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Introduction

“If you knew time as well as I do - said the Hatter - you wouldn’t
talk about wasting it. [. . . ] Now, if you only kept on good terms
with him, he’d do almost anything you liked with the clock.”
(Lewis Carroll, Alice’s adventures in Wonderland.)

The topic of the present thesis is the relation between parallelism and
sequentiality in proofs. More precisely, placing ourselves in the setting of
Linear Logic, we study the connection between two of its most crucial dis-
coveries: proof nets and polarities.

Let us try to explain better the point. Informally, a proof of a formula A
could be represented as a chain of inference rules ending with an inference
which concludes A. Such a representation does not seem to properly capture
the intrinsic nature of a proof, since it makes distinction between proofs
which are morally the same: consider for example, two proofs of the same
formula differing only for the order of application of the rules.

Following such intuition, the nature of a proof appears to be somehow
independent from the temporal succession of its rules, resembling much more
a parallel process.

Linear Logic provides mathematical substance to this claim, introducing
the notion of proof net.

Proof nets. In 1987, in the seminal paper [Gir87], Girard introduces Lin-
ear Logic (briefly LL) from a fine analysis of intuitionistic and classical logic;
such a refinement provides a logical status to the structural rules of sequent
calculus (thanks to the introduction of the exponential connectives, ! and ?
) and splits the usual propositional connectives in two classes ( the additives
&,⊕,⊤,0, and the multiplicatives ⊗,O,⊥,1).

The deep insight on the standard connectives operated by LL allows to
represent proofs as graphs called proof nets, whose nodes correspond to linear
logic rules and which satisfy some specific geometrical properties (called
correctness criteria); such a discovery brought to the fore the geometrical
nature of proofs.

The main characteristics of proof nets is to be modular, parallel objects:
in a proof net, there is not any direct reference to the sequential succession
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of steps which brought to its construction.

As a consequence, a proof net turns out to be a canonical representative
of a class of proofs equivalent modulo permutations of rules: sequentializa-
tion, one of the key results in the theory of proof nets, allows to recover a
proof from a proof net, by proving that among the nodes of the proof net
one can be chosen as the last rule of a proof; by iterated application of this
property, called splitting, one can build up a proof from a proof net.

The discover of proof nets becomes even more interesting if we con-
sider them in the light of the so-called Curry-Howard isomorphism, relating
computer science with proof-theory. This isomorphism associates programs
with proofs, and execution of programs with a procedure of transformation
of proofs called cut-elimination, enlightening in this way the logical meaning
of computation and the operational nature of proofs.

Cut-elimination in the setting of proof nets becomes a local, modular
rewriting of graphs; due to the Curry Howard isomorphism, this provides
then a parallel, geometrical account of computation.

Nevertheless, we must remark that outside multiplicative linear logic
(briefly MLL), the beautiful theory of proof nets becomes less elegant and
in (some cases) quite complicated: for instance, the search of a proper syntax
extending proof nets to the the additives has been an open problem for a
long time, only recently solved by Hughes and Van Glaabeek in [HVG03].

To sum up, proof nets allows to eliminate those naive aspects of sequen-
tiality which are not naturally inherent to the structure of proofs.

However there exists also another side of sequentiality, more intrinsic
than the simple ordered succession of rules, which has been disclosed by the
discover inside linear logic of polarities.

Polarities. LL, tampering the structural rules with the exponentials con-
nectives, allows for the first time to talk of linear negation, that is “negation
without structural rules”.

In the light of the Curry-Howard isomorphism, linear negation gets a
clear operational meaning, as a change of viewpoint : in computer science,
a program is executed in a given environment; this process can be either
analyzed from the point of view of the program or from the one of the
environment, and negation is here the switch between these two positions.

It is worth mentioning that the above intuition contributed in a remark-
able way to the birth of game semantics, which interprets computation as a
game between two players, the Proponent (the program) and the Opponent
(the environment) (see [AMJ00], [HO00]).

The refinement of usual negation inside LL was the starting point of a
deep analysis of the logical notion of duality, which eventually brought to
the discover of polarities.

Multiplicative and additive connectives of LL splits into two dual fami-
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lies:
- Positives (or synchronous): ⊗,⊕,1,0;
- Negatives (or asynchronous): O,&,⊥,⊤.
A formula is positive (resp. negative) if its outermost connective is pos-

itive (resp. negative).
In [And92], Andreoli proved that any proof of linear logic can be trans-

formed modulo permutations of rules into a proof which satisfies (bottom-
up) the following discipline:

i) negative formulas, if any, are decomposed immediately;
ii) otherwise, one chooses a positive formula, and keep decomposing it

up to its negative subformulas;
such proofs are called focusing.
The alternation of positive and negative steps provides then a canonical

way to construct a proof, yielding an intrinsic, not trivial notion of time in
proofs, as pointed out by Girard in [Gir99].

Using synthetic connectives (that is considering cluster of connectives of
the same polarity as a single connective), in [Gir00] Girard introduced a
calculus for focusing proofs in multiplicative-additive Linear Logic (briefly
MALL) called hypersequentialized calculus, with only two kind of logical
rules (the positive and the negative), one strictly alternating with the other.

Looking at the hypersequentialized calculus (briefly HS) through the
lens of interaction, a positive rule appears as the act of posing a question to
the Opponent (the environment) by the Proponent (the program) , and a
negative rule as the reception of an answer from the Opponent; if we apply
linear negation, we switch the point of view, turning questions into answers
and answers into questions.

The nature of a proof in HS then seems to be a dialogue, a strict al-
ternation of questions and answers; this startling discover opened the way
to game models of linear logic (see [Lau03] , [Lau04]) and to ludics [Gir01],
a reconstruction of multiplicative-additive Linear Logic based only on the
notion of interaction.

Nevertheless, the hypersequentialized approach has its limitations: mainly,
it forces to leave the proof nets syntax, in spite of the simplicity and elegance
of its multiplicative part.

The mismatch. Clearly there is a mismatch regarding the nature of
proofs between proof nets and hypersequentialized calculus: while proof
nets are timeless, parallel objects, in the hypersequentialized proofs there is
an explicit marking of time, which makes them sequential in a strong sense.

The point is well captured in the following quoting of Girard, from
[Gir99]:

“We are perhaps explaining a sequential logic, and there might
as well be a parallel logic -without temporality-; [. . . ] I think
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that the ghost of an alternative parallel logic might vanish if
we succeed to depart from the game intuition, in which a strict
alternation of moves is so important.”

The aim of the present thesis is to try to reconcile this mismatch in
MALL, by proposing a notion of proof net for HS, recovering in this way
polarities in a parallel setting; such proof nets will be called J-proof nets. In
J-proof nets positive and negative rules are still alternating, but not strictly,
that is, the set of rules following a given rule is partially ordered; as it is
standard in the theory of proof nets, any J-proof net can be sequentialized
into an hypersequentialized proof. In other words, time is still present, but
while in hypersequentialized proofs it is explicit, in J-proof nets is implicit.

The ideas underlying J-proof nets come from recent development of lu-
dics, namely the ludics nets (or L-nets) of Faggian and Maurel (see [FM05]).

Ludics nets. Game models of sequential computation interpret a program
as a strategy in a game; from a geometrical point of view, usually such
strategies appear as trees, ( for instance, innocent Hyland-Ong strategies,
see [HO00]), and composition between strategies yields a linearly ordered
set of moves.

In the area of game semantics, several proposals are emerging (see among
others [HS02, AM99, Mel04]) in order to capture more parallel forms of com-
putation; in these approaches, strategies are no more trees, but more gener-
ally graphs, so that the order between the actions is not completely specified:
the composition between graph strategies yields a partially ordered set of
moves.

L-nets are a generalization of ludics designs (which correspond to Hyland-
Ong strategies, see [FH02]) developed from the observation that a design is
a merging of two kinds of orders between actions, as pointed out by Faggian
in [Fag02]:

- the causal (or spatial) order, representing the causal dependencies be-
tween actions;

- the sequential (or temporal) order, representing how independent ac-
tions are scheduled.

L-nets are built from usual designs by gradually relaxing the sequential
order between actions, in such a way to have still enough information to
compute; the main benefit of this approach is to provide an homogeneous
space of strategies with different levels of sequentiality, within which one can
move by adding or relaxing sequential order; such a space has as extremes
from one side L-nets of minimal sequentiality, from the other designs (see
[CF05]); by the way, designs are a special case of L-nets, as trees are a special
case of graphs.
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Jumps: sequentializing à la carte. It is well known that a design in
ludics correspond to an abstract, untyped hypersequentialized proof. What
we would like to achieve is a notion of proof net which corresponds to the one
of L-net, as an hypersequentialized proof corresponds to a design. In order
to accomplish this task, we must find a counterpart for both the causal
and the sequential ordering in the syntax of proof nets. Concerning the
causal ordering, if we restrict to MALL, we have already an answer in the
subformula relation induced by the structure of the links in a proof net.
The information provided by axiom links, instead, is closer to sequential
ordering; however, to properly characterize sequential order in proof nets,
we have to resort to the notion of jump.

The idea of using edges to represent sequentiality constraints has been
widely used into the study of correctness criteria for proof nets: in [Gir91]
and [Gir96], Girard, as a part of the correctness criterion for proof nets,
introduces jumps: if a link n is a O, &, ⊥ or ∀ link, a jump is an untyped
edge between n and another link m, which represent a sequential ordering
between n and m; n precedes m (bottom-up) in every sequentialization.

J.Y. Girard, in several occasions, suggested that it could be possible
to retrieve a sequent calculus proof from a proof net just by fixing some
temporal information on the proof net, using jumps.

Let us try to make this point clearer with an example; consider the sketch
of proof net below:

Ax AxO O

⊗ ⊗

We remark that such a configuration is forbidden in HS: one must
decide which one of the two ⊗ is the last rule of the proof. To retrieve
the proof then we draw a jump between the leftmost (negative) O and the
rightmost (positive) ⊗, meaning that the corresponding O rule must precede
(bottom-up) the corresponding ⊗ rule in the sequentialization;

Ax AxO O

⊗ ⊗
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Now, the sequent calculus proof π induced from this proof net will have
as last rule the leftmost ⊗, followed respectively by the leftmost O, the
rightmost ⊗ and the rightmost O, so it respects the focusing discipline.
We remark that, instead of fixing the order in the way above, we could as
well draw a jump between the the rightmost (negative) O and the leftmost
(positive) ⊗, as below, obtaining a different focusing proof π′:

Ax AxO O

⊗ ⊗

Furthermore, once fixed an order between links using jumps, some other
choices becomes unavailable: namely one cannot draw both the jumps above
at the same time, without creating a cycle, which would prevent to get an
order.

Ax AxO O

⊗ ⊗

Once that all possible jumps have been chosen, one directly retrieve in
this way a sequent calculus proof.

J-proof nets. Now, our method of work should be clear: we will introduce
J-proof nets as proof nets with jumps for the hypersequentialized calculus,
and we will gradually remove or add sequentiality between positive and
negative links, in the form of jumps, in order to get more parallel or more
sequential proofs, in the style of L-nets.

At any time, the information provided by jumps always makes possible
to retrieve a fully sequentialized J-proof net, that is, an hypersequentialized
proof: this key property of J-proof nets , stated in our main technical result,
called arborisation lemma, provides a way to insert jumps in a J-proof net,
up to a maximum.
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In this way, as in L-nets, we get an homogenous space of J-proof nets
with different degrees of sequentiality, having as extremes from one side J-
proof nets of minimal sequentiality, from the other J-proof nets of maximal
sequentiality, which directly correspond to HS proofs.

Content of the thesis. The thesis is divided into three chapters: in the
first chapter we present the arborisation lemma, while in the remaining two
chapters we introduce J-proof nets respectively for the multiplicative and
the multiplicative-additive fragment of HS.

Chapter 1: The main contribution of this chapter is the proof of the ar-
borisation lemma. In subsection 1.1 we recall some preliminary no-
tions of graph theory; then, in subsection 1.2, we introduce a class
of directed acyclic graphs, called polarized graphs, which are a sort
of abstract proof nets, and we present the arborisation lemma as a
general property of these graphs. Arborisation lemma states that,
by inserting edges, is it possible to transform a polarized graph into a
tree, preserving a particular geometrical condition on the graph, called
switching acyclicity (which corresponds to the correctness criterion on
proof nets). Actually, we provide two different formulations of the
lemma: a stronger one, which constitutes the key of sequentialization
in J-proof nets, and a weaker one, which will allow to provide a sim-
ple, alternative proof of the sequentialization theorem for the usual
multiplicative proof nets of linear logic.

Chapter 2: In this chapter we introduce J-proof nets for the multiplicative
fragment of the hypersequentialized calculus (briefly MHS). We start
by presenting in subsection 2.1.1 the usual MLL sequent calculus in a
slightly different way, by using synthetic connectives; then we retrieve
the hypersequentialized calculus (in its multiplicative part) by impos-
ing on proofs the constraint of alternation. In section 2.2 we define
multiplicative J-proof nets, and in subsection 2.2.4 we prove the se-
quentialization theorem, using the strong arborisation lemma; then in
subsection 2.2.5 we study cut-reduction on J-proof nets. In section 2.3
we isolate a mathematical structure, called pointed set, and we show
that it describes what is invariant in a J-proof net under cut-reduction;
pointed sets so define a model of cut-reduction in J-proof nets, called
pointed semantics. Pointed semantics is an extension of usual rela-
tional semantics, developed in collaboration with Pierre Boudes and
Damiano Mazza, allowing to semantically characterize jumps. In sub-
section 2.3.2 we prove that pointed semantics is injective with respect
to J-proof nets, that is two J-proof nets with the same interpretation
are sintactically equivalent. In section 2.4 we shift the focus on usual
multiplicative proof nets, and we use the weak arborisation lemma to
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give an alternative proof of sequentialization theorem in this setting:
in subsection 2.4.2 we prove how two standard results in the theory of
proof nets, namely the splitting ⊗ lemma and the splitting O lemma,
are both consequences of the arborisation lemma. Finally in subsec-
tion 2.4.3 we study the relation between jumps and another standard
notion in proof nets, the one of empire. Most of the results of this
chapter are in [DGF06] (joint work with Claudia Faggian).

Chapter 3: In this chapter we extend J-proof nets to the additive fragment
of hypersequentialized calculus. First, in section 3.1, we present the
full hypersequentialized calculus; then in section 3.2 we introduce addi-
tive J-proof nets. In section 3.3 we extend sequentialization to include
additives; the relevance of this result is clear, if one consider that the
problem of sequentializing in presence of additives is one of the most
difficult in the framework of proof nets. In order to properly take into
account the superposition effects implicit in the structure of additives,
we must resort to the notion of slice and sharing equivalence, defined
in subsection 3.3.2. In section 3.4 we will study cut reduction, always
using slices as main tools. In section 3.5, we extend pointed semantics
to additives, proving that the injectivity result of the previous chapter
is preserved. Using injectivity of pointed semantics, in section 3.6, we
will prove that the correctness criterion is stable under cut reduction,
(a similar strategy was used also by Laurent and Tortora de Falco in
[LTdF04]). Finally, in section 3.7, in the style of [CF], we isolate two
classes of J-proof nets, the ones with minimal (resp. maximal) sequen-
tiality, and we provide some indications to recover within J-proof nets
some of the usual syntaxes for additive proof nets; namely, additive
boxes (see [Gir87]) , multiboxes (see [TdF03b], and sliced polarized
proof nets (see [LTdF04]).
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Chapter 1

The arborisation Lemma

In this chapter, after recalling some basic notions of graph theory, we intro-
duce a class of directed acyclic graphs that we call polarized graphs. In
this setting we state and prove the arborisation lemma, which will turn
out to be our principal tool in chapter 2.

1.1 Preliminaries on graphs

A directed graph G is an ordered pair (V,E), where V is a finite set whose
elements are called nodes, and E is a set of ordered pairs of nodes called
edges.

We will denote nodes by small initial Latin letters a, b, c, . . . and edges
by small final Latin letters . . . , x, y, z.

To denote that there is an edge from a node a to a node b, we will write
a→ b; we say that an edge x from a to b is emergent from a and incident
on b; b is called the target of x and a is called the source.

The in-degree (resp. out-degree) of a node is the number of its inci-
dent (resp. emergent) edges; two edges are coincident when they have the
same target.

Given a directed graph G a path (resp. directed path) r from a node
b to a node c is a sequence 〈a1, . . . , an〉 of nodes such that b = a1, c = an,
and for each ai, ai+1, there is an edge x either from ai to ai+1 , either from
ai+1 to ai (resp. from ai to ai+1); in this case, x is said to be used by r;
given a path r = 〈a1, . . . , an〉 we will say that r leaves a1 and enters in an.

We will denote a directed path from a to b with a
+
−→ b

A graph G is connected if for any pair of nodes a, b of G there exists a
path from a to b.

A cycle (resp. directed cycle) is a path (resp. directed path) 〈a1, . . . , an〉
such that a1 = an.

A directed acyclic graph (d.a.g.) is a directed graph without directed
cycles.
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The arborisation Lemma

When drawing a d.a.g we will represent edges oriented up-down so that
we may speak of moving downwardly or upwardly in the graph; in the same
spirit we will say that a node is above or below another node.

Given a d.a.g. G and a node a of G, we will call cone of a in G (denoted
CG(a)) the set of all the nodes hereditary above a; the set {CG(a); a is a
node of G} of the cones of a d.a.g. G is strictly ordered by inclusion.

We recall that we can represent a strict partial order as a d.a.g., where
we have an edge b → a whenever a <1 b (i.e. a < b, and there is no c such
that a < c and c < b.) Conversely (the transitive closure of) a d.a.g. G
induces a strict partial order ≺G on the nodes of G.

We call predecessor of a node c, a node which immediately precedes c in
≺G.

An edge a → b is transitive if there is a node c such that a
+
−→ c and

c→ b.

We call skeleton of a directed graph G, denoted Sk(G), the minimal
graph whose transitive closure is the same as that of G.

A root of a d.a.g. is a node with no predecessors.

A forest (resp. tree) is a d.a.g. G such that, given a node a and a root
b of G, there exists at most one (resp. exactly one) directed path from a to
b.

A strict order on a set is arborescent when each element has a unique
predecessor; it is straightforward that if the order≺G associated to a directed
graph G is arborescent, the skeleton of G is a forest.

A graph G is bipartite when there is a partition of the set V of nodes
into two subsets V1 and V2, such that every edge of G connects an element
of V1 with an element of V2.

A graph with pairs is a couple (G,App(G)) where G is a directed
graph and App(G) is a set of n-tuples of coincident edges of G.

Given a graph with pairs (G,App(G)), we call switching edge an edge
x belonging to a n-tuple of App(G). A switching path in (G,App(G)), is
a path which uses at most one switching edge for each n-tuple of App(G); a
switching cycle is a path which is a cycle; G is switching acyclic when
it does not contain switching cycles.

1.2 Polarized graphs

Definition 1 (Polarised graph) A polarized graph G is a directed acyclic
graph such that there is a partition of its nodes into three sets (I,N, P ) which
satisfy the following constraints:

• all the nodes in I (called initials) have in-degree 0 and out-degree 2;

• all the nodes in N have out-degree n ≤ 1 and in-degree n ≥ 1;
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The arborisation Lemma

• all the nodes in P have in-degree n ≥ 1;

• the graph G\ I which contains only the nodes in N and P is bipartite.

We say that the nodes in N have negative polarity, and that the nodes
in P have positives polarity.

. . .
. . .

. . .

N P

I

Figure 1.1: Nodes of a polarized graph

Definition 2 (Balanced polarised graph) A polarized graph is balanced

when for each initial node a, its immediate predecessors have different po-
larity.

We turn a polarized graph G into a graph with pairs (G,App(G)), by
taking as App(G) the n-tuples of the edges incident on the same negative
node. A polarized graph G is switching acyclic if and only if the correspond-
ing graph with pairs (G,App(G)) is switching acyclic.

Definition 3 (Saturated polarised graph) A switching acyclic polarized
graph G is saturated iff for every negative node a and for every positive
node b of G, adding an edge from b to a creates a switching cycle or doesn’t
increase the order ≺R.

Lemma 4 (Strong Arborisation Lemma) Let G be a balanced polarized
graph with at most one negative root. Then, if G is saturated, the order ≺G

is arborescent.

Proof.
Let us prove that if ≺G is not arborescent then G is not saturated, that

is there exists a negative node c and a positive node b s.t. adding an edge
between b and c doesn’t create switching cycles and makes the order increase.

If ≺G is not arborescent, then in ≺G there exists a node a with two
immediate predecessors b and c (they are incomparable). Observe that b
and c are immediately below a in Sk(G) and also in G.
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The arborisation Lemma

If a is an initial node, since G is balanced then necessarily b and c are
respectively a positive node and a negative node; we add an edge between b
and c, this doesn’t create cycles and the order increases.

Otherwise, a is a positive node, and b and c are two negative nodes; we
distinguish two cases:

1. either b or c is a root in G. Let assume that b is a root; then c
cannot be a root ( by hypothesis), and there is a positive node c′

which immediately precedes c. If we add an edge between b and c′,
this doesn’t create cycles and the order increases (see fig 1.2).

a

b c

a

b c

c’

 

Figure 1.2:

2. Neither b or c are roots in G. Each of them has an immediate positive
predecessor, respectively b′ and c′. Suppose that adding an edge from
b′ to c creates a cycle: we show that adding an edge from c′ to b cannot
create a cycle.

If adding to G the edge b′ → c creates a cycle, this means that there is
in G a switching path r = 〈c, c′....b〉; if adding the edge c′ → b creates
a cycle then there is a switching path r′ = 〈b, b′...c〉 .

Assume that r and r′ are disjoint: we exhibit a switching cycle in R
〈c, c′...b, b′...c〉 by concatenation of r and r′.This contradicts the fact
that G is switching acyclic (see fig 1.3).

Assume that r and r′ are not disjoint. Let d be the first node of r′

(starting from b ) where r and r′ meets. Observe that d must be
negative (otherwise there would be a cycle). Each of r, r′ uses one of
the edges incident on d (hence the paths meet also in the node below
d). From the fact that d is the first node of r′ (starting from b) where
r and r′ meet it follows that: (i) r′ enters in d using one of its incident
edges; (ii) each of r and r′ must use a different incident edge of d.
Then we distinguish two cases (see 1.4):

• r enters d using one its incident edges; we build a switching cycle
taking the sub path 〈b, ...., d〉 of r′ and the sub path 〈d, ...., b〉 of
r.
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Figure 1.3:

• r enters d using its emergent edge; then we build a switching cycle
composing the sub path of r 〈c, ..., d〉 , the reversed sub path of
r′ 〈d, ..., b〉 and the path 〈b, a, c〉.
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Figure 1.4:

�

The relation between arborescent order and saturation stated in the pre-
vious lemma actually holds only in the restricted case of balanced polarized
graphs; it is easy to build a counterexample for the general case, using po-
larized graphs composed only of initial nodes and positive nodes.
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However, even for not-balanced polarized graphs, the following property
holds:

Lemma 5 (Weak Arborisation Lemma) Let G be switching acyclic po-
larized graph with at most one negative root, and CG(b), CG(c) be the cones
of two negative nodes of G. Then if G is saturated, either CG(b)∩CG(c) = ∅,
either one among CG(b), CG(c) is strictly included into the other.

Proof.
Assume that CG(b)∩CG(c) 6= ∅ , c /∈ CG(b) and b /∈ CG(c); now consider

a node a ∈ CG(b) ∩ CG(c).
Every node in CG(b) ∩ CG(c) is hereditary above both b and c, so there

is a a directed path r′ (resp. r′′) from a to b (resp. from a to c).
Let us assume that b, c are not roots of G (otherwise, at most one of them

can be a root, so we reason as in the proof of lemma 4 and we find that G
is not saturated: contradiction), so they are respectively immediately above
two positive nodes b′, c′, such that b′ /∈ CG(c) (resp. c′ /∈ CG(b)).

Since G is saturated , there is a switching path 〈c, c′, . . . , b〉 connecting
c with b (otherwise we could add an edge from b′ to c, and G would not be
saturated); now this path cannot intersect r′′, (otherwise there would be a
cycle), and if it meets a node d of r′, it follows r′ from d to b: we call this
path p′. In the same way we can build a switching path p′′ 〈b, b′, . . . , c〉 from
b to c.

The rest of the proof is the same as the proof of lemma 4 ; p′ and p′′

either do not meet on any node either they do; in any way, by composing
them we get a cycle.

�

Remark 6 It easily follows from the lemma 5 that given a saturated polar-
ized graph G, in the set {CG(a); a is a node of G ∧ a is negative} the strict
order provided by inclusion is arborescent.
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Chapter 2

J-proof nets: multiplicatives

In this chapter we introduce and study J-proof nets for the multiplicative
fragment of the hypersequentialized calculus. In section 2.1 we first present
MLL grammar and sequent calculus, then MHS; in section 2.2 we define
J-proof nets, and we prove sequentialization using the strong arborisation
lemma. In section 2.3 we introduce pointed sets semantics in order to study
the injectivity of pointed sets with respect to J-proof nets. Finally, in section
2.4, we present the usual MLL proof nets, and we provide an alternative
proof of the sequentialization theorem using the weak arborisation lemma.

2.1 MLL and focusing proofs

The scope of this section is to present the language and the calculus of mul-
tiplicative linear logic. The calculus we present here is slightly different from
the usual one and is based on the notion of synthetic connective introduced
by Girard in [Gir00]. We first present in subsection 2.1.1 a variant of usual
MLL grammar and calculus, where formulas are clustered modulo the usual
associativity isomorphisms of linear logic; then in subsection 2.1.3 we intro-
duce the multiplicative hypersequentialized calculus in order to restrict the
scope to focusing proofs.

2.1.1 MLL

Definition 7 Let V = {X, Y, Z, . . .} be a countable set of propositional
variables; the formulas of MLL are defined in the following way :

• Atoms: X,Y,Z, . . . and X⊥, Y ⊥, Z⊥, . . . are formulas of MLL

• synchronous formulas: given A1, . . . , An formulas where Ai∈{1,...,n}

is an atom or an asynchronous formula, then ⊗(A1, . . . , An) is a for-
mula;

19



J-proof nets: multiplicatives

• asynchronous formulas: given A1, . . . , An formulas where Ai∈{1,...,n}

is an atom or a synchronous formula, then O(A1, . . . , An) is a formula;

Negation is defined as follows:

(⊗(A1, . . . , An))⊥ =O(A⊥
1 , . . . , A⊥

n )

(O(A1, . . . , An))⊥ = ⊗(A⊥
1 , . . . , A⊥

n )

Note. We underline the following facts:

• By ⊗(A1, . . . , An) we indicate the connective which represent all pos-
sible combinations of the formulas Ai∈{1,...,n} modulo the associativ-
ity of the usual ⊗ connective of LL; we denote the unary case of
⊗(A1, . . . , An) as ↓ A

• By O(A1, . . . , An) we indicate the connective which represent all pos-
sible combinations of the formulas Ai∈{1,...,n} modulo the associativ-
ity of the usual O connective of LL; we denote the unary case of
O(A1, . . . , An) as ↑ A

The calculus has the following shape (where the capital Greek letters
Γ,∆, . . . denote multisets of formulas) :

ax

⊢ A,A⊥
⊢ Γ, A ⊢ ∆, A⊥

cut
⊢ Γ,∆

⊢ Γ1, A1 . . . ⊢ Γn, An
(+)

⊢ Γ1, . . . ,Γn,⊗(A1, . . . , An)

⊢ Γ, A1, . . . , An
(−)

⊢ Γ,O(A1, . . . An)

MLL can be eventually enriched with the following rule, called Mix
rule:

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆

2.1.2 Towards the hypersequentialized calculus

Let us consider the following two MLL proofs (that we denote respectively
π1, π2) of the same sequent :

20



J-proof nets: multiplicatives

⊢ A⊥, A ⊢ B⊥, B ⊢ C⊥, C ⊢ D⊥,D

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, C, D
⊗

O

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), O(A,B), C, D
O

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), O(A,B), O(C,D)
ax

⊢ F,F⊥

⊗
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), O(A,B), ⊗(O(C,D), F⊥), F

ax

⊢ E,E⊥

⊗
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), ⊗(O(A,B), E⊥), ⊗(O(C,D), F⊥), F, E

⊢ A⊥, A ⊢ B⊥, B ⊢ C⊥, C ⊢ D⊥,D

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, C, D
⊗

O

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, O(C,D)
ax

⊢ F,F⊥

⊗
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, ⊗(O(C,D), F⊥), F

O

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), O(A,B), ⊗(O(C,D), F⊥), F
ax

⊢ E,E⊥

⊗
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), ⊗(O(A,B), E⊥), ⊗(O(C,D), F⊥), F, E

The attentive reader has surely noticed the difference between π1 and
π2; while in π1 there can be two consecutive O or ⊗ rules, in π2 O and
⊗ rules are alternating. If we want to restrict the proofs of MLL just
to the alternating ones, we have to impose some constraints; in this way
we will obtain the hypersequentialized calculus, ( better, its multiplicative
fragment), restricting the calculus to focusing proofs.

2.1.3 MHS

The formulas of the multiplicative hypersequentialized calculus (MHS) are
obtained by the following restrictions on MLL formulas:

N ::= X⊥ | O(P, . . . , P )
P ::= X | ⊗(N, . . . ,N)

From now on, we will call the formulas in N negatives and the formulas
in P positives.

The calculus is the following:

ax

⊢ P,P⊥
⊢ Γ, A ⊢ ∆, A⊥

cut
⊢ Γ,∆

⊢ Γ1, N1 . . . ⊢ Γn, Nn
(+)

⊢ Γ1, . . . ,Γn,⊗(N1, . . . , Nn)

⊢ Γ, P1, . . . , Pn
(−)

⊢ Γ,O(P1, . . . Pn)

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆
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where all contexts Γ,∆, . . . only contain P formulas.

Remark 8 In this calculus the unary O denoted by ↑ (resp. the unary ⊗
denoted by ↓) plays the role of a negative (resp. positive) polarity inverter
(as in [Gir01] This polarity inverter is usually called a negative (resp. pos-

itive) shift.

2.2 J-proof nets for MHS

The focus of this section is to provide a geometrical representation of proofs
in MHS. We start by defining in subsection 2.2.1 a class of typed graphs
called J-proof structures; then in subsection 2.2.2 we isolate some geomet-
rical properties which allow to characterize all the J-proof structures with
a logical meaning, that is J-proof nets; in subsection 2.2.4 we prove that
every J-proof net can be sequentialized into a proof of MHS. Finally in
subsection 2.2.5, we study cut reduction on J-proof nets.

2.2.1 J-proof structures

Definition 9 (Proof structure) A MHS proof structure (briefly proof

structure) is a directed acyclic graph with pending edges (that is some
edges have a source but no target) whose edges are typed by formulas of
MHS and whose nodes (also called links) are labelled by one of the symbols
ax, cut,+,−.

The edges incident on a link are called premises and the edges emergent
from a link are called conclusions; an edge which has no target is called a
conclusion of the proof structure and its source is called a terminal link.

The label of a link imposes some constraints on both the number and the
types of its premises and conclusions:

• the ax-link has two conclusions labeled by dual formulas, but no premises;

• the cut-link has two premises labeled by dual formulas but no conclu-
sions;

• the negative link (or − link) has n premises and one conclusion. If
the i-th premise is labeled by the formula Pi for i ∈ {1, . . . , n} then the
conclusion is labeled by O(P1, . . . , Pn);

• the positive link (or + link) has n premises and one conclusion. If
the i-th premise is labeled by the formula Ni for i ∈ {1, . . . , n} then
the conclusion is labeled by ⊗(N1, . . . ,Nn).

Moreover, we ask that in a proof structure there is at most one negative
conclusion.
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+
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1 n( N   ,......., N    ) &

P1 Pn
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−
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AxAx

A   A   Cut

A   A   

T

T

Figure 2.1: MHS links

Given a sequent calculus proof π of MHS (or MHS + Mix), we can
associate to it a proof structure π∗, by induction on the height of π:

if n = 1, the last rule of π is an axiom with conclusions P,P⊥; then π∗

is an axiom link with conclusions P,P⊥.
Otherwise:

• If the last rule r of π is a − rule, having as premise the subproof π′,
then π∗ is obtained by adding to π′∗ the link corresponding to r.

• If the last rule of r is a + rule or a cut rule having as premises the
subproofs π1, . . . , πn, then π∗ is obtained by connecting π∗

1 , . . . , π
∗
2 by

means of the link corresponding to r.

• If the last rule of r is a Mix rule with premises the subproofs π1 and
π2, then π∗ is obtained by taking the union of π∗

1 and π∗
2.

Definition 10 A proof structure R is sequentializable iff there exists a
proof π such that π∗ = R.

Now we refine our definition of proof structure, in order to take into
account jumps:

Definition 11 (J-proof structure) A J-proof structure (or proof struc-

ture with jumps) is a proof structure allowing untyped edges between neg-
ative and positive links called jumps, which are additional untyped premises
of a negative link. Given a J-proof structure R, and a negative (resp. posi-
tive) link b (resp. a) we say that b jumps on a iff there is a jump between
a and b.

2.2.2 Correctness criterion

We can associate with a J-proof structure R the structure of a graph with
pairs (R,App(R)), by taking as elements of App(R) the n-tuples of the
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−

B⊥

A B

+

Ax

C C⊥

A⊥A

R1

R2

+

↑ A

Ax

A⊥

AxAx

⊗(A
⊥

, B⊥)

↓↑ A

Figure 2.2: Two not sequentializable J-proof structures.

premises of a negative link; a J-proof structure R then is switching acyclic
if and only if the graph with pairs (R,App(R)) is switching acyclic.

Unlike MLL + Mix, the switching acyclic condition is not enough to
characterize all sequentializable proof structures: consider for example the
proof structures in fig. 2.2, which are clearly not sequentializable in MHS+
Mix. The reason why they are not sequentializable is that in a proof of
MHS a −rule or a Mix rule can be applied only after a + rule has been
applied.

In order to avoid this incongruousness, we have to impose one more
condition in the correctness criterion, called positivity condition, similar
to the homonymous condition on L-nets (see [FM05].

Definition 12 (Positivity condition) A J-proof structure R satisfy the
positivity condition if and only if

1. For every − link b, such that a premise of b is a conclusion of an ax
link a, there exists a positive link c (called justifier of b) and a path
〈b, a, . . . , c〉 from b to c which crosses only cut and ax links;

2. if R is composed by more than one connected component, then each
component contains at least one positive link.

Using positivity condition we can interdict J-proof structures as the ones
in fig. 2.2.
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Definition 13 (J-proof net) A J-proof structure (resp. proof structure)
R is called a J-proof-net (resp. proof net) iff is switching acyclic, and it
satisfies the positivity condition.

The following theorem states that the purely geometrical condition of
being a proof net characterizes exactly all the proof structures with a logical
meaning, that is proof structures which come from a sequent calculus proof.

Theorem 14 (sequentialization) A proof structure R is sequentializable
if and only if is a proof net.

The right to left direction is trivial; in section 2.2.4 we provide a simple
proof of the left to right one.

Remark 15 It is obvious that, if we do not consider cut-links, J-proof struc-
tures are balanced polarized graphs (whose edges are labelled by MHS for-
mulas) where the ax links are I nodes, + links are P nodes and − links are
N nodes .

Note. By now, we will only consider J-proof nets without cut links,
since in this case is simpler to prove sequentialization; we will speak about
sequentialization with cut in section 2.2.5.

2.2.3 J-proof-nets and sequent calculus

In the next section we will induce a sequentialization of a proof net by adding
jumps. Let us start with an example.

Consider the proof-net in fig. 2.3:

Ax

Ax

Ax

Ax

Ax Ax

+

−
+ −

+

B

A⊥

C D

D⊥

O(A, B)E E⊥
F⊥ F

⊗(O(C, D), F⊥)⊗(O(A, B), E⊥)

⊗(A
⊥

, B⊥, C⊥, D⊥)

A B⊥C⊥

O(C, D)

Figure 2.3:

We make the leftmost − link jump on the middle + link, and the right-
most − link jump on the leftmost + link, obtaining the J-proof net in fig
2.4;
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Ax

Ax

Ax

Ax

Ax Ax

+

−
+ −

+

B

A⊥

C D

D⊥

O(A, B)E E⊥
F⊥ F

⊗(O(C, D), F⊥)⊗(O(A, B), E⊥)

⊗(A
⊥

, B⊥, C⊥, D⊥)

A B⊥C⊥

O(C, D)

Figure 2.4:

Now we consider the partial order induced by the proof-net as a directed
graph; the order is arborescent, so the skeleton of the graph is the tree in
fig. 2.5.

Ax Ax

+

+

−

−

+

Ax Ax

Ax

Ax

Figure 2.5:

Such a tree directly correspond to the following sequent calculus proof:
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⊢ A⊥, A ⊢ B⊥, B ⊢ C⊥, C ⊢ D⊥,D

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, C, D
+

−
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), C, D, O(A,B)

ax

⊢ E,E⊥

+
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), C, D, ⊗(O(A,B), E⊥), E

−
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), O(C,D), ⊗(O(A,B), E⊥), E

ax

⊢ F,F⊥

+
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), ⊗(O(C,D), F⊥), ⊗(O(A,B), E⊥), F, E

We remark that we could as well make the links jump as in fig 2.6

Ax

Ax

Ax

Ax

Ax Ax

+

−
+ −

+

B

A⊥

C D

D⊥

O(A, B)E E⊥
F⊥ F

⊗(O(C, D), F⊥)⊗(O(A, B), E⊥)

⊗(A
⊥

, B⊥, C⊥, D⊥)

A B⊥C⊥

O(C, D)

Figure 2.6:

retrieving the following, different sequent calculus proof:

⊢ A⊥, A ⊢ B⊥, B ⊢ C⊥, C ⊢ D⊥,D

⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, C, D
+

−
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, O(C,D)

ax

⊢ F,F⊥

+
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), A, B, ⊗(O(C,D), F⊥), F

−
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), O(A,B), ⊗(O(C,D), F⊥), F

ax

⊢ E,E⊥

+
⊢ ⊗(A⊥, B⊥, C⊥,D⊥), ⊗(O(A,B), E⊥), ⊗(O(C,D), F⊥), F, E

To sequentialize a proof net, we will then consider the order associated
to a proof net as a directed acyclic graph, and add to it enough jumps, to
make the order arborescent, and hence proof-like.

Let us show that if the order on the nodes of a J-proof net is arborescent,
it corresponds to a sequent calculus derivation.

We first have to prove the following lemma:

Lemma 16 If R is a J-proof net with more than one link and without ter-
minal negative links, then all the conclusions of R are positive.
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Proof. Suppose there is a negative conclusion of R which is the conclusion
of an ax link a. If R is composed by a single connected component, there
must exist a link b a premise of which is the other (positive) conclusion of a,
so b must be a negative link. But then by point 1) of the positivity condition
on b, there must exists also a positive link d such that there is a path
〈b, a, . . . , d〉, but this is impossible, since a is a terminal link : contradiction.
If R is composed by more than one connected component, then by point
2) of the positivity condition, the connected component containing a must
contain also a positive link; this means that a cannot be the only link in its
connected component. Then there must exist a link b a premise of which is
the other (positive) conclusion of a, and b must be a negative link; by point
1) of the positivity condition on b we find a contradiction, as above. �

Now we are in the position to prove the following proposition:

Proposition 17 (A forest is a sequent calculus proof) Let R be a J-
proof net of conclusions A1, . . . , An and such that Sk(R) is a forest.

We can associate to R a sequent calculus proof πR of conclusion ⊢
A1, . . . , An in MHS + Mix.

Moreover, if Sk(R) is a tree where each negative node has exactly one
incident edge, πR is a sequent calculus proof in MHS (without Mix).

Proof.
First, we observe that given a J-proof net R:

• Sk(R) is obtained from R by removing the edges which are transitive;

• Only an edge incident on a negative link can be transitive.

Then we reason by induction on the number of nodes in Sk(R):

1. n = 1. The only node in R is an Axiom link with conclusions P, P⊥,
to which we associate

⊢ P, P⊥
.

2. n > 1; if R has a terminal negative link c of type O(P1, . . . , Pn), then
Sk(R) is a tree with c as root. Let Sk(R)′ be the forest obtained by
erasing the root c; to this forest corresponds a subnet R′ of R with
conclusion Γ, P1, . . . , Pn. By induction we associate a proof πR′

of
conclusion Γ, P1, . . . , Pn to R′. πR is

πR′

⊢ Γ, P1, . . . , Pn

⊢ Γ,O(P1, . . . , Pn)

whose last rule is a − rule on P1, . . . Pn ;

If R has no terminal negative links, by lemma 16 we can suppose
that all the conclusions of R are positive. Now we reason by cases,
depending if Sk(R) is a tree or a forest:
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• Sk(R) is a tree with root c of conclusion ⊗(N1, . . . ,Nn) : by
erasing c we obtain n trees Sk(R1), . . . ,Sk(Rn). To each tree
corresponds a different subnet Ri, of R (because Sk(R) is obtained
just by erasing transitive edges) of conclusion Γi,Ni; by induction
we associate a proof πRi to each Ri.

πR is
πR1

⊢ Γ1,N1
. . .

πRn

⊢ Γn,Nn

⊢ Γ1, . . . ,Γn, ⊗(N1, . . . ,Nn)

whose last rule is a + rule on N1, . . . ,Nn.

• Sk(R) is a forest and to each tree corresponds a different subnet
of R; we apply to them the induction hypothesis, obtaining n
proofs , which we compose by using a Mix rule.

�

2.2.4 Sequentialization

Definition 18 (Saturated J-proof net) A J-proof net R is saturated if
for every negative link a and for every positive link b, making a jump on b
creates a switching cycle or does not increase the order ≺R.

Given a J-proof net R, a saturation Sat(R) of R is a saturated J-proof
net obtained from R by adding jumps.

Our sequentialization argument is as follows:

• Any J-proof net can be saturated.

• The order associated to a saturated J-proof net is arborescent.

• If the order ≺R associated to a J-proof net R is arborescent, we can
associate to R a proof πR in the sequent calculus.

Lemma 19 (Arborisation) Let R be a J-proof net. If R is saturated then
≺R is arborescent. Any J-proof net can be saturated.

Proof. It is easy to check that a J-proof net is a balanced polarized graph;
then the proof follows from the strong arborisation lemma. �

Now we deal with three standard results one usually has on proof nets:
we give an immediate proof of the usual splitting Lemma, we prove that the
sequentialization we have defined is correct w.r.t. Definition 10 and we get
rid of the Mix rule.

The novelty here is the argument: when adding jumps, we gradually
transform the skeleton of a graph into a tree. We observe that some proper-
ties are invariant under the transformation we consider: adding jumps and
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removing transitive edges. Our argument is always reduced to simple obser-
vations on the final tree (the skeleton of Sat(R)), and on the fact that each
elementary graph transformation preserves some properties of the nodes.

Splitting

We observe that given a d.a.g., adding edges, or deleting transitive edges,
preserves connectedness. The following properties are all immediate conse-
quences of this remark.

Lemma 20 (i) Two nodes in a d.a.g. G are connected iff they are connected
in the skeleton of G.

(ii) Given a J-proof net R, if two nodes are connected in R, then they
are connected in Sat(R).

(iii) If R is connected as a graph so are Sat(R) and Sk(Sat(R)).

The above lemma allows us to give a simple proof of a standard result,
the Splitting Lemma, which we state below.

Definition 21 (Splitting) Let G be a d.a.g., c a root, and b1, . . . , bn the
nodes which are immediately above c. We say that the root c is splitting

for G if, when removing c, any two of the nodes bi, bk become not connected.

c

b1 . . . bnb2

G1 G2 Gn

Figure 2.7: An example of splitting node

Remark 22 It is immediate that if R is a J-proof net without negative
conclusions, and c is splitting, the removal of c splits R into n disjoint
components R1, . . . , Rn, and each component is a J-proof net.
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Lemma 23 (Splitting positive lemma) Let R be a J-proof net without
negative conclusions, and Sat(R) a saturation such that Sk(Sat(R)) is a
tree; the minimal link c of Sat(R) (i.e. the root of Sk(Sat(R))) is splitting
for R.

Proof. Observe that c is obviously splitting in the skeleton of Sat(R), be-
cause c is the root of a tree. Hence it is splitting in Sat(R), as a consequence
of Lemma 20, (i). Similarly, c must be splitting in R, as a consequence of
Lemma 20, (ii). �

Sequentialization Is Correct

Proposition 24 Let R be a proof-net of conclusion Γ. For any saturation
Sat(R) of R, if π = πSat(R) then (π)∗ = R. Any proof net is sequentializable.

Proof.
The proof is by induction on the number of links of R.

1. n = 1: then R consists of a single Axiom link of conclusions P,P⊥,
and π is the corresponding Axiom rule

⊢ P, P⊥
;

2. n > 1: if R has a terminal negative link c then Sk(Sat(R)) is a tree
with c as root; observe that the last rule r of π is the rule which
correspond to the root c. Assume that c is a − link of conclusion
O(P1, . . . , Pn). We call RJ

0 the saturated J-proof net of conclusion
Γ, P1, . . . , Pn obtained erasing c from Sat(R); the forest obtained eras-
ing c from Sk(Sat(R)) it clearly equal to Sk(RJ

0 )), so by proposition
17 we associate to RJ

0 a proof π0. We call R0 the subnet of conclusion
Γ, P1, . . . Pn, obtained by removing c from R. Now, RJ

0 = Sat(R0), so
by induction hypothesis π∗

0 = R0. By applying the − rule r of conclu-

sion ⊢ Γ,O(P1, . . . , Pn) to the proof
π0

⊢ Γ, P1, . . . , Pn
, we get a proof

which is equal to π and such that that R = π∗.

Otherwise by lemma 16, all conclusions of R are positive; we reason
by cases, depending if Sk(Sat(R)) is a tree or a forest:

• Sk(Sat(R)) is a tree with a + link c of conclusion ⊗(N1, . . . ,Nn)
as root; observe that the last rule r of π is the rule which corre-
spond to the root c. By erasing c from Sat(R) we get RJ

1, . . . , R
J
n

saturated J-proof nets of conclusions respectively Γ1,N1 . . . Γn,Nn.

Erasing the root c in Sk(Sat(R)) we get n trees, such that each
tree is the skeleton Sk(RJ

i ) of an RJ
i; let us call πi the proof

associated to each RJ
i by proposition 17.

By the splitting lemma, c is splitting in R; let R1, . . . , Rn be the
n sub nets of conclusions respectively Γ1,N1 . . . Γn,Nn, obtained

31



J-proof nets: multiplicatives

by removing c from R. Now for each RJ
i , RJ

i = Sat(Ri) so
by induction hypothesis π∗

i = Ri ; by applying the + rule r of

conclusion ⊢ Γ1, . . . Γn,⊗(N1, . . . Nn) to the proofs
πi

⊢ Γi,Ni
, we

get a proof which is equal to π and such that that R = π∗.

• Otherwise, Sk(Sat(R)) is a forest, and by lemma 20 each tree
corresponds to a different connected component of Sat(R), and
to a different sub-net of R; we conclude by applying induction
hypothesis on them, followed by a sequence of Mix rules.

�

Connectedness

We now deal with a more peculiar notion of connectedness, to get rid of the
Mix rule, as is standard in the theory of proof-nets.

Definition 25 (Correction graph) Given a J-proof net R (resp. its skele-
ton Sk(R)), a switching s is the choice of an incident edge for every nega-
tive link of R (resp. Sk(R)); a correction graph s(R) (resp. s(Sk(R))) is
the graph obtained by erasing the edges of R (resp. of Sk(R)) not chosen by
s.

Definition 26 (s-connected) A J-proof net R is s-connected if given a
switching of R, its correction graph is connected.

Remark 27 We only need to check a single switching. The condition that
a proof structure has not switching cycles is equivalent to the condition that
all correction graphs are acyclic.

A simple graph argument shows that assuming that all correction graphs
are acyclic, if for a switching s the correction graph s(R) is connected, then
for all other switching s′, s′(R) is connected.

Proposition 28 If R is s-connected, then the skeleton of Sat(R) is a tree
which only branches on positive nodes (i.e., each negative link has a unique
successor).

Proof. First we observe that:

• any switching of R is a switching of Sat(R), producing the same cor-
rection graph. Hence if R is s-connected, Sat(R) is s-connected.

• Given a J-proof net R, any switching of its skeleton is also a switching
of R, because the skeleton is obtained by erasing the edges which are
transitive. A transitive edge can be premise only of a negative node.
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As a consequence, any switching of Sk(Sat(R)) induces a correction
graph which is a correction graph also for Sat(R) and hence is connected
(so Sk(Sat(R)) must be a tree). Moreover, we observe that there is only one
possible switching. In fact, since Sk(Sat(R)) is a tree, we cannot erase any
edge and still obtain a graph which is connected; so each negative link has
a unique successor.

�

From Proposition 17, it follows that

Proposition 29 If R is s-connected, and Sat(R) a saturation, we can as-
sociate to it a proof πSat(R) which does not use the Mix rule.

Partial sequentialization and Desequentialization

Our approach is well suited for partially introducing or removing sequential-
ity, by adding (deleting) a number of jumps.

Actually, it would be straightforward to associate to a sequent calculus
proof π a saturated J-proof net. In this way, to π we could associate either
a maximal sequential or a maximal parallel J-proof net.

Given a J-proof net R, let us indicate with Jump(R) (resp. DeJump(R))
a J-proof net resulting from (non deterministically) introducing (resp. elimi-
nating) a number of jumps in such a way that every time the order associated
increases (decreases).

The following proposition applies to J-proof nets of any degree of se-
quentiality.

Proposition 30 (Partial sequentialization/desequentialization.) Let
R,R′ be J-proof nets:

• if R′ = Jump(R) then there exists an R′′ = DeJump(R′) such that
R′′ = R;

• if R′ = Dejump(R) then there exists an R′′ = Jump(R′) such that
R′′ = R.

Proof. Immediate, since we can reverse any step... �

2.2.5 Cut

Sequentialize with cuts

We have already observed that J-proof nets are balanced polarized graphs
only if there are not cut-links. In order to extend our proof of sequentializa-
tion in presence of cut-links, using the strong arborisation lemma, we have
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Figure 2.8: Turning R into R+.

to establish a correspondence between J-proof nets with cuts and balanced
polarized graphs.

Hence we define a procedure to turn a J-proof net R with cut-links into
a balanced polarized graph Rpol, following these three steps on the links of
R, depicted in fig. 2.8 :

1. if c is a cut link of R, whose premises are typed by P,P⊥ and such
that the link whose conclusion is P is a + link b, we substitute b and
c with a single positive node b′ in Rpol, labeled by +cut ;

2. if c is a cut link of R whose premises are typed by P,P⊥ and such
that the link whose conclusion is P is an ax link a and the link whose
conclusion is P⊥ is a − link b, we substitute a and b with a single
negative node b′ in Rpol, labeled by −cut

1 ; if b′ is still just above a cut
link whose positive premise is the conclusion of an ax-link, we iterate
the procedure until we get a −cut

n node in Rpol;

3. if c is a cut link of R whose premises are typed by P,P⊥ and such
that the link whose conclusion is P is an axiom link a and the link
whose conclusion is P⊥ is an axiom link b, we substitute a and b with
a single initial node b′ of Rpol, labeled by axcut

1 ; if b′ is still just above
a cut link whose positive premise is the conclusion of an ax-link, we
iterate the procedure until we get a axcut

n node in Rpol.

Now Rpol is a balanced polarized graph, so we can apply the arborisation
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lemma; when we get a saturated graph Sat(Rpol), it is easy to check that the
graph obtained by reverting each +cut, axcut

n and −cut
n node into the former

links of R is a saturated J-proof net Sat(R).

We can now prove the extension in presence of cut links of proposition
17; before doing that we must prove the extension of lemma 16 in presence
of cut links.

Lemma 31 If R is a J-proof net with more than one link such that Rpol

has no negative roots, then all the conclusions of R are positive.

Proof.

Suppose there is a negative conclusion of R which is the conclusion of an
ax link a. If R is composed by a single connected component, there must
exist a link b a premise of which is the positive conclusion of a, and b is either
a negative link, either a cut-link. If b is a negative link by point 1) of the
positivity condition on b, there must exists also a positive link d such that
there is a path 〈b, a, . . . , d〉, but this is impossible, since a is a terminal link :
contradiction. Now suppose b is a cut link: the other premise of b is negative
and is the conclusion of a link c which is either a negative link, either the
conclusion of an ax link. Now if c is a negative link, by construction of Rpol

the link corresponding to c in Rpol is a negative root −cut
1 , contradiction.

Otherwise c is an axiom link: then we iterate the procedure, until we find a
contradiction. If R is composed by more than one connected component we
just adapt the the proof of lemma 16, reasoning as above.

�

Proposition 32 (A forest is a sequent calculus proof) Let R be a J-
proof net (possibly with cut-links) of conclusions A1, . . . , An and such that
Sk(Rpol) is a forest.

We can associate to R a sequent calculus proof πR of conclusion ⊢
A1, . . . , An in MHS + Mix.

Proof. The proof is by induction on the number of nodes in Sk(Rpol); using
lemma 31, and having as reference the graph Rpol, the only difference with
respect to the proof of 17 is when the root c of Sk(Rpol) is a +cut, an axcut

n

or a −cut
n node. Then there are three possibilities:

1. the root c of Sk(Rpol) is an axcut
n node whose edges are labelled by the

formulas P,P⊥; then R is composed by n + 1 ax links of conclusions
P,P⊥, connected together by n cut-links: πR is the proof obtained by
applying to n + 1 axiom rules of conclusion P,P⊥ n consecutive cut
rules.
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2. the root c of Sk(Rpol) is a −cut
n node; by erasing c we obtain one forest

Sk(Rpol
0 ). To this forest correspond a subnet R0 of R with conclusion

Γ, P1, . . . , Pn ; by induction we associate a proof πR0 to Sk(Rpol
0 ). πR

is

π0

⊢ P,P⊥

πR0

⊢ Γ, P1, . . . , Pn

⊢ Γ,O(P1, . . . , Pn)
(−)

⊢ Γ, P⊥
(cut)

, with P⊥ =O(P1, . . . , Pn) and where π0 is the proof obtained by
applying to n axiom rules of conclusion P,P⊥ n − 1 consecutive cut
rules.

3. the root c of Sk(Rpol) is a +cut-node: by erasing c we obtain n+1 trees

Sk(Rpol
0 ),Sk(Rpol

1 ), . . . ,Sk(Rpol
n ) . To each tree among Sk(Rpol

1 ), . . . ,Sk(Rpol
n )

correspond a subnet Ri of R with conclusions Γi,Ni, for i ∈ {1, . . . , n};

to Sk(Rpol
0 ) correspond a subnet R0 of R with conclusion ∆, P⊥, where

P = ⊗(N1, . . . , Nn). By induction we get n+1 proofs πR0 , πR1 , . . . , πRn .
πR is

πR0

⊢ ∆, P⊥

πR1

⊢ Γ1,N1
. . .

πRn

⊢ Γn,Nn

⊢ Γ1, . . . ,Γn, ⊗(N1, . . . ,Nn)

⊢ Γ1, . . . ,Γn,∆
(cut)

whose last rule is a cut rule on P,P⊥.

�

All results in subsection 2.2.4, can be straightforwardly generalized in
presence of cut links.

When we will represent a J-proof net R with cuts, in order to remind
the order associated to Rpol, we will revert the orientation of the positive
premise of a cut link, as in figure 2.9,2.10.

Cut elimination

A proof structure without cut-links is called cut-free. Cut reduction
rules are graph rewriting rules which locally modify a J-proof structure R,
obtaining a J-proof structure R′ with the same conclusions.

There are two kinds of cut-elimination steps, the +/− step and the ax
step, depicted in Fig. 2.9 and Fig. 2.10; we denote by R  R′ the relation
“R reduces to R′”.
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Figure 2.10: +/− cut reduction.

With respect to the rewriting rules +/− and ax, reduction enjoys the
following properties:

Theorem 33 (Preservation of correctness) Given a J-proof structure
R, if R is a J-proof net and R R′, then R′ is a J-proof net.

Proof. Checking the preservation of switching acyclicity is a straightfor-
ward generalization of the proof given by Girard in [Gir87] for MLL; we
only have to verify that the jumps added in the +/− step do not introduce
cycles. Consider fig 2.10; if R  R′ with a step +/− and b → a is a jump
added in the step, suppose b→ a creates a cycle: then there is a switching
path r in R′ from a to b which does not use any switching edge of a. If r
does not cross any of the cut links generated by the +/− step then r belongs
to R too, and then we have cycle also in R. Otherwise, let c be the first
cut link generated by the the +/− step that we meet following r from a to
b, and d the node which precedes c in r; obviously the conclusion of d is a
premise of c. Then consider the subpath r′ of r from a to d in R′; it is a
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path of R too, so looking at fig. 2.10 it is easy to conclude that there is a
cycle in R too, contradiction.

Now we prove the preservation of point 1) of the positivity condition:
in the case of an ax step, the result is obvious. Concerning the +/− step,
consider a J-proof net R with a cut link c between a positive link a and a
negative link b, such that a is the justifier of a negative link d, and R reduces
to R′ by reducing c: we prove that d has still a justifier in R′. By reducing
c, either d becomes connected in R′ with a positive link b′ whose conclusion
is a premise of b in R, and then b′ becomes the justifier of d in R′, either d
becomes connected in R′ with an ax link a conclusion of which is a premise
of b in R; then by positivity condition on b in R, b has a justifier b′ in R,
which becomes the justifier of d in R′.

To prove the preservation of point 2) of positivity condition, let us con-
sider a J-proof net R with a cut link c between a positive link a and a
negative link b such that by reducing c with a +/− step we get a J-proof
structure R′ with more connected components than R: we prove that each
connected component of R′ contains at least one positive link.

If the premises of b are conclusions of positive links, then the result is
immediate; if a premise of b is the conclusion of an axiom link d, then by
positivity condition on R, b has a justifier b′ which is connected with d in
R; then by reducing c, b′ will be in the same connected component as d in
R′. The case of the ax step is obvious. �

Theorem 34 (Strong normalization) For every J-proof net R, there is
no infinite sequences of reductions R R1  R2 . . . Rn . . .

Proof. By the fact that at each step the number of links decreases, and that
we never reach a deadlock (that is a cut-link whose premises are conclusions
of the same ax-link) during reduction, by theorem 108 (see [Gir87]). �

Theorem 35 (Confluence) For every J-proof net R1, R2 and R3, such
that R1  R2 and R1  R3, there is a J-proof net R4, s.t. R2  R4 and
R3  R4.

Proof.
It easily follows from confluence of usual multiplicative proof nets (see

[Gir87]) and from the simple observation that if R  R′, the displacing of
a jump after a +/− step does not influence the other jumps of R′.

�

Jumps and η-expansion

It is well known that the Curry-Howard isomorphism relates the β-reduction
of the λ-calculus to the cut reduction in the proof nets; the η-expansion
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corresponds to a rewriting rule of proof nets too, i.e. to the reduction of
complex axioms in simpler ones. Let us define the η expansion of an ax link
as depicted in fig 2.11.

Ax

⊗(P
⊥

1 , . . . , P⊥
n) O(P1, . . . Pn)

Ax

Ax

P⊥
n

. . .. . .

η

+
−

O(P1, . . . Pn)⊗(P
⊥

1 , . . . , P⊥
n)

PnP1P⊥
1

Figure 2.11: η expansion.

From a computational point of view, we should expect that in a J-proof
net the result of the reduction of cut against an ax link , and against its η
expansion was the same.

This is not the case, as we can see in figure 2.12, 2.13.
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P1 P2
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P1

⊗(P
⊥

1 , P⊥
2)

Figure 2.12:

In order to avoid this incongruousness, we must modify the positivity
condition in the following way (as shown in fig 2.14), and consequently the
η rewriting step:

Definition 36 (Extended positivity condition) A J-proof structure R
satisfy the extended positivity condition if and only if
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1. For every − link b, such that a premise of b is a conclusion of an ax
link a, there exists a positive link c (called justifier of b) and a path
〈b, a, . . . , c〉 from b to c which crosses only cut and ax links; moreover,
b jumps on c in R.

2. if R is composed by more than one connected component, then each
component contains at least one positive link.

It is easy to verify that the extended positivity condition is stable under
cut reduction.

2.3 A denotational semantics for J-proof nets

In this section we provide a denotational semantics of J-proof nets, which is
a variation of standard relational semantics based on the notion of pointed
set. The aim is to refine the relational model, in order to be able to seman-
tically characterize sequential order, in our case jumps (which usually are
not captured by relational semantics) ; actually, our approach is inspired
by [Bou04], where a step is made in the direction of developping a unified
framework for both static (sets, coherence spaces, etc) and dynamic (games)
denotational semantics.
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By now we will denote sets by A,B,C, . . . and elements of a set by
a, b, c, . . ..

2.3.1 Pointed sets.

A pointed set A∗ is given by a set A ∪ {0A∗} where 0A∗ is a distinguished
object which does not belong to A; this object is called the point of A∗

The product A1
∗⊛. . .⊛An

∗ of n pointed sets A1
∗, . . . ,An

∗ is the pointed
set A∗ × . . . × An

∗ ∪ {0A∗ ⊛ An
∗} whose elements are the elements of the

cartesian product A1
∗ × . . .× An

∗ (resp. the set of singletons of elements of
A1

∗ if n = 1) together with a distinguished fresh object 0A∗ ⊛...⊛ An
∗ which

does not belong to A∗ × . . .× An
∗.

For simplicity’s sake we will often refer to the point 0A∗ of a pointed set
A∗ simply as 0.

The formulas of MHS are interpreted in the following way:

• an atomic formula X is interpreted by a pointed set X∗;

• a positive formula⊗(P1, . . . , Pn) (resp. a negative formula O(N1, . . . , Nn))
is interpreted by P∗

1 ⊛ . . .⊛ P∗
n (resp. N∗

1 ⊛ . . .⊛ N∗
n);

Given a J-proof structure R, we define the interpretation of R in pointed
sets semantics, and we denote it by JRK; in case R has no conclusions, we
let JRK be undefined. Otherwise, let x1 of type C1, . . . , xn of type Cn be the
conclusions of R; JRK is a subset of C∗

1⊛ · · ·⊛C∗
n, which we define using the

notion of experiment. The experiments have been introduced by Girard
in [Gir87], and extensively studied in [TdF00] by Tortora de Falco.

Definition 37 (Experiments) Let R be a J-proof structure and e an ap-
plication associating with every edge a of type A of R an element of A∗; e is
an experiment of R when the following conditions hold:

• if x, y are the conclusions of an ax link then e(x1) = e(x2);

41



J-proof nets: multiplicatives

• if x, y are premises of a cut link with premises x and y, then e(x) =
e(y);

• if x of type O(A1, . . . , An) (resp. ⊗(A1, . . . , An)) is the conclusion of
a negative (resp. positive) link with premises x1 of type A1, . . . , xn of
type An and there exist an i ∈ {1, . . . , n} such that e(xi) 6= 0A∗

i
, then

if e(x1) = a1, . . . e(xn) = an, e(x) =< a1, . . . , an >; otherwise either
e(x) =< 0A∗

1
, . . . , 0A∗

n
> either e(x) = 0A∗

1⊛...⊛A∗
n
;

• if a is a positive link of conclusion x of type A and b is a negative link
of conclusion y of type B, and b jumps on a, then if e(x) 6= 0A∗ then
e(y) 6= 0B∗.

If the conclusions of R are the edges x1, . . . , xn of type respectively
A1, . . . , An and e is an experiment of R such that ∀i ∈ {1, . . . , n} e(xi) = ai

then we shall say that < a1, . . . , an > is the conclusion or the result of the
experiment e of R, and we will denote it by |e|. The set of the results of all
experiments on R is the interpretation JRK of R.

In the following proposition we prove that pointed sets semantics is stable
under cut reduction:

Proposition 38 If R is a J-proof net, and R R′, then JRK = JR′K.

Proof.

If R  R′ with an ax step, the result is trivial. Having as reference
fig. 2.10 let us suppose that R  R′ with a +/− step reducing a cut in R
between a + link a of conclusion x of type ⊗(N1, . . . ,Nn), and a − link b of
conclusion y of type O(P1, . . . , Pn); we denote the edges of type P1, . . . , Pn

(resp. N1, . . . , Nn) by y1, . . . , yn (resp. x1, . . . , xn).

Suppose that b jumps on a positive link c of typed conclusion z and that
a negative link d of conclusion w jumps on a.

We must show that for every experiments e on R′, there is an experiment
e′ of R with the same result, and vice versa.

The delicate part is the one dealing with jumps, the rest of the proof
being the same as the one given in [Gir87]; the cases to check are the fol-
lowings:

If e is an experiment of R′ such that e(w) = 0, then e(z) = 0, e(y1) =
0, . . . , e(yn) = 0 we can build an experiment e′ of R with the same values
on the same edges by assigning e(x) = 0 and e(y) = 0; if in R′ e(w) 6= 0,
e(z) = 0 e(y1) = 0, . . . , e(yn) = 0, we can build an experiment e′ of R with
the same values on the same edges by assigning e(y) =< 0P∗

1
, . . . , 0P∗

n
> and

e(x) =< 0N∗
1
, . . . , 0N∗

n
>.

�
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Remark 39 (Pointed sets and η-expansion) We observe that pointed
set semantics is not stable under the η-expansion rewriting step; let us
consider the result of the experiments on the J-proof structure R in fig.
2.15 and on its η-expansion R′; for the experiment e of R′ with result
< 0

P⊥∗
1 ⊛P⊥∗

n
, < 0P∗

1
, 0P∗

2
>> there is no corresponding experiment with the

same result in R.

2.3.2 Injectivity

Semantic injectivity has been studied in the setting of linear logic mainly
by Tortora (see [TdF00] and Pagani in [Pag06]; however, it is a traditional
question in the denotational semantics of λ-calculus; Statman theorem, for
example, states that the relational model is injective for the simply typed
λ-calculus ([Sta83]).

We remark also that the notion of semantic injectivity is deeply related
with the one of syntactical separability, stated in the Böhm theorem for pure
λ-calculus ([Boh68]): if t, t′ are two closed λ-terms, such that t is not βη
equivalent to t′, then there are u1, . . . , un λ-terms such that tu1 . . . un →β 1
and t′u1 . . . un →β 0; that is, t and t′ compute two different functions on
the λ-terms, and u1, . . . , un are arguments on which t and t′ give different
values.

Furthermore, syntactical separability is also one of the main properties
of designs in ludics ([Gir01]) and of L-nets too (see [FM05]).

For an extensive analysis of the relation between syntactical separability
and semantic injectivity in the framework of linear logic, we refer to [Pag06].

In this subsection we study the injectivity of pointed set semantics with
respect to J-proof nets. Given any two cut-free J-proof nets R,R′, we say
that R and R′ are syntactically equivalent when R = R′ ; we consider
this equality up to transitive jumps ( a transitive jump of a J-proof net
R is a jump which is a transitive edge in R); we say that R and R′ are
semantically equivalent when JRK = JR′K.

We will prove that pointed sets semantics is injective with respect to
J-proof nets, that is for any two J-proof nets R,R′ , if JRK = JR′K then
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R = R′.
The proof follows the lines of the proof of injectivity of relational se-

mantics with respect to MLL proof nets provided in [TdF03a], with some
details more to take into account jumps.

Definition 40 (Relational result) Let R be a J-proof structure and |e|
the result of an experiment on R; |e| is relational it does not contain any
occurrence of 0.

The set of relational results of experiments on a J-proof structure R is
called the relational part of JRK; we will denote it by JRKRel.

Remark 41 Given two J-proof structure R,R′, if JRK = JR′K then JRKRel =
JR′KRel.

Remark 42 Let R be a J-proof structure and e, e′ be two experiments of
R. If |e| = |e′|, then e = e′; in other words an experiment is completely
determined by its result.

Definition 43 (Injective result) Let R be a J-proof structure and |e| be a
relational result of an experiment on R; |e| is injective when in |e| does not
occur two times a same element of a pointed set X∗ interpreting an atomic
formula.

Given a J-proof net R, we denote by R− the proof net obtained by
erasing all the jumps of R.

Lemma 44 Let R0 be a J-proof net without jumps; then for all J-proof nets
R, such that R− = R0, given an element γ of JRK there exists a unique
experiment e0 of R0 such that |e0| = γ.

Proof. The proof follows from the observation that for any J-proof net R,
JRK ⊆ JR−K, and from remark 42.

�

Given a J-proof net R we denote its η expansion by Rη.

Lemma 45 Let R be a J-proof net and R′ be an η expanded proof net with-
out jumps with the same conclusions, such that JRKRel = JR′KRel. Then
Rη− = R′.

Proof.
Since for any J-proof net R, JRKRel = JRηKRel, the proof is a consequence

of injectivity of relational semantics for (η expanded) proof nets given by
Tortora de Falco in [TdF03a]; the proof uses the fact that an injective result
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(which always exists) in the interpretation of a proof net allows to completely
determine the proof net modulo the η-expansion of the axioms.

�

Lemma 46 Given a J-proof structure R, a positive link a with conclusion
x and a negative link b with conclusion y, b jumps on a (eventually with a
transitive jump) iff for all experiments e of R, e(x) 6= 0⇒ e(y) 6= 0.

Proof. The proof is an easy consequence of definition of experiment. �

Theorem 47 (Injectivity) Let R and R′ be two cut-free J-proof nets with
the same conclusions. If JRK = JR′K then R = R′.

Proof.

JRK = JR′K, so JRKRel = JR′KRel.

Since JRη−KRel = JR′η−KRel, by lemma 45, Rη − = R′η −.

Now, by remark 42 , given an element γ of JRK (resp. JR′K) there exists
a unique experiment e of Rη − (resp. of R′η − such that |e| = γ.

Starting from Rη − (resp. R′η −), we build a proof net R1 (resp. R2),
eventually with non atomic axioms, in the following way: for any configura-
tion of links as in fig 2.16, we check that for all elements γ1, . . . , γn of JRK
the unique experiment ei of Rη − (resp. Rη −) induced by γi assigns the
same values to the edges x, y; if it is the case we substitute in Rη − (resp.
R′η −) the configuration of fig 2.16 with an axiom link with conclusions x, y;
otherwise we leave it as it is. Now R1 = R− and R2 = R′−; since JRK = JR′K
and Rη − = R′η −, R− = R′−.

Now, by lemma 44 , given an element γ of JRK (resp. JR′K) there exists
a unique experiment e of R− (resp. of R′−) such that |e| = γ.

Now, we build from R− (resp. R′−) a J-proof net RJ (resp. R′J) in
the following way; for any positive link a of typed conclusion x and for any
negative link b of typed conclusion y, we check that for every element γ
of JRK, given the unique experiment e of R− (resp. R′−) induced by γ,
e(x) 6= 0 ⇒ e(y) 6= 0; if it is the case we make b jump on a in R− (resp.
in R′−). By lemma 46, RJ = R, and R′ = R′J ; since JRK = JR′K and
R− = R′−, R = R′.

�

The above result of injectivity allows also to semantically recognize if
a given J-proof net R′ is obtained from another J-proof net R by adding
jumps on R; it is enough to check that JRKRel = JR′KRel, so that R− = R

′−,
and that JR′KRel ⊆ JRKRel, so that all the jumps of R are jumps of R′; if we
add the remaining jumps of R′ to R then we retrieve R′.
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2.4 J-proof nets and MLL

In this section we extend our proof of sequentialization with jumps to proof
nets of MLL, by showing that both the splitting O and splitting ⊗ lemmas
( see [Gir87] and [Dan90]), which are two of the standard results used to
prove sequentialization, are consequences of the weak arborisation lemma.

2.4.1 MLL proof nets

An MLL proof structure is a proof structure in the sense of definition 9,
whose edges are labelled by MLL formulas (following the grammar we intro-
duced in subsection 2.1), and whose typing respects the following constraints
(see fig 2.17)

• the ax-link has two conclusions labeled by dual formulas, but no
premises;

• the cut-link has two premises labeled by dual formulas but no conclu-
sions;

• the O link has n premises and one conclusion. If the i-th premise is
labeled by the formula Ai for i ∈ {1, . . . , n} then the conclusion is
labeled by O(A1, . . . , An);

• the ⊗ link has n premises and one conclusion. If the i-th premise is
labeled by the formula Ai for i ∈ {1, . . . , n} then the conclusion is
labeled by ⊗(A1, . . . , An).

As in the case of MHS, we can associate to an MLL proof π a sequen-
tializable proof structure π∗ by induction on the height of π.

We call JMLL-structures the generalization to MLL proof structures
of J-proof structures. Exactly as we did in subsection 2.2.2, we can associate
to a JMLL-structure the structure of a graph with pairs (R,App(R)); then
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we will call JMLL-net a switching acyclic JMLL-structure. The notion of
saturation, correction graph and s-connectedness, are directly retrieved from
the ones of subsections 2.2.4, 2.2.4.

Remark 48 Since in this section we are mainly interested in sequential-
ization, from now on, for sake of simplicity, we will consider only cut-free
structures; we will also assume w.l.o.g., that all our proof structures have at
most one terminal O link (otherwise, we put together all O conclusions by
substituting all terminal O-links with a single one).

2.4.2 Arborisation lemma and splitting lemmas

Lemma 49 Let R be a saturated JMLL-net R and a a O-link of R. If a
conclusion of a node b ∈ CR(a) is a premise of a link c /∈ CR(a), then c is a
O-link.

Proof.
Suppose c is a ⊗-link; then by saturation, making a jump on c would

create a cycle: but then there is a switching path r from a to c which does

not use any switching edge of a. Since b
+
−→ a and b→ c it is straightforward

that the existence of r would induce a switching cycle in R, contradiction.

�

Definition 50 (Splitting O-link) Given a JMLL-net R and a O-link a,
we say that a is splitting for R if there exist two subgraphs G1, G2 of R,
such that G1 does not contain the conclusion of a, which is contained by G2,
and the only edge of R connecting a node in G1 with a node in G2 is the
conclusion of a.

Lemma 51 (Splitting O-lemma) Given a saturated JMLL-net R with at
least one O-link, there exists a splitting O-link.
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Proof.
Let us consider a O-link a such that CR(a) is maximal with respect to

inclusion among all the cones of the O-links in R; we prove that a is splitting
in R.

Suppose that a conclusion of a link in CR(a) is the premise of a link
(different from a) which does not belong to CR(a) so it must be a premise of
another O-link b by lemma 49; now, CR(a)∩CR(b) 6= ∅, and b /∈ CR(a) so by
the weak arborisation lemma CR(a) ⊂ CR(b), contradicting the maximality
of CR(a).

We observe also that if a O-link c different from a jumps on a link d
which belongs to CR(a), then c ∈ CR(a); otherwise (that is if c /∈ CR(a)),
CR(a) ∩ empR(c) 6= ∅ and c /∈ CR(a) and again by the weak arborisation
lemma CR(a) ⊂ CR(c), contradicting the maximality of CR(a).

So, each conclusion of a link in CR(a) is a premise of a link in CR(a), or
a premise of a, or a conclusion of R.

Now, if we consider the subgraph G of R which corresponds to CR(a),
by the above observations, all the paths connecting a node in G with a node
in R \G must use the conclusion of a; but then a is splitting for R.

�

Lemma 52 (Splitting ⊗ lemma) Given a saturated JMLL-net R which
has only terminal ⊗ links, there exists at least one splitting ⊗ link.

Proof.
The proof is an adaptation of a similar proof in [CF]; we reason by

induction on the number n of O-links in R. If n = 0, then it is easy to check
that all terminal ⊗ links must be splitting. If n > 0, we consider a O-link
a such that CR(a) is maximal with respect to inclusion among all the cones
of the O-links in R; the conclusion of a must be the premise of a terminal
⊗ link b, which is not above any other O-link of R, (otherwise CR(a) should
not be maximal).

Now, reasoning as in the proof of lemma 51 we can conclude that any
path from a node in CR(a) to any other node in R\CR(a) must pass trough
the conclusion of a and go up trough b ; but then if we disconnect the
conclusion of a from b, and we modify consequently the type of the conclusion
of b, we get two disjoint JMLL-nets R1, R2, respectively containing a, b. By
induction hypothesis on R2, R2 has a splitting ⊗ link c. Now either c 6= b,
either c = b; in any case the splitting ⊗ link of R2 is splitting also for R.

�

Remark 53 Given an MLL proof net R and a saturated JMLL-net Sat(R),
all splitting O-links and splitting ⊗-links of Sat(R) are splitting also for R
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(as a consequence of lemma 20); since any MLL proof net can be saturated,
lemma 52 and lemma 51 provides also a proof of the existence of both a
splitting O link and a splitting ⊗ link for MLL proof nets.

Theorem 54 An MLL proof net is sequentializable.

Proof.
By induction on the number n of links of the proof net (for simplicity,

we consider only the case where R is s-connected):

• if n = 1 then R is composed by a single axiom link, trivial;

• if n > 1 then we consider two sub-cases:

– if R contains one terminal O link, then we erase it getting a
proof structure R′; R′ is a proof net (erasing a O link cannot
create cycles); by induction hypothesis on R′, we get a proof π′

such that π′∗ = R′; we add to π′ a proper O rule to get a proof π
such that π∗ = R;

– Otherwise, R contains only terminal ⊗ links, so by the splitting
⊗ lemma and remark 53 there exist a splitting ⊗ link n in R:
we erase it, getting n graphs R1, . . . Rn which must be proof nets
(otherwise there would be a cycle in R); by induction hypothesis
on them we get n proofs π1, . . . πn such that π∗

i = Ri; we add to
them a proper ⊗ rule to get a proof π = R∗.

�

2.4.3 Jumps and geography of subnets

Our object of study in this section will be the notion of empire, a class of
subnets which has been introduced by Girard in [Gir87] (and further studied
by Bellin and Van De Wiele in [BVDW95]), to prove sequentialization.

For simplicity’s sake, in this subsection we will make the assumption
that all JMLL-nets we consider are s-connected.

A sub-structure of a JMLL- net R is a subgraph R′ of R which is a
J-proof structure and such that for any link a of R which belongs to R′, R′

contains also all the premises of a in R.
A sub-net of a JMLL-net R is a sub-structure which is a JMLL-net.
Given a correction graph s(R) of a JMLL-net R, a path r 〈a, .., b〉 from

a link a with typed conclusion x to a link b is said to go up from a, when it
does not use neither x neither any untyped edge emergent from a; otherwise
r is said to go down.

In the following definition 55, we will modify the standard definition of
empires, in order to take into account jumps.

49



J-proof nets: multiplicatives

Definition 55 (Empire) Let x be a typed conclusion of a link a in a JMLL-
net R: the empire of x in R (denoted empR(x)) is the smallest substructure
of R closed under the following conditions:

• a belong to empR(x);

• if b is a link of R connected with a with a path that goes up from x in
all correction graphs of R, then b ∈ empR(x).

We call border of empR(x) the set of links a1, . . . , an such that ai ∈
empR(x) and its conclusions either are conclusions of R either are premises
of a link b which does not belong to empR(x).

Remark 56 Of course for any typed edge x, empR(x) is a sub-net of R. It
is easy to check that if b is a link in the border of empR(x), and one of its
conclusion is premise of a link c such that c does not belongs to empR(x),
then c must be a O-link.

Lemma 57 Let R be a JMLL-net and b a O-link with typed conclusion x:
given the JMLL-structure R′ obtained by making b jump on another link a,
then R′ is a JMLL-net iff a ∈ empR(x) .

Proof.
We first prove the right to left direction: if a ∈ empR(x) this means that

for every correction graph of R (which is a correction graph of R′ too), there
is a path going up from x to a; if in R′ there were a cycle, this means that in
some correction graph of R′ there would be a path from b to a which doesn’t
uses any switching edge of b, so it’s also in a correction graph of R, but then
we have a cycle in some correction graph of R, contradiction. To prove the
other direction, we simply observe that if a does not belong to empR(x) this
means that there is at least one correction graph in R such that there is a
path from b to a which goes down; but then if we make b jump on a we get
a cycle.

�

Definition 58 (Kingdoms) Let x be a typed edge of a proof net R; the
kingdom of x in R (denoted kR(x)) is the smallest sub-net of R having x as
conclusion.

Proposition 59 Given a JMLL-net R for any typed edge x, kR(x) ⊆ empR(x).

Proof. Let us suppose that there is a link c which belongs to kR(x) and
does not belong to empR(x); so for some switching s in s(R) there is a path
r which goes down from x to c. But then if we consider the graph s(kR(x))
(which is the correction graph obtained by restricting the switching s to
kR(x)) is not connected, and so kR(x) is not a subnet, contradiction. �
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Definition 60 Let R be a JMLL-net and a a link of R with typed conclusion
x; we denote by CR(x) the smallest sub-structure which contains only a and
the links in CR(a).

Remark 61 In a JMLL-net R given a typed edge x, by definition of sub-
structure, CR(x) ⊆ empR(x) and CR(x) ⊆ kR(x).

The following proposition will allow us to characterize saturated JMLL-
nets by the shape of the empires of their O-links:

Proposition 62 A JMLL-net R is saturated, iff for any O link a of typed
conclusion x, CR(x) = kR(x) = empR(x).

Proof.
To prove the left to right direction, let us assume R saturated, and

suppose empR(x) 6= CR(x); obviously CR(x) ⊂ empR(x) . Now consider a
link b of empR(x) which isn’t in CR(x): if there is not such an element, then
empR(x) = CR(x); otherwise we make a jump on b , and by lemma 57 this
doesn’t create cycles so R is not saturated. Since CR(x) ⊆ kR(x) ⊆ empR(x)
and empR(x) = CR(x) it follows that CR(x) = kR(x) = empR(x)

To prove the other direction, if one makes a jump on a link which is in
empR(x) then it is transitive by definition of CR(x); if one makes a jump on
a link which is outside empR(x) then it creates a cycle by lemma 57.

�

The following proposition is a standard property of empires in MLL
proof nets, which, in the case of saturated JMLL-nets becomes a simple
consequence of the weak arborisation lemma.

Proposition 63 (Nesting of empires) Given a saturated JMLL-net R and
two edges x, y resp. typed conclusions of two O links a, b, either empR(x)
and empR(y) are disjoint, either one is strictly included into the other.

Proof. By lemma 62, empR(x) = CR(x), and empR(y) = CR(y); since R
is a saturated polarized graph, the rest of the proof easily follows from the
weak arborisation lemma. �
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Chapter 3

J-proof nets: additives

In this chapter we introduce and study J-proof nets for the hypersequen-
tialized calculus. In section 3.1, as we did in chapter 1, we will present first
MALL grammar and sequent calculus, then HS; in section 3.2 we define
J-proof nets for HS and in section 3.3 we prove the sequentialization the-
orem, while in section 3.4 we study cut-reduction on J-proof nets, keeping
aside for the moment the question of the preservation under reduction of
the correctness criterion. In section 3.5 we extend pointed set semantics to
include additives, and we prove that the injectivity result of the previous
chapter still holds in the additive setting; in the following section 3.6 we
will use this result to prove that the correctness criterion is stable under
reduction. Finally in the last section 3.7, we provide a classification of J-
proof nets with respect to their degree of sequentiality, and we study the
correspondence between them and some of the usual syntaxes of additive
proof nets.

3.1 Hypersequentialized calculus

The scope of this section is to present the multiplicative-additive hyper-
sequentialized calculus. As in section 2.1 we first present in subsection
3.1.1 a variant of usual MALL grammar and calculus, where formulas are
clustered modulo the usual associativity and distributivity isomorphisms of
linear logic; then in subsection 3.1.2 we introduce the hypersequentialized
calculus in order to restrict the scope to focusing proofs.

3.1.1 MALL

Definition 64 Let V = {X, Y, Z, . . .} be a countable set of propositional
variables; the formulas of clustered MALL are defined in the following way:

• Atoms: X,Y,Z, . . . and X⊥, Y ⊥, Z⊥, . . . are formulas of MALL
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• synchronous formulas: let N = {I, J, . . . ,K} be a family of index sets,
and Ai∈I a set of atoms or asynchronous formulas indexed by some
I ∈ N ; then ⊕I∈N (⊗i∈I(Ai)) is a formula;

• asynchronous formulas: let N = {I, J, . . . ,K} be a family of index
sets, and Ai∈I a set of atoms or synchronous formulas indexed by
some I ∈ N ; then &I∈N (Oi∈I(Ai)) is a formula.

Negation is defined as follows:

(⊕I∈N (⊗i∈I(Ai)))
⊥ = &I∈N (Oi∈I(A

⊥
i ))

(&I∈N (Oi∈I(Ai)))
⊥ = ⊕I∈N (⊗i∈I(A

⊥
i ))

Note We remark the following facts:

• By &I∈N (Oi∈I(Ai)) we indicate the connective which represent all
possible combinations of the formulas Ai∈I∈N modulo the associativity
and distributivity properties of usual O and & connectives of LL; in
case N is a singleton, we shall use the abbreviation (Oi∈I(Ai)); we
denote the unary case of (Oi∈I(Ai)) as ↑ Ai

• By ⊕I∈N (⊗i∈I(Ni)) we indicate the connective which represent all
possible combinations of the formulas Ai∈I∈N modulo the associativity
and distributivity properties of the usual ⊗ and ⊕ connectives of LL;
in case N is a singleton, we shall use the abbreviation (⊗i∈I(Ai)); we
denote the unary case of (⊗i∈I(Ai)) as ↓ Ai.

The calculus is the following:

ax

⊢ A,A⊥
⊢ Γ, A ⊢ ∆, A⊥

cut
⊢ Γ,∆

⊢ Γ1, A1 . . . ⊢ Γn, An
(+,I)

⊢ Γ1, . . . ,Γn,⊕I∈N (⊗i∈IAi)

⊢ Γ, A1
1 . . . , A1

k1
. . . ⊢ Γ, An

1 . . . , An
kn

(−,N )
⊢ Γ,&J∈N (Oj∈JAi)

MALL can be eventually enriched with the Mix rule:

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆
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3.1.2 From MALL to HS

.
As we did for the multiplicative fragment, we restrict the grammar and

calculus of MALL in order to make proofs alternating, retrieving in this
way the hypersequentialized calculus. The formulas of HS are obtained by
the following restrictions on MALL formulas:

N ::= X⊥ | &I∈N (Oi∈I(Pi))
P ::= X | ⊕I∈N (⊗i∈I(Ni))

From now on, we will call the formulas in N negatives and the formulas
in P positives.

The rules for proving sequents are the following:

ax

⊢ X,X⊥
⊢ Γ, A ⊢ ∆, A⊥

cut
⊢ Γ,∆

⊢ Γ1, N1 . . . ⊢ Γn, Nn
(+,I)

⊢ Γ1, . . . ,Γn,⊕I∈N (⊗i∈INi)

⊢ Γ, P 1
1 . . . , P 1

k1
. . . ⊢ Γ, Pn

1 . . . , Pn
kn

(−,N )
⊢ Γ,&J∈N (Oj∈JPi)

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆

where Γ,∆, . . . only contain positive formulas.
In the additive fragment, we restrict ourself to axioms introducing just

atomic formulas; the reason behind this choice will become clearer in section
3.2.

Decomposing the additives. Before presenting J-proof nets, we want
to give a first intuition about two fundamentals notions which come out
dealing with additives: the notion of slice and the one of superposition.

An additive proof containing some & rules can be thought of as a super-
position of multiplicative proofs, called slices.

Let us look for example at the following sequent proof π of
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )), &(O(X1,X2),O(X3,X4)):

ax

⊢ X1,X
⊥
1

ax

⊢ X2,X
⊥
2

(+,{1,2})
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )),X1,X2

ax

⊢ X3,X
⊥
3

ax

⊢ X4,X
⊥
4

(+,{3,4})
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )),X3,X4

(−,{{1,2},{3,4}})
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )),&(O(X1,X2),O(X3,X4))

now, we choose a branch of each (−,N ) rule, in this case just one; by
erasing the right branch we get the following derivation s1:
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ax

⊢ X1,X
⊥
1

ax

⊢ X2,X
⊥
2

(+,{1,2})
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )),X1,X2

(−,{{1,2},{3,4}})
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )),&(O(X1,X2),O(X3,X4))

and by erasing the left branch, we get the following derivation s2:

ax

⊢ X3,X
⊥
3

ax

⊢ X4,X
⊥
4

(+,{3,4})
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )),X3,X4

(−,{{1,2},{3,4}})
⊢ ⊕(⊗(X⊥

1 ,X⊥
2 ),⊗(X⊥

3 ,X⊥
4 )),&(O(X1,X2),O(X3,X4))

In both s1 and s2 the (−,N )-rule is unary (as in MHS).
Following this idea, a (−,N )-rule is a set (superposition) of unary rules

having the same active formulas. If we consider a sequent calculus derivation
in HS, and for each (−,N )-rule we select one of the premises, we obtain a
derivation where all (−,N )-rules are unary. This is called a slice.

Actually, the notion of slice is old as Linear Logic itself: it appears for
the first time in the seminal paper [Gir87]; it has been used by Laurent
and Tortora de Falco for studying normalization on polarized proof nets
(see [LTdF04]) and is a key notion of ludics and L-nets. Furthermore, as
Pagani pointed out in his PhD thesis, (see [Pag06]) slices correspond to the
basic objects in the syntax of Hughes and Van Glabbeek additive proof nets,
namely linkings (see [HVG03]).

The main point when one deals with additive proof nets is to properly
reconstruct the structure of the multiplicative proofs of which an additive
proof is composed, and to correctly superpose them; such a task is usually
fulfilled by boxes (as in [Gir87], [LTdF04], [TdF03b]) or by boolean weights
(as in [Gir96], [Lau99], [Mai07]), which provide enough “synchronization
points” to glue slices together. In additive J-proof nets this role will be
played by jumps.

3.2 J-proof nets

In this section we present J-proof nets for HS, using a syntax which is
directly inspired from L-nets.

Firstly, in subsection 3.2.1, we modify the definition of J-proof structure
given in the previous chapter, in order to take into account the “additive
contraction” effect induced by the (−,N )-rule. While in others syntaxes
(as [Lau99]) this is done by introducing an explicit “additive contraction”
link, we adopt the convention of incorporate contraction in the links, by
enriching them with a structure of ports and by defining the conclusion of
a proof structure no more as a pending edge but as a link.
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In subsection 3.2.2 we study the relation between J-proof structures and
HS, by defining sequentializable J-proof structures; then, in subsection 3.2.3,
we introduce the correctness criterion and we define J-proof nets.

3.2.1 J-proof structures

Definition 65 (Graph with ports) We call graph with ports a directed
graph where for each node b the edges entering on b are partitioned into
subsets called ports ; given a node b we denote its ports by bj , bk, bl.

Definition 66 (Pre-proof structure) A pre-proof structure is a di-
rected acyclic graph with ports whose edges are possibly typed by formulas of
HS and whose nodes (also called links) are labelled by one of the symbols
ax, cut,+I∈N ,−I∈N (we call such links logical links) or by a formula of
HS (we call such links conclusion links).

The edges incident on a link are called premises and the edges emer-
gent from a link are called conclusions; the label of a link imposes some
constraints on its ports and the number and the types of its incident edges
and emergent edges:

• an ax-link has two conclusions labeled by dual atomic formulas, but no
premises.

• a cut-link has no conclusions, and two ports (called left and right),
one containing n > 1 premises all typed by a formula A and the other
containing k > 1 premises all typed by A⊥;

• a −I∈N link b (also called negative link) has:

– one port bi for each i ∈ I; each port bi contains n > 1 premises
which are typed by the same formula Pi for i ∈ I;

– one port b∗, which contains only untyped edges (called jumps);

– exactly one conclusion, typed by a formula N .

If the premises in bi are typed by a formula Pi, then the conclusion is
typed by &I∈N (Oi∈I(Pi)).

• a +I∈N link b (also called positive link) has:

– one port bi for each i ∈ I; each port bi contains n > 1 premises
which are typed by the same formula Ni for i ∈ I;

– n > 1 conclusions, exactly one among them typed by a formula
P .

If the premises in bi are typed by a formula Ni, then the conclusion is
typed by ⊕I∈N (⊗i∈I(Ni)).
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+I∈N
−I∈N

Pi∈I Pi′∈I ⋆

&I∈N (Oi∈I(Pi)) ⊕I∈N (⊗i∈I (Ni))

X

P

Cut
Ax

Ni′∈INi∈I

P
⊥

X
⊥

C

C C

C

Figure 3.1: Links of a pre-proof structure

• a conclusion link with label A has no conclusions and one port con-
taining n > 1 edges all typed by the formula A.

A link whose conclusion belongs to a conclusion link is called a terminal

link; the types C1, . . . , Cn of the conclusions links are called conclusions

of the pre-proof structure

The constraints and the links of definition 66 are synthetically repre-
sented in fig. 3.1; we denote ports by black spots, and we distinguish positive
and negative links by their shape; using this graphical convention, sometimes
when drawing a preproof structure we will label a positive (resp. negative)
link simply with I ∈ N instead of +I∈N (resp. −I∈N ).

To properly take into account the structures of additives, that is to
retrieve slices, we must refine our definition of proof structure, as follows:

Definition 67 (Sibling links and negative rule) Given a pre-proof struc-
ture , two links a, b are sibling iff the typed conclusion of a and the typed
conclusion of b belong to the same port of a link c.

An negative rule W is a maximal set {w1, . . . , wn} of negative sibling
links ; the premises (resp. conclusion) of a negative rule are the premises
(resp. conclusion) of its elements.

An additive pair is a pair of negative links belonging to the same neg-
ative rule.
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⋆⋆

{1, 2} {3, 4}

{1, 2} {3, 4}

&(O(X1, X2), O(X3, X4)) &(O(X1, X2), O(X3, X4))

⊕(⊗(X⊥
1 , X⊥

2 ), ⊗(X⊥
3 , X⊥

4 ))⊕(⊗(X⊥
1 , X⊥

2 ), ⊗(X⊥
3 , X⊥

4 ))

X X⊥

X X⊥

X X⊥

X⊥
X

A = &(O(X1, X2), O(X3, X4))

B = ⊕(⊗(X⊥
1 , X⊥

2 ), ⊗(X⊥
3 , X⊥

4 ))

A

B

Ax

Ax

Ax

Ax

Figure 3.2: example of J-proof structure

Definition 68 (View) We call view of a link a (denoted a↓) the set of

links {b : a
+
−→ b} ∪ {a}.

Definition 69 (J-proof structure) A pre-proof structure R is a J-proof

structure iff it satisfies the followings:

Positivity: see definition 36.

Additives: if two links a, b of R belong to the same negative rule, then the
label of a is −J∈N and the label of b is −J ′∈N and J 6= J ′ ;

Views: given a link a , a↓ doesn’t contain any two elements of the same
negative rule;

Contraction: given two non negative sibling links a, b, there exists an ad-

ditive pair w1, w2 s.t. a
+
−→ w1 and b

+
−→ w2.

a negative rule containing terminal links is called a terminal negative
rule; in addition to the above conditions, a J-proof structure must have at
most one terminal negative rule.

Let us give some explanations on the conditions of definition 69:
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⋆

{1, 2}

{1, 2}

&(O(X1, X2), O(X3, X4))

⊕(⊗(X⊥
1 , X⊥

2 ), ⊗(X⊥
3 , X⊥

4 ))

X X⊥

X X⊥

A

B

Ax

Ax

Figure 3.3: a slice of the J-proof structure in fig. 3.2

• Positivity has the same function of the analogous condition on multi-
plicative J-proof nets; we chose to present it as a constraint on proof
structures to make clearer the relation between J-proof structures and
L-nets; as a matter of fact, each condition of definition 69 corresponds
to a condition in the definition of L-nets (see [CF05]).

• The Additives condition allow to recognize the different components
of which a (−,N )-rule is composed, and to work independently with
each of them.

• The Views condition assures that there cannot be conflicts between
components of the same negative rule; to give an intuition on the
meaning of this condition in the usual syntax of additive proof nets,
it is enough to consider the constraint of disjointness between the
different component of an additive box.

• The Contraction condition assures that superposition is not “wild”;
each time two links are contracted, there is always at least one negative
rule which justifies the superposition.

Now we are in the position to define the notion of slice:

Definition 70 (Slice) A slice is a J-proof structure where all negative
rules are singleton; a slice of a J-proof structure R is a subgraph S of R
which is a slice.
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We remark that in this setting jumps has a more preeminent role with
respect to the multiplicative case; they not only graduate sequentiality, but
allow also to keep track of the additive structure, as it appears clearly from
fig. 3.2.

3.2.2 Sequent calculus and J-proof structures

As we did in the multiplicative case, we isolate the J-proof structures which
correspond to HS proof, introducing the notion of sequentializable J-proof
structure.

Given a J-proof structure R and a terminal link b of R we define the
removal of b in the following way:

• if b is a terminal link of type +I∈N (resp. −I∈N ) of R , the removal of
b is the substitution in R of b with one conclusion link for each port bi

of b for i ∈ I.

• if b is a cut link, the removal of b is the substitution in R of b with one
conclusion link for each port of b.

Definition 71 (Scope) Let R be a J-proof structure and W = {w1, . . . , wn}
an negative rule of R: we call scope of an element wi of W (denoted Ri)
the graph obtained from R by erasing all wj and all the links of R above wj

for j 6= i;

The following definitions are adapted from [Lau99].

Definition 72 (sequentialization of a proof structure) We define the
relation “L sequentializes R in ε”, where R is a J-proof structure, L is
a terminal link or a terminal negative rule of R and ε is a set of J-proof
structures , in the following way, depending from L:

• If L is an axiom link, and is the only link of R, then L sequentializes
R into ∅;

• if L is a cut link, and it is possible to split the graph obtained by
removing L into two J-proof structures R1, R2, then L sequentializes
R into {R1, R2};

• if L is a positive link with n ports, and it is it is possible to split the
graph obtained by removing L into n J-proof structures R1, . . . , Rn,
then L sequentializes R into {R1, . . . , Rn} J-proof structures;

• if L is a terminal negative rule W = {w1, . . . wn} of conclusions &I∈N (Oi∈I(Pi))
such that for each I ∈ N there is an element wj of W , we consider
for each wj the scope Rj of wj ; if Rj is a J-proof structure, then L
sequentializes R into {R′

1, . . . ,R
′
n} J-proof structures, where R′

j is
the J-proof structure obtained by removing wj in Rj .
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Definition 73 (sequentializable J-proof structure) A J-proof structure
R is sequentializable iff

• R has a terminal negative rule, which sequentializes R into a set of
sequentializable J-proof structures;

• R has no terminal negative rule and

– R is composed by a single connected component, and one of its
link sequentializes R into a set of sequentializable J-proof struc-
tures or into the empty set;

– R is composed by more than one connected component and each
component is a sequentializable J-proof structure.

Proposition 74 If a J-proof structure R is sequentializable, we can asso-
ciate to it a proof π of HS.

Proof.
the proof is an easy induction on the number of logical links of R:

1. n = 1: the only node in R is an Axiom link with conclusions X, X⊥,
to which we associate

⊢ P, P⊥
;

2. n > 1: suppose R contains one terminal negative rule W = {w1, . . . wn}
of conclusion &J∈N (Oj∈J(Pi)); then by definition of sequentializable
J-proof structure, W sequentializes R into R1, . . . , Rn J-proof struc-
tures of conclusions respectively Γ, P 1

1 , . . . P 1
k1

, . . . Γ, Pn
1 . . . Pn

kn
; to each

Rj by induction hypothesis we can associate a proof πi of conclusion
⊢ Γ, P i

1, . . . P
i
ki

. We obtain π by applying a (−,N ) rule of conclusion
⊢ Γ,&J∈N (Oj∈J(PJ )) to all π1, . . . πn.

Otherwise R has no terminal negative rule; suppose R is composed by
a single connected component; since it is sequentializable there exists
a link L which sequentializes R. Then we reason by cases:

• L is cut link whose premises are typed by P,P⊥; then L sequen-
tializes R into two proof structures R1, R2 of conclusions respec-
tively Γ, P and ∆, P⊥; by induction hypothesis we associate to
R1 (resp. R2) a proof π1 of conclusion ⊢ Γ, P (resp. π2 of con-
clusion ⊢ ∆, P⊥). We obtain π by applying to π1, π2 a cut rule
of conclusion ⊢ Γ,∆;

• L is a positive link +I∈N with conclusion ⊕I∈N (⊗i∈I(Ni)); we
recall that each port of L correspond to an i ∈ I. L sequential-
izes R into R1, . . . , Rn J-proof structures of conclusions respec-
tively Γ1, N1 . . . Γn,Nn; to R1, . . . , Rn we can associate by in-
duction hypothesis n proof π1, . . . , πn of conclusions respectively
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⊢ Γ1, N1, . . . ⊢ Γn, Nn. We obtain π by applying a (+, I) rule of
conclusion ⊢ Γ1,Γn,⊕J∈N (⊗j∈J(Nj)) to π1, . . . , πn.

Otherwise, R is composed by more than one connected component, and
each of them is a sequentializable J-proof structure; we conclude by applying
induction hypothesis on them, followed by a sequence of Mix rules.

�

Note Contrarily as we did in the previous chapter, we do not define the
“desequentialization” π∗ of an HS proof π, because we want to establish a
correspondence between HS proofs and J-proof structures of any degree of
sequentiality (not only the most parallel ones); in section 3.7, we will show
how to associate with a proof a J-proof net of minimal sequentiality.

3.2.3 Correctness criterion

As we recalled in the previous chapter a correctness criterion must allow
to characterize in an intrinsic, purely geometrical way all sequentializable
J-proof structures, that is the ones which correspond to sequent calculus
proofs. The correctness criterion for J-proof structures in the additive case
is composed by two conditions:

• a qualitative one, called cycles condition, (due to Curien and Faggian
, see [CF05]), which is a reformulation in our setting of Hughes and
van Glabbeek’s toggling condition (see [HVG03]);

• a quantitative one, called totality condition, which assure that in a
J-proof net there are enough slices to retrieve a sequent calculus proof.

One of the differences between J-proof nets and L-nets is the totality
condition, which is not required for proving the correctness of L-nets (since
they are partial objects, in the sense of ludics); cycles condition instead is
identical to the homonymous condition on L-nets.

As we did for the multiplicative case, we can associate with a J-proof
structure the structure of a graph with pairs (R,App(R)), by taking as
elements of App(R) the n-tuples of the premises of a negative link; due to
the presence of additives, we have to modify our notion of switching path in
the following way:

Definition 75 (Switching path and cycle) Given a J-proof structure, a
switching path is a path which never uses two different premises of the
same negative rule (called switching edges); a switching cycle is a switch-
ing path which is a cycle.
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Definition 76 (Cycles-correct J-proof-structure) A J-proof structure
R is cycles-correct if and only if, given a non empty union C of switching
cycles of R, there is a negative rule W ∈ R not intersecting C and a pair

w1, w2 ∈ W such that for some links c1, c2 ∈ C , c1
+
−→ w1 and c2

+
−→ w2;

in this case we say that the additive pair w1, w2 ∈W breaks C.

Remark 77 The above condition deals with cycles which crosses different
slices of the same J-proof structure; it is well known, from [Gir96], that the
switching acyclicity of the single slices of a proof structure does not imply
the sequentiability of the whole proof net.

A &-resolution of a J-proof structure R, is the graph obtained by choos-
ing for each negative rule W of conclusion &J∈N (Oj∈J(Pj)) an I ∈ N and
erasing each component w of W which is not labelled by I, together with
all the links hereditary above w.

Definition 78 (Total J-proof structure) A J-proof structure R is total

iff each &-resolution of R yields a unique slice with the same conclusions of
R.

Definition 79 (J-proof net) A J-proof net is a J-proof structure which
is total and cycles-correct.

3.3 Sequentialization

In this section we extend the technique of sequentialization used in the
previous chapter to additive J-proof nets; that is, we prove that gradually
adding jumps to a J-proof net, we retrieve a sequent calculus proof. In
subsection 3.3.1 we show that, if the order associated with a J-proof net
R is arborescent, then R is sequentializable. In order to sequentialize an
additive J-proof net by adding jumps, we must take into account the effect
of duplication of the context induced by a (−,N )-rule; to properly deal with
it, when adding a jump to a J-proof net R, we will add it separately to each
slice, and then we will superpose the slices so obtained. In subsection 3.3.2,
we define precisely the operation of superposition of slices; then in subsection
3.3.3 we define the notion of bundle of jumps, which allow to add a jump in
all the slices of a J-proof net at the same time. Finally, in subsection 3.3.4,
we will prove that we can make arborescent the order of any J-proof-net by
adding bundles of jumps.

Note. By now, we will only consider J-proof nets without cut links; we
will speak about the question of sequentialization with cut-links in section
3.4.
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3.3.1 Arborescence and sequent calculus

Due to the introduction of ports and conclusion links, we have to modify
the notion of order associated with a J-proof net and the one of skeleton.

A J-proof net R is a directed acyclic graph (d.a.g.); we define the order
≺R associated with R as the strict partial order induced by R as a d.a.g.
restricted to the logical links of R (that is without conclusion links).

The skeleton of a J-proof net R (denoted as always Sk(R)) is the di-
rected graph with ports obtained from R by erasing all the edges which are
transitive and all conclusion links.

Since Sk(R) is obtained from R just by erasing transitive edges, the
order associated to Sk(R) as a d.a.g and the order ≺ R associated with R
are equal; so if the order ≺R is arborescent, the skeleton of R is a forest.

Now we prove that if the order associated with a J-proof net R is ar-
borescent, then R is sequentializable.

We first state the following lemma:

Lemma 80 If R is a J-proof net with more than one logical link and without
terminal negative links, then all the conclusions of R are positive.

Proof. It follows from the positivity condition (the proof is the same of
lemma 16). �

We modify definition 21 in order to adapt it to graphs with ports:

Definition 81 (Splitting node) Let G be a d.a.g. with ports and c a node
with n ports, which is a root of G; let us call b1

i , . . . , b
l
i the nodes of G which

are sources of an edge belonging to the port ci of c for i ∈ {1, . . . , n}. We
say that c is splitting for G if erasing c, any two of the nodes bl′

j , bl′′

k become
not connected. I.e. by erasing c, the graph splits into n components, one for
each port of c .

Proposition 82 Let R be a J-proof net such that ≺R is arborescent. Then
R is sequentializable.

Proof.

The proof is by induction on the number of logical links of R:

n = 1: in this case, R is composed by just an axiom link, and is trivially
sequentializable;

n = k + 1: suppose R has a terminal negative rule W , whose elements wi

are minimal in ≺R; then we consider for each i the graph R′
i (which

is obtained by deleting wi from its scope Ri). Due to totality, each
R′

i is obviously a J-proof net whose order associated is arborescent, so
by induction hypothesis is sequentializable; then R is sequentializable.
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Otherwise, by lemma 80, all the conclusions of R are positive; we rea-
son by cases, depending if R is composed by one or several connected
component:

• if R is composed by a single connected component, there is a
positive link c which is terminal and minimal in ≺R. Obviously
c is splitting in Sk(R), (because in Sk(R), c is the root of a tree);
since passing from R to Sk(R) we only erase transitive edge, it
easy to check that the removal of c from R splits R into R1, . . . , Rn

J-proof nets (one for each port of c) ,whose order associated is
arborescent, so by induction hypothesis they are sequentializable;
then R is sequentializable.

• If R is composed by more than one connected component then
Sk(R) is a forest, and each tree of the forest corresponds to a
J-proof net whose order is arborescent (so sequentializable by
induction hypothesis). Then R is sequentializable.

�

3.3.2 Superposition

We define the operation of superposition of J-proof structures, using the
notion of sharing equivalence, which has been introduced by Laurent
and Tortora de Falco in [LTdF04], and refined by Pagani in [Pag06]; the
operation we define is analogous to the union of chronicles in ludics and
L-nets (see [CF]).

Let R1, . . . Rn be J-proof structures; Two typed edges x, y of R1, . . . , Rn,
premises respectively of two nodes b, b′, are similar when

• b and b′ are both conclusion nodes;

• b and b′ are labelled by +I∈N (resp. −I∈N ) and x, y both belong to
the i-th port of b, b′ for i ∈ I.

Given a J-proof structure R we say that a is a sublink of b when a typed
premise of b is a conclusion of a; a link a is an hereditary sublink of b
when there exist a sequence of link a1, . . . , an such that ai is a sublink of
ai+1 and a = a1, b = an.

Given two nodes a, b in a J-proof structure R, we say that a is a sublink
of b due to an edge x , if x is both a typed conclusion of a and a premise
of b; we denote it by a

x
→ b.
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Definition 83 (Sharing equivalence) Given R1, . . . , Rn J-proof structures
with the same conclusions C1, . . . Cn, a sharing equivalence is an equiv-
alence relation ≡ on the links of R1, . . . , Rn such that for any link a, a′, b
:

identity if a, a′ belong to the same Ri, then a ≡ a′ iff a = a′ ;

bottom if a, a′ are conclusion links, then a ≡ a′ iff a, a′ have the same label
among C1, . . . , Cn;

bottom-up if b
x
→ a, and a ≡ a′, then for every link b′ such that b′

x′

→ a′,
b ≡ b′ iff

• b and b′ have the same label;

• x and x′ are similar;

• for all edge b → c there exist an edge b′ → c′ such that c ≡ c′

(and vice versa).

up-bottom if a
x
→ b, and a ≡ a′ then there exist a link b′ such that a′

x′

→ b′

and b ≡ b′.

If a ≡ a′, we say that a,a′ are superimposed by ≡. We denote by [a]
the equivalence class of a link a w.r.t. ≡.

Proposition 84 Let R1, . . . , Rn be J-proof structures with the same conclu-
sions, ≡ be the sharing equivalence on R1, . . . , Rn , and a, a′ be two nodes in
R1, . . . , Rn. If a ≡ a′ then the types of the conclusions of a (resp. the type
of a is a is a conclusion link) and the types of the conclusions of a′ (resp.
the type of a′ if a′ is a conclusion link) are equal.

Proof. We prove the proposition by induction on the number of links below
a. If a is a conclusion link, then the proposition is a consequence of condition
bottom. Otherwise, there exists a node b such that a

x
→ b and since a ≡ a′,

by condition up-bottom there exist a node b′ such that a′
x′

→ b′ and b ≡ b′;
by induction hypothesis, the types of the conclusions of b and b′ are the
same. Hence, by condition bottom-up and by definition of similar edges,
x and x′ have the same type. Moreover, if a, a′ are axioms it is clear that
the other conclusions than x, x′ are of same type too. �

We can generalize ≡ to the edges; if x, x′ are two edges of R1, . . . , Rn,
we say that x ≡ x′ iff x is a typed edge (resp. a jump) conclusion of a node
a and premise of a node b, x′ is a typed edge (resp. a jump) conclusion of
a node a′ and premise of a node b′ and a ≡ a′, b ≡ b′; we denote by [x] the
equivalence class of an edge x w.r.t. ≡ By proposition 84 if x ≡ x′ then x
and x′ either have the same type either they are both jumps.
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Fact 85 Let R1, . . . , Rn be n J-proof structures with the same conclusions,
and let ≡ denote the sharing equivalence on R1, . . . , Rn extended to the edges
of R1, . . . , Rn. If x is an edge conclusion (resp. premise) of a link a, then
all the edges in [x] are conclusion (resp. premise) of links in [a].

Definition 86 (Superposition) Let R1, . . . , Rn be a set of J-proof struc-
tures with the same conclusions, and let ≡ denote the sharing equivalence
on (R1, . . . , Rn) extended to the edges of (R1, . . . , Rn). The superposition

of (R1, . . . , Rn), denoted by ≬ (R1, . . . , Rn), is the pre-proof structure whose
links (resp. edges) are the equivalence classes w.r.t. ≡ of the links (resp.
edges) of R1, . . . , Rn.

In particular if a is a link of R1, . . . , Rn, then:

1. in case a is an axiom with conclusions x, y, then [a] is an axiom of
≬ (R1, . . . , Rn) with conclusions [x], [y];

2. in case a is a +I∈N link, then [a] is a +I∈N link of ≬ (R1, . . . , Rn)
such that:

• for each typed edge x premise of a which belongs to a port ai, for
i ∈ I, [x] is a premise of [a] which belongs to the port [a]i for
i ∈ I;

• for each edge y conclusion of a, then [y] is a conclusion of [a].

3. in case a is a −I∈N link, then [a] is a +I∈N link of ≬ (R1, . . . , Rn)
such that:

• for each typed edge x premise of a which belongs to a port ai, for
i ∈ I, [x] is a premise of [a] which belongs to the port [a]i for
i ∈ I;

• for each jump x′ which belongs to the port a∗, [x′] is a premise of
[a] which belongs to the port [a]∗;

• if y is the conclusion of a, then [y] is a conclusion of [a].

4. if a is a conclusion link of type A, [a] is a conclusion link of ≬ (R1, . . . , Rn)
of type A, such that for each premise x of a, [x] is a premise of [a]

Given a set R1, . . . , Rn of J-proof structures with the same conclusions
and the sharing equivalence ≡, we say that Rj shares a link b of Rk, if and
only if there is a link b′ of Rj such that b ≡ b′.

Proposition 87 Let R1, . . . , Rn be J-proof structures with the same conclu-
sions; then R =≬ (R1, . . . , Rn) is a J-proof structure iff R satisfies condition
Contraction of definition 69.
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Proof. Condition positivity and views are easily verified. Let us show the
preservation of condition additives. Suppose that [w], [w′] are two negative
sibling links in R. Then there exist in a slice Ri a w ∈ [w] (resp. in a slice

Rk a w′ ∈ [w′]) such that w
x
→ a in Ri (resp. w′ x′

→ a′ in Rk) and a ≡ a′,
x, x′ are similar, but w and w′ are not sharing equivalent. Since w,w′ are
negative links, they have just one conclusion: but then in order to be not
sharing equivalent they must have different labels.

�

Remark 88 If S1, . . . , Sn are the slices induced by the &-resolutions of a
J-proof structure (resp. J-proof net) R, then ≬ (S1, . . . , Sn) = R

Note. It should be clear now the reason of our choice of considering only
η-expanded axioms: the presence of non atomic axioms would unnecessarily
complicate the definition of superposition of J-proof structures.

3.3.3 Bundle of jumps

Given a negative rule W : {w1, . . . , wn} of a J-proof structure R, we say
that a link c depends from W if for some wi ∈W , wi ∈ c↓.

Definition 89 (Bundle of jumps) Given a J-proof net R, adding a bun-

dle of jumps in R between a positive link a and a negative link b sums up
to:

1. taking the set of all the slices S1, . . . , Sn induced by the &-resolution
of R;

2. if b depends from some additive pair W1 . . . Wn in R , we consider all
the slices containing some elements w1 . . . wn of W1, . . . Wn;

3. for any slice Si containing a and some components wj , . . . , wk of W1, . . . ,Wn

we add a jump in Si between a and wj, . . . , wk; if Si contains b too,
we add also a jump between a and b: in this way we get a slice S′

i;

4. we take the superposition ≬ (S′
1, . . . , S

′
n) of all S′

1, . . . , S
′
n .

Proposition 90 Let R be a J-proof net, a a positive link and b a nega-
tive link depending from W1 . . . Wn, and R′ the pre-proof structure obtained
by adding a bundle of jumps between a and b; then R′ is a total J-proof
structure.

Proof.

By proposition 87 we just have to check the preservation of contraction.
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To do that, we just have to prove that for any two positive sibling links
c1, c2 in R′ which became siblings due to the bundle of jumps there exists

an additive pair w1, w2 in R′ such that c1
+
−→ w1 and c2

+
−→ w2.

Let us consider two positive links a′, a′′ respectively belonging to two
slices Sj, Sk of R such that [a′], [a′′] are siblings in R′: if [a′], [a′′] were siblings
in R, we are done (by contraction condition on R). Otherwise it is easy to
check that a′ = a′′ in R; then in the slice S′

j obtained from Sj (resp. in the

slice S′
k obtained from Sk) by definition of bundle of jumps a′

+
−→ w′ (resp.

a′′
+
−→ w′′) where w′, w′′ form an additive pair in R ,and then [w′], [w′′] form

an additive pair in R′.

Totality is trivially preserved.

�

Given a cycles-correct J-proof structure, one add a correct jump when
one add a jump in such a way to get a J-proof structure R′ which is still a
J-proof net; given a J-proof net R, one add a correct bundle of jumps,
when one add a bundle of jumps in such a way to get a J-proof structure R′

which is still a J-proof net.

Definition 91 (Strong switching path) Given a negative link w belong-
ing to a negative rule W of a J-proof structure, a strong switching path

〈w, . . . , a〉 from w to a node b is a switching path which does not use any
switching edge of W .

Remark 92 Let a be a positive link and b a negative link depending from
some additive pairs W1, . . . ,Wn of a J-proof net R; if there isn’t any strong
switching path from b to a in R, then there isn’t any strong switching path
from wi ∈Wi to a in R.

Proposition 93 Let R be a J-proof net, a a positive link and b a negative
link of R; if there isn’t any strong switching path from b to a in R, then we
can add a correct bundle of jumps between a and b in R.

Proof. By the above remark, every jump added by the bundle of jumps is
correct, so no new switching cycles are created; but then cycles condition is
preserved. �

An example of sequentialization Now let us consider the J-proof net
R in fig 3.4; let us add a bundle of jumps between the leftmost terminal
positive link and the rightmost negative rule. To add the bundle of jumps ,
we consider separately each of the four slices S1, S2, S3, S4 of R and we add
in each slice the jump induced by the bundle of jumps as in fig. 3.5; then
we superpose the slices to obtain the J-proof net R′ in fig. 3.6.
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Figure 3.4:

If we consider the skeleton Sk(R′) of R′ in fig. 3.7 it directly corresponds
to the following proof:

ax

⊢ A, A⊥

(+,{1})

⊢ A,⊕(A⊥
1 , B⊥

2 )

ax

⊢ B, B⊥

(+,{2})

⊢ B, ⊕(A⊥
1 , B⊥

2 )
(−,N)

⊢ &(A1, B2),⊕(A⊥
1 , B⊥

2 )
ax

⊢ C, C⊥

(+,K)

⊢ ⊗((&(A1, B2))5, C⊥
6 ),⊕(A⊥

1 , B⊥
2 ), C

ax

⊢ A, A⊥

(+,{1})

⊢ A, ⊕(A⊥
1 , B⊥

2 )

ax

⊢ B, B⊥

(+,{2})

⊢ B, ⊕(A⊥
1 , B⊥

2 )
(−,N)

⊢ &(A1, B2),⊕(A⊥
1 , B⊥

2 )
ax

⊢ C, C⊥

(+,K)

⊢ ⊗((&(A1, B2))5, C⊥
6 ), ⊕(A⊥

1 , B⊥
2 ), C

(−,M)

⊢ ⊗((&(A1, B2))5, C⊥
6 ), &((⊕(A⊥

1 , B⊥
2 )3, (⊕(A⊥

1 , B⊥
2 )4, C

ax

⊢ D, D⊥

(+,L)

⊢ ⊗((&(A1, B2))5, C⊥
6 ), ⊗((&(⊕(A⊥

1 , B⊥
2 ))3, (⊕(A⊥

1 , B⊥
2 ))4)7, D⊥

8 ), C, D.

where N = {{1}, {2}}, M = {{3}, {4}}, L = {7, 8}, K = {5, 6}.

We could as well add a bundle of jumps in R from the rightmost terminal
positive link to the leftmost negative rule, obtaining the J-proof net R′′ in
fig 3.8.

If we consider the skeleton Sk(R′′) of R′′ in fig. 3.9 it directly corresponds
to the following proof:
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ax

⊢ A, A⊥

(+,{1})

⊢ A,⊕(A⊥
1 , B⊥

2 )

ax

⊢ A, A⊥

(+,{1})

⊢ A,⊕(A⊥
1 , B⊥

2 )
(−,M)

⊢ &((⊕(A⊥
1 , B⊥

2 ))3, (⊕(A⊥
1 , B⊥

2 ))4), A

ax

⊢ D, D⊥

(+,L)

⊢ ⊗(&((⊕(A⊥
1 , B⊥

2 ))3, (⊕(A⊥
1 , B⊥

2 ))4)7, D⊥
8 ), A, D

ax

⊢ B, B⊥

(+,{2})

⊢ B, ⊕(A⊥
1 , B⊥

2 )

ax

⊢ B, B⊥

(+,{2})

⊢ B, ⊕(A⊥
1 , B⊥

2 )
(−,M)

⊢ &((⊕(A⊥
1 , B⊥

2 ))3, (⊕(A⊥
1 , B⊥

2 ))4), B

ax

⊢ D, D⊥

(+,L)

⊢ ⊗(&((⊕(A⊥
1 , B⊥

2 ))3, (⊕(A⊥
1 , B⊥

2 ))4)7, D⊥
8 ), B, D

(−,N)

⊢ &(A1, B2), ⊗(&((⊕(A⊥
1 , B⊥

2 ))3, (⊕(A⊥
1 , B⊥

2 ))4)7, D⊥
8 ), D

ax

⊢ C, C⊥

(+,K)

⊢ ⊗((&(A1, B2))5, C⊥
6 ),⊗((&(⊕(A⊥

1 , B⊥
2 ))3, (⊕(A⊥

1 , B⊥
2 ))4)7, D⊥

8 ), C, D.

where N = {{1}, {2}}, M = {{3}, {4}}, L = {7, 8}, K = {5, 6}.

3.3.4 Arborisation

Definition 94 (Saturated J-proof net) A J-proof net R is saturated if
for every negative link a and for every positive link b, it is not possible to add
any correct bundle of jumps between a and b such that the order increases.

Given a J-proof net R, a saturation Sat(R) of R is a saturated J-proof
net obtained from R by adding bundles of jumps.

As before, our sequentialization argument is the following:

• If the order ≺R associated with a J-proof net R is arborescent, we can
associate with R a proof π of HS.

73



J-proof nets: additives
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Figure 3.7: The skeleton of R′

• The order associated to a saturated J-proof net is arborescent.

• Any J-proof net can be saturated.

Lemma 95 Let R be a cycles-correct J-proof structure, and C a union of
switching cycles of R; then there exists an additive pair w1, w2 ∈ W in R
which breaks C and positive node c ∈ C s.t.

1. ¬(c
+
−→ w1) and ¬(c

+
−→ w2);

2. c belongs to a cycle C ′ ∈ C which sees W (a cycle C ′ sees W iff there
exists a node d ∈ C ′ which is hereditary above w1 or w2).

Proof.
The proof is by induction on the number of cycles in C:

1: By the correctness criterion there exists in R an additive pair w1, w2 ∈W
which breaks C. Let’s suppose by absurd that every link of C is
above w1 or w2; then we can partition the nodes of C in two sets,

A = {a : a
+
−→ w1} and B = {b : b

+
−→ w2}, disjoint by condition

views of the definition of J-proof structure. Given any two elements
a ∈ A and b ∈ B, there exists a path r : 〈a . . . b〉 connecting them.
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Figure 3.8: The J-proof net R′′

We consider the first edge of r starting from a which connects a node
d of A with a node d′ of B; either is an incident edge d → d′, and

then d
+
−→ w1 and d

+
−→ w2, or is an emergent edge d ← d′, and

then d′
+
−→ w1 and d′

+
−→ w2; in any case we contradict the condition

views of definition 69, so there exists some link c s.t. ¬(c
+
−→ wi).

Furthermore there has to be at least one positive link which enjoys
the property, otherwise C would not be switching; C obviously sees
W .

n + 1: By the correctness criterion there exists in R an additive pair w1, w2 ∈
W which breaks C. If there is a node c belonging to some cycle C ′ ∈ C
which sees W and s.t. c is not hereditary above W , we have done.
Otherwise, we can partition the cycles of C in three groups: C1 ( the
cycles with all elements above w1), C2 ( the cycles with all elements
above w2 ) and C0 ( the cycles with no element above w1 or w2 ).
Now by induction hypothesis on C1 ∪C0 there exists an additive pair
w′

1, w
′
2 ∈ W ′ which breaks C1 ∪ C0 and a positive link c′ belonging to

some C ′ ∈ C1 ∪ C0 which sees W ′ , such that c′ is not above W ′; W ′

cannot belong to C2, otherwise is above w2, and then either there is
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Figure 3.9:

some c1 ∈ C1 which is above w1 and w2, impossible, either there is
some c0 ∈ C0 which is above w2, impossible; so W ′ breaks C too, and
we have done.

�

Lemma 96 Let R be a cycles-correct J-proof structure; if R contains a
switching cycle , then R is not saturated.

Proof.
We consider the union C of all cycles of R (there is at least one).There

exists, by lemma 95, an additive pair W = {w1, w2} belonging to some nega-
tive rule not intersecting C, which breaks C and a positive link c, belonging
to a cycle C ′ of C, which is not above any of w1, w2; by the fact that C ′ sees
W , there exists a path r′ from c to W , which contains only nodes of C ′ and
nodes in a directed path from some b ∈ C ′ to w1 or w2.

Let’s suppose that W is a conclusion of R: in this case we add a bundle
of jumps between c and w1 (or w2), this doesn’t create cycles and increases
the order.

If W isn’t a conclusion of R, we show that there cannot be any strong
switching path from a link in W to c. Let us suppose that there is a strong
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switching path r : 〈w1(w2) . . . c〉 in R; now if r and r′ are disjoint by com-
posing them we get a switching cycle intersecting W , contradicting the fact
that W doesn’t intersect any switching cycle of R.

If r and r′ do intersect, let’s take the first point d starting from w1(w2)
and going down on r where r meets C ′ (if r doesn’t meet C ′, this means that
r and r′ intersect on the directed path from some node in C ′ to w1 or w2,
and so we have a cycle). The only interesting case is if d is negative: by the
fact that d is in a switching cycle where at least one node is above W , there
exists a strong switching path r′′ from d to W , so we compose the subpath
of r from w1(W2) to d with r′′ and we get a switching cycle, contradiction.

So there isn’t any strong switching path from wi to c, then by proposition
93 we can add a correct bundle of jumps from c to wi.

�

Lemma 97 (Arborisation of J-proof nets) Let R be a J-proof net. If
R is saturated then ≺R is arborescent. Any J-proof net can be saturated.

Proof.

If R contains some cycles, then we apply lemma 96 and we have done; so
we can restrict ourselves to the case where R doesn’t contain any switching
cycle.

We prove that if ≺R is not arborescent, then there exists a negative link
c and a positive link b s.t. we can add a bundle of correct jumps between b
and c which makes the order increase.

The proof is just an adaption to J-proof nets of the proof of lemma 4:

if ≺R is not arborescent, then in ≺R there exists a link a with two
immediate predecessors b and c (they are incomparable). Observe that b
and c are immediately below a in Sk(R) and also in R; observe also that b
and c cannot belong to the same rule and b (resp. c) cannot be above any
link in the same negative rule than c (resp. b), by condition views.

Either 1) a is an axiom link, either 2) is a positive link, and b and c are
two negative links; we consider just the case 2), the first one being slightly
simpler.

We have two possibilities:

1. either b or c is terminal in R. Let assume that b is terminal; then c
cannot be terminal ( by definition of J-proof structure), and there is
a positive link c′ which immediately precedes c. If we add a bundle
of jumps between b and c′, we preserve cycles condition and the order
increases (see fig 3.10).

2. Neither b or c are terminal in R. Each of them has an immediate
positive predecessor, respectively b′ and c′.
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a

b c

a

b c

c’

 

Figure 3.10:

Now we want to prove that either we can add a bundle of correct jumps
from b′ to c, either we can add a bundle of correct jumps from c′ to b.

Let’s suppose that we cannot add any bundle of correct jumps in R
from b′ to c; then by proposition 93 there is in R a strong switching
path r = 〈c, c′....b〉. If we cannot add a bundle of correct jumps from
c′ to b too, then there is a strong switching path r′ = 〈b, b′...c〉 in R.

Assume that r and r′ are disjoint: we exhibit a switching cycle in R
〈c, c′...b, b′...c〉 by concatenation of r and r′, contradicting the hypoth-
esis that R has no switching cycles (see fig 3.11).

a

cb

c’

r’

b’

a

cb

c’ b’

 

a

cb

c’b’

r

Figure 3.11:

If r and r′ are not disjoint, we reason as in the proof of lemma 4, and
and we still find a cycle .

�

Theorem 98 (sequentialization) Let R be a J-proof structure of conclu-
sion C1, . . . , Cn. If R is a J-proof net then is sequentializable.
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Proof.

Let us take a saturation Sat(R) of R; we reason by induction on the
number of logical links in R:

n = 1: in this case, R is composed by just an axiom link, and is trivially
sequentializable;

n = k + 1: if Sat(R) has a terminal negative rule W , ( whose elements
w1, . . . wn are minimal in ≺Sat(R)), then R too has a terminal negative
rule W ′; due to totality, it is straightforward that W ′ sequentializes R
into {R1, . . . Rn} J-proof nets, which are sequentializable by induction
hypothesis. Otherwise, by lemma 80 all conclusions of R are positive;
we reason by cases, depending if Sat(R) is composed by one or more
than one connected component:

• if Sat(R) is composed by a single connected component, there is
a terminal positive link c with conclusion Ci in Sat(R) which is
minimal in ≺Sat(R) (and splitting in Sk(R)) whose removal splits
Sat(R) into n J-proof nets; but then also the removal of the ter-
minal link c′ with conclusion Ci in R splits R into n J-proof nets
(otherwise, c would not be splitting in Sat(R)) so c′ sequential-
izes R into {R1, . . . , Rn} J-proof nets which are sequentializable
by induction hypothesis.

• if Sat(R) is composed by more than one connected component,
each component correspond to a subnet of R (so is sequentializ-
able by induction hypothesis). Then R is sequentializable.

�

J-proof nets and Mix The proof of sequentialization provided above,
could be easily adjusted in order to take out the Mix rule, just by properly
extending the notion of correction graph and s-connectedness, as we did in
chapter 2.

3.4 Cut

In this section we study J-proof structures with cut-links.

First in subsection 3.4.1 we deal with sequentialization in presence of cut
links; then in subsection 3.4.2 we study cut-elimination on J-proof struc-
tures.
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3.4.1 Cut and sequentialization

Unfortunately, we cannot straightforwardly extend our proof of sequential-
ization in presence of cut-links. The reason of the problem is in the operation
of superposition of slices, which allows to define the bundle of jumps: super-
posing slices in presence of cut links is quite difficult. This is not a novelty:
actually, in the sliced polarized proof nets of [LTdF04], a similar problem
is present, which makes hard to conciliate the presence of cuts inside proof
nets and sequentialization.

The way out is to consider only cut-free J-proof nets (for which we can
prove sequenzialization), compose them using cut-links, and then reducing
the J-proof net obtained until we reach the normal form (which is cut-free,
so that we can deal with it again).

The central point of this argument is the preservation of the property of
being sequentializable under cut reduction; we prove this result in section
3.6 by using the injectivity of pointed semantics with respect to J-proof nets,
that we state in subsection 3.5.2; actually, this strategy is the same used by
Laurent and Tortora de Falco for sliced polarized proof nets, using relational
semantics.

3.4.2 Cut elimination

Definition 99 Given two J-proof structure R1, R2 with conclusion respec-
tively Γ, P and ∆, P⊥, the composition of R1, R2 is the J-proof structure
obtained by :

1. erasing the conclusions links with label P,P⊥ of R1, R2;

2. connecting the graphs so obtained with a cut-link with premises P,P⊥.

Remark 100 If R1, R2 are sequentializable (i.e. J-proof nets) then their
composition R is sequentializable ( i.e. a J-proof net).

Now we define cut elimination on J-proof structures. As in L-nets, re-
duction is defined on slices: so to reduce a J-proof structure R, we will
decompose R in slices, perform reduction separately on each slice, until we
reach a cut-free slice, and then superpose all the cut free slices.

We first begin by defining cut reduction on slices.

Cut elimination on slices In order to define cut elimination on slices,
we have to extend our definition of slice to include the empty slices with
conclusion C1, . . . , Cn.

Cut reduction rules are graph rewriting rules which locally modify a
slice S obtaining a slice S′ with the same conclusions.

There are three kinds of cut-elimination steps (we denote by S  S′ the
relation “S reduces to S′”), depicted in Fig. 3.12, Fig. 3.13 and fig. 3.14..
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Cut

AxAx

A   A   

T

A   A   

Figure 3.12: ax cut reduction.

Definition 101 (Correct slice) A slice is correct iff it is switching acyclic.

With respect to the rewriting rules +I∈N/−I∈N , +K∈N/−J∈N and ax,
reduction enjoys the following properties:

Theorem 102 (Preservation of correctness) Given a slice S, if S is
correct and S  S′, then S′ is correct.

Theorem 103 (Strong normalization) For every correct slice S, there
is no infinite sequences of reductions S  S1  S2 . . . Sn . . .

Theorem 104 (Confluence) For every correct slice S1, S2 and S3, such
that S1  S2 and S1  S3, there is a slice S4, s.t. S2  S4 and S3  S4.

The proofs of the above theorems are a straightforward generalization of
the proofs of the analogous theorems of section 2.2.5

Cut elimination on J-proof structures In order to properly define
reduction we must isolate the class of proof structures which have a good
computational behaviour: we call them weakly correct.

Definition 105 A total J-proof structure is weakly correct when all its
slices are correct.

Let R be a weakly correct J-proof structure and {S1, . . . , Sn} be the set
of the slices induced by the &-resolutions of R. If S′

i is the cut-free slice
obtained by reducing Si , we call normal form of R ( denoted by [R]) the
superposition ≬ (S′

1, . . . , S
′
n) of S′

1, . . . , S
′
n.

Given a link a of a J-proof structure R, we say that a belongs to the
right (resp. left) branch of a cut-link c iff there exists a link b, whose
conclusion belongs to the right (resp. left) port of c, such that a is an
hereditary sublink of b or a = b.

Given a J-proof structure R and a link a of R, we say that a is hidden
if a is an hereditary sub-link of a cut link of R, we call it visible otherwise.
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+I∈N
−I∈N

⋆⋆

⋆

Cut

Cut

Cut

⋆

⋆⋆

⋆
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⊥
n

N
⊥
1

N1

NnN1N
⊥
1 N

⊥
n

⊕I∈N (⊗i∈I (Ni))
&I∈N (Oi∈I(N⊥

i ))

Figure 3.13: +I∈N/−I∈N cut reduction.

A slice is persistent if it does not reduce itself to the empty slice.

If S is a persistent slice, and a is an hidden link in the right (resp. left)
branch of a cut-link of S, the opposite link of a is the link b in the left
(resp. right) branch of c such that in a slice S′ obtained by reducing S, the
conclusion of a and the conclusion of b becomes premises of the same cut
link c′.

Remark 106 Consider an hidden negative link a of a persistent slice S
and its opposite link b; a and b are hereditary sublink of the same cut-link

c. Now if there are two links a′, b′ in S such that a′
+
−→ a and b

+
−→ b′ and

a′, b′ are not hereditary sublink of c, it easy to verify, following the reduction
steps and the definition of opposite link, that there is a slice S′ obtained by

reducing S such that in S′ a′
+
−→ b′.
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−J∈N +K∈N

Cut

⋆

⋆⋆

⋆

⊕I∈N (⊗i∈I(Ni))
&I∈N (Oi∈I (N⊥

i ))

Figure 3.14: +K∈N/−J∈N cut reduction (with J 6= K.

Proposition 107 Given a weakly correct J-proof structure R and a normal
form [R] =≬ (S′

1, . . . , S
′
n) of R, [R] is a weakly correct J-proof structure.

Proof.
To check that [R] is a J-proof structure, by proposition 87, it is enough

to check that the condition contraction of definition 69 is respected. First
we observe that a weakly correct J-proof structure must contain least one
persistent slice (by totality).

Now let us suppose that there is a positive link a ∈ S′
j and a positive

link b ∈ S′
k such that [a] and [b] are siblings in [R].

Then a, b belong to two different slices Sj , Sk of R, such that a, b are
visible. Now we have the following cases:

1. there is in R a −J∈N -link wj and a −K∈N -link wk, with J 6= K such

that wj , wk are an additive pair and a
+
−→ wj in Sj and b

+
−→ wk in

Sk.

If wj, wk are visible in R, then a
+
−→ wj in S′

j and b
+
−→ wk in S′

k, and
we have done.

Otherwise, wj , wk are hidden; suppose they belong to the left branch
of a cut-link c in R; then in the right branch of c there are two positive
sibling links a′, b′ with label respectively +J∈N and +K∈N , such that
a′ is the opposite link of wj in Sj, and b′ is the opposite link of wk in
Sk (because Sj , Sk are persistent).

Since R is a J-proof structure, there exist in R two negative links

w′
j , w

′
k with a′

+
−→ w′

j in Sj and b′
+
−→ w′

k in Sk, such that w′
j, w

′
k
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form an additive pair in R and they are not hereditary sublinks of c;
moreover, since R is weakly correct, w′

j , w
′
k 6= wj , wk.

(a) Let us suppose that w′
j , w

′
k are visible; since a

+
−→ wj and a′

+
−→

w′
j in Sj, by remark 106 and theorem 104 it is easy to check that

in S′
j a

+
−→ w′

j ; similarly we can found that b
+
−→ w′

k in S′
k, so

we have done.

(b) If w′
j, w

′
k are hidden, we search for their opposite positive links

in Sj, Sk and we iterate the procedure on them, until we get a
visible additive pair w′′

j , w′′
k of R, with w′′

j ∈ Sj, w
′′
k ∈ Sk (it must

exists, by finiteness and switching acyclicity of Sj, Sk); by remark

106 and theorem 104 in S′
j a

+
−→ w′′

j and b
+
−→ w′′

k in S′
k, and we

have done.

2. the view of a in Sj (resp. the view of b in Sk) does not contain a link wj

(resp. a link wk) such that wj, wk form an additive pair in R; it is easy
to check that in this case the view of a and the view of b contains the
same links of R, so a, b are two different occurrence of the same link
of R in Sj, Sk. If all links in the view of a (resp. b) are visible, then a
and b must be sharing equivalent in S′

j, S
′
k: contradiction. Otherwise,

suppose that the view of a in Sj contains a hidden negative link d,
hereditary sublink of a cut-link c of R; then the view of b in Sk contains
d too. We have the following cases:

(a) the opposite positive link d′ of d in Sj is hereditary above a nega-
tive link w′

j and the opposite positive link d′′ of d in Sk is heredi-
tary above a negative link w′

k such that w′
j , w

′
k forms an additive

pair in R and they are not hereditary sublinks of c; if w′
j , w

′
k are

visible, then by remark 106 and theorem 104, a
+
−→ w′

j in S′
j and

b
+
−→ w′

k in S′
k, and we are done; if w′

j , w
′
k are hidden, then we

reason as in point 1-(b) and we conclude.

(b) the view of the opposite link d′ of d in Sj (resp. the view of the
opposite link d′′ of d in Sk) does not contain a link w′

j (resp. a
link w′

k) such that wj , wk form an additive pair in R; it is easy to
check that in this case the view of d′ and the view of d′′ contains
the same links of R, so d′, d′′ are two different occurrence of the
same link of R in Sj , Sk. If all links in the view of d′ (resp. d′′)
are visible, then a and b must be sharing equivalent in S′

j, S
′
k:

contradiction. Otherwise the view of d′ in Sj contains a hidden
negative link e of R, and the view of d′′ in Sk contains e too; then
we search for the positive opposite links of e in Sj,Sk and we
iterate the procedure on them until by finiteness of R either we
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find a visible additive pair w′′
j , w′′

k of R, with w′′
j ∈ Sj, w

′′
k ∈ Sk,

(and then by remark 106 and theorem 104 a
+
−→ w′′

j in S′
j and

b
+
−→ w′′

k in S′
k), either we find a contradiction.

The property of being weakly correct is trivially preserved, due to theo-
rem 102.

�

Theorem 108 (Existence of a normal form) Given a weakly correct J-
proof structure R, there exists a weakly correct J-proof structure R′ such that
R′ = [R].

Proof.

The proof is an easy consequence of theorem 103. �

Theorem 109 (Confluence) If R, R′, R′′ are weakly correct J-proof struc-
tures, such that R′, R′′ are normal forms of R, then R′ = R′′.

Proof. Trivial, from theorem 104. �

3.5 Pointed sets and injectivity

In this section we extend pointed sets semantics to additive J-proof nets.

In subsection 3.5.1 we define the interpretation of a J-proof structure
and we prove that is stable under reduction; in subsection 3.5.2, we prove
the injectivity of pointed semantics in presence of additives.

By A1
∗ ⊎ . . . ⊎ An

∗ we denote the pointed set obtained by taking the
disjoint union

⋃

i∈{1...n}({i} × Ai
∗) reunited with a distinguished element

0A1
∗⊎...⊎An

∗ .

The formulas of HS are interpreted in the following way:

• an atomic formula X is interpreted by a pointed set X∗

• a positive formula ⊕I∈N (⊗i∈I(Ni)) is interpreted by ⊎I∈N (⊛i∈I(P
∗
i ));

• a negative formula &I∈N (Oi∈I(Pi)) is interpreted by ⊎I∈N (⊛i∈I(N
∗
i )).

3.5.1 Experiments

Given a J-proof structure R of conclusions C1, . . . , Cn, we define the in-
terpretation JRK of R as in the multiplicative case, that is as a subset of
C∗

1 ⊛ · · · ⊛ C∗
n, which we define extending the notion of experiment.
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In defining the interpretation of R, given a pointed set A = ⊎I∈N (⊛i∈I(A
∗
i ))

which interprets a formula &I∈N (Oi∈I(Ai)) (resp. a formula⊕I∈N (⊗i∈I(Ai))
) occurring in R, we will not make use of the point 0⊎I∈N (⊛i∈I(A∗

i )) of A; so in
the following when we will refer to 0A we will mean one of the 〈I, 0⊛i∈I (A∗

i )〉
(for I ∈ N ) which belongs to A.

Definition 110 (Experiments) Let S be a slice and e an application as-
sociating with every edge a of type A of S an element of A∗; e is an exper-

iment of S when the following conditions hold:

• if x, y are the conclusions of an ax link then e(x1) = e(x2).

• if x, y are premises of a cut link with premises x and y, then e(x) =
e(y).

• if x is the conclusion of a negative link −I∈N with premises x1 of
type P1, . . . , xn of type Pn and there exist an i ∈ {1, . . . , n} such
that e(xi) 6= 0P∗

i
, then if e(x1) = a1, . . . e(xn) = an, e(x) =< I,<

a1, . . . , an >>; otherwise either e(x) =< I,< 0P∗
1
, . . . , 0P∗

n
>> either

e(x) =< I, 0P∗
1⊛...⊛P∗

n
>;

• if x is the conclusion of a positive link +I∈N with premises x1 of
type N1, . . . , xn of type Nn and there exist an i ∈ {1, . . . , n} such
that e(xi) 6= 0N∗

i
, then if e(x1) = a1, . . . e(xn) = an, e(x) =< I,<

a1, . . . , an >>; otherwise either e(x) =< I,< 0N∗
1
, . . . , 0N∗

n
>> either

e(x) =< I, 0N∗
1⊛...⊛N∗

n
>.

• if a is a positive link of conclusion x of type A and b is a negative link
of conclusion y of type B, and there is a jump between b and a, then
if e(x) 6= 0A∗ then e(y) 6= 0B∗ .

If the conclusion links of S have premises x1, . . . , xn of type respectively
A1, . . . , An and e is an experiment of S such that e(xi) = ai then we shall
say that < a1, . . . , an > is the conclusion or the result of the experiment
e of S, and we will denote it by |e|. The set of the results of all experiments
on S is the interpretation JSK of S; in case S is the empty slice, then its
interpretation is the empty set.

Let R be a total J-proof structure and {S1, . . . , Sn} the set of slices
induced by the & resolutions of R; the interpretation JRK of R is the union
of JS1K, . . . , JSnK.

Proposition 111 If S is a correct slice, and S  S′, then JSK = JS′K.

Proof. Easily follows from the proof of proposition 38. �

Proposition 112 If R,R′ are weakly correct J-proof structures, such that
R′ = [R], then JRK = JR′K.

Proof. The proof is a consequence of proposition 111. �
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3.5.2 Injectivity

Definition 113 (Relational result) Let S be a slice and |e| the result of
an experiment on S; |e| is relational it does not contain any occurrence of
0.

The set of relational results of experiments on a slice S is called the
relational part of JSK; we will denote it by JSKRel.

Definition 114 (Injective result) Let S be a slice and |e| be a relational
result of an experiment on S; |e| is injective when in |e| does not occur two
times a same element of a pointed set X∗ interpreting an atomic formula.

Lemma 115 Given a slice S, a positive link a with typed conclusion x and a
negative link b with typed conclusion y, there is a jump (eventually transitive)
between a and b iff for all experiments e of R, e(x) 6= 0⇒ e(y) 6= 0.

Proof. The proof is an easy consequence of definition of experiment. �

Theorem 116 (Injectivity of slices) Let S and S′ be two cut-free correct
slices with the same conclusions. If JSK = JS′K then R = R′.

Proof. It easily follows from the proof of theorem 47. �

Given a slice S, we denote by S− the slice obtained by erasing all the
jumps of S.

Proposition 117 If S is a correct, cut free slice and S′ is a saturated,
correct cut-free slice with the same conclusions as S, such that JSKRel =
JS′KRel and JS′K ⊆ JSK, then S′ = Sat(S).

Proof. Let e be an injective experiment on S, which always exists. Since
the result of e is in JSKRel = JS′KRel, then there is an experiment e′ on S′,
such that e and e′ have the same result. Now, let c be a conclusion link
of S, and c′ be the correspondent of S′. Since c and c′ have same type, it
is simple to note that the values of e and e′ on the correspondent premises
of such links are equals. Hence by going from the conclusions c1, . . . , cn to
the atomic edges, we can prove that S and S′ are the same graph up to the
axioms and jumps. Now since e′ has the same values as e, e′ is injective
too, therefore the two slices have the same axioms, that is S− = S′−. Since
JS′K ⊆ JSK, using lemma 115 we can say that all the jumps of S are jumps
of S′. In order to saturate S, we just add to S all the jumps of S′ which are
not jumps of S; in this way we obtain a slice Sat(S) = S′.

�
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Given a J-proof structure R of conclusions Γ, a &-assignment of R is
a function φ associating to any formula of type &I∈N (Oi∈I(Pi)) occurring
in Γ a J ∈ N .

It is easy to check that if R is total, to any &-assignment φ it corresponds
a unique slice Sφ of R, and to each slice induced by a & resolution of R
correspond (at least one) &-assignment φ.

Let us consider an element < J, δ > of a pointed set ⊎I∈N (⊛i∈I(P
∗
i )),

interpretation of a formula &I∈N (Oi∈I(Pi)), and an element γ of the in-
terpretation JRK of a total J-proof structure R with conclusions Γ; we say
that γ is compatible with a &-assignment φ on Γ iff for any occurrence
of < J, δ > in γ, on the corresponding occurrence of &I∈N (Oi∈I(Pi)) in Γ,
φ(&I∈N (Oi∈I(Pi))) = J .

Proposition 118 Given a total J-proof structure R, an element γ of JRK
is compatible with a &-assignment φ, iff γ is the result of an experiment on
Sφ.

Proof. Suppose γ is not a result of an experiment on Sφ; then it is a result
of an experiment on another slice S′ of R, which differ from Sφ for at least
one component of a negative rule. But then is easy to observe that γ cannot
be compatible with S′. �

Proposition 119 Given a total J-proof structure R and a &-assignment φ,
JSφK = {γ ∈ JRK|γ is compatible with φ}.

Proof. Easy consequence of proposition 118. �

Theorem 120 (Injectivity) Let R and R′ be two cut-free J-proof nets with
the same conclusions Γ. If JRK = JR′K then R = R′.

Proof.
Let us take the slice Sφ of R corresponding to the &-assignment φ of Γ,

and suppose Sφ does not belong to R′. By proposition 119 JSφK = {γ ∈
JRK|γ is compatible with φ}. Since JRK = JR′K, {γ ∈ JRK|γ is compatible
with φ} = {γ ∈ JR′K|γ is compatible with φ}; then for the unique slice S′φ

of R′ which corresponds to φ by proposition 119 JS′φK = {γ ∈ JR′K|γ is
compatible with φ}, and JS′φK = JSφK; but then by theorem 116 S′φ = Sφ

so Sφ belongs to R′, contradiction.

�

Proposition 121 If R is a cut-free J-proof net and R′ is a saturated cut-
free J-proof net with the same conclusions as R, such that JRKRel = JR′KRel

and JR′K ⊆ JRK, then R′ = Sat(R).
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Proof.

We prove that for every slice S of R there exist a slice S′ of R′ such that
S′ = Sat(S).

Let us take the slice Sφ of R corresponding to the &-assignment φ of Γ,
and suppose that for no slices S′ of R′, S′ = Sat(Sφ). By proposition 119
JSφK = {γ ∈ JRK|γ is compatible with φ}, and JSφKRel = {γ ∈ JRKRel|γ is
compatible with φ}.

Since JRKRel = JR′KRel, then {γ ∈ JRKRel|γ is compatible with φ} =
{γ ∈ JR′KRel|γ is compatible with φ} and since JRK ⊇ JR′K, {γ ∈ JRK|γ is
compatible with φ} ⊇ {γ ∈ JR′K|γ is compatible with φ}; then for the unique
slice S′φ of R′ which corresponds to φ by proposition 119 JS′φK = {γ ∈ JR′K|γ
is compatible with φ}, and JS′φKRel = {γ ∈ JR′KRel|γ is compatible with
φ}; so JS′φKRel = JSφKRel, and JS′φK ⊆ JSφK; but then by proposition 117
S′φ = Sat(Sφ), contradiction.

Similarly, we can prove that for every slice S′ of R′ there exist a slice S
of R such that S′ = Sat(S); but then it is immediate that R′ = Sat(R).

�

3.6 Correctness criterion is stable under reduction

In this section we solve the question, left opened since subsection 3.4.1, of the
stability of correctness under cut-reduction. Our strategy is the following:
first in subsection 3.6.1 we prove that pointed semantics is a model also for
HS; then, in subsection 3.6.2 from this result and from injectivity of pointed
semantics we prove that the normal form of a sequentializable J-proof net
is still sequentializable.

3.6.1 Pointed set semantics and HS

We provide an interpretation JπK of an HS proof π in pointed sets:

if π is a proof of conclusions ⊢ Γ, where Γ is a sequence of formulas
A1, . . . , An, then JπK is a subset of A∗

1 ⊛ . . .⊛ A∗
n, defined inductively in the

following way:

• if π is the proof

ax

⊢ X,X⊥

then JπK = {< a, a > |a ∈ X∗}.

• if π is the proof
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π1

⊢ Γ, A

π2

⊢ ∆, A⊥

cut
⊢ Γ,∆

then JπK = {< γ, δ > |∃a < γ, a >∈ Jπ1Kand < δ, a >∈ Jπ2K}.

• if π is the proof

π1

⊢ Γ
π2

⊢ ∆
mix

⊢ Γ,∆

then JπK = {< γ, δ > |γ ∈ Jπ1K and δ ∈ Jπ2K}.

• if π is the proof

π1

⊢ Γ1, N1 . . .
πn

⊢ Γn,Nn
(+,I)

⊢ Γ1, . . . ,Γn,⊕I∈N (⊗i∈INi)

then JπK = {< γ1, . . . , γn, < I, a >> | < γ1, a1 >∈ Jπ1K, . . . , < γn, an >∈
JπnK}, where a = 0N∗

1⊛...⊛N∗
n

or a =< a1, . . . , an >; if a = 0N∗
1⊛...⊛Nn

then for all i, ai = 0N∗
i
.

• if π is the proof

π1

⊢ Γ, P 1
1 . . . , P 1

k1
. . .

πn

⊢ Γ, Pn
1 . . . , Pn

kn
(−,N )

⊢ Γ,&J∈N (Oj∈JPi)

then JπK =
⋃

I∈N {< γ,< I, a >> | < γ, ai
1, . . . , a

i
ki

>∈ JπiK} where

a = 0
P1∗

i ⊛...⊛P
ki∗

i

or a =< a1
i , . . . , a

ki

i >; if a = 0
P1∗

i ⊛...⊛P
ki∗

i

then

i) for all j, a
j
i = 0

P
j∗
i

and

ii) γ = 0C∗
1
, . . . , 0C∗

l
( if Γ = C1, . . . , Cl). .

In order to prove that pointed sets are a semantics for HS proofs, we
first prove that we can simulate cut-reduction on HS proofs using slices (for
a precise definition of cut-elimination in HS we refer to [Gir07]).

To an HS proof π we can associate a set of slices S(π) by induction on
the height of π in the following way:

let r be the last rule of the HS proof π. We define the set of slices S(π)
(with the same conclusions as π) by induction on π.
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• If r is an axiom with conclusions X,X⊥, then the unique slice of S(π)
is an axiom link with conclusions X,X⊥.

• If r is a a cut rule with premises the subproofs π1 and π2, then S(π)
is obtained by connecting every slice of S(π1) and every slice of S(π2)
by means of a cut-link.

• if r is a Mix rule, with premises the subproofs π1 and π2, then S(π)
is obtained by taking for every slice in S(π1) and every slice in S(π2)
their disjoint union.

• If r is a (+, I)-rule with premises the subproofs π1, . . . , πn , then S(π)
is obtained by connecting every slice in S(πj) with every slice of S(πk)
(with j 6= k) by means of a +I∈N -link.

• If r is a (−,N )-rule with premises the subproofs π1 . . . πn (one subproof
πi for each I ∈ N ), then S(π) is obtained by adding to every slice S
of S(πi):

– a −I∈N -link bi;

– for all a positive terminal link a of S, add a jump between a and
bi in S;

and then by taking the union of all this sets of slices.

Given a set of slice S, we say that S reduces to the set of slices S ′ if S ′

is obtained from S by reducing some (even none) of the slices of S.

Proposition 122 Let π be an HS proof, and π′ be a cut-free proof obtained
from π by a cut-elimination step. Then S(π) reduces to S(π′).

Proof.
If π reduces to π′ with a commutative step then it is clear that S(π) =

S(π′); otherwise, the proof easily follows from the fact that to each slice S′

of S(π′) correspond a slice S of S(π) such that either S′ = S either S′ is
obtained from S by a reduction step. The slices of S(π) which are not (or
not reduces to) slices of S(π′), are all the slices which reduces in a step to
the empty slice. �

Proposition 123 Let π be an HS proof, and S(π) = S1, . . . , Sn the set of
slices associated to π. Then JπK = ∪i∈{1,...,n}(JSiK).

Proof. Easy induction on π. �

Proposition 124 Let π be an HS proof and π′ be a proof obtained by re-
ducing a cut in π. Then JπK = Jπ′K.
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Proof. By proposition 123 JπK = ∪i∈{1,...,n}(JSiK) for S(π) = S1, . . . , Sn,
and Jπ′K = ∪i∈{1,...,k}(JS

′
iK) for S(π′) = S′

1, . . . , S
′
k; then the proof follows

from proposition 122 and theorem 111. �

3.6.2 Stability of the criterion

Proposition 125 If R is a J-proof structure sequentializable into a proof
π, then JπKRel = JRKRel and JπK ⊆ JRK.

Proof. Trivial, from the fact that any element of JπK induces an experiment
of R. �

Theorem 126 Given a sequentializable J-proof structure R, [R] is sequen-
tializable.

Proof.

Since R is sequentializable, we can associate to it a proof π, and by
proposition 125, JπK ⊆ JRK. We reduce π into a cut-free proof π0; Since
semantics is preserved by cut-elimination by proposition 124, JπK = Jπ0K.
Now consider the normal form R0 of R; by proposition 112 JRK = JR0K

R −−−−→ R0




y





y

π −−−−→ π0

�

If S(π0) = S1, . . . , Sn it is immediate that the superposition ≬ (S1, . . . , Sn)
is a saturated J-proof net R′, and obviously Jπ0K = JR′K. Since JR′KRel =
Jπ0K

Rel = JπKRel = JRKRel = JR0K
Rel, and JR′K = Jπ0K = JπK ⊆ JRK = JR0K

by proposition 121 R′ = Sat(R0); but then, R0 is sequentializable into π0.

3.7 J-proof nets and degrees of sequentiality

In this section we isolate some specific classes of J-proof nets, with respect
to their degree of sequentiality.

In subsection 3.7.1, we define two subsets of J-proof nets, the ones with
minimal sequentiality and the ones with maximal sequentiality, by providing
inductive procedures for constructing them. Such procedures are based on
the grammars for generating parallel L-nets and L-forests defined in [CF].
Then in the remaining two subsections we show how the notion of box can be
retrieved using jumps, by relating J-proof nets with sliced polarized proof
nets of [LTdF04] (in subsection 3.7.2) and with proof nets with additive
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boxes, both the standard ones of [Gir87] and the multiboxes of [TdF03b] (in
subsection 3.7.3).

For simplicity’s sake in this section we will deal only with cut-free J-proof
nets.

3.7.1 Minimal and maximal sequentiality

Definition 127 A J-proof net of minimal sequentiality is a J-proof
net which is built inductively in the following way:

• An axiom link is a J-proof net of minimal sequentiality;

• If R1, . . . , Rn are J-proof nets of minimal sequentiality of conclusions
respectively Γ1, . . . ,Γn, where the formulas in Γi are all positive, the
the union of R1, . . . , Rn is a J-proof net of minimal sequentiality.

• If R1 . . . , Rn are J-proof nets of minimal sequentiality of conclusions
respectively Γ1, N1, . . . Γn, Nn then the J-proof net of conclusions
Γ1, . . . ,Γn,⊕J∈N (⊗j∈J(Nj)) obtained by erasing from each Ri the con-
clusion link of type Ni and then connecting all Ri together with a
+I∈N -link of conclusion ⊕J∈N (⊗j∈J(Nj)), is a J-proof net of mini-
mal sequentiality.

• If R1, . . . , Rn are J-proof nets of minimal sequentiality of conclusions
respectively Γ, P 1

1 , . . . P 1
k1

, . . . Γ, Pn
1 . . . Pn

kn
then the J-proof net of con-

clusion Γ,&J∈N (Oj∈J(Pj)) obtained in the following way is a J-proof
net of minimal sequentiality:

1. for each Ri erase the conclusion links of type P i
1 . . . P i

ki
and add

a −I∈N link bi of conclusion &J∈N (Oj∈J(Pj)) in such a way to
get a J-proof net R′

i of conclusions Γ,&J∈N (Oj∈J(Pj)) for each
I ∈ N ;

2. for every R′
i and for every positive link a of R′

i such that there
exist an R′

i′ with i 6= i′ which does not share a, add a jump in R′
i

between a and bi, obtaining a J-proof net R′′
i ;

3. take the superposition of all R′′
1 , . . . , R

′′
n.

Definition 128 A J-proof net of maximal sequentiality is a J-proof
net which is built inductively in the following way:

• An axiom link is a J-proof net of maximal sequentiality;

• If R1, . . . , Rn are J-proof nets of maximal sequentiality of conclusions
respectively Γ1, . . . ,Γn, where the formulas in Γi are all positive, then
the union of R1, . . . , Rn is a J-proof net of maximal sequentiality.
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• If R1 . . . , Rn are J-proof nets of maximal sequentiality of conclusions
respectively Γ1, N1, . . . Γn,Nn then the J-proof net of conclusions
Γ1, . . . ,Γn,⊕J∈N (⊗j∈J(Nj)) obtained by erasing from each Ri the con-
clusion link of type Ni and then connecting all Ri together with a
+I∈N -link of conclusion ⊕J∈N (⊗j∈J(Nj)), is a J-proof net of max-
imal sequentiality.

• If R1, . . . , Rn are J-proof nets of maximal sequentiality of conclusions
respectively Γ, P 1

1 , . . . P 1
k1

, . . . Γ, Pn
1 . . . Pn

kn
then the J-proof net of con-

clusion Γ,&J∈N (Oj∈J(Pj)) obtained in the following way is a J-proof
net of maximal sequentiality:

1. for each Ri erase the conclusion links of type P i
1 . . . P i

ki
and add

a −I∈N link bi of conclusion &J∈N (Oj∈J(Pj)) in such a way to
get a J-proof net R′

i of conclusions Γ,&J∈N (Oj∈J(Pj)) for each
I ∈ N ;

2. for every R′
i and for every positive terminal link a of R′

i, add a
jump in R′

i between a and bi, obtaining a J-proof net R′′
i ;

3. take the superposition of all R′′
1 , . . . , R

′′
n.

Given a sequent calculus proof π, we could either associate a J-proof net
of minimal sequentiality π∗min, either a J-proof net of maximal sequentiality
π∗max by induction on the height of π in the obvious way.

3.7.2 J-proof nets and polarized boxes

In [LTdF04] Laurent and Tortora de Falco introduced a notion of proof net
for the polarized fragment of linear logic, LLpol (see [Lau02]) as set of slices
glued together using exponential boxes; they called such a proof net sliced
polarized proof net.

In this subsection we study the relation between sliced polarized proof
nets without structural rules (that is in the fragment MALL↑↓

pol) and J-proof
nets.

We do not provide a direct translation of one syntax into the other;
nevertheless, we define a condition on J-proof nets (the polarized boxing
condition), and we show that this condition is analogous to the condition on
boxes in sliced polarized proof nets; furthermore we prove that the J-proof
nets which satisfy the polarized boxing condition are exactly the ones with
maximal sequentiality.

Definition 129 (Polarised box) Given a J-proof net R, we call polar-

ized box of a negative rule W = {w1, . . . , wn} the set of links hereditary
above some wi ∈W in R.
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Definition 130 A J-proof net R satisfy the polarized boxing condition

iff given two polarized boxes B1, B2 of R, either they are disjoint, either one
of them is strictly included into the other.

Proposition 131 A J-proof net R satisfies the polarized boxing condition
iff R is a J-proof net of maximal sequentiality.

Proof. The proof is an easy induction on R. �

Proposition 132 Let R be a J-proof net which satisfies the boxing condi-
tion: then each polarized box B of R can be decomposed into a set of slices
S(B).

Proof. By proposition 131, R is a J-proof net of maximal sequentiality, so
by construction given a polarized box B of a negative rule W = w1, . . . , wn

to each wi corresponds a subnet Ri of R; we take as S(B) the set of slices
of each Ri. �

Given a J-proof net R which satisfies the boxing condition, we define the
depth of a node b in R as the maximal number of polarized boxes containing
b. Given a node b which belongs to a polarized box B of R, the depth of
b with respect to B is the maximal number of boxes included in B which
contains b.

Proposition 133 In an s-connected J-proof net R which satisfies the po-
larized boxing condition:

• there is at most one positive link at depth 0;

• for any slice in the set S(B) associated with a polarized box B of R
there is at most one positive link at depth 0 with respect to B.

Proof. Using proposition 131 and 132, the proof is an easy induction on
the construction of R. �

3.7.3 J-proof-net and additive boxes

The first solution proposed in [Gir87] to represent the &-rule in proof nets,
was to deal with it explicitly, using a box called additive box ; analyzing
the interpretation of the &-rule in coherent semantics, Tortora de Falco in
[TdF03b] refined the notion of additive box in the one of multibox, as the
superposition of several additive boxes.

In this subsection, as in the previous one, we do not give a direct trans-
lation of proof nets with additive boxes (resp. multiboxes) into J-proof nets;
we provide instead a condition on J-proof nets called additive boxing (resp.
multiboxing) condition, characterizing a subclass of J-proof nets.

The additive boxing (resp. multiboxing) condition is analogous to the
condition on boxes given in [Gir87] (resp. in [TdF03b]).
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Definition 134 (Additive box) Given a J-proof net R, we call additive
box of a negative rule W = {w1, . . . , wn} with n ≥ 2 the set of links heredi-
tary above some wi ∈ W in R; the i-th component of an additive box is the
set of links hereditary above wi ∈W in R.

Proposition 135 Let R be a J-proof net. Given two different components
of an additive box B, they are disjoint.

Proof. An easy consequence of the condition views of definition 69. �

Given a J-proof net R:
i) R satisfies the additive boxing condition if given two additive boxes

B1, B2 of a J-proof net R, either they are disjoint, either one of them is
strictly included into the other;

ii) R satisfies the additive multiboxing condition if given two addi-
tive boxes B1, B2, if they are not disjoint, they are equal. Given a maximal
set W1, . . . ,Wn with the same additive box B, we call B the multibox of
W1, . . . ,Wn.

An example of J-proof net respecting the additive boxing (resp. the
multiboxing) condition is the one depicted in fig.3.7 (resp. 3.4). It easy to
build an example of J-proof net which does not satisfy neither the additive
neither the multiboxing condition.

3.8 Final remarks

To conclude, let us spent some few words on some points which still need
further investigation:

• in the last section, we gave some hints on how to recover some standard
syntaxes for additive proof nets in the setting of J-proof nets; never-
theless, the relation between J-proof nets and the proof nets defined
by Hughes and Van Glabbeek needs still to be clarified. In this spirit,
it could be interesting to verify if our approach to sequentialization
can still be applied in their setting;

• ludics taught us the intrinsic interest of considering partial objects in
proof theory; discarding the constraint of totality from the correctness
criterion for J-proof nets and introducing the Daimon rule of ludics,
may enlighten interesting computational features;

• recent works by Faggian and Piccolo [FP07] exploit the relation be-
tween L-nets and linear π-calculus, a typed π-calculus introduced by
Berger, Honda and Yoshida in [MBY03], enlightening the operational
content of the additives as a kind of non-deterministic choice; the
bridge is the correspondence between L-nets and event structures, a
model of concurrency introduced by Nielsen, Plotkin and Winskel in
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[MNW81]. Following this approach, the analysis could be extended to
the relation between event structures and J-proof-nets, in order to give
a proof theoretical characterization of terms in linear π-calculus; this
should contribute to the general purpose of bringing together proof
theory, game semantics and concurrency theory.
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