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Chapter 1

Introduction

Survival analysis studies the duration between a defined time origin and

the occurrence of an event of interest. In a given population different event

times reflect each subject’s own susceptibility to the event itself, which is

the result of a set of determinants which make the individuals different. We

define such diversity as heterogeneity. Part of it can be described by subject-

specific observable features which can be included in a survival model by

a set of subject-specific observable covariates. Such models are called fixed

effects models and account for the observed heterogeneity. It may be that

unobservable features exist however, which let the individuals (or groups of

them) differ with respect to the suceptibility to the event of interest. This

implies the existence of an unobserved heterogeneity which is modelled via

random effects which are not observed realizations of a random variable. A

great variety of random effect models applied to survival analysis 1 have been

developed since Vaupel, Manton, and Stallard (1979) introduced the first in

this peculiar framework. Despite of the great variety of such models there is

a common element which remained unchanged, that is the random effects,

namely their distribution, have been always considered something which is

independent of the fixed effects. In this work we introduce the assumption

that an interaction between the random effects and the fixed effects may exist

1in survival analysis the random effect is traditionally named frailty.
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2 CHAPTER 1. INTRODUCTION

in some cases. To allow for such interaction we introduce a new assumption

about the random effect’s distribution, by letting it be dependent on one

or more covariates. Our assumption is general with respect to the class of

survival models to which it could be applied.

As an initial step in Chapter 2 we provide the theoretical framework of

survival analysis which is necessary to get into the remainder of the work.

We start from the definition of the basic concepts of survival analysis by

describing one of the possible observation schemes. Such schemes are impor-

tant because they originate several issues which must be carefully considered

when specifying the model as we describe in Section 2.1. Namely we de-

fine there the situation of right-censored and left truncated data which is a

quite common observation scheme in survival analysis. In the remainder of

the chapter we present two very popular parametric survival models (Sec-

tion 2.2) which we will use in the remainder of the work. Afterwards, in

Section 2.3 we explain how to introduce a set of subject-specific covariates

in a survival model to account for observed heterogeneity by introducing the

proportional hazards model (PH) which is our reference model.

Chapter 3 deals with unobserved heterogeneity. At first we describe

in Section 3.1 how it originates by introducing the mixture models and we

describe also how the presence of unobserved heterogeneity affects the esti-

mation of survival models’ quantities of interest. In Sections 3.1 and 3.3 the

original frailty model is described and a generalized survival random effects

model are described which are further steps we need to specify our model.

In Chapter 4 we describe the theory of the Expectation Maximization

(EM) and the Monte Carlo EM algorithm (MCEM). These are the estimation

procedures we chose to use in this work because both of them consent us to

iteratively achieve maximum likelihood estimates of models with incomplete

data sets. The presence of unobserved components in survival models origi-

nates an incomplete data set to deal with. The MCEM algorithm is basically

an EM algorithm where a Monte Carlo integration is required to approximate

an expected value. In Section 4.2 we show how we may sample the values we
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need for such approximation when it is not possible to draw them from the

distribution of interest directly. Section 4.3 describes a sampling procedure

which under certain conditions allows us to draw samples from a multivariate

distribution in a really simple way.

Chapter 5 extends the PH model described in Section 2.3 by introducing

missing values in the covariates and explains how to estimate it via the EM

algorithm, as suggested by Herring and Ibrahim (2001). This is a necessary

step for the specification of the estimation procedure of our model in the

remainder of the work. In this chapter we explain at first the possible different

kinds of missingness generating processes (MGP). Then, in Section 5.1 we

specify the PH model with missing values (PHMV) given the missing values

have been generated along a specific MGP, allowing for right-censoring and

left-truncation as well. In Sections 5.2 and 5.3 we describe in detail how to

estimate the the PHMV model via EM and MCEM algorithms, when the

covarites with missing values are discrete and continuous respectively.

We explain our original assumption on the random effects’ distribution

in Chapter 6. In the same chapter we introduce this assumption in propor-

tional hazards model with random effects and we explain how to estimate

such model. After describing why such assumption could be reasonable we

briefly recall the traditional random effect PH model, we specify our assump-

tion formally in Section 6.2. Afterwards we introduce such assumption in a

proportional hazards model with random effects, allowing for both right-

censoring and left-truncation as well. This is in Section 6.3. In Sections 6.3.1

and 6.3.2 we describe how to estimate such model via the EM and MCEM

algorithm assuming the random effect to be discrete and continuous respec-

tively.

Chapter 7presents the results of two main sets of simulations both im-

plemented by assuming our assumption was true. The main purpose of them

was to test the performances of the estimation procedures of the model de-

scribed in the previous chapter. The two sets of simulations differs by the

nature of the random effects which are assumed to be binary in the first
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set, continuous in the second. In order to estimate the model accounting

for unobserved heterogeneity we exploited the EM and MCEM algorithm

respectively. In both simulations sets we ran 100 different independent simu-

lations in order to achieve stable results. Moreover, in each set we compared

the EM and MCEM performances to those of two other models. The first

one is miss-specified, that is we specified it as if there was not unobserved

heterogeneity, i.e. we did not include a random effect in it. The second

model is over-specified, as we assumed to know the exact value of random

effects. Both these last two models were estimated by maximizing the re-

spective likelihoods. The results show good performances of both EM and

MCEM algorithm with respect to the over-specified model while the miss-

specified model shows how the estimates are distorted if we do not account

for unobserved heterogeneity.

In addition to theoretical statistical modelling this work relies heavily

on computer programmed algorithms necessary for simulations. Each model

simulated in Chapter 7 has been implemented in software R and is largely

made up of original and self-written code.



Chapter 2

Theoretical framework

Survival analysis is a branch of statistics which deals with duration data,

aiming at analyzing the timing of events. Although statistical methods for

duration data had been developed in engineering and biomedical sciences

mainly, a wide literature spread in economics as well. For example survival

analysis methods are largely applied in studies about unemployment1, lifecy-

cle of firms2 and finance3. A synthetic exposition of survival analysis’ main

concepts and models is in Kiefer (1988), while an extended review of meth-

ods for the study of duration data in economics can be found in Lancaster

(1992). Cox and Oakes (1984), Klein and Moeschberger (1997), Hougaard

(2001) are valid references to deepen theoretical and methodological issues

of survival analysis.

The main variable in survival analysis is time, as the focus is on the dura-

tion up to a specific event. Such event could be death, failure in mechanical

features, criminal acts, divorce, finding a job, etc.. In order to define a du-

ration we need to fix a starting point from which the chronometer starts till

the event’s occurrence. Such starting point is named time origin , defined as

the individual time point from which a subject begins to be exposed to the

1Lancaster (1979); Royston (1983); Gamerman and West (1987); Belzil (2001); Cockx
and Ridder (2001).

2Mata and Portugal (1994); Agarwal and Audretsch (2001); Agarwal and Gort (2002).
3Bennett et al. (2001); Guiso and Jappelli (2002); Li and Xu (2002).

5
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risk of experiencing the event. The fixing of time origin needs some care.

Sometimes it is obvious, for example if we want to study the mortality of a

cohort of people. In this case the event of interest is death and it is natural

to fix time origin at birth. Sometimes the definition of time origin is more

difficult. Let us assume we want to study the time up to first birth. We could

consider the woman at risk of giving birth from a biological point of view,

i.e. since she had her first period. However, we also could fix time origin

along with a behavioural assumption, e.g. at that point in time from which a

woman decides to have children. In general, the choice of time origin must be

carefully determined by researchers along with the study-specific theoretical

hypothesis. Whatever the choice’s criterion is, time origin always equals 0

for each observed subject. We name survival time the spell since time origin

up to the event, and failure time the point in time at which the event oc-

curs. When survival data are collected in practice they are represented over

calendar time, as shown in Figure 2.1(a). Such data must be expressed as

durations since a time origin to be modeled, as shown in Figure 2.1(b). Here

we see that all time origins equal 0, although they are located in different

years when represented over calendar time.

An implicit assumption made in Figure 2.1 is that all failure times were

fully observable. In practice this may not be possible for some subjects, that

is failure times may be partially observable. The lapse of time within which

a subject is kept under observation is named follow-up. The starting point

of follow-up is the individual time point since which a subject is entered

the study, named entry time. The ending point of follow-up is named exit

time and is the time point at which the subject exits the study. Usually

failure times and follow-up times do not coincide so that a variety of possible

observation schemes may occur in the same study. An example is shown in

Figure 2.2 where we assume a study is performed since 1960 up to 1990 on ten

subjects. Dotted lines represent not observed time at risk, while solid lines are

follow up times. We first focus on those people who exit the study before they

experience the event of interest, e.g subjects number eight and nine. Failure
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(b) Time up to event.

Figure 2.1: Survival times represented over calendar time (a) and as dura-
tions since time origin (b).

times of such subjects are named right censored, their observation ending at

a time point named censoring time, which is before the event occurrence. A

typical reason for right censoring to be present is a prespecified ending time of

study, such that some subjects may experiment the event of interest after it,

as subjects number eight, five, six and seven in Figure 2.2. In this case there

is a fixed censoring. Another cause of right censoring is that some subjects

drop the study for some reason, as subjects number two and nine in the same
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figure. This is named random censoring. A second feature which is frequent

in survival studies is left truncation, which occurs when subjects enter the

study when they are at risk already, that is they have delayed entry times.

For example, in Figure 2.2 failure times of those subjects who are already at

risk in 1960 are left truncated (e.g. number one, three, nine). Such subjects

are entered the study when they are at risk already, so that duration since

time origin up to entry time is not observed. Different combinations of left

truncation and right censoring are possible. For example, subject number

three in Figure 2.2 is left truncated but not censored. Subjects two and nine

are both left truncated and right censored. Subject eight is right-censored

only, while number ten is neither truncated nor censored. The impact of left

truncation and right censoring in modelling survival data will be described

in Section 2.1. Here we mention that other types of truncation and censoring

(and their combination) are possible, referring to Klein and Moeschberger

(1997, pp. 55-65) for their description. In the remainder of this work we

deal with right censoring and left truncation only and we will use the word

"time" to denote a duration since time origin, as in Figure 2.2(b).
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2.1 Basic quantities

Let x ∈ [0, +∞) be the possible realization of a continuos non negative

random variable X. Let also F (x) = P (X ≤ x) and f(x) = dF (x)
dx

be the

cumulative distribution function and density of X respectively. We define

the survival function as

S(x) = P (X > x) = 1 − F (x) =

∫ +∞

x

f(u)du,

such that

1. S(0) = 1, lim
x→+∞

S(x) = 0,

2. S(x) > S(x′), ∀x < x′, x, x′ ∈ [0, +∞),

3. lim
x→x0

S(x) = S(x0), ∀x0 ∈ (0, +∞),

4. lim
x→0+

S(x) = 1,

5. d
dx

S(x) = d
dx

[1 − F (x)] = −f(x), ∀x.

The survival function describes the probability that the event of interest will

occur after time x. this implies that such occurrence is not possible at x = 0,

which implies S(0) = 1. Let us define the hazard function as well,

h(x) = lim
∆x→0

P (x < X ≤ x + ∆x|X > x)

∆x
, ∆x > 0, (2.1)

which expresses the risk that event occurs in the next instant after x, condi-

tional on survival to that time. Although it is always h(x) ≥ 0, the hazard

function can be differently shaped().
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Figure 2.3: Shapes of hazard functions. Constant hazard (· · · · · · ), increas-
ing hazard (– – –), decreasing hazard (———), humpshaped
hazard (– · – · –).

We may write (2.1) as

h(x) = lim
∆x→0

P (x < X ≤ x + ∆x|X > x)

∆x

= lim
∆x→0

P (x < X ≤ x + ∆x ∩ X > x)/P (X > x)

∆x

= lim
∆t→0

P (x < X ≤ x + ∆x)/P (X > x)

∆x

=
1

P (X > x)
lim

∆x→0

P (x < X ≤ x + ∆x)

∆x

=
f(x)

S(x)
= −

d

dx
ln S(x). (2.2)

Hence, we define the cumulative hazard function

H(x) =

∫ x

0

h(u)du = − ln S(x) (2.3)
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as that function which describes how the risk of event occurrence cumulates

from time origin up to x, an instant before the event occurs.

Let t ∈ R
+ denote the failure time, that is the time at which the event

of interest occurs, and let us assume we observed n subjects randomly sam-

pled from a population and the data we observed are partially right-censored

and left-truncated. Each observed individual is assigned a failure time ti,

i = 1, ..., n, where t1, t2, ..., tn were independently generated by a random

variable T > 0 along with the hazard function h(t|θ) = f(t|θ)S(t| θ), where

θ is a vector of parameters. To allow for right-censoring we define a positive

continue random variable C with density fc(c|ψ) and cdf Fc(c|ψ), where ψ

is a vector of parameters, from which n i.i.d censoring times ci are randomly

drawn, i = 1, 2, ..., n. Furthermore, we define a positive random variable W

from which n i.i.d entry times wi are randomly drawn in order to allow for

left-truncation. Each subject is therefore described by the triple (ti, ci, wi).

Let us recall that what we actually observe about each subject on study

are an entry time wi and an exit time which could be either an event time

ti or a censoring time ci. We may define therefore a new positive random

variable Y = min(T, C) from which n exit times yi = min(ti, ci) are indepen-

dently drawn, and an event indicator δi which equals 1 if the event occurs,

0 otherwise. Each subject is then described by the triple (yi, δi, wi). Let us

assume T, C, W are mutually independent. The probability of event time ti
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conditional on surviving at time wi may then be written as

P (Y ≤ yi ∩ δi = 1|W > wi) = P (T ≤ yi ∩ C > yi ∩ W > wi)/P (W > wi)

= P (T ≤ yi ∩ C > yi)/P (W > wi)

= P (T ≤ yi)P (C > yi)/P (W > wi)

=
Ft(yi|θ)[1 − Fc(yi|ψ)]

S(wi|θi)

=

∫ yi

0

f(t|θ)[1 − Fc(t|ψ)]

S(wi|θi)
dt. (2.4)

Similarly, the probability of censoring time ci conditional on surviving at

time wi may be expressed by

P (Y ≤ yi ∩ δi = 0|W > wi) = P (C ≤ yi ∩ T > yi ∩ W > wi)/P (W > wi)

= P (C ≤ yi ∩ T > yi)/P (W > wi).

= P (C ≤ yi)P (T > yi)/P (W > wi).

=
Fc(yi|ψ)S(yi|θ)

S(wi|θi)

=

∫ yi

0

fc(c|ψ)S(c|θ)

S(wi|θi)
dc (2.5)
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Exploiting (2.4) and (2.5) we may express the density of yi = min(ti, ci) as

f(yi, δi|wi, θ,ψ) =

{ f(yi|θ)[1 − Fc(yi|ψ)]/S(wi|θ) if δi = 1

S(yi|θ)fc(yi|ψ)/S(wi|θ) if δi = 0.

In order to estimate θ,ψ we may therefore maximize the likelihood

L(θ,ψ|yi, δi, wi) =

n∏

i

[
f(yi|θ)(1 − Fc(yi|ψ))

S(wi|θ)

]δi
[
S(yi|θ)fc(yi|ψ)

S(wi|θ)

]1−δi

.

(2.6)

Let us assume there is non informative censoring, that is ψ 6= θ. Hence,

inference about ψ is superflous and (2.6) becomes

L(θ|yi, δi, wi) =
n∏

i

[
f(yi|θ)

δiS(yi|θ)
1−δi

S(wi|θ)

]
. (2.7)

Thus, the log-likelihood corresponding to (2.7) may be written as

ℓ(θ|yi, δi, wi) = log

{
n∏

i

[
f(yi|θ)

S(wi|θ)

]δi
[

S(yi|θ)

S(wi|θ)

]1−δi

}

=
n∑

i

δi[log f(yi|θ) − log S(wi|θ)] + (1 − δi)[log S(yi|δi) − log S(wi|θ)]

=

n∑

i

δi log f(yi|θ) + (1 − δi)[log S(yi|δi)] − log S(wi|θ)

=

n∑

i

δi log[h(yi|θ)S(yi|θ)] + (1 − δi)[log S(yi|δi)] − log S(wi|θ)

=
n∑

i

δi log h(yi|θ) + log S(yi|δi) − log S(wi|θ)

=

n∑

i

δi log h(yi|θ) − [H(yi|θ) − H(wi|θ)],
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where

H(yi|δi) − H(wi|θ) =

∫ yi

wi

h(t|θ)dt.

Note that for those individuals who are not left-truncated the entry time

concides with time origin, that is wi = 0 and which implies S(wi) = 1. In

this case the ith log-likelihood contribution becomes δi log h(yi|θ)−H(yi|θ).

2.2 Parametric models for survival data

Different assumptions about the distribution of failure time t lead to dif-

ferent models for survival data. The first model we describe is the exponential

distribution (Figure 2.4). The density function is λ exp(−λt), λ > 0, with

expected value 1/λ and variance 1/λ2. The survival function is given by

S(t) =

∫ +∞

t

λe−λt = e−λt.

The exponential random variable is the only one which is memoryless,

because of the so called lack of memory property

P (T > t + s|T > t) =
P (T > t + s ∩ T > t)

P (T > t)

=
P (T > t + s)

P > t
=

e−λ(t+s)

e−λ(t)

= e−λt−λs+λt

= e−λs = P (T > s), ∀t, s, s > 0.

This property implies an important consequence about E(T − t|T > t),

i.e. the expected value of duration up to the event conditional on surviving

at time t. Such quantity is named mean residual life if the failure times’
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Figure 2.4: Exponential survival and hazard functions for λ = 0.2 (———),
λ = 0.1 (– – –), λ = 0.05(· · · · · · ).

distribution is exponential it is

∫ +∞

t

(u − t)λ exp(−λu)

exp(−λt)
du =

1

λ

which is constant over time, that is the residual time up to the event does

not depend on past history. Such "no aging" property is also reflected in the

constant hazard rate

h(t) = −
d

dt
ln S(t) = −

−λ exp(−λt)

exp(−λt)
= λ.

Although the exponential distribution is widely used for its simplicity and

tractability, its constant hazard rate limits its applicability to many realistic

applications.
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The next distribution was originally proposed in specific studies

(Rosin and Rammler, 1933; Weibull, 1939), but it was Weibull (1951) to

show how it can be exploited to model a wide range of problems in different

disciplines. The Weibull distribution is the landmark for a variety of mod-

els (Prabhakar Murthy et al., 2003). Although different formulations are

available, in the remainder of this work we will refer to the two-parameters

Weibull distribution, with density function

αλtα−1e−λtα (2.8)

where α, λ ∈ R
+ are the shape and scale parameters respectively4. The

rth moment of the Weibull distribution is [Γ(1 + r/α)]λ−r/α where Γ(·) is

the gamma function. The mean and variance are [Γ(1 + 1/α)]λ−1/α and

{Γ(1+2/α)− [Γ(1+1/α)]2}λ−1/α respectively. The Weibull survival function

is given by

e−λtα (2.9)

and the hazard function is

αλtα−1. (2.10)

The flexibility of Weibull distribution is evident in Figure 2.5, where differ-

ent possible survival and hazard functions are plotted according to different

values of α and λ in (2.9) and (2.10) respectively. Note that the exponential

distribution is a particular case of the Weibull distribution when α = 1.

4The general form of Weibull density function is

α

γ

(
t − τ

γ

)
α−1

exp

[
−

(
t − τ

γ

)
α
]

, α, γ, τ ∈ R, α > 0, γ > 0, t ≥ τ,

where α, γ, τ, are the shape, scale and location parameters respectively. The density
function (2.8) is obtained setting τ = 0 and γ−α = λ.
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Figure 2.5: Weibull survival and hazard functions for α = 0.5, λ = 0.26
(———), α = 1, λ = 0.1 (– – –), α = 3, λ = 0.003(· · · · · · ).
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2.3 Regression for survival data

So far we assumed that all the variability of failure times derived from

the realizations of a random variable T , i.e. the population from which

the n-sample was drawn was homogeneus with respect to the hazard h(t).

Formally, we guessed that all the observed subjects share the same hazard

function, but this assumption seems to be reasonably too restrictive. The in-

dividuals could differ one from each other according to some own specific fea-

tures which may have an impact on the individual survival chances, like sex,

socio-economic conditions etc.. Such additional subject-specific information

may be summarized via a vector of observable covariates x = [x1, x1, ..., xk]
′,

whose value is subject-specific as well. The individual covariates’ profiles ac-

count for the observed heterogeneity, and can be either time constant or time

varying. In the remainder of this work we deal with time constant covariates

only.

Different assumptions can be made on the way the covariates impact on

the individual duration, leading to different models (Klein and Moeschberger,

1997). A common feature of such models is that they all deal with a subject-

specific conditional hazard rate h(t|x), which is the result of a link between

the individual covariates’ profile and a baseline hazard rate h0(·). The base-

line hazard accounts for a shared component of risk which is the same for all

the members of a population.

Let xi be the individual specific k-vector of covariates of the ith subject,

i = 1, 2, ..., n. The basic assumption of proportional hazards models (PH)

is that xi impacts multiplicatively on the ith hazard rate h(t|xi) via a non

negative function of the covariates g(xi), that is

h(t|xi) = h0(t)g(xi), g(·) > 0, g(xi = 0) = 1, (2.11)

where h0(t) is the baseline hazard which represents the risk when xi = 0.
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Thus, recalling (2.3) and (2.2), the survival and the density functions are

S(t|xi) = exp[−H0(t)g(xi)] (2.12)

and

f(t|xi) = h0(t)g(xi) exp[−H0(t)g(xi)]

respectively.

Assuming that the value of xi is fixed at time origin ∀i, a key feature

of PH models is that the hazard rates ot two subjects are proportional and

constant over time, that is

h(t|xi)

h(t|xj)
=

h0(t)g(xi)

h0(t)g(xj)
=

g(xi)

g(xj)
. (2.13)

where xi and xj ,xi 6= xj are the covariates profiles of two subjects. The

quantity (2.13) is the relative risk of the subject with covariate profile xi

with respect to the individual with covariate profile xj. The concept of mul-

tiplicative impact of the covariates on the baseline hazard was first introduced

by Cox (1972). In this seminal paper the link function is

g(x·) = exp(β′x·) (2.14)

where β is a vector of parameters. The hazard function is given by

h(t|x·) = h0(t) exp(β′x·).

Under the assumption of time constant covariates, the relative risk (2.13)

becomes

h(t|xi)

h(t|xj)
=

h0(t) exp(β′xi)

h0(t) exp(β′xj)
= exp[β′(xi − xj)].

Thus, if we apply (2.14) to (2.11) and (2.12) the survival and the density
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functions are

S(t|xi) = exp[−H0(t) exp(β′xi)]

and

f(t|x·) = h0(t) exp(β′x·) exp[−H0(t) exp(β′x·)]

respectively. Let η be the vector of parameters of the baseline hazard func-

tion, such that h0(t|η). Thus, allowing for non informative right-censoring

and left-truncation and recalling (2.7) the likelihood to maximize may be

written as

L(θ|yi, δi, wi) =

n∏

i

{
[h0(yi|η) exp(β′xi)]

δi exp[−H0(yi) exp(β′xi)]

exp[−H0(wi) exp(β′xi)]

}
,(2.15)

where θ = [η,β].
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Chapter 3

Unobserved heterogeneity

So far we described survival models in which the risk of failure is due to

a combination of two elements. The first one is given by the baseline, a part

of risk which is ruled by the same distribution of a positive random variable

T . The other component of risk is subject-specific and impacts on the haz-

ard rate via the individual covariates’ profiles, which capture the observed

heterogeneity. There could be individual (or subgroup) specific determinants

however, which add an extra-heterogeneity among the individuals which is

not caught by the observable covariates. Such unobserved heterogeneity has

to be included in the model specification, in order to avoid to overestimate

the survival function and to underestimate the hazard function (see Omori

and Johnson, 1993). In this chapter we describe how the unobserved hetero-

geneity can be modeled via mixture models.

3.1 Mixture models

Mixture models are useful to describe situations in which a population

is parted in s different subgroups, such that the observations follow a distri-

bution which is a mixture of s subgroup-specific distributions named compo-

23
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nents,

f(x) =
s∑

j=1

πj · fj(x),

where πj > 0 is the proportion of the jth subgroup with distribution fj(x),
∑s

j=1 πj = 1. The vector π = [π1, ..., πs]
′ is named mixing distribution as it

provides the probabilities of membership to the jth subgroup of a subject

belonging to the observed population. In a survival analysis framework the

presence of subpopulations with different distributions of failure times leads

to important consequences on the estimation of survival and hazard func-

tions. Let us assume that at time t = 0 we have a population of n subjects

described by a survival function S(t) and an hazard function h(t). Let Z

be a binary random variable which can be equal to 1 or 2, and n1 and n2,

n = n1 +n2, the number of those subjects with z = 1 and z = 2 respectively.

In other words, there are s = 2 subgroups in the population according to

the values that Z can have. Let us also assume that such subgroups have a

different susceptibility to failure, namely

h1(t|Z = 1) < h2(t|Z = 2) (3.1)

which are conditional hazards, as they rule the survival times of those in-

dividuals within subgroup 1 or subgroup 2 respectively. We denote Sj =

S(t|Z = j) and fj = f(t|Z = j) as the conditional survival and density

function of the jth subgroup, j = 1, 2. The marginal survival function of the

whole population is given by

S(t) = P (T > t) = P [(T > t) ∩ (Z = 1)] + P [(T > t) ∩ (Z = 2)]

= P (T > t|Z = 1) · P (Z = 1) + P (T > t|Z = 2)P (Z = 2)

= S1(t) · π1(0) + S2(t) · π2(0)
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where π1(0) and π2(0) = 1 − π1(0) are the proportions at time 0 of subjects

with Z = 1 and Z = 2 respectively. Assuming that all subjects are at risk

since t = 0, the proportions of the two subgroups will change over time

according to a selection effect. Namely, the individuals with Z = 2 will fail

earlier than those belonging to subgroup 1, because of assumption (3.1). The

subgroups’ proportions at time t > 0 will be

π1(t) = P (Z = 1|T > t) =
P (Z = 1 ∩ T > t)

P (T > t)

=
P (T > t|Z = 1)P (Z = 1)

P (T > t)

=
S1(t)π1(0)

S(t)

π2(t) =
S2(t)π2(0)

S(t)
, (3.2)

and the marginal density at time t is

f(t) = −
d

dt
S(t) = −

d

dt
[S1(t) · π1(0) + S2(t) · π2(0)]

= S ′
1(t) · π1(0) + S ′

2(t) · π2(0)

= f1(t)π1(0) + f2(t)π2(0).

Hence, the marginal hazard at time t is

h(t) =
f(t)

S(t)
=

f1(t)π1(0)

S(t)
+

f2(t)π2(0)

S(t)

=
f1(t)π1(t)

S1(t)
+

f2(t)π2(t)

S2(t)

= h1(t)π1(t) + h2(t)π2(t) (3.3)
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because, exploiting (3.2),

πj(0)

S(t)
=

πj(t)

Sj(t)
, j = 1, 2.

The hazard function of the population is therefore the weighted average

of the conditional hazards of the subgroups, as shown in (3.3). The subjects

belonging to subgroup 2 will tend to fail earlier than those of group 1 however,

as we assumed h1(t|Z = 1) < h2(t|Z = 2). This implies that π1(t) will

increase over time while π2(t) will decrease, so that the marginal hazard

(3.3) will be increasingly affected by the proportion of stronger individuals,

namely those with Z = 1. Hence, if we do not account for the presence of

the two existing subgroups, h(t) would be the more underestimated the more

t → +∞. The solution to this problem is trivial if we know the values of

Z for each observed subjects, i.e. if we would know the initial proportions

π1(0) and π2(0) exactly. The matter is how to account for the presence of

subgroups when it is not possible to observe their proportions.

In general, assuming the existence of s > 2 subgroups we may write the

marginal quantities as

S(t) =
s∑

j=1

πj · Sj(t)

π(t) =
s∑

j=1

πj(0) · Sj(t)

S(t)

f(t) =

s∑

j=1

πj(t) · fj(t)

h(t) =
s∑

j=1

πj(t) · hj(t)
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3.1.1 Random effects

We can extend the finite mixture model allowing for Z to be a continu-

ous random variable (RV) with density g(z). The RV Z is a random effect,

a statistical methodology widely used to model unobserved subject-specific

features which make individuals different. Random effects allow us to include

the extra-heterogeneity added by these unobervable features in the statisti-

cal models in order to make valid inferences. Referring to the mixture model

previously described, g(z) is a continuous mixing distribution. In a popula-

tion of n subjects each individual is assigned a unique and specific value zi,

i = 1, 2, ..., n, which is the random outcome of Z. The zs’ are unknown but

their value is not required to specify the marginal quantities, which are those

relevant for us. This is possible by integrating out the conditional quantities,

which implies we need to specify a model for g(z). In such a framework, the

marginal survival function is given by

S(t) =

∫

z

S(t|z)g(z)dz (3.4)

which is integrated out over the possible values of Z. The marginal hazard

is

h(t) =

∫

z

h(t|z)g(z|T > t)dz (3.5)

where the conditional density g(z|T > t) is

g(z|T > t) =
g(z ∩ T > t)

P (T > t)

=
P (T > t|z)g(z)

P (T > t)

=
S(t|z)g(z)

S(t)
.
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3.2 Frailty model

In survival analysis the unobserved heterogeneity is modeled by a random

effect called frailty. The name frailty recalls the fact that those individuals

with higher values of z are more susceptible to failure, i.e. they are frailer.

Formally, frailty is a random effect, the unobserved realization of a random

variable which allows for including not observable determinats in the analysis.

A frailty model is basically a mixture model where the random variable which

clusterizes the population is assumed to be continuous. In the original frailty

(overdispersion) model by Vaupel et al. (1979) the basic assumption is that

each subject of a population is randomly assigned a specific not observable

value z > 0 at birth, which affects the susceptibility to failure by acting

multiplicatively on the individual hazard. Namely,the zs are independently

drawn from a random variable Z ∼ Gamma(k, λ) with k = λ so that E(Z) =

k/λ = 1 and σ2
Z = κ/λ2 = 1/k. The gamma distribution for Z was choosen

because of its flexibility and the zs have to be necessarily positive as well. A

frailty which equals 1 has a neutral impact on individual hazards. Let h0(t)

be the baseline hazard for n subjects each assigned a zi > 0 drawn from

Z ∼ Γ(k, λ) =
λkzk−1e−λz

Γ(k)
, k > 0, λ > 0

and

Γ(k) =

∫ ∞

0

zk−1e−zdz.

The conditional hazard of the ith subject is therefore given by

h(t|zi) = zi · h0(t).

When zi = 1 the ith subject is called a “standard” individual as the frailty

leaves its hazard unchanged. Along with the above assumptions, (3.4) and
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(3.5) become

S(t) =

∫ ∞

0

e−zH(t) λ
kzk−1e−λz

Γ(z)
dz

=
λk

[λ + H0(t)]k

=

[
1

1 + σ2H0(t)

] 1

σ2

and

h(t) = −
d

dt
ln S(t) =

h0(t)

1 + σ2H0(t)
,

where H0(t) is the baseline hazard rate. The original frailty model has been

developed along different directions. For example, Hougaard (1984, 1986)

proposed several new possible distributions for the frailty discussing their

properties and the consequences of their use. Petersen (1998) proposed a

frailty model where the impact on hazard is given by the sum of two or more

gamma frailty terms. Dynamic frailties were presented in Yue and Chan

(1997) where individual random effects’ values are allowed to vary over time

stochastically.

3.3 PH model with random effects

In Sections 2.3 and 3.1.1 we described how to include both observed

and unobserved heterogeneity in a survival model. It is straightforward to

introduce a model which may account for both kinds of heterogeneity at

the same time. This purpose is achieved by the proportional hazards model

with random effects (PHRE). We describe this model in the formulation

given in Vaida and Xu (2000), which is a generalization of the original model

introduced by Clayton and Cuzick (1985).

Let a population of n subjects exist which is clusterized in P groups, each

formed by np individuals, p = 1, ..., P . The ith subject of the pth cluster is
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described by a k-vector of fixed covariates xp,i = xp,i,1, xp,i,2, ..., xp,i,k which

is multiplied by a k-vector of parameters β. Furthermore, each pth cluster is

assigned a q-vector f p of random effects multiplied by a group specific np × q

matrix Ωp = [ω1, ...,ωnp
]′. Each row ω· is a q-vector of covariates which

measures the impact of fp on the hazard of the ith subject in the pth group.

The random vectors f 1, ...,fp, ...,fP are assumed to be the realizations of

a multivariate random variable from which they are independently drawn.

In Vaida and Xu (2000) it is assumed fp ∼ Nq(0,D), where D is a q × q

covariance matrix, although such choice is not binding (see Herring et al.,

2002). Note that each subject who belongs to the same group is assigned the

same value fp. The hazard function of the ith subject in the pth cluster is

therefore given by

hp,i(t|xp,i,β,fp,ωp,i) = h0(t) exp(β′xp,i + ω′
p,if p) (3.6)

and the corresponding survival function is

Sp,i(t|xp,i,β,fp,ωp,i) = S0(t) exp(β′xp,i + ω′
p,if p)

We remark that the PHRE model allows for modelling a possible correla-

tion of event times among subjects within the same group, when a clustered

structure of observations is present. Note that conditional on the random

effects’ vector the event times in the same cluster are independent. Uncondi-

tional independence holds for event times of subjects who belong to different

groups.

Now let us assume P = n, p = i, q = 1, that is each subject is a one-

dimensional cluster which is assigned a univariate random effect fi. If we

assume also ωp,i = 1, zi = exp(fi) and zi ∼ Gamma(k, k) ∀i, the original

frailty model described in Section 3.2 can be seen as a particular case of

PHRE model where exp(x′
iβ) = 1 ∀i.
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EM and MCEM algorithms

The expectation-maximization (EM ) algorithm is an iterative computa-

tion procedure to perform maximum likelihood estimations when the data

are incomplete, that is when there are missing or hidden data. Such proce-

dure, formalized by Dempster, Laird, and Rubin (1977), is widely used to

solve many inference problems which can be formulated as missing values

problems, where the missing or hidden quantities may be either variables,

parameters or weights (see McLachlan and Krishnan, 1996). In the next sec-

tion the EM algorithm is described, while in Section 4.2.2 an EM formulation

with a Monte Carlo step is presented

4.1 EM algorithm

Let y be the observed realization from a sample space Y . We will refer to

y as the incomplete data set. Let X be the sample space such that a subset

X (y) : {x : y = y(x)} exists, where the complete data set x is the generic

realization from X . Namely, X (y) is the subset of possible complete data

sets which can be associated to y. This implies that we only know x to lie in

X (y). Let pc(x|θ) be the probability distribution function (pdf) of x, such

31
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that

p(y|θ) =

∫

X (y)

dpc(x|θ), (4.1)

where p(y|θ) is the pdf of y. Along with (4.1) the incomplete data log-

likelihood function ℓ(θ|y) = log p(y|θ) may be written as

ℓ(θ|y) = log

∫

X (y)

dpc(x|θ), (4.2)

In order to find the maximun likelihood estimate of θ we need a procedure

which must account for the incompleteness of data (see Schafer and Graham,

2002). The basic idea of EM algorithm is to find the maximum likelihood

estimates (MLE) θ̂ of θ by iteratively maximizing the conditional expectation

of the complete data log-likelihood function ℓc(θ|x) = log pc(x|θ), given y

and a current estimate θh,

Q(θ|θh) = E
θ

h[ℓc(θ|x)|y] =

∫

X (y)

ℓc(θ|x)dp(x|y, θh) (4.3)

where p(x|y, θ) is the conditional pdf of complete data x given the observed

data y and θh. At the (h + 1)th iteration the EM algorithm is a two-steps

procedure:

1. E-step: compute Q(θ|θh)

2. M-step: find θh+1 = arg max
θ

Q(θ|θh) and set θh+1 = θh.

As stated by Efron in the discussion of Dempster et al. (1977), the effective-

ness of EM algorithm in maximizing ℓ(θ) at each hth iteration lies in the

identity

u(θ) = Eθ[uc(θ)|y] (4.4)
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proved by Fisher (1925), where u(θ) = ∂

∂θ
ℓ(θ|y) and uc(θ) = ∂

∂θ
ℓc(θ|x).

The M-step finds θh+1 by solving Eθ[uc(θ|x] = 0, which implies that θh+1

is the solution of u(θ) = 0 as well because of (4.4).

Furthermore, the series of EM estimates {θ0, θ1, θ2, ..., } is such that

ℓ(θh+1) − ℓ(θh) ≥ 0, h = 0, 1, 2, ... , (4.5)

i.e the incomplete data log-likelihood is increased at each step. In order

to prove this, let us consider the conditional density of the generic possible

complete data set x, which we may write as

p(x|y, θ) = pc(x|θ)/p(y|θ),

so we may write the incomplete data log-likelihood as

ℓ(θ∗|y) = ℓc(θ
∗|x) − log p(x|y, θ∗), (4.6)

where θ∗ is a given value of θ. Hence, at the (h + 1)th iteration of the EM

algorithm we may write the conditional expectation of (4.6) as

ℓ(θh+1|y) = E
θ

h[ℓc(θ
h+1|x)|y] − E

θ
h[log p(x|y, θh+1)|y]

= Q(θh+1|θh) − H(θh+1|θh),

where Q(θh+1|θh) is the conditional expected value of ℓc(θ|x) computed for

θ = θh+1 given the starting value θh, and H(θh+1|θh) = E
θ

h [log p(x|y, θh+1)|y].

Analogously, it is

ℓ(θh|y) = Q(θh|θh) − H(θh|θh),

such that we may write

ℓ(θh+1) − ℓ(θh) = Q(θh+1|θh) − H(θh+1|θh) − [Q(θh|θh) − H(θh|θh)]

= Q(θh+1|θh) − Q(θh|θh) − [H(θh+1|θh) − H(θh|θh)].
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Then, ∀h it is

• Q(θh+1|θh) − Q(θh|θh) ≥ 0, (4.7)

and

• H(θh+1|θh) − H(θh|θh) ≤ 0, (4.8)

where (4.7) is true because θh+1 maximizes Q(θ|θh). Furthermore, (4.8) is

proved because, recalling Jensen’s inequality1, it is ∀θ

H(θ|θh) − H(θh|θh) = E
θ

h[log p(x|y, θ)|y] − E
θ

h[log p(x|y, θh)|y]

= E
θ

h

{
log

[
p(x|y, θ)

p(x|y, θh)
|y

]}

≤ log

{
E
θ

h

[
p(x|y, θ)

p(x|y, θh)
|y

]}

∝ log

∫

X (y)

dp(x|y, θ) = 0,

and (4.5) is proved because of (4.7) and (4.8). Dempster, Laird, and Rubin

(1977) prove also that the sequence of EM estimates {θ0, θ1, θ2, ..., } con-

verges to a maximum likelihood estimate θ̂ although it is not ensured that

the corresponding log-likelihood value ℓ(θ̂) is a global maximum in case of

multimodal likelihood.

4.2 Monte Carlo EM algorithm (MCEM)

So far we described the EM algorithm implicitely assuming that the E-

step Q(θ|θh) was analitically tractable, although this may not be possible

sometimes. In such cases it is possible to exploit the Monte Carlo integration

to build up an approximated E-step, which basically consists of an average

over the possible complete data sets x independently drawn from the pdf

1For any random variable X, it is E[g(x)] ≤ g[E(x)] if g(x) is a concave function.
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p(x). Furthermore, it may occur that p(x) is not feasible for sampling. In

this case, we may sample x from a generic pdf g(x) which we know to be

equivalent to p(x) with respect to the frequencies’ distribution of sampled

xs. Such procedure is still a Monte Carlo integration which uses Markov

chains (MCMC), which is explained in 4.2.1. In 4.3 we describe how to build

up a Markov chain, namely the Gibbs sampler.

4.2.1 Markov Chain Monte Carlo theory

LetX be a random vector with pdf p(x) and let ϑ(x) be a generic function

of x. Let us assume that our focus is on computing the expectation

E[ϑ(x)] =

∫
ϑ(x)dp(x), (4.9)

where the integration is taken over all the possible values of x. Then, if

(4.9) is not directly computable it can be approximated by the Monte Carlo

integration

Ê[ϑ(x)] =
1

R

R∑

t=1

ϑ(xt) (4.10)

where {xt} is a sequence of R i.i.d. random vectors drawn from p(x) and

Ê[ϑ(x)] is a consistent estimate of (4.9) more accurate as R increases, because

of the strong law of large numbers.

It may not be possible to draw independent samples from p(x)however.

This trouble can be ridden out generating a sequence of random vectors {xt}

via any random process such that the frequencies’ distribution of sampled xts

approximates p(x). Let {x0,x1, ...} be a sequence of random vectors, and

assume that at each time t ≥ 0 xt+1 is sampled from a generic pdf π(xt+1|xt).

Note that π(xt+1|xt) depends on the current state xt but is independent of

the previous states {x0,x1, ...,xt−1} ∀t. Such a sequence is named Markov

chain. Furthermore, let us assume that the Markov chain is time homogeneus,

i.e. π(xt+1|xt) = π(xt′+1|xt′), ∀t 6= t′, t′ = 1, ..., R. Subject to regularity
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conditions (see Gilks et al. 1998, Chapter 4) which we will assume to hold in

the remainder of the text, as t increases the chain converges to a stationary

distribution ϕ(·), which is unique and does not depend neither on t nor

on the initial state x0. This implies that after an appropriate number q of

iterations called burn-in, {xt} will be approximatively sampled from ϕ(·), t =

q + 1, ..., R. Thus, if we set up a Markov chain sucht that its stationary

distribution ϕ(·) is the pdf p(x), then (4.9) may be approximated by the

ergodic average

Ẽ[ϑ(x)] =
1

m

R∑

t=q+1

ϑ(xt), m = R − q. (4.11)

4.2.2 MCEM algorithm

Let us assume we aim at maximizing the incomplete data log-likelihood

(4.2) by the EM algorithm described in Section 4.1, but that the conditional

expectation of the complete data log-likelihood function

Q(θ|θh) = E
θ

h[ℓc(θ|x)|y] =

∫

X (y)

ℓc(θ|x)dp(x|y, θh)

expressed by (4.3) is not analitically solvable. It is straightforward to link

Q(θ|θh) to the expected value (4.9), by setting ϑ(x) = ℓc(θ|x) and p(x) =

p(x|y, θh). Hence, we may approximate the E-step (4.3) by

Q(θ|θh) =
1

R

R∑

t=1

ℓc(θ|xt), (4.12)

as in (4.10). Otherwise, if we are not able to sample m independent values

of x from p(x|y) directly, we may still approximate (4.3) by

Q(θ|θh) =
1

m

R∑

t=q+1

ℓc(θ|xt), (4.13)
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which is the ergodic average (4.11). The EM algorithm in Section 4.1 becomes

an MCEM algorithm, that at iteration h + 1 is given by the following steps:

1. Draw m samples of x from p(x|y, θh),

2. E-step: compute Q(θ|θh) as in (4.12) or (4.13),

3. M-step: compute θh+1 = arg max
θ

Q(θ|θh) and set θh+1 = θh.

4.3 Gibbs sampler

In order to approximate (4.9) by (4.11) we must build up a Markov chain

such that its stationary distribution ϕ(·) converges to p(x). A method to

achieve this objective is the Gibbs sampler (Gelfand and Smith, 1990; Ge-

man and Geman, 1984), which is applied in the remainder of this work. In

order to explain the Gibbs sampler we need first to introduce the Metropolis-

Hastings algorithm (MH), a generalization presented by Hastings (1970) of

the algorithm proposed by Metropolis et al. (1953). Let g(·|xt) be a proposal

distribution from which we sample the candidate x∗ for the next state xt+1.

Then, given the realization xt, the (t + 1)th iteration of MH is:

1. Sample x∗ from g(·|xt),

2. Compute the acceptance probability

α(xt,x
∗) = min

[
1,

p(x∗)g(xt|x
∗)

p(xt)g(x∗|xt)

]
,

3. Sample a value u from a uniform U(0,1),
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4. If u ≤ α(xt, u) set xt+1 = x∗, xt+1 = xt otherwise,

5. Set t = t + 1 and start again from step 1.

Note that after an appropriate burn-in period xt is approximatively sampled

from p(·), whatever the proposal distribution is (see Gilks et al. 1998, p. 7).

The MH may also be implemented by partitioning the random vector

x. into k components, x. = [x.,1,x.,2, ...,x.,c, ...,x.,k], then updating such

components sequentially, i.e each iteration is divided into k updating steps.

The generic component x.,c could be either a vector or a scalar, and the

components may also be of different dimensions. Let x.,−c = [x.,1,...x.,c−1,

..., x.,c+1, ..., x.,k] be the vector without the component x.,c. Then, at

the iteration h + 1, the component xt,c is updated by generating a can-

didate x∗
.,c which is sampled from the proposal pdf gc(·|xt,c,xt,−c), where

xt,−c =[xt+1,1,...,xt+1,c−1,...,xt,c+1,...,xt,k], the c − 1 components having been

updated already. The acceptance probability of x∗
.,c is given by

α(xt,−c,xt,c,x
∗
.,c) = min

[
1,

p(x∗
.,c|xt,−c)gc(xt,c|x

∗
.,c,xt,−c)

p(xt,c|xt,−c)gc(x∗
.,c|xt,c,xt,−c)

]
, (4.14)

where p(x.,c|x.,−c) is a full conditional distribution, that is the pdf of the cth

component of X given the realizations of all the other components.

The Gibbs sampler is a particular case of the partitioned MH previously

exposed, in which we set

gc(·|xt,c,xt,−c) = p(·|x.,−c) (4.15)

that is the proposal distribution of the candidate x∗
.,c is given by its full con-

ditional distribution. Note that the acceptance probability of Gibbs sampler

is always equal to 1 and the candidates are therefore always accepted because
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from (4.14) it is

α(xt,−c,xt,c,x
∗
.,c) = min

[
1,

p(x∗
.,c|xt,−c)p(xt,c|xt,−c)

p(xt,c|xt,−c)p(x∗
.,c|xt,−c)

]
= 1,

setting gc(x
∗
.,c|xt,c,xt,−c) = p(x∗

.,c|xt,−c) and gc(xt,c|x
∗
.,c,xt,−c) = p(xt,c|xt,−c)

respectively because of (4.15). The Gibbs sampler consists of sampling from

full conditional distributions, that is at the (t + 1)th iteration it is given by

1. Sample xt+1,1 from p(x∗
.1|xt,2, ...,xt,c, ...,xt,.k)

2. Sample xt+1,2 from p(x∗
.2|xt+1,1,xt,3, ...,xt,c, ...,xt,.k)

...

k. Sample xt+1,k from p(x∗
.k|xt+1,1, ...,xt+1,c, ...,xt,k−1)

k+1. Set t = t + 1 then start again from step 1.

4.3.1 Adaptive Rejection Sampling

Without loss of generality, let us assume that the generic vector x. can be

parted into k scalar components, i.e. x. = [x.,1, x.,2, ..., x.,c, ..., x.,k]
′. We may

write the cth full conditional distribution as p(x.,c|x.,−c) ∀c and the Gibbs

sampler described in the previous section would be given by

1. Sample xt+1,1 from p(x∗
.1|xt,2, ..., xt,c, ..., xt,.k)

2. Sample xt+1,2 from p(x∗
.2|xt+1,1, xt,3, ..., xt,c, ..., xt,.k)

...

k. Sample xt+1,k from p(x∗
.k|xt+1,1, ..., xt+1,c, ..., xt,k−1)
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k+1. Set t = t + 1 then start again from step 1.

If we assume that p(x.,c|x.,−c) is a density function ∀c and that each

univariate full conditional density is log-concave, an efficient way to sample

from them is the Adaptive Rejection Sampling (ARS) proposed by Gilks and

Wild (1992). Such sampling procedure is a variant of the standard rejection

sampling which we briefly describe.

Our purpose is to sample a value xt+1,c ∀c from p(x.,c|xt,−c) which we

define as our target distribution. If p(x.,c|xt,−c) is not a standard function

the computation of a normalizing constant is needed. The rejection sampling

allows us to skip such computation. This is a great advantage because it

may happen that the normalizing constant for full conditional distributions

has not a closed form. Let g(·) be a generic density function such that

g(x.,c) ∝ p(x.,c|xt,−c), ∀x, c. Let also G(·) be an arbitrary envelope function

of g(·) such that it is G(x.,c) > g(x.,c) ∀x, c.

Let x∗
.c be the candidate point for xt+1,c. For each cth component, the

rejection sampling (RS) consists in the following algorithm:

1. Sample a point x∗
.,c from G(x.,c);

2. Sample a point u from a Uniform(0, 1);

3. If u ≤ g(x∗
.,c)/G(x∗

.,c) accept x∗
.,c and set x∗

.,c = xt+1,c, if else reject it;

4. Iterate until a candidate x∗
.,c is accepted.

Note that we do not need to evaluate the normalizing constant for p(x.,c|xt,−c).

This is an important advantage of the rejection sampling as generally the nor-

malizing constant for full conditional distributions has not a closed form. In
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order to minimize the number of possible rejections the envelope function

G(·) must be as closer as possible to g(x∗
.,c), but this can be difficult be-

cause we need to find the maximum of g(·) in its dominion D. This may

require several computations of g(·). If we assume that p(x.,c|xt,−c) belongs

to the class of log-concave densities ∀c, then g()̇ is log-concave as well. The

Adaptive Rejection Sampling consists then in building up an envelope func-

tion log G(·) which is a piecewise linear upper hull formed by the tangents

to log g(·) in few set of points S ⊂ D. The adaptivity of the algorithm is

given by the fact that if a candidate x∗
.,c is rejected it is included in the set S

tightening the envelope and reducing the probability of rejection of the next

candidate. The Adaptive Rejection Sampling is then given by

1. Sample a point x∗
.,c from G(x.,c);

2. Sample a point u from a Uniform(0, 1);

3. If u ≤ g(x∗
.,c)/G(x∗

.,c) accept x∗
.,c and set x∗

.,c = xt+1,c, if else reject it;

4. Include x∗
.,c in S

5. Iterate until a candidate x∗
.,c is accepted.

The Adaptive Rejection Sampling reduces the number of evaluations of log g(·)

because the log-concavity assumption let us skip the need to ocate the maxi-

mum of g(·). Furthermore, the increasing tightening of the envelope log G(·)

reduces the probability of rejection of the next candidate, i.e. it reduces the

probability of further computations of g(·).
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Chapter 5

Missing values

It is frequent in survival studies that some subject can have missing values

of one or more covariates. There are three popular approaches to deal with

this problem:

• The observational units presenting missing values are simply dropped

(complete case analysis).

• Missing values can be replaced by imputed ones according to some pro-

cedure based on complete cases.

• The data set can be left as it is and handled by the EM algorithm.

Whatever choice is made attention is needed, because an incautious handling

of missing values could distort the analysis results. Three things must be

considered in the choice of the method to apply: the missing data pattern,

the underlying missing values generating process, the purpose of the analysis.

According to Rubin (1976), missing values must be regarded as a probabilis-

tic phenomenon. Three possible kinds of missing values generating processes

exist. Let us say we are studying life times of n subjects and that for each

43
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ith subject there are three random variables (RV):

• Xi : age

• Fi : number of cigarettes smoked per day

• Ri : a missingness RV which is 1 if Xi or Fi is missing and 0 if it is

observed.

Let us also suppose that age is completely observed, while the number of

smoked cigarettes has some unobserved values. We could face one of the

following situations:

1. The probability of R=1 is independent of both age and cigarettes

number. In this case missing values are Missing Completely At Ran-

dom(MCAR), P (Ri = 1|xi, fi) = P (R = 1).

2. The probability of R=1 depends on the value of age but not on the

number of cigarettes. In this case missing data are Missing At Random

(MAR), P (R = 1|xi, fi) = P (R = 1|xi).

3. The probability of R=1 depends both on cigarettes number and age. The

data are Missing Not At Random (MNAR).

The complete case analysis provides biased estimates of the parameters of

interest unless the data are MCAR or the sample size is sufficiently large.

If the missing data are MAR both the imputation method and the EM al-

gorithm are valid. However, by the imputation method a “likely” value is
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imputed replacing each missing one, then the usual estimation procedures

are applied. In this way the analysis is performed treating the imputed val-

ues as if they had been observed. In the EM approach, for each missing value

a set of all (or sampled) possible values is considered, so that the distinction

between what has been observed and what has been not still holds. A more

detailed review about the missingness generating processes and the possible

consequences of ignoring them can be found in Little and Rubin (1987) and

Schafer and Graham (2002).

5.1 PH model with missing values

Without loss of generality, let us assume we want to study the failure

times {ti} of n observed individuals belonging to an homogeneus population,

where T is a positive random variable (RV) from which failure times ti are

drawn, i = 1, ...n. Let also define the positive RVs C and W, from which re-

spectively censoring times ci and entering times wi are independently drawn.

Because of possible left-truncation and right-censoring we observe the event

time y which is the realization of the RV Y = min(T, C). Let also δi be a

failure indicator which equals 1 if a failure occurs, 0 otherwise, i.e. if there

is an event or a censoring at time yi. Let xi = [xi1, ..., xik]
′ be a k-vector

of covariates, assuming that x1, ...,xn are the realizations of n independent

RVs X i ∼ px(xi|α), α a vector of parameters. Each ith subject is there-

fore described by (yi, δi,xi, wi) (see Chapter 2). Along with (Herring and

Ibrahim, 2001) and recalling (2.6), if xi is fully observed we may write the

ith subject’s likelihood contribution as
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Lc
i(θ,ψ,α|yi,xi, δi, wi) =

=

[
py(yi|xi, θ)Sc(yi|xi,ψ)

St(wi|xi, θ)

]δi
[
St(yi|xi, θ)pc(yi|xi,ψ)

St(wi|xi, θ)

]1−δi

× px(xi|α)

= [py(yi|xi, θ)]
δ[St(yi|xi, θ)]

1−δ × [pc(yi|xi,ψ)]1−δi [Sc(yi|xi,ψ)]δi

× St(wi|xi, θ)
−1 × px(xi|α)

= [ht(yi|xi, θ)]
δiSt(yi|xi, θ)[St(wi|xi, θ)]

−1

× [hc(yi|xi,ψ)]1−δiSc(yi|xi,ψ) × p(xi|α), θ 6= α, (5.1)

where py(·|xi, θ) and St(·|xi, θ) are the pdf and the survival function of exit

time of subject i. Analougously, pc(·|xi,ψ) and Sc(·|xi,ψ) are the subject-

specific conditional pdf and survival function of censoring time, while p(·|α)

is the pdf of xi.

Now let us assume that some of the n subjects miss the values for one or

more of their covariates. Both the covariates with missing and their number-

can be subject-specific. Without loss in generality we may therefore denote

the ith covariates’ profile as xi = [xobs,i,xmis,i]
′, where xobs,i and xmis,i de-

note the observed and missing components of xi respectively. Let us also

define a vector ri whose component rij is 1 if xij is observed, 0 otherwise,

j = 0, 1, ..., k. The vector ri denotes the individual missingness profile of the

ith subject with pdf pr(ri|yi,xobs,i,xmis,i, δi, wi,φ), φ a vector of parameters.

For example, if it is k = 3 and xi = [xobs,i,1, xmis,i,2, xobs,i,3]
′, it is ri = [1, 0, 1]′.

Hence, when missing values are present the incomplete data likelihood con-

tribution of the ith subject is given by
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Li(θ,ψ,φ,α|yi,xobs,i,xmis,i, δi, wi, ri) =

=

∫

Xi

{
pr(ri|yi,xi, δi, wi,φ) × [ht(yi|xi, θ)]

δiSt(yi|xi, θ)[St(wi|xi, θ)]
−1

×[hc(yi|xi,ψ)]1−δiSc(yi|xi,ψ)
}
dp(xobs,i,xmis,i|α), (5.2)

where xi = [xobs,i,xmis,i]
′ and Xi is the set of all possible complete data

patterns xi associated to xobs,i. In order to clarify this concept let us assume

again xi = [xi,1, xi,2, xi,3]
′, ∀i, where x2 and x3, are binary. Let also x2,i, x3,i

be missing for the ith subject only, such that his covariate profile is given

by xi = [xobs,i,xmis,i]
′ = [xobs,i,1, xmis,i,2, xmis,i,3]

′. The set of all possible

complete data patterns Xi would then be

Xi = {[xobs,i,1, 0, 0]′, [xobs,i,1, 0, 1]′, [xobs,i,1, 1, 0]′, [xobs,i,1, 1, 1]′} .

Hence, in the current notation p(xobs,i,xmis,i|α) denotes the prior distribution

of each possible complete data pattern xi = [xobs,i,xmis,i]
′ ∈ Xi, in our

example

p(xobs,i,xmis,i|α) = {p(xobs,i,1, 0, 0|α), p(xobs,i,1, 0, 1|α),

p(xobs,i,1, 1, 0|α), p(xobs,i,1, 1, 1|α)}.

Note that in this example it is ri = [1, 0, 0]′ and pr(ri|yi,xi, δi, wi,φ) is the

joint pdf of the missing data pattern xi = [xobs,i,1, xmis,i,2, xmis,i,3]
′.

Let us assume that:

1. Missing values are MAR, that is

pr(ri|yi,xi, δi, wi,φ) = pr(ri|yi,xobs,i, δi, wi,φ).

2. The censoring distribution is independent of missing values, which im-

plies

hc(yi|xi,ψ)1−δiSc(yi|xi,ψ) = hc(yi|xobs,i,ψ)1−δiSc(yi|xobs,i,ψ).
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3. θ,α 6= φ,ψ.

Because of assumptions 1. e 2. we may write (5.2) as

Li(θ,ψ,φ,α|yi,xobs,i,xmis,i, δi, wi, ri) =

= pr(ri|yi,xobs,i, δi, wi,φ) × hc(yi|xobs,i,ψ)1−δiSc(yi|xobs,i,ψ)

×

∫

Xi

{
[ht(yi|xi, θ)]

δiSt(yi|xi, θ) × [St(wi|xi, θ)]
−1
}

dp(xobs,i,xmis,i|α).

Assumption 3. allows us to write the ith incomplete data likelihood distri-

bution (5.2) as

Li(θ,α|yi,xobs,i,xmis,i, δi, wi) =

∝

∫

Xi

{
[ht(yi|xi, θ)]

δiSt(yi|xi, θ) × [St(wi|xi, θ)]
−1
}

dp(xobs,i,xmis,i|α).

(5.3)

5.2 Categorical missing covariates

Starting from (5.3) and assuming that all of the components of xmis,i

are discrete ∀i, the ith incomplete data log-likelihood contribution may be

written as

ℓi(ξ|yi,xobs,i,xmis,i, δi, wi) =

= log
∑

Xi

{
[ht(yi|xi, θ)]

δiSt(yi|xi, θ) × [St(wi|xi, θ)]
−1
}
× p(xobs,i,xmis,i|α).

(5.4)

where ξ = [θ,α]′. In order to estimate ξ we may maximize the incomplete

data log-likelihood ℓ(ξ|y,Xmis,Xobs, δ,w) =
∑

i ℓi(ξ|yi,xobs,i,xmis,i, δi, wi),

where Xmis = [xmis,1, ...,xmis,n]′ and Xobs = [xobs,1, ...,xobs,n]
′.
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If such maximization is not possible, along with Lipsitz and Ibrahim

(1996b) we may exploit the EM algorithm described in Chapter 4 to find

MLEs ξ̂, i.e. by iteratively maximizing the expected complete data log-

likelihood given the observed data defined by (4.3). In the current setting

the ith contribution to it is given by

E[ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi)|yi,xobs,i, δi, wi] =

=
∑

Xi

p(xobs,i,xmis,i|yi,xobs,i, δi, wi, ξ) × ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi), (5.5)

where

ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi) =

= log
{
[ht(yi|xi, θ)]

δiSt(yi|xi, θ)[St(wi|xi, θ)]
−1 × p(xobs,i,xmis,i|α)

}

(5.6)

is the complete data log-likelihood contribution associated to each possible

complete data pattern (xobs,i,xmis,i) weighted by its posterior probability

p(xobs,i,xmis,i|yi,xobs,i, δi, wi, ξ).

Note that usually the interest lies in estimating θ, that is α is considered

a vector of nuisance parameters. We should therefore aim at minimizing

the number of such nuisance parameters in order to reduce the computa-

tional burden required for the estimation procedure. Along with Lipsitz

and Ibrahim (1996a), the pdf of xi may be modeled as a product of one-

dimensional full conditional distributions,

p(xi|α) = p(xi,k|xi,1, xi,2, ..., xi,k−1|αk)

× p(xi,k−1|xi,1, xi,2, ..., xi,k−2|αk−1) · · · × p(xi,1|α1)

(5.7)
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where αj is a vector of parameters for the jth conditional distribution, j =

1, ..., k, αj 6= αj′, ∀j 6= j′, j′ = 1, ..., k, and α = (α1, ...αk). Without loss

of generality, if there are missing values let us assume that the components

with missing values are the last k − r of xi, 0 < r < k.

Hence, we may write the pdf of the generic complete data pattern as

p(xobs,i,xmis,i|α) = p(xmis,i,k|xmis,i,k−1, ..., xmis,i,r+1,xobs,i,αk)

× p(xmis,i,k−1|xmis,i,k−2, ..., xmis,i,r+1,xobs,i,αk−1)
...

× p(xmis,i,r+1|xobs,i,αr+1)

× p(xobs,i,r|xobs,i,r−1, ..., xobs,i,1,αr)
...

× p(xobs,i,1|α1).

Note that we need to specify a distribution for xmis,i only. Thus, we may re-

place p(xobs,i,xmis,i|α) in (5.6) with the conditional probability of the missing

data pattern xmis,i,

p(xmis,i|xobs,i,α) = p(xmis,i,k|xmis,i,k−1, ..., xmis,i,r+1,xobs,i,αk)

× p(xmis,i,k−1|xmis,i,k−2, ..., xmis,i,r+1,xobs,i,αk−1)
...

× p(xmis,i,r+1|xobs,i,αr+1) (5.8)

∝ p(xobs,i,xmis,i).

Similarly, we may define the posterior probability of xmis,i as a full conditional
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as well as (5.8),

p(xmis,i|yi,xobs,i, δi, wi, ξ) = p(xmis,i,k|yi, xmis,i,k−1, .., xmis,i,r,xobs,i, δi, wi, ξ
h)

× p(xmis,i,k−1|yi, xmis,i,k−2, .., xmis,i,r,xobs,i, δi, wi, ξ
h)

...

× p(xmis,i,r|yi,xobs,i, δi, wi, ξ
h) (5.9)

∝ p(xobs,i,xmis,i|yi,xobs,i, δi, wi, ξ),

then substitute it in (5.5). Hence, the ith contribution to the expected con-

ditional complete data log-likelihood may be written as

E[ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi)|yi,xobs,i, δi, wi] =

=
∑

xmis,i

p(xmis,i|yi,xobs,i, δi, wi, ξ) × ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi), (5.10)

where ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi) ∝

log
{
[ht(yi|xi, θ)]

δiSt(yi|xi, θ)[St(wi|xi, θ)]
−1 × p(xmis,i|xobs,i,α)

}
.

(5.11)

The sum is over the possible missing data patterns of subject i, each weighted

by p(xmis,i|yi,xobs,i, δi, wi, ξ) which may be written as a posterior probability:

p(xmis,i|yi,xobs,i, δi, wi, ξ) =

=
[ht(yi|xi, θ)]

δiSt(yi|xi, θ)[St(wi|xi, θ)]
−1 × p(xmis,i|xobs,i,α)∑

xmis,i
[ht(yi|xi, θ)]δiSt(yi|xi, θ)[St(wi|xi, θ)]−1 × p(xmis,i|xobs,i,α)

.

(5.12)

The weighted sum (5.10) provides the contribution of a subject with som

missing covariates. If we consider a subject i′ 6= i with fully observed covari-

ates suvh that xi′ = xobs,i′, the contribution (5.10) becomes ℓi(ξ|yi,xobs,i,
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xmis,i, δi, wi). For example let us assume there are n = 2 observed subjects,

each described by a vector of binary covariates xi = [x1,i, x2,i]
′, and also that

x1 is fully observed while the first component of x2 is missing, x2 = [xmis,1,2,

xobs,2,2]
′. The individual contributions to the expected complete data log-

likelihood would therefore be given by

Subject 1: ℓc
i(ξ|y1,x1, δ1, w1)

Subject 2 :





p(xmis,2,1 = 0|y2, xobs,2,2, δ2, w2, ξ) × ℓc
2(ξ|y2, 0, xobs,2,2, δ2, w2)

p(xmis,2,1 = 1|y2, xobs,2,2, δ2, w2, ξ) × ℓc
2(ξ|y2, 1, xobs,2,2, δ2, w2)

and the corresponding whole log-likelihood would be

E[ℓ(ξ|y,Xmis,Xobs, δ,w)|y,Xobs,i, δ,w] =

= ℓc
1(ξ|y1,x1, δ1, w1)

+ p(xmis,2,1 = 0|y2, xobs,2,2, δ2, w2, ξ) × ℓc
2(ξ|y2, 0, xobs,2,2, δ2, w2)

+ p(xmis,2,1 = 1|y2, xobs,2,2, δ2, w2, ξ) × ℓc
2(ξ|y2, 1, xobs,2,2, δ2, w2).

Given a set of starting values ξ0 = [θ0,α0], at the (h+1)th iteration the EM

algorithm is given by the following steps:

1. Compute the expected complete data log-likelihood

Q(ξ|ξh) =

n∑

i=1

E[ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi)|yi,xobs,i, δi, wi]

=
n∑

i=1

∑

xmis,i

{
p(xmis,i|yi,xobs,i, δi, wi, ξ

h)

×ℓc
i (ξ|yi,xobs,i,xmis,i, δi, wi, ξ

h)
}
,
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2. M-step: find θh+1 = arg max
θ

Q(θ|θh) and set θh+1 = θh,

where p(xmis,i|yi,xobs,i, δi, wi, ξ
h) and ℓc

i(ξ|yi,xobs,i,xmis,i, δi, wi, ξ
h) are given

by (5.12) and (5.11) respectively, given the current estimates ξh = [θh,αh].

5.3 Continuous missing covariates

Now let us assume that the missing covariates xi are continuous ∀i. This

implies that both p(xobs,i,xmis,i|α) in (5.5) and p(xobs,i,xmis,i|yi,xobs,i, δi, wi, ξ)

in (5.6) are now density functions. Let us also assume that such densities

can be expressed as products of univariate full conditional distributions, as

in (5.8) and (5.9) respectively. Thus, similarly to (5.10), the ith subject’s

contribution may be written as

E[ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi)|yi,xobs,i, δi, wi] =

=

∫

xmis,i

p(xmis,i|yi,xobs,i, δi, wi, ξ) × ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi)dxmis,i,

where

ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi)

= [ht(yi|xi, θ)]
δiSt(yi|xi, θ)][St(wi|xi, θ)]

−1 × p(xmis,i|xobs,i,α)

(5.13)

and
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p(xmis,i|yi,xobs,i, δi, wi, ξ)=

=
[ht(yi|xi, θ)]

δiSt(yi|xi, θ)][St(wi|xi, θ)]
−1 × p(xobs,i,xmis,i|α)∫

xmis,i
[ht(yi|xi, θ)]δiSt(yi|xi, θ)][St(wi|xi, θ)]−1 × p(xobs,i,xmis,i|α)

.

(5.14)

which here is a posterior density function. The (h+1)th iteration of the EM

algorithm would therefore be given by:

1. E-step: compute the expected complete data log-likelihood

Q(ξ|ξh) =
∑n

i=1 E[ℓc
i(ξ|yi,xobs,i,xmis,i, δi, wi)|yi,xobs,i, δi, wi] =

=

n∑

i=1

∫

xmis,i

p(xmis,i|yi,xobs,i, δi, wi, ξ
h) × ℓc

i(ξ|yi,xobs,i,xmis,i, δi, wi, ξ
h),

(5.15)

2. M-step: find θh+1 = arg max
θ

Q(θ|θh) and set θh+1 = θh,

where p(xmis,i|yi,xobs,i, δi, wi, ξ
h) and ℓc

i(ξ|yi,xobs,i,xmis,i, δi, wi, ξ
h) are given

by (5.14) and (5.13) respectively, given the current estimates ξh = [θh,αh].

If the E-step is not analitically reducible, we may exploit the MCEM algo-

rithm described in Section 4.2.2. In order to implement the MCEM algorithm

we have to sample m values for each missing data pattern xmis,i. We may

draw such samples from the posterior density (5.14) via the Gibbs sampler

described in Section 4.3, because of the full conditional assumption (5.9).

It may not be possible to draw samples directly from (5.14), however. In

order to bypass such problems we propose the Adaptive Rejection Sampling

introduced by Gilks and Wild (1992) and described in Section 4.3.1. The

Adaptive Rejection Sampling (ARS) can be applied only if the target den-

sity from which we want to sample is log-concave, but allows for discarding

the computation of the normalizing constant. In our setting this implies that

we can consider the numerator of (5.14) as our target density, which we may
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write as

p(xmis,i|yi,xobs,i,xmis,i, wi, ξ) ∝ p(yi, δi|xobs,i, δi, wi, ξ)

× p(xmis,i,k|yi, xmis,i,k−1, .., xmis,i,r,xobs,i, δi, wi, ξ
h)

× p(xmis,i,k−1|yi, xmis,i,k−2, .., xmis,i,r,xobs,i, δi, wi, ξ
h)

...

× p(xmis,i,r+1|yi,xobs,i, δi, wi, ξ
h)

assuming that r is the number of observed covariates ∀i and recalling that it

is

p(yi, δi|xobs,i, δi, wi, ξ) = [ht(yi|xi, θ)]
δiSt(yi|xi, θ)][St(wi|xi, θ)]

−1 (5.16)

and

p(xmis,i|xobs,i,α) = p(xmis,i,k|yi, xmis,i,k−1, .., xmis,i,r,xobs,i, δi, wi, ξ
h)

× p(xmis,i,k−1|yi, xmis,i,k−2, .., xmis,i,r,xobs,i, δi, wi, ξ
h)

...

× p(xmis,i,r+1|yi,xobs,i, δi, wi, ξ
h)

because of assumption (5.8). Ibrahim, Chen, and MacEachern (1999) proved

that (5.16) is log-concave in the components of xi. Recalling that the sum of

log-concave densities is still log-concave, we can choose each full conditional

density in (5.8) to belong to the exponential family, such that (5.8) is log-

concave in the components of xi as well. Hence, we may sample values for xi

via the Gibbs sampler exploiting the ARS procedure in order to approximate

the E-step (5.15). Hence, the whole MCEM algorithm is

1. E-step

• For each missing data pattern xmis,i, draw m samples from (5.14)

computed for θh via the Gibbs sampler along with the ARS.
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• Compute the approximated expected complete data log-likelihood

Q̃(ξ|ξh) =
1

m

n∑

i=1

m∑

sj
i

ℓc
ij[(ξ|yi, s

j
i ,xobs,i, δi, wi)|yi,xobs,i, δi, wi],

where sj
i is the set of sampled values for each missing data pattern

xmis,i, j = 1, 2, ..., m.

2. M-step: find θh+1 = arg max
θ

Q(θ|θh), then set θh+1 = θh.



Chapter 6

The proposed model

Random effects are random variables which represent not observable

subject-specific determinants. In survival analysis random effects, named

frailties, are useful to include unobservable determinants which affect the

risk of experiencing an event of interest. Frailties are originally formulated

as a multiplicative constant factor on the hazard function which is subject

specific . Such a model is also called over-dispersion model. To specify the

model correctly, simply the marginal distribution of failure times is needed,

which is obtained integrating out the frailty (see Section 3.2).

The original frailty model has been developed in different directions. For

example Hougaard (1984, 1986) proposed several new possible distributions

for the frailty discussing their properties and the consequences of their use.

Petersen (1998) proposed a frailty model where the impact on hazard is given

by the sum of two or more gamma frailty terms. Dynamic frailties were

presented in Yue and Chan (1997) where individual random effects’ values

are allowed to vary over time stochastically. In Section 3.3 we described

the proportional hazards model with random effects, which allows for group-

specific random effects.

Despite the great variety of such random effects’ models there is a common

element which has been unchanged: the random effects are always considered

something which is totally independent of the covariates. This assumption

57
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may be too restrictive sometimes. For example,the risk for a child to become

asthmatic is due both to a genetic inheritance and external factors, i.e. the

mother is a smoker. Usually this is modeled via a frailty component and a

predictor, both multiplied to a baseline risk. This implies that the genetic

and the external factors are independent. However, it may be that the smok-

ing of mother during pregnancy affected even the genetic component, e.g if

the mother used to smoke before and during pregnancy. If this is the case,

a traditional frailty model would not capture this effect, even if the predic-

tor would be correctly specified including in it the covariate which denotes

the mother smoking status. The effect of smoke on the genetic component

could be modeled assuming that the expected value of the child frailty dis-

tribution is a function of the covariate which denotes the mother smoking

status. Another example can be made in economics. Let us assume we want

to study the time to first job after the master degree. The risk of experi-

encing the event at time t could be affected by several observable factors as

sex, age, type of degree, so we include these covariates in the model. Beside

them, subject-specific unobservable determinants may affect the hazard as

well, like individuals’ own determination in looking for a job. The influence

of these factors may be modeled by an over-dispersion frailty model, where

a subject-specific frailty multiplies the hazard function. It seems reasonable

to assume that individual determination may depend on sex, that is women

could be more resoluted than men in looking for a job because they expect

to be discriminated. In more general terms, it may be that subject-specific

unobservable determinants are someway affected by one or more observable

features. In order to include this relation into a frailty model, we propose

a model which introduces a dependence of the subject-specific frailty dis-

tribution on one or more observable covariates. This assumption is general

with respect to the specification of hazard. In order to estimate our model

we exploit the estimation procedure for PH model with missing values in

covariates described in Chapter 5.
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6.1 The traditional framework

Let T be a positive random variable (RV) from which the failure times

{ti} of n subjects are independently drawn, i = 1, 2, ..., n. Let also define the

positive RVs C and W , from which respectively censoring times ci and en-

tering times wi are independently drawn. Because of possible left-truncation

and right-censoring we observe the event time Y = min(T, C) such that a

faliure indicator δi equals 1, if a failure occurs, 0 otherwise. Let each indi-

vidual be described by a vector of fully observed covariates xi = [xi1, ..., xik]
′

and β a vector of parameters.

Now let us assume that the n observed subjects are heterogeneus with

respect to some unobserved subject-specific feature which impacts on failure

times {ti}. Let such unobserved heterogeneity be included in the model

via n univariate subject-specific random effects {fi} drawn from a positive

univariate RV F ∼ (·|ς). Recalling the proportional hazards model with

random effects described in Section 3.3, we may write the individual hazard

function (3.6) as

h(t|xi,β, fi) = h0(t) exp(β′xi + fi)

which is given by (3.6) setting P = n, p = i, q = 1 and ωp,i = 1 ∀i. Allowing

for right-censoring the risk of subject i to have an event at time yi may be

written as

h(yi|xi, fi, θ) = h0(yi|η) · exp(β′xi + fi), θ = [η,β].

and the ith likelihood contribution as

Li(θ, ς|yi,xi, fi, δi, wi) =

=

∫

fi

{
[ht(yi|xi, fi, θ)]

δiSt(yi|xi, fi, θ) × [St(wi|xi, fi, θ)]
−1
}
dp(fi|ς).
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6.2 The random effects’ distribution

In the previous section we assumed the random effects {fi} to be n i.i.d.

realizations of the same random variable F , that is we assumed p(·|ς) to be

the same probability distribution function from which the individual random

effects were drawn. It would be equivalent to assume that the n random

effects are independently drawn from n identical prior probability distribution

functions, i.e p(·|ς) = p(·|ςi) assuming ς i = ς ∀i.

Now let us assume

ς i 6= ς i′, ∀i 6= i′, i, i′ = 1, ..., n. (6.1)

that is each p(·|ςi) has the same functional form but distinct parameters’

vectors. Let us introduce the further assumption

ς i = g(x̃i,α), (6.2)

where g(·) is an arbitrary function. The vector of parameters α 6= θ is the

same for each fi, while x′
i denotes a vector of covariates which are choosen

among the k covariates of subject i. Assumptions (6.1) and (6.2) imply that

p(fi|ς i) depends on the ith set of choosen covariates via α, so we may write

fi ∼ p(fi|x̃i,α). (6.3)

6.3 Estimation of the model

The random effect fi may be considered as a missing value ∀i if we look

at the structure of the data. Thus, we may think about applying the EM es-

timation procedure for PH model with missing values described in Chapter 5

in order to estimate the parameters of interest.

We may refer to xi as the incomplete data set for the ith subject, while

[xi, fi]
′ is the complete data set. Recalling the likelihood (5.2) we may write
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the ith incomplete data likelihood contribution as

Li(θ,ψ,φ,α|yi,xi, fi, δi, wi, ri) =

=

∫

fi

{
pr(ri|yi,xi, fi, δi, wi,φ) × [ht(yi|xi, fi, θ)]

δiSt(yi|xi, fi, θ)

×[St(wi|xi, fi, θ)]
−1[hc(yi|xi, fi,ψ)]1−δiSc(yi|xi, fi,ψ)

}
dp(fi|x̃i,α).

(6.4)

We recall that hc(·|xi, fi,ψ) and Sc(·|xi, fi,ψ) are the subject-specific con-

ditional hazard and survival function of censoring time, while p(·|ς) is the

pdf of (xi, fi). Furthermore, ri is a (k + 1)-vector in which the component

rij is 1 if xij , fi is observed, 0 otherwise, j = 0, 1, .., k. The vector ri denotes

the ith individual missingness profile with pdf pr(ri|yi,xi, fi, δi, wi,φ), φ a

vector of parameters. In the current setting, it is ri = [1, ..., 1, 0]′ ∀i, where

the 1s and the 0 correspond to x1, ..., xk and fi respectively. Note that the

probability that we do not observe the random effect fi is independent of xi,

i.e. fi is missing completely at random (see Chapter 5). This implies that

pr(ri|yi,xi, fi, δi, wi,φ) = pr(ri|yi, δi, wi,φ). (6.5)

Let us assume that the censoring distribution is independent of missing val-

ues, that is

hc(yi|xi, fi,ψ)1−δiSc(yi|xi, fi,ψ) = hc(yi|xi,ψ)1−δiSc(yi|xi,ψ). (6.6)

as well as θ, ς 6= φ,ψ. The contribution (6.4) becomes

Li(θ,α|yi,xi, fi, δi, wi) =

=

∫

fi

{
[ht(yi|xi, fi, θ)]

δiSt(yi|xi, fi, θ) × [St(wi|xi, fi, θ)]
−1
}

dp(fi|x̃i,α).

(6.7)
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as (6.5) and (6.6) are constant with respect to the integral (6.4).

Thus, in order to estimate ξ we may maximize the expected complete

data log-likelihood via the EM algorithm. The expectation is taken with

respect to the conditional distribution of each frailty component fi given the

observed data, which consists of (yi, x̃i, δi, wi) for each individual. In the

remainder of this section we describe the EM procedure for a discrete and a

continuous random effect respectively.

6.3.1 Discrete random effect

If we assume that fi is discrete ∀i, the ith expected complete data

log-likelihood is given by

E[ℓc
i(ξ|yi,xi, fi, δi, wi)|yi,xi, δi, wi] =

=
∑

fi

p(fi|yi,xi, δi, wi, ξ) × ℓc
i(ξ|yi,xi, fi, δi, wi)

where

ℓc
i(ξ|yi,xi, fi, δi, wi) =

= log
{
[ht(yi|xi, fi, θ)]

δiSt(yi|xi, fi, θ)[St(wi|xi, fi, θ)]
−1 × p(fi|x̃i,α)

}

(6.8)

and

p(fi|yi,xi, δi, wi, ξ) =

=
[ht(yi|xi, fi, θ)]

δiSt(yi|xi, fi, θ)[St(wi|xi, fi, θ)]
−1 × p(fi|x̃i,α)∑

fi
[ht(yi|xi, fi, θ)]δiSt(yi|xi, fi, θ)[St(wi|xi, fi, θ)]−1 × p(fi|x̃i,α)

.

(6.9)
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The score equations to solve are

u∗(ξ) =
∑

i

∑

fi

pfi
×




uβ, i
(β) = ∂

∂β
ℓc
i(ξ|yi,xi, fi, δi, wi)

uη, i(η) = ∂
∂η ℓc

i(ξ|yi,xi, fi, δi, wi)

uα, i(α) = ∂
∂αℓc

i(ξ|yi,xi, fi, δi, wi)




= 0,

where pfi
is given by (6.9)

After having initialized the parameters, at the (h + 1)th iteration the

steps of the EM algorithm are:

1. E-step

• for each subject i

• for each possible value of fi

• compute the expected complete data log-likelihood contribu-

tion of subject i

∑

fi

p(fi|yi,xi, δi, wi, ξ
h) × ℓc

i(ξ|yi,xi, fi, δi, wi, ξ
h).

• compute the expected complete data log-likelihood

Q(ξ|ξh) =
∑

i

∑

fi

p(fi|yi,xi, δi, wi, ξ
h) × ℓc

i(ξ|yi,xi, fi, δi, wi, ξ
h)
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2. Estimate ξh+1 by maximizing Q(ξ|ξh) with respect to ξ,

ξh+1 = arg max
ξ

Q(ξ|ξh)

• Update the set of parameters setting ξh = ξh+1

Let ξ̂ = [α̂, θ̂]′ be the estimates of ξ = [α, θ]′ after the EM algorithm

is completed, where θ = [η,β]′ is the vector of the parameters of interest.

Along with Herring and Ibrahim (2001), we propose the robust "sandwich"

estimator in order to estimate the variance of θ̂ (Pugh et al., 1993):

Jn(θ̂)−1Vn(θ̂)Jn(θ̂)
−1, (6.10)

where

Vn(θ̂) =
1

n

(
n∑

i=1

m∑

j=1

p̂fij
uij(θ̂)u

′
ij(θ̂) −

[
n∑

i=1

m∑

j=1

p̂fij
uij(θ̂)u

′
ij(α̂)

]

×

[
n∑

i=1

m∑

j=1

p̂fij
uij(α̂)u′

ij(α̂)

]−1

×

[
n∑

i=1

m∑

j=1

p̂fij
uij(α̂)u′

ij(θ̂)

])

(6.11)

and

Jn(θ̂) =
1

n

n∑

i=1

m∑

j=1

p̂fij
∇2ℓc

ij(ξ̂), θ̂ = [η̂, β̂]′. (6.12)

In Vn(θ̂), j indexes the possible values that fi can assume ∀i. Furthermore,

p̂fij
is the posterior probability given by (6.9) computed in ξ̂ = [θ̂, α̂]′. The

vector uij(θ̂) = [uβ,ij
(β̂),uη,ij(η̂)]′ is the vector of the ith contributions

to the score functions with respect to β and η, computed in β̂, η̂ and for

each possible value of fi. Similarly, uij(α̂) is given by the contribution to

the score function’s vector uα,i computed in α̂ for each possible value of fi.

The quantity ℓc
ij(ξ̂) is the ith complete data log-likelihood contribution (6.8)
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computed for each value of fi indexed by j.

6.3.2 Continuous random effect

If the frailty fi is continuous ∀i the individual expected complete data

contribution is given by

E[ℓi(ξ|yi,xi, fi, δi, wi)|yi,xi, δi, wi] =

∫

fi

p(fi|yi,xi, δi, wi, ξ) × ℓc
i(ξ|yi,xi, fi, δi, wi)dfi (6.13)

where

ℓc
i(ξ|yi,xi, fi, δi, wi) =

= log
{
[ht(yi|xi, fi, θ)]

δiSt(yi|xi, fi, θ)[St(wi|xi, fi, θ)]
−1 × p(fi|x̃i,α)

}
.

is the complete data log-likelihood contribution and p(fi|x̃i,α) is the density

function of fi. Furthermore,

p(fi|yi,xi, δi, wi, ξ) =

=
[ht(yi|xi, fi, θ)]

δiSt(yi|xi, fi, θ)[St(wi|xi, fi, θ)]
−1 × p(fi|x̃i,α)∫

fi
[ht(yi|xi, fi, θ)]δiSt(yi|xi, fi, θ)[St(wi|xi, fi, θ)]−1 × p(fi|x̃i,α)dfi

.

(6.14)

is the posterior conditional density of fi. The score equations are
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u∗(ξ) =

n∑

i=1

∫

fi

pfi
×




uβ,i
(β) = ∂

∂β
ℓc
i(ξ|yi,xi, fi, δi, wi)

uη,i(η) = ∂
∂η ℓc

i(ξ|yi,xi, fi, δi, wi)

uα,i(α) = ∂
∂αℓc

i(ξ|yi,xi, fi, δi, wi)




dfi = 0.

(6.15)

where pfi
is given by (6.14).

If the integral in (6.13) does not have a closed form we may exploit the

MCEM algorithm described in Section 4.2.2, that is we may approximate

(6.13) by

Ẽ[ℓc
i(ξ|yi,xi, fi, δi, wi)|yi,xi, δi, wi] =

1

m

R∑

r=q+1

ℓc
i(ξ|yi,xi, si,r, δi, wi).

The quantity sh
i,r is the rth element of the vector sh

i of sampled values for fi

and q is the number of initial samples which are discarded (burn-in). The

samples may be drawn from (6.14). Recalling what we wrote in Section 5.3,

if we choose p(fi|x̃i,α) to belong to the exponential family we may exploit

the Adaptive Rejection Sampling algorithm to draw samples from (6.14).

In this case we have only one conditional density to sample from, which

derives from the fact that we do not need to specify the full conditionals for

the observed covariates.

After having set a vector of initial values ξ0, at the (h + 1)th iteration the

steps of the MCEM algorithm are

1. E-step:

• for each subject i
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• Sample m = p − q values for fi from

p(fi|yi,xi, δi, wi, ξ
h)

where p is the total number of sampled values.

• compute the approximated expected complete data log-

likelihood contribution

Ẽ[ℓi(ξ|yi,xi, fi, δi, wi)|yi,xi, δi, wi] =
1

m

R∑

r=q+1

ℓc
i(ξ|yi,xi, s

h
i,r, δi, wi),

• compute the expected complete data log-likelihood

Q(ξ|ξh) =
1

m

∑

i

R∑

r=q+1

ℓc
i(ξ|yi,xi, s

h
i,r, δi, wi, ξ

h)

2. M-step: estimate ξh+1 by maximizing Q(ξ|ξh) with respect to ξ

ξh+1 = arg max
ξ

Q(ξ|ξh)

• Update the set of parameters setting ξh = ξh+1.

As suggested by Herring et al. (2002), when the random effect is continu-

ous we may use the variance estimator for θ proposed by Goetgheburger and

Ryan (2000) following Rubin and Schenker (1991). Such estimator is simple

and presents good small sample properties. Let θ = [η,β]′ be the vector of

our parameters of interest and θ̂ the estimates of θ after the MCEM algo-

rithm is completed. Let also ξ̂ = [α̂, θ̂]′ be the estimates of ξ = [α, θ]′ after

the MCEM algorithm is completed. Then, for each ith subject we draw m

values of fi from p(fi|yi,xi, δi, ωi, ξ̂). We define the n × m matrix S where
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each jth column is an n-vector sj of imputed values for the missing covariate

f , j = 1, ...m. Then we estimate m different vectors of parameters θ̂j by

maximizing m different log-likelihoods

ℓj(θ|y,X, sj , δ,ω) =
n∑

i=1

ℓi,j(θ|yi,xi, si,j, δi, wi)

with respect to θ, where si,j is the jth sampled value of fi. For each θ̂j

we calculate the within-imputation variance Wj = I−1
j (θ̂) where Ij(θ̂) is the

observed information matrix associated to each θ̂j . We compute then the

mean of variances (W1, ..., Wj, ..., Wm),

W̄ =
m∑

j=1

Wj

m
.

Let also

θ̄j =

m∑

j=1

θ̂j

m

be the average of the m estimates θ̂j. Then we calculate the between-

imputation variance

B =
(θ̂j − θ̄j)

′(θ̂j − θ̄j)

m − 1
.

The variance estimator is then given by

V̂ = W̄ + (1 + m−1)B. (6.16)



Chapter 7

Simulations

In this chapter we describe the results of two different simulations sets

we performed, according to the proposed model described in Chapter 6. The

first set of simulations was performed assuming a binary random effect. In

the second set of simulations we assumed a continuous random effect. We

estimated the models along with the EM and MCEM procedures described

in Sections 6.3.1 and 6.3.2 respectively. In each of both cases we compared

the results with two different models. The first one is a model which does

not account for the presence of the random effect, which we named without

frailty model (WF). The second model is the full data model (FD), which

is the model in which we assume to know the values of the random effect.

We replicated 100 independent simulations both for the binary and the

continuous RE to provide coverage probabilities for the estimates.

7.1 Binary random effect

We built up a set of n = 1000 subjects each described by two covariates xi1

and xi2 which are observed ∀i and are independently drawn from a random

69
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variable X ∼ N(0, 1). We assumed a Weibull baseline hazard,

h0(t|η) = γλtγ−1, η = [γ, λ] (7.1)

where γ = 0.6 and λ = 0.3. Each subject was assigned a random effect fi.

According to the assumptions made in Section 6.2 each random effect fi was

independently drawn from a subject-specific distribution. In this setting it

was

fi ∼ Bernoulli(pi),

where we assumed

pi =
exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)
(7.2)

and α0 = 0.2, α1 = 0.3, α2 = 0.6. We generated n event times {ti} randomly,

according to the subject-specific conditional hazard

h(yi, δi|xi, fi, θ) = γλyγ−1
i exp(β1xi1 + β2xi2 + fi), θ = [η,β]′

setting β = [β1, β2]
′ = [0.7, 0.5]′. Namely it was

ti = {−[λ exp(β1xi1 + β2xi2 + fi)] log[1 − u]}−
1

γ ,

where u ∼ U(0, 1) is the random value of the cumulative distribution function

of the lifetime ti given by

F (ti|xi, fi, θ) = 1 − S(ti|xi, fi, θ) = 1 − exp[−λtγi exp(β1xi1 + β2xi2 + fi)].

We allowed for both right-censoring and left-truncation by drawing the cen-

soring times {ci} and the entry times wi independently from two independent

RVs C and W .

We defined the misspecified model without considering the presence of
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the random effect fi. Under such model the ith log-likelihood contribution

was

ℓi(θ|yi,xi, δi, wi) = δi[log(γλyγ−1
i ) + β1xi1 + β2xi2]

+ λ exp(β1xi1 + β2xi2)(w
γ
i − yγ

i ), θ = [γ, λ, β1, β2]
′,

(7.3)

where yi = min(ti, ci) is the observed exit time and δi is the indicator which

equals 1 if yi = ti, 0 otherwise. Assuming we knew the real value of fi ∀i we

defined thr ith log-likelihood contribution of the full data model (FD) as

ℓi(θ|yi,xi, δi, wi) = δi[log(γλyγ−1
i ) + β1xi1 + β2xi2 + fi]

+ λ exp(β1xi1 + β2xi2 + fi)(w
γ
i − yγ

i ).

In both cases we achieve the MLEs θ̂ by solving the score equations

u(θ) =

n∑

i




uγ, i(γ) = ∂
∂γ

ℓi(θ|yi,xi, δi, wi)

uλ, i(λ) = ∂
∂λ

ℓi(θ|yi,xi, δi, wi)

uβ1,i(β1) = ∂
∂β1

ℓi(θ|yi,xi, δi, wi)

uβ2,i(β2) = ∂
∂β2

ℓi(θ|yi,xi, δi, wi)




= 0. (7.4)
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Under the WF model the score functions in (7.4) are given by

uγ(γ) =

n∑

i=1

{δi

[
γ−1 + log(yi)

]
+ exp(β1x1i + β2x2i)

×λ [wγ
i log(wγ

i ) − yγ
i log(yγ

i )]},

uλ(λ) =
n∑

i=1

[δiλ
−1 + exp(β1x1i + β2x2i) (wγ

i − yγ
i )],

uβ1
(β1) =

n∑

i=1

[δix1i + λ(wγ
i − yγ

i ) exp(β1x1i + β2x2i)x1i],

uβ2
(β2) =

n∑

i=1

[δix2i + λ(wγ
i − yγ

i ) exp(β1x2i + β2x2i)x2i].

The score functions under the FD model are given by (7.9)-(7.12) at page 77.

Now we consider the EM estimation procedure to account for unobserved

heterogeneity. We recall that we can not observe fi so we need to consider the

prior distribution of fi to specify likelihood correctly. In the current setting

it was

p(fi|xi,α) =

=

[
exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]fi
[
1 −

exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]1−fi

.

As we wrote in Section 6.3.1 the ith log-likelihood contribution may be

written as the expected complete data log-likelihood contribution

E[ℓc
i(ξ|yi,xi, fi, δi, wi)|yi,xi, δi, wi] =

=
∑

fi

p(fi|yi,xi, δi, wi, ξ) × ℓc
i(ξ|yi,xi, fi, δi, wi), (7.5)

where
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p(fi|yi,xi, δi, wi, ξ) =

γλyγ−1
i exp(β1xi1 + β2xi2 + fi)]

δi exp[λ(wγ
i − yγ

i ) exp(β1xi1 + β2xi2 + fi)]

×

[
exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]fi
[
1 −

exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]1−fi

×

{∑

fi

yγ−1
i exp(β1xi1 + β2xi2 + fi)]

δi exp[λ(wγ
i − yγ

i ) exp(β1xi1 + β2xi2 + fi)]

×

[
exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]fi
[
1 −

exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]1−fi

}−1

(7.6)

and

ℓc
i(ξ|yi,xi, fi, δi, wi) = δi[log(γλyγ−1

i ) + β1xi1 + β2xi2 + fi]

+ λ exp(β1xi1 + β2xi2 + fi)(w
γ
i − yγ

i )

+ fi log

[
exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]

+ (1 − fi) log

[
1 −

exp(α0 + α1xi1 + α2xi2)

1 + exp(α0 + α1xi1 + α2xi2)

]
.

(7.7)
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The score equations to solve are

u(ξ) =

n∑

i

∑

fi

pfi
×




uγ, i(γ) = ∂
∂γ

ℓi(ξ|yi,xi, δi, wi)

uλ, i(λ) = ∂
∂λ

ℓi(ξ|yi,xi, δi, wi)

uβ1,i(β1) = ∂
∂β1

ℓi(ξ|yi,xi, δi, wi)

uβ2,i(β2) = ∂
∂β2

ℓi(ξ|yi,xi, δi, wi)

uα0,i(α0) = ∂
∂α0

ℓi(ξ|yi,xi, δi, wi)

uα1,i(α1) = ∂
∂α1

ℓi(ξ|yi,xi, δi, wi)

uα2,i(α2) = ∂
∂α2

ℓi(ξ|yi,xi, δi, wi)




= 0, (7.8)

where pfi
is given by (7.6). The score functions in (7.8) are given by

(7.9)-(7.15) at page 77. The EM algorithm takes the following form:

Initialization

1. Estimate θ0 = [β0,η0] by maximizing the log-likelihood without the

frailty component with respect to θ.

θ0 = arg max
θ

[∑

i

ℓi(θ|yi,xi, δi, wi)

]

where ℓi(θ|yi,xi, δi, wi) is given by (7.3).

2. Draw α0
0, α

0
1, α

0
2 from a uniform distribution independently.

3. Set ξ0 = [β0,η0,α0].
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4. Set ξh = ξ0

Updating

1. E-step

• for each subject i

• for each possible value of fi

• compute the ith log-likelihood contribution (7.5) given the

current value θh

∑

fi

p(fi|yi,xi, δi, wi, ξ
h) × ℓc

i(ξ|yi,xi, fi, δi, wi, ξ
h).

• compute the expected complete data log-likelihood

Q(ξ|ξh) =
∑

i

∑

fi

p(fi|yi,xi, δi, wi, ξ
h) × ℓc

i(ξ|yi,xi, fi, δi, wi, ξ
h)

2. Estimate ξh+1 by maximizing Q(ξ|ξh) with respect to ξ,

ξh+1 = arg max
ξ

Q(ξ|ξh)

• Update the set of parameters setting ξh = ξh+1

The algorithm was stopped when the squared difference between the (h +

1)th and the hth log-likelihood values was less than 10−4. We consider θ =

[γ, λ, β1, β2]
′ the parameters of interest.
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The variance of the MLEs θ̂ was given by I−1
WF (θ̂WF ) and I−1

FD(θ̂FD)

for WF and FD model respectively, where I(θ̂) is the observed informa-

tion matrix. The variance of θ̂EM was computed exploiting the estimator

Jn(θ̂)−1Vn(θ̂)Jn defined by (6.10). The vectors of score functions uij(θ̂) and

uij(α̂) in (6.11) were given by the sets of functions (7.9)-(7.12) and (7.13)-

(7.15) respectively, considering that fi could take m = 2 values indexed by

j in (6.11). The pijs were given by (7.6) computed for each possible value of

fi and for ξ̂ = [θ̂, α̂]. Similarly, the ℓc
ijs in (6.12) were given by (7.7).
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uγ(γ) =
n∑

i=1

∑

fi

pfi
× {δi

[
γ−1 + log(yi)

]
+ exp(β1x1i + β2x2i + fi)λ [wγ

i log(wγ
i ) − yγ

i log(yγ
i )]}, (7.9)

uλ(λ) =

n∑

i=1

∑

fi

pfi
× [δiλ

−1 + exp(β1x1i + β2x2i + fi) (wγ
i − yγ

i )], (7.10)

uβ1
(β1) =

n∑

i=1

∑

fi

pfi
× [δix1i + λ(wγ

i − yγ
i ) exp(β1x1i + β2x2i + fi)x1i] (7.11)

uβ2
(β2) =

n∑

i=1

∑

fi

pfi
× [δix2i + λ(wγ

i − yγ
i ) exp(β1x2i + β2x2i + fi)x2i] (7.12)

uα0
(α0) =

n∑

i=1

∑

fi

pfi
× {1 − [exp(α0 + α1x1i + α2x2i)][1 + exp(α0 + α1x1i + α2x2i)]

−1}, (7.13)

uα1
(α1) =

n∑

i=1

∑

fi

pfi
× x1i{1 − [exp(α0 + α1x1i + α2x2i)][1 + exp(α0 + α1x1i + α2x2i)]

−1}, (7.14)

uα2
(α2) =

n∑

i=1

∑

fi

pfi
× x2i{1 − [exp(α0 + α1x1i + α2x2i)][1 + exp(α0 + α1x1i + α2x2i)]

−1}. (7.15)
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7.1.1 Results

We performed 100 independent simulations according to the set described

above and the results are presented for each parameter according to the three

different models described at the beginning of this section. The full data

model results are the reference with respect to which both the WF model

and the EM procedure performances are compared. For each parameter’s

estimate we computed the standard error (SE) and the coverage probability

(CP). The SEs were given by the element iss of the estimated variance co-

variance matrix, s = 1, ..., k where k = 4 is the number of the parameters

of interest. The CPs are empirical probabilities given by the frequencies of

inclusion of the true value of θs in the associated confidence interval (CI). In

the current setting the CI associated to the generic parameter θs was given

by given by

θ̂s − zα
2

√
V̂ ar(θ̂s) ≤ θs ≤ θ̂s + zα

2

√
V̂ ar(θ̂s),

where V̂ ar(θ̂s) is the appropriate variance estimator under the considered

model and zα
2

is the α = 0.05 quantile of Z(0,1). Such a distribution was

chosen because of the properties of MLEs for large samples.

Table (7.1) provides the results for the baseline parameters, while table

(7.2) provides the results for β1 and β2. The γ estimate of WF is more biased

than the EM one and has a really low coverage probability (4%) while in the

EM case it is 100%, even higher than the full data case (FD) one. The WF

performance gets even worse looking at the λ estimates for which the bias

is really severe and the coverage probabilities are null. So far, for the the

baseline parameters it is evident that EM estimates provided a very good

performance, as the results are really close to the full data model, except

for a bit larger standard errors. This similarity is also evident looking at

boxplots in Figure 7.1.

The results are slightly different for β1 and β2. The standard errors are larger

in all the tested procedures. As expected the full data analysis provided the
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best result as the estimate is correct, the standard error is small and the

coverage probability is 92%. The WF case provides a better result for β1 than

the EM procedure: its estimate is less biased and also the standard error is

smaller, while the coverage probability is higher (Tab.7.2). The β2 estimates

show a similar output pattern, as the FD performance is as expected the

best and the WF results are quite better than the EM ones (Figure 7.2). So

far, at a first glance the EM procedure performs better than the WF one

for the baseline parameters estimates (γ and λ), while it is worst for the

risk parameters (β1 and β2). However, it is evident that when it’s the WF

procedure to perform worse respect to the EM, namely for γ and λ, the bias

is really higher and the coverage probabilities are really lower with respect

to the case when it is the EM to perform worse (β1 and β2). Hence, we can

state that on the whole the EM procedure provides better results than the

complete case one. As a further result the EM correctly imputed 64% of

missing values.

Table 7.1: Simulation results: baseline parameters.

Estimate (Standard Error) Coverage (95%)

Case γ = 0.6 λ = 0.3 γ λ

FD 0.60 (.02) 0.30 (.01) .93 .90

WF 0.54 (.02) 0.53 (.02) .04 .00

EM 0.58 (.04) 0.29 (.03) 1.00 .91
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Table 7.2: Simulation results: risk parameters.

Estimate (Standard Error) Coverage (95%)

Case β1 = 0.7 β2 = 0.5 β1 β2

FD 0.70 (.04) 0.49 (.04) .92 .85

WF 0.68 (.04) 0.56 (.04) .89 .56

EM 0.75 (.06) 0.60 (.06) .76 .45
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Figure 7.1: Box plots and coverage probabilities for γ and λ.
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Figure 7.2: Box plots and coverage probabilities for β1 and β2.
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7.2 Continuous random effect

We built up a set of n = 500 subjects each described by one covariate xi

which is observed ∀i and was independently drawn from a random variable

X ∼ N(0, 1). We assumed an exponential baseline hazard,

h0(t|η) = λ (7.16)

where λ = 1. Each subject was assigned a random effect fi. Each random

effect fi was independently drawn from a subject-specific distribution. In

this setting it was

fi ∼ N(0, σ2
i )

where we assumed

σ2
i = exp[α0 + α1(xi − x̄)]

and α0 = 0.2, α1 = 0.3. We generated n event times {ti} randomly, according

to the subject-specific conditional hazard

h(ti|xi, fi, θ) = λ exp(β1xi + fi), θ = [λ, β]′

setting β = 0.7. Namely it was

ti = − log(1 − u)[λ exp(βxi + fi)]
−1

where u ∼ U(0, 1) is the random value of the cumulative distribution function

of the lifetime ti given by

F (ti|xi, fi, θ) = 1 − S(ti|xi, fi, θ) = 1 − exp[−λti exp(βxi + fi)].
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If we do not consider the presence of the random effect fi we define the ith

log-likelihood contribution as

ℓi(θ|ti, xi) = log λ + βxi − λti exp(βxi) (7.17)

Assuming we know the real value of fi ∀i the ith log-likelihood contribution

is

ℓi(θ|ti, xi, fi) = log λ + βxi + fi − λti exp(βxi + fi)

under the full data model (FD).

Recalling that we do not know the value of fi actually we need to consider

the prior density of fi

p(fi|xi,α) =
1√

2π exp(α0 + α1xi)
exp

[
−

f 2
i

2 exp(α0 + α1xi)

]

to specify the model correctly. We may write the ith log-likelihood contri-

bution as an expected complete data log-likelihood contribution,

E[ℓi(ξ|ti, xi, fi)|ti, xi] =

∫

fi

p(fi|ti, xi, ξ) × ℓc
i(ξ|ti, xi, fi)dfi, (7.18)

where

p(fi|ti, xi, ξ) =

λ exp(βxi + fi) exp[−i exp(βxi + fi)][2πeα0+α1(xi−x)]−
1

2 e−f2
i {2·exp[α0+α1(xi−x)]}−1

∫
fi

λ exp(βxi + fi) exp[−λti exp(βxi + fi)][2πeα0+α1(xi−x)]−
1

2 e−f2
i {2·exp[α0+α1(xi−x)]}−1

dfi

.

(7.19)

and
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ℓc
i(ξ|ti, xi, fi) = log λ + βxi + fi − λti exp(βxi + fi) −

1

2
[log 2π + α0 + α1(xi − x)]

−
1

2
f 2

i {exp[α0 + α1(xi − x)]}−1 (7.20)

In the current setting we assumed to know the value of λ, so the only

parameter we need to estimate is β. Because of this, under the WF and FD

models assumptions we need to solve the score equation

u(β) =

n∑

i

ℓ
′

i(β|yi, xi) = 0 (7.21)

only. Under the WF and the FD models the ith contribution to the score

function in (7.21) are given by

uβ(β) = xi · [1 − λ exp(βxi)],

and

uβ(β) = xi · [1 − λ exp(βxi + fi)]

respectively.

We exploited the MCEM algorithm as described in Section 6.3.2in order

to estimate β accounting for the unobserved random effect fi. This im-

plies that the expected complete data log-likeliood contribution (7.18) was

approximated by

Ẽ[ℓc
i(ξ|ti, xi, fi)|ti, xi] =

1

m

R∑

r=q+1

ℓc
i(ξ|ti, xi, si,r). (7.22)

where ℓc
i(ξ|ti, xi, si,r) is given by (7.19) replacing fi with si,r. The quantity

si,r is the rth component of the p-vector of sampled values of fi drawn from

(7.19) via the adaptive rejection sampling algorithm (Gilks and Wild, 1992)
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described in Section 4.3.1. Note that the posterior density (7.19) from which

we sample {si} is univariate, so the whole sampling procedure can be seen as

a particular case of Gibbs sampler where we have only one full conditional

density to sample from (see Section 4.3). After checking for the convergence

of Gibbs sampler we chose a burn-in period of q = 1000 and a sample size

of m = p − q = 200. According to (7.22) the score equations to solve are

therefore

u∗(ξ) =
1

m

n∑

i

R∑

r=q+1




u∗
β, i(β) = ∂

∂β
ℓc
i(ξ|ti, xi, si,r)

u∗
α0, i

(α0) = ∂
∂α0

ℓc
i(ξ|ti, xi, si,r)

u∗
α1, i

(α1) = ∂
∂α1

ℓc
i(ξ|ti, xi, si,r)




= 0,

where the ith contributions to the score functions are given by

u∗
β(β) = xi · [1 − ti exp(β1xi + si,r)],

u∗
α0

(α0) = 0.5 · {(sh
i,r)

2 · exp[−α0 − α1(xi − x)] − 1},

u∗
α1

(α1) = 0.5 · (xi − x) · {(sh
i,r)

2 · exp[−α0 − α1(xi − x)] − 1}.

The Monte Carlo EM algorithm takes the following form:

Initialization

1. Estimate β0 maximizing the log-likelihood without the frailty compo-

nent with respect to β.

β0 = arg max
β

[∑

i

ℓi(β|ti, xi)

]
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where

ℓi(β|ti, xi) = βxi − ti exp βxi

2. Draw α0, α1 from a uniform distribution.

3. Set ξ0 = [β0, α0
0, α

0
1]

4. Set ξh = ξ0

5. Set q = 1000 as the burn-in period for the Gibbs sampler.

Updating

1. E-step:

• for each subject i

• Sample m = p − q values for fi from p(fi|ti, xi, ξ
h) given by

(7.19) setting λ = 1 and ξh is the current estimate of ξ.

• compute the approximated expected complete data log-

likelihood conribution

Ẽ[ℓc
i(ξ|ti, xi, fi)|ti, xi] =

1

m

R∑

r=q+1

ℓc
i(ξ|ti, xi, si,r).

given ξh.
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• compute the expected complete data log-likelihood

Q(ξ|ξh) =
1

m

∑

i

R∑

r=q+1

ℓc
i(ξ|ti, xi, si,r)

2. M-step: estimate ξh+1 by maximizing Q(ξ|ξh) with respect to ξ

ξh+1 = arg max
ξ

Q(ξ|ξh)

• Update the set of parameters setting ξh = ξh+1.

The convergence criterion for the MCEM algorithm was that the squared

difference between the (h + 6)th and the hth log-likelihood values was less

than 10−3.

The variance of the MLEs β̂ were given by i−1
WF (β̂WF ) and i−1

FD(β̂FD) for

WF and FD model respectively, where i−1(β) is the observed information

number. The variance of θ̂EM was computed exploiting the estimator V̂ =

W̄ +(1+m−1)B given by (6.16). Given the MLE estimate β̂ we drew m = 20

values for each fi from p(fi|xi, fi, β̂) = where β̂ is the MLE estimate after the

MCEM was stopped. We built up an n×m matrix S where the jth column

is the set of n sampled values for the random effect f . Then we estimated m

different vectors of parameters θ̂j by maximizing m different log-likelihoods

ℓj(β|t,x,S) =
∑

i=1

ℓc(β|ti, xi, sij) (7.23)

where j = 1, 2, ..., m indexes the columns of S. The ith log-likelhood contri-

bution in (7.23) is given by

∑

i=1

ℓc(β|ti, xi, sij)

n∑

i=1

βxi + sij − ti exp(βxi + sij)
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where sij is the jth imputed value of fi. The final result is a set of m = 20

MLE estimates β̂IMP
j which we use to compute the estimator (6.16)

The MCEM procedure provides a good estimate of β as shown in Tab.7.3

and Figure 7.3. The estimates given by MCEM are the same of the full data

model, providing even higher coverage probabilities.

Table 7.3: Simulation results: risk parameter.

Estimate (Standard Error) Coverage (95%)

Model β = 0.7 C.P.

FD 0.69 (.04) .91

WF 0.68 (.04) .55

EM 0.69 (.06) .94
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Figure 7.3: Box plots for estimates of β.



Chapter 8

Conclusions and outlook

Survival analysis focuses on the duration between a time origin and the

occurrence of an event of interest. The main analysis’ tools are the survival

function and the hazard function. For each observed subject the survival

function provides the probability that the event occurs after a given time

point t. The hazard function provides the risk that the event occurs an

instant after time t given it has not occurred yet. The time range of our ob-

servation may not coincide with the duration between time origin and event.

Thus, different observation schemes are possible. One of these includes both

possible delayed entries in the observation and an exits from the observa-

tion before the event occurs. We name such occurrences as left-truncation

and right-censoring respectively. The presence of possible left-truncation and

right-censoring affects the specification of the model in terms of the hazard

function, the survival function and of the likelihood function as well. Each

subject has peculiar features which impact on his susceptibility to the event’s

occurrence which make each individual different. In other words there is het-

erogeneity among the individuals belonging to a given population. Part of

such heterogeneity may be described by fixed effects models (FE), i.e. by

describing each subject by a function of a given set of covariates named pre-

dictor. The heterogeneity which is captured by fixed effects is named observed

heterogeneity. A very popular FE model is the proportional hazards model

91
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(PH), in which the individual hazard is made up of two components. One is a

shared component named baseline, which is multiplied by the exponential of

a linear combination of observable covariates which are assumed to be fixed.

It could be possible that unobservable subject or group-specific features

impact on the individual hazard functions. This implies that in a given pop-

ulation could be several sub-groups with different hazard functions. Such

phenomenon generates the unobserved heterogeneity. If we do not account

for it the hazard of the population would be underestimated while the popu-

lation’s survival function would be overestimated (Omori and Johnson, 1993).

Such unobserved heterogeneity is usually modeled by random effects, which

are the unobservable realizations of a random variable. In survival analysis

the random effect is named frailty, the term which Vaupel et al. (1979) used

to denote a subject-specific fixed component which was unobservable and

multiplied by the baseline hazard rate. A model which accounts for both

observed and unobserved heterogeneity is the proportional hazards frailty

model i which the individual hazard is made up of three components (Clay-

ton and Cuzick, 1985). The first one is the baseline. The second component

is the subject-specific predictor previously defined. The third component is

the frailty. This is our refernce model

Although the original frailty model has been widely extended and

generalized they have been defined as a quantity which is independent from

fixed effects The key idea behind this work is that an interaction between

random effects and fixed effects may exist. Such interaction has been

modeled assuming that the distribution of each subject-specific random

effects has the same functional form the parameters of which depends on

the values of one or more observed covariates. This assumption is general

with respect to the different kinds of survival models. In this work we

included it in an over-dispersion proportional hazards model assuming a

discrete and a continuous random effect alternatively. The random effect

was dealth with as a missing covariate for each subject, thus we proposed

the estimation procedures presented by Herring and Ibrahim (2001) for
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a proportional hazard model with missing covariates. We performed two

different sets of simulations in which these models were estimated by the

EM and MCEM algorithm respectively. In each set we compared the results

of such procedures with those of two other models, one wich did not account

for unobserved heterogeneity (WF), the other where the value od random

effect was assumed to be known (FD). For both sets of simulations the EM

and MCEM algorithms provided estimates near to those of the full data

model.

Although the assumption of an interaction between fixed and random

effects is rather general, the model we tested in this work is only a part

of the possible survival models which could be implemented relying on it.

For example an immediate generalization could be made by including our

assumption in a semi-parametric proportional hazards frailty model. A more

challenging generalization could be the introduction of missing values in the

covariates, or (and) allowing for time-varying covariates.
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