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Chapter 1
Introduction

The core of DNA testing is founded on Statistics. Genetic evidence is often

used to solve problems concerning criminal cases as well as disputed paternity

using statistical tools such as probabilistic expert systems (PESs). In the

years, this topic has been being investigated and a number of tools have

been developed and updated for both carrying out numerical computations

and analysing cases involving traces of DNA. DNA evidence plays a large

role in criminal cases as a tool for convicting or discharging. These cases

often involve murders, rapes or robberies. DNA is an important investigative

tool since, with the exception of homozygote twins (or triplets etc.), two

people in the world cannot have the same DNA, so it can confirm or not

the guilt of a suspect. A common scenario is that a DNA trace is found

on the crime scene, afterwards a suspect is identified and his DNA profile

is gathered and matched to the acquired sample in order to investigate the

compatibility of the suspect’s genotype to the trace and therefore to verify his

guilt. Whenever a suspect is not recognized, the genotypes of the contributors

can be predicted and, if a database of DNA profiles is available, matched to

the profiles of the individuals in the database in order to identify possible

suspects. These databases might be extremely wide (3 million profiles are

preserved in the UK database from December 2005) and DNA samples from

suspects are kept even in the case, after investigations, they are proved not to

be guilty (Mortera and Dawid 2007). In more complex cases the trace found
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in the crime scene is made up of more than two profiles, i.e. at least three

persons are involved in the crime. This is a typical example when multiple

perpetrators took part in a rape or before a rape the victim had a consensual

partner. Thus, biological material from the victim, the perpetrator/s and

the consensual partner are contained in the trace and have to be processed

properly in order to be distinguished.

Any type of organism can be identified through the examination of DNA

sequences that are unique for that species. DNA (DeoxyriboNucleic Acid)

is a nucleic acid carrying the genetic code which determines individual char-

acteristics of each person. Genetic markers are particular portions of DNA,

used to investigate the relationships between individuals. The most common

for forensic purposes are the short tandem repeat (STR) markers. Every

single DNA profile is composed of several STR markers. For each marker a

genotype is organized in an unordered pair of alleles that are represented as

positive integers. According to Mendelian segregation, each parent transmits

to his or her child just one of the two alleles possessed. Thus, each genotype

is made of one allele from the father and one from the mother, but there is

an ambiguity who a certain allele comes from, as there is not a specific order

in their displacement. When mother and father transmit the same allele

value the individual is called homozygous, otherwise heterozygous. Thus, in

a homozygous individual just one single allele value is observed. Whereas

each single individual can possess at most two distinct alleles on any marker,

whenever an observed crime scene trace presents more than two alleles at

any marker, the trace must be clearly a mixture of DNA profiles from two

or more individuals. Obviously, the greater the number of alleles observed

in the mixture (and therefore the number of contributors to the mixture),

the greater the complexity of the problem, because a greater number of

combinations of the genotypes must be considered.

The results of a DNA analysis can be represented as an electropherogram

(EPG) which reproduces the alleles in the mixture through peaks having a

specific height and area around the allele. The peak areas are an extremely

important quantities since they are approximately proportional to amount
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of DNA in the mixture and therefore provide important information on the

composition of the mixture.

Complications arise as soon as the possibility of artifacts, such as allelic

drop-out or stutter, are considered. Allelic drop-out are due to equipment

failure when the low DNA level is insufficiently amplified to give a detectable

signal. This is often due to reduced quantities of DNA, so that they are

not detectable. In particular, they occur especially in presence of extremely

unbalanced contributions to the mixture. For example, suppose to observe

a 2-person mixture where the DNA proportions are 10 : 1, i.e. 10 parts of

DNA come from a contributor and 1 part comes from the other. Moreover,

suppose to observe in the mixture the alleles (A, B, C) and that profiles of the

contributors are (A, B) and (C, D). In this scenario, the allele D, present in

the genotype of the second contributor, is not observed in the mixture since

it is a drop-out allele. Other frequent artifacts are stutters. These are due

to a slippage of the DNA during the replication process. They are spurious

products with extremely small peaks and they contain one repeat unit less

than the corresponding main allele peak.

The statistical tools that are used in this thesis are the object-oriented

Bayesian networks (OOBNs), developed using the software package Hugin1.

They have been developed and introduced by Koller and Pfeffer (1997);

Laskey and Mahoney (1997). The first time Bayesian networks have been

introduced to analyse DNA evidence was by Dawid et al. (2002).

OOBNs are a recent extension of the Bayesian networks (BNs); they are

blocks of BNs combined in a hierarchical form, where Bayesian networks are

Direct Acyclic Graphs (DAGs) used to build Bayesian models including a

high number of variables. Each variable is described with a node. Nodes are

connected by directed links that express probabilistic casual relationships

between variables.

OOBNs implement numerical computations in order to evaluate the like-

lihood ratio in favour of guilt. After propagating the evidence, the posterior

probabilities of the hypotheses on the individuals involved in the mixture

1See www.hugin.com
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1.1 Objectives and main aims

are computed in a target node. When prior probabilities are uniform, as

we assume in this thesis, no prior information is added to the data, so the

ratio of the posterior probabilities can be interpreted as the likelihood ratio

in favour of guilt. In effect, forensic experts are often induced to formulate

the reasonable assumption that the prior probabilities for each hypothesis

H are equal leaving to adjudicators, judges or juries to formulate the prior

assessments. When the likelihood ratio has a high enough value we can

conclude there is enough evidence for the null hypothesis , i.e. “the suspect

is guilty”. An example will clarify the method to build these likelihood ratios.

Suppose to observe a 2-person DNA mixture having alleles’ repeat number

{A,B,C} for a specific marker and suppose to observe the following profiles

from a suspect and a victim: s = {A,B}, v = {B,C}. We are interested in

testing the hypotheses H0 : v&s versus H1 : v&u. Whereas for the hypothesis

H1 the profile of u can be either {A,A}, {A,B}, {B,A}, {A,C}, {C,A}, the

likelihood ratio is expressed as:

pr(H0|E)
pr(H1|E)

=
1

p2
A + pApB + pApC

,

where pi, for i = A,B,C, is the frequency of allele i in the population.

1.1 Objectives and main aims

We report a methodology, based on Probabilistic Expert Systems (PESs) for

analysing and solving complex problems involving DNA mixtures using both

allele repeat number and peak area information. A PES using information

about the alleles present in the mixture was introduced by Mortera et al.

(2003). Cowell et al. (2007b) showed how object-oriented Bayesian networks

(OOBNs) can be used to analyse peak area information in 2-person mixtures.

Here the main aim is to extend their statistical model in order to analyse

two traces (T1 and T2) simultaneously. Both identification and separation

of the DNA mixtures are analysed on different laboratory prepared mixtures

on two independent traces. In particular, for the identification problem we

discriminate between two different situations: when allele repeat number only
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1.1 Objectives and main aims

is available, and when peak areas are also observed. Furthermore, we show

that sometimes an investigation based on allele repeat number only can lead

to erroneous inference, whereas the inclusion of the peak area information in

the analysis gives the correct result.

In particular, we consider a robbery case where we suppose that some

tools for breaking into an apartment have been handled by more than one

individual. Thus, mixed traces of DNA samples are left at the scene of

crime and two suspects are identified. We suppose to be interested in two

particular traces. In identification problems, the main aim is to investigate

whether the DNA genotypes of the suspects match those who contributed

to the mixtures. Thus, the evidence could consist of the two mixed traces

and DNA profiles extracted from two suspects, s1 and s2. In this scenario,

for each trace inference is made on the total number of contributors to the

mixture. As a consequence, the posterior probabilities are evaluated for each

hypothesis concerning the total number of contributors. Thus, if we suppose

to obtain high posterior probability associated to the hypothesis that the

total number of contributors is two in each trace, then we compare, for each

trace, the hypotheses in Table 1.1.

However, in a courtroom two hypotheses are considered and the likeli-

Hypotheses under test
s1&s2 both suspects contributed to the trace1/trace2
s1&u suspect1 and an unknown individual contributed to the trace1/trace2
s2&u suspect2 and an unknown individual contributed to the trace1/trace2
2u two unknown individuals contributed to the trace1/trace2

Table 1.1: Hypotheses under test.

hood ratio is evaluated in favour of the hypothesis that both the suspects

contributed to the mixture: H0 :s1&s2, versus the hypothesis that two

unknown individuals u contributed to the mixture: H1 :2u. Additionally,

in a courtroom we could be interested in investigating whether each suspect

contributed to both traces or one of them. Thus, we compute the posterior

probabilities for the hypotheses in Table 1.2.

The analysis is developed using the alleles’ repeat number only and then
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1.1 Objectives and main aims

Hypotheses under test
s1 in T1 or T2 first suspect in at least one trace
s1 in T1&T2 first suspect in both traces
s2 in T1 or T2 second suspect in at least one trace
s2 in T1&T2 second suspect in both traces

Table 1.2: Hypotheses under test.

adding peak area information, where peak area delivers additional informa-

tion, since it is approximately proportional to the amount of DNA in the

mixture. The main aim is to show that peak area information should be

taken into account, since it allows to obtain more accurate probabilities.

Peak area information also allows to solve problems concerning sepa-

ration of the mixture. In this scenario, the evidence could be given by

the two traces only, whereas we assumed that profiles from any suspects

are not available. Thus, the main aim is to predict the DNA profiles of

the unknown contributors for each trace by separating the mixtures into its

individual components. This allows to compare the single components with

those available, for instance, in a database. Peak areas are modeled with a

conditional-Gamma model, as in Cowell et al. (2006), but we show that also

a conditional-Gaussian model is a good approximation.

Moreover, the statistical model of Mortera et al. (2003); Cowell et al.

(2007b) is extended in order to analyse mixtures involving three contributors.

In particular, we consider a rape case where we suppose that a sample

contains biological material from a victim and two perpetrators. For this

statistical model we solve only identification problems and the mixture is

analysed using as evidence, before allele repeat number only, and then adding

also peak areas information. Here, also the conditional-Gamma model of

Cowell et al. (2006) is extended for a case involving three contributors to the

mixture and is applied for the rape case. Although the network used for 3-

person mixtures answers much more complex problems, it is computationally

more elaborated than the network for 2-person mixed traces. Unfortunately,

this complexity represents a strong limitation of computer for the analysis

of 3-person mixtures and this is the reason why we cannot consider a high
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1.2 Layout

number of markers in the identification analysis and we cannot predict the

genotypes of the unknown contributors to the mixture.

Concluding, the main aim of this thesis is to show the efficiency of both

extended statistical models and to prove that peak weights need to be taken

into account since they improve the performance by increasing the likelihoods

and the posterior probabilities.

1.2 Layout

This thesis is organized into eleven main sections. Chapters 2 and 3 provide

some theoretical aspects on the graph theory and Bayesian networks, whilst

a genetic background is given in chapter 4. Data used for the analyses in

the rest of the chapters are shown in chapter 5. Here we give details on

the laboratory prepared mixtures with the corresponding DNA proportions.

Moreover for each marker we further provide the allele repeat numbers,

peak areas, relative peak weights, genotypes of suspects and victims and

the population gene frequencies. In chapter 6 we introduce and explain

DNA mixtures, together with the issues under investigation in this thesis

and the tools used to overcome them, then in chapter 7 a murder case

with a 2-person DNA sample is examined. In particular, in this chapter

we discuss in detail the statistical model and we solve identification and

separation problems using as evidence allele repeat numbers and peak area

information as evidence. Details on the network used for this chapter are

given in Appendix A. In chapter 8 the statistical model of Mortera et al.

(2003); Cowell et al. (2007b) applied in the previous chapter is extended in

a way that allows to analyse two mixed traces simultaneously. We assume

a robbery case where some tools used to beak into an apartment are left on

the crime scene and two independent DNA samples are analysed. Details

on the network are given in Appendix B. On the contrary, in chapter 9 the

statistical model of Mortera et al. (2003); Cowell et al. (2007b) is extended

in order to solve identification problems for 3-person mixtures. Here, we

consider a rape case where a sample containing biological material from the

victim and two perpetrators is examined and compared to the genotypes of

12



1.2 Layout

two suspects. Details on the network are finally provided in Appendix C.

13



Chapter 2
Theoretical aspects on graph theory

2.1 Graph notions

2.1.1 Basic aspects

In this section we introduce the basic theory about graphs. Graph theory

is an abstract mathematical subject and is an extremely useful tool when

applied to probabilistic expert systems for its ability to present a represen-

tation of expert knowledge about the subject.

A graph G is constituted by the pair (V , E), where V is a set of vertices,

called nodes, and E is a subset V ×V of ordered pairs of vertices called edges

or links. Nodes are represented by circles, directed edges by arrows, and

undirected edges by lines. Figure 2.1 shows an example of a graph having

four vertices, with two directed edges from node A to B and from node A to

C, and two undirected edges between vertices (B,D) and (C,D).

A graph is called directed if all its edges are represented by arrows, whilst

it is termed undirected if all its edges are undirected. The undirected version

of a graph G∼ has all the arrows replaced by undirected edges and the

undirected version G∼ is an undirected graph.

In a graph, if both (a,b) ∈ E and (b,a) ∈ E, the edges between the two

vertices a and b are undirected, and a and b are joined. In this case a and b

are said to be neighbours, therefore a is neighbour of b and b is neighbour of

14



2.1 Graph notions

Figure 2.1: Example of graph

a. Two joined nodes are denoted by a ∼ b and the set of neighbours of a is

denoted by ne(a). For example, in Figure 2.1 the nodes B and D are joined.

Conversely, if both (a,b) /∈ E and (b,a) /∈ E, then a and b are not joined, this

is denoted by a � b. In this case there is neither a line nor an arrow between

a and b and they are said to be non-neighbours. Similarly, if (a,b) ∈ E but

(b,a) /∈ E, then it can be written a → b, and if (a,b) /∈ E, then a 9 b.

The relations in a directed graph are denoted using the terms commonly

referred to family relations. Nodes, with arrows starting from them, are called

parents, whilst nodes, with arrows pointing into them, are called children. For

example, in Figure 2.1, A is a parent of B and B is a child of A. In addition,

we refer to (i) the set of vertices parents of b as pa(b), (ii) the collection of

children of a node a as ch(a), and (iii) the family of b as the collection of b

and its parents as fa(b) = b ∪ pa(b). In a directed graph, nodes that have

no parents are called founder nodes whilst those that have no children are

called terminal nodes.

Consider a subset W of V , W ⊆ V , we have:

pa(W ) =
⋃

w∈W pa(w)\W
ne(W ) =

⋃
w∈W ne(w)\W

ch(W ) =
⋃

w∈W ch(w)\W .

Thus, pa(W ), ne(W ) and ch(W ) indicate, respectively, the collection of

parents, neighbours and children of W excluding any vertex in W . For

example, in Figure 2.1, the set of parents of (B,C) is represented by the node

A, i.e. pa({B,C}) = {A}.
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2.1 Graph notions

The collection of parents and neighbours of a node a is called boundary

bd(a), whilst the boundary of a subset W ⊂ V is the set of parents or

neighbours of the elements in W excluding any element in W , i.e. bd(W ) =

pa(W ) ∪ ne(W ). For example, in Figure 2.1 bd(B)={A,D}. The closure of

W , cl(W ), is defined as the set formed by W and its boundary, i.e. cl(W ) =

W∪bd(W ). In Figure 2.1, cl(B)={A,B,D}.

A path of length n from a1 to an, a1 7→ an, is a sequence of distinct

vertices a1, a2,... an belonging to E such that the direction of arrows is

always followed and the path never crosses itself. In this case it is said that

a1 leads to an. When, in the path, two or more consecutive vertices are

connected by an arrow, the path is directed, i.e. there exists at least one i ∈
{1,2,...,n} such that ai → ai+1. If there is a path in both directions from a

to b and from b to a, i.e. a 7→ b and b 7→ a, a and b are connected and this is

denoted by a 
 b. Connectivity forms equivalence classes [a], called strong

components of G, such that b ∈ [a] ⇔ a 
 b. In Figure 2.1 the nodes (B,D)

and (C,D) are strong components. Considering a graph G and its undirected

version G∼, if there is a path between every pair of vertices in G∼, then G is

connected. The strong components of G∼ are connected components.

A trail of length n from a1 to an is a sequence of distinct vertices a1, a2,...

an belonging to E such that, for all i=1,2,...,n, ai → ai+1, or ai+1 → ai, or

ai ∼ ai+1. In contrast to a path, a trail can pass against the direction of the

arrows.

A subgraph of G is the graph GW = (W ,EW ), where W ⊆ V and EW

⊆ E ∩ (W × W ). GW is a subset of vertices of G that may contain the

same vertices in G but fewer edges. If EW =E ∩ (W × W ), GW is called

subgraph induced by W . Examples are shown in Figures 2.2 (b) and (c) that

are subgraphs of (a).

A graph is said to be complete if all vertices are joined by an arrow or

a line. A complete subgraph which is maximal with respect to ⊆ is called

a clique. Figure 2.3 (a) shows an example of complete graph, whilst Figure

2.3 (b) shows an undirected graph with two cliques represented by the nodes
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2.1 Graph notions

Figure 2.2: (a) a graph; (b) subgraph of (a); (c) induced subgraph of (a).

Figure 2.3: (a) a complete graph; (b) an undirected graph formed by the cliques
(A,B,C) and (C,D).

(A,B,C) and (C,D).

2.1.2 DAGs, chain graphs and moralization

A particular kind of directed graph is a DAG (Directed Acyclic Graph). An

important requirement for a DAG is that E has to comprise distinct vertices

so that loops, or cycles, are not allowed, i.e. a directed path that starts and

ends at the same vertex is not permitted. A cycle is such that following the

direction of the arrows it is possible to return to the node of departure (see

Figure 2.4)

A DAG can always be well-ordered providing a linear ordering or num-

bering such that, if two nodes are connected, it is possible to pass from a

node with lower number or order (a node where the edge starts from) to a

node with higher number or order (a node where the arrow points to). For

example, Figure 2.5 shows a DAG with a unique well-ordering given by the

sequence of nodes (A,B,C,D). The well-ordering may not be unique. In a

well-ordered DAG the predecessors of a, pr(a), are the vertices with lower
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2.1 Graph notions

Figure 2.4: Example of cyclic graph.

Figure 2.5: Example of graph with order A,B,C,D.

order number than a.

The concept of chain graph K is now introduced. This is a graph where

the set of vertices V can be partitioned into numbered subsets W (t) ⊆ V

forming a dependence chain V = W (1) ∪ · · · ∪W (T ) such that the vertices

in the same subset are joined by undirected edges whilst different subsets are

connected by arrows. Chain graphs have no directed cycles and its connected

components are termed chain components. The chain components can be

easily found removing all the arrows in the chain graph. For example, both

undirected graphs and DAGs are special cases of chain graphs and in the

directed acyclic graph the chain components are given by single vertices. For

example, the graph in Figure 2.6 is a chain graph having chain components

{X1, X2, X3}, {X4, X5, X6, X7}, {X8}.
In a chain graph, the set of vertices a1 such that a1 7→ an but not

viceversa an ��7→ a1, are termed ancestors of an, an(an), whilst, the set of

vertices an are termed descendants of a1, de(a1). The non-descendants,
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2.1 Graph notions

Figure 2.6: A chain graph having chain components {X1, X2, X3},
{X4, X5, X6, X7}, {X8}.

Figure 2.7: A chain graph: an(F )=(A,B,C); de(B)=(D,E); An(C)=(A,B)

nd(a1), are the set of vertices in V excluding the descendants of a1 and

a1 itself, i.e. nd(a1)=V \(de(a1) ∪ a1). Consider a1 ∈ A, where A is a subset

of V , if bd(a1) ⊆ A, then A is an ancestral set, and the smallest ancestral

set containing A is denoted by An(A). For example, in Figure 2.7 the set

of ancestors of F is (A,B,C), thus An(F)={A,B,C}; the set of descendants

of B are (D,E), thus de(B)={D,E}; the set of ancestors of C is (A,B), thus

An(C)={A,B}.
The moral graph of a chain graph K is now considered. This is defined

as the undirected graph Km obtained through the following two steps: a)

we add undirected edges in K between nodes that have a common child and

that are not already joined (this is called “marrying” two nodes); b) dropping

all directions of arrows and obtaining the undirected version of the resulting

graph. If K is a DAG the process is the same and all the pairs of parents

are married and the arrows are replaced by undirected edges. An example

of moralization process is reported in Figure 2.8 where a DAG is displayed

with its moral graph.
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Figure 2.8: Moral graph of a DAG obtained by marrying the nodes (A,B) and
(B,D) and replacing the arrows with undirected edges.

2.1.3 Chordal and decomposable graphs

Let G be an undirected graph, it is called chordal or triangulated if every one

of its cycles of length ≥4 contains a chord. A chord of an n-cycle in G is an

arc between two non-consecutive vertices in that cycle. An example is shown

in Figure 2.9 where the edge B ∼ C is a chord. If G is chordal and A ⊂ V ,

then GA is also chordal. A graph G = (V,E) can be always made chordal

by adding extra edges F to form G ′ = (V,E ′), where E ′ = E ∪ F . The

edges in F are referred to as fill-in edges. If G ′ is chordal, then it is called a

triangulation of G. An important type of graph is a decomposable graph.

Figure 2.9: A chordal graph. The edge B ∼ C is a chord.

In order to define a decomposable graph we need to introduce the concept

of a separator : let S be a subset of V , S ⊆ V , S is an (a,b)-separator if

all trails from a to b intersect S. If S is an (a,b)-separator for every a ∈
A and b ∈ B, then S separates A from B, where A, B and S are disjoint

subsets of V . An (a,b)-separator S is minimal if there are no subsets of S

that are (a,b)-separators. For example, in Figure 2.10 the set of nodes (C,D)

is (B,E)-separator and it is also minimal.
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Figure 2.10: Graph with the set of nodes (C,D) as minimal (B,E)-separators.

Let G be an undirected graph, a triplet (A,B,S) of disjoint subsets of V is

a decomposition of G, if V=A ∪ B ∪ C and the following two conditions hold:

(i) S separates A from B; (ii) S is a complete subset of V . An undirected

graph is decomposable if either (i) it is complete or (ii) it contains a proper

decomposition (A,B,S) that defines the decomposable subgraphs GA∪S and

GB∪S . Any graph can be decomposed into its connected components. The

smallest non decomposable graph is a 4-cycle. A connection between decom-

posability and chordality is shown through the following theorem (Lauritzen

1996). The proof is taken from Cowell et al. (1999).

Theorem 2.1 Let G be an undirected graph, it holds equivalently that:

1. G is decomposable;

2. G is chordal;

3. every minimal (a,b)-separator is complete.

Proof. The three conditions are proved by induction on the number of

vertices |V | of G. For a graph with no more than three vertices they hold

automatically. Thus, assuming these results for all graphs with |V | ≤ n,

it has been proved that they hold also for all graphs G with |V | = n + 1.

First we show that 1⇒ 2. Let G be a decomposable graph. For definition

of decomposable graph, G is either complete, and thus it is obviously chordal,

or has a proper decomposition (A,B, S) such that both subgraphs GA∪S and

GB∪S are decomposable with fewer vertices. These subgraphs are chordal by

inductive hypothesis. In only one case we have a chordless cycle: when the

cycle intersects both A and B. But, if the cycle intersects both A and B,
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then it intersects S at least twice because S separates A from B. Then, the

cycle is chordal since S is complete.

We prove now that 2⇒ 3. Let G be a chordal graph and S be a minimal

(a,b)-separator in G. If S contains only one node, it is complete. If S has

at least two vertices, for example g1 and g2, since it is a minimal separator,

there will be paths from a to b via g1 and back via g2, (a,..,g1,...,b,...,g2,...a).

These paths produce a cycle which can have repeated points. The cycle

can be shorten through the repeated points or adding a chord (other than

the one connecting the vertices g1 and g2) and leaving at least one vertex

in the connected components [a]V \S and [b]V \S of GV \S containing a and b

respectively. Therefore, cycles of length at least 4 are produced and these

must have a chord obtaining g1 ∼ g2. Repeating the process for every pair

of vertices in S we obtain that S is complete.

Finally we prove that 3 ⇒ 1. Assume the third condition, i.e. every

minimal (a, b)-separator is complete. If G is complete then is automatically

decomposable, otherwise it has at least two non-adjacent vertices not joined

(a and b say). Assume that the result holds for every proper subgraph of

G. Let S be a minimal separator of a and b, and partition the vertex set

into [a]V \S, [b]V \S, S and C, where C includes all the remaining vertices.

Now, let A = [a]V \S ∪ C and B = [b]V \S, then the triplet (A,B, S) forms

a decomposition of G, since S is complete. Actually, in order to prove the

theorem, both the subgraphs GA∪S and GB∪S must be decomposable. Thus,

if S̃ is a minimal (ã, b̃)-separator in GA∪S, then it is also a minimal separator

in G, and therefore complete by assumption. As a consequence, GA∪S is

decomposable by inductive hypothesis. Similarly it has been proved that

GB∪S is decomposable. Now, since G has been decomposed into decomposable

subgraphs, we can conclude that G is decomposable.

�

A DAG is defined perfect if its parent nodes form a complete set. For an

undirected graph a numbering of its vertices, (v1, v2, ..., vn), is said perfect

if the neighbours having lower numbers, i.e. ne(vi)∩{v1, v2, ..., vi−1}, induce

a complete subgraph.
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Figure 2.11: Example of a tree where the node X1 is a root node, whilst the nodes
X4, X6, X7, X8 and X9 are leaf nodes

The undirected version G∼ of a well-ordered perfect directed graph G is a

chordal graph where the ordering (v1, v2, ..., vn) forms a perfect numbering.

This can be proved by induction since for all i the triplet (Wi, Vi−1, Si) forms

a decomposition GṼi
(where Vi = (v1, v2, ..., vi), Wi =cl∼(vi) ∩ Vi, Si = Wi ∩

Vi−1, and cl∼ indicates closure relative to the undirected graph G∼). A perfect

directed graph can be construct by directing the edges from lower to higher

numbered vertices of an undirected graph G having a perfect numbering of

its vertices. Additionally, Lauritzen (1996) proved that an undirected graph

is chordal if and only if it admits a perfect numbering.

2.1.4 Junction trees

Another type of graph is a tree T . A tree is a connected graph G (i.e. a

graph where there is a path between every pair of vertices) and its undirected

version G∼ has no cycles. Thus, in a tree any two vertices are connected by

exactly one trail. An example of tree is the graph in Figure 2.11. In a tree a

root node is a node at the top level, and it has no parents, whilst, a leaf node

is a node at the bottom level, and it has no children. A tree has a diameter

represented by the length of longest trail between two leaf nodes.

Definition 2.2 Let T be a tree formed by a collection of cliques C
as its node set, T is a junction tree (or join tree) if, for any pair Cv =

(X1, X2, ..., Xj) and Cw = (Xj−i, Xj−i+1, ..., Xn) in C for all i < j < n, the
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intersection Cv∩Cw = (Xj−i, Xj−i+1, ..., Xj) is contained in every node on the

unique path in T between Cv and Cw. This intersection Cv∩Cw corresponds

to the set of nodes that separates Cv from Cw.

�

Similarly, for any vertex v in G, the set of subsets in C containing v induces

a connected subtree T ′ of T . Let G be an undirected graph having C as the

family of its cliques. Then, T is a junction tree for G, if T is a junction tree

containing C as its node set.

Theorem 2.3 A junction tree T of cliques for a graph G exists if and

only if G is decomposable.

Proof. If G contains at most two cliques the result clearly holds. Thus,

the theorem is proved proceeding by induction on the number k of cliques.

Let T be a junction tree of cliques for G having k + 1 cliques and let C1

and C2 be two adjacent cliques in T . If the link C1 ∼ C2 is cut, then T
is separated into two subtrees T1 and T2. Now, the union of the nodes in

Ti is denoted by Vi, for i = 1, 2, and let Gi = GVi
. The nodes in Ti are the

cliques of Gi, and Ti is a junction tree for Gi. Both the graphs G1 and G2 are

decomposable by the inductive hypothesis. Now, proving that S := V1 ∩ V2

is complete and separates V1 from V2, then the theorem holds. If we take

v ∈ V1 ∩ V2, then there exists in Gi a clique C ′
i for i = 1, 2 containing v, i.e.

v ∈ C ′
i. Clearly the path in T joining C ′

1 and C ′
2 passes through both C1 and

C2. As a consequence, v ∈ C1 ∩ C2 and so we must have V1 ∩ V2 ⊆ C1 ∩ C2.

Whereas C1 ∩ C2 ⊆ V1 ∩ V2, then S = C1 ∩ C2 and is complete.

Consider now u ∈ V1\S and v ∈ V2\S. Furthermore, suppose that there

exists a path u,w1, w2, ..., wk, v where wi /∈ S. Then, a clique C including the

complete set {u,w1} also exists. It is clear that C ⊆ V1, so w1 ∈ V1, whence

w1 ∈ V1\S. Repeating the argument also the other elements in the path,

w2 ∈ V1\S, ..., v ∈ V1\S, can be deduced. Since this is a contradiction, it is

concluded that S separates V1 from V2 and that (V1, V2, S) is a decomposition

of G. Thus, G has been decomposed into a number of subgraphs containing
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Figure 2.12: Junction tree of the graph in Figure 2.8.

junction trees and thus are decomposable by the inductive hypothesis.

On the contrary, suppose that G is decomposable and let (W1,W2, S)

be its decomposition into proper decomposable subgraphs GV1 , GV2 , for each

Vi = Wi ∪ S. Then, either V1, or V2, or both has the form
⋃

C∈C1
C with

C1 ⊂ C. If we suppose V1 =
⋃

C∈C1
C, then V2 is redefined as

⋃
C∈C2

C with

C2 = C\C1 and there is still a decomposition. Now, let Ci ∈ Ci with S ⊆ Ci.

Then, there exists a junction tree Ti for Gi by hypothesis, (where, as said

previously, Gi = GVi
) and we form T by linking C1 in T1 to C2 in T2.

It is considered now v ∈ V , if v /∈ V1, then v is in the cliques contained

in C2. Such cliques are also connected in T2, hence in T . It holds similarly

if v /∈ V2. Otherwise v ∈ S. Thus, in general, the cliques in Ci containing v

are connected in Ti, and include Ci. Now, the theorem is proved whereas C1

and C2 are connected in T .

�

By this theorem it follows that the intersection S = C1 ∩ C2 between two

neighbouring nodes C1 and C2 in a junction tree of cliques C is a minimal

separator which separates the decomposable graph G. Additionally, S is said

separator associated with the edge between C1 and C2 of the junction tree

and this term separator is used even if the nodes of the junction tree are not

all cliques. Sometimes distinct edges may have identical separators and the

set of all separators is denoted by S. It can be shown that, if G admits more

than one junction tree of cliques, then S is the same for all of them.

As shown in Figure 2.12, in a junction tree, separators are drawn as

rectangles, whilst nodes formed by cliques are displayed as ovals.

A clique C∗ ∈ C is called extremal if the triplet (C∗\V2, V2\C∗, C∗ ∩V2)

is a decomposition of G, where V2 =
⋃

C∈C\{C∗}C.

25



2.1 Graph notions

Corollary 2.4 If a chordal graph G has at least two cliques, then it has

at least two extremal cliques.

Proof. The proof is due directly to the fact that any junction tree of G
has at least two leaves.

�

A property characteristics of junction trees is the running intersection prop-

erty. The running intersection property is such that, let (C1, C2, ..., Ck) be

a sequence of cliques of a junction tree if, for all 1 < j ≤ k, there exists

an index i < j such that Cj ∩ (C1 ∪ ... ∪ Cj−1) ⊆ Ci, then such a sequence

(C1, C2, ..., Ck) satisfies the running intersection property. In other words, the

intersection between the nodes of a clique and the nodes of all the previous

cliques are contained in one of the previous cliques and this intersection is

represented by the separating nodes.

Let T be a junction tree for a decomposable graph G, by well-ordering

the junction tree, also the cliques of the decomposable graph can be ordered

to have the running intersection property.

Algorithm 2.5 - Junction tree construction. Let G be a chordal

graph, and let (C1, ..., Cp) be a sequence of cliques of G ordered to satisfy the

running intersection property. Then

(i) each clique Ci is associated to a node of the tree;

(ii) for i = 2, ..., p, an edge between Ci and Cj is added, where j is any one

value in {1, ..., i− 1} such that Ci ∩ (C1 ∪ ... ∪ Ci−1) ⊆ Cj.

�

A chain graph K is now considered. If K is a probabilistic network, we shall

see that, in order to make inference, the first stage is to form the moral

graph Km. The moral graph is an undirected graph but may not be chordal.

However, we can make it so and this process allows finding all of the cliques

in G. In general, given any ordering of the nodes of an undirected graph G,
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for example (v1, ..., vk), all the cliques Ci in G are identified by a successive

vertices elimination process. Each node is examined in turn in reverse order,

i.e. beginning by the last vk. The node vk is eliminated if all its neighbours

are already joined. Otherwise, an extra edge is filled-in joining those pairs

of neighbours that appear earlier in the ordering and are not already joined.

Then, the eliminated vertex vk and its neighbours form a clique. This process

is repeated for all vertices. When all the vertices are eliminated, all the cliques

are identified. The resulting graph, which is the undirected graph G including

the extra edges F , is a triangulated graph G ′ = (V,E ′), where E ′ = E ∪ F .

The given ordering (v1, ..., vk) is a perfect numbering for the triangulation G ′

of G.

Example 2.6 Consider the undirected graph in Figure 2.13 (a) with

ordering (A,B,C,D,E). We examine each node in turn in reverse order.

Thus, we start from the last node E. It can be directly eliminated since its

neighbours, A and D, are already joined and no fill-in edges are therefore

required. Then, E and its neighbours form the clique (A,D,E). Consider

now the remaining graph given by the nodes (A,B,C,D). The next node

to examine is the node D. Since its neighbours A and C are not already

joined we need to add an extra edge between them. Thus, also the vertex

D is eliminated and the cliques (A,C,D) and (A,B,C) are identified. The

resulting graph, given by the original undirected graph including the extra

edges, is shown in Figure 2.13 (b) and is a triangulated graph. The three

cliques and its separators will be associated with the nodes of the junction

tree as shown in Figure 2.13 (c).

�

It is worth noting that, in the example 2.6, if a different order were given

to the graph, for example (D,C,B,A,E), after eliminating the node E, the

algorithm would examine the node A rather than D and add an extra edge

between its neighbours B and D. In this alternative case, the resulting

junction tree would be different. Thus, for any undirected graph there is

a number of possible junction trees that can be obtained according to the
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Figure 2.13: Example 2.6.

starting elimination order.

Tarjan and Yannakakis (1984) developed an algorithm to test the tri-

angulatedness of an undirected graph. This algorithm is called maximum

cardinality search and runs in O(n + e) time, where n is the number of

nodes, whilst e is the number of edges. The algorithm works as follows:

(i) number 1 is given to an arbitrary node; (ii) the next node to number

is the one consecutive. If there are more than one consecutive node, we

choose the one with maximum number of previously numbered neighbours.

If the ordering so obtained is perfect, the graph is triangulated. Even though

the maximum cardinality search algorithm demonstrated efficiency in testing

the chordality of a graph, it requires more fill-in edges than are necessary,

producing a number of cliques higher than the minimum. This reduces the

efficiency of the algorithm for probabilistic computations.

2.2 Conditional independence

In this section the notion of conditional independence of random variables

is introduced allowing to justify local computations developed in inference

processes with Bayesian Networks treated in this chapter.
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Definition 2.7 Let X,Y and Z random variables with joint distribu-

tion P , then X is conditionally independent of Y given Z, denoted by

X ⊥⊥Y |Z, if, for any set A of possible values for X, the conditional dis-

tribution P (X∈A |Y, Z) does not depend on Y .

�

Let X, Y and Z to be discrete random variables, if X ⊥⊥Y |Z we can write

P (X = x, Y = y | Z = z) = P (X = x | Z = z)P (Y = y | Z = z), (2.1)

for all z such that P (Z = z) > 0. On the contrary, if X, Y and Z are

continuous random variable with joint density f the independence condition

implies

fXY |Z(x, y | z) = fX|Z(x | z)fY |Z(y | z), (2.2)

for all z such that fz(z) > 0. In particular, if X ⊥⊥ Y , then we can write

P (X|Y = y) = P (X = x), i.e. the conditional distribution of X given

Y = y is equal the marginal distribution of X and this expression holds for

any value y of Y . As a consequence, X and Y are said to be (marginally)

independent.

Let t(X) denote a generic function defined on X, the relation of condi-

tional independence, X ⊥⊥Y |Z, respects the following four properties:

(C1) if X ⊥⊥Y |Z, then Y ⊥⊥X |Z;

(C2) if X ⊥⊥Y |Z and U = t(X), then U ⊥⊥Y |Z;

(C3) if X ⊥⊥Y |Z and U = t(X), then X ⊥⊥Y |(Z,U);

(C4) X ⊥⊥Y |Z and X ⊥⊥W |(Y, Z), then X ⊥⊥(W,Y ) |Z.

For the sake of simplicity, suppose that the three variables are discrete with

density p respect to a product measure, so that p(x, y|z) indicates P (X = x,

Y = y|Z = z). Then the ternary relation X ⊥⊥Y |Z holds if and only if also

the following below statements are true:
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(S1) p(x | y, z) ≡ p(x | z), if p(y, z) > 0;

(S2) p(x | y, z) can be written as l(x, z), if p(y, z) > 0;

(S3) p(x, y | z) ≡ p(x | z)p(y | z), if p(z) > 0;

(S4) p(x, y | z) can be written as l(x, z)k(y, z), if p(z) > 0;

(S5) p(x, y, z) ≡ p(x | z)p(y | z)p(z);

(S6) p(x, y, z) ≡ p(x, z)p(y, z)�p(z), if p(z) > 0;

(S7) p(x, y, z) can be written as l(x, z)k(y, z).

In these statements l and k are two generic functions respectively of (x, z)

and (y, z). Another property of the conditional independence relation that

holds only under additional conditions is:

(C5) if X ⊥⊥Y |(Z,W ) and X ⊥⊥Z |(Y,W ), then X ⊥⊥(Y, Z) |W .

The condition (C5) does not hold universally but it is required a non-strict

logical relationships between Y and Z.

Proposition 2.8 The condition (C5) holds if the joint density p of all

variables is strictly positive.

Proof. Suppose p(x, y, z, w) > 0,X ⊥⊥Y |(Z,W ) as well asX ⊥⊥Z |(Y,W ),

then the equivalent statement (S7) can be applied and

p(x, y, z, w) = a(x, y, w)b(y, z, w) = h(x, z, w)k(y, z, w) (2.3)

for suitable strictly positive functions a, b, h, k. Whereas a continuous density

p has been supposed, for all z it holds

a(x, y, w) =
h(x, z, w)k(y, z, w)

b(y, z, w)
.

Therefore, fixing z = z0, we can write

a(x, y, w) = τ(x,w)φ(y, w)
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with τ(x,w) = h(x, z0, w) and φ(y, w) = k(y, z0, w)�b(y, z0, w). Thus the

equation (2.3) becomes

p(x, y, z, w) = τ(x,w)φ(y, w)b(x, z, w),

and hence X ⊥⊥(Y, Z) |W .

�

Lauritzen (1996) provided a clarification of the conditions (C1)-(C5) thinking

them as formal expressions with a meaning not strictly related to probability.

It is supposed that the three random variables represent the events: knowl-

edge of a subject and reading a book. Thus, the expression X ⊥⊥Y |Z can

be translated as: “known Z, reading the book Y is irrelevant for reading the

book X”. Similarly the four conditions (C1)-(C4) become:

(i) if, knowing Z, reading Y is irrelevant for reading X, then reading X is

irrelevant for reading Y ;

(ii) if, knowing Z, reading Y is irrelevant for reading X, then reading Y is

irrelevant for reading any chapter U of the book X;

(iii) if, knowing Z, reading Y is irrelevant for reading X, then reading Y is

still irrelevant for reading X even if any chapter U of X has been read;

(iv) if, knowing Z, reading Y is irrelevant for reading X, and knowing

Y besides Z, reading W is irrelevant for reading X, then knowing Z

reading both W and Y is irrelevant for reading X.

The condition (C5) is not treated in this sense because slightly more subtle.

2.3 Markov Properties

In this section it is considered Markov properties relative to graphs, widely

discussed by Cowell et al. (1999). Henceforth, it is taken into account the

conditional independence applied to a collection of random variables Xv,
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v∈V that take values in probability spaces Xv. Additionally, it is defined

A a subset of V , and let XA = xv∈AXv, and X=XV . Elements of XA are

denoted xA = (xv)v∈A.

2.3.1 Markov Properties for undirected graphs

Let G be an undirected graph representing the collection of random variables

Xv, for v ∈ V . Let B be a collection of subsets of V , and finally let ψB(x),

for B ∈ B, be a non-negative function of x such that xB = (xv)v∈B.

Definition 2.9 It is defined a B-hierarchical distribution, the joint dis-

tribution P for X such that its probability density p can be factorized in the

following way

p(x) =
∏
B∈B

ψB(x). (2.4)

�

Consider a graph G represented by the set of nodes V = (A,B,C) and

with hierarchical distribution B={(A,B), (B,C)}, then the joint density

function can be factorized as p(xA, xB, xC) = π(xA, xB)τ(xB, xC). Thus,

(S7) gives XA ⊥⊥ XC | XB. Similarly, suppose that V = (A,B,C) and B =

{(A,B), (B,C), (A,C)}, then the joint density function can be factorized as

p(xA, xB, xC)=π(xA, xB) τ(xB, xC) ψ(xA, xC). In this situation, looking at

the equivalent undirected graph in Figure 2.14 (b), XA andXC cannot be said

to be independent given XC , thus not all factorizations produce conditional

independence.

Although any subset in B is obviously a complete subset of G, a graph

G can contain other complete sets not belonging to B. An example is

represented by the clique {A,B,C} in Figure 2.14 (b). Now, let C denote

the collection of cliques of G, it can be concluded that every B-hierarchical

distribution is also C-hierarchical because any subset in B is included in some

cliques in C. For this reason the cliques are preferred to be considered when

it is referred to the conditional independence properties of the hierarchical
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Figure 2.14: Undirected graphs derived by the factorization p(xA, xB, xC) =
π(xA, xB)τ(xB, xC) (a) and p(xA, xB, xC) = π(xA, xB) τ(xB, xC) ψ(xA, xC) (b).

distributions.

Consider the class A of complete subsets of G. If a non-negative functions

ψA exists, that depend on x through xA, for all A ∈ A, and there exist a

product measure µ = ⊗v∈V µv on X , such that the probability measure P on

X has density p with respect to µ with the following form

p(x) =
∏
A∈A

ψA(xA), (2.5)

then we can say that P is defined A-hierarchical and factorizes according to

G. It is worth noting that µ can be chosen with arbitrariness and there are

different ways to multiply groups of functions ψA. Thus, the functions ψA

are not uniquely determined but they are considered as factor potentials of

P .

Factorization. Suppose, without loss of generality, that A is represented

only by the set of cliques C of G. In this situation the factorization becomes

p(x) =
∏
C∈C

ψC(x). (2.6)

When the previous equation holds, P is said to be C-hierarchical and it

satisfies the factorization property (F).

For example, in the graph in Figure 2.18 four cliques can be recognized,

i.e. C1 = (x1, x2, x3), C2 = (x2, x3, x4), C3 = (x4, x5), C4 = (x4, x6); applying

factorization it can be written f(x1, x2, ..., x6) =
4∏

i=1

ψCi
(x)
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Figure 2.15: Undirected graph that satisfies the Markov properties.

�

There are three Markov properties associated with the undirected graph G.
A probability measure P on X satisfies:

the pairwise Markov property (P), relative to G, if given two non-

adjacent vertices (α, β) ∈ V , it can be written

α ⊥⊥ β | V \ {α, β};

the local Markov property (L), relative to G, if given a vertex α ∈ V ,

it can be written

α ⊥⊥ V \ cl(α) | bd(α);

the global Markov property (G), relative to G, if given three disjoint

subsets (A,B,S)∈ V, where S is separator of A and B, it can be written

A ⊥⊥ B | S.

For example, applying the three Markov properties with respect to the graph

in Figure 2.18, it can be said that:

x2 ⊥⊥ x6 | {x1, x3, x4, x5} - pairwise Markov property;

x1 ⊥⊥ {x4, x5, x6} | {x2, x3} - local Markov property;

{x1, x2, x3} ⊥⊥ {x5, x6} | x4 - global Markov property.

Proposition 2.10 (Lauritzen 1996). For any undirected graph G and

any probability distribution P on X it holds that
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(F) ⇒ (G) ⇒ (L) ⇒ (P).

Proof. First it is shown that (F) ⇒ (G). Consider a triplet (A,B,S) of

disjoint subsets of G such that S is an ( A,B)-separator. It is denoted Ã the

connectivity components in GV \S which contain A and B̃=V \(Ã ∪ S) which

contain B. The elements A and B are included in different connectivity

components of GV \S because they are separated by S and, for the same

reason, any clique of G will be either a subset of Ã ∪ S or of B̃ ∪ S. Thus,

from the equation (2.6) it is obtained

p(x) =
∏
C∈C

ψC(x) =
∏

C∈CA

ψC(x)
∏

C∈C\CA

ψC(x) = l(xÃ∪S)k(xÃ∪S).

Therefore, for the property (S7) of conditional independence it is deduced

that Ã ⊥⊥ B̃ | S, whilst applying the (C2) twice it is obtained A ⊥⊥ B | S
which is (G).

Now it is shown that (G)⇒ (L). If (G) holds, then (L) holds too because

bd(α) separates α from V \cl(α).

Finally, it is shown that (L)⇒ (P). Consider the property (L) and suppose

that it holds. Since α and β are non-adjacent vertices, β belongs to V \cl(α)

and bd(α)∪(V \cl(α))\{β}=V \{α, β}. Applying (C3) to property (L) it

is obtained α ⊥⊥ V \ cl(α)| V \{α, β}. Now, applying condition (C4), the

required result α ⊥⊥ β | V \{α, β} follows.

�

Theorem 2.11 If a probability distribution on X is such that (C5) holds

for disjoint subsets A,B,C,D then

(G) ⇔ (L) ⇔ (P).

Proof. Assume that (i) both (P) and condition (C5) hold and that (ii)

considering three disjoint subsets (A,B,S) of G, S is (A,B)-separator and

finally that (iii) A and B are non-empty. It is proved that (P) implies (G)

proceeding by reverse induction on the number of vertices n=|S| in S.

If n =|V | − 2, then (G) follows directly from (P) because the subsets
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A and B has one vertex only. Now, assume that the required conditional

independence holds for S with more than n vertices and consider the case

|S| = n < |V | − 2. Firstly, two different situations have to be considered:

A ∪ B ∪ C = V (so that at least one between A and B has more than one

element, for example presume A) and A ∪ B ∪ C ⊂ V . If A ∪ B ∪ C = V ,

since S separates A from B, if α ∈ A then S∪{α} separates B from A\{α},
and S ∪ A \ {α} separates B from α. As a consequence, it can be written

B ⊥⊥ A \ {α} | S ∪{α} and B ⊥⊥ α | S ∪A \ {α} by the inductive hypothesis.

Applying (C5) it follows that A ⊥⊥ B | S.

Now, consider the second case, A ∪ B ∪ C ⊂ V , and select α ∈ V \ (A ∪
B ∪ C). Then S ∪ {α} separates A from B and (G) gives A ⊥⊥ B | S ∪ {α}.
Further, either A ∪ S separates B and {α} or B ∪ S separates A from {α}.
Assuming the former α ⊥⊥ B | A∪S is derived, and (C5) gives B ⊥⊥ (A∪{α}) |
S. Thus, it can be concluded that the required independence, A ⊥⊥ B | S,

holds. The proof of the latter case is similar.

�

In Hammersley and Clifford (1971) proved that under the assumptions of all

discrete state spaces and positive and continuous density of the probability

distribution, (P) implies (F) and thus all Markov property are equivalent.

It is worth noting that whilst the condition of a continuous density can be

considerably relaxed, the positivity is indispensable.

When the triplet (A,B,S) of disjoint subsets of V forms a decomposition of

G also the Markov properties decompose, as seen in the following proposition.

Proposition 2.12 Let G be a graph decomposed in the triplet (A,B,S),

if both PA∪S and PB∪S factorizes in (F) with respect to GA∪S and GB∪S, then

P factorizes with respect to G and the density p can be written as

p(x) =
pA∪S(xA∪S)pB∪S(xB∪S)

pS(xS).
(2.7)
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Proof. Assume that P factorizes with respect to G such that

p(x) =
∏
C∈C

ψC(x).

Since (A,B,S) is a decomposition of G by assumption, all cliques are subsets

of either A ∪ S or of B ∪ S and, as a consequence, p is factorized as

p(x) =
∏
C∈A

ψC(x)
∏
C∈B

ψC(x) = a(xA∪S)b(xB∪S).

It is defined, by direct integration, the marginal distribution p(xA∪S) as

the product a(xA∪S)g(xS), where g(xS) =
∫
g(xB∪S)γB(dxB). The other

marginal distribution p(xB∪S) is defined similarly. Substituting the values

of a(xA∪S) and b(xB∪S) as functions of the marginal densities p(xA∪S) and

p(xB∪S), (2.8) is given.

�

This result holds also for the global Markov property; Lauritzen (1996) gave

a proof. In general for a decomposable graph G, if p factorizes as

p(x) =

∏
C∈C

p(xC)∏
S∈S

p(xS)
, (2.8)

where S is the set of separators of the cliques C of G, then the distribution

P is Markov with respect to G.

2.3.2 Markov Properties for DAGs

In this section the Markov properties for directed acyclic graphs D are

considered.

Definition 2.13 A probability distribution P admits a recursive factor-

ization according to D if a (σ-finite) measures µv over X exists and non-

negative kernels functions Kv(·, ·), for all v ∈ V defined on Xv ×Xpa(v) such

37



2.3 Markov Properties

that ∫
kv(yv, xpa(v))µv(dyv) = 1

and P has density p with respect to the product measure µ = ⊗v∈V µv given

by

p(x) =
∏
v∈V

kv(xv, xpa(v)).

�

Directed factorization (DF). A probability measure P on X satisfies the

property (DF) if it admits a recursive factorization.

�

It is further deduced by induction that if P admits a recursive factorization.

Then the conditional distribution of Xv | Xpa(v) = xpa(v) has densities kernels

Kv(·, xpa(v)). Hence its density p can be written as

p(x) =
∏
v∈V

p(xv | xpa(v)). (2.9)

Lemma 2.14 If P admits a recursive factorization according to D, then

it factorizes according to Dm, where Dm is the (undirected) moral graph

formed from D. Moreover, the probability distribution P satisfies the global

Markov property relative to Dm.

Proof. Since the moral graph Dm is obtained marrying parents (and

replacing directed edges by undirected edges) sets {v} ∪ pa(v) in Dm are

complete by construction. Thus, it is defined ψ{v}∪pa(v) = kv. Whereas (F)

⇒ (G) in an undirected graph (see Proposition 2.10), also the last statement

is proved.

�

Let bl(v), called Markov blanket of v, to denote the set of neighbours of v

in Dm and the set of v’s parents, children, and children’s parents in D, i.e.

bl(v) = pa(v) ∪ ch(v) ∪ {w: ch(w) ∩ ch(v)6= ∅}. The local Markov property
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relative to Dm gives v ⊥⊥ V |bl(v).

Proposition 2.15 If a probability distribution P admits a recursive fac-

torization according to D, then the marginal distribution PA on an ancestral

set A admits a recursive factorization according to DA.

Corollary 2.16 - Directed global Markov property (DG) - Let

(Xα,Xβ,XS) be a triplet of disjoint subsets such that XS separates Xα from

Xβ in the moral graph of the smallest ancestral set containing {α} ∪ {β} ∪
{S}, i.e. Dm

An(α,β,S). If P factorizes according to D, then

Xα ⊥⊥ Xβ | XS.

In this case P is said to be a directed Markov field over D.

�

The power of the global Markov property (relative to both undirected and di-

rected graphs) is represented by its ability to provide a general rule to decide

whether two groups of variables Xα and Xβ are conditionally independent

given a third groupXS. The global Markov property is further considered the

strongest of the Markov properties because the associated list of conditional

independence statements strictly includes the statements associated with the

other properties.

The concept of conditional independence referred to DAGs was stud-

ied by Pearl (1986) who gave an alternative formulation of the global di-

rected Markov property through the concept of directional separation, or

d-separation. In order to explain the notion of d-separation it is useful to

introduce the three kind of connections that can be found in a DAG: a

serial connection, if a node mediates the communication between other nodes

(→X→); diverging connection, if a node has two or more children (←X→);

converging connection, also called V-configuration, if some nodes meet head-

to-head at another (→X←).

In order to give a general definition of d-separation let, Xα, Xβ and XS,
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for all (α, β) 6= S, be disjoint sets of nodes that belong to V in a directed

acyclic graph D, it is said XS d-separates Xα from Xβ if it blocks every trail

from Xα to Xβ. A trail π between two nodes is blocked by XS if, either

1. for every node Xγ, with γ ∈ S, Xγ has serial or diverging connections,

or

2. Xγ has converging connections, and nor Xγ neither its descendants are

in XS.

Two nodes that are not d-separated are called d-connected and it is called

active a trail that is not blocked by XS.

Proposition 2.17 Consider a directed acyclic graph D and its disjoint

subsets Xα, Xβ and XS, for all (α, β) 6= S. XS d-separates Xα from Xβ if

and only if XS separates Xα from Xβ in the graph Dm
An(α,β,S), i.e. the moral

graph of the subgraph induced by {α} ∪ {β} ∪ {S}.

Proof. Assume that Xα and Xβ are not d-separated by XS. As a

consequence, from Xα to Xβ there is a trail not blocked by XS, thus active.

An example is showed in Figure 2.16. Since the trail is active, either there

is some vertex Xγ with a converging connection which, either belong to XS,

or has descendants in XS; otherwise, either of the subpaths away from Xγ

either meets another arrow, Xγ has descendants in XS, or connects all the

way to Xα or Xβ. Thus, the An(Xα ∪Xβ ∪XS) must contain all the vertices

in the trail. The moral graph corresponding to the active chain contains a

trail from Xα to Xβ in Dm
An(α,β,S) and circumventing S.

On the contrary, assume that Xα and Xβ are not separated in Dm
An(α,β,S).

Then a trail that circumvents XS can be found in the graph. This trail

contains both edges of the original graph and edges that marry parents.

Since marriages derives from converging connection at some node Xγ, if

Xγ ∈ XS or it has descendants in S, the connection does not block the

trail. Otherwise, if Xγ is not in XS or it has not descendants in XS, a new

trail can be drawn with one less head-to-head meeting and using the line
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Figure 2.16: An active trail from Xα to Xβ.

Figure 2.17: Moral graph of Figure 2.15.

of descent. A representation is in Figure 2.17. Repeating the argument an

active trail from Xα to Xβ can be created in Dm
An(α,β,S).

�

An alternative and more straightforward method to analyze conditional

independence in directed acyclic graphs follows by this proposition. In fact

if XS separates Xα from Xβ in Dm
An(α,β,S), then the global Markov property

relative to undirected graphs gives that Xα ⊥⊥ Xβ | XS. For example, Figure

2.18 (b) shows the moral graph of the smallest ancestral set including all the

variables involved. Since S separates X from Y in the moral graph of the

subgraph induced then the global Markov property can be applied, and it

can be concluded that X ⊥⊥ Y | S.

Local directed Markov property (DL). Consider a directed acyclic

graph D, if for any vertices v ∈ V

v ⊥⊥ nd(v) | pa(v), (2.10)
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Figure 2.18: Since S separates X from Y in the moral graph of the subgraph
induced by X ∪ Y ∪ S (b), the global Markov property gives X ⊥⊥ Y | S.

then P obeys the local directed Markov property. Instead of all non-descendant,

consider the predecessors pr(v) of v in some given well-ordering of the nodes,

so that

v ⊥⊥ pr(v) | pa(v). (2.11)

Then it is said that P obeys to the ordered directed Markov property (DO).

�

Theorem 2.18 Let D be a directed acyclic graph. For a probability

distribution P on X which has density with respect to a product measure µ,

the following conditions are equivalent:

(DG) P admits a recursive factorization according to D;

(DG) P obeys to the global directed Markov property, relative to D;

(DL) P obeys to the local directed Markov property, relative to D;

(DO) P obeys to the ordered directed Markov property, relative to D.

Proof. Corollary 2.16 proves that (DF) implies (DG). Considering a

vertex {v} and its non-descendants, v ∪ nd(v) is an ancestral set and pa(v)

separates v from nd(v)\pa(v) in Dm
v∪nd(v). Thus, (DG) implies (DL). Since

pr(v)⊆nd(v), (DL) implies (DO). The final equivalence is proved by induction

on the number of vertices |V | of D. Let v0 be the last vertex in D and kv0

be the conditional density of Xv0|XV \{v0}. Such conditional density by (DO)
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can be chosen to depend on xpa(v0) only. On the contrary, by inductive

hypothesis, the marginal distribution XV \{v0} obeys the ordered directed

Markov property admitting a factorization. If this factorization with kv0 is

combined, then also P admits the factorization, proving the final condition

of the theorem.

�

It is denoted M(D) the set of distributions for a directed acyclic graph D
called directed Markov distributions and such that any of the four conditions

in Theorem 2.18 is satisfied.

It is considered now a perfect directed acyclic graph D and its undirected

version D∼. The directed Markov property on D and the factorization

property on D∼ coincide.

Proposition 2.19 Let D be a perfect directed acyclic graph and D∼

its undirected version. Then, a probability distribution P on X obeys the

directed Markov property relative to D if and only if it admits a recursive

factorization according to D.

Proof. If a graph is perfect, for all v ∈ V pa(v) is complete. Hence,

Dm = D∼. Applying Lemma 2.14 then any P ∈ M(D) factorized with

respect to D∼.

For the reverse assumption it is proceeded on induction by the number of

vertices |V | of D. If |V | = 1 the proof is immediate. Now, it is assumed the

proposition holds for |V | = n and it is proved it holds also for |V | = n + 1.

Let P ∈M(D∼) and a terminal vertex v ∈ V is considered. This vertex has

paD(v) =bdD∼(v) and, being D perfect, bdD∼(v) is a complete set in both

graphs. Hence, the triplet (V \{v}, {v},bd(v)) is a decomposition of D∼ and

for Proposition 2.12 the following factorization holds:

p(x) = p(xV \{v})p(xcl(v))/p(xbd(v)) = p(xV \{v})k
v(xv, xpa(v)), (2.12)

where
∫
kv(yv, xpa(v))µv(dyv) = 1, and the first factor factorizes according to
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D∼
V \{v}. Now, the inductive assumption on this factor gives the full recursive

factorization of P .

�

2.3.3 Markov Properties for chain graphs

In this section Markov properties on general chain graphs K = (V,E) are

investigated. We further assume positive density for all probability measures,

so that the five conditions (C1) - (C5) on conditional independence hold.

The Markov properties relative on K are the following. A probability P

satisfies:

(CP) the pairwise chain Markov property, relative to K, if for any pair

(α, β) of non-adjacent vertices with β ∈ nd(α),

α ⊥⊥ β|nd(α)\{α, β};

(CL) the local chain Markov property, relative to K, for any vertex α ∈
V ,

α ⊥⊥ nd(α)\bd(α)|bd(α);

(CG) the global chain Markov property, relative to K, if for any triplet

(A,B, S) of disjoint subsets of V

A ⊥⊥ B|S,

where S separates A from B in the moral graph of the smallest ancestral

set containing A ∪B ∪ S, Km
An(A∪B∪S).

As for directed acyclic graphs a definition of d -separation exists for chain

graphs. Studený and Bouckaert (1998) introduced a definition of c-separation

which is equivalent to the separation property used in the global chain

Markov property. These Markov properties have the characteristic to unify

the properties relative to undirected graphs with those for directed graphs.

Let V = V (1)∪, ...,∪V (T ) be a dependence chain that partitions the
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vertex set. Each set V (t) has lines between vertices only, whilst arrows point

from vertices in set with lower number to those with higher number. It is

defined C(t) = V (1)∪, ...,∪V (t) as the set of concurrent variables. It is said

that P satisfies the block -recursive Markov property (CB) if for any pair

(α, β) of non-adjacent vertices

α ⊥⊥ β|C(t∗)\{α, β},

where t∗ is the smallest t having {α, β} ⊆ C(t). This property depends on

the particular partitioning, but Frydenberg (1990) proved that if P satisfies

the condition (C5) for subsets of V , then

(CG) ⇔ (CL) ⇔ (CP) ⇔ (CB).

Now, if V (1), ..., V (T ) is a dependence chain of K or the chain components of

K, then any distribution P with density p with respect to a product measure

µ factorizes as

p(x) =
T∏

t=1

p(xV (t)|xC(t−1)),

where C(t) is defined as previously. This factorization reduces to

p(x) =
T∏

t=1

p(xV (t)|xB(t)) (2.13)

if B(t) = pa(V (t)) = bd(V (t)) and p is Markov relative to K. This factoriza-

tion, essentially, is the same as that introduced for directed Markov properties

even though it does not reveal all conditional independence relationships.

This equality is due to the fact that chain graphs form a directed acyclic graph

of its chain components. However, it should be intuitable that factorization

results are more general for chain graphs than for undirected graphs. On

the contrary, chain graphs contain special cases that do not allow this. For

example, let K∗(t) be the undirected graph with vertex set V (t)∪B(t) and α

adjacent to β in K∗(t) if either (α, β) ∈ E or (β, α) ∈ E or if {α, β} ⊆ B(t),

i.e. B(t) is made complete in K∗(t) by adding all missing edges between

these and directions on existing edges are ignored. However, if all variables
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are discrete we have a result analogous to case of positive density of P

and the pairwise Markov property relative to undirected graph that implies

factorization.

Theorem 2.20 Let P be a probability distribution on a discrete sample

space and with strictly positive density p. This satisfies the pairwise chain

graph Markov property with respect to K if and only if it factorizes as

p(x) =
T∏

t=1

p(xV (t)∪B(t))

p(xB(t))
, (2.14)

and each of the numerators factorizes on the graph K∗(t).

Proof (Lauritzen 1996).

�

Corollary 2.21 If the density p of a probability distribution factorizes as

in (2.13), it also factorizes according to the moral graph Km and therefore

obeys the undirected global Markov property relative to Km.

Proof See Cowell et al. (1999).

�
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Chapter 3
Bayesian Networks for discrete

variables

3.1 Bayesian Networks

Bayesian networks represent probabilistic models employing graphical struc-

tures to describe casual relationships between random variables which can

be discrete and/or continuous. Probabilistic networks with discrete random

variables only are the simplest form of these systems since they produce an

exact analysis. When inference is performed, after observing one or more

variables and entering evidence in the domain, the probability of the other

variables are updated. This process requires operations, such as marginal-

ization and conditioning as result of compiling the model, and therefore

requires also the construction of a junction tree of cliques which are the

largest set of variables under investigation. Whereas these cliques are handled

simultaneously, they may lead computational problems. For this reason the

individual cliques in the triangulated moral graph are required to have a size

such to allow the extension of calculations to the complete set of variables.

In this section each fundamental stage is defined to describe in detail

the algorithm for propagating information through a junction tree and other

operations. Finally, each step is illustrated through an application taken by

Lauritzen and Spiegelhalter (1988).
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3.1.1 Definition of Bayesian Networks

A Bayesian network (BN) can be defined as a pair (D,P) that satisfies

the Markov properties for directed graphs. In this notation D=(V,E) is

a DAG and P is the joint probability distribution of the nodes in the graph.

The vertices in V represent random variables and the edges E between the

variables indicate conditional probabilistic dependencies.

Random variables in V can be discrete or continuous but for the sake

of simplicity in this section it is referred only to the discrete case in which

for each variable a finite set of states is defined and a probability measure is

associated. Thus, a table specifying the conditional probabilities p(xk|xpa(k))

is attached to each variable X of D. As previously described in Section

2.3.2, the Markov properties on directed acyclic graphs may lead to factorize

the conditional probabilities p(xk|xpa(k)) in terms of potentials (see S 3.1.3).

If pa(k) = ∅, the table consists of unconditional probabilities, said prior

probabilities.

Let U ⊆ V , it is denoted by U or XU the Cartesian product of the state

sets of the nodes of U which is the space of U . Similarly, the space of V is

denoted V or X , the space of U ∪W by U ∪W, and that of W\U by W\U .

A potential on U is a mapping from U to the non-negative real numbers R0.

Particularly, the table of conditional probabilities p(xv|xpa(v)) is a potential

on v∪pa(v), but with the constrain that, for a fixed parent configuration,

the probabilities must be normalized to sum to unity when summed over the

states in v. Then, their product gives the joint probability distribution over

X .

Definition 3.1 Let U ⊆ W ⊆ V , let φ be a potential on U and let

x ∈ W . It is defined φ(x) = φ(y), where y is the projection of x onto W .

Then the potential φ is extended to W .

�

Definition 3.2 Let φ and ψ be potentials on U and W such that have been

extended to U ∪W . It is defined their:

(i) product φψ on U ∪W by (φψ)(x)=φ(x)ψ(x);
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(ii) sum φ+ ψ on U ∪W by (φ+ ψ)(x) = φ(x) + ψ(x);

(iii) division by(φ/ψ)(x) = φ(x)/ψ(x) if ψ(x) 6= 0, and zero otherwise.

�

Definition 3.3 Let W ⊆ U ⊆ V and let φ be a potential on U . It is defined

the margin
∑

U\W φ of φ on W as

(∑
U\W

φ

)
(x) =

∑
z∈U\W

φ(z.x)

for x ∈ W and z.x ∈ W with projections x to U and z to W\U .

�

3.1.2 Inference in Bayesian networks

The main aim of inference in Bayesian networks is to calculate updated prob-

abilities when a particular information is achieved, i.e. evidence is observed.

For example, let X be a random variable with n states, it is assumed to get

information that X is in the state i. So, all the states of X except i are

impossible and probability zero is associated to them. It could be of interest

the probability of another node connected with X (e.g. its parent) given the

new information on X. This probability can be straightforward to calculated

applying the Bayes theorem. However, the probabilities of all the nodes in

the network can be updated using this method only if the network is small

and each node has few states, whilst it becomes difficult to make inference if

multiple pieces of evidence are entered. In this case algorithms based on the

construction of junction trees can be used. In the following subsections all of

the stages are described. Summering, given a Bayesian network, it must be

moralized, and then triangulated in order to make it decomposable and to

allow that a junction tree exists (see Section 3.1.3). Before the junction tree

can be used, it must first be initialized to provide a local representation of
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the overall distribution. Then, after evidence is entered, local computations

which yield marginal and conditional distributions are realized.

Initialization

The initial graphical approach to the problem can be examined in terms of

conditional independence through the Markov properties relevant to undi-

rected, directed acyclic or chain graphs.

It is denoted T a junction tree of cliques C for the triangulated moralized

graph Dmt of D. When T is disconnected it can be easily managed by

considering each component, therefore T is assumed to be connected.

Reminding the equation (2.8) in Section 2.3.1 a factorization over D of

the density p(·) of the probability distribution P on D is given by

p(x) =
∏
v∈V

p(xv | xpa(v)) =
∏
v∈V

ψ{v}∪pa(v)(x)

∝
∏

v

Z−1(xpa(v))
∏

A∈Av

ψA(xA), (3.1)

where Av denotes the set of maximal subset of {v} ∪ pa(v) that is complete

in Dm of D and contains at least one child in v.

Now a factorization over T of the density p(·) of the joint distribution P

on T is considered. It is made as follows:

(i) it is associated a potential φC to each clique C ∈ C and a potential φS

to each separator S ∈ S connecting two cliques in T ;

(ii) all the potentials, {φC , C ∈ C} and {φS, S ∈ S} are initialized to have

value unity;

(iii) for each node v, a clique C of T such that {v}∪pa(v) ⊆ C is considered

and each factor in (3.1) is multiplied into the potential of any one clique

of T . The moralization of the directed acyclic graph ensures that one

such clique always exists, and even though there are more than one

such cliques it does not make difference which is taken into account;
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(iv) the final result is the following factorization of D

p(x) =

∏
C∈C φC(xC)∏
S∈S φS(xS)

, (3.2)

where φS ≡ 1.

Passing flow of information between adjacent cliques and reaching

equilibrium

It is called charge on T a set of non-negative potential functions Φ = {φA, A ∈
C ∪ S}. For any charge, its contraction is defined by the right-hand side of

(3.2) above. Actually, the initialization phase described previously is an

initial representation, and its potentials are initial potentials. Whilst, Φ are

called (generalized potential) representation of P when the expression (3.2)

holds.

The algorithm for propagating information include a sequence of mes-

sages, or flows, which pass along the edges of T and involve the potentials

on exactly one clique and one separator. It is shown the way in which a flow

passes from a clique C1 in T , called the source, to an adjacent clique C2 in

T , called the sink, along the edge of the separator S0 which joins them. It is

considered the charge Φ = ({φC , C ∈ C}), {φS, S ∈ S} which, as effect of the

flow, is replaced by a new charge Φ∗ = ({φ∗C , C ∈ C}, {φ∗S, S ∈ S}). Now,

the new potentials on S0 and C2 are obtained using Definitions 3.2 (i) and

(iii), and Definition 3.3 giving the following expressions

φ∗S0
=
∑

C1\S0

φC1 , (3.3)

and

φ∗C2
= φC2λS0 , (3.4)

where the update ratio λS0 is given by the ratio

λS0 = φ∗S0
/φS0 (3.5)
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and it derives by passage the flow along S0 into C2. A flow is said consistent if∑
C\S φC = φS for any C ∈ C and neighbouring S ∈ S. If a flow is consistent,

its passage does not affect a charge Φ. Furthermore, passage of flow does not

affect the contraction of a charge.

A particular sequence of flows are the active flows. The definition of

active flows is related to a schedule, where a schedule is an ordered list of

directed edges of T which specifies the flows that are to be pass and in what

order. Now, a flow is said to be active if, before sending the flow, the source

itself has already received active flows from all its neighbours in the tree,

with the possible exception of the sink. Thus, an active flow originates by a

leaf which is a clique in T with only one neighbour. A schedule containing

only active flows is said active. Whilst, if it contains an active flow in all

directions it is full, and fully active if it is both full and active. It has been

proved (see Cowell et al. (1999)) that there is a fully active flow for any tree.

A subtree is now considered. A subtree T ′ of T is a connected collection

of cliques and their edges belonging to T . A clique C is a neighbour of a

subtree T ′ if C is not a clique of T ′ but is a clique of T and is connected to

T ′ by an edge in T . Thus, let T ′ be a subtree of T containing vertices C ′ ⊆ C
and edges S ′ ⊆ S. The set of variables U ′ :=

⋃
{C : C ∈ C ′} associated with

T ′ is the base of T ′. If Φ = ({φC , C ∈ C}, {φS, S ∈ S}) is a charge of T ,

then Φ′ := ({φC , C ∈ C ′}, {φS, S ∈ S ′}) is a charge of T ′. Now, considering

a certain schedule of flows, if at a given stage of the schedule the subtree T ′

has already received active flows from all its neighbours, then T ′ is live.

Theorem 3.4 Let Φ0 = ({φ0
C , C ∈ C}, {φ0

S, S ∈ S}) be a charge for an

initial representation and for a function f that factorizes on T . Suppose that

a sequence of flows passes according to some schedule, then, whenever T ′ is

live, the potential on T ′ is the sum-margin fU ′ of f on U ′.

Proof. See Cowell et al. (1999).

�

Corollary 3.5 Whenever a clique C is live, it has potential fC .
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Corollary 3.6 Whenever active flows have passed in both directions across

an edge in T , the potential for the associated separator S is fS.

Corollary 3.7 Let C1 and C2 be two cliques in T separated by S. Whenever

active flows have passed in both directions across the edge between C1 and

C2, the tree is sum-consistent along S. Thus,∑
C2\S

φC2 = φS =
∑
C1\S

φC1 .

Corollary 3.8 After a full schedule of flows has passed, the charge changes

in the marginal charge Φf of f , and the system reaches equilibrium.

This Corollary is our principal results since it shows the ability of the

flows propagation process to calculate margins on all cliques and separators.

Corollary 3.9 If f factorizes on T , then Φf is a representation for f , and

can be expressed as follows

f =

∏
C∈C fC∏
S∈S fS

. (3.6)

Entering and propagating evidence

The algorithm for propagating information involves two stages of collection

to, and distribution from, a root-clique of a flow. Thus, an arbitrary clique

C0 ∈ C, identified as root-clique, is selected. Active flows are initially collected

toward C0. Thus, the root-clique C0 absorbs all information available and

its potential becomes fC0 which is a marginal representation of f . Then, all

information must be passed to all remaining cliques. Hence, active flows are

distributed from C0 back toward the periphery. After the end of the entire

process of collection and distribution, each clique has received active flows

passed in both directions between every pair of cliques and the resulting

charge is a sum-margin of f . This process allows to define a probabilistic
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network as a dynamic model.

It is formally meant by evidence a function E : X → {0, 1}, where the

elements of X which have assigned value zero are impossible. It is called E a

finding. The evidence function can be factorized as

E(x) ≡
∏
v∈U

lv(xv), (3.7)

where U is a certain set of nodes. Particularly, if the evidence is given by

findings such that Xv has a definite state for each node v ∈ U , then the

element lv(xv) in (3.7) is

lv(xv) =

1 if xv is the observed state of node v,

0 otherwise.

For example, let X be a node with n states (x1, x2, ..., xn). Suppose to get

the information that X can be only in state i. The elements of X are zero

in all impossible states, except i where have unity value.

Initially, before the evidence is observed, the junction tree is the expres-

sion of the overall (prior) distribution of all the variables, i.e. it contains

a their representation. When evidence is incorporated in the network, it is

applied involving the potentials which are modified. These modifications are

then propagated through the tree yielding the posterior probabilities. The

posterior joint probability function for E is given by the following product

p(x|E) ≡ kp(x)E(x), (3.8)

where p(x) is the prior probability function for the network and k is a

normalizing constant given by the reciprocal of the prior probability of E .
The evidence enters into the junction tree multiplying the potential φC

by lv for some arbitrary clique C containing v and for each v ∈ U . The

potential φC(xC) assumes value 0 when it has observed the state xv of node

v and xC is a state other than xv. The modified potentials now constitute a
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representation of pE(x) ≡ p(x&E) ≡ p(x)E(x) ∝ p(x|E), i.e. the contraction

of the final charge is equal the joint probability of x and the evidence. Now

the passage of a full schedule of flows leads the junction tree to equilibrium

and the final charge will be ({pEC , C ∈ C}, {pES, S ∈ S}). Then, the posterior

probabilities are obtained normalizing the potentials to sum to unity. The

expressions for the joint posterior probabilities is shown below:

p(x&E) =

∏
C∈C p(xC&E)∏
S∈S p(xS&E)

, (3.9)

and

p(x|E) =

∏
C∈C p(xC |E)∏
S∈S p(xS|E)

. (3.10)

A local application

Here it is shown the general principles of the local computation for a brief

illustration applied to a junction of only two cliques. Obviously, the basic

idea can be extended to sizer junction trees. Let US and SZ be two cliques

separated by S in a junction tree T , where U , S and W are discrete random

variables with strictly positive joint density functions which factorize as

p(u, s, w) = f(u, s)
1

h(s)
k(s, w). (3.11)

For the condition (S6) in Section 2.2, this factorization holds if and only if

U ⊥⊥ W |S.

the marginal density p(u, s) summing over w are now calculated:

p(u, s) =
∑

w

p(u, s, w) =

=
∑

w

f(u, s)
1

h(s)
k(s, w) = f(u, s)

1

h(s)

∑
w

k(s, w). (3.12)

If it is defined

h∗(s) =
∑

w

k(s, w) (3.13)
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and

f ∗(u, s) = f(u, s)
h∗(s)

h(s)
, (3.14)

then, follows

f ∗(u, s) = p(u, s). (3.15)

The calculation of p(u, s) can be imagined through the expressions (3.13) and

(3.1.2) as the effect of passing a local flow from the clique US to SZ through

the separator S. Additionally, the quantity h∗(s)/h(s) is the update ratio.

We have, for the marginal density p(u, s, w):

p(u, s, w) = f(u, s)
1

h(s)
k(s, w)

= f(u, s)
h∗(s)

h(s)

1

h∗(s)
k(s, w)

= f ∗(u, s) 1
h∗(s)

k(s, w), (3.16)

by (3.1.2). Thus, the effect of the passage of the flow is a new representation

for p(u, s, w) as function of the marginal densities.

Now, the flow has to pass in the other direction, from SZ to US. Parallel

to (3.13) it is defined

h′(s) =
∑

u

f ∗(u, s),

which is equal to p(s) by . Similarly, parallel to we have

k′(s, w) = k(s, w)
h′(s)

h∗(s)
= p(s, w).

Finally, parallel to the overall representation involves only marginal densities.

p(u, s, w) = f ∗(u, s)
1

h′(s)
k′(s, w),

that is

p(u, s, w) = p(u, s)
1

p(s)
p(s, w).
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Figure 3.1: The Bayesian network representing the Asia example.

3.1.3 Propagation algorithm applied to the Asia ex-

ample

In this section the propagation algorithm will be explained through a ficti-

tious example, the Asia network, already treated by Lauritzen and Spiegel-

halter (1988).

Dyspnoea is a disease that produce shortness-of-breath and can be caused

by tuberculosis, or lung cancer or bronchitis, or none of them, or a combi-

nation of them. A recent visit in Asia increases the change of tuberculosis.

Additionally, smoking is a risk factor for lung cancer and bronchitis. A single

chest X-ray test does not discriminate between lung cancer and tuberculosis

and it does not provide information about presence or absence of dyspnoea.

A casual network of this medical problem is shown in Figure 3.1. The

model is a directed acyclic graph with binary variables and directed edges

representing casual influences. Assuming that a patient has been recently in

Asia, it is of interest in evaluating the chance that the patient has to contract

any of these diseases.

The joint distribution p(a, t, x, e, d, l, b, s) can be factorized as the prod-

uct of the conditional distributions of each node given the parents (see Section

2.3.2), i.e.

p(a)p(s)p(t | a)p(e | t, l)p(l | s)p(b | s)p(d | e, b)p(x | e). (3.17)
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Figure 3.2: Moralization of the Asia example. Parents are married through the
red edges.

The factorization is now expressed as function of potentials ψ(·):

ψ(a)ψ(s)ψ(t, a)ψ(e, t, l)ψ(l, s)ψ(b, s)ψ(d, e, b)ψ(x, e), (3.18)

where these potentials were, initially, the conditional probabilities in (3.17),

i.e ψ(a) = p(a), ψ(e, t, l) = p(e | t, l) etc. for all variables.

The undirected form of the graph is now considered in order to keep track

of the groups of variables entering into the potentials ψ. Thus, the corre-

sponding moral graph of the Asia example obtained dropping the directions

and marrying parents is shown in Figure 3.2.

Note that the factorization in (3.18) involves several expressions that

are function of the cliques in the moral graph.

Such moral graph is not triangulated since there are cycles of length 4 or

more without a chord, e.g. the cycle involving the nodes (s, l, e, b). Therefore,

it need to be made chordal in order to construct a junction tree. Thus, a

chord is added between the nodes l and b, as shown in Figure 3.3.

If the potentials ψ defined on the cliques of the filled-in graph are

considered, the joint distribution becomes

ψ(a, t)ψ(e, t, l)ψ(s, l, b)ψ(e, l, b)ψ(d, e, b)ψ(x, e), (3.19)

where the functions ψ are obtained by matching the terms in (3.17). For

example, ψ(a, t) = p(a)p(t | a), ψ(e, t, l) = p(e | t, l), ψ(s, l, b) = p(l | s)p(b |
s)p(s), etc. Thus, this expression can be reduced to the product of the
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Figure 3.3: Triangulated version of the Asia example. In this case we could either
add an edge between the nodes s and e, or between the nodes l and b to obtain a
triangulated graph.

Figure 3.4: Cliques in the triangulated graph of the Asia example.

potentials defined on the cliques of the graph shown in Figure 3.4:

p(x) =
∏

cliquesC

ψC .

The maximum cardinality search applied to the Asia example gives the initial

ordering shown in Figure 3.5, which corresponds to a junction tree involving

cliques and separators as reported in Figure 3.6.

For each network many different junction trees can be obtained, depend-

ing on the choice of the elimination order. There are N ! possible elimination

sequences, where N is the total number of variables in the network. An

efficient junction tree has small clique tables and few cliques in order to have

the minimum total clique size table. The clique size table depends on both the

number of variables in the clique and the number of states for each variable

in the table. Thus, the size table t of an individual clique C is given by the

product of the number of the states in each variable, i.e. tC = n1n2...nNC
,
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Figure 3.5: A possible initial ordering of the Asia example.

Figure 3.6: Asia net junction tree.

where tC is the size table of the clique C, ni, for i = 1, 2, ..., NC , is the number

of states in each variable in C, and NC is the total number of variables in C.

A factorization over T of the joint distribution P allows to express

P as a function of the individual marginal distributions of the cliques and

separators, i.e.

p(a, t)p(t, l, e)p(l, e, b)p(l, b, s)p(e, b, d)p(e, x)

p(t)p(l, e)p(l, b)p(e, b)p(e)
(3.20)

The running intersection property ensures that the joint probability can also

be expressed as

p(a, t)p(l, e | t)p(b | l, e)p(s | l, b)p(d | e, b)p(x | e). (3.21)

This expression also can be obtained from (3.20), being p(l, e | t) =p(t, l, e)/p(t),

p(b | l, e) = p(l, e, b)/p(l, e) etc. Here, p is simply a product of functions on

cliques and hence (3.21) is yet another potential representation.

Generally, the equation (3.21) can be written as
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i
Cliques
Ci

Residuals
Ri

Separators
Si

1 a, t a, t ∅
2 t, l, e l, e t
3 l, e, b b l, e
4 l, b, s s l, b
5 e, b, d d e, b
6 e, x x e

Table 3.1: Cliques, residuals and separators of the graph in Figure 3.1

6∏
i=1

p(Ri | Si)

where Ri are the residuals Ci/Si, Si are the separators and Ci are the cliques.

Table 3.1 shows the cliques, the residuals and the separators. Each term in

(3.21) can be obtained as

p(Ri | Si) = ψ(Ci)/
∑
Ri

ψ(Ci)

For example, the final term p(R6 | S6) is equal to

ψ(x, e)/
∑

x

ψ(x, e).

Then, given the representation in (3.21), the marginal cliques can be derived

multiplying p(Ri | Si)p(Si), where p(Si) is defined by marginalization from

the previous calculated clique marginal. For example, from p(C1) = p(a, t) =

p(t | a)p(a) we calculate p(S2) = p(t) by marginalization; from p(C2) =

p(R2 | S2)p(S2) = p(l, e | t)p(t) we obtain p(S3) = p(l, e) by marginalization,

etc. A condition required for the separators is to be consistent, i.e. if C1

and C2 are two cliques separated by S, the marginal distributions for S is

the same independently from the clique (either C1 or C2) performing the

marginalization. The process to find the marginal distributions is called

initialization of the junction tree.

Suppose now to observe that a patient visited Asia. The evidence on node
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a is propagated throughout the junction tree until all cliques are updated.

Firstly, the clique (a, t) is updated in the following way

p∗(a, t) = p(a, t)
p∗(a)

p(a)
,

where p∗ is the revised distribution after observing evidence; then, the mes-

sage passes to the children clique (t, l, e) through the separator t as follows

p∗(t, l, e) = p(t, l, e)
p∗(t)

p(t)
.

Following a similar argument the evidence is propagated throughout the

junction tree. The factors p∗(a)/p(a) and p∗(t)/p(t) are the update ratios.

Thus, each parent clique in the network passes its message to its children

multiplying each term in the marginal distribution of the child by the up-

date ratio between the new and the old probability. This passage requires

the identification of a root-clique that initially collects evidence and then

distributes it back toward the periphery.
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Chapter 4
Genetic Background

In this section we give a general background on Genetics. In particular, in §
4.1 we give some notions on DNA biology. In particular, we see basic DNA

principles, some details on the DNA structure, we introduced the definitions

of chromosome and gene and we introduce the DNA markers nomenclature.

In § 4.2 we threat the amplification process that is a technic to amplify

and replicate a piece of DNA in order to analyse it. We also introduce

the short tandem repeat markers which are the most common markers used

in literature. Finally, in the last section 4.3 we explain the definitions of

drop-out alleles and stutter which are artefacts that can occur during the

amplification process.

4.1 DNA Biology

4.1.1 Basic DNA principles

The structural and functional unit of all living organisms is the cell. It

is the smallest unit of an organism classified as living. Organisms can be

unicellular if they consist of a single cell, e.g. bacteria, or multicellular, such

as humans (an average human being is composed of approximately 100 trillion

cells). The cell can be compared to a factory that produces energy using as

resource thousands of different proteins called enzymes. All cells come from
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preexisting cells. The nucleus of the cell contains a chemical substance, the

deoxyribonucleic acid (DNA), that include the instructions which are a code

for replicating the cell and constructing the needed enzymes. The DNA

located in the cell nucleus of the organisms is called nuclear DNA, but some

minor DNA can house in human mitochondria, termed mitochondrial DNA,

where a mitochondrion is a membrane-enclosed organelle that is found in

most eukaryotic cells 1.

Furthermore, DNA provides hereditary information that specifies physical

characteristics and other genetic attributes of the organism. Thus, DNA

is material that governs inheritance since it carries on information from

generation to generation. The whole hereditary information, i.e. the entire

DNA in a cell, is referred to as the genome of the organism.

Thus, two are the main aims of DNA: (i) to pass instruction for replicating

the cell and make enzymes; and (ii) to make copies of itself in order to pass

down the organism’s genetic information to future generations with one-half

of a person’s DNA information coming from their mother and on-half coming

from their father.

4.1.2 DNA structure

DNA is a nucleic acid which is located and produced in the nucleus of the

cell and need to preserve and to pass genetic information. Nucleic acids are

composed of nucleotide units that are made up of a nucleobase (or base), a

sugar and a phosphate (see Figure 4.1). Nucleobases represent the alphabet

of the cell’s genetic information and they are four: A (adenine), T (thymine),

C (cytosine) and G (guanine). The combination of the nucleobases forms

a nucleotide and defines a specific biological feature. Thus, nucleotides

produce the diverse biological differences among living creatures. There are

approximately three billion nucleotide positions in the human genomic DNA.

Phospate and sugar form the backbone structure of the DNA molecule,

whilst nucleobase discerns nucleotide unit. The sugar in DNA is 2-deoxyribose,

1Eukaryotics are organisms whose cells are Eukaryotic, i.e. they have a nucleus isolated
by a nuclear envelop.
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Figure 4.1: DNA chemical structure. Image from
http://en.wikipedia.org/wiki/Dna.

which is a pentose (five carbon) sugar. Sugars are joined to phosphate groups

through the third and fifth carbon atoms of adjacent sugar rings, referred to

as the 5’ (five prime) and 3’ (three prime) ends.

In the cell, DNA is composed of two strands linked together through a

hybridization process. Thus, each individual nucleotide matches up with a

complementary base through a hydrogen bound between the bases and follow-

ing a specific pairing rule such that adenine can only hybridize to thymine

and cytosine can only pairs up with guanine (see Figure 4.2). Actually,

since guanine and cytosine are paired up each other through three hydrogen

bounds, whilst there are two hydrogen bounds between adenine and thymine,

CG bound is stronger than AT base pair. Thus, knowing the sequence of one

DNA strand, it is straigthforward to determine the complementary sequence.

As shown in Figure 4.2, the two DNA strands are connected in the shape of a

double helix structure that is a right-handed spiral. The two strands of DNA

are anti-parallel, i.e. direction of the nucleotides in one strand is opposite to

orentation in the other strand.
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Figure 4.2: Representation of DNA strands forming a double helix structure.
Image from Butler, 2005.

4.1.3 Chromosomes

Nuclear DNA is packaged with proteins into automosomal chromosemes. In

the human genome, there are 46 different chromosemes in 23 pairs where

the 23nd pair are the chromosemes X and Y indicating the sex of the in-

dividual. Females are identified by the couple XX containing two copies of

the X chromosemes, whilst males are identified by the pair XY since they

contain a single copy of both X and Y types of chromosemes. In each pair

one choromosome is inherited from mother and one from father, but it is

not possible to distinguish which is which, with the exception that a Y

chromosome must have come from a male individual, hence the father, and

the X of a male must have come from his mother (Mendelian segregation).

Each chromosome contains a centromere which is a specific region that

holds together the two similar halves of the chromosome, termed the sister

chromatids. It is the strongest and thinnest region in the middle of the

chromosome. Since centromere is always off center it yields the short arm

and the long arm of the chromosome (see Figure 4.3).
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Figure 4.3: Representation of a chromosome. (1) Chromatid: one of the
two identical parts of the chromosome. (2) Centromere: the point where
the two chromatids touch. (3) Short arm. (4) Long arm. Image from
http://en.wikipedia.org/wiki/chromosome.

Choromosemes with same size and that have same genetic structure are

said homologous. Cells that contain a pair of homologous chromosomes are

called diploids, haploid cells have a single copy (e.g. the sex cell sperm and

ova), whilst polyploid cells have more copies, such as liver cells. The sequence

of DNA in the homologous pair is the same except if mutations occur. A

chromosomale pair is derived by each parent at the time of conception, when

an egg cell combines with a sperm cell giving life a zygote that is a diploid

cell.

4.1.4 Genes

The DNA is divided into coding and non-coding regions. The coding regions

are referred to as genes, whilst a non-coding region is referred to as a locus.

They code proteins. Thus, genes are composed of exons, i.e. protein-coding

portions, and introns, i.e. the intervening sequences. A size gene ranges from

a few thousand to tens thousands of base pairs. Each gene has a copy of its

in the homologous chromosome at same locus, or position.

Gene expression is termed allele. For example, a gene that represents

the genetic information ”eyes colour” has two alleles that definde light or
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dark colour. A pair of alleles on homologous chromosomes forms a genotype.

For example, it is supposed that the alleles at a locus are A and a, then the

possible genotypes are: AA, Aa, aa. The AA genotype is termed homozygous,

since the two alleles are identical at a specific genetic locus on a homologous

chromosomal pair, whilst the Aa genotype is termed heterozygous, since they

are different. The capital letter indicates the dominant allele, whilst the

small letter indicates the recessive allele. Alleles are generally represented

as positive integers indicating the times that a certain word, given by a

particular sequence of the four bases represented by the letters A,T,C and G,

is repeated. It is defined marker a specific locus where alleles are amplified.

The combination of genotypes for multiple loci forms a DNA profile.

Thus, an individual’s DNA profile consists of measurement on a number

of markers, each comprising a genotype represented by an unordered pair of

alleles. In human identity tests or mixture tests multiple loci are examined in

order to reduce errors in identification deriving by random matches between

individuals which actually are unrelated.

4.1.5 DNA markers nomenclature

The nomenclature for DNA markers is straightforward to use. Now, we

distinguish between DNA markers that fall within a gene and those that

fall outside. Markers that are part of a gene use the gene name for their

designation. For example, consider the short tandem repeat (STR) marker

TH01. The letters TH are the initial letters of the gene name tyrosine

hydroxylase, whilst the number sequence ‘01’ is the number of the intron

of the gene where the repeat region is located. It is possible to add the prefix

HUM- at the beginning of the marker name if we are interested in indicating

that the marker is from the human genome.

For DNA markers falling outside of gene regions, the chromosomal posi-

tion characterizes the name. For example, consider the STR loci D7S820 and

DYS393 (see § 4.2.2). The letter ‘D’ at the beginning of the name stands for

DNA; the next character is referred to respectively the chromosome number

and the Y chromosome. The letter ‘S’ indicates that the DNA is a single
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4.2 DNA amplification and STR markers

copy sequence. Finally, the last numbers are the order in which the markers

has been discovered and categorized for a particular chromosome.

4.2 DNA amplification and STR markers

4.2.1 Polymerase chain reaction (PCR) process

Techniques regarding DNA amplification, such as polymerase chain reaction

(PCR), has been developed in 1983 by Kary Mullis and members of Human

Genetics group at the Cetus Corporation (now Roche Molecular Systems).

Such techniques revolutioned molecular biology so that Kary Mullis received

the Nobel Prize in 1993.

PCR derives its name from one of its key components, a DNA polymerase

that is an enzyme used to amplify (i.e., replicate) a piece of DNA. This

process allows to make millions of copies of a specific sequence of DNA that

is replicated over and over again. The ability of PCR to make copies of DNA

sequence is important especially for forensic science where DNA samples are

often limited in both quantity and quality and otherwise, without this new

technology, samples would be impossible to analyse. In effect, PCR can be

used to analyze extremely small amounts of sample amplifying a single or few

copies of a piece of DNA across a number of orders of magnitude, generating

millions or more copies of the DNA piece. When polymerase chain reaction

permits simultaneous amplification of more than one regions of DNA, PCR

is said multiplex.

Polymerase chain reaction process involves heating and cooling samples

that are subject to over 30 thermal cycles. During each cycle, a copy of the

target DNA sequence is generated for every molecule. Thus, a billion copies

are generated after 30 cycles.

A DNA signature is represented as an electropherogram (EPG) that mea-

sures responses in relative fluorescence units (RFU). The alleles in the elec-

tropherogram are represented with peaks that have a specific height and area

around each allele. An example of electropherogram is shown in Figure 4.4

where the alleles with repeat number 11 and 12 for marker D5 of a DNA
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4.2 DNA amplification and STR markers

Figure 4.4: Electropherogram for a DNA profile for marker D5. The alleles have
repeat numbers 11 and 12.

profile are amplified.

4.2.2 Short tandem repeat analysis

Eukaryotic genomes have a great number of repeated DNA sequences and

they differentiate for the length of the core repeat unit and the number of

contiguous repeat units or the overall length of the repeat region. Regions

with this high number of repeated DNA sequences are said satellite DNA.

Repetitions of a short DNA sequence tend to produce a different frequency

of the nucleotides adenine, cytosine, guanine and thymine, and thus have a

different density from bulk DNA, such that they form a second (or satellite)

band when genomic DNA is separated on a density gradient. Regions with a

medium lenght repeat, approximately 10-100 bases (bp) in length, are termed

minisatellite or a VNRT (variant number of tandem repeats). The shortest

DNA regions (2-6 basees in length) are those called microsatellites, simple

sequence repeats (SSRs), or short tandem repeats (STRs) (see Figure 4.5).

STRs are the most common DNA repeat markers used in forensic science
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4.2 DNA amplification and STR markers

Figure 4.5: Repeat unit structure of minisatellite and microsatellite DNA markers.

due to the fact that they can be easily amplified through the PCR tecnique

since the repeat size of both alleles from an hetetozygous individual are small

and so similar.

The analysis is performed by extracting nuclear DNA from the cells

of a forensic sample of interest, then flanking regions, i.e. the regions that

surround the repeats, are determined and specific polymorphic regions of the

extracted DNA are amplified by means of the polymerase chain reaction.

STR sequences differentiate each other for more factors. An element is the

length of the repeat unit that gives the name to the repeat sequence. Thus,

if a sequence is composed of two nucleotides repeated, then this sequence

is said dinucleotide; if it is composed of three nucleotides repeated, then it

is said trinucleotide; if four, tetranucleotide; if five, pentanucleotide; and if

six, hexanucleotide. Now, for mono-, di-, tetra-, penta-, and hexanucleotide

repeats the possible motifs are respectively 4, 16, 64, 256, 1024, 4096. For

example, for mononucleotide repeats they are: A, C, G, T; for dinucleotide

repeats the possible motifs are: AC, AG, AT, CG, CT, GT, AA, CC, GG,

TT, CA, GA, GC, TA, TC, and TG. Actually, microsatellites are tandemly

repeated, thus some motifs are equivalent to others. As a consequence, the
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4.2 DNA amplification and STR markers

Figure 4.6: Microvariant allele having repeat number 7.4. The allele contains seven
pentanucleotide repeats and one incomplete tetranucleotide with the third missing
repeat at a single guanine of the normal AGGAG repeat unit

possible motifs become 2, 4, 10, 33, 102, and 350 for mono-, di-, tetra-

, penta-, and hexanucleotide repeats. Thus, for example, for dinucleotide

repeats became AC, AG, AT, CG.

Another element to discriminate a STR sequence is the repeat pattern.

For this reason, they are divided into a number of categories based on

the repeat pattern: simple repeats containing units of identical length and

sequence; compound repeats containig two or more adjacent simple repeats;

complex repeats where unit length and intervening sequences are variable.

In a number of cases alleles in STR locus can contain incomplete repeat

units. These are called microvariants ; for example, an allele 7.4 at a cer-

tain STR locus contains seven pentanucleotide repeats and one incomplete

tetranucleotide with the third missing repeat at a single guanine of the normal

AGGAG repeat unit (see Figure 4.6).

STR markers are the most popular for forensic DNA typing (particularly,

among different types of STRs, tetranucleotides repeats are the most used

comparing with di- or trinucleotides; whilst, in the human genome, penta-

and hexanicleotides are less common but however examined in a number of

laboratories) since they are robust enough to survive in conditions of low-

quantity or degraded DNA. In effect PCR amplification of degraded DNA

work better with smaller product sizes. A forensic DNA laboratory often has

to deal with DNA samples that have been found in critical conditions. For

example, think of a crime where the biological material has been left exposed

to environmental factors for days, or the retrieved biological sample has been

found in limited quantity. DNA molecules are degraded by environmental ex-

posure that breaks the molecules randomly into smaller pieces. Particularly,

the materials that damage DNA are water and enzymes called nucleases.

72



4.3 Alleles drop-out and stutter

There is an inverse relation between the size of the locus and successful PCR

amplification from degraded DNA. This is due to the fact that, since STR

loci are amplified with small product sizes, intact DNA strands are easier to

be found. Furthermore, the narrow size range of STR alleles decreases the

chances of drop-out (see § 4.3).

4.3 Alleles drop-out and stutter

During PCR amplification of STR alleles a number of artefacts can occur

interfering with interpretation and genotyping of the alleles in the amplified

DNA. In this chapter we investigate artefacts represented by allele drop-out

and stutter.

Allelic drop-out are due to equipment failure when the low DNA level

is insufficiently amplified to give a detectable signal. This is often due to

reduced quantities of DNA, so that they are not detectable. In particular,

they occur especially in presence of extremely unbalanced contributions to

the mixture. For example, suppose that the genotype of an individual is

represented by the alleles with repeat number {10, 11} for a certain marker,

whilst suppose to observe in the amplification process the allele 10 only. In

this scenario, the allele 11, present in the genotype of the individual, is not

observed since it is a drop-out allele. Similarly, suppose to observe a 2-person

mixture where the DNA proportions are 15 : 1, i.e. 15 parts of DNA come

from a contributor and 1 part comes from the other. Moreover, suppose

to observe in the mixture the alleles with repeat number {8, 9, 10} and that

profiles of the contributors are {8, 9} and {10, 13}. In this scenario, the allele

13, present in the genotype of the second contributor, is not observed in the

mixture since it is a drop-out allele.

Other frequent artifacts are stutters. These are due to a slippage of

the DNA during the replication process. They are spurious products with

extremely small peaks and they contain one repeat unit less than the corre-

sponding main allele peak.
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Chapter 5
The experimental design procedure

In this chapter we describe the DNA mixtures that have been analysed. We

used two different groups of data. The first one, analysed in chapters 7 and

9, are DNA mixtures produced in the laboratory and provided by Capitano

Gianpietro Lago and Tenente Elena Salata from Ra.C.I.S. (Raggruppamento

Carabinieri Investigazioni Scientifiche). The second one, analysed in chapter

8, are DNA mixtures produced in the laboratory provided by FSS (Forensic

Science Service) in London.

The data provided from Ra.C.I.S. are mixed blood samples prepared

in known proportions and made up of two or three individuals termed X,

Y and Z. X and Y are two male individuals, whilst Z is a female. Mix-

tures are termed mix-A, mix-B,..., mix-Q. For each DNA extraction two

kind of amplifications have been performed: the first one employs the kit

IdentifilerTM of Applera, the other one employs the kit PowerPlex16TM of

Promega. Table 5.1 shows, for each mixture, the contributors to the mixture

and the DNA proportions of each contributor. The mixed traces A-F are

2-person mixtures, and the contributors are the individuals X and Y, whilst

the mixed traces G-Q are 3-person mixtures.

The data provided from FSS are mixed blood samples prepared in known

proportions and made up of two individuals. They are six mixtures termed

mix-1, mix-2, ..., mix-6.

The contributors to the mixtures have been called using the alphabetic
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Mixture
Contributors
X Y Z

A 1 1 0
B 1 2 0
C 1 5 0
D 1 10 0
E 1 20 0
F 1 40 0
G 1 1 1
H 1 2 1
I 1 2 2
L 1 5 1
M 1 5 2
N 1 5 5
O 1 10 1
P 1 10 5
Q 1 10 10

Table 5.1: Lago data, DNA proportions for each contributor.

Mixture Contributors Common contributor
1 A-B A B
2 C-D D
3 E-A A E
4 F-D D
5 E-G E
6 B-H B

Table 5.2: FSS data, contributors to the mixtures.

letters. Table 5.2 in the second shows the contributors for each mixture.

Thus, for example, mix-1 is made up from the contributors A and B, mix-

2 from the contributors C and D, etc. Some of these mixtures have an

individual in common, i.e. an individual is present in both mixtures. The

third column of the table displays the common contributor between the

mixtures. Thus, for example, the individual A is present in both mix-1 and

mix-3, the individual B is present in both mix-1 and mix-6, the individual

D is present in both mix-2 and mix-4, etc. Each mixture has been realized
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in 7 ways, each one with different ratios of DNA from contributors shown in

Table 5.3. Thus, for example, mix-1 was available with proportions 1 : 2,

Proportions for each mixture
1:1 1:2 1:5 1:10 2:1 5:1 10:1

Table 5.3: FSS data, DNA proportions for each contributor.

i.e. the DNA proportion of contributor A is 1 and the DNA proportion of

contributor B is 2, but also with proportions 2 : 1, i.e. the DNA proportion

of contributor A is 2 and the DNA proportion of contributor B is 1. Similarly

for the other five mixtures.

A DNA signature is represented as an electropherogram (EPG) that mea-

sures responses in relative fluorescence units (RFU). The alleles in the mix-

ture are represented with peaks that have a specific height and area around

each allele. An example of an electropherogram is shown in Figure 5.1 where

the alleles for marker D8 of mix-D are amplified. The alleles have repeat

number 10, 12 and 14, and peak area, respectively, 19481, 2118 and 16979.

It is worth noting that, since there are three alleles, it is a mixture made up

of at least two contributors. In effect, since each individual has at most two

alleles, the amplification of three alleles in marker D8 allows to conclude that

there must have been at least two contributors to the trace.

Figure 5.1: Mix-D, marker D8.
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5.1 Data for 2-person mixtures

5.1 Data for 2-person mixtures

In chapter 7 we analyse mixed DNA traces involving two contributors only.

Table 5.4 shows the data used in the analysis in chapter 7. They correspond

to mix-D amplified employing the kit IdentifilerTMof Applera.

In Table 5.4 column “Mixture” shows the alleles observed in the mixture;

columns “Peak Area” and “Rel. Weight” show, respectively, the measured

peak areas and the relative weights1; finally, columns “Suspect” and “Victim”

show the genotypes of two identified individuals, termed victim v, and suspect

s. Here victim and suspect correspond respectively to individuals X and Y.

For the analysis in chapter 7 we used 7 markers, which are Amelogenin, D5,

D7, D8, D16, D18 and D21 (see Figure 5.2).

We note that in Table 5.4 for marker vWA the allele with repeat number

Figure 5.2: Mix-E, markers Amelogenin, D5, D7, D8, D16, D18 and D21.

18 possessed by the suspect is not observed in the mixture. This is due to the

1Details on relative weights are given in chapter 7
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5.1 Data for 2-person mixtures

Marker Mixture Peak Area Rel. Weight Suspect Victim

Amelogenin
X 22328 0.5092 X X
Y 21520 0.4908 Y Y

D2
19 1021 0.0311 19
20 970 0.0311 20
24 24390 0.9378 24

D3

15 21075 0.4350 15 15
17 1662 0.0389 17
18 2176 0.0569
19 17951 0.0493 19

D5
9 23749 0.4217 9
11 28177 0.5783 11 11

D7

8 1882 0.0418 8
9 16899 0.4223 9
10 17933 0.4979 10
11 1242 0.0379 11

D8
10 19481 0.4254 10
12 2118 0.0555 12
14 16979 0.5191 14 14

D13

8 33963 0.4002 8
11 29484 0.4777 11
12 2552 0.0451 12
14 3734 0.0770 14

D16
10 4437 0.1161 10
11 29396 0.8463 11
12 1195 0.0375 12

D18

12 14541 0.3846 12
15 1969 0.0651 15
17 12237 0.4585 17
21 1985 0.0919 21

D21

28 22819 4808 28
29 19947 0.4353 29

31.2 1748 0.0410 31.2
32.2 1771 0.0429 32.2

fact that this is a drop-out allele (see § 4.3). Additionally, the alleles with

repeat number 18 in marker D3 and 15 in marker vWA are observed in the

mixture but they are not possessed by the identified individual. In effect, if
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5.2 Data for two traces 2-person mixtures

Marker Mixture Peak Area Rel. Weight Suspect Victim

CSF

10 1438 0.3970 10
11 2065 0.0627 11
12 12093 0.4004 12
13 13866 0.4973 13

FGA
22 3072 0.0794 22
23 17131 0.4628 23
24 16238 0.4578 24 24

THO1
6 23512 0.8747 6
8 2525 0.1253 8

TPOX
8 11224 0.5049 8 8
10 8806 0.4951 10

vWA

14 1720 0.0308 14
15 3074 0.0590
16 4878 0.0998 16
17 37291 0.8105 17

18

Table 5.4: Lago data, 2-person mixture - a two individuals mixture composition
with relative peak areas, relative peak weights, suspect’s and victim’s genotypes.

we look at Figure 5.3 that shows markers D3 and vWA, we note that these

alleles are stutters (see § 4.3).

Table 5.5 shows the population gene frequencies2 referred to alleles in the

mixtures in Table 5.4.

5.2 Data for two traces 2-person mixtures

In section 8 we analyse two mixed DNA traces involving two contributors

only. Table 5.6 shows the data used in the analysis in chapter 8. They

correspond to mix-1 (with A and B as contributors) and mix-6 (with B and

H as contributors), therefore sharing the contributor B. Furthermore, we

analysed mix-1 made up of 1 part of DNA coming from A and 5 parts from

B, whilst mix-6 has been chosen as made up of 10 parts of DNA from and 1

from H.

2Population gene frequencies used in this thesis have been provided from Ra.C.I.S.
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5.2 Data for two traces 2-person mixtures

Figure 5.3: Mix-E, markers D3 and vWA with stutters 18 in D3 and 15 in vWA.

Marker Allele Frequencies

D5
9 0.041
11 0.393

D7

8 0.164
9 0.176
10 0.272
11 0.180

D8
10 0.097
12 0.1404
14 0.2135

D16
10 0.056
11 0.319
12 0.302

D18

12 0.139
15 0.136
17 0.123
21 0.012

Table 5.5: Lago data, 2-person mixture - Population alleles frequencies.

In Table 5.6 In Table 5.6 column “Trace1” and “Trace2” show the al-

leles observed in the first and second mixture, respectively; columns “Rel.

Weight” show, the measured relative weights in both traces; finally, columns
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5.3 Data for 3-person mixtures

“Suspect1” and “Suspect2” show the genotypes of two identified individuals,

suppose two suspects, s1 and s2. Here suspect1 and suspect2 correspond

respectively to the individuals B and H. For the analysis in chapter 8 we use

6 markers, which are Amelogenin, D2, D21, FGA, THO1 and vWA.

Table 5.7 shows the population gene frequencies referred to alleles in the

mixtures in Table 5.6.

5.3 Data for 3-person mixtures

In chapter 9 we analyse mixed DNA traces involving three contributors.

Table 5.8 shows the data used in the analyses in chapter 9. There we analyse

mix-M amplified employing the kit PowerPlex16TMof Promega.

In Table 5.8 column “Mixture” shows the alleles observed in the mixture;

columns “Peak Area” and “Rel. Weight” show, respectively, the measured

peak areas and the relative weights for all markers; columns “Suspect1”,

“Suspect2” and “Victim” show the genotypes of three identified individuals,

for example two suspects, s1 and s2, and one victim v. Here suspects and

victim correspond respectively to the individuals Y, X and Z. It is worth

noting that, since there are five alleles for marker Penta E and vWA, this is

a mixture made up of at least three contributors. For the analysis in chapter

9 we use 4 markers only, which are Amelogenin, D7, D8 and D21 (see Figure

5.4).

In this table we note that in the markers D3 and vWA, shown in Figure

5.5, the alleles with repeat number 14 for D3 and 15 for vWA are observed

in the mixture but not in the genotypes of the three identified individuals.

This is due to the fact that they are stutters (see § 4.3). Table 5.9 shows

the population gene frequencies of the alleles in the mixtures for a subset of

markers in Table 5.8.
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5.3 Data for 3-person mixtures

Figure 5.4: Mix-M, markers Amelogenin, D7, D8, and D21.

Figure 5.5: Mix-M, markers D3 and vWA with stutters 14 in D3 and 15 in vWA.
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5.3 Data for 3-person mixtures

Marker Trace1 Rel. Trace2 Rel. Suspect1 Suspect2
Weight1 Weight2

Amelogenin
X 0.6147 X 0.4950 X X
Y 0.3853 Y 0.5050 Y Y

D2

19 0.5112 19 0.4338 19
20 0.3792 20 0.4949 20 20
21 0.0486
23 0.0610 23 0.0712 23

D3
14 0.0802 14 0.1226 14

15 0.1168 15
18 0.9198 18 0.7607 18

D8
11 0.1185 11

12 0.4305 12 0.3526 12
15 0.5695 15 0.5289 15 15

D16
9 0.4320 9 0.4479 9 9
12 0.5680 12 0.4250 12

13 0.1271 13

D18

11 0.3278 11 0.3840 11
12 0.1066 12 0.1107 12
14 0.4312 14 0.4287 14
15 0.1343

21 0.0766 21

D19

12 0.1057 12
13 0.1629 13 0.3995 13
14 0.1629
15 0.4216 15 0.3934 15

16 0.1014 16

D21
28 0.5017 28 0.5163 28 28
30 0.4983 30 0.4152 30

32.2 0.0685 32.2

FGA
22 0.3963 22 0.5791 22 22
23 0.6037 23 0.4209 23

THO1 9.3 1 9.3 1 9.3 9.3

vWA
14 0.4918 14 0.3801 14
18 0.0885 18 0.1164 18
19 0.4197 19 0.5035 19 19

Table 5.6: Lago data, two traces 2-person mixtures - two 2-individuals mixture
compositions with relative peak weights, suspect1’s and suspect2’s genotypes.
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5.3 Data for 3-person mixtures

Marker Allele Frequencies

D2

19 0.1375
20 0.1461
21 0.0258
23 0.1146

D21
28 0.167
30 0.252

32.2 0.072

FGA
22 0.1691
23 0.1519

THO1 9.3 0.2908

vWA
14 0.0831
18 0.2249
19 0.0831

Table 5.7: Lago data, two traces for 2-person mixtures - Population alleles
frequencies.
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5.3 Data for 3-person mixtures

Marker Mixture Rel. Rel. Suspect1 Suspect2 Victim
Area Weight

Amelogenin
X 44748 0.7760 X X X
Y 33583 0.2240 Y Y

D3

14 2662 0.0610
15 10085 0.2475 15 15
16 4664 0.1221 16
17 4921 0.1369 17
18 8399 0.2473 18
19 5963 0.1853 19

D5

9 5340 0.2084 9
11 7599 0.3624 11 11
12 5154 0.2682 12
13 2856 0.1610 13

D7

8 3785 0.0971 8
9 7681 0.2218 9
10 12418 0.3984 10 10
11 8013 0.2828 11 11

D8

10 23256 0.4229 10 10
12 2676 0.0584 12
13 6137 0.1451 13
14 14673 0.3736 14 14

D13

8 6432 0.1414 8
11 20591 0.6225 11 11
12 4276 0.1410 12
14 2472 0.0951 14

D16

9 4995 0.1815 9
10 5512 0.2225 10 10
11 10175 0.4518 11
12 2978 0.1443 12

D18

12 14071 0.2582 12
14 7781 0.1665 14
15 4976 0.1141 15
17 14492 0.3767 17 17
21 2632 0.0845 21

D21

28 22272 0.3896 28 28
29 22766 0.4125 29 29

31.2 5124 0.0999 31.2
32.2 4876 0.0981 32.2
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5.3 Data for 3-person mixtures

Marker Mixture Rel. Rel. Suspect1 Suspect2 Victim
Area Weight

CSF

10 1496 0.1195 10
11 1675 0.1472 11
12 5608 0.5376 12 12
13 1885 0.1957 13

FGA

19 12144 0.3517 19
22 4119 0.1381 22
23 5032 0.1764 23
24 9120 0.3337 24 24

Penta D
10 10463 0.3881 10 10
11 6272 0.2559 11 11
13 7382 0.3560 13 13

Penta E

5 4740 0.1501 5
7 1443 0.0640 7
11 6317 0.4400 11
13 2578 0.2122 13
17 1242 0.1337 17

THO1
6 22613 0.7786 6 6
8 4822 0.2214 8 8

TPOX
8 11840 0.6059 8 8 8
10 3740 0.2392 10
11 2201 0.1549 11

vWA

14 5321 0.0796 14
15 1085 0.0174
16 5612 0.0960 16
17 27139 0.4930 17
18 16324 0.3140 18 18

Table 5.8: Lago data, 3-person mixture - a three individuals mixture composition
with relative peak areas, relative peak weights, suspects’ and victim’s genotypes.
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5.3 Data for 3-person mixtures

Marker Allele Frequencies

D7

8 0.164
9 0.176
10 0.272
11 0.180

D8

10 0.097
12 0.1404
13 0.3852
14 0.2135

D21

28 0.167
29 0.205

31.2 0.095
32.2 0.072

Table 5.9: Lago data, 3-person mixture - Population alleles frequencies.
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Chapter 6
Introduction to DNA mixtures

A mixed trace derives typically from an unidentified biological stain or in

general from an admixture of biological material thought to be associated

with a crime. They arise when two or more individuals contribute to the

sample being tested. Think of, for example, a rape, or a robbery where

an object has been handled by a number of individuals. Here we assume

that a mixed DNA trace, of unknown origin and constitution and containing

DNA from more than one contributor, has been obtained and profiled in

connection with a specific crime (e.g. a murder). Furthermore, DNA profiles

from identified individuals are measured. For example, if they belong to a

victim and a suspect, our aim is to match them with those contained in the

mixture to discriminate whether any of these have contributed DNA to the

crime trace. It is worth noting that our intention is not to determine the

innocence or guilt of a suspect, but whether the suspect and/or the victim

can be assumed to be present in the mixture.

In a case at law, data can be represented by evidence involved in the

hypotheses under test on which the court has to decide. Both hypotheses

and evidence are characterized by uncertainty and the role of an expert

statistician is to quantify this uncertainty. This can be done assigning a

probability to the guilt of the suspect in the light of the presented evidence

in order to define the weight of evidence. For this purpose we use the

ratio between the probability of the evidence under the hypotheses of guilt
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and innocence (this ratio is the likelihood ratio). Such probabilities do

not prove the guilt of the suspect, but in a number of cases, when the

evidence is extremely significant, the court could acquire a benefit from

them. In effect, mistakes are most likely to occur when deciding on the

base of the collected evidence. For example, consider the trial of Sally

Clark. Sally Clark was convicted of the murder of two of her new born

babies and was declared innocence in 2003 after a number of appeals. The

defence declared that her sons died for SIDS deaths (a particular type of

unexplained natural death). However, an expert medical witness testified

that natural double infant deaths are very rare, since the probability that

a baby would have died from natural causes was one in 8543. Thus, the

probability that both her babies would have died from natural causes was

approximately one in 73 million1. The mistake was due to the fact that the

courtroom misinterpreted the probability that Sally was guilt G given the

evidence E as 1- the probability of the evidence given that Sally was innocent.

Mathematically, Pr(G|E) was misinterpreted as one minus Pr(E|G). This is

clearly a mistake since, actually, Pr(G|E)=1-Pr(G|E). This error is known

as “the prosecutors fallacy” or “transposing the conditional”. Now, since

the expert computed Pr(E|G) = 1/73million, the prosecutor’s fallacy gave

Pr(G|E) ' 1 and Sally was convicted. However, the probability of a double

infanticide, has been estimated in approximately one in 2 billion. Therefore, if

we compare the probability of this event with the probability that the babies

died for SIDS, we can obtain the following ratio called likelihood ratio:

Pr(E|G)

Pr(E|G)
=

1/2billion

1/73million
' 0.0365.

Thus, the weight of evidence is in favour of the Sally’s innocence.

1For this calculation the hypothesis of independence of the two events has been
supposed, but even without this assumption the probability would be low.
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6.1 Representation of a DNA mixture

6.1 Representation of a DNA mixture

A DNA mixture is represented as an electropherogram which reports the

alleles in the mixture as peaks having a specific height and area around each

allele. Such area provides important information due to the fact that it is

approximately proportional to the amount of DNA of that specific allele.

Information about the composition of the mixture are given by the band

density around each allele in the relative fluorescence units. An example of

electropherogram is shown in Figure 6.1 where the alleles for marker vWA

of a DNA mixture sample are amplified. Since there are three alleles it is a

mixture made up of at least two contributors. The alleles have repeat number

15, 17 and 18, whilst peak area is reported in its appropriate column in the

table under the picture.

As shown in Figure 6.2, a typical mixture may consist of major/minor

Figure 6.1: Electropherogram for marker vWA in a DNA mixture sample. The
alleles have repeat numbers 15, 17, 18, whilst peak area is reported in its
appropriate column in the table under the picture.

components. If a sufficient difference in peak areas between the two pairs of

alleles exists, the major contributor is sufficiently represented and therefore it

can be separated according to its area. Hence, assuming a 2-person mixture
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6.1 Representation of a DNA mixture

Figure 6.2: A four-alleles mixture showing major contributor’s profile {A,B}, and
minor {C,D}.

in the example in Figure 6.2, a possible combination should be the profile

{AB} for the major contributor and {CD} for the minor. If we took into

account the repeat number of the alleles only, then also other combinations

would be admitted, e.g. {AC} for the major and {BD} for the minor. On

the contrary, such combinations of profiles would be excluded if peak area

information were added. It is worth highlighting that, when the mixture

consists of the same amount of DNA generated by the two contributors, i.e.

50:50, the repeat number of alleles and peak area give the same information,

so both pairs of the considered profiles, i.e. {AB,CD} and {AC,BD} are

accepted.

We suppose now that the contributors share an allele at a certain marker.

For example, the genotype of two persons are {AB} and {BC} where allele

B is in both profiles at that marker. This phenomenon is called masking

because shared alleles result in “masking” causing asymmetry in the allelic

bands. Since the contributions are additive in the mixture, for a crime trace

with ratio 2:1, the proportions for the alleles are A:B:C=2:3:1, and this

ratio is approximately the same across markers (see Figure 6.3). In a similar

scenario the interpretation is more informative but also more difficult, since

the profile is no balanced. If we consider all of the possible combinations, one

could be {AB} for the major component and {BC} for the minor, but also

other reasonable combinations exist, such as {BB,AC}. Thus, we need to
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6.2 Basic framework

Figure 6.3: A three-alleles mixture showing major contributor’s profile {A,B},
and minor {B,C}.

find that one which best fits to the peak areas rejecting all of the alternatives

that give low probabilities for the areas.

6.2 Basic framework

In this section and in chapter 7 we investigate the case of a DNA mixture

from exactly two contributors, which is apparently the most common scenario

in forensic casework. For the sake of simplicity, complications, such as two

traces analyzed at the same time and DNA mixtures involving more than

two contributors, are studied in chapters 8 and 9.

In a courtroom context we need to formulate hypotheses H about suspect

and victim. A typical analysis of a crime sample compares the prosecution

hypothesis Hp with the defence hypothesis Hd. For example the prosecution

may hypothesise that both victim and suspect contributed to the mixture,

i.e. Hp : v&s, whilst the defence may hypothesise that the suspect did not

contribute to the mixture but that only the victim and an unknown individual

u contributed, i.e. Hd : v&u. Henceforth we refer to Hp as the null hypothesis

H0 and Hd as the alternative hypothesis H1. Furthermore, we denote E the

elements of evidence.

In this context the adjudicator needs to estimate the conditional probabil-

ity for either hypotheses given the evidence, pr(H0|E) and pr(H1|E). Since it
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is not often possible to assess such probabilities directly we need to calculate

them applying the Bayes theorem. As it is well known, we can express

pr(H0|E)
pr(H1|E)

=
pr(H0)

pr(H1)

pr(E|H0)

pr(E|H1)
, (6.1)

where the left-hand side is the posterior odds for comparing H0 versus H1

given the evidence, whilst the first term in the right-hand side is the prior

odds which represent prior knowledge on the hypotheses, and the second

term in the right-hand side is the likelihood ratio (LR).

We now consider the joint probability of observing the entire DNA evi-

dence, i.e. the mixed trace and the profiles of identified individuals. This is

the likelihood associated to the specific hypothesis that the observed DNA

profiles in the mixture match those in the set of the examined individuals.

Such likelihoods can be used to compare more hypotheses. Particularly, in the

case of just two hypotheses, this comparison is represented by the likelihood

ratio.

In a courtroom, statistician needs to give the weight of evidence which

is given in the form of the likelihood ratio. For this reason, forensic experts

are often induced to formulate the reasonable assumption that the prior

probabilities for each hypothesis H are equal, assessing that there is no

evidence to discriminate the suspect from any other potential suspect (in

law this is called presumption of innocence). Actually, it is preferred to

leave to adjudicators, judges or juries to formulate the prior assessments and

update the likelihood ratio to get Pr(H|E). As a consequence of the Bayes

theorem, the likelihood ratio becomes the conditional probabilities, under H,

of obtaining the crime trace evidence. However, it is worth noting that the

ratio of the likelihoods only enters in the analysis, whilst their single values

are not needed. Additionally, if the likelihood ratio is greater than one, then

the evidence favours H0, but if it is less than one, then the evidence favours

the alternative hypothesis H1.

In a single-contributor case, i.e. not in a mixture but in a DNA stain

made up of the DNA of a single individual, the probability of observing the

evidence, i.e. the stain profile and the suspect’s profile, under the hypothesis
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H0:s that the stain profile comes from the suspect only, is one if the evidence

and the suspect’s profile are compatible. Thus, the likelihood ratio reduces

to the reciprocal of the posterior probability that the suspect is not the

contributor, pr(E|H1). If we ignore complications, such as drop-out alleles

or stutters, this ratio becomes the reciprocal of the profile’s population

frequency.

We now assume that the evidence consists of DNA profiles extracted

from a suspect s and a victim v and a mixed trace. We further suppose that

v ∪ s = ξ, i.e. the mixture ξ is given by the union of the two suspect’s and

victim’s profiles. We test the hypotheses H0 : v&s versus H1 : v&u, then the

likelihood ratio LR can be expressed as

LR =
pr(E|H0)

pr(E|H1)
=

1∑
y pr(u = y)

, (6.2)

where y are all the profiles, except that of the victim, compatible with the

mixture, i.e. y is such that v ∪ y = ξ. If we additionally assume that all

individuals belong independently to a common population with known allele

frequencies, we obtain

LR =
1∑
y py

, (6.3)

where py is the allele frequency of the profile y. Some examples are shown.

Example 6.1 Assume that a DNA mixture ξ = {A,B,C} from two

contributors is observed and that the following profiles for the suspect and

the victim are examined: s = {B,C}, v = {A,C}. We are interested in

testing the hypotheses H0 : v&s versus H1 : v&u. Hence, equation (6.3)

becomes

LR =
1

p2
B + 2pApB + 2pBpC

where pi is the frequency of allele i in the population. This result is due to

the fact that, since it must be v ∪ y = ξ, the profile y will be represented by

one of the following: {B,B}, {A,B}, {B,A}, {B,C}, {C,B}.

�
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6.3 OOBN for analysing DNA mixtures

Example 6.2 Suppose that a DNA mixed trace ξ = {A,B,C,D} is observed

and that only the following suspect’s profile is examined: s = {A,B}. We

are interested in testing the hypotheses H0 : s&u versus H1 : 2u. Assuming

that this is a 2-person mixture, Table 6.1 shows all the possible genotype

combinations. We further calculate the probabilities for each combination.

Thus, the probability of genotype {A,B} is 2pApB, and the probability

of genotype {C,D} is 2pCpD. Multiplying them together we obtain the

probability of {A,B} ∪ {C,D} as 4pApBpCpD. This is repeated for each

combination, and the sum of all the probabilities gives
∑

y

py = 24pApBpCpD.

Thus,

LR =
2pCpD

24pApBpCpD

=
1

12pApB

.

�

Genotype p1 Genotype p2 Probability
AB CD 4pApBpCpD

AC BD 4pApBpCpD

AD BC 4pApBpCpD

CD AB 4pApBpCpD

BD AC 4pApBpCpD

BC AD 4pApBpCpD

Total 24pApBpCpD

Table 6.1: Example 5.2 - all the possible genotype combinations with associated
probability for an observed mixture ξ = {A,B,C,D}.

6.3 OOBN for analysing DNA mixtures

The statistical tools used to analyse the DNA mixtures in this thesis are the

object-oriented Bayesian networks (OOBNs). OOBNs are a recent extension

of the BNs. They are blocks of Bayesian networks combined in a hierar-

chical form where any node itself can represent a (object-oriented) network

containing several instances of other generic classes of networks. Instances

can have ordinary nodes as well as interface input and output nodes. An
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6.3 OOBN for analysing DNA mixtures

input node can have at most one incoming arrow from an output node of

another network. Input and output nodes must have identical probabilistic

structure, i.e. must be of the same type and have the same states, since the

arrows connecting output and input nodes represent identity links, whilst

arrows between ordinary nodes represent probabilistic dependence. Each

node has at least two states that can be Boolean (defined as true or false),

numerical (discrete or continuous), or a range. Furthermore, each node can

have assigned a function which defines how the probability distribution over

states of the node depends on the parents of the node.

Henceforth, we indicate in bold a network class, whilst in teletype a

single node. In figures, we represent instances of a class with a rounded

rectangle, discrete nodes with a single outline, and continuous nodes with a

double outline. Output nodes are always drawn with a grey outer ring and

a solid line, rather than input nodes that are represented by a dotted line.

Observation nodes, i.e. where the evidence is entered, are coloured in grey,

whilst target nodes, i.e. where hypotheses are formulated and the network

returns an output, are coloured in dark.

Figure 6.4 (b) represents an example of two instances connected through their

output and input nodes. These instances reproduce the Bayesian network in

Figure 6.4 (a).

In this thesis we show how object-oriented Bayesian networks are an

useful tool for evaluating DNA mixtures. Dawid et al. (2002) introduced

probabilistic expert systems (PES) for analysing DNA evidence and, in par-

ticular, they used a Bayesian network (BN) to solve forensic identification

problems. Since this network includes a number of repeated structures

(for example, the structure of the suspect’s and victim’s genotype are the

same) it can be synthesized with an OOBN. Thus, we modified the BN

representation of Mortera et al. (2003) to obtain an OOBN. Figure 6.5 shows

the Bayesian network, for the marker class, used by Mortera et al. (2003),

whilst Figure 6.6 shows how this network has been modified obtaining an

OOBN structure. We note that our OOBN includes less nodes than the

network of the authors. In effect, for example, in Figure 6.5, the nodes,

A in v, B in v, Av, Bv, etc. which are referred to the victim’s genotype, have
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6.3 OOBN for analysing DNA mixtures

Figure 6.4: (a) A Bayesian network an output, input and ordinary node. (b)
Instances of the network in (a) and they are connected through their output and
input node.

been included in the object vgt in Figure 6.6. Similarly for the nodes referred

to the suspect’s and unknown individual’s genotypes. Details of our network

are given in Appendix A.1. Cowell et al. (2007b) introduced how include peak

area information in the network. Thus, the authors modelled peak weights

through an OOBN representation that allow to solve both identification and

separation problems. Details of the network are given in Appendix A.2.

Furthermore, we extended both networks in order to include a second trace

(see Appendix B) and a third contributor to the mixture (see Appendix C).
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Figure 6.5: Bayesian network used by Mortera et al. (2003). Marker class.
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6.3 OOBN for analysing DNA mixtures

Figure 6.6: The Bayesian network used by Mortera et al. (2003) and modified as
an OOBN. Marker class.
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Chapter 7
Identification and separation for

2-person DNA mixtures

This chapter is concerned with the analysis of mixed DNA traces involving

exactly two contributors. In section 7.1 a forensic identification analysis

has been performed using the PES constructed by (Mortera et al. 2003)

which employs information about which alleles were present in the mixture.

Actually, this PES, having the form of a Bayesian network, has been changed

assuming the structure of an OOBN. Details on the network are given in

Appendix A.1. (Cowell et al. 2007b) introduced a method, based upon

object-oriented Bayesian networks, for analysing DNA mixtures using peak

area information in addition to allele’s repeat numbers. After introducing

in § 7.2.1 the conditional-Gamma and conditional-Gaussian models for peak

weights, we illustrate in § 7.2.2 and 7.2.3 how to use the OOBN described in

Appendix A.2 to solve both identification and genotypes’ separation problems

in mixtures of two DNA samples.

7.1 Identifying the genotype each of the pos-

sible contributors to the mixture

In this section the network described in Appendix A.1 is applied to a specific

case, suppose for example a murder. Data are given in Table 5.4 § 5. Such
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7.1 Identifying the genotype each of the possible contributors to the mixture

data are DNA mixtures realized in laboratory, thus a-priori the profiles of

contributors are known. Additionally, the profiles of two identified individu-

als, it is supposed a victim v and a suspect s, are examined and a-priori it is

known they match with those of the contributors.

In such analysis the evidence comprises DNA profiles extracted from the

mixed trace, from a suspect, and a victim and the hypotheses of interest are

reported in Table 7.1. These hypotheses mimics different cases, for example a

murder case where a DNA mixed stain coming from the victim and a suspect

is found, or a robbery case where a DNA mixture coming from two suspects is

found, etc. However, in a courtroom only two hypotheses will be compared.

It is worth noting that all these hypotheses involve two contributors.

Hypotheses under test
s&v both suspect and victim contributed to the mixture
s&u both suspect and an unknown individual contributed to the mixture
v&u both victim and an unknown individual contributed to the mixture
2u two unknown individuals contributed to the mixture

Table 7.1: Hypotheses under test.

In effect, since two is the maximum number of alleles that can be observed

for each individual, the presence of more than two alleles in the mixture,

i.e. three observed alleles for markers D5, D16 and D18, and four for the

remaining markers, allows to conclude that there must have been at least

two contributors to the crime trace. Conversely, we can say nothing about

the upper bound of contributors.

The main investigation is whether suspect and victim contributed to

the mixture. A variant could be represented by the introduction of an

unknown contaminator u instead of the victim. Firstly, the total number

of contributors to the crime trace is assumed to be known and it is supposed

to be exactly 2. Secondly this assumption is relaxed to be proved with an

appropriate analysis. Thus, the evidence is entered in the appropriate nodes

and propagated throughout the network so that, the target node, shown in

Figure 7.1, contains the updated probabilities. In particular, the evidence on

the suspect’s genotype is entered in the nodes contained in the instance sgt
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7.1 Identifying the genotype each of the possible contributors to the mixture

Figure 7.1: Two person mixture. Target class.

Figure 7.2: Two person mixture. Marker class.

in Figure 7.2; the evidence on the victim’s genotype is entered in the nodes

contained in the instance vgt; the evidence on the observed alleles in the

mixture is entered in the node contained in the instance A in mix, B in mix,

C in mix and x in mix.

Thus, the ratio of the updated probabilities is taken to obtain the likeli-

hood ratios. Table 7.2 gives the logarithm of the likelihood ratio among the

pairwise comparisons in the first column.

Such ratios show strong evidence against both suspect and victim

whereas the highest value 1012.11 ' 1.3×1010, is for the comparison H0 : s&v
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7.1 Identifying the genotype each of the possible contributors to the mixture

vs. H1 : 2u. However, in a case at law just two hypotheses are compared,

i.e. the prosecution and the defence hypotheses. Since for this analysis we

supposed a murder, in this scenario we would be interested in investigating

whether the suspect contributed to the mixture. Thus, we would consider

just the comparison involving the hypotheses H0 : s&v and H1 : v&u. In the

second row of Table 7.2, this comparison shows strong evidence against the

suspect.

It is assumed now that only the genotype of a suspect is available. In this

Hypotheses Log10LR
s&v vs. 2u 12.11
s&v vs. v&u 8.74
s&v vs. s&u 6.71
s&u vs. 2u 3.40

Table 7.2: Lago data, 2-person mixture - logarithms of the likelihood ratio in
favour of suspect and victim and in favour of suspect and an unknown individual.

case we are interested in comparing the hypotheses H0 : s&u versus H1 : 2u.

The final row in Table 7.2 shows the respective logarithm of the likelihood

ratio that indicates evidence against the suspect since the likelihood ratio is

103.40 ' 2, 500.

If the node total # in Figure 7.1 is not constrained to be two as above,

cases, where the total number of contributors is unknown, can be handled

and hypotheses about it can be made. Table 7.3 displays the posterior

probabilities for the total number of contributors. As expected, the posterior

probability for the hypothesis that the mixture comprises less than two

profiles is zero. However, almost the entire evidence is against two con-

tributors and the greater the number of hypothetical contributors the lower

the probability. This is due to the fact that the probability of the evidence

under H0 and H1 is maximised when the total number of contributors is

minimised (Gill et al. 2006).

103



7.2 Analysis of DNA mixtures using peak area information

Number
contributors

Probability

0 0
1 0
2 0.9995
3 0.0005
4 0.0000289

Table 7.3: Lago data, 2-person mixture - probability of the total number of
contributors.

7.2 Analysis of DNA mixtures using peak area

information

In this section a method for analysing forensic identification problems using

peak area information is introduced. The network applied is the one from

Cowell et al. (2007b) which details are given in Appendix A.2. The aim is not

only to investigate whether individuals, whose profiles have been measured,

have contributed to the mixture, but also to discriminate the genotypes of

the unknown individuals contributing to the mixture and to predict their

DNA profiles.

Both analyses have been performed using a single probabilistic model.

Thus, the entire OOBN network can be used to solve both problems of sus-

pect’s and victim’s identification and prediction of the contributor’s profiles.

In the first case the likelihood ratios are read in the target node, whilst in

the latter case separated profiles are indicated in the jointgt class.

It is worth noting that, comparing this OOBN with the one described in

Appendix A.1 to solve identification problems in § 7.1, here node concerning

the total number of contributors to the mixture is not present. This is due

to the fact that in this model the total number of contributors is assumed

to be known since the lower bound is always defined by the evidence. Thus,

inference on it is not made. However, a check on the total number of

contributors can be made using the discrete network described in Appendix

A.1.
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using peak area information

7.2.1 Basic model assumptions

It is assumed as the basic model for the allele composition of the mixture

sample the Mendelian genetic model explained in § 4, and we further assume

to known the gene frequencies of single STR alleles. Such gene frequencies are

those reported in Table 5.5 § 5. For a mixture made up of two contributors

(p1, p2), when the mixture sample is amplified it consists of an unknown

number of cells from p1, and a further unknown number of cells from p2,

where every cell contains exactly two alleles for each marker. The fraction

(or proportion) of cells from the first contributor p1 measures the amount of

DNA originated from p1 across the markers. This quantity is denoted as θ.

Peak area of alleles provides information about its post-amplification

proportions for each marker. Their information is included in the analysis

through the relative peak weight. The absolute peak weight wa of an allele

with repeat number a is defined as the product between the peak area αa of

the allele a and its repeat number, i.e.

wa = aαa.

This product has been introduced to correct the peak weight whereas alleles

with a high repeat number tend to be less amplified than alleles with a low

repeat number. Now, the observed relative peak weight ra are defined as the

following ratio

ra = wa\w+,

where w+ =
∑

awa, so that the constraint
∑

a ra = 1 holds.

The conditional-Gamma Model

Here, it is assumed that:

(i) there are I potential contributors to the mixture;

(ii) the analysis of the mixture is based on M markers;

(iii) the general marker m = 1, 2, ...,M has Am allelic type.
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Furthermore, we define θ = θi, for all i = 1, 2, ..., I, θi ≥ 0 and
∑

i θi = 1,

where θi is the proportion of DNA in the sample from individual i. Let γθi

be the contribution of the i-th individual to the mixture, where γ is the total

amount of DNA in the sample.

Let Wm
ia denote the contribution of individual i to the peak weight at

allele a of marker m. Then,

Wm
ia ∼ Γ(ρmγθin

m
ia, ηm)

where Γ(α, β) denotes the gamma distribution with density

f(w) =
βα

Γ(α)
wα−1e−βw,

where ρm is an amplification factor, and ηm a scale parameter. It is reasonable

to suppose that (i) the pre-amplification mixture proportion vector of DNA

in the sample θ is constant across markers, (ii) the peak weight for an allele is

approximately proportional to the amount of DNA of that specific allelic type

and (iii) the peak weight for that allele is the sum of the respective weights

for each contributor, when 2 or more contributors have the same allelic type.

Although the total weights Wm
+a of each single allele in the mixture can be

measured, the individual weights Wm
ia are unobservable. Thus, being Wm

+a the

sum of the individual contributions, it has Gamma distribution as follows

Wm
+a =

∑
i

Wm
ia ∼ Γ(ρm

∑
i

γθin
m
ia, ηm),

with i = 1, ..., I;m = 1, ...,M ; a = 1, ..., Am.

Now, let

Bm
a =

∑
i

γθin
m
ia,

be the weighted allele number, then their sum B+ has the property

B+ =
∑

a

Bm
a =

∑
a

∑
i

γθin
m
ia =

∑
i

γθi

∑
a

nm
ia =

∑
i

2γθi = 2γ
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to be twice the total amount of DNA and to be independent of m. Letting

µm
a =

Bm
a

B+

=

∑
i θin

m
ia

2
, (7.1)

then

Wm
+a ∼ Γ(2ρmµ

m
a γ, ηm), (7.2)

and

Wm
++ =

∑
a

Wm
+a ∼ Γ(2ρmγ, ηm), (7.3)

where
∑

a µ
m
a = 1. The peak weight is here reported in terms of relative

values in order to avoid arbitrariness in its scaling, thus

Rm
a =

Wm
+a

Wm
++

.

Now, the set of relative peak weights on each marker has a Dirichlet dis-

tribution because it is the ratio between a Gamma and the sum of Gamma

distributions

Rm = {Rm
a } ∼ Dir(2ρmµ

m
a γ). (7.4)

It is worth noting that Rm is independent on the scale parameter ηm and has

E[Rm
a ] = µm

a (7.5)

and

V [Rm
a ] =

µm
a (1− µm

a )

2ρmγ + 1
= σ2

mµ
m
a (1− µm

a ), (7.6)

where

σ2
m =

1

2ρmγ + 1
.

The total and the relative peak weights are independent from one another

and from any other variable, conditional on the vector µm. Thus, the relative

peak weights Rm
a contains information on mixture composition from the peak

areas about µm. The respective likelihood factorizes as

L(µ | W ) = f(W | µ) = L(µ | R,W++)
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∝ L(µ | R) ==
∏

a

r2ργµa−1
a

Γ
(
µa

(
1
σ2 − 1

)) =
∏

a

r
µa( 1

σ2−1)
a

Γ
(
µa

(
1
σ2 − 1

)) , (7.7)

where the dependence on marker m has been dropped and where the like-

lihood depends on the observed relative peak weights ra, the mean of the

relative peak weights µa, and the variance σ2 Cowell et al. (2006); Cowell

et al. (2007a).

Conditional-Gaussian approximation

Here, a conditional-Gaussian (CG) model is assumed for the peak areas. This

is an approximation of the above more appropriate quantitative model based

on the conditional-Gamma distribution. (Cowell et al. 2007b) specified the

following distributional approximation:

Rm
a ∼ N(µm

a , τ
2
a ), (7.8)

where µm
a are defined as in equation (7.1) and nm

ia is the number of alleles

with repeat number a for marker m possessed by person i. The error variance

τ 2
a is defined as

τ 2
a = σ2µm

a (1− µm
a ) + ω2, (7.9)

where σ2 and ω2 are variance factors deriving by the variation due to ampli-

fication and measurement processes. Particularly, if I = 2, i.e. the mixture

is made up of two contributors, the mean in (7.1) becomes

µm
a =

θnm
1a + (1− θ)nm

2a

2
. (7.10)

Here θ is the proportion, or fraction of DNA in the mixture generating from

the first contributor.

This mean for each allele represents its pre-amplification proportion,

whilst the amplification variance σ2
a is zero in the following two extreme

scenarios:

(1) if the pre-amplification proportion is zero, and the mixture does not

contain alleles of a certain type, so there is not even post-amplification;
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(2) if the pre-amplification proportion is unity, and the mixture pre-amplification

comprises only one allele of a specific type of a certain marker, so also

the post-amplification mixture contains only one of that allelic type.

In a perfect heterozygote, the proportions of the allele peak areas would

be the same, i.e. (1 : 1). However, during the PCR amplification process,

measurement errors or slight differences can occur causing variation between

the observed peak areas of alleles in a given heterozygote. Gill et al. (1997)

showed that the relative peak area differences, denoted by φ1, increases as

the mean peak area of the two STR fragments increases, and they found

that calculated standard deviation of φ between 0.06 and 0.08. Now, (Cowell

et al. 2007b) used for the analysis σ2 = 0.01 and ω2 = 0.001. In effect,

this chosen produces, for µa = 0.5 produces a standard deviation equal to√
0.01/4 + 0.001 = 0.06 which is consistent with the result of Gill et al.

(1997). Thus, the model provide a correct forensic analysis, even if this issue

needs further consideration; since preliminary investigations indicate that

the variance factor may depend on the total amount of DNA available in the

mixture. This suggests that such variance varies from case to case.

To avoid arbitrariness in scaling the relative peak weights have been con-

sidered. These relative peak weights must sum to unity, thus their correlation

must be taken into account. If we assume ω = 0, the variance in (7.9)

ignores this correlation, but (Cowell et al. 2007b) proved that using instead

the distribution with a variance factor

Rm
a ∼ N(µm

a , σ
2µm

a ) (7.11)

this problem is overcome.

In general, let X = (X1, ..., XA) be a vector of independent and normally

distributed random variables such that their sum S is one. Then, Xa ∼
1Gill et al. (1997) defined φ as the ratio between the area of smallest peak and the area

of largest peak. This quantity is 1 if peak areas are the same.
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N(µa, τ
2
a ) and has joint density

f(x1, ..., xd|µ, T ) =

(
1

2π

)d/2 A∏
a=1

exp{−
∑

a
(xa−µa)2

2τ2
a
}

τa
.

Here, µ = (µ1, ..., µA) is a vector and τ 2 are the diagonal elements of the

matrix T=diag(τ 2
a , ..., τ

2
A). It is worth highlighting that since T is a diagonal

matrix, the covariance elements are zero since the random variables are inde-

pendent. Thus, this distribution does not take into account the correlation

between the variables and this correlation is due to the fact that they must

sum to unity. If the distribution of the sum S =
∑

aXa is considered, this

is still Normal with unit mean (since
∑

a µa = 1) and variance τ 2 =
∑

a τ
2
a .

The conditional distribution X|S = 1 is multivariate Normal with the same

mean vector µ = (µ1, ..., µA) and covariance matrix T ∗ which has elements

τ ∗aa = τ2
a (τ2−τ2

a )
τ2 , τ ∗ab =

−τ2
aτ2

b

τ2 .

If the variance τ 2
a has the form in (9.6), i.e. τ 2

a = σ2µa, then τ 2 =
∑

a τ
2
a =

σ2
∑

a µa = σ2, where τ 2 is independent of µ. Additionally, the elements of

the covariance matrix T ∗ become

τ ∗aa = σ2µa(1− µa), τ ∗ab = −σ2µaµb.

Here the variance τ ∗aa is exactly the same as in the above conditional-Gaussian

approximation model in (7.8), except for the factor ω2. This justifies in using

the correct relative peak weights in (9.6) since they take into account their

correlation.

7.2.2 Identifying the genotype each of the possible con-

tributors to the mixture

In this section forensic identification problems are analysed using quantitative

peak area information in addition to alleles repeat number information. The

main aim is to show that the introduction as evidence of peak area of the allele
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increases the likelihood ratios in favour of the suspect and victim providing

more accurate probabilities. Thus, the following comparisons are of interest:

(i) H0: s&v vs. H1: 2u,

(ii) H0: s&v vs. H1: v&u,

(iii) H0: s&v vs. H1: s&u.

Then, the logarithms of such ratios are compared with those obtained in the

previous section. A variant could be represented by the introduction of an

unknown contaminator u instead of the victim and therefore, the hypotheses

H0: s&u (both suspect and victim contributed to the mixture) versus H1: 2u

(two unknown individuals contributed to the mixture) are considered. Here

peak areas are modeled with a conditional-Gamma distribution. However,

it is intention to carrying out also an analysis with the conditional-Gaussian

approximation in order to show that these two models provide similar prob-

abilities.

Here, the evidence consists of DNA profiles of a suspect s and a victim

v, mixed trace, and relative peak weights. The evidence, represented by

the data reported in Table 5.4 § 5, is entered in the appropriate nodes

and propagated throughout the network described in Appendix A.2. If

peak area information is used, the likelihoods are entered in the appropriate

nodes. Thus, the posterior probabilities associated with the target node

are produced and, taking their ratios, the likelihood ratios of interest are

obtained. The logarithm on base 10 of such ratios are displayed in Table

7.4. In the second column of this table the logarithms are obtained under

the assumption that only the evidence on the repeat number of the alleles

is used. These ratios are equal those given in Table 7.2 in § 7.1. On

the contrary, column “Areas” displays the logarithm of the likelihood ratio

obtained adding peak area information. The inclusion of area information

is indeed strengthening the evidence against the suspect and victim since

the logarithm of the ratios increase for all the hypotheses considered in the

table. For example, for the comparison H0: s&v vs. H1: 2u the ratio
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increases from 1012.11 ' 1.3 × 1010 to 1016.77 ' 59 × 1015 when the area

information is included, which corresponds approximately to a factor 45, 700.

However, in a case at law just the prosecution and the defence hypotheses are

compared. If we consider, for example, a murder case, we would be interested

in investigating whether the suspect contributed to the mixture. Thus, we

would consider just the comparison involving the hypotheses H0 : s&v and

H1 : v&u.

The variable θ describes the proportion (or fraction) of DNA contributed

Hypotheses Alleles Areas
s&v vs. 2u 12.11 16.77
s&v vs. v&u 8.74 9.30
s&v vs. s&u 6.71 7.74

Table 7.4: Lago data, 2-person mixture - logarithms of the likelihood ratio in
favour of suspect and victim when only evidence on repeat number of the alleles
are available, and when peak are information is added.

by the first contributor. Table 7.5 shows the logarithm of the likelihood

ratios in favour of H0: s&v versus H1: 2u as function of this parameter.

Such logarithm assumes negative values for θ ≤ 0.4 highlighting that the

evidence favours H1 : 2u, whilst the maximum occurs for θ = 0.7. Figure 7.3

shows the posterior density of the mixture proportion. The analysed mixture

has a proportion 10 : 1, which, if we scale θ in a range [0, 0.1, 0.2, ..., 1],

corresponds to a value of θ equal to 0.9 that is consistent with the maximum

value displayed in the figure.

Suppose now that DNA profiles are extracted only from a suspect and

from the mixed trace and the other contributor is called a contaminator.

In this scenario the evidence is given by the mixture composition and the

suspect’s profile. Table 7.7 displays the logarithm of the likelihood ratios

in favour of H0: s&u versus H1: 2u. Also in this case the inclusion of

area has a dramatic effect on the likelihood ratio. In effect, it changes from

103.40 ' 2, 499 to 107.44 ' 27, 500, 000 corresponding approximately to a

factor 11, 000. Table 7.7 shows the logarithm of the likelihood ratios in
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Figure 7.3: Lago data - posterior density of the proportion of DNA from the major
contributor for 10:1 2-person mixture.

relation with the proportion of DNA originating from the first contributor.

This assumes negative values for θ ≤ 0.4 indicating that the evidence favours

two unknown individuals as contributors to the mixture. Figure 7.4 shows the

posterior density of the mixture proportion. The real DNA proportion of the

mixture is 10 : 1, which, if we scale θ in a range [0, 0.1, 0.2, ..., 1], corresponds

to a value of θ equal to 0.9 and the posterior density concentrates around

this value.

Now, the same analysis developed so far is repeated, but the peak areas

are modeled with a conditional-Gaussian distribution. Table 7.8 shows the

logarithm of the likelihood ratios in favour of H0 : s&v and in favour of

H:s&u (last row) obtained applying both conditional-Gamma model and

conditional-Gaussian approximation. As it is shown, these values are almost

the same with the maximum difference given by a factor 1.07 for the com-

parison H0 : s&v versus H1 : v&u and therefore, it can be inferred that the

conditional-Gaussian model approximates the conditional-Gaussian model in

a consistent way.
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θ Log10LR
0 0
0.1 -inf
0.2 -236.24
0.3 -151.45
0.4 -67.57
0.5 11.81
0.6 16.63
0.7 17.11
0.8 17.07
0.9 16.84
1 0

Table 7.5: Lago data, 2-person mixture - logarithm of the likelihood ratio in favour
of H0 : s&v vs. H1 : 2u as function of θ for a 10:1 mixture.

Log10LR
Alleles 3.40
Areas 7.44

Table 7.6: Lago data, 2-person mixture - logarithms of the likelihood ratio in
favour of H0 : s&u vs. H1 : 2u when only evidence on repeat number of the alleles
are available, and when peak are information is added.

7.2.3 Separation of genotypes

In this section the mixed DNA profile only is assumed to be available and

the main aim is to predict the genotypes of the unknown individuals who

contributed to the mixture. This might be of interest, for example, in order

to compare the separated profile to those in a given database of DNA profiles.

Here, a way for separating mixtures based on the same network applied to

profile-identification is suggested. For the sake of simplicity, it is assumed

that it is a 2-person mixture and it is discriminated between the processing

for the separation of one profile only and the processing for separating both

profiles. As it could be expected, the first situation is clearly the easiest case

to deal with, because the genotype of the other contributor to the mixture

is known.
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θ Log10LR
0 0
0.1 -inf
0.2 -235.61
0.3 -154.57
0.4 -73.32
0.5 4.05
0.6 7.65
0.7 7.81
0.8 7.74
0.9 7.58
1 0

Table 7.7: Lago data, 2-person mixture - logarithm of the likelihood ratio in favour
of H0 : s&u vs. H1 : 2u assuming known mixture proportion for a 10:1 mixture.

Hypotheses Gamma model CG model
s&v vs. 2u 16.77 16.78
s&v vs. s&u 7.74 7.74
s&v vs. v&u 9.30 9.33
s&u vs. 2u 7.44 7.44

Table 7.8: Lago data, 2-person mixture - comparison of the logarithms of the
likelihood ratio in favour of suspect and victim and in favour of suspect and an
unknown individual when peak area are modeled with a conditional-Gamma model
and when are modeled with a Normal approximation.

The problem of separating a mixture into two components is now ap-

proached. The evidence is represented by peak area and repeat number

information on the mixture, whilst no profiles from identified individuals are

examined. In this scenario, if information on pre-amplification proportion

of DNA in the sample is not available, identifiability problems in assigning

genotype combinations to each person occur. This is due to the fact that

there is symmetry between the two individuals p1 and p2 and the separated

genotypes could be assigned indifferently to both persons. This issue is

overcome as breaking the symmetry, i.e. entering evidence that the pre-
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Figure 7.4: Lago data - posterior density of the proportion of DNA from the major
contributor for 10:1 2-person mixture.

amplification proportion of DNA generated by p1 is at least one half of the

total DNA in the sample. In the network this is done by entering likelihood

vector in the node frac which represents the DNA proportion θ contributed

by p1. In particular, the likelihood vector is set zero when θ is in the range

[0, 0.1, 0.2, ..., 0.4], and one when θ is in the range [0.5, 0.6, ..., 1] (see Figure

7.5). Viceversa, indifferently the hypothesis that p1 contributed at most half

of the DNA to the mixture sample might be used.

Table 7.9 shows the predicted genotypes for both individuals. Here,

the predictive posterior probabilities associated to each genotype shows that

both profiles are predicted with extremely high probability. Furthermore,

since a-priori the true profiles of the contributors are known, it is concluded

that all of the markers are correctly identified.

Supposed that the genotype of one of the contributors (e.g. the victim)

is measured; the attention is now focused on the prediction of the genotype

of the other contributor. Thus, the evidence is given by the composition of

the crime trace and from victim’s profile and it is entered into the appropri-

ate nodes contained in the classes Amean, Bmean, Cmean, and xmean
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Figure 7.5: Lago data - master network representing the node frac which indicates
the DNA proportion θ contributed by p1. The symmetry is broken by setting
likelihood in the node frac.

referred to the mixture composition, the class vgt referred to the victim’s

profile (see Figure 7.6). Furthermore, both peak area and repeat number

information are used. Table 7.10 displays the predicted genotypes that are

read in the node jointgt which states are the aggregation of the genotypes

of the two contributors p1 and p2. (Cowell et al. 2007b) showed that, when

one of the genotypes is available, the prediction of the other profile is more

accurate than in the event that they are both unknown. Lago data does not

show this result since the probabilities obtained to predict the genotype of

the contributor p1 are the same when the victim’s profile is known and when

no profiles are available. This is due to the fact that in this mixture peak

areas are extremely informative and the knowledge of the victim’s profile

does not improve the prediction.

If both the unknown profiles or a single unknown profile are predicted us-

ing a CG approximation for the peak areas, then tables 7.11 and 7.12 show the
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Marker Genotype p1 Genotype p2 Probability
Amelogenin X Y X Y 0.8388
D5 9 11 11 11 0.9357
D7 9 10 8 11 ≈ 1
D8 10 14 12 14 0.9404
D16 11 11 10 12 ≈ 1
D18 12 17 15 21 ≈ 1
D21 28 29 31.2 32.2 ≈ 1

Table 7.9: Lago data, 2-person mixture - predicted genotypes of both contributors.
Evidence consists of the mixed trace.

Marker Genotype p1 Probability
Amelogenin X Y 0.8388
D5 11 11 0.9357
D7 8 11 ≈ 1
D8 12 14 0.9404
D16 10 12 ≈ 1
D18 15 21 ≈ 1
D21 31.2 32.2 ≈ 1

Table 7.10: Lago data, 2-person mixture- predicted genotype of the suspect
knowing victim’s profile. Evidence consists of the mixed trace and DNA profile
extracted from the victim, v.

same predicted profiles which are obtained applying a conditional-Gamma

distribution. The posterior probabilities for each profile, obtained applying

both two models, are similar, thus it is concluded that both conditional-

Gamma and conditional-Gaussian models appear to perform well.

118



7.2 Analysis of DNA mixtures
using peak area information

Figure 7.6: Two person mixture. Marker class.

Marker Genotype p1 Genotype p2 Gamma model CG model
Amelogenin X Y X Y 0.8388 0.8429
D5 9 11 11 11 0.9357 0.9379
D7 9 10 8 11 ≈ 1 ≈ 1
D8 10 14 12 14 0.9404 0.9520
D16 11 11 10 12 ≈ 1 ≈ 1
D18 12 17 15 21 ≈ 1 ≈ 1
D21 28 29 31.2 32.2 ≈ 1 ≈ 1

Table 7.11: Lago data, 2-person mixture - predicted genotype of both contributors
when peak areas are modeled with a conditional-Gamma distribution and when
are modeled with a CG approximation. Evidence consists of the mixed trace.
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Marker Genotype Gamma model CG model
Amelogenin X Y 0.8388 0.8429
D5 11 11 0.9357 0.9379
D7 8 11 ≈ 1 ≈ 1
D8 12 14 0.9404 0.9520
D16 10 12 ≈ 1 ≈ 1
D18 15 21 ≈ 1 ≈ 1
D21 31.2 32.2 ≈ 1 ≈ 1

Table 7.12: Lago data, 2-person mixture - predicted genotype of of the suspect
knowing victim’s profile when peak areas are modeled with a conditional-Gamma
distribution and when are modeled with a CG approximation. Evidence consists
of the mixed trace and DNA profile extracted from the victim, v.
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Chapter 8
Analysis of two DNA mixed traces

Relative simple modifications of the networks described in Appendix A can

allow the simultaneous analysis of a couple of DNA mixed traces. Although

this joint analysis may look like purely speculative, it can have important

applications, such as for the analysis of multiple samples which occur when

a DNA sample is amplified a number of times providing different results

because, for example, the sample is degraded or the DNA proportion of one

of the contributors is too low. In this chapter we solve an identification and

separation problem for the genotype of two suspects, termed s1 and s2. In

particular, we consider a robbery case where some tools, used for breaking

into an apartment, have been handled by more than one individual. Further-

more, we suppose to be interested into two specific traces that we analyse

simultaneously. In particular in § 8.1.1 we solve a problem of identification

when alleles’ repeat number only is available, whilst in § 8.2.1 we add peak

areas as evidence. Thus, we show the contribution to the peak areas, since

sometimes an investigation based on alleles’ repeat number only can lead to

erroneous inference, whereas the inclusion of the peak area information in the

analysis gives the correct result. Finally, in § 8.2.2 we provide a prediction

of the genotypes of the contributors to the mixtures.
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8.1 Two mixed traces analysis using allele’s

repeat number information

8.1.1 Identification of the suspects’ genotypes

In this section we show how to use the statistical model exploiting the alleles’

repeat number information only, that has been implemented through the

OOBN described in Appendix B.1. The network is an extension of that

introduced by Mortera et al. (2003), which is applied to solve identification

problems for 2-person mixtures in one trace only. This network allows to

enter as evidence alleles repeat number information only and, furthermore,

to make inference on the total number of contributors. Actually, although

this network has the form of a Bayesian network, it has been modified to an

OOBN in Appendix A.1.

We analyse simultaneously two mixed traces for a robbery case as the

one described above. We suppose to examine two mixed traces each one

containing biological material from two individuals. In this scenario, the

evidence is represented by two mixtures and DNA profiles from two suspects,

s1 and s2.

Data are reported in Table 8.1. This table shows the alleles observed in

both traces, called Trace1 and Trace2, the measured relative peak weights1

and the genotypes of the two suspects. We take into account markers Amel-

ogenin, D2, D21, FGA, THO1 and vWA.

If we observe carefully the composition of the mixtures, by a preliminary

investigation, we note that in the marker D2 the allele with repeat number

21, present in the first trace, is not observed in the second trace. Similarly,

in the marker D21 the allele with repeat number 32.2, present in the second

trace, is not observed in the first one. Thus, considering the alleles’ repeat

number information only, from markers D2 and D21 we note that the two

mixtures are different. Furthermore, observing also the genotypes of the

suspects, in the marker D2 the allele with repeat number 21, observed in the

1We denote by Rel.Weights1 the relative peak weights referred to the first trace, and
Rel.Weights2 the relative peak weights measured in the second trace.
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Marker Trace1 Rel. Trace2 Rel. Suspect1 Suspect2
Weight1 Weight2

Amelogenin
X 0.6147 X 0.4950 X X
Y 0.3853 Y 0.5050 Y Y

D2

19 0.5112 19 0.4338 19
20 0.3792 20 0.4949 20 20
21 0.0486
23 0.0610 23 0.0712 23

D21
28 0.5017 28 0.5163 28 28
30 0.4983 30 0.4152 30

32.2 0.0685 32.2

FGA
22 0.3963 22 0.5791 22 22
23 0.6037 23 0.4209 23

THO1 9.3 1 9.3 1 9.3 9.3

vWA
14 0.4918 14 0.3801 14
18 0.0885 18 0.1164 18
19 0.4197 19 0.5035 19 19

Table 8.1: Lago data, two traces 2-person mixtures - two 2-individuals mixture
compositions with relative peak weights, suspect1’s and suspect2’s genotypes.

first mixture, is not contained in any genotype of the suspects, whilst in the

marker D21 the allele with repeat number 32.2, contained in the genotype

of the second suspect, is not observed in the first trace. Thus, it can be

assumed that an unknown individual contributed to the first trace and that

the second suspect s2 did not contribute to the first trace. On the contrary,

since s1 seems to be compatible with both traces, we can assume that the

first suspect contributed to both.

Now, we develop a preliminary analysis on the total number of contribu-

tors to the mixtures. The evidence on allelic repeat number of both mixtures

is entered in the appropriate nodes contained in the classes A in T1, B in T1,

A in T2, B in T2, etc. of the marker network. On the contrary, the evidence

on allelic repeat number of the two suspects’ genotypes is entered in the

appropriate nodes contained in the classes s1gt and s2gt of the marker

network (see Figure 8.1). The normalized likelihoods reported in Table 8.2
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Figure 8.1: Two traces. Marker class.
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are read in the nodes total # T1 and total # T2 in the target network (see

Figure 8.2). Details of the networks are given in Appendix B.

The normalized likelihoods, associated to the hypotheses that 2 is

Figure 8.2: Two traces. Target class.

the total number of contributors, is 0.9997 for the first trace, and 0.9999

for the second one. Negligible likelihoods are associated to a number of

three contributors. Furthermore, for the hypotheses of a total number of

contributors less than 2 the normalized likelihoods are zero. In effect, whereas

in the marker D2 we observe four alleles in the first trace and three in the

second one, and each individual can possesses at most two alleles, we can

assume that there are at least two contributors in both mixed traces.

It is worth noting that, since we assume uniform priors (see § 6.2), the

equality between the normalized likelihoods and the posterior probabilities

holds.

Now, we can carry on our analysis by assuming that the total number

of contributors is two in both traces and therefore by constraining both the
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Normalized Likelihoods
Number

contributors
Trace 1 Trace 2

0 0 0
1 0 0
2 0.9997 0.9999
3 0.0003 0.0001
4 0 0

Table 8.2: Lago data, two traces - normalized likelihoods of the total number of
contributors for both traces.

nodes total # T1 and total # T2 to be equal two.

Table 8.3 shows the normalized likelihoods for the hypotheses displayed

Normalized Likelihoods
Hypotheses Trace1 Trace2
s1&s2 ≈ 0 0.9999
s1&u 0.9999 ≈ 0
s2&u ≈ 0 0.000292
2u 0.001477 ≈ 0

Table 8.3: Lago data, two traces - normalized Likelihoods for the tested hypotheses
in both traces T1 and T2 and the second one for identification problems when only
allele’s repeat number information is used. Evidence consists of the mixed traces
and DNA profiles extracted from two suspects, s1 and s2.

in the first column obtained entering as evidence alleles’ repeat number only.

Such hypotheses form the states of the nodes target T1 and target T2 in

the target class. In the first column we observe a high normalized likelihood

associated to the hypothesis that the first suspect and an unknown individual

contributed to the first mixed trace. On the contrary, the weight of evidence

is against both suspects in the second trace.

However, in a courtroom we could be mainly interested in investigating

whether each suspect contributed to both or at least one crime trace. Table

8.4 shows the normalized likelihoods for the hypotheses in the first column

when only alleles’ repeat numbers information is used. Generally, the normal-

126



8.2 Two mixed traces analysis adding peak ares information

ized likelihoods are high for almost all the hypotheses with the exception that

(i) s2 contributed to the first trace (s2 in T1) and that (ii) s2 contributed

to both traces (s2 in T1&T2). In effect, in the previous Table 8.3, column

“Trace1” shows a high likelihood associated to the hypothesis s1&u, where

the second suspect s2 does not appear.

Hypotheses
Normalized
Likelihoods

s1 in T1 0.9999
s1 in T2 0.9999
s2 in T1 ≈ 0
s2 in T2 ≈ 1
s1 in T1 or T2 ≈ 1
s1 in T1&T2 0.9998
s2 in T1 or T2 ≈ 1
s2 in T1&T2 ≈ 0

Table 8.4: Lago data, two traces - normalized likelihoods against the suspects
for identification problems when only allele’s repeat number information is used.
Evidence consists of the mixed trace and DNA profiles extracted from two suspects,
s1 and s2.

8.2 Two mixed traces analysis adding peak

ares information

In this section we carry on our analysis introducing peak area information.

We discriminate between an analysis for identifying the genotypes of the

suspects and for predicting the genotypes of the contributors to the two

mixtures. We built an OOBN for two mixed traces based on both conditional-

Gamma and conditional-Gaussian distributions for the peak areas (see §
7.2.1). The exact same network, which details are given in Appendix B.2, can

be used both for identification and as well as for separation problems, without

any further modification. Furthermore, whereas both traces are 2-person

mixtures, the conditional-Gamma and the conditional-Gaussian model for

the peak weights are the same as those introduced in § 7.2.1.
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8.2.1 Identification of the suspects’ genotypes

In this section the evidence consists of DNA extracted from the suspects

s1 and s2, the allelic repeat numbers and relative peak weights in both

traces. After converting peak areas in normalized weights and calculating

the likelihood vectors for the conditional-Gamma model (see equation (7.7)

in § 7.2.1), we enter them as evidence in the relevant nodes in the classes

Amean T1, Bmean T1, Amean T2, Bmean T2, etc. of the marker

network. On the contrary, evidence on the suspects’ genotypes is entered in

the nodes gt of the classes s1gt and s2gt in the marker network (see Figure

8.3). This is described in detail in Appendix B.2.

Table 8.5 shows the normalized likelihoods for the hypotheses displayed in

Figure 8.3: Two traces. Marker class.

the first column. Such hypotheses form the states of the nodes target T1

and target T2 in Figure 8.4 The normalized likelihoods in the “Alleles”

columns are obtained entering as evidence alleles’ repeat numbers only, whilst

the normalized likelihoods displayed in the “Areas” columns are obtained

adding peak area information. It is worth noting that the values displayed in

the columns denoted “Alleles” are the same as those reported in the Table

8.3 in the previous section. For the first trace we note high likelihoods,

equal to 0.9999, associated to the hypothesis that the first suspect and an

unknown contaminator contributed to the mixture. This value is obtained
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Figure 8.4: Two traces. Target class.

when (i) the evidence is given by alleles’ repeat numbers only and (ii) is

given by peak area as well. On the contrary, for the second trace we observe

high likelihoods, equal to 0.9999, associated to the hypothesis that both

suspects contributed to the mixture. Also in the second trace, this value is

obtained when considering the alleles’ repeat numbers alone and thereafter

in combination with the peak area information.

We now investigate whether each suspect contributed to both or at

least one crime trace. Table 8.6 shows the normalized likelihoods for the

hypotheses in the first column. The normalized likelihoods for the “Alleles”

columns are the same as those displayed in Table 8.4 in the previous section,

when the analysis is based on alleles’ repeat numbers only. As well, those

displayed in the column denoted “Areas” are obtained by adding peak area

information. In Table 8.6 we note high likelihoods with the exception of the

hypotheses s2 in T1 and s2 in T1&T2, where these values approach zero.

Furthermore, it is worth noting that, in the Tables 8.5 and 8.6, the
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Trace1 Trace2
Hypotheses Alleles Areas Alleles Areas
s1&s2 ≈ 0 ≈ 0 0.9999 0.9999
s1&u 0.9999 0.9999 ≈ 0 ≈ 0
s2&u ≈ 0 ≈ 0 0.000292 0.0000202
2u 0.001477 0.0000304 ≈ 0 ≈ 0

Table 8.5: Lago data, two traces - normalized likelihoods for the tested hypotheses
in both traces T1 and T2 for identification problems when only allele’s repeat
number information is used (Alleles) and when peak area information is added
(Areas). Evidence consists of the mixed trace and DNA profiles extracted from
two suspects, s1 and s2.

normalized likelihoods, obtained when alleles’ repeat number only are entered

as evidence, are very similar to those obtained when peak area information

is added. This result is due to the fact that the likelihoods reported in the

columns “Alleles” are extremely high for some hypotheses, i.e. close to unity.

As a consequence, the additional information introduced by the peak ares can

overall be considered negligible, compared to the one delivered by the repeat

numbers. In particular, in this case the markers D2 and D21 in the mixture

are extremely meaningful, whereas the two traces for these markers have one

different allele2 and, therefore we can conclude that an unknown individual

contributed to the first trace and that the first trace itself is incompatible

with the genotype of the second suspect.

Excluding from the analysis the markers D2 and D21, i.e. disregarding

the two most meaningful sources of information, and taking into account the

alleles’ repeat number only, the two traces seems to be equal. Table 8.7 shows

the logLR on base 10 in favour of the two suspects for both traces T1 and T2,

discriminating the two cases when alleles’ repeat number information only is

used (“Alleles”) and when peak area information is added (“Areas”). Firstly,

it is worth noting that the values displayed in both the “Alleles” columns

are the same, since, observing the allelic repeat numbers only, the two mixed

traces seem to be equal. Thus we obtain the same results. Furthermore, for

2In the marker D2 the second trace does not contain the allele with repeat number 21,
whilst in the marker D21 the allele 32.2 is not contained in the first trace
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8.2 Two mixed traces analysis adding peak area information

Normalized likelihoods
Hypotheses Alleles Areas
s1 in T1 0.9999 0.9999
s1 in T2 0.9999 0.9999
s2 in T1 ≈ 0 ≈ 0
s2 in T2 ≈ 1 ≈ 1
s1 in T1 or T2 ≈ 1 ≈ 1
s1 in T1&T2 0.9998 0.9998
s2 in T1 or T2 ≈ 1 ≈ 1
s2 in T1&T2 ≈ 0 ≈ 0

Table 8.6: Lago data, two traces - posterior probabilities against the suspects
for identification problems when only allele’s repeat number information is used
(Alleles) and when peak area information is added (Areas). Evidence consists of
the mixed trace and DNA profiles extracted from two suspects, s1 and s2.

Trace1 Trace2
Hypotheses Alleles Areas Alleles Areas
s1&s2 vs. 2u 5.95 2.83 5.95 6.64
s1&s2 vs. s1&u 2.62 -1.21 2.62 2.61
s1&s2 vs. s2&u 3.02 4.08 3.02 4.22

Table 8.7: Lago data, two traces - logarithms of the LR in favour of suspects
in both traces T1 and T2 for identification problems when alleles repeat number
information only is used (Alleles) and when peak area information is added (Areas).
Evidence consists of the mixed trace and DNA profiles extracted from two suspects,
s1 and s2. Markers D2 and D21 have been excluded from the analysis.

the first trace, the inclusion of peak area information changes the likelihood

ratios. If the evidence consists of the alleles’ repeat number only, since

the likelihood ratio is equal to 105.95 ' 882, 000 the weight of evidence is

against both suspects, whilst, when peak area information is added, we note

a negative logLR associated to the comparison H0 : s1&s2 versus H1 : s1&u.

A negative logLR has meaning that the alternative hypothesis H1 : s1&u is

greater than the null hypothesis H0 : s1&s2. Thus, the weight of evidence

is now against the first suspect and an unknown individual. In effect, if we

consider the Table 8.8, where the normalized likelihoods for the hypotheses

in the first column are obtained by excluding markers D2 and D21 from the
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8.2 Two mixed traces analysis adding peak area information

analysis, when peak area information is included, the normalized likelihood

that the second suspect contributed to the first trace, s2 in T1, decreases

from 0.9976 to 0.0578, corresponding approximately to a factor 17.25. As

a consequence, also the probability that the second suspect contributed to

both traces decreases, since it is the logical conjunction {s2 in T1} ∩ {s2 in

T2}, and it changes from ≈ 1 to 0.06.

Table 8.9 shows the logLR in favour of the first suspect and an unknown

Normalized Likelihoods
Hypotheses Alleles Areas
s1 in T1 0.9999 0.9999
s1 in T2 0.9999 0.9999
s2 in T1 0.9976 0.0578
s2 in T2 0.9976 0.9976
s1 in T1 or T2 ≈ 1 ≈ 1
s1 in T1&T2 ≈ 1 ≈ 1
s2 in T1 or T2 ≈ 1 ≈ 1
s2 in T1&T2 ≈ 1 0.06

Table 8.8: Lago data, two traces - normalized likelihoods against the suspects
for identification problems when only allele’s repeat number information is used
(Alleles) and when peak area information is added (Areas). Evidence consists of
the mixed trace and DNA profiles extracted from two suspects, s1 and s2. Markers
D2 and D21 have been excluded from the analysis.

individual for the first trace and when peak area information is used. In effect,

the logLR in the table are all positive showing a weight of evidence against

the first suspect and an unknown individual. Furthermore, since s2 is not a

contributor to the mixture, the highest ratio, 105.3 ' 197, 500, is associated

to the hypotheses H0 : s1&u versus H1 : s2&u. Actually, whereas the DNA

mixture has been produced in laboratory, we know that the contributors

are the first suspect and an unknown individual (see § 5). Thus, using the

information provided by alleles’ repeat number only, the resulting likelihood

ratios lead to erroneous inference as the weight of evidence is in favour also of

the second suspect. However, it has here been confirmed that the inclusion

of the peak area allows to recover this loss in performance.

Now, consider the “Areas” column for the second trace in Table 8.7.
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Hypotheses Trace1
s1&u vs. 2u 4.05
s1&u vs. s2&u 5.30
s1&u vs. s1&s2 1.21

Table 8.9: Lago data, two traces - logarithms of the LR in favour of the first suspect
s1 and an unknown individual in the first trace T1 for identification problems when
peak area information is added (Areas). Evidence consists of the mixed trace and
DNA profiles extracted from two suspects, s1 and s2. Markers D2 and D21 have
been excluded from the analysis.

When peak area information is added as element of evidence the logLR

increases for the comparisons H0 : s1&s2 versus H1 : 2u and H0 : s1&s2

versus H1 : s2&u, and the increase corresponds respectively to a factor

approximated to 5 and 16. On the contrary, for the hypotheses H0 : s1&s2

versus H1 : s1&u the logLR has a small decrease corresponding to a factor

0.99. This is due to the fact that peak areas do not add information on the

second suspect.

8.2.2 Separation of mixtures

In this section the same networks as in the identification task (with peak

areas) are here applied for predicting the genotypes of contributors to the

mixtures. We suppose to observe two mixed traces containing DNA geno-

types from two individuals. In particular, we suppose to observe the alleles’

repeat numbers and the peak areas associated to each allele. Furthermore,

we consider the case of separation of both unknown profiles. Thus, no

information concerning the two contributors to the mixtures is available.

As discussed in § 7.2.3, it is recalled that separation of mixtures, when

both contributors are unknown, is only possible when the contributions to

the DNA mixtures has taken place in quite different proportions. As a

consequence, we need to break the symmetry between the individuals p1

and p2 in the first trace and p3 and p4 in the second trace. Thus, we enter

the evidence that the pre-amplification proportion of DNA in the sample
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8.2 Two mixed traces analysis adding peak area information

from individual p1 (and p3) is at least one half of the total DNA in the

sample3. Using the network described in Appendix B.2, breaking symmetry

is obtained by setting likelihood evidence to be more (or less) than 0.5 in the

nodes frac T1 and frac T2 in Figure 8.5, i.e. the posterior distribution of

both nodes is zero for values lower (or grater) than 0.5. We note that, when

we enter the evidence that the proportion of DNA θ originating from, p1 in

the first trace and from p3 in the second trace, is more (or less) than 0.5,

automatically the proportion of DNA originating from, p2 in the first trace

and from p4 in the second trace, is set to be less (or more) than 0.5, since

this is defined to be equal to1− θ.
Figure 8.6 shows the posterior distribution of the mixture proportion θ

Figure 8.5: Two traces. Target class.

for the contributors p1 and p3. The posterior distribution for the proportion

originated from p1 is represented as a solid curve, whilst the posterior distri-

bution for the proportion originated from p3 is represented as a broken line.

3Equally, the symmetry breaking could be achieved assuming that p1 (and p3)
contributed at most half of the DNA to the mixture sample.
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8.2 Two mixed traces analysis adding peak area information

Figure 8.6: Lago data - posterior density of the proportion of DNA from the major
contributor for the first trace (solid curve) and the second trace (broken line). The
exact proportions of the mixtures are 5 : 1 for the first trace and 10 : 1 for the
second one which, in a scale ranging [0 : 1] correspond to 0.83 and 0.91.
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They both have a maximum around 0.9, although this is a little bit lower for

p1, and they both are zero for θ < 0.6. Since the distribution of θ for p1 is

closer zero than the distribution of θ for p3, we can conclude that θ for p1

is smaller than θ for p3. In effect, the exact proportions of the mixtures are

5 : 1 for the first trace and 10 : 1 for the second one, which in a scale ranging

[0 : 1] corresponds to 0.83 and 0.91.

The predicted genotypes of the four contributors (p1 and p2 for the first

trace, and p3 and p4 for the second trace) are shown in Table 8.10. The

predicted profiles are correct for all contributors with high posterior proba-

bilities. In particular, we note an extremely high probability, approximated

to unity, for the genotypes of individuals p1 and p2 at marker D2. This

is due to the fact that the prediction ability increases for loci with a high

incidence of heterozygotes. In effect, for this marker the contributors p1 and

p2 are two heterozygous individual who do not share any allele. On the

contrary, the lowest posterior probability, 0.6356, is associated to the profiles

of the contributors p3 and p4 at marker FGA since p4 is a homozygote.

Additionally, also at marker THO1 the prediction has an extremely high

posterior probability since at this marker one allele only is observed and

therefore the predicted profiles are immediate.

Marker Genotype Genotype Prob. Genotype Genotype Prob.
p1 p2 p3 p4

Amelogenin X X X Y 0.9315 X Y X Y 0.9013
D2 19 20 21 23 ≈ 1 19 20 20 23 0.7965
D21 28 30 28 30 0.8760 28 30 28 32.2 0.8514
FGA 22 23 23 23 0.7944 22 23 22 22 0.6356
THO1 9.3 9.3 9.3 9.3 ≈ 1 9.3 9.3 9.3 9.3 ≈ 1
vWA 14 19 14 18 0.8246 14 19 18 19 0.8959

Table 8.10: Lago data, two traces - predicted genotypes of all contributors.

We model now peak areas with a conditional-Gaussian approximation.

Tables 8.11 and 8.12 show the predicted genotypes for the contributors

p1 and p2 for the first trace, and p3 and p4 for the second trace. The
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8.2 Two mixed traces analysis adding peak area information

predicted genotypes are equal to those obtained modelling peak areas with

a conditional-Gamma distribution. The last two columns of the two ta-

bles report the posterior probabilities for the predicted genotypes obtained

using the conditional-Gamma model and the conditional-Gaussian model.

Such probabilities, computed applying both models, are similar, thus it is

concluded that both conditional-Gamma and conditional-Gaussian models

appear to perform well.

Trace1
Marker Genotype p1 Genotype p2 Gamma model CG model
Amelogenin X X X Y 0.9315 0.9312
D2 19 20 21 23 ≈ 1 ≈ 1
D21 28 30 28 30 0.8760 0.8814
FGA 22 23 23 23 0.7944 0.7968
THO1 9.3 9.3 9.3 9.3 ≈ 1 ≈ 1
vWA 14 19 14 18 0.8246 0.8255

Table 8.11: Lago data, two traces - predicted genotypes of all contributors in the
first trace T1 when peak areas are modeled with a Gamma distribution and when
are modeled with a Normal approximation.

Trace2
Marker Genotype p3 Genotype p4 Gamma model CG model
Amelogenin X Y X Y 0.9013 90.64
D2 19 20 20 23 0.7965 0.8128
D21 28 30 28 32.2 0.8514 0.8741
FGA 22 23 22 22 0.6356 0.6440
THO1 9.3 9.3 9.3 9.3 ≈ 1 ≈ 1
vWA 14 19 18 19 0.8959 0.8917

Table 8.12: Lago data, two traces - predicted genotypes of all contributors in the
second trace T2 when peak areas are modeled with a Gamma distribution and
when are modeled with a Normal approximation.
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Chapter 9
Identification of DNA mixtures

involving more than two contributors

This chapter is concerned with the analysis of mixed traces where more than

two individuals may have contributed to a DNA sample left at a crime scene.

In particular, for the sake of simplicity, we consider a mixed trace comprising

DNA from three individuals only.

In § 9.1 we describe the 3-person mixture model and compare the condi-

tional Gamma model and the conditional-Gaussian model. In particular, we

show the differences with the 2-person mixture model. In § 9.2 we discuss

the advantages and disadvantages of each network developing a comparison

of their efficiency. In § 9.3 we calculate an upper bound limit for the total

number of unknown contributors to be included in the example analysed. In

§ 9.4 we discriminate among three different situations. In the first case we

consider, for example, a rape case where a sample contains biological material

from the victim and two perpetrators. Thus, the evidence consists of a mixed

trace and DNA profiles extracted from a victim, v, and two suspects, s1 and

s2. The main aim is to compare the available genotypes and the mixture in

order to determine whether the individuals, whose genotypes are observed,

contributed to the mixture. In the second case we investigate the event

when an unknown contaminator is present. For example, we consider the

case of a scuffle (or a brawl) during which a person is killed. In this case, the
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9.1 Model assumptions

evidence consists of a mixed trace and DNA profiles extracted from s1 and

s2 only. Finally, we analyze the case of DNA profiles extracted from one of

the suspects, e.g. s1.

Our analysis is concerned with forensic identification problems using both

information provided by allele’s repeat number and quantitative peak areas.

Our aims are: (i) to show the efficiency of both networks, (ii) to solve

identification problems and (iii) to show that peak weights need to be taken

into account since they increase the likelihoods. Furthermore, although the

analysis is performed using a conditional-Gamma model for the relative peak

weights, we provide the results when we apply a conditional-Gaussian model

in order to show that the latter is a good approximation of the conditional-

Gamma model. Finally, in § 9.5 we explain the reasons why the analysis for

separating the genotypes of the contributors could not been performed.

9.1 Model assumptions

We present a description of the 3-person model before analysing our data.

We assume that the mixture is made up of DNA from three persons, who

we refer to as p1, p2 and p3. The sample before the amplification consists

of an unknown number of cells from p1, an unknown number of cells from

p2 and a further unknown number of cells from p3, where every cell contains

exactly two alleles1 for each marker. Now, let θ1 be the proportion of cells

from p1, θ2 be the proportion of cells from p2 and θ3 be the proportion

of cells from p3. Thus, these quantities, θ1, θ2 and θ3, represent the pre-

amplification proportions of DNA from each contributor, and we assume

them to be constant across markers.

Details on the post-amplification proportions of alleles for each markers

are given in § 7.2.1.

1which are different for heterozygote and the same for homozygote
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The conditional-Gamma model for a 3-person mixture

The conditional-Gamma model for the peak weights has been widely dis-

cussed in § 7.2.1. In this section we extend the model for a 3-person mixture

providing the main definitions.

Assume that: (i) there are 3 potential contributors to the mixture; (ii)

the analysis of the mixture is based on M markers with generic marker

m = 1, 2, ...,M having am allelic type. As shown in detail in § 7.2.1, Wm
ia

denotes the contribution of individual i to the peak weight at allele a of

marker m. This has a Gamma distribution as follows:

Wm
ia ∼ Γ(ρmγθin

m
ia, ηm).

Also the total weights W+a of a single allele a at marker m in the mixture

have a Gamma distribution

Wm
+a ∼ Γ(2ρmµ

m
a γ, ηm),

where, in general,

µm
a =

∑
i θin

m
ia

2
, (9.1)

and where θi is the DNA proportion from individual i, nm
ia is the number

of alleles with repeat number a possessed by person i at marker m, ρm is

an amplification factor and ηm is a scale parameter. Since we assumed that

there are 3 potential contributors to the mixture, i.e. i = 1, 2, 3, the mean in

(9.1) becomes

µm
a =

θ1n
m
1a + θ2n

m
2a + θ3n

m
3a

2
. (9.2)

Whereas the quantities θi represent DNA proportions, their sum must be 1,

i.e.

θ1 + θ2 + θ3 = 1. (9.3)

This allows to express the DNA proportion θ3 from the third contributor p3

as difference from the sum of the other proportions, i.e. θ3 = 1 − θ1 − θ2.
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Thus, the mean in (9.2) becomes

µa =
θ1n

(1)
a + θ2n

(2)
a + (1− θ1 − θ2)n

(3)
a

2
. (9.4)

Furthermore, the condition that

θ1 ≥ θ2 ≥ θ3 (9.5)

must be verified where the labeling 1, 2, 3 is exchangeable. Thus, if this

condition is verified, θ1 represents the DNA proportion originated by the first

major contributor, θ2 the DNA proportion originated by the second major

contributor, and θ3 the DNA proportion originated by the minor contributor.

The peak weight is here reported in terms of relative values in order to

avoid arbitrariness in its scaling. Thus,

Ra =
W+a

W++

,

where

Ra ∼ Dir(2ρµaγ),

with mean and variance as follow

E[Ra] = µa,

where µa is defined in equation (9.4), and

V [Ra] = σ2µa(1− µa),

and where the dependence on marker m has been dropped.

See § 7.2.1 for more details.

The conditional-Gaussian model for a 3-person mixture

This model, based on conditional-Gamma distribution for the absolute scaled

peak weights, can be approximate with a conditional-Gaussian (CG) model.
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Thus, the model assumes a Gaussian distribution for the relative peak weights

Ra

Ra ∼ N (µa, τ
2
a ),

where µa is the same as in equation (9.4) and represents the pre-amplification

proportion for allele a of the marker it belongs to, and τ 2
a has the form in

equation (7.9) in § 7.2.1

In the network model we consider the relative peak weights in order to

avoid arbitrariness in scaling. But these relative peak weights must sum to

unity, thus their correlation must be taken into account. The conditional-

Gaussian distribution ignores this correlation, but Cowell et al. (2007b)

proved that using instead the distribution

Ra ∼ N(µa, σ
2µa)

this problem can be overcome (proof is given in § 7.2.1).

9.2 Advantages and disadvantages of each net-

work and their efficiency

In Appendix C we describe two networks in detail. The first network is an

extension, for 3-person mixtures, of the network introduced by Mortera et al.

(2003). It models DNA mixtures using alleles’ repeat number information

only and furthermore is used to make inference on the total number of

contributors. The second network is an extension, for 3-person mixtures,

of the network introduced by Cowell et al. (2007b). It models DNA mixtures

using both alleles’ repeat number and peak area information. We will not

use it to make inference on the total number of contributors, even if this

should be possible by adding appropriate nodes referred to the total number

of contributors.

As a check, we must obtain the same posterior probabilities for the

hypotheses under test when we apply both networks and include as evidence
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of each network and their efficiency

alleles’ repeat number only.

The advantage of the second extended network is that it allows to in-

troduce peak area information in addition to alleles’ repeat number. This

is an important result since we will show that the inclusion of peak areas

strengths the weight of evidence. However, the disadvantage is that this

network is computationally complex, in particular is much more complex in

comparison to the other network.

Table 9.1 shows the total clique size tables for the main classes in both

networks. Column “Alleles” displays the total clique size tables for the

Classes Alleles Areas
marker 184,264 3,020,787
amelogenin 960 20,516
target 80 80
alleleinmix 8 30,693
total 557,512 34,997,698

Table 9.1: Total clique size tables for the classes marker, amelogenin, target,
alleleinmix and the total in the network extended, for 3-person mixtures, from the
one introduced by Mortera et al. (2003) (column “Alleles”) and in the network
extended from the one introduced by Cowell et al. (2007b) (column “Areas”).

classes in the network that can employ alleles repeat number information

only. Column “Areas” displays the total clique size tables for the classes

in the network that can also include peak area information. For all the

classes considered, except for the class target, the total clique size tables are

greater in the second network than in the first one. For example, for the class

alleleinmix the increase of the total clique size table in the second network

is huge and corresponds approximately to a factor 3, 800.

In the last row we report the total clique size table for the entire network.

This corresponds to the total clique size table of the master class since it

is the top level and therefore contains instances of all the other classes. For

the entire network the total clique size table in the second network increases

approximately to a factor 62.

Therefore, the results obtained in Table 9.1 allow to conclude that the

network extended for 3-person mixtures and introduced by Cowell et al.
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(2007b) is computationally more complex but answering a much more com-

plex problem and we will see in detail that this complexity represents a strong

limitation of computer for the analysis of 3-person mixtures.

9.3 Bounding the total number of contribu-

tors

Consider a rape case where a sample contains biological material from the

victim and multiple perpetrators. Assuming two perpetrators, a mixed DNA

trace from three contributors is to be examined. Additionally, we measure

the genotypes of three potential contributors, here named victim v and two

suspects, s1 and s2.

As it is impossible to evaluate the strength of evidence for all possible

numbers of unknown contributors, it could be of interest to identify an upper

bound limit on the unknown number of contributors. Lauritzen and Mortera

(2002) derived an inequality for the probability of observing a given DNA

profile when the bound of unknown individuals contributing to the mixture is

assumed to be fixed. Then, they showed how to use this inequality to obtain

an upper bound limit for the unknown number of contributors needed to be

considered. We apply this rule to determine an upper bound on the unknown

number of contributors for the forensic case analysed in this chapter.

9.3.1 Theoretical aspects

In a crime case where the evidence is given by a DNA profile for a mixed

stain from two or more persons, the weight of evidence cannot be derived for

all possible contributors. In general, although the evidence of the trace itself

determines a lower bound limit observing the maximum number of alleles in

any marker, we cannot be sure on the upper bound. However, Lauritzen and

Mortera (2002) showed a way to identify an upper bound b on the unknown

number of contributors.

For a hypothesis H involving x unknown individuals, the following likeli-
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9.3 Bounding the total number of contributors

hood is considered

Px(E|H) = P(Em = Um ∪Km|H) ∀ m = 1, ...,M, (9.6)

where Em is the observed evidence profile at marker m given by the observed

set of alleles at a marker m on a total number of markers M , Um is the

observed set of alleles supplied by the unknown individuals and Km is the

alleles carried by the known individuals.

Thus, the likelihood ratio in favour of a hypothesis H0 : s1&s2 against

an alternative hypothesis H1 : s1&u is

Px0(E|H0)

Px1(E|H1)
, (9.7)

where xi is the number of unknown individuals involved in the hypothesis

Hi. In a court case, the defendant should be given the highest assumption of

innocence. As a consequence, we should look for the minimum value of the

likelihood ratio, which is equivalent to seeking an upper bound limit for the

denominator of the LR in (9.7).

Thus, using the fact that Px(E|H) is smaller than the probability that all

the alleles of the unknown contributors match those in E , then

Px(E|H) ≤ P(Um ⊆ Em|H), ∀ m = 1, ...,M. (9.8)

Assuming that all the unknown individuals come from the same population

and that the M markers are independent, the equation (9.8) becomes

Px(E|H) ≤
M∏

m=1

(∑
a∈Em

pm
a

)2x

, ∀ m = 1, ...,M, (9.9)

where pm
a is the frequency of allele a at marker m. When the evidence

profile contains all the possible alleles for all markers, this product is one

and therefore useless. On the contrary, if the evidence is represented by

some alleles only, the product in equation (9.9) tends to zero at an exponential

rate, representing a bound for the probability of observing the given evidence.
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Now, there exists a generic specific number y such that

M∏
m=1

(∑
a∈Em

pm
a

)2x

< y. (9.10)

Inverting equation (9.10) and taking logs we can obtain x lower limit by the

following function of y

x > b(y) =
lny

2
∑M

m=1 ln(
∑

a∈E p
m
a )
.

Thus,

x > b(y)⇒ Px(E|H) ≤ y. (9.11)

Now, if we assume that y = Px1(E|H1) and that the number of unknown

contributors xi, involved in a given hypothesis Hi, is greater than b(y), then

this hypothesis Hi is less likely than H1 and therefore it does not need to be

considered.

9.3.2 Bounding the number of contributors for the 3-

person mixture analysed in § 9.4

In this section we apply this bound limit at the data in Table 9.3 in the next

section.

It is supposed that the evidence under the hypothesis H0:s1&s2&v is

available in the form of DNA profiles from the victim v and the two suspects

s1 and s2 and that under this hypothesis the probability of the evidence

is one. On the contrary, under the alternative hypothesis H1:s1&v&u, it

is assumed that the mixture consists of the profiles from the victim, one

suspect, e.g. s1, and a single unknown contributor u1. Table 9.2 shows, for

each marker, all the possible genotypes of u1 given that the mixture consists

of the profiles of v, s1 and u1. Its associated probabilities are displayed

in the row below the possible genotypes. The last column shows, for each

marker, the probability of observing the given evidence under the hypothesis

H1. This is obtained as the sum of the probabilities associated to each
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profile. Multiplying over all markers the probability Px1(E|H1) = 0.000637

is obtained.

The denominator of the bound b(y) is now computed as

Marker Possible genotypes of u1 Px1(E|H1)

D7
(8,8) (8,9) (9,8) (8,10) (10,8) (8,11) (11,8)
0.027 0.029 0.029 0.045 0.045 0.029 0.029 0.233

D8
(12,12) (10,12) (12,10) (12,13) (13,12) (12,14) (14,12)
0.020 0.014 0.014 0.046 0.046 0.030 0.030 0.200

D21
(31.2,32.2) (32.2,31.2) - - - - -

0.007 0.007 0.014

Table 9.2: Bounding the number of contributors.

2
M∑

m=1

ln

(∑
a∈E

pm
a

)
= 2(ln0.07761 + ln0.792 + ln0.539) = −2.208,

where the terms of the logarithms are obtained as the sum of the frequencies

for the alleles A, B, C and D in the mixture which are reported in Table 5.9

in § 5. Thus,

b(0.000637) =
ln(0.000637)

−2.208
= 3.33.

Whereas 4 is the value of x greater than b(y), we conclude that an alter-

native hypothesis, for example H∗:s1&s2&v&4u, that involves more than 3

unknown individuals, produces a likelihood smaller than H1 : s1&v&u and

therefore at most a hypothesis H ′:s1&s2&v&3u involving three unknown

individuals ca be considered. As a consequence, 3 is the maximum number

of unknown contributors that is admitted and 6 the maximum number for

the total number of contributors. In fact, in the target class, the states of

the nodes n unknown and total # have been set to a maximum value of,

respectively, 3 and 6 (see Figure 9.1).
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Figure 9.1: Two traces. Target class.

9.4 Forensic identification problems

In this section we solve a forensic identification problem applied to data in

Table 9.3. As explained in the previous section we consider a rape case where

a sample contains biological material from the victim and two perpetrators.

Table 9.3 shows the alleles observed in the mixture, the measured peak areas,

the relative weights on 4 markers (Amelogenin, D7, D8 and D21) and the

genotypes of v, s1 and s2.

As preliminary analysis, we make inference on the total number of con-

tributors. Table 9.4 displays the normalized likelihoods2. Here the evidence

is almost entirely in favour of a total number equal three, with a likelihood

of 0.884. However, a low normalized likelihood of 0.04 is associated to a total

number two. In fact, whereas two is the maximum number of alleles that can

be observed for each individual, the presence of four alleles on each marker in

the mixed stain suggests that there must have been at least two contributors

2Since we assume uniform priors (see § 6.2), the equality between the normalized
likelihoods and the posterior probabilities holds.
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9.4 Forensic identification problems

Marker Mixture Rel. Rel. Suspect1 Suspect2 Victim
Area Weight

Amelogenin
X 44748 0.7760 X X X
Y 33583 0.2240 Y Y

D7

8 3785 0.0971 8
9 7681 0.2218 9
10 12418 0.3984 10 10
11 8013 0.2828 11 11

D8

10 23256 0.4229 10 10
12 2676 0.0584 12
13 6137 0.1451 13
14 14673 0.3736 14 14

D21

28 22272 0.3896 28 28
29 22766 0.4125 29 29

31.2 5124 0.0999 31.2
32.2 4876 0.0981 32.2

Table 9.3: Lago data, 3-person mixture - a three individuals mixture composition
with relative peak areas, relative peak weights, suspects’ and victim’s genotypes.

Number Normalized
contributors likelihood
0 0
1 0
2 0.040
3 0.884
4 0.102
5 0.011
6 0.001

Table 9.4: Lago data, 3-person mixture - normalized likelihoods of the total number
of contributors.

to the crime trace.

In particular, if there were two contributors only, the admitted hypotheses

would have been: v&s1; v&s2; s1&s2; v&u; s1&u; s2&u; 2u. In this sce-

nario, the first three hypotheses (v&s1,v&s2, s1&s2) are impossible events.

For example, we assume the hypothesis v&s1. Since the profiles for v and
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9.4 Forensic identification problems

s1 at marker D8 are respectively (10, 13) and (10, 14), the presence of the

allele with repeat number 12 in the mixture is not justified. Similarly for the

hypotheses v&s2 and s1&s2. Thus, if the total number of contributors were

two, then the mixture would have to include at least an unknown individual.

We suppose now to observe the repeat number of the alleles only for the

mixture and for the genotypes of the victim and the two suspects. If we apply

the network described in Appendix C.1 and we constrain the node total #

to be equal three, the node target (see Figure 9.1) admits the hypotheses

shown in Table 9.5.

However, in a court room, we would be interested in verifying whether

Hypotheses under test
s1&s2&v both suspects and victim contributed to the mixture
s1&s2&u both suspects and an unknown individual contributed to the mixture
s1&v&u the first suspect, the victim and an unknown individual contributed

to the mixture
s2&v&u the second suspect, the victim and an unknown individual contributed

to the mixture
s1&2u the first suspect and two unknown individuals contributed to the mixture
s2&2u the second suspect and two unknown individuals contributed to the mixture
v&2u the victim and two unknown individuals contributed to the mixture
3u three unknown individuals contributed to the mixture

Table 9.5: Hypotheses under test.

the genotypes of both the two suspects only match those of the contributors

since we are considering a rape case where the biological sample is taken from

the victim and therefore we know that v is a contributor.

Thus, we consider the comparisons in the first column of Table 9.6.

This table displays the logarithm on base 10 of the likelihood ratios of the

hypotheses in the first column. In the second column, denoted “Alleles”,

the logLR are obtained when only the evidence on the repeat number of the

alleles is used and when we apply the network described in Appendix C.1.

Strong evidence against both the suspects is shown since the highest value

103.47 ' 10, 700 is referred to the comparison H0: s1&s2&v vs. H1: v&2u.

In the third column “Areas” the logLR are obtained when we add peak
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9.4 Forensic identification problems

Log10LR
Hypotheses Alleles Areas
s1&s2&v vs. v&2u 3.47 7.66
s1&s2&v vs. s1&v&u 3.17 4.00
s1&s2&v vs. s2&v&u 1.36 4.00

Table 9.6: Lago data, 3-person mixture - logarithms of the LR in favour of suspects
and victim for identification problems when alleles repeat number information
only is used (Alleles) and when peak area information is added (Areas). Evidence
consists of the mixed trace and DNA profiles extracted from two suspects, s1 and
s2, and a victim v.

area information and we apply the network described in Appendix C.2.

Additionally, we highlight that the relative peak weights have been modelled

with the conditional-Gamma model described in § 9.1. Now, if we analyse

the contribution of the relative peak weights for each allele, the column

“Areas” in Table 9.6 displays that the inclusion of the area information is

indeed strengthening the evidence against the suspects whereas the likelihood

ratio increases dramatically for all the hypotheses considered. In particular,

we note a strong increase in the likelihood ratio involving the hypotheses

H0 :s1&s2&v versus H1 :v&2u where it changes approximately by a factor

15, 000, indicating that the peak areas of the alleles of the genotypes of the

two suspects are extremely informative.

However, in a courtroom context we could be mainly interested in inves-

tigating whether at least one or both profiles of the suspects match those

contained in the mixture. Thus, as displayed in Table 9.7 column “Alleles”,

after introducing the evidence in the appropriate nodes and propagating it

throughout the network, the node s1 or s2 in mix returns a high normalized

likelihood (approximated to unity) that at least one suspect contributed to

the mixture, whilst we obtain a normalized likelihood of 0.9587 that both

suspects contributed to the mixture. In effect, if we investigate the single

Boolean nodes referred to the presence of each single suspect in the mixture,

we note a normalized likelihood equal to 0.9598 that s1 is a contributor,

and a normalized likelihood of 0.9989 for s2. Actually, these results are as

expected since such data are DNA mixtures realized in laboratory, thus a-
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9.4 Forensic identification problems

Figure 9.2: Two traces. Target class.

priori the profiles of contributors are known and we know that they match

those of the identified individuals (see § 5). See Figure 9.1 for the nodes

that represent the hypotheses in Table 9.7 and which are used when alleles’

repeat number information only is entered as evidence; whilst, see Figure 9.2

for the same nodes but used when also peak area information is included.

Furthermore, if the peak area information is included in the evidence, all

the normalized likelihoods increase, but without differing substantially from

the normalized likelihoods displayed in the previous column. This is due to

the fact that the likelihoods in column “Alleles” are high, close to unity, thus

when peak area information is included they cannot increase significantly.

We suppose now that only genotypes from both suspects are available.

This could be common, for example, in a case of a scuffle (or a brawl).

Thus, we suppose to investigate a stain of biological material from three

assailants and to measure the profiles of two suspects. In this scenario the

third contributor is an unknown contaminator.

The hypotheses under test are shown in the first column of Table 9.8.

Since the highest value 103.39 ' 2, 500 is associated to the hypotheses H0 :

s1&s2&u versus H1 :3u, we can conclude that the strongest evidence is

against both s1 and s2. Additionally, we note stronger evidence against

s2 than s1, since the likelihood ratio associated to the comparison H0 :
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Normalized Likelihoods
Hypotheses Alleles Areas
s1 in mix 0.9598 0.9999
s2 in mix 0.9989 0.9999
s1 or s2 in mix ≈ 1 ≈ 1
s1 & s2 in mix 0.9587 0.9998

Table 9.7: Lago data, 3-person mixture - normalized likelihoods against the
suspects for identification problems when only allele’s repeat number information
is used (Alleles) and when peak area information is added (Areas). Evidence
consists of the mixed trace and DNA profiles extracted from two suspects, s1 and
s2, and a victim v.

s1&s2&u versus H1 :s1&2u is greater than the likelihood ratio associated

to the hypotheses H0 :s1&s2&u versus H1 :s2&2u. This result is supported

by the normalized likelihoods reported in the first column of Table 9.9 and

which are referred to the hypotheses s1 in mix and s2 in mix. In effect, the

normalized likelihood that the second suspect is in the mixture is greater

than the normalized likelihood that the first suspect is in the mixture.

The column “Areas” displays the results when peak area information is

included to the analysis. Also in this case, the ratios increase dramatically,

especially for the comparison H0 :s1&s2&u versus H1 :3u, where the increase

corresponds approximately to a factor of 52.

We consider now the normalized likelihoods associated to the hypotheses

Log10LR
Hypotheses Alleles Areas
s1&s2&u vs. 3u 3.39 5.10
s1&s2&u vs. s1&2u 2.39 3.40
s1&s2&u vs. s2&2u 1.76 2.42

Table 9.8: Lago data, 3-person mixture - logarithms of the LR in favour of the
suspects for identification problems when only allele’s repeat number information
is used (Alleles) and when peak area information is added (Areas). Evidence
consists of the mixed trace and DNA profiles extracted from two suspects, s1 and
s2.

in Table 9.9. We note high likelihood for all the hypotheses in the first
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column. In particular, we note a normalized likelihood of 0.9999 that at

least one suspect contributed to the mixture, and a normalized likelihood

of 0.9782 that both suspects contributed to the mixture. Furthermore,

these likelihoods increase when peak area information is included in the

analysis. However, also in this case they increase very slightly compared

to the normalized likelihoods displayed in the previous column for the same

reason explained above.

On the contrary, we suppose that the evidence comprises the mixed

Normalized likelihoods
Hypotheses Alleles Areas
s1 in mix 0.9825 0.9962
s2 in mix 0.9956 0.9995
s1 or s2 in mix 0.9999 ≈1
s1 & s2 in mix 0.9782 0.9957

Table 9.9: Lago data, 3-person mixture - normalized likelihoods against the
suspects for identification problems when only allele’s repeat number information
is used (Alleles) and when peak area information is added (Areas). Evidence
consists of the mixed trace and DNA profiles extracted from two suspects, s1 and
s2.

trace and the genotype of one suspect only, for example s1. In this scenario

we compare the hypotheses H0: s1&2u versus H1: 3u. The likelihood

ratio changes, when we include peak area information in addition to the

allele’s repeat number, from 101.01 ' 10.3 to 101.77 ' 63 corresponding

approximately to a factor of 5.68. Thus, we conclude that peak weights need

to be taken into account for identification analyses since they add important

information that provide more strength to the weight of evidence.

So far we have considered three different hypotheses of evidence. In the

first scenario the evidence consists of a DNA trace and the profiles of three

potential contributors, in the second case we suppose to observe a DNA

mixture and the profiles of two suspects only, finally we assume that the

evidence comprises a mixture and DNA profile of one suspect only. We

note that the weight of evidence decreases as the number of the identified
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individuals is lower, since we have less available information. Thus, for

example, assuming to observe the genotypes of both victim and suspects,

we find a weight of evidence against suspects and victim equal to 107.66 '
45, 500, 000 (see Table 9.6), whilst, assuming to observe the genotypes of

the suspects only, the weight of evidence against the suspects is smaller,

105.1 ' 127, 000 (see Table 9.8).

Finally, we compare the results obtained by applying a conditional Gaus-

sian model, described in § 9.1, to those obtained by modelling peak areas with

a conditional-Gamma distribution described in the same section. Tables 9.10

and 9.11 show similar logLR and for the last two hypotheses in Table 9.10

they are roughly the same.

Furthermore, we perform an analysis involving the evidence in the

Hypotheses Gamma model CG model
s1&s2&v vs. v&2u 7.66 7.63
s1&s2&v vs. s1&v&u 4.00 4.00
s1&s2&v vs. s2&v&u 4.00 4.00

Table 9.10: Lago data, 3-person mixture - comparison of the logarithms of the LR
in favour of suspects and victim when peak area are modelled with a conditional-
Gaussian approximation (CG model) and when are modelled with a conditional-
Gamma model (Gamma model). Evidence consists of the mixed trace and DNA
profiles extracted from two suspects, s1 and s2, and a victim v.

Hypotheses Gamma model CG model
s1&s2&u vs. 3u 5.10 5.06
s1&s2&u vs. s1&2u 3.40 3.22
s1&s2&u vs. s2&2u 2.42 2.42

Table 9.11: Lago data, 3-person mixture - comparison of the logarithms of the LR
in favour of suspects and victim when peak area are modelled with a conditional-
Gaussian approximation (CG model) and when are modelled with a conditional-
Gamma model (Gamma model). Evidence consists of the mixed trace and DNA
profiles extracted from two suspects, s1 and s2.

form of the mixed trace and DNA profiles from the suspect s1 only, with

155



9.5 Separation of genotypes

both conditional-Gaussian and conditional-Gamma models. In this case the

likelihood ratio for the hypotheses H0 : s1&2u versus H1 : 3u is 101.80 ' 63,

if a conditional-Gaussian approximation is applied, and 101.77 ' 58.5 if peak

areas are modelled with a conditional-Gamma distribution. Thus, these

results allow to conclude that the conditional-Gaussian approximation is an

extremely good approximation to the conditional-Gamma model.

9.5 Separation of genotypes

We did not perform an analysis in order to separate the genotypes of the

unknown individuals who contributed to the mixture, since we met severe

computational problems.

Table 9.123 shows the total clique size tables for the classes that have

Classes 3mix 2mix factor
marker 14,411,412 93,180 154.66
joint 11,390,625 50,625 225.00
alleleinmix 30,693 702 43.72
amelogenin 21,356 830 25.73
alleleinmix am 9,328 280 33.31
joint am 64 16 4.00
target 80 16 5.00
total 23,491,503 97,214 241.65

Table 9.12: Total clique size tables for the classes in the first column of the network
for 2-person mixtures (2-mix) and for 3-person mixtures (3mix), and factor of
difference (factor). In the classes termed alleleinmix am and joint am the pedix
am indicates that the class is used to construct the Amelogenin marker.

to be changed in order to introduce a third contributor in the network.

The network considered is the one including the evidence on peak areas and

described in Appendix C.2. In the second column termed “3mix” the total

clique size tables for the classes in the network for 3-person mixtures are

3This table has been constructed computing the total clique size tables of two networks
including a single marker node (with alleles A, B, C, D and x) and the Amelogenin in the
master class.
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Figure 9.3: Two traces. Marker class.

represented. In the third column termed “2mix” we consider the total clique

size tables for the classes in the network for 2-person mixtures. Finally, the

last column termed “factor” shows the increase of the total clique size tables

in the network for 3-person mixtures.

The clique size tables for the classes in the network for crime trace with

three contributors are indeed higher than those in the network for a mixture

with two only contributors. A class with a large size is the marker class since

it is an upper level that contains instances of the other classes. In the network

for 3person-mixtures the increase is huge and corresponds approximately to

a factor 155. The marker class for a 3person-mixture is shown in Figure

9.3. However, the class with highest increase is the joint class, where the

increase corresponds approximately to a factor 225.

Figure 9.4 shows the joint class for a 3-person mixture containing 5

alleles, A, B, C, D and x, where x represents all the other unobserved alleles.

In a similar scenario, in the joint class each node p1gt, p2gt and p3gt has

15 states given by the aggregation of pair alleles, i.e. AA, AB, AC, AD, Ax,

BB, BC, etc. Thus, their child node p1gt&p2gt&p3gt has a huge size state

space equal to 153. In general, the clique size table depends both on the

number of variables in the clique and the number of states of each variable.
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Figure 9.4: Two traces. Joint class.

As a consequence, it is given by the product of the number of the states of

each variable in the clique. Therefore, the joint class has total clique size

table equal to 156 ' 11, 390, 625, since the node p1gt&p2gt&p3gt forms a

clique with its parents. On the contrary, if we consider the same class in

the network for 2-person mixtures, this has total clique size table equal to

154 ' 50, 625.

Additionally, consider the total in the last row of the table. This is the

total clique size table of the entire network and is represented by the master

class (Figure 9.5 shows the master class for a 3person-mixture) which is the

top level and therefore contains instances of all the other classes. We note

a huge increase corresponding approximately to a factor 240. Thus, we can

conclude that the network for 3-person mixtures is computationally much

more inefficient than the network for 2-person mixtures, and the class joint

has the strongest weight.

Because of these severe computational problems we did not perform an

analysis for separating the genotypes of the unknown individuals who con-

tributed to the mixture. For the same reason, we performed an identification

analysis including the alleles observed in 3 markers and in the Amelogenin as

the only evidence, and it has not been possible to consider a higher number

of markers. However, researching a method to predict the genotypes in a

3-person mixture and to extend the number of markers in the identification

analysis without the risk to meet similar computational problems is an issue

for future investigations.
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Figure 9.5: Two traces. Master class.
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Chapter 10
Conclusions and further investigations

The main aim of this work was to introduce a powerful method for solving

complex problems of identification and separation in DNA mixtures. In

particular, we approached the issue using Bayesian networks (structured

as object-oriented) that can compute numeric likelihood functions. As a

consequence of their adaptability and natural flexibility, these networks can

be modified to incorporate complications (such as multiple traces and more

than two potential contributors) that can characterize the DNA scenario.

The analysis has been developed by considering three different examples

in a crime scene. Firstly, we considered a murder where a DNA sample is

observed in addition to DNA profiles from a victim and a suspect. Secondly,

we took into account multiple traces obtained from a robbery. The power of

the analysis carried out for this case is due to the fact that the two traces has

been examined simultaneously and using the same network. This allows a

mutual exchange of information, since we showed that the weight of evidence

loses strength if each trace is analysed singularly. Finally, we considered a

rape case where a biological sample from two perpetrators and a victim has

been examined.

These examples showed that the predicted peak weights are useful to

solve identification and separation DNA problems. In effect, when peak

area information is included as evidence, the weight of evidence increases

dramatically in all the considered cases and sometimes an investigation based
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on allele repeat number only can lead to erroneous inference, whereas the

inclusion of the peak area information in the analysis gives the correct result.

However, the model is extendable to deal with interesting applications to

multiple samples. These can occur when the same DNA sample is amplified

a number of times providing different results because, for example, the sample

is degraded or the DNA proportion of one of the contributors is too low.

Another issue that has been taken into account is the possibility of using

a model based on Gamma distributed absolute peak weights. In effect, the

authors in Cowell et al. (2007b) modelled peak areas using a conditional-

Gaussian distribution, but this is an approximation of the quantitative real

model for peak areas. Thus, identification and separation problems here

have been solved applying a conditional-Gamma distribution for peak areas,

taking care of avoiding that Gaussian distributions take negative values.

However, the results have been obtained also applying a CG model in order

to compare the two models and to show that the CG model is a good

approximation.

Unfortunately, in mixtures made up of more than two contributors we

met severe computational issues because of an increased complexity due to

cliques with huge total size. This problem represented an obstacle for our

analysis since we could examine a maximum of three markers only in the

mixture (including the Amelogenin) and furthermore we could not predict

the genotypes of the three contributors to the mixture. Thus, researching a

method to develop a complete analysis of identification and separation of 3-

person DNA mixtures overcoming similar computational problems is an issue

for future investigations. The methodology of learning in Bayesian networks

has many advantages to offer to analysis of DNA mixtures. However, the

complexity of models sometimes could require alternative approaches and in

this case a solution could be represented by trying to simplify further the

network.

Moreover, the analysis is extendable to situations including complications

such as drop-out alleles, stutter, etc. The simultaneous analysis of several

traces can be useful in presence of such artifacts. In effect, for example, if

a drop-out allele is present in a trace, the simultaneous analysis of another
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mixture that does not contain artifacts, can be useful in recognizing that

allelic drop-out. Nevertheless, we hope to pursue this and other aspects in

the future.
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Appendix A
Details of the object-oriented Bayesian

network for 2-person mixtures

In this Appendix we describe the networks used to perform the analyses in

chapter 7. All networks have been built using the software Hugin version 61.

A.1 OOBN for 2-person mixtures using alle-

les’ repeat number information only

In this section the PES representation used by Mortera et al. (2003) to

solve forensic identification problems and having the form of a BN has been

changed to obtain an OOBN structure. Details of the internal structure are

given.

The founder class

The class founder contains a single output node. The population gene

frequencies in Table 5.5 § 5 are the probabilities associated to the alleles for

each marker and that characterize the states of the node. Figure A.1 shows

a class founder with its probability table; it is referred to the single marker

1See www.hugin.com
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D8.

Figure A.1: Two person mixture. Founder class for marker D8.

The genotype class

The class genotype represents an individual’s genotype and is shown in

Figure A.2. The pair of input nodes pg and mg are copies of node founder

of class founder. Thus, the (unconditional) distribution of the founder gene

nodes pg and mg is specified by the population allele frequencies through the

node founder in class founder. Nodes pg and mg represent, respectively,

the paternal and maternal genes. Now, the genotype of an individual is

represented indirectly through a collection of Boolean nodes, one for each

Figure A.2: Two person mixture. Genotype class.
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Figure A.3: Two person mixture. Identified genotype class.

allele, termed A in gt, B in gt, C in gt and x in gt. These nodes are

observation nodes and indicates whether or not the individual possesses a

specific allele. Their states are given by the logical disjunction2 of the parents

nodes. For example, for the allele A, A in gt = {pg = A} ∪ {mg = A}. This

can be translated by the logical expression: (if (or(pg==“A”, mg ==“A”)),

true, false), i.e. if either node pg or mg is A, then node A in gt is true,

otherwise is false3.

The identified class

The identified class represents the presence in the mixture of a specific allele

contributed by at least one of the identified individuals, v and s. This is

shown in Figure A.3. The input query node v in mix? represents the binary

query: “is the victim’s genotype in the mixture?”. Similarly for s in mix?.

The input nodes A in v, B in v, A in s, B in s, etc. are copies of the similar

2Here the term logical disjunction indicates the union of two events, A ∪B, whilst the
term logical conjunction indicates their intersection, A ∩B.

3If a node has function f(A,x,y), then the node takes value x if condition A holds,
otherwise takes value y.
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Figure A.4: Two person mixture. Unknown class.

labeled nodes in the class genotype. The node Av is the logical conjunction

v in mix? ∩ A in v. Thus, its state is true if both its parent nodes v in mix?

and A in v are true, i.e. if in the mixture there is the allele A contributed by

the victim, otherwise its state is false. Similarly for the nodes Bv, As, Bs, etc.

The node Avs indicates the presence of allele A in either the victim or the

suspect who contributed to the mixture. Thus, this is true if either parent

node (Av or As) is true and false otherwise.

The unknown class

The unknown class represents the presence in the mixture of a specific

allele contributed by at least one unknown individual, either u1 or u2. This

is shown in Figure A.4. This class is similar to the previous one since both

represents the presence in the mixture of a specific allele contributed by at

least one individual. Node n unknown specifies the number of unknown indi-

viduals in the mixture, therefore has values 0, 1, 2 with same probabilities.

The input nodes A in u1, B in u1, A in u2, B in u2, etc. are copies of the

similar labeled nodes in the class genotype. Node Au1 is true if A in u1

is true and n unknown is either 1 or 2, otherwise is false. Similarly for the

nodes Bu1, Cu1 and xu1. Node Au2 is true if A in u2 is true and n unknown

is 2, otherwise is false. Similarly for the nodes Bu2, Cu2 and xu2.
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Figure A.5: Two person mixture. Alleleinmix class.

Node Au1&u2 is the logical disjunction Au1∪Au2. Thus, its state is true if

either parent node is true, and false otherwise.

The alleleinmix class

The class alleleinmix represents the composition of the mixture, i.e. indi-

cates whether the crime trace contains a certain allelic type. This class is

shown in Figure A.5. It contains two Boolean input nodes sv and U which are

parents of the observation node in mix. Thus, the node in mix is the logical

disjunction of the nodes sv and U, hence it is true if at least one between sv

and U is true.

The marker class

The marker class represents a specific marker and contains several instances

of the classes described so far since it is an upper level. Figure A.6 shows

the marker class. The query nodes v in mix? and s in mix? are Boolean

nodes. Such nodes indicate whether or not the genotypes of suspect and

victim contributed to the mixture, and they have uniform prior probabilities.

Node n unknown is the same described in the unknown class.

Population allele frequencies, specified in Table 5.5 § 5, define gene
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Figure A.6: Two person mixture. Marker class.

nodes vpg, vmg, spg, smg, u1pg, u1mg, u2pg and u2mg, where, for example

spg represents the victim’s paternal gene, while smg is the victim’s maternal

gene.

Nodes vgt, sgt u1gt and u2gt all are instances of the genotype class.

Evidence on the suspect’s and victim’s genotype is entered in the network

through the nodes A in gt, B in gt, C in gt and x in gt contained in the

instances vgt and sgt.

The node svgt is an instance of the identified class, whilst the node Ugt

is an instance of the class unknown.

Nodes A in mix, B in mix, C in mix and x in mix are all instances of the

class alleleinmix. Thus, for example, the output node Asv in the instance

svgt is linked to the input node sv in the instance A in mix; whilst, the

output node Au1u2 in the instance Ugt is linked to the input node U in the

instance A in mix.

The Amelogenin marker class

The Amelogenin class is shown in Figure A.7. This class has the same

structure of the marker class. We show the differences. The nodes vpg,

vmg, spg, smg, u1pg, u1mg, u2pg and u2mg here are not input nodes and they

have state space XX for female and XY for male. Thus, no founder class is

needed. Nodes vgt, sgt, u1gt and u2gt are instances of the class genotype
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Figure A.7: Two person mixture. Amelogenin marker class.

for the Amelogenin. However, the class genotype used to build the class

Amelogenin, has here two observation nodes only, termed X in gt and

Y in gt. Furthermore, the input nodes pg and mg have state space XX for

female and XY for male. The genotype class used for the Amelogenin is

shown in Figure A.8. Furthermore, in the Amelogenin nodes svgt and Ugt

Figure A.8: Two person mixture. Genotype class for Amelogenin marker.

are respectively instances of the classes identified and unknown used to

build the Amelogenin. They have the same structure of the corresponding

classes described above but with nodes referred to the alleles X and Y rather

than the alleles A, B, C, x. These are shown in Figures A.9 and A.10. Finally,

the nodes X in mix and Y in mix are both instances of the class alleleinmix.
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Figure A.9: Two person mixture. Identified class for Amelogenin marker.

Figure A.10: Two person mixture. Unknown class for Amelogenin marker.

The target class

Figure A.11 shows the target class. The target class contains the nodes
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Figure A.11: Two person mixture. Target class.

v in mix?, s in mix? and n unknown reported in the marker class. These

nodes are parents of the node Target. The states of the Target query

node represent the several hypotheses under test and are defined by the

states of its parent nodes. In other words, its states are made of the ag-

gregation of the states of its parents, being aware that a false or a zero

in the parents’ states are not reported in its final state, e.g. if the parents’

states are v in mix=true, s in mix=true and n unknown=1, this node’s state

will be v&s&1u, whilst if they are v in mix=true, s in mix=false and

n unknown=0 its state will be just v. Finally, node total # counts all con-

tributors. As a consequence, it has states from 0, if n unknown is 0 and both

s in mix and v in mix are false, to 4, if n unknown is 2 and both s in mix

and v in mix are true.

The master class

The master network is shown in Figure A.12. Nodes D5, D8, D7, D18, D16

and D21 are all instances of marker class. D5, D8 and D16 are markers with

three observed alleles A, B and C whilst D7, D18 and D21 are markers with

four observed alleles A, B, C and D. For each marker there are 8 instances

of class founder linked to the 8 input nodes of the class marker. Node
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A.2 OOBN for 2-person mixtures including peak area information

Figure A.12: Two person mixture. Master class

amel is an instance of the Amelogenin marker class. Target is an instance

of class target and is linked to each marker via its output nodes v in mix?,

s in mix? and n unknown.

A.2 OOBN for 2-person mixtures including

peak area information

In this section the object-oriented Bayesian network which Cowell et al.

(2007b) used to investigate identification and separation of DNA mixtures

using peak area information is described. Particularly, it is shown the sin-

gle components and their internal structure which have been used in the

construction of the master network.

The founder class

The class founder is the same described in the previous section.
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The genotype class

The genotype class represents an individual’s genotype gt. This class is

shown in Figure A.13. It involves two input nodes, the paternal and maternal

genes, (pg and mg), which are chosen independently from the same population

with known allele frequencies. The paternal and maternal genes are copies of

node founder of class founder and are parents of the output node gt which

is their logical combination.

Figure A.13: Two person mixture. Genotype class.

The whichgt class

The class whichgt is shown in Figure A.14. This is a query class that

chooses between two genotypes. It includes three input nodes called query?,

ingt and othergt which are linked to an output node outgt. The outgt

probability table is defined by the function: if (query?==true, ingt, othergt).

This expression has meaning: if the Boolean node query? is true, outgt is

a copy of the node ingt, otherwise it is identical to othergt.

The joint class

The combined genotype of the two contributors to the crime trace, p1 and

p2, is represented in the class joint. Thus, the node p1gt&p2gt is the logical

combination of the two input genotypes in p1gt and p2gt. This class is
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Figure A.14: Two person mixture. Whichgt class.

Figure A.15: Two person mixture. Jointgt class.

represented in Figure A.15.

The nalleles class

The class nalleles counts the number of alleles in a certain genotype. Figure

A.16 shows the class nalleles. The output node nA counts the number of a

particular allelic type in the genotype of the input node gt. For example for

allele A, nA has the expression (if (gt==AA, 2, if (or(gt==AB, gt==AC,

gt==Ax), 1, 0))). This expression has meaning: if the individual’s genotype

is AA, then nA counts 2 alleles, otherwise, if the individual’s genotype is

either AB, or AC, or Ax, it counts 1 allele, whilst in all the other cases nA is

zero. In the equation (7.1) in § 7 the variable n
(i)
a is modeled in this class.
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Figure A.16: Two person mixture. Nalleles class.

The alleleinmix class

The class alleleinmix represents the composition of the mixture, i.e. indi-

cates whether the crime trace contains a certain allelic type. For the sake

of brevity in the following lines the class Aalleleinmix only is taken into

account, but the same structure applies to the other classes of this kind,

i.e. Balleleinmix, Calleleinmix, etc. The class Aalleleinmix is shown

in Figure A.17. Here, the input nodes, representing the genotypes of the

two individuals p1 and p2, have identity link to the input node gt of the

class nalleles. The node Ainmix? indicates whether a particular allelic

type is in the mixture. Thus, it is true if at least one of the two unknown

contributors has allele A in the genotype. This can be translated by the

logical expression: (if (and(n1A nA==0, n2A nA==0), false, true)), i.e. if

both n1A nA and n2A nA counts 0 alleles, then Ainimix? is false, otherwise

it is true. Here n1A nA and n2A nA are output nodes of the class nalleles.

Node Ainmix? is an observation node, so that if allele A is measured in

the mixture it is set to true, and the evidence on the mixture composition

concerning allele A propagates from this node to the others.

Additionally, this class computes the mean contribution of a certain

allelic type to the peak area. Input node frac is the proportion θ of DNA

originated by the first contributor p1. This parameter is a continuous vari-

able but, for convenience, discrete values are assigned to it in a scale rang-

ing from [0, 5] with step 1 in order to allow evidence propagation in the

Bayesian network. frac node is linked to node meanA through the expres-
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Figure A.17: Two person mixture. Alleleinmix class.

sion meanA==n1A nA*frac+n2A nA*(5-frac). This is the same mean of the

relative peak weights found in the equation (7.10) in § 7, but it differs by a

scale factor of 10. Thus, when we apply a conditional-Gaussian model, before

entering evidence on the relative peak weights, these have to be multiplied by

10. It is worth noting that, using a factorization for the conditional-Gamma

model, the vector of the likelihoods in equation (7.7) in § 7.2.1 is entered in

the node meanA.

The peakweight class

The class peakweight is shown in Figure A.18. This class models the observ-

able peak weights as described in the conditional-Gaussian approximation

model, thus it is not needed when peak areas are modelled with a conditional-

Gamma distribution (see § 7.2.1 in § 7). The input node mean has identity

link to the output node meanA in class alleleinmix. The unobserved true

peak weight is represented by the continuous area node. This node has a
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Figure A.18: Two person mixture. Peakweight class.

conditional-Gaussian distribution with mean equal to the value of meanA and

variance given by 10× 0.01× µ, where the factor 10 is due to the fact that,

since θ has been scaled of 5, then the mean has been scaled of 10 too. The

continuous node areaobs is an observational node with mean 0 and variance

representing variation in the measurement process. This node receive the

evidence on the relative peak weights.

The marker class

The marker class represents a specific marker and contains several instances

of the classes described so far since it is an upper level. Figure A.19 shows

the marker class. All the input nodes smg, spg, u1mg, u1pg, vmg, vsg, u2mg

and u2pg have identity links to the node founder in the founder class.

The nodes sgt, u1gt, vgt and u2gt are instances of the genotype class.

They contain respectively information on the suspect’s, victim’s and the two

unknown individual’s genotypes. Evidence on suspect and victim is set in

the nodes gt of sgt and vgt. Nodes p1gt and p2gt are instances of the class

whichgt. The Boolean node squery is connected to the input query node

query? in p1gt; the output node gt in sgt is connected to the input node

ingt in p1gt; the output node gt in u1gt is connected to the input node
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Figure A.19: Two person mixture. Marker class.

othergt in p1gt. Thus, if the node squery is true the output node outgt

in p1gt is a copy of the node gt in sgt, otherwise is a copy of the node gt

in u1gt. Similarly for p2gt. The node jointgt is an instance of the class

jointgt. The nodes Amean, Bmean, Cmean and xmean are instances of the class

alleleinmix. Their output node meanA is linked to the input node mean in

the class peakweight. The node frac copies the corresponding nodes in the

class alleleinmix. The instances of the class peakweight are used when

peak areas are modelled with a conditional-Gaussian model.

The Amelogenin marker class

The Amelogenin class is shown in Figure A.20. This class has the same

structure of the marker class. No founder class is introduced. Nodes vgt,

sgt, u1gt and u2gt are instances of the class genotype for the Amelogenin.

However, the class genotype used to build the class Amelogenin, has here

a single output node gt with states XX for female and XY for male. The

whichgt and joint classes are unchanged but have their state spaces reduced,
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Figure A.20: Two person mixture. Amelogenin marker class.

i.e. they have two states only: XX and XY . In the class nalleles the node

nX (nY) counts 1 (1) allele if the parent node gt is XY , whilst counts 2 (0)

if the parent node gt is XX. The class alleleinmix is modified in the node

Xinmix only which is always set to true. The Amelogenin class has only

two instances of the class alleleinmix which are termed Xmean and Ymean

and are connected to the nodes Xpeakweight and Ypeakweight instances of

the peakweight class.

The target class

Figure A.21 shows the target class. The target class contains the target

node where the results are read and the likelihood ratios are computed. This

is the logical combination of the two Boolean nodes, p1=s? and p2=v?. Since

p1=s? and p2=v? have a uniform prior distribution, then the target node

also has a uniform prior distribution.
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Figure A.21: Two person mixture. Target class.

The master class

The master network is given in Figure A.22. This network has been con-

structed in order to analyse the data in Table 5.4 § 5. Nodes D5, D8, D7, D18,

D16 and D21 are all instances of the marker class. Nodes D5, D16 and D8 are

marker instances with three observed alleles A, B and C , whilst nodes D7,

D18 and D21 are marker instances with four observed alleles A, B, C and D.

For each marker there are 8 instances of the class founder which are linked

to the 8 input nodes of the class marker. The node amel is an instance of

the Amelogenin class. The frac node is linked to the corresponding frac

node in the marker instances. Target is an instance of class target and is

linked to each marker via its output nodes p1=s? and p2=v?.
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Figure A.22: Two person mixture. Master class.
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Appendix B
Details of the object-oriented Bayesian

network for two mixed traces

In this Appendix we describe the networks used to perform the analyses in

chapter 8.

B.1 OOBN for two DNA mixed traces using

alleles’ repeat number information only

The modular structure of the object-oriented Bayesian network described

in Appendix A.1 is here extended in order to include a second trace in the

network.

We describe only the classes that have been changed, i.e. the classes

marker, Amelogenin, target and master; whilst the classes founder,

genotype, identified, unknown and alleleinmix remain unchanged and

are described in Appendix A.1.

The marker class

The marker class represents a specific marker and contains a number of

instances of the classes founder, genotype, identified, unknown and

alleleinmix, since it is an upper level network. Figure B.1 shows the marker
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Figure B.1: Two traces. Marker class.

class. Here it is represented for a marker having three observed alleles in the

mixture. Population allele frequencies, specified in Table 5.7 in 5, define

the probability distribution of the input gene nodes s1pg, s1mg, s2pg, s2mg,

u1pg, u1mg, u2pg and u2mg where, for example s1pg represents the first

suspect’s paternal gene, whilst s1mg is the first suspect’s maternal gene.

Nodes s1gt, u1gt and u2gt are all instances of the genotype class.

Evidence on the suspects’ genotypes is entered in the network through the

nodes A in gt, B in gt, C in gt and x in gt contained in the instances s1gt

and s2gt.

Nodes s1s2 T1 and s1s2 T2 are instances of the class identified, whilst

the nodes u1u2 T1 and u1u2 T2 are instances of the class unknown. Note

that the letters “T1” and “T2” at the end of the name of each node indicates
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that we are referring to, respectively, the first or the second trace.

Input nodes s1 in T1?, s2 in T1? and n unknown T1 indicates, respec-

tively, whether s1 is in the first trace, whether s2 is in the first trace and the

total number of unknown individuals in the first trace. They are identified

with the corresponding input nodes contained in the instances s1s2 T1 and

u1u2 T1. Similarly for the other query nodes referred to the second trace,

i.e. s1 in T2?, s2 in T2? and n unknown T2.

Nodes A in T1, B in T1, A in T2, B in T2, etc. are all instances of the

class alleleinmix. Thus, for example, the output node As1s2 in the instance

s1s2 T1 is linked with the input node s1s2 in the instance A in T1; whilst,

the output node Au1u2 in the instance u1u2 T1 is linked with the input node

U in the instance A in T1.

The Amelogenin marker class

The Amelogenin class is shown in Figure B.2. This class has the same

structure of the marker class. We show the differences.

In this class, as in the others, we added all the nodes referred to the

second trace. Nodes called with the letters “T1” at the end of the name

belong to the first trace, whilst nodes called with the letters “T2” at the end

of the name are referred to the second trace. Nodes referred to the first trace

are linked to those for the second trace through the nodes that represent the

genotypes of the two suspects, s1gt and s2gt, and to the genotypes of the

two unknown individuals, u1gt and u2gt.

The Target class

Figure B.3 shows the target class. The target class contains the nodes

where the results are read. We describe the class in detail.

The query nodes s1 in T1?, s2 in T1?, n unknown T1, represent, re-

spectively, the presence of the suspects in the first trace and the number of

unknown individuals in the mixture; they have uniform prior probabilities.

These nodes are parents of the node total # T1, which counts all contrib-
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Figure B.2: Two traces. Amelogenin marker class.

Figure B.3: Two traces. Target class.
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utors in the first trace. This node has states from 0, if n unknown T1 is 0

and both s1 in T1? and s2 in T1? are false, to 4, if n unknown T1 is 2 and

both s1 in T1? and s2 in T1? are true. Similarly for the nodes s1 in T2?,

s2 in T2?, n unknown T2 and total # T2 which are referred to the second

trace T2.

Furthermore, the nodes s1 in T1? and s1 in T2? are connected to

the Boolean nodes s1 in T1 or T2 and s1 in T1&T2. Node s1 in T1 or T2

indicates the presence of the suspect1 in at least one trace. Thus, it is true

if at least one either s1 in T1? or s1 in T2? is true. Node s1 in T1&T2

indicates the presence of the suspect1 in both crime traces. Thus, it is true

if both s1 in T1? and s1 in T2? are true. Similarly for the second suspect

s2.

The states of the Target T1 and Target T2 query nodes represent the

12 hypotheses under test and are defined by the states of its parent nodes.

In other words, its states are made of the aggregation of the states of its

parents, being aware that a false or a zero in the parents’ states are not

reported in its final state, e.g. for the node Target T1, if the parents’ states

are s1 in T1?=true, s2 in T1?=true and n unknown T1=1, this node’s state

will be s1&s2&1u, whilst if they are s1 in T1?=true, s2 in T1?=false and

n unknown T1=0 its state will be just s1.

The master class

Figure B.4 shows the master class where markers D2, D21 FGA, THO1 and VWA

are specified through the instances of marker class. They are all markers

with three observed alleles in the mixture, except D21 which has four observed

alleles A, B, C and D. Each marker has 8 instances of class founder with

their appropriate frequencies and linked with the 8 input nodes of the class

marker.

The node amel represents the Amelogenin class and therefore it does

not need of founder classes.

Target is an instance of class target and it is linked to each marker via

its output nodes s1 in T1?, s2 in T1?, n unknown T1, s1 in T2?, s2 T2?
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Figure B.4: Two traces. Master class.
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Figure B.5: Two traces. Unknown class.

and n unknown T2.

Adding unknown number of contributors

This network can be easily extended to account more unknown contributors.

We show only the classes to change in order to add more unknown contrib-

utors.

Figure B.5 shows the unknown class modified for up to 4 unknown

contributors. Here the node n unknown has the number of its states increased

up to 4. Furthermore, we added all the nodes referred to the third and

the fourth unknown contributor, u3 and u4. The nodes A in u3, B in u3,

A in u4, B in u4, etc. are Boolean nodes with uniform prior probabilities.

Node Au3 is true if A in u3 is true and n unknown is 3, 4, otherwise is false.

Similarly for the nodes Bu3, Cu3 and xu3. Node Au4 is true if A in u4 is true

and n unknown is 4, otherwise is false. Similarly for the nodes Bu4, Cu4 and

xu4. Node Au1&u2&u3&u4 has two more parents (Au3 and Au4) and it is true

if either Au1, or Au2, or Au3, or Au4 is true, otherwise it is false. Similarly
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Figure B.6: Two traces with 4 unknown individuals. Master class.

for Bu1&u2&u3&u4, Cu1&u2&u3&u4 and xu1&u2&u3&u4.

In the marker class shown in Figure B.6 we added the founder nodes

u3pg, u3mg, u4pg and u4mg. As a consequence, the master class contains

now 12 instances of the class founder, rather than 8, connected with the 12

input nodes in the marker class.

Additionally, we introduced the nodes u3gt and u4gt which are instances

of the genotype class. The input nodes of these instances are connected to

the output nodes of the instances u1u2u3u4 T1 and u1u2u3u4 T2.

All the other classes are unchanged, whilst the Amelogenin has similar

modifications.
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B.2 OOBN for two DNA traces including peak area information

B.2 OOBN for two DNA traces including peak

area information

In this section we expand the network used by Cowell et al. (2007b) in a

way so that we can include two traces in the same network. It models DNA

mixtures using both alleles repeat number and peak area information but is

not used to make inference on the total number of contributors.

For this network, as for the previous one, we describe only the classes

that have been modified, i.e. the classes marker, Amelogenin, target and

master; whilst the classes founder, genotype, whichgt, joint, nalle-

les,alleleinmix and peakweight remain unchanged and are described in

Appendix A.2.

The marker class

The marker class represents a specific marker and contains instances of the

classes genotype, whichgt, joint, nalleles,alleleinmix and peakweight,

since it is an upper level. Figure B.7 shows the marker class. All the input

Figure B.7: Two traces. Marker class.

nodes s1pg, s1mg, u1pg, u1mg, s2pg, s2mg, u2pg and u2mg have identity links

with the node founder in the founder class. The nodes s1gt, u1gt, s2gt

and u2gt are instances of the genotype class. They contain respectively
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information on the suspect1’s, suspect2’s and the two unknown individual’s

genotypes. Evidence on suspects is set in the nodes gt of s1gt and s2gt.

Nodes p1gt, p2gt represent the two individuals, p1 and p2, contributors in

the first trace T1. Nodes p3gt and p4gt represent the two individuals, p3 and

p4, contributors in the second trace T2. They are all instances of the class

whichgt. The Boolean node s1query T1 is connected to the input query

node query? in p1gt; the output node gt in s1gt is connected to the input

node ingt in p1gt; the output node gt in u1gt is connected to the input

node othergt in p1gt. Thus, if the node s1query T1 is true the output node

outgt in p1gt is a copy of the node gt in s1gt, otherwise is a copy of the

node gt in u1gt. Similarly for p2gt, p3gt and p4gt. Nodes jointgt T1

and jointgt T2 are instances of the class jointgt. Here the term T1 or

T2 at the end of the name of the node indicates that the node is referred

to, respectively, the first or the second trace. Nodes Amean T1, Bmean T1,

Amean T2, Bmean T2, etc. are all instances of the class alleleinmix. Their

output node meanA is linked to the input node mean in the class peakweight.

When peak areas are modelled with a conditional-Gaussian model, we enter

the evidence on the relative peak weights in the classes peakweight. Nodes

frac T1 and frac T2 are linked with the corresponding node frac in the

class alleleinmix.

The Amelogenin class

The Amelogenin class is represented in Figure B.8. This class has the same

structure of the marker class. No founder class is introduced. Nodes s1gt,

u1gt, s2gt and u2gt are all instances of the class genotype. But, the class

genotype, used to build the class Amelogenin, has here a single output

node gt with states XX for female and XY for male. The whichgt and

joint classes are unchanged but have their state spaces reduced, i.e. they

have two only states XX and XY . In the class nalleles the node nX (nY)

counts 1 (1) allele if the parent node gt is XY , whilst counts 2 (0) if the

parent node gt is XX. The class alleleinmix is modified in the node Xinmix
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Figure B.8: Two traces. Amelogenin marker class.

only which is set always true. The Amelogenin class has only two instances

for each trace of the class alleleinmix which are termed Xmean T1, Ymean T1,

Xmean T2 and Ymean T2. They are connected to the nodes Xpeakweight T1,

Ypeakweight T1, Xpeakweight T2 and Ypeakweight T2 which are all in-

stances of the peakweight class.

The Target class

Figure B.9 shows the target class. The target class contains the nodes

target T1 and target T2 where the results are read and the likelihood

ratios are computed, respectively, for the first and the second trace. Node

Target T1 is the logical combination of the two Boolean nodes, p1=s1? and

p2=s2?; whilst node Target T2 is the logical combination of the two Boolean

node p3=s1? and p4=s2?.

Since p1=s1?, p2=s2?, p3=s1? and p4=s2? have a uniform prior distri-

bution, then the nodes target T1 and target T2 also have a uniform prior

distribution. Additionally, their states are the hypotheses under test for each

trace. They are shown in Table B.1.

The Boolean node s1 in T1 or T2 indicates the presence of the first suspect

in at least one trace. Thus, it is true if either p1=s1? or p3=s1? is true.

The Boolean node s1 in T1&T2 indicates the presence of the first suspect in
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Figure B.9: Two traces. Target class.

Hypotheses under test
s1&s2 both suspects contributed to the mixture
s1&u the first suspect and an unknown individual contributed to the mixture
s2&u the second suspect and an unknown individual contributed to the mixture
2u two unknown individuals contributed to the mixture

Table B.1: Hypotheses under test.

both the two traces. Thus, it is true if both p1=s1? and p3=s1? are true.

Similarly for the nodes referred to the second suspect, s2 in T1 or T2 and

s2 in T1&T2.

The master class

Figure B.10 shows the master class. In the master class nodes D2, D21, FGA,

THO1 and VWA are all instances of the marker class. For each marker, there

are 12 instances of the class founder linked with the 8 input nodes of the class

marker. The frac T1 and frac T2 nodes are linked with the corresponding

nodes in the markers. The node amel represents the Amelogenin class and

therefore it does not need of founder classes. Target node is an instance
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Figure B.10: Two traces. Master class.

of class target and is linked to each marker via its output nodes p1=s1?,

p2=s2?, p3=s1? and p4=s2?.
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Appendix C
Details of the object-oriented Bayesian

network for 3-person mixtures

In this Appendix we describe the networks used to perform the analyses in

chapter 9.

C.1 OOBN for 3-person DNA mixtures using

alleles’ repeat number information only

The modular structure of the object-oriented Bayesian network described in

Appendix A.1 is extended in order to include a third contributor to the mixed

trace.

We describe the classes that have been changed only, i.e. the classes

identified, unknown, marker, Amelogenin, target and master; whilst

the classes founder, genotype, and alleleinmix are unchanged and are

described in Appendix A.1.

The identified class

Figure C.1 shows the class identified. This class represents the presence in

the mixture of a specific allele contributed by at least one of the identified

individuals v, s1 and s2. We describe the class in detail. The input query
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Figure C.1: Three person mixture. Identified genotype class.

node v in mix? represents the binary query: “is the victim’s genotype in

the mixture?”. Similarly for the other input query nodes s1 in mix? and

s2 in mix?. The input nodes A in v, B in v, A in s1, B in s1, A in s2,

B in s2, etc. are copies of the same labeled nodes of the class genotype

described in Appendix A.1. The node Av is the logical conjunction v in mix?

∩ A in v, thus, it is true if both its parent nodes v in mix? and A in v are

true. In other words, this is true if in the mixture there is the allele A

contributed by the victim, otherwise is false. Similarly for the nodes Bv, As1,

Bs1, As2, Bs2, etc. The node Avs1s2 indicates the presence of allele A in

either the victim or one suspect who contributed to the mixture. Thus, this

is true if either one parent node, Av, As1 or As2, is true and false otherwise.

The unknown class

Figure C.2 shows the class unknown. This class is similar to the previous one

since it represents the presence in the mixture of a specific allele contributed

by at least one unknown individual, either u1 or u2 or u3. We introduce

three unknown individuals since this is a network for a 3-person mixture,

thus the mixed trace can contain at most the DNA profiles of three unknown

individuals. Node n unknown specifies the number of unknown individuals in

the mixture, therefore it has values 0, 1, 2, 3 with same probabilities. The

input nodes A in u1, B in u1, A in u2, B in u2, A in u3, B in u3, etc. are
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Figure C.2: Three person mixture. Unknown class.

copies of the same labeled nodes of the class genotype. Node Au1 is true

if A in u1 is true and n unknown is 1, 2, 3, otherwise is false. Similarly for

the nodes Bu1, Cu1, Du1 and xu1. Node Au2 is true if A in u2 is true and

n unknown is 2, 3, otherwise is false. Similarly for the nodes Bu2, Cu2, Du2

and xu2. Finally, node Au3 is true if A in u3 is true and n unknown is 3,

otherwise it is false. Similarly for the nodes Bu3, Cu3, Du3 and xu3. Node

Au1u2u3 is the logical disjunction Au1∪Au2∪Au3. Thus, this is true if either

parent node is true and false otherwise.

The marker class

The marker class represents a specific marker and contains instances of the

classes described so far since it is an upper level network. Figure C.3 shows

the marker class. Here it is represented for a marker containing five alleles

in the mixture, A, B, C, D and x. Population allele frequencies, specified in

Table 5.9 in § 5, define the probability distribution of the input gene nodes

vpg, vmg, s1pg, s1mg, s2pg, s2mg, u1pg, u1mg, u2pg, u2mg, u3pg and u3mg

where, for example vpg represents the victim’s paternal gene, whilst vmg is

the victim’s maternal gene.

Nodes vgt, s1gt, s2gt, u1gt, u2gt and u3gt are all instances of the

genotype class. Evidence on the victim’s and the two suspects’ genotypes
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Figure C.3: Three person mixture. Marker class.
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is entered in the network through the nodes A in gt, B in gt, etc. contained

in the instances vgt, s1gt and s2gt.

Node vs1s2 is an instance of the class identified, whilst the node u1u2u3

is an instance of the class unknown.

Input nodes v in mix?, s1 in mix?, s2 in mix? and n unknown are

identified with the corresponding input nodes contained in the instances

vs1s2 and u1u2u3.

Nodes A in mix, B in mix, C in mix, D in mix and x in mix are all in-

stances of the class alleleinmix. For example, the output node Avs1s2 in

the class vs1s2 is linked to the input node vs1s2 in the instance A in mix;

whilst, the output node Au1u2u3 in the class u1u2u3 is linked to the input

node U in the class A in mix.

The Amelogenin marker class

The Amelogenin class is shown in Figure C.4. This class has similar

Figure C.4: Three person mixture. Amelogenin marker lass.
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Figure C.5: Three person mixture. Identified genotype class for the Amelogenin
marker.

structure of the marker class. Here, the nodes vpg, vmg, s1pg, s1mg, s2pg,

s2mg, u1pg, u1mg, u2pg, u2mg, u3pg and u3mg are ordinary nodes, thus no

founder class is needed, and they have state space XX for female and XY

for male. Nodes vgt, s1gt, s2gt, u1gt, u2gt and u3gt are instances of

the class genotype for the Amelogenin which is the same class described

in Appendix A.1. Furthermore, the node vs1s2 is an instance of the class

identified. In the class identified, used to build the class Amelogenin and

shown in Figure C.5, the collection of the allele nodes has two nodes for each

group referred to the allele X and Y . Similarly for the class unknown shown

in Figure C.6. Finally, the nodes X in mix and Y in mix, in the Amelogenin

class, are instances of the class alleleinmix.

The Target class

Figure C.7 shows the target class. The target class contains the nodes

where the results are read. We describe the class in detail. Nodes v in mix?,

s1 in mix?, s2 in mix? and n unknown have uniform prior probabilities.

These nodes are parents of the node total #, which counts all contribu-

tors. Node total # has states from 0, if n unknown is 0 and all v in mix?,

s1 in mix? and s2 in mix? are false, to 6, if n unknown is 3 and all
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Figure C.6: Three person mixture. Unknown class for Amelogenin marker.

Figure C.7: Three person mixture. Target class.
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v in mix?, s1 in mix? and s2 in mix? are true.

Furthermore, the nodes s1 in mix? and s2 in mix? are connected to the

Boolean nodes s1 or s2 in mix and s1&s2 in mix. Node s1 or s2 in mix

indicates the presence of at least one suspect in the mixture. Thus, this is true

if at least one either s1 in mix? or s2 in mix? is true. Node s1&s2 in mix

indicates the presence of both the suspects in the mixture. Thus, this is true

if both s1 in mix? and s2 in mix? are true.

The states of the Target query node represent the 321 hypotheses under

test and are defined by the states of its parent nodes. In other words, its states

are made of the aggregation of the states of its parents, being aware that a

false or a zero in the parents’ states are not reported in its final state, e.g. if

the parents’ states are v in mix?=true, s1 in mix?=true, s2 in mix?=true

and n unknown=1, this node’s state will be v&s1&s2&1u, whilst if they are

v in mix?=true, s1 in mix?=true, s2 in mix?=false and n unknown=0 its

state will be v&s1.

The master class

Figure C.8 shows the master class where markers D7, D8, and D21 are

specified through the instances of marker class. They are all markers with

five observed alleles in the mixture, A, B, C, D and x. Each marker has 12

instances of class founder with their appropriate frequencies and linked to

the 12 input nodes of the class marker.

The node amel represents the Amelogenin class and therefore it does

not need of founder classes.

Target is an instance of class target and it is linked to each marker via

its output nodes v in mix?, s1 in mix?, s2 in mix? and n unknown.

Concluding, in this 3-person mixture the third contributor could be rep-

resented by a second suspect s2 or a third unknown individual u3. Thus in

order to include a third contributor to the mixed trace, we need to add all

the nodes referred the second suspect s2 and the third unknown individual

1Obviously, in a specific court case only two competing hypothesis will be needed.
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C.2 OOBN for 3-PERSON DNA mixtures including peak area information

Figure C.8: Three person mixture. Master class.

u3.

Additionally, it is worth noting that this network has been built to be

applied in a specific rape case where biological material from the victim

and two suspects is considered. However, the network remains unaltered

also for different cases that involve, for example, three suspects. In this

alternative case only one modification could be introduced: in the target

class the nodes that indicate the presence of at least one suspect in the

crime trace, s1 or s2 or s3 in mix, and the presence of all suspects in the

mixture, s1&s2&s3 in mix, will have one more parent node s3 in mix?.

C.2 OOBN for 3-PERSON DNA mixtures in-

cluding peak area information

In this section we expand the network used by Cowell et al. (2007b), which

includes the nodes referred to peak areas, to mixtures involving three con-

tributors.

For this network, as for the previous ones, we describe only the classes that
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Figure C.9: Three person mixture. Alleleinmix class.

have been changed, i.e. the classes alleleinmix, joint, marker, Amelo-

genin, target and master; whilst the classes founder, genotype, whichgt,

nalleles and peakweight are unchanged and are as described in Appendix

A.2.

The alleleinmix class

The class alleleinmix represents the composition of the mixture, i.e. indi-

cates whether the crime trace contains a certain allelic type. For the sake

of brevity in the following lines the class Aalleleinmix only is taken into

account, but the same structure applies to the other classes of this kind,

i.e. Balleleinmix, Calleleinmix, Dalleleimix xalleleinmix. The class

Aalleleinmix is shown in Figure C.9. Here, the input nodes, representing

the genotypes of the three individuals p1, p2 and p3, have identity link to the

input node gt of the class nalleles. The node Ainmix? indicates whether

a particular allelic type is in the mixture. Thus, it is true if at least one

of the three unknown contributors has allele A in the genotype. This can

be translated by the logical expression: (if (and(n1A nA==0, n2A nA==0,

n3A nA==0), false, true)), i.e. if all n1A nA, n2A nA and n3A nA count 0
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alleles, then Ainimix? is false, otherwise is true. Here n1A nA, n2A nA and

n3A nA are output nodes of the class nalleles. This node is an observation

node, so that if allele A is measured in the mixture it is set to true, and the

evidence on the mixture composition concerning allele A propagates from

this node to the others.

Additionally, this class computes the mean contribution of a certain allelic

type to the peak area. Input node frac1 is the proportion θ1 of DNA

originated from the first contributor p1. Input node frac2 is the proportion

θ2 of DNA originated from the second contributor p2. Both parameters are

continuous variables but, for simplicity, discrete values are assigned to it in

a scale ranging from [0, 5] with step 1 in order to allow evidence propagation

in the Bayesian network. Nodes frac1 and frac2 are linked to node mean

through the expression (mean==n1A nA*frac1+n2A nA*frac2+n3A nA*(5-

frac1-frac2)). This is the same mean of the relative peak weights found

in equation (9.4), but it differs by a scale factor of 10. Thus, if we use the

conditional-Gaussian model, before entering evidence on the relative peak

weights, these have to be multiplied by 10. The state space of such node

is discrete but contains some unrealistic values ranging from [−10, 20] with

step 1. Node mean is parent of the output node meanA. Since the conditions

of sum in (9.3) and inequality in (9.5) in § 9.1 for the DNA proportions must

hold (i.e. the conditions, respectively, θ1 ≥ θ2 ≥ θ3 and θ1 + θ2 + θ3 = 5),

the node meanA can assume values from 0 to 10 only. As a consequence, it

is defined by the expression: (if (and(mean≥0, mean≤10), mean, 99)), i.e. if

its parent node assumes a value in the range [0, 10], the node meanA copies

the parent node mean, otherwise assumes the state value 99 representing all

those “impossible” or unrealistic states. It is worth noting that, using a

factorization for the conditional-Gamma model, the vector of likelihoods in

(7.7) in § 7.2.1 is entered in this node meanA.
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Figure C.10: Three person mixture. Jointgt class.

Figure C.11: Three person mixture. Marker class.

The joint class

The combined genotype of the three contributors to the crime trace, p1, p2

and p3, is represented in the class joint. Thus, the node p1gt&p2gt&p3gt

is the logical combination of the three input genotypes in p1gt, p2gt and

p3gt. It is represented in Figure C.10.

The marker class

The marker class represents a specific marker and contains instances of the

classes described so far since it is an upper level. This is shown in Figure C.11.

All the input nodes vpg, vmg, s1pg, s1mg, s2pg, s2mg, u1pg, u1mg, u2pg,
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Figure C.12: Three person mixture. Amelogenin marker class.

u2mg, u3pg and u3mg have identity links to the node founder in the founder

class. The nodes vgt, s1gt, s2gt, u1gt, u2gt and u3gt are instances of the

genotype class. They contain respectively information on the victim’s, the

two suspects’ and the three unknown individuals’ genotypes. Evidence on

victim and suspect is set in the nodes gt of vgt, s1gt and s2gt. Nodes

p1gt, p2gt and p3gt are instances of the class whichgt. The Boolean node

s1query is connected to the input query node query? in p1gt; the output

node gt in sgt is connected to the input node ingt in p1gt; the output node

gt in u1gt is connected to the input node othergt in p1gt. Thus, if the

node s1query is true the output node outgt in p1gt is a copy of the node gt

in s1gt, otherwise is a copy of the node gt in s2gt. Similarly for p2gt and

p3. The nodes Amean, Bmean, Cmean, Dmean and xmean are all instances of

the class alleleinmix. Their output node meanA, Bmean, Cmean, Dmean and

xmean is linked to the input node mean in the class peakweight. The nodes

frac1 and frac2 copy the corresponding nodes in the class alleleinmix.

The Amelogenin class

The Amelogenin class is shown in Figure C.12. This class has the same
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Figure C.13: Three person mixture. Target class.

structure of the marker class. No founder class is introduced. Nodes vgt,

s1gt, s2gt, u1gt, u2gt and u3gt are instances of the class genotype for

the Amelogenin. However, the class genotype used to build the class

Amelogenin, has here a single output node gt with states XX for female

and XY for male. The whichgt and joint classes are unchanged but have

their state spaces reduced, i.e. they have two states only: XX and XY . In

the class nalleles the node nX (nY) counts 1 (1) allele if the parent node gt is

XY , whilst counts 2 (0) if the parent node gt is XX. The class alleleinmix

is modified in the node Xinmix only which is always set to true. The marker

class has only two instances of the class alleleinmix which are termed Xmean

and Ymean and are connected to the nodes Xpeakweight and Ypeakweight

instances of the peakweight class.

The Target class

Figure C.13 shows the target class. The target class contains the Target

node where the results are read and the likelihood ratios are computed. This

is the logical combination of the three Boolean nodes, p1=v?, p2=s1? and

p3=s2?.

Since p1=v?, p2=s1? and p3=s2? have a uniform prior distribution,

then the target node also has a uniform prior distribution. Thus, the states
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of Target are the hypotheses under test displayed in Table C.1. The node

Hypotheses under test
s1&s2&v both suspects and victim contributed to the mixture
s1&s2&u both suspects and an unknown individual contributed to the mixture
s1&v&u the first suspect, the victim and an unknown individual contributed

to the mixture
s2&v&u the second suspect, the victim and an unknown individual contributed

to the mixture
s1&2u the first suspect and two unknown individuals contributed to the mixture
s2&2u the second suspect and two unknown individuals contributed to the mixture
v&2u the victim and two unknown individuals contributed to the mixture
3u three unknown individuals contributed to the mixture

Table C.1: Hypotheses under test.

s1 or s2 in mix indicates the presence of at least one of the two suspects

in the mixture. This is true if either p2=s1? or p3=s2? is true. The node

s1&s2 in mix indicates the presence of both suspects in the mixture. This

is true if both p2=s1? and p3=s2? are true. It is worth noting that in

this context we assume that the identified individuals are two suspects and

one victim. However, this class can be easily handled also for crimes where

instead the profiles of three possible suspects are available. In this scenario

the node s1 or s2 in mix would be called s1 or s2 or s3 in mix and would

depend on the three parent nodes p1=s1?, p2=s2? and p3=s3?. Therefore,

it would be true if at least one among the nodes p1=s1? p2=s2? and p3=s3?

is true. Similarly for the node s1&s2 in mix.

The master class

Figure C.14 shows the master class. In the master class nodes D7, D8 and

D21 are all instances of marker class. For each marker, there are 12 instances

of the class founder linked to the 12 input nodes of the class marker. Nodes

frac1 and frac2 represent, respectively, the DNA proportion generating

from the contributor p1 and from p2. They are connected to the corre-
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Figure C.14: Three person mixture. Master class.

sponding nodes in the markers. Node amel represents the Amelogenin

class and therefore it does not need founder classes. Nodes cond 3mix and

cond prop represent the conditions (9.3) and (9.5) in § 9.1 that must hold

for the proportions of DNA θ1 and θ2. Thus, the node cond prop is defined

by the expression: (if (and (frac1≥frac2, frac2≥(5-frac1-frac2), true,

false)), i.e. if θ1 ≥ θ2 ≥ (5 − θ1 − θ2), the node cond prop is set true,

otherwise is set false. If the node cond prop are set true, then θ1 represents

the DNA proportion originated from the first major contributor, whilst θ2

represents the DNA proportion originated from the second major contribu-

tor. On the contrary, the node cond 3mix is defined by the expression: (if

(frac1+frac2<5, true, false), i.e. if θ1 + θ2 < 5, the node cond 3mix is

true, otherwise is false, where the factor 5 is due to the fact that θ has been

discretized assigning to it values in a scale ranging from [0, 5] with step 1.

Finally, Target node is an instance of class target and is linked to each

marker via its output nodes p1=v?, p2=s1? and p3=s2?.
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