waxa run ah dildmada (negation) u qaadashadeena oo ah "Taanjentka goobo iyo gacanka ka jeexan barta taabashada waa ay isku qotomaan.
Caddeyn xisaabeedda sare oo la yiraaho caddaynta dadban waxa si filcan looga fahmi karaa sheekadan.
Cali ayaa lagu soo oogey denbiga ah in uu Xamar nin ku diley 15ki1 Agoost 1976. Marki1 la horkeeney, maxkamaddil ayal qareenkiisi (yiri "sidee buu Call denbilie u noqon karaa iyadoo ay jlraan markhaatiyaal sheegaya in uu Call joogey dalka Ruushka maalintil uu denbigu dhacay. Haddil aynu saafno dooda qareenka, Cali ama waa denbille ama maha denbille.

\section*{- 347 -}

Bal ka soo qaad in uu denbille yahay. Cali waa denbille waxay mala gelineysaa Cali wuxuu joogey Xamar maalintil denbigu dhacay (15kil Ogoost 1976). Laakiin waxay markhaatiyaal lagu kalsoon yahay xaqiijiyeen in uu Cali joogey dalka Ruushka maalintii denbigu dhacay; haddaba madaama aanay suuragal ahayn in uu Cali maalin keliya wada joogo dalka Ruushka iyo Xamar, u qaadashadeeni hore waa been waxa se run ah diidmadeeda oo ah Cali denbille maaha.

Matalan waxa aad rabtaa in aad caddayso in xarriijinta \(A B\) ay le'eg tahay xarriijinta \(C D\). Waxa suuragal ah seddex xiriir: \(A B>C D, A B<C D\), ama \(A B=C D\), haddii aad xaqiijin kartid In \(A B \not \subset C D\) iyo \(A B \not \subset C D\), markaa waxa ad \(k u\) doodi kartaa \(A B=C D\). Haddaba caddeyn xisaabeeddan dadbani waxay inna fareysaa in aan marka hore taxno dhammaan go'aanada suuragalka ah, dabeedna aan xaqiijino in dhammaantood mid mooyaane ay wada been yihiin, markaa ka aynaan caddayn in uu been yahay ayaa run ah.

LAYLI

\section*{Ku wakif11 doodan soo socota jaantus fen-Euler}
1. Haddi1 ragga qaarkil ay dhaadheer yihiin oo dagaal yahannadu dhammaantood ay dhaadheer yihiln markaa ragga qaarkii waa dagaal yahanno.
2. Adoo adeegsanaya faantus fen-Euler, hubi (test) dhisnaanta doodan.
b) Dhammaan kooruhu (trapezoids) waa afargeeslayaal. Dhammaan barbaroolayaashu waa afargeeslayaal. Markaa dhammaan barbaroolayaashu waa kooro.
t) Naasleyda qaarkood wax ay ku nool yihiln biyaha. Dhammaan wixif biyaha ku nooli waa kaluun. Markaa, naasleyda qaarkood waa kaluun.
1) Dhammaan seddexagalidu waa geesoolayaal. Seddexagallada qaarkood waa labaalayaal. Dhammaan seddexagalada labaalayaasha ahi waa geesoolayaal.

\section*{3. Waa maxay go'aanka laga dheegi karo weedhahan soo socda}

Dhammaan libaaxyada dadcunka ah waxa dhaqda boqor Call. Libaaxyadu kabaha ma xirtaan ayaga oo dadcun ah mooyaane. Boqor Cali malaha libaaxyo midabkoodu cas yahay.
4. Sharrax caddayn xisaabeedda dadban?
5. Sharrax sidii aad \(u\) caddayn lahayd in xarriliqaha \(l\) iyo \(m\) ay iska gooyaan bar keliya.

\section*{DOOD JABAN IYO GO 'AAN RUN AH}

Dadka qaarkil waa dhaadheer
Dadka qaarkil waa caato
Markaa dadka dhaadheer qaarki1 waa caato............(3)
Waxa hubaal ah in weedhaha (1), (2) iyo (3) aan midna la dildi karin hase yeeshee dooda ka kooban (1), (2) iyo (3) waa mid jaban (invalid).
Haddii \(M=\) \{dadka dhaadheer \(\}\)
D = \{Dadka caatada ah
\(R=\{\) Dadka dhammaantii \}
Waxa ka muquata Shax. 6 in ay suuragal tahay \(\mathrm{MnD}=\varnothing\); macnee waxa suurtoobi karta in aanay jirin dad dherer iyo caatanimo isku darsaday. Haddil aan si kale u dhignop, lagama maarmaan maaha in go'aanka (3) uu ka yimaado ama lagaba soo dheego weedhaha (1) iyo (2).

\section*{- 349 -}

Dhismaha (structure) doodan waxa aynu ku muujin karnaa inaçar oo isticmaala xeerarka ururada sida hoos ku muqqata:
\(R U M=R \wedge R U D=R\)
\(\therefore\) (RUM) \(n(R U D)=R n R=R\)
Laakiin waxa aynu tusaaleyney in
(RUM) \(n(R U D)=R U(M n D)\)
\(: \quad R U(M n D)=R\)
Laakin \(R U \varnothing=R\)
Markaa MnD waxa ay noqon kartaa ;
macnee in M iyo D ay dhextaal yeeshaan maha wax lagama maarmaan ah.
Waxa suuragal ah in go'aan run ah laga gaadho dood thisan 00 leh laba asaas-garaad (premises) oo been ah. Matal an labada weedhood ee beenta ah \(3>5\) 1yo \(5=2\) waxa laga gaadhi karaa go'aanka \({ }_{3}>_{2}\) oo run ah.

Bal aan tixgelino doodan:
Dhammaan carruurtu waa farxaanifn.
Dadka farxaanifnta ahi ma dheelaan shaxda.
Markaa carruur shaxda dheesha ma jiraan.
Haddii \(\mathrm{H}=\) \{dadka farxaaniinta \(a h\}\)
\(c=\{\) carruurta \}
\(M=\{\) Dadka shaxda dheela
Waxa shax. 7 aynu ka arki karnaa in doodu ay dhisantay oo ay leedahay qiime rumeedka \(R\) (Run).

Haddi1 aynaan isticmaalin Jaantus fen-Euler, waxa aynu qori karnaa:
\(C \cap H=c \quad H \cap M=g\)
\(C \cap M=(C H) \cap M\)
\(=C \cap(H \cap M)\)
\(=c \beta\)

Markaa ma jiraan dad carruurna ah shaxdana dheelaa;
macnee ma firaan carruur shaxda dheeshaa.

\section*{LAYLI}

Doodahan soo socda haddil ay lagama maarmaan tahay in uu goiaanku ka yimaado asaas garaadyada qoro \(R\) (Run); haddil kale, qor B (Been). Dood kasta u samee faantus fen-Euler oo aad ku xaqi1jiso jawabbtaada. Bal isku dey in aad dhisnaanta ama jabnaanta dood kasta ku ogaan karto isticmaalidda xeerarka ururada.
1. Geesoolayaasha qaarkood waa laydiyo. Geesoolayaasha qaarkood waa labaj1bbaaranayaal. Markaa laydiyada qaarkood waa labaj1bbaaranayaal.
2. Geesoolayaasha qaarkood waa barbarroolayaal. Barbarrooleyaasha qaarkood waa qardhaaso. Markaa geesoolayaasha qaarkood waa qardhaaso.
3. Shan geesoolayaasha qaarkood waxa ay leeyihiln xaglo isle'eg. Shan geesoolayaasha qaarkood waxa ay leeyihiin dhinacyo isle'eg. Markaa shan geesoolayaasha qaarkood waxa ay leeyihiin dhinacyo isle'eg iyo xaglo isle'eg.
4. Willasha qaarkood waa dhaadheer

Willasha qaarkood waxa ay leeyihiln timo madow. Markaa willasha timaha madow qaarkood waa dhaadheer.
5. Nayroob1 waxa ay ku taal Gobolka Mudug. Mudug waxa ay ka mid tahay gobollada Soomaaliya. Markaa Nayroobi waxa ay ku taal Soomaaliya.
6. \(x<1\)
\(y<1000\)
: . \(x<y\)
7. \(x<2\)
\(x>7\)
\(\therefore \quad 7<2\)
8. \(\begin{aligned} & y>x^{2} \\ & y^{2}>x^{2}\end{aligned}\)
: \(x<0\)

Tusaalooyinkan hoose mid kasta, sheeg go'aan run ah oo laga gaadhi karo asaas-garaadyada ogaalka ah:
29. Ma jiraan dad waxgarad ah oo caro badani dadka wax garadka ah qaarkif way tima madowyihiin.
10. Dahabka qaark11 waa qaal1

Alaabta qaaliga ahi dhammaanteed waa quruxsan tahay.```

[^0]: Isugayn: $a+c+e+g=b r+d r+f r+h r$

