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Abstract

Optical communications are fundamental in our society based upon infor-

mation, allowing the sharing of large amounts of data all around the world.

A great deal of attention has been devoted to all-optical methods for infor-

mation processing, as they could improve the available technology. In this

context nonlinear optics is a key tool to reach such goal. A lot of attention

from the scientific community has been paid to spatial solitons, i.e. shape-

preserving nonlinear waves, for their ability to guide signals. In particular,

an important role is played by solitons in nonlocal media, because in these

materials a soliton can be employed as a waveguide for signals even at longer

wavelength, paving the way to the design of reconfigurable communication

networks via all-optical methods. Nonlocality also mediates the interaction

between spatially separated beams, making new applications feasible. In

this thesis I focus on highly nonlocal media, in particular on the nematic

liquid crystals (NLC), with a high value and non-resonant behavior of their

nonlinearity, allowing solitons formation at a few mW and in a large range

of wavelengths. The outline of this thesis is as follows. In the first chapter

I briefly introduce spatial solitons and reorientational nonlinearity in NLC.

In the second chapter I show experimental and theoretical investigation on

single soliton propagation in NLC. In the third chapter I discuss, theoret-

ically and numerically, the interplay between nonlocality and nonlinearity

in finite-size samples and their effect on beam trajectory, comparing the

results with experiments performed in NLC. In chapter 4 I investigate soli-

tons composed by two beams of different wavelengths. Finally, in chapter

5 I discuss light amplification and solitons in dye-doped NLC.

The results of this thesis enlighten a large number of new approaches for

the optical signal processing which can be implemented in nonlocal media,

and in particular the main role played by NLC and solitons in this context.
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Introduction

1.1 Solitons in Nonlinear Physics

Nonlinearity has an important role in many disciplines such as physics, economics,

chemistry, biology and so on. In fact, most natural phenomena are intrinsically non-

linear, being linear only when small excitations are considered. Up to the twentieth

century, scientists focused on linear phenomena, firstly because of the large availability

of analytical solutions and secondly, but not less important, because of the possibility to

use superimposition principle, which provides the complete knowledge of a system after

studying its response to limited sets of excitations. This principle is largely adopted in

engineering and physics, for example in harmonic analysis. Einstein’s general relativity,

one of the most successful physical theories in 1900’s, is based on nonlinear equations.

With the advent of modern computers in the 50’s, the available computation power

allowed to study nonlinear problems numerically: among pioneering work I remind the

Fermi, Pasta and Ulam paper concerning energy distribution in a nonlinear vibrating

string (1; 2) and the Lorenz article about chaos in meteorology (3).

One of the most striking features of nonlinear systems is the formation of waves with

an invariant profile along their propagation due to the interplay between linear and

nonlinear effects, called solitons. Strictly speaking, solitons are solutions of integrable

models1, which can be solved by the inverse scattering technique (4). In non integrable

models, shape-preserving solutions are called solitary waves but, as usual in the spe-

1In this context integrability means that the differential equations composing the model encompass

an infinite set of conserved quantities.
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cialized literature (5; 6), I don’t make any distinction in this thesis and I will use hereby

the term soliton even in the presence of non integrable equations.

The first experimental observation of a soliton was carried out by J.S. Russell in 1834

(7): he observed a shape-invariant wave in a shallow water canal in Scotland, not-

ing also its stability with respect to perturbing factors. This phenomenon remained

unexplained until 1895, when the two Dutch mathematicians Korteweg and De Vries

provided a theoretical basis by developing an equation (8), now called after them the

Korteweg-De Vries (KdV) equation. Ever since, solitons have attracted a lot of atten-

tion given their particle-like behavior and their intrinsic nature of modes of nonlinear

systems. Solitons have been investigated, both experimentally and theoretically, in

several branches of physics, including plasma (9; 10), Bose-Einstein Condensate (BEC)

(11), solid-state (12) and general relativity (13). Solitons are also studied in electronic

oscillators (14).

1.2 Optical Solitons

In optics nonlinear media exhibit an optical response which depends nonlinearly on

field strength (15). More specifically, the dipole moment per unit volume is given by

P = f (E), where E is the electric field and f is a nonlinear function dependent on the

material1. Nonlinear effects in optics have become accessible after the invention of laser

by Mainman in 1960 (16), who made available light intensities strong enough to excite

a nonlinear behavior. The first experimental demonstration of nonlinear phenomena in

optics was the second harmonic generation by Franken et al. in 1961 (17). Ever since,

many different kinds of nonlinearities have been discovered. The simplest nonlinearity

is the Kerr one, which entails a nonlinear polarization PNL given by PNL = χ(3)E3 in

isotropic media. Using the latter in the electric field ruling equations, I get a nonlinear

change in index ∆n given by ∆n = n2I, being I the beam intensity and n2 the Kerr

coefficient (15). Therefore, propagating fields modulate their own phase: for spatially

finite beams propagating in homogeneous media, if n2 > 0(< 0) I have a self-focusing

(defocusing) effect (18; 19); for finite pulses propagating in guides (for example fibers)

I have a nonlinear chirp in the frequency (20).

Solitons in optics can be divided into two main classes: temporal and spatial solitons

1Linear media are featured by the relationship P = χ(1)
E, with χ(1) a constant susceptibility
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(6), according to the propagation coordinate taken into account1. Moreover, a soliton

can be a bright spot in a dark background or a light dip in a uniform background;

beams of the former kind are named bright solitons, those of second are dark solitons

(21).

Optical temporal solitons are pulses which maintain their shape in time in nonlinear

guides owing to the balance between broadening, due to the unavoidable dispersion,

and nonlinear self-phase modulation. They have been extensively investigated owing

to their possible applications in fiber optics, in order to improve the bit-rate (22).

Conversely, spatial solitons are nonlinear waves stationary with respect to time; they

do not change their spatial profile as they propagate (5; 23; 24). As it is well known,

in linear homogeneous media electromagnetic waves diffract, i.e. their transverse width

increases along propagation. In some nonlinear media, as I discussed above referring

to the Kerr effect, beams are capable (for large enough input powers) to self-focus, i.e.

to form a lens. When this two counter-acting effects are perfectly balanced, a soliton

is formed. Because of this formation mechanism, soliton shape and power are strongly

dependent on the specific nonlinearity. For example, in Kerr media only solitons in

(1+1)D2, i.e. in slab nonlinear waveguides, are stable; in (2+1)D they are unstable,

i.e. solitons are destroyed by beam collapse. To obtain stable solitary propagation in

(2+1)D it is necessary to exploit some other kind of nonlinearities, for example sat-

urable or nonlocal ones (6).

Finally, solitons with profiles containing more than a local maximum, known as higher

order solitons in analogy with higher-order modes of linear guides, have been demon-

strated as well (5).

In this thesis I will focus on bright spatial solitons.

1.3 Nonlocality

Generally speaking, a medium is nonlocal when its response to an excitation is not

null even in points where the excitation is zero, i.e. the Green function has a finite

1Actually, there is a third kind of soliton called bullet, nonlinearly self-localized in both space and

time.
2In this notation the first and second number are the transverse and propagation coordinates,

respectively.
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width1. Nonlocality plays an important role in many areas of nonlinear physics, in-

cluding plasma physics (25), BEC (26; 27), fluid mechanics (28) and optics (29; 30).

A spatial nonlocal response can deeply affect the propagation of nonlinear waves, e.g.

stabilizing two-dimensional self-guided beams (30; 31; 32), or even more complicated

structures (33; 34; 35; 36; 37). The nature and extent of nonlocality substantially

depend on materials; in optics I remember thermo-optic media (38; 39; 40), photore-

fractives (41; 42), soft-matter (43), semiconductor amplifier (44), atomic or molecules

diffusion in vapors (45) and liquid crystals (46; 47).

In dielectric nonlinear optics, in general the excitation is the electric field and the

response is the nonlinear polarization PNL. Although there are media where the in-

teraction is coherent, i.e. it depends on phase [χ(2) crystals for example (15; 48)], this

thesis will deal with nonlinearities dependent on intensity. More specifically, I will con-

sider the equation governing field propagation in the harmonic regime in isotropic non

magnetic2 media

∇2E + k2
0n

2(r, I)E = 0 (1.1)

where the index profile depends on the spatial coordinates (non homogeneous ma-

terial) and on the intensity. Considering a linear polarization for E and, therefore,

setting E = Aeik0n0sê, with s the propagation coordinate, k0 = 2π/λ with λ the

vacuum wavelength and n0 the linear index, by applying the SVEA (Slowly Varying

Envelope Approximation)3, i.e. in the paraxial approximation (15), I get:

2ik0n0
∂A

∂s
+ ∇2

⊥A+ k2
0

(

n2 − n2
0

)

A = 0 (1.2)

where ∇2
⊥ is the transverse Laplacian. I note how eq. (1.2) is analogous to a

Schröedinger equation (49) with a potential depending on the intensity.

Considering the nonlinear terms as perturbative with respect to the linear ones, I set
(

n2 − n2
0

) ∼= 2n0∆n(r, I), where I defined ∆n(r, I) = [n(r, I) − n0]. If not explicitly

1Such width provides also a measure of the nonlocal degree of the medium.
2This means µ = µ0.
3This corresponds to neglecting the term ∂2A/∂s2.
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specified, from here on I will consider homogeneous nonlinear media, i.e. with ∆n not

explicitly dependent on space1. Eq. (1.2) becomes

2ik0n0
∂A

∂s
+ ∇2

⊥A+ k2
02n0∆n(I)A = 0 (1.3)

This is the nonlinear Schröedinger equation (NLSE) for a generalized nonlinearity,

widely used in modeling spatial solitons. Assuming a linear relationship between the

intensity I and the index perturbation ∆n (for example, thermo-optic media and liquid

crystals in limited range of powers), and supposing that ∆n on a certain plane normal

to s depends on intensity in that plane,2 I get

∆n =

∫

I(r′⊥)G(|r⊥ − r′⊥|)dS′ (1.4)

where dS′ and r⊥ are the infinitesimal area element and position vector on the

transverse plane, respectively, and G(|r⊥ − r′⊥|) is the Green function for the material

(32). I introduced a Green function depending only on the distance between excitation

and effect, that is, an infinitely extended medium. Finite geometries will be discussed

in chapter 3.

A nonlinear material which is described by eqs. (1.3) and (1.4) is nonlocal Kerr. In

local Kerr media I have ∆n = n2I and eq. (1.3) turns into the classical NLSE, which

is integrable and supports the fundamental soliton with a sech profile (6).

Different ranges of nonlocality have been discussed in literature: from high (31; 39; 50;

51; 52; 53; 54) to weak (32; 55).

1.3.1 Strong Nonlocality

Let me begin with the highly nonlocal case and, for the sake of simplicity, explore its

features in a one dimensional geometry. Expanding G(x− x′) in eq. (1.4) in a Taylor

series around the point x = x′3, I get:

1I note that the nonlinear index perturbation is varying in space due to its dependence on I.
2According to the hypothesis, ∆n is governed by L(∆n) = I with L a certain linear differential

operator; in case of solitary propagation I have that all the s derivatives become null due to the

invariance in propagation, hence the index perturbation on a plane normal to s depends only on

intensity computed on that plane.
3I implicitly assume that the Green function is derivable in x = x′; this is not always true, as it

will be shown in chapter 3.
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∆n(x) =

∫

I(x′)

[

G|x=x′ +
dG

d(x− x′)

∣

∣

∣

∣

x=x′
(x− x′) +

1

2

d2G

d(x− x′)2

∣

∣

∣

∣

x=x′
(x− x′)2 + . . .

]

dx′ =

= G0P +G2

∫

I(x′)
(

x− x′
)2
dx′ + . . . = P

∞
∑

m=0

G2m

〈

(

x− x′
)2m
〉

I(x′)

(1.5)

being Gm ≡ 1
m!

dmG
d(x−x′)m

∣

∣

∣

x=x′
, 〈f(x)〉I(x) =

∫

I(x)f(x)dx/
∫

I(x)dx and
∫

I(x)dx =

P , with P the beam power. Furthermore, I assumed that
∫

xI(x)dx = 0, i.e. the point

x = 0 is the beam center. In deriving eq. (1.5) I used the relationship G2m+1 = 0,

i.e. I supposed that beam peak and the maximum of the Green function overlap. I

underline the linear relationship between ∆n and the power P , as expected from the

initial hypothesis.

Eq. (1.5) is the power series (in space) of the nonlinear index perturbation ∆n. In

the highly nonlocal case, i.e. when the beam width is negligible with respect to

the extension of the response function, taking an even parity for the intensity I get

∆n ∼=
(

G0 +G2

〈

x′2
〉

I(x′)

)

P + G2Px
2 (53), i.e. the index perturbation is parabolic

in space, with concavity proportional to power through a material dependent param-

eter G2; moreover, G2 < 0 (G2 > 0) in focusing (defocusing) media1. Substituting

into (1.3), I retrieve the Schröedinger equation for a parabolic potential, i.e. the well

known quantum harmonic oscillator (49). In essence, I have transformed the nonlinear

problem into a well known linear problem, largely studied in quantum mechanics and

in optics; given the simple mathematics needed to describe this family of solitons (as

compared, for example, to inverse scattering technique) they were named accessible

solitons (31).

The eigenfunctions corresponding to solitons are Hermite-Gauss functions2. Since the

eigenfunction width depends on G2, which is power-dependent, solitons with a certain

width exist only for a value of the power. These solitons are stable, i.e. small pertur-

bations do not destroy their nature in propagation.

Accessible solitons have firstly observed in liquid crystals (30; 47; 51) and, later, in

lead-glasses with a thermal nonlinearity (39; 57).

1If I consider a Dirac function I = Pδ(x) for the intensity profile I get ∆n = PG(x) which, expanded

around x = 0, gives the same result because
∫

δ(x)x2dx = 0.
2In cartesian coordinates. Other coordinate systems yield different eigenfunctions; for example, a

cylindrical system gives Laguerre-Gauss functions [see (56)].
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1.3.2 Weak Nonlocality

In eq. (1.4), expanding the intensity profile I centered in x = 0 and with even parity

in a power series around x′ = x, I get

∆n =
∞
∑

m=0

I2m(x)
〈

t2m
〉

G (1.6)

where I2m(x) = 1
(2m)!

∂2mI(x)
∂x2m and

〈

t2m
〉

G
=
∫

t2mG(t)dt. In the weakly nonlocal

case, i.e. when the intensity is wider than the medium response function G, in eq.

(1.6) terms corresponding to m > 2 can be neglected, providing ∆n = I + I2
〈

t2m
〉

G
=

I+ 1
2∂

2I/∂x2
〈

t2m
〉

G
: the self-induced waveguide is smoother, stabilizing the soliton in

(2+1)D (32).

1.4 Liquid Crystals

In this thesis, in order to investigate the role of nonlocality in nonlinear optical prop-

agation, I examine liquid crystals. In this section I will remind the physical properties

which explain nonlocal nonlinear optical propagation in this kind of media.

1.4.1 Liquid Crystal Phases

Three states of matter are the most diffused in nature: solid, liquid and gas. Some

organic compounds named liquid crystals show intermediate phases between liquid and

solid, featured by specific properties1.

Liquid crystals are characterized by disorder in at least one direction and some degree

of anisotropy; for a particle or a specific pattern in a certain position, the probability to

find a similar one depends on direction2 (58). Given the definition above, liquid crystal

phases group in three main families, according to the degree of long range positional

order exhibited by the molecules:

• nematic: the gravity centers of the molecules are totally disordered, but their

orientation is correlated;

1A rigorous definition refers to mesomorphic phases.
2This means that the density-density correlation function is anisotropic with respect to some macro-

scopic axes.
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(a) Isotropic phase (b) Nematic phase

Figure 1.1: (a) In the isotropic phase the molecules are positioned without long range

order. (b) In nematics the molecules have no positional order, but have an orientational

order. The molecular mean axis at each point is expressed by a vectorial field n̂ called

director.

(a) Dimensions of a 5CB

molecule

(b) Chemical structure of 5CB

Figure 1.2: Typical dimensions of a 5CB molecule (a) and chemical structure (b).

• smectics: the molecules are aligned in a direction and chaotically distributed

along the other two;

• columnar phases: the molecules are ordered in two dimensions.

Phases and transitions between phases depend on the molecules of the material and

on external parameters, such as temperature, chemical composition, voltage, defects

and so on.

In this work I focus on the nematic phase. Fig. 1.1 shows a comparison between

liquid crystals in isotropic 1.1(a) and nematic phases 1.1(b). In the isotropic phase

the material behaves as an isotropic fluid; in the nematic phase the molecules, which

do not possess spherical symmetry, acquire orientational order, i.e. their axes point

along a common average direction identified by the vector field called director. In

nematics the direction n̂ and −n̂ are indistinguishable and, usually, their molecules

8
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1.4 Liquid Crystals

possess cylindrical symmetry with respect to the director (58). Fig. 1.2 shows a typical

nematic molecule along with its chemical structure.

Since, due to thermal agitation, molecules fluctu-

Figure 1.3: Spherical reference

system. Axis z is directed as the

director n̂.

ate around their average direction, it is useful to in-

troduce a single numerical variable -the order param-

eter S- to quantify such motion (58). Considering a

polar reference system with axis z parallel to the di-

rector (see fig. 1.3), the molecular directions are sta-

tistically described by a distribution function f(θ, φ),

with f(θ, φ) sin θdθdφ the number of molecules with

axes aligned into the infinitesimal solid angle given

by θ and φ. I limit to conventional nematics with cylindrically symmetric molecules:

therefore f is independent from φ. I define the order parameter S as

S =

∫

f(θ)P2(cos θ)dθ (1.7)

being P2 the second Legendre polynomial. From the definition S ∈ [0 1]: S = 0

corresponds to full disorder, S = 1 to all the molecules parallel to the director n̂.

1.4.2 Continuum Theory

The nematic phase can be described by a vectorial field called director. In this section

I discuss how to compute n̂ knowing the external excitation and the boundary. I am

only interested in the stationary regime1 (see section 1.3).

The continuum theory is developed on a macroscopic scale, based upon director, and

gives up a detailed microscopic description of interaction between molecules (58). The

approach consists in finding the free energy density F for a specific situation and to

minimize its volume integral computed all over the sample, finding the equilibrium

distribution for n̂. Limiting to electric fields as possible excitations2, I have F = Fd +

FE , where Fd = 1
2

{

K1(∇·n̂)2 +K2(n̂ · ∇ × n̂)2 +K3 [n̂ × (∇× n̂)]2
}

is the distortion

energy coming from short-range forces between the molecules, FE = − ǫa
2 (n̂ · E)2 is the

1Typical NLC reorientational response time is milliseconds (58), so at optical frequency the director

responds to the average field. This issue will be discussed in more details in sec. 1.4.4.
2In this work the excitations are exclusively electric fields, either low, or optical frequencies.
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1.4 Liquid Crystals

interaction energy with an external electric field E due to the medium polarizability

(ǫa is the dielectric anisotropy), Ki (i = 1, 2, 3) are the (three) Frank elastic constants,

associated with splay, twist and bend, respectively (58).

From the minimization of energy I find the Euler-Lagrange equations:

∂F

∂qj
−

3
∑

i=1

d

dxi

(

∂F

∂ dqj

dxi

)

= 0 (j = 1, 2) (1.8)

where x1 = x, x2 = y and x3 = z and qj are two generic angular coordinates which

describes the director orientation in the laboratory frame. I assume hard boundary

conditions, i.e. fixed director values at the edges (59).

The director orientation close to the external walls, i.e. its boundary conditions, can

be controlled by treating the surfaces which confine liquid crystals. There are two main

possible alignments: homeotropic, with director normal to the surface edge, or planar,

with molecules parallel to the interfaces (59).

1.4.3 Linear Optical Properties

Macroscopically, nematic liquid crystals (NLC) behave as positive uniaxial crystals with

optic axis parallel to the director. The dielectric tensor is given by (60)

ǫij = ǫ⊥δij + ǫaninj (1.9)

with ni the director component along the i-th direction, δij the Kronecker’s delta,

ǫ⊥ and ǫ‖ the dielectric constants perpendicular and parallel to n̂, respectively, and

ǫa = ǫ‖ − ǫ⊥ the dielectric anisotropy. Both ǫ‖ and ǫ⊥ depend on the order parameter

S previously defined.

In a homogeneous uniaxial medium, given a certain direction for the wavevector k, there

are two independent plane eigenwaves: ordinary and extraordinary (61). Ordinary

propagation resembles isotropic media with a refractive index
√
ǫ⊥. The electric field

of the extraordinary wave, conversely, is not parallel to the corresponding displacement

field, which implies a Poynting vector S non parallel to k: in particular, S lies in

the plane containing the optic axis and k, forming with the latter the walk-off angle

10



1.4 Liquid Crystals

δ = arctan
[

ǫa sin(2θ)
ǫa+2ǫ⊥+ǫa cos(2θ)

]

, being θ the angle between k and n̂.1 The refractive index

for the extraordinary plane wave is

ne =

√

[

cos2 θ

ǫ⊥
+

sin2 θ

ǫ‖

]−1

(1.10)

Remarkably, while linear optical propagation in NLC is generally involved due to the

lack of homogeneity, in most practical cases a description in terms of ordinary and

extraordinary waves holds valid. I will deepen this point in the next chapters.

Another important optical feature of NLC (which allows the experimental observation

of optical propagation inside the NLC, as shown later) is their strong Rayleigh scat-

tering2 (58): in the visible range, light scattered by nematics is larger by a factor 106

than in isotropic fluids. In fact in NLC scattering is due to random variations in the

dielectric tensor ǫ, caused by fluctuations in density, temperature, etc., or in orientation

of n̂ (due to thermal agitation). The latter is the dominant effect in the nematic phase,

being absent in isotropic fluids.

Let me consider a plane wave with wavevector kin. The light scattered around the

solid angle dΩ, centered around the direction of the output wavevector kout, can be

evaluated through the scattering differential cross section dσ/dΩ (58)

dσ

dΩ
=

(

ǫak
2
0

4π

)

〈

|nη(q)|2
〉

∑

µ=1,2

[(

î · âµ

)(

f̂ · n̂
)

+
(

î · n̂
)(

f̂ · âµ

)]2
(1.11)

where k0 = 2π/λ is the wavenumber in vacuum, q is the scattering vector defined

by kout = kin + q and I took a single value for all NLC elastic constants; î and f̂

are two unit vectors parallel to input and scattered fields, respectively; â1 and â2

are directions which diagonalize the NLC free energy for a fixed q (58), 〈〉 stands for

thermal average and |nη(q)|2 is the director component due to molecular fluctuations,

with η any direction in the plane of â1 and â2.

From (1.11) it is possible to deduce that scattering is strong for crossed polarizations,

i.e., when incident and scattered field are orthogonal to each other, and is particularly

strong for low q. Moreover, given that |nη(q)|2 ∝ q−2 and being |q| ∝ k0, the scattered

power in NLC shows a trend with the inverse square of incident wavelength (60).

1Moreover, S lies between the optical axis and the wavevector k in positive uniaxials.
2Rayleigh scattering implies no energy exchange between the electromagnetic field and the material,

i.e. photons are elastically scattered.
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1.4 Liquid Crystals

(a) E = 0 (b) E 6= 0

Figure 1.4: (a) In absence of external electric fields the director lies on the plane yz,

forming an angle θ0 with ẑ. (b) When an electric field is applied parallel to ŷ, a dipole

is induced in the molecules, which rotates towards the electric field in order to minimize

their energy. The equilibrium angle θ is reached when the total torque acting on molecules

becomes null. I note how rotations take place in a plane defined by the excitation geometry.

1.4.4 Reorientational Nonlinearity

In section 1.4.2 I showed that the interaction energy between the electric field and

the NLC is FE = − ǫa
2 (n̂ · E)2. This term, inserted into eq. (1.8), gives a torque

ΓE acting on the molecules and equal to ΓE = 2D × E, being D the electric field

displacement1. Physically, when an external electric field is applied to the NLC, every

molecule (excluding those normal to the field) becomes an induced dipole parallel to the

long axis. The torque between E and the induced dipoles tends to rotate the molecules

until they are parallel to E (see figure 1.4). The equilibrium position for n̂ corresponds

to ΓE perfectly counterbalanced by the interaction forces between molecules, stemming

from Fd (58). When E and n̂ are perpendicular to each other, no reorientation takes

place below a threshold in the field: this value is called Freedericskz threshold (58).

Let me now discuss the case of E(t) varying in time at frequencies larger than the

cut-off for a reorientational NLC response. In this case, assuming monochromatic fields

[i.e. E = E sin(ωt)], the torque induced by E is the temporal average of its instantaneous

value, ΓE = 2 〈D × E〉t = D × E, with 〈〉t indicating the temporal average. Although

E varies its sign periodically in time with a sinusoidal behavior, the torque rotates the

molecules always in the same direction because when E changes sign so do the induced

dipoles.

Typically, the NLC response time is about 10ms, well above the optical range.

1Equations (1.8) stem from the balance between the torques which act on the molecules (59).
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1.5 Spatial Solitons in Nematic Liquid Crystals

I can now address the reorientational nonlinearity of NLC. For a finite size beam, since

the director reorientation in a given point is larger for larger beam intensities, there is a

nonlinear refractive index change ∆n which depends on excitation. From eq. (1.10), for

positive uniaxial NLC, the nonlinearity is self-focusing and the index larger for stronger

intensities. Moreover, the perturbation in director distribution is more extended than

the beam width due to the nonlocal interactions between the molecules, as modeled in

(1.8) by the terms derived from Fd.

1.5 Spatial Solitons in Nematic Liquid Crystals

The nonlinear optical properties of liquid crystals have been extensively studied owing

to some unique features. First of all, they possess a nonlinearity which is about eight

orders of magnitude larger than in isotropic liquids such as CS2 (18; 62; 63), allowing

the formation of spatial solitons at very low powers (≈ 1 − 10mW for waist of a few

microns) with continuous wave lasers. At variance with media exhibiting an electronic

response, they are highly nonlinear in a wide wavelength range (15). Moreover, in NLC

the optical beam creates a waveguide able to guide other low power signals, even at a

different wavelength (64). Their response time, however, is 10− 100ms with respect to

a few fs in electronic media (60).

First direct observation of self-focusing in NLC was carried out by Braun (65); after-

wards self-localization was observed in capillaries (66) with dye doped liquid crystals.

Dyes have two effects: they enhance the reorientational nonlinearity by the Janossy

effect (67) and induce a temperature increase due to absorption1. The same group

investigated higher order solitons in capillaries (68) and spatial solitons in the presence

of a thermal nonlinearity (69; 70)2, both in cylindrical and planar cells. Another group

focused its attention to planar waveguides (71; 72), demonstrating solitary wave prop-

agation in (1+1)D geometries with undoped NLC.

In 2000, Peccianti et al. demonstrated optical spatial solitons in bulk undoped NLC

(46) in a (2+1)D geometry with planar alignment, proving their stability via nonlo-

cality. They overcame the Freedericksz threshold by applying a low frequency electric

1Undoped NLC are transparent in the visible and near infrared wavelength ranges.
2In this case the soliton is due to the ordinary component, being the thermal nonlinearity focusing

for this component.
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1.5 Spatial Solitons in Nematic Liquid Crystals

field: its purpose was to set an initial angle between the director and the beam wavevec-

tor1 (73), helping soliton formation. They demonstrated nonlocal interactions between

solitons (74) and the propagation of incoherent solitons (75) (see section 1.4.4). More-

over, they utilized soliton-soliton interactions to demonstrate all-optical logic gates

(76). Theoretically, they developed a general model for spatial solitons in liquid crys-

talline media (30), demonstrating how nonlocality in NLC can be changed by altering

some experimental parameter [see also (73; 77)], and proving, both experimentally and

theoretically, the existence of accessible solitons (51).

Finally, the steering of spatial solitons was demonstrated by changing the applied volt-

age in NLC cells where the walk-off is directly observable (47). Such configuration

can be used in optical demultiplexers driven by voltage, e.g. reconfigurable all-optical

networks. This geometry will be analyzed in more details in the next chapter, as some

of its features was studied as part of this thesis.

1Nonlinearity maximization corresponds to choose an initial angle equal to π/4.
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2

Scalar Solitons in Nematic Liquid

Crystals

2.1 Cell Geometry

Let me consider the NLC planar cell shown in fig. 2.1. Two glass slides, defining the

plane yz, are separated by a = 100µm by means of mylar spacers, and confine the liquid

crystal E7 for capillarity. The internal interfaces are treated to force planar anchoring

of the molecules in the yz plane, with a pre-tilt of 2◦ along x to give a preferential

orientation to the NLC molecules, and avoid bulk disclinations (58). To control the

director distribution at the discontinuity air-NLC1 an input interface composed by

a third slide was placed parallel to the plane xy, and suitably rubbed. The planar

anchoring at the input interface is such that the director n̂ belongs to the plane xy

and, furthermore, determines the molecular alignment at π/4 with respect to both x and

y. A low-frequency bias V,2 applied via two transparent Indium Tin Oxide electrodes

(fig. 2.1), is used to change the director distribution in the absence of optical excitation,

hence varying the medium properties. In the absence of an external bias (V = 0), the

NLC director n̂ in bulk lies in the plane yz (neglecting the pre-tilt angle which is small)

at π/4 with respect to ẑ, with n̂ · ŷ > 0 and n̂ · ẑ > 0.

As discussed in detail below, such configuration allows the direct observation of walk-off,

at variance with the geometry previously used (see section 1.5).

1Without the interface there would be a meniscus.
2Frequency is chosen so that the NLC molecules respond only to temporally averaged voltages (see

1.4.4).
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2.2 Set-Up

Figure 2.1: Sketch of the NLC sample: (a) side view, (b) top view, (c) front view. Voltage

at 1kHz is applied along x via two transparent electrodes deposited onto the glass slides

that define the yz plane. ITO stands for Indium Tin Oxide.

2.2 Set-Up

Fig. 2.2(a) is a sketch of the set-up employed in the experimental work. A He-Ne laser

emitting at λ = 633nm is the light source. An optical system, composed by a half-wave

plate and a polarizer, is used to control beam power and polarization. Specifically, the

polarization at the input interface is always linear: rotating the half-wave plate I can

vary angle β, as defined in fig. 2.2(b). The beam passes through an objective lens, so

that the input waist is of the order of a few microns. Light impinges normally to the

input interface, with its wavevector parallel to ẑ and equally far from the two glasses

normal to x̂. The field inside the sample is analyzed by the light scattered from NLC

(see section 1.4.3) and collected by a microscope and a CCD1 camera.

2.3 Effect of the Input Interface

In this section I will study, both experimentally and theoretically, the manner in which

the input interface affects beam coupling in the sample, in particular the field polar-

ization which reaches the bulk NLC.

1Charge Coupled Device.
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2.3 Effect of the Input Interface

Figure 2.2: (a) Experimental set-up. (b) Input field E and its polarization in the plane

xy at z = 0. i.e. at the interface between air and NLC. Sign convention is such that β

shown in the figure is positive.

In order to describe the director orientation, I introduce the two angles ξ and γ, as

shown in fig. 2.3.

As the bulk NLC is preceded by a transition layer

Figure 2.3: Director n̂ and the

two angles ξ and γ used to de-

scribe its orientation in space.

of thickness d following the input interface in z = 0,

I model this transition layer as an anisotropic struc-

ture stratified along z, with optical properties con-

stant in each layer, i.e. with a dielectric tensor which

does not depend on transverse coordinates xy1. To

model finite beam behavior I take the director value

in x = a/2,2 given that the experimental beam width

is much smaller than the cell thickness a. Under such

hypotheses I can apply Berreman’s method (78) to describe the propagation of electro-

magnetic plane waves with k = kẑ, i.e. impinging normally on the sample. I note that

the wavevector k cannot change direction in the transition layer under these hypotheses.

Hence I cast Maxwell’s equations in the form:

dΦ

dz
= iω∆(z)Φ (2.1)

being ω the optical angular frequency and

1This implies neglecting optical reorientation; such approximation will be justified later.
2Having neglected the optical reorientation, the profile does not change along y owing to the

symmetry.
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(2.2)

with ǫij (i, j = x, y, z) the elements of the dielectric tensor, which depend on z due

to the director rotation along the transition layer.

To numerically compute eq. (2.1) I can divide the region 0 < z < d into N sections,

each of thickness h. In order to get a good approximation, h must be chosen so that

dielectric tensor variations in each section are negligible. Hence, the vector Φ at z = d

can be found by solving

Φ(d) =
[

ΠN−1
ν=0 Ph(νh)

]

Φ(0) = TdΦ(0) (2.3)

where I set Ph(z) = eiωh∆(z). The matrix Ph(z) is the transfer function (for the

field vector Φ) which models the section limited by z and z + h. Therefore Td is the

transfer function for the whole transition layer.

The next step is to link the dielectric tensor [related to ∆ by means of (2.2)] to the

director profile (into the transition layer). To this purpose, I can use eq. (1.9) with

ny = cos ξ cos γ, nx = sin ξ and nz = cos ξ sin γ. Finally, I assume a certain director

profile in 0 < z < d, being z = 0 the input interface. Specifically, I take a linear trend

for ξ and γ. A direct computation from eq. (2.3) confirms that specific profiles do not

affect polarization, which mainly depends on how fast the director angle varies along

z, i.e. from 0 to d, if the total variation is constant.

Now I have to establish the director position in z = 0 and z = d. It is easily seen

that, given the boundary conditions at the input interface, γ(x, y, z = 0) = 0 and

ξ(x, y, z = 0) = π/4, independently from the applied voltage V. At z ≥ d the bulk

NLC has γ(x, y, z = d) = γbulk = π/4. Conversely, ξ(x, z = d) = ξbulk(x) changes with

V and is found by solving the reorientational equation derived from eq. (1.8) together

with the associated electrostatic equation for z > d. Therefore, I have to solve the

ODE (Ordinary Differential Equation)1 system (79; 80)

1The unknown quantities V and ξbulk exclusively depend on x.
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2.3 Effect of the Input Interface

(

ǫ‖ sin2 ξbulk + ǫ⊥ cos2 ξbulk

) d2V

dx′2
+ ∆ǫLF sin(2ξbulk)

dξbulk

dx′
dV

dx′
= 0 (2.4)

(

K3 sin2 ξbulk +K1 cos2 ξbulk

) d2ξbulk

dx′2
+
K3 −K1

2
sin(2ξbulk)

(

dξbulk

dx′

)2

+
∆ǫLF

2
sin(2ξbulk)

(

dV

dx′

)2

= 0

(2.5)

being V the electrostatic potential. I introduced a new reference system x′y′z′

defined by ŷ′ = n̂(V = 0), x̂′ = x̂ and ẑ′ = x̂′ × ŷ′. In eqs. (2.4)-(2.5) V is the root

mean square (RMS) of the voltage, K1 and K3 are the Frank’s elastic constants for

splay and bend, respectively, and ∆ǫLF is the dielectric anisotropy at low frequencies.

The boundary conditions are V (x′ = 0) = 0, V (x′ = a) = V and ξbulk(x
′ = 0) =

ξbulk(x
′ = a) = 2π/180, the last one stemming from the pre-tilt (see section 2.1). The

system composed by eqs. (2.4) and (2.5) has to be solved numerically: results for

various V are shown in fig. 2.4.

As stated above, I need to know ξ in x = a/2 in bulk NLC. From fig. 2.4(a) this

corresponds to the maximum ξ for a fixed V, i.e. ξmax(V).

Taking a linear input polarization at the first slice (see section 2.2), I can split the elec-

tric field vector into ordinary (o) and extraordinary (e) components; the latter matches

the director orientation in z = 0. From eq. (2.3) and taking d = 20µm, I find that

the input e component transfers nearly all its power to the e-wave in the bulk NLC

for every V; similarly, o-wave components in z = 0 remain o-waves in bulk. This is

represented by the two straight horizontal lines in fig. 2.5(b) at β = 45◦ (e input)

and β = 135◦ (o input): as the bias increases, for every z > d the director elevation

increases as well [see fig. 2.4(c)], and the NLC principal axes rotate. e- and o-wave

input components, however, remain decoupled as they evolve through the transition

layer. Otherwise stated, if the rotation of the NLC dielectric tensor with z is slow

enough that the index change is adiabatic, the e-wave displacement field De rotates

with z, remaining parallel to the director projection onto xy (58). It is clear how this

result maintains its validity also for larger d; hence, given that transition layers d are

about 100µm, the numerical results retain their validity also for the cell in fig. 2.1.

To validate these predictions, I varied V and experimentally studied the input polar-

ization maximizing energy coupling on the e (o) component. For low V, it is easy
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2.3 Effect of the Input Interface

(a) Reorientation angle versus x′ (b) Electrostatic potential versus x′

(c) Maximum reorientation angle ξmax

versus V

Figure 2.4: Reorientation angle ξ [fig. 2.4(a)] and electrostatic potential V [fig. 2.4(b)]

inside the cell for applied voltages ranging from 0 to 4.5V . In fig. 2.4(c) is plotted the

maximum angle ξ, labeled ξmax, versus applied voltage V. From fig. 2.4(a) ξmax is always

placed in x′ = a/2, as predictable given problem symmetry.

to distinguish the two components inside the sample, i.e. in the bulk NLC, because

the extraordinary component has a Poynting vector not parallel to ẑ, due to walk-off1

[section 1.4.3] [fig. 2.5(a)]. For high V, the two components begin to overlap with each

other. In this range, I can use scattering to discriminate them: there is a 100% coupling

on the extraordinary component when the scattered power towards the CCD camera is

maximum. In fact, for V > 2V , at certain input power, it is Pse
Pso

> 9.6, where Pse and

Pso are the power scattered from the NLC along x̂ when all the input power is coupled

on e and o components, respectively [for a more detailed discussion about scattering

in this configuration see appendix A.1].

1Moreover, for high enough input powers, only extraordinary wave is self-focused due to the Freed-

ericksz threshold.
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2.4 Soliton Observation

(a) Ordinary and extraordinary wave

propagation.

(b) Plots of optimum β.

Figure 2.5: (a) Acquired optical field distribution when input beam excites both e and o

components. The Poynting vector of the ordinary wave is parallel to z, while the extraor-

dinary one bends towards larger y due to walk-off. The power is low and the extraordinary

wave does not induce any nonlinear effects. (b) Input polarization angle β versus applied

voltage V. The solid (dashed) line from the model represents the optimum angle β that

allows all the injected power to be transferred to an e (o) wave in bulk NLC (z > d). Such

an angle remains fixed at 45◦ (135◦) as the bias varies. Symbols are measured data, from

linear (20mW ; squares) to nonlinear (3mW ; stars) regimes.

I found that the angle β which maximizes power coupling into the extraordinary

component does not change with V and corresponds to the director direction at the

input interface, as predicted [fig. 2.5(b)]. Furthermore, to couple all the input power to

the ordinary it is sufficient to use an input polarization normal to n̂ in z = 0. Finally,

transition layer effects on beam polarization remain unchanged when the power is

varied: the phenomenon is linear, justifying the employed hypotheses.

2.4 Soliton Observation

This section concerns the acquisition of beam profiles inside the NLC sample, when

varying its input power, polarization and the applied bias. As demonstrated in section

2.3, in order to couple all the input power into e (o) it is sufficient to select an input

polarization such that β = 45◦(135◦) (see fig. 2.2).

When an ordinary polarization is used, its energy propagation direction is parallel to z

and the beam diffracts in the same way for every input power and bias V; in fact, due
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2.4 Soliton Observation

to the Freedericksz transition, nonlinearity does not take place at the mW excitations

normally employed for solitons. An example is shown in fig. 2.6.

Figure 2.6: Ordinary propagation in the cell.

Instead, when the extraordinary polarization is excited, the Poynting vector Se is

in general not parallel to z. To a first approximation, in order to find Se, I can treat

the beam as a plane wave1, which propagates in a homogeneous uniaxial medium with

the optical axis given by director in x = a/2. Thus, I consider a director as in fig. 2.3,

but with ξ = ξmax (which depends on the applied bias, see section 2.3).

The vector Se, in general, does not lie on plane

Figure 2.7: Extraordinary

Poynting vector Se.

yz, as in fig. 2.7. Since in the experiments I observe

the beam projection on the plane yz, I introduce α

as the angle between the axis z and the projection of

Se on the plane yz (fig. 2.7); I call it apparent walk-

off (47), given by (79) α = arctan (tan δ cosϕ), where

ϕ = arctan
(

tan ξmax

cos γ

)

is the angle between ŷ and the

projection of n̂ on the plane xy (see fig. 2.3) and δ

is the walk-off defined in section 1.4.3: in this case

θ = arctan
(

1
cos ϕ tan γ

)

. The relation between V and α

(the information obtained from experiments) is shown

in fig. 2.8(b). The acquired trajectories of e-beam

in the plane yz are almost straight lines. Straight

lines interpolations of the acquired trajectories in the

observation plane yz are shown in fig. 2.8(a). Note how the beam slightly oscillates

around the straight lines, this effect being stronger for intermediate V: this is due to

1The validity of such approach for small perturbations is discussed in section 2.5.

22

cap_LC_soliton/figures/EPS/ordinaria.eps
cap_LC_soliton/figures/EPS/poynting.eps


2.4 Soliton Observation

(a) Soliton trajectories in the plane yz for var-

ious V.

(b) Apparent walk-off angle α versus V.

(c) Acquired solitons for V = 0V and V = 2V , respectively.

Figure 2.8: (a) Soliton trajectories in the plane yz: dashed and solid lines are interpolating

straight lines and actual beam trajectories in the plane yz, respectively. (b) Apparent

walk-off α versus applied bias V: error bars are experimental data (from the slopes of the

interpolating lines), whereas the solid line is the theoretical prediction. (c) Experimental

images of solitons for V = 0V and V = 2V . The soliton width is narrower in the first case

due to the stronger nonlinearity.
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2.5 Theory of Nonlinear Optical Propagation in NLC

beam oscillations in the plane xz (81), caused by the x component of Se, which moves

the beam away from the mid-plane where α assumes different values, and by the linear

index well induced by V, which traps the light around the mid-plane. As V varies, α

changes because n̂ starts to rotate; its behavior is plotted in fig. 2.8(b). In absence of

bias, α is equal to δ and is about 8◦; as V increases, Se gets monotonically closer to the

axis z until, for high V, Se becomes parallel to ẑ as the director is reoriented along x̂,

i.e. δ = 0. Moreover, Se does not change its mean direction versus coupled power (79),

proving that optical reorientation is negligible as compared to that induced by the low

frequency electric field.

Let me discuss the beam profile inside the NLC cell. At low powers the beam diffracts,

analogously to the ordinary case (fig. 2.6). Increasing power, self-focusing effects

begin to appear until the optical reorientation creates a self-induced waveguide (section

1.4.4). When self-focusing counterbalances beam spreading due to diffraction, a shape-

invariant field, i.e. a soliton [fig. 2.8(c)], forms. Such phenomenon is qualitatively

explained in fig. 2.9: the NLC director is more reoriented where the intensity is stronger,

inducing a nonlinear index well ∆n, wider than the intensity profile I due to the

nonlocality.

Figure 2.9: (a) Linear diffraction. (b) Soliton propagation. Blue arrows represent the

NLC director.

2.5 Theory of Nonlinear Optical Propagation in NLC

2.5.1 Ruling Equation

Let me consider a homogeneous NLC sample and an extraordinary field Eopt with spa-

tial spectrum centered around k = kẑ, i.e. Eopt = Eee
ikz with Ee slowly varying along

z. I call θ0 the angle between k and the unperturbed director and δ the walk-off for a
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2.5 Theory of Nonlinear Optical Propagation in NLC

plane wave with the same wavevector1. I take k = nek0, being k0 the vacuum wavenum-

ber and ne the linear extraordinary index. Moreover, I define a new reference system

rts, where ŝ and t̂ are parallel to the Poynting and the electric fields, respectively,

and r̂ = t̂ × ŝ. Starting from Maxwell’s equation and considering only extraordinary

components, at the first order the field is polarized along t and obeys the equation (a

complete derivations is reported in appendix A.2) (47; 52)

2ik0ne cos δ
∂Ee

∂s
+Dt

∂2Ee

∂t2
+Dr

∂2Ee

∂r2
+ k2

0δǫttEe = 0 (2.6)

where δǫtt = t̂·ǫ·t̂ is the nonlinear index variation,Dr = 1+n2
e sin2 δ

λx
andDt = n2

e cos2 δ
λs

are diffraction coefficients (section A.2), different each other due to the anisotropy. I

stress that eq. (2.6) is a scalar NLSE equation [see eq. (1.2)], written along propagation

coordinate s2. Therefore, for small perturbations, the nonlinear optical propagation in

anisotropic NLC can be described as in isotropic media.

Now I have to apply eq. (2.6) to the cell geometry sketched in fig. 2.1. Eq. (2.6)

confirms the hypotheses made in section 2.4 to model the soliton trajectory dependence

on the applied bias V, when the soliton was approximated by a plane wave.

Now I have to determine δǫtt, which depends on director reorientation. When V is not

zero, there is a low frequency field parallel to x̂ and an optical field directed like t̂: I

need to use two angles to describe the director distribution.3 Moreover, in order to get

a good approximation, I need to take into account the index well induced by V in the

plane xs and, thus, use vectorial equations.

Keeping in mind these considerations, hereafter and for the sake of simplicity, I limit

the investigation to V = 0: in this case the director reorientation takes place only in

the yz plane, being Ee linearly polarized along t̂, and the transformation from xyz to

rts is a simple rotation around x by an angle δ. Being r̂ = x̂ I call the new reference

system xts. From section 1.4.2 the director profile is governed by

K∇2
xtθ +

ǫ0ǫa
4

sin [2(θ − δ)] |Ee|2 = 0 (2.7)

1see section 1.4.3.
2Therefore it is written in the paraxial approximation along s.
3The two directions coincide for high V when all the molecules are parallel to x, but this case is

not interesting because the reorientational nonlinearity goes to zero.
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2.5 Theory of Nonlinear Optical Propagation in NLC

having neglected the derivative along s, as already discussed in section 1.3. The

nonlinear index perturbation is

δǫtt = ǫa
[

sin2(θ − δ) − sin2(θ0 − δ)
]

(2.8)

2.5.1.1 The Highly Nonlocal Case

Let me define the nonlinear perturbation of the director angle Ψ = θ − θ0. For small

Ψ, eq. (2.7) becomes

K∇2
xtΨ +

ǫ0ǫa
4

|Ee|2 sin [2(θ0 − δ)] +
ǫ0ǫ1
2

|Ee|2 cos [2(θ0 − δ)]Ψ = 0 (2.9)

I assume the optical field Ee is cylindrically symmetric, which means Ψ has the

same property if asymmetric boundary conditions are neglected (actually, this is true

also for asymmetric boundary conditions for the zone close to the beam peak if the

beam waist is negligible compared to the cell size: see sections 2.5.2.1 and 2.5.2.2). I

can write the field and the perturbation using a Taylor series around x = a/2, t = 0

Ψ = Ψ0 + Ψ2

[

(x− a/2)2 + t2
]

+ o
[

(x− a/2)2 + t2
]

(2.10)

|Ee(x, t)|2 = f0 + f2

[

(x− a/2)2 + t2
]

+ o
[

(x− a/2)2 + t2
]

(2.11)

being Ψ0 = Ψ|x=a/2,t=0 and f0 = |Ee|2|x=a/2,t=0 the maxima of the induced pertur-

bation and the field, respectively, whereas Ψ2 = 1
2

∂2Ψ
∂x2

∣

∣

∣

x=a/2,t=0
and f2 = 1

2
∂2|Ee|2

∂x2

∣

∣

∣

x=a/2,t=0
.

Substituting eqs. (2.10) and (2.11) into (2.9) I get:

4KΨ2 + o [(x− a/2) + t] +
ǫ0ǫa
4

{

f0 + f2

[

(x− a/2)2 + t2
]

+ o
[

(x− a/2)2 + t2
]}

sin [2(θ0 − δ)]+

ǫ0ǫa
2

{

f0 + f2

[

(x− a/2)2 + t2
]

+ o
[

(x− a/2)2 + t2
]}

{

Ψ0 + Ψ2

[

(x− a/2)2 + t2
]

+ o
[

(x− a/2)2 + t2
]}

cos [2(θ0 − δ)] = 0

(2.12)

From eq. (2.12) all the coefficients in front of every power of x or t must be equal

to 0. For the zero-th order power this gives

4KΨ2 +
ǫ0ǫa
4
f0 sin [2(θ0 − δ)] +

ǫ0ǫa
2
f0Ψ0 cos [2(θ0 − δ)] = 0 (2.13)
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2.5 Theory of Nonlinear Optical Propagation in NLC

From eq. (2.13) it is straightforward to compute the coefficient Ψ2 (51)

Ψ2 = −ǫ0ǫa
8K

f0

{

sin [2(θ0 − δ)]

2
+ Ψ0 cos [2(θ0 − δ)]

}

(2.14)

It is important to remark that eq. (2.14) is obtained without approximations: it is

valid whenever beam and perturbation are radially symmetric. The approximation is

given by the use of the parabolic term in the power expansion of the angle distribution,

justified in the highly nonlocal case (31; 51). In general, the perturbation peak Ψ0

depends on every term of the power expansion, including the effects due to the boundary

conditions.

For small perturbations eq. (2.8) becomes δǫtt ∼= ǫa sin [2(θ0 − δ)] Ψ; hence, finally I get

δǫtt = ǫa sin [2(θ0 − δ)]
{

Ψ0 + Ψ2

[

(x− a/2)2 + t2
]}

(2.15)

which is the searched parabolic index well.

The term ǫa sin [2(θ0 − δ)] Ψ0 represents a rest energy, which depends on beam shape.

In general, its value changes as light propagates along s, but it is constant for a solitary

wave. Conversely, the term Ψ2 depends on f0, i.e. the peak intensity, owing to the

high nonlocality. Assuming Dx = Dt = D1, from quantum harmonic oscillator theory

(31; 49) it stems that solitons of any order are expressed by Hermite-Gauss modes

Ee
mn = A0

√

Ω

π

1√
2m+nn!m!

Hm

[√
Ω(x− a/2)

]

Hn

(√
Ωt
)

e−
Ω[(x−a/2)2+t2]

2 eiβmns

(2.16)

where Ω =

√

−k2
0ǫa sin[2(θ0−δ)]Ψ2

D , βmn = (n + m + 1) ΩD
k0ne cos δ and Hn is the nth-

degree Hermite’s polynomial, whereas A0 is a constant dependent on soliton power.

Given that Ω depends on soliton power through Ψ2,
2, solitons with a fixed width exists

only for a certain power.

Considering the m = n = 0 case (i.e. the lowest order soliton featuring a Gaussian

1Actually, this hypothesis is not necessary if I define the new transverse coordinates x′ =

x/
√

Dx, t′ = t/
√

Dt.
2When a specific beam shape is taken as in eq. (2.16) the relationship between f0 and P is a known

linear function depending on parameter Ω.
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2.5 Theory of Nonlinear Optical Propagation in NLC

shape Ee ∝ exp
[

− (x−a/2)2+t2

w2
S

]

), I obtain that, given a waist wS and neglecting the Ψ0

term in eq. (2.14), the soliton power PS is

PS =

(

16πKDne

ǫ0ǫ2aZ0k2
0 sin2[2(θ0 − δ)]

)

1

w2
s

(2.17)

in agreement with Refs. (31; 51; 52). Eq. (2.17) provides the existence curve for

lowest order solitons (in NLC cell as described in fig. 2.10) under the highly nonlocal

approximation.

2.5.2 Numerical Simulations

Resuming former results, the nonlinear optical propagation in the cell depicted in fig.

2.10 and for V = 0 is ruled by the PDE system

2ik0ne cos δ
∂Ee

∂s
+Dt

∂2Ee

∂t2
+Dx

∂2Ee

∂x2
+ k2

0ǫa
[

sin2(θ − δ) − sin2(θ0 − δ)
]

Ee = 0

K∇2
xtθ +

ǫ0ǫa
4

sin [2(θ − δ)] |Ee|2 = 0

(2.18)

The numerical algorithm employed to solve eqs. (2.18) is explained in full details

in appendix B. I now discuss the results.

2.5.2.1 Nonlinear Propagation

In the simulations presented in this section I consider a cell of thickness a = 100µm

and θ0 = π/4 (see figure 2.10), filled up with liquid crystal E7 as in the experiments

previously discussed. Thus, in eqs. (2.18) I use E7 parameters: K = 12 × 10−12N and

index dispersion as in fig. 2.11 (79; 82).

I take Gaussian input beam profiles, Ee(x, t, s = 0) =
√

4Z0P
πnew2

in
e
−x2+t2

w2
in , being Z0

the vacuum impedance, P the power and win the initial waist. I define the transverse

intensity profiles Ix(x, s) =
∫∞
−∞|Ee|2dt and It(t, s) =

∫ a
0 |Ee|2dx. In particular, It is

proportional to the scattered light experimentally acquired with the set-up shown in

fig. 2.2. Numerically, It ≈ Ix for beam waists less than 10µm: such property will be

further detailed in section 2.5.2.2.

Fig. 2.12 shows the simulations for the case P = 1mW , win = 2.5µm and λ = 633nm.
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2.5 Theory of Nonlinear Optical Propagation in NLC

Figure 2.10: Extraordinary-wave propagation in a NLC cell for V = 0: beams are

launched in x = a/2 and impinge normally to the input interface.

The beam is self-confined, with waist oscillating sinusoidally along s (the so-called

breathing) as theoretically predicted in the highly nonlocal case (31; 51), making almost

three oscillations between s = 0 and s = 2mm. Moreover, self-localization takes place

for P = 1mW , in agreement with the experimental observations (section 2.4). The

profile θ changes slightly across s, because the variations in beam waist are small.

Next, I discuss what happens to the beam profile when the power is increased, for

the same initial waist win. Results are reported in fig. 2.13: for P = 0.1mW self-

focusing is not strong enough to overcome diffraction. For P = 1 and 3mW the beams

are able to self-localize, with breathing period decreasing for larger power, whereas the

breathing amplitude decreases.

The waist trend is systematically investigated in fig. 2.14, where the beam waist is

plotted versus propagation s and initial value win, for four powers and two wavelengths

λ = 633 and 1064nm.

Comparing soliton breathing for different powers and considering the same initial

waist win, the breathing period decreases as power increases. I note how for every power
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2.5 Theory of Nonlinear Optical Propagation in NLC

Figure 2.11: NLC E7: refractive indices n‖ =
√
ǫ‖ (black curve) and n⊥ =

√
ǫ⊥ (red

curve) versus vacuum wavelength λ. Dots are experimental values, lines are interpolations.

there is a certain initial waist such that the beam width variations in propagation are

very small: this corresponds to the soliton condition, and the beam profile changes

slightly along s because the actual soliton shape is not perfectly Gaussian (see next

section). For win smaller than the soliton condition, the beams broaden after the input

because diffraction overcomes self-focusing. Conversely, for larger win the beams at the

beginning shrink, being the nonlinear lens stronger than diffraction. I also note that

the oscillations are periodic close to the soliton condition, but lose their periodicity

when input conditions are far from the soliton condition. The reason is that, for large

variations in beam waist, the coefficients Ψ2 and Ψ0 defined above change strongly

along s and the periodic solutions typical of quantum harmonic oscillators are no longer

valid. The breathing amplitude is as large as the initial condition is far from the soliton

condition.

Finally, I stress that the breathing period increases for longer wavelength (for all the

other parameters fixed) owing to the stronger diffraction.

2.5.2.2 Soliton Profile

To derive soliton profile and existence curve, I consider a beam preserving its intensity

profile along s, i.e. Ee =
√

2Z0P
ne

u(x, t)eiβs, with u a real function and P the soliton

power. Substituting it into eq. (2.18) I get
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2.5 Theory of Nonlinear Optical Propagation in NLC

Figure 2.12: Numerical results for a Gaussian input with P = 1mW and initial waist

win = 2.5µm. (a-b) Intensity Ix in the plane xs. (c-d) Intensity It in the plane ts. (e and

f) Contour plots of the optical intensity and director angle θ in the 3D space, respectively.

Wavelength is equal to 633nm.

Dt
∂2u

∂t2
+Dx

∂2u

∂x2
+
{

k2
0ǫa
[

sin2(θ − δ) − sin2(θ0 − δ)
]

− 2k0neβ cos δ
}

u = 0 (2.19)

K∇2
xtθ +

ǫ0ǫaZ0P

2ne
sin [2(θ − δ)] |u|2 = 0 (2.20)

The former system is a nonlinear eigenvalue problem, with β the eigenvalue which

gives the soliton phase velocity and u a real function which represents the soliton

intensity. I focus my attention to the fundamental soliton, i.e. a soliton with no nodes,

consistently with the excitations used in the experiments.

The system composed by eqs. (2.19) and (2.20) was solved numerically, fixing the power

carried out by the solitary wave. The implemented algorithm is as follows: I start with

a guess on soliton profile, choosing an initial profile with a bell shape1; then, I substitute

1In particular, as initial guess I use a fundamental Gaussian beam, solution in the highly nonlocal

limit, i.e., when taking into account a parabolic index well.
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Figure 2.13: Plot of It on the plane ts for win = 3.5µm and P =

0.1 (a), 1 (b) and 3mW (c). In the first case beam linearly diffracts, whereas in the other

two cases solitary propagation takes place. Wavelength is equal to 633nm.

the found value into eq. (2.20) and compute the corresponding θ distribution. I iterate

the procedure until self-consistency is achieved (34; 83). Higher order solitons can be

found out by simply changing the initial guess.

As an example, the computed u for P = 0.5mW at λ = 633nm is shown in fig. 2.15(a

and c). The angle θ is sketched in fig. 2.15(b and d): profile is asymmetric due to the

different boundary conditions along the two transverse dimensions, but close to the cell

center, i.e. the intensity peak position, is nearly symmetric. Consequently, the beam

is nearly cylindrically symmetric, perceiving the same index well in all the transverse

plane. Such property will be analytically demonstrated in the next chapter.

In fig. 2.16(a-d) the numerically calculated soliton profiles for four powers are compared

with Gaussian best-fits: the actual solitary shapes are almost Gaussian, in agreement

with the hypothesis of high nonlocality for the NLC, with slight departures only on the

tails. Another consequence of the NLC high nonlocality is that the soliton existence

curve on the plane waist-power goes like P ∝ waist2 [eq. (2.17) and fig. 2.16(e)]
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(a) λ = 633nm.

(b) λ = 1064nm.

Figure 2.14: Plots of beam waist versus input waist win and propagation coordinate s

at λ = 633nm (a) and λ = 1064nm (b), for four different powers. Values reported in the

colorbars are in microns.
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2.5 Theory of Nonlinear Optical Propagation in NLC

(31; 51; 52). Furthermore, given the larger diffraction at longer wavelengths, for a fixed

power soliton the waist is larger for infrared beams than for red ones. Fig. 2.16(f-g)

plots the maximum of θ and u versus soliton power, respectively. Values corresponding

to red are larger due to the smaller waist, for the same power.

Figure 2.15: Soliton profile u (a) and corresponding θ distribution (b) in the plane xt,

for P = 0.5mW and θ0 = π/6. (c) and (d) show the sections in the planes x = a/2 (red

line) and t = 0 (blue line) for u and θ, respectively. The wavelength is 633nm.

I verified the previous results by computing, via the numerical code described in

appendix B, the optical field propagation when the input beam profile is equal to the

soliton shape for a given power. I find out that intensity profile and index perturbation

do not change in propagation, for any input power. An example is shown in fig. 2.17,

where the 3D plot of |u|2 and angle θ is plotted, clearly demonstrating shape invariance

in propagation.
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Figure 2.16: Numerically computed soliton profile u(x, t = 0) versus x− a/2 (blue line)

and corresponding best-fit with a Gaussian (red line) for P = 0.1 (a), 1 (b), 2 (c) and 3mW

(d), at λ = 633nm. (e) Soliton existence curve in the plane waist-power at λ = 633nm

(red) and λ = 1064nm (black). Waist of the Gaussian which best-fits the actual soliton

shape is taken into account. Plot of maximum u (f) and θ (g) versus soliton power; red

and black curves correspond to λ = 633 and 1064nm, respectively.

Figure 2.17: Contour plots of numerically computed intensity profile |u|2 (a) and director

angle θ (b) in the space xts for P = 1mW and λ = 633nm, when the input beam is solution

of eqs. (2.19)-(2.20).
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3

Nonlocality and Soliton

Propagation

3.1 Definition

As discussed in chapter 1, nonlinear light-beam propagation in nonlocal media can be

described in the paraxial approximation by a nonlocal nonlinear Schröedinger equation

(NNLSE) (1.2):

2ik0n0
∂A

∂s
+ ∇2

⊥A+ k2
0

(

n2 − n2
0

)

A = 0 (3.1)

where ∆n(I) = n(I) − n0 is the index variation induced by the nonlinearity, s

is the propagation coordinate, ∇2
⊥ = ∂/∂x2 + ∂/∂t2 is the transverse Laplacian and

k0 = 2π/λ. Moreover, I assume that, in the absence of optical excitation, the medium

is uniform. Hence, I can set

n2 − n2
0
∼= 2n0∆n+ (∆n)2 (3.2)

Nonlocality relates to the fact that the beam affects some physical variable ρ1 even

at some finite distance from it, such as temperature in thermo-optic media or orien-

tation in NLC, which, in turn, change refractive index, i.e., n = n(ρ). The latter

relationship models light-matter interaction.

Behavior of ρ in the nonlinear medium is typically ruled by a partial differential equa-

tion (PDE) in the form F = F (ρ, I) = 0, where an intensity-dependent ρ is cast in the

1If the refractive index depends on more than one quantity, ρ is a vector.
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form ρ = ρ(I = 0)+∆ρ(I): the first term is the ρ distribution in the absence of electro-

magnetic radiation and ∆ρ is the perturbation introduced by the beam. For F linear

I obtain ∆ρ(cI) = c∆ρ(I), with c an arbitrary real constant: the optical perturbation

is proportional to the total beam power P [e.g. photorefractives (42) and thermo-optic

media (39)]; otherwise, powers of P with exponent > 1 need to be included (e.g. unbi-

ased nematic liquid crystals, see chapter 2).

After computing ρ, the nonlinear index perturbation is given by ∆n(I) = n[ρ(I)]−n(ρ0)

where ρ0 = ρ(I = 0). The relationship ∆n = ∆n(ρ, ρ0) embraces various dependences,

from linear (in thermo-optic media) to nonlinear (e.g. sinusoidal in NLC), which can be

Taylor-expanded as1 ∆n =
∑∞

m=0 (∆nm/m!) (ρ − ρ0)
m, being ∆n = ∂m∆n/∂xm|I=0.

A linear relationship between nonlinear perturbation and field intensity occurs only if

∆ρ = ∆ρ(I) is linear and ∆n ∼= ∆n1∆ρ.

I aim at investigating the role of the boundary conditions on ∆ρ and use the Green

formalism to solve for F in some physically relevant cases. To compute ∆n I consider a

self-trapped Gaussian light-beam (other profiles could be accounted for through an ex-

pansion in Hermite polynomials) exciting the nonlinear response of a finite-size medium.

In order to describe/quantify the extent of the nonlocality when it is symmetrically-

distributed with respect to the beam axis, I introduce the ratios αi between full-widths

at half-maximum (FWHM) of the soliton and of the perturbation along the i-th trans-

verse coordinate (i = x, t):

αi =
FWHM

|A|2
i

FWHM∆n
i

(3.3)

with FWHM computed along the section x/t = constant and containing the peak

of the function.

From eq. (3.3), small α correspond to a large range of nonlocality (30). It is important

to note that this definition is more general than the one based on the comparison

between the widths of the Green function and of the intensity (32), being the former

not always definable, in particular when the Green function diverges at the excitation

point, as it occurs for example if F is the Poisson equation in bidimensional geometries.

For a Gaussian profile |A(x, t)|2 = A0 exp
[

−
(

(x−xc)
2

w2
x

+ (t−tc)
2

w2
t

)]

and FWHM
|A|2
x/t =

1I assume that the refractive index in a given point depends only on the value of ρ calculated at

the same point.
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2
√

ln 2wx/t; moreover, if I consider ∆n ∼= ∆n1∆ρ, it is FWHM∆n = FWHM∆ρ. The

general case is investigated in appendix C.1.

If the perturbation is asymmetric with respect to its own maximum, I define four ratios

as

α
g/s
x/t =

FWHM
|A|2
x/t

2σ
g/s
x/t

(3.4)

where σ
g/s
x/t are the separations (along x/t) between the intensity peak and half-peak

values, for x/t greater (g) or smaller (s) than the intensity peak position (see figure 3.1).

Figure 3.1: Computation of FWHM for the nonlinear index perturbation ∆n along x.

The blue curves are ∆n(x, t = tmax) versus x, where tmax is the t coordinate of maximum

perturbation. On the left the symmetric case, on the right the asymmetric one. Clearly,

superscript g/s depend on the orientation of x axis. The case along t is analogous.

Finally, if F is linear with excitation, the parameters FWHM∆ρ
x/t and σ

g/s
x/t are power

independent. The case when F is nonlinear is addressed in appendix C.1.
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3.2 Role of the Boundary Conditions on the Nonlinear Index Perturbation

3.2 Role of the Boundary Conditions on the Nonlinear

Index Perturbation

Hereby I theoretically address four different equations to describe equation F , largely

adopted in literature (Poisson equation 1D and 2D, screened Poisson and reorientation

equation in NLC in anisotropic configurations), to investigate the effects of the bound-

ary conditions on ∆n in rectangular geometries, hence, on the nonlocality perceived by

the beam. To perform the computation I use the Green function method (84). The

nonlinear index perturbation ∆n and ∆ρ are related as depicted in section 3.1: in the

first three cases I consider a linear relationship.

3.2.1 Poisson 1D

First I analyze a 1D problem with F given by the Poisson equation (85; 86):

β
d2∆ρ

dx2
+ |A|2 = 0 (3.5)

with boundary conditions ∆ρ(x = 0) = ∆ρ(x = a) = 0, being a the sample

thickness; I assume that ρ on the sample edges is unchanged by the beam. By defining

ξ = x/a and κ = β/a2, eq. (3.5) takes the normalized form

κ
d2∆ρ

dξ2
+ |A|2 = 0 (3.6)

with ∆ρ(ξ = 0) = ∆ρ(ξ = 1) = 0. The corresponding Green function G is given by

(84)

G(ξ, ζ) =
ξ

κ
(1 − ζ)u(ζ − ξ) +

ζ

κ
(1 − ξ)u(ξ − ζ) (3.7)

being ζ the application point of a Dirac delta and u the Heaviside function. G de-

pends on ζ because translation invariance is lost due to the boundaries. For an intensity

profile |A(ξ)|2, I have ∆ρ(ξ) =
∫ 1
0 |A(ζ)|2G(ξ, ζ)dζ. If |A(ξ)|2 = exp

[

− (ξ − 〈ξ〉)2 /ω2
]

(actual waist w = ωa) I get:
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

































∆ρ =
ω

2κ
(N1 +N2)

N1 =
√
π

[

erf

(

1 − 〈ξ〉
ω

)

(1 − 〈ξ〉)ξ + erf

(

ξ − 〈ξ〉
ω

)

(〈ξ〉 − ξ) + 〈ξ〉 (ξ − 1)erf

(

−〈ξ〉
ω

)]

N2 = ω

{

exp

(

−〈ξ〉2
ω2

)

− exp

[

−(ξ − 〈ξ〉)2
ω2

]

− ξ

[

exp

(

−〈ξ〉2
ω2

)

− exp

[

−(1 − 〈ξ〉)2
ω2

]]}

(3.8)

Figure 3.2: (a,b) Perturbation profiles versus ξ for 〈ξ〉 = 0.5, 0.63, 0.76 and 0.9 (solid

line, squares, stars and triangles, respectively) for (a) ω = 0.001 and (b) ω = 0.09. The

profile in (a) is very similar to the Green function, as the soliton is much narrower than the

sample width. (c) Calculated α (squares) and αs for 〈ξ〉 = 0.54 (no symbols), 〈ξ〉 = 0.72

(stars) and 〈ξ〉 = 0.86 (triangles), respectively, versus normalized waist ω. (d) Calculated

αg for the same set of soliton positions.

Plots of eq. (3.8) are visible in fig. 3.2 for β > 0 (the latter applies throughout

the rest of the chapter). I note that the problem is invariant under the transformation

ξ → 1 − ξ. For 〈ξ〉 = 0.5 the perturbation is symmetric with respect to the mid-plane

ξ = 0.5. In other cases (i.e. beam positions) the perturbation is asymmetric due to

the unequal distances between soliton and boundaries: its maximum is shifted relative
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3.2 Role of the Boundary Conditions on the Nonlinear Index Perturbation

to the peak of the excitation. Fig. 3.2(c) shows the parameter αx versus waist ω;

the relationship αg/s[〈ξ〉] = αs/g[1 − 〈ξ〉] holds true, allowing to restrict the analysis

to 〈ξ〉 > 0.5. The nonlocality increases as the ratio between beam width and sample

thickness decreases. Figs. 3.2(c-d) display α
g/s
x versus ω for various beam centers 〈ξ〉:

as the beam moves closer and closer to a boundary, the overall perturbation gets smaller

and smaller, with a reduced (increased) extension towards the closest (furthest) edge.

3.2.2 Poisson 2D

I now consider two-dimensional configurations. I start with the Poisson equation in

2D:

β∇2∆ρ(x, t) + |A(x, t)|2 = 0 (3.9)

which is linear with power and governs, for example, nonlinear optical propagation

in thermo-optic media (87). I take a sample infinitely wide (thick) along t but finite

along x, from 0 to a, with boundary conditions ∆ρ(x = 0, t) = ∆ρ(x = a, t) = 0 and

lim|t|→∞ ∆ρ(x, t) = 0. By setting ξ = x/a, υ = t/a and κ = β/a2, eq. (3.9) reduces to

κ∇2
ξ,υ∆ρ(ξυ) + |A(ξ, υ)|2 = 0 (3.10)

with the new boundary conditions ∆ρ(ξ = 0, υ) = ∆ρ(ξ = 1, υ) = 0 and lim|υ|→∞ ∆ρ(ξ, υ) =

0. The solutions for ∆ρ, given a certain intensity profile, is evaluated by

∆ρ(ξ, υ) = −
∫ ∞

−∞
dη

∫ 1

0
G(ξ, υ, ζ, η)|A(ζ, η)|2dζ (3.11)

where G(ξ, υ, ζ, η) is the Green function for the given geometry, as computed in the

next section.

3.2.2.1 Green Function in a Finite Rectangular Geometry

I compute the Green function in a two dimensional geometry infinitely extended along

a direction and finite along the other, with Dirichlet boundary conditions. I name ξ

and υ the finite and infinite coordinates, respectively, and fix to 1 the cell width along

ξ. I have to find the function G(ξ, υ, ζ, η) determined by
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∇2
ξυG(ξ, υ, ζ, η) = δ(ξ − ζ, υ − η) (3.12)






G(ξ = 0, υ, ζ, η) = G(ξ = 1, υ, ζ, η) = 0

lim
|υ|→∞

G(ξ, υ, ζ, η) = 0
(3.13)

where ξ = ζ and υ = η are the coordinates of excitation and (3.13) are the boundary

conditions. To simplify the computation I introduce a new function F as

F =

{

G(ξ) if 0 < ξ < 1,

−G(−ξ) if −1 < ξ < 0
(3.14)

For |ξ| > 1 I take F (ξ) = F (ξ + 2); hence, F is a periodic function with period 2

and, from eq. (3.14), F is odd. Developing F in a Fourier series:

F (ξ, υ, ζ, η) =
∞
∑

m=1

bn(υ, ζ, η) sin (πmξ) (3.15)

The second partial derivatives for F from eq. (3.15) are ∂2F
∂ξ2 = −∑∞

m=1 bm (πm)2 sin (πmξ)

and ∂2F
∂υ2 =

∑∞
m=1

∂2bm
∂υ2 sin (πmξ). Substitution into (3.12) leads to

∞
∑

m=1

sin (πmξ)

[

∂2bm
∂υ2

− (πm)2 bm

]

= δ(ξ − ζ, υ − η) − δ(ξ + ζ, υ − η) (3.16)

where the presence of the second source term is due to the charge image needed to

entail the correct boundary conditions on F . Multiplying both sides of eq. (3.16) for

(1/2) sin (πpξ) and integrating over ξ between −1 and 1, for ∀p ∈ N I get

∂2bp
∂υ2

− (πp)2 bp = 2 sin (πpζ) δ(υ − η) (3.17)

The solutions are

bp =

{

Ae−πp(υ−η), υ > η

Beπp(υ−η), υ < η
(3.18)

To find the boundary condition for ∂bp/∂υ in υ = η I integrate (3.17) over the

interval η − δ < υ < η + δ, i.e
∫ η+δ
η−δ

{

∂2bp

∂υ2 − (πp)2 bp

}

dυ = 2 sin (πpζ). In the limit

δ → 0 and using eq. (3.18), the former relationship becomes A + B = − 2
πp sin (πpζ);
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conversely, the continuity of bp in υ = η leads to A = B: solving the system I find

A = B = − 1
πp sin (πpζ). Putting this result in eq. (3.18) provides bp(υ, ζ, η) =

− 1
πp sin (πpζ) e−πp|υ−η|. From eq. (3.15), the sought Green function G is

G(ξ, |υ − η|, ζ) = −
∞
∑

m=1

1

πm
sin (πmζ) e−(πm|υ−η|) sin (πmξ) (3.19)

G depends on |υ − η| because of translational symmetry along the υ axis. Further-

more, when ξ = ζ and υ = η, i.e. when the response is calculated in the same point

of the forcing term, I have G(ξ = ζ, 0) = −∑∞
m=1

1
πm sin2 (πmζ), that diverges for

ζ 6= ha (h = 1, 2, . . .), as espected.

3.2.2.2 Perturbation Profile

As stated above, eq. (3.19) is a diverging harmonic series in ξ = ζ, υ = η, and must be

inserted into eq. (3.11) to find ∆ρ; to compute the total perturbation from an intensity

profile |A(ζ, η)|2, I take the series out of the integral, obtaining:

∆ρ(ξ, υ) =

∫ ∞

−∞
dη

∫ 1

0

∞
∑

m=1

1

πm
sin(πmξ) sin(πmζ)e−πm|υ−η||A(ζ, η)|2dζ =

=
∞
∑

m=1

1

πm
sin(πmξ)

∫ ∞

−∞
dη

∫ 1

0
sin(πmζ)e−πm|υ−η||A(ζ, η)|2dζ

(3.20)

Eq. (3.20) is the Fourier series along the axis ξ for the perturbation profile, that is

∆ρ(ξ, υ) =
∞
∑

m=1

1

πm
Vm(υ) sin(πmξ) (3.21)

where the harmonic coefficients Vm(υ) are given by

Vm(υ) =

∫ ∞

−∞
dη

∫ 1

0
sin(πmζ)e−πm|υ−η||A(ζ, η)|2dζ. (3.22)

If the intensity profile is in the form |A(ξ, υ)|2 = fξ(ξ)fυ(υ) I derive that Vm(υ) =

V ξ
mV υ

m(υ), being

V ξ
m =

∫ 1

0
fξ(ζ) sin(πmζ)dζ (3.23)

V υ
m(υ) =

∫ ∞

−∞
fυ(η)e−πm|υ−η|dη (3.24)
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I note that, if fυ(υ) has an even parity, V υ
m and ∆ρ, are even too.

Now I consider an astigmatic Gaussian shape for the intensity with a varying center, i.e.

|A(ξ, υ)|2 = exp
{

−
[

(ξ−〈ξ〉)2
ω2

x
+ υ2

ω2
t

]}

, where ωx/t = wx/t/a and 〈ξ〉 is the ξ coordinate

of the intensity peak1. V υ
m is given by (details are reported in appendix C.2):

V υ
m =

√
π

2
ωte

(πm
2 )

2
ω2

t

[

erfc

(

υ

ωt
+
πm

2
ωt

)

eπmυ + erfc

(

− υ

ωt
+
πm

2
ωt

)

e−πmυ

]

(3.25)

Additionally, if the beam profile is narrow compared to the sample thickness a

(ωx << 1), I obtain (C.3):

V ξ
m(〈ξ〉) ∼=

√
πωx sin(πm 〈ξ〉)e−π2ω2

x(m
2 )

2

(3.26)

Fig. 3.3(a) displays the results for V ξ
m(〈ξ〉) for various beam positions and waists

(the graph shows the symmetric excitation ωx = ωt, but the generalization is straight-

forward); it also shows the comparison between numerical results obtained from eq.

(3.23) and the formula (3.26). As expected, the index msup, defined as the value be-

yond which V ξ
m become negligible, increases as the beams shrink. Therefore, in order

to reach a good approximation, it is necessary to take into account more terms in eq.

(3.20).

The calculated nonlocal parameters are graphed in fig. 3.3(b-d), the perturbation

profiles are presented in fig. 3.4. Since the symmetry imposes αg
t = αs

t and αg
x(〈ξ〉) =

αs
x(1− 〈ξ〉), I limit to the case 〈ξ〉 > 0.5. Due to the boundaries, the nonlocality along

t is higher than along x on the beam-side closer to the edge (i.e., αg,s
t > αg

x). As

the excitation moves off-axis and the overall perturbation reduces in magnitude, such

anisotropy gets larger. Conversely, while for 〈ξ〉 = 0.5 the nonlocality along x is weaker

than along t, when 〈ξ〉 = 0.68 and 〈ξ〉 = 0.84 the largest nonlocal perturbation along x

exceeds that along t.

3.2.3 Screened Poisson Equation

Another relevant 2D case is the screened Poisson equation:

K∇2∆ρ+ µ∆ρ+ |A(x, t)|2 = 0 (3.27)

1Given the invariance along t due to the infinite extent, I can consider profiles centered in υ = 0

without any loss of generality.
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Figure 3.3: Calculated V ξ
m(ξ) for ω = 0.02 and 〈ξ〉 = 0.5(solid line), ω = 0.02 and

〈ξ〉 = 0.75 (asterisks), ω = 0.1 and 〈ξ〉 = 0.5 (triangles), ω = 0.1 and 〈ξ〉 = 0.75 (squares),

respectively. The numerical results are in complete agreement with the theoretical approx-

imation. (b, c) Calculated degree of nonlocality along x and (d) along t for 〈ξ〉 = 0.5

(circles), 〈ξ〉 = 0.54 (solid line), 〈ξ〉 = 0.68 (squares) and 〈ξ〉 = 0.81 (triangles), respec-

tively.
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Figure 3.4: Perturbation profiles for (a,c) ω = 0.01 and (b,d) ω = 0.1 for (a,b) 〈ξ〉 = 0.5

and (c,d) 〈ξ〉 = 0.75. The dashed (solid) lines correspond to profiles along υ(ξ − 〈ξ〉).
The profiles are chosen such to contain the perturbation peak. Squares (triangles) are the

corresponding values computed with a full numerical approach, which completely agree

with the theoretical predictions from eq. (3.20).
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3.2 Role of the Boundary Conditions on the Nonlinear Index Perturbation

with K and µ < Kπ2

a2 given constants. Eq. (3.27) governs reorientation in liquid

crystals in an isotropic configuration (30) and is largely used as a ruling equation for

refractive index in nonlinear nonlocal media (34; 83). I consider the same geometry

investigated in section 3.2.2. Using the same normalizations I get

κ∇2
ξυ∆ρ+ µ∆ρ+ |A(ξ, υ)|2 = 0 (3.28)

In the next section I compute the corresponding Green function, necessary to eval-

uate the nonlinear perturbation through eq. (3.11).

3.2.3.1 Green Function for the Screened Poisson Equation

To find the Green function G I have to solve

κ∇2G+ µG = δ(ξ − ζ, υ − η) (3.29)

with boundary conditions as in section 3.2.2.1. Developing G in a Fourier series re-

spect to ξ as previously done for the Poisson equation, I can write
∑∞

m=1 bm(υ, ζ, η) sin(πmξ).

Substitution of the latter into eq. (3.31) leads to

∞
∑

m=1

{

κ
∂2bm
∂υ2

+ µbm − κbm (πm)2
}

sin (πmξ) = δ(ξ − ζ, υ − η) (3.30)

Every coefficient bm is determined by ∂2bm
∂υ2 −

[

(πm)2 − µ
κ

]

bm = 2
κ sin(πmζ)δ(υ−η),

which is equal to eq. (3.17) with the transformation (πm)2 →
[

(πm)2 − µ
κ

]

1. From eq.

(3.19) it is easy to compute

G(ξ, |υ − η|, ζ) = −
∞
∑

m=1

1
√

(πm)2 − µ
κ

sin (πmζ) e
−
√

(πm)2−µ
κ
|υ−η|

sin (πmξ) (3.31)

1To have a real square root ∀m, the relationship µ < Kπ2

a2 must hold true, as anticipated in section

3.2.3.
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3.2.3.2 Perturbation Profile

Proceeding as already done in section 3.2.2.2 and using the Green function (3.31), for

∆ρ I get:

∆ρ(ξ, υ) =
1

κ

∞
∑

m=1

1
√

(πm)2 − µ
κ

Vm(υ) sin(πmξ) (3.32)

where

Vm(υ) =

∫ ∞

−∞
dη

∫ 1

0
sin(πmζ)e

−
√

(πm)2−µ
κ
|υ−η||A(ζ, η)|2dζ (3.33)

Setting once again |A(ξ, υ)|2 = exp
{

−
[

(ξ−〈ξ〉)2
ω2

x
+ υ2

ω2
t

]}

, I get Vm(υ) = V ξ
mV υ

m(υ),

where V ξ
m is given by (3.26) [(3.23) for other beam shapes], whereas V υ

m(υ) now is

V υ
m(υ) =

√
π

2
ωte

Θmω2
t

[

erfc

(

υ

ωt
+

Θm

2
ωt

)

eΘmυ + erfc

(

− υ

ωt
+

Θm

2
ωt

)

e−Θmυ

]

(3.34)

having defined Θm =
√

(πm)2 − µ
κ .

Equation (3.28) has a degree of nonlocality depending on the ratio µ/κ: the non-

locality decreases as µ/κ increases. In fact, for µ = 0 I get the Poisson equation,

which is the most nonlocal case, whereas for µ/κ → ∞ it is ∆ρ ∝ |A|2, i.e., the local

case. Fig. 3.5 shows the results obtained by substituting eq. (3.31) in eq. (3.11), for

µ/κ = 102 and µ/κ = 104. Slight differences exists with the Poisson case, as the ratio

µ/κ increases up to 1; for large µ/κ, the perturbation becomes radially symmetric, the

boundary conditions being the same owing to the large distance from the cell edges.

3.2.4 Reorientational Equation for the NLC in Anisotropic Configu-

ration

I now turn to the NLC in an anisotropic configuration (see chapter 2). As already

discussed, in this case F in the reference system xt is:

∇2
xtθ + γ sin [2(θ − δ)] |A|2 = 0 (3.35)
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Figure 3.5: Calculated figure of nonlocality αx for Gaussian intensity profiles (curves

for αt and α
g/s
x/t are nearly identical) versus ω for 〈ξ〉 = 0.5 and (a,b) µ/κ = 102 or (c,d)

µ/κ = 104. In this range for µ/κ, the nonlocality does not depend on beam position.

When αx = 1, perturbation and excitation have the same profile, i.e. the medium is local.

(b) - (d): perturbation profile along υ(symbols) and ξ − 〈ξ〉(solid line) for µ/κ = 102 and

µ/κ = 104, respectively, when ω = 0.035 and 〈ξ〉 = 0.5; in both cases the perturbation

possesses radial symmetry. In (b) the perturbation is wider due to a higher ratio µ/κ.

where γ = ǫ0ǫa
4K , being K the Frank elastic constant and ǫa the optical anisotropy.

When no excitation is applied, I suppose that rubbing induces a uniform director dis-

tribution, forming an angle θ0 with respect to the beam wavevector.

The presence of the unknown variable θ into the sine precludes the possibility to use

the Green function formalism, being eq. (3.35) nonlinear. However, it is possible to

solve eq. (3.35) using a perturbative approach (49), as shown in the next section.

3.2.4.1 Perturbative Approach for the Director Profile Computation

Let me begin by making the positions











|A|2 = ǫV

θ = θ0 + ǫθ1 + ǫ2θ2 + . . . =

∞
∑

n=0

ǫnθn
(3.36)

where ǫ is a smallness parameter which will be set equal to 1 at the end of the

derivation.
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I define the optical reorientation as

Ψ ≡ θ − θ0 = ǫθ1 + ǫ2θ2 + . . . =
∞
∑

n=1

ǫnθn (3.37)

Substituting eq. (3.37) in (3.35) and writing the sine in a power series around θ = θ0

provides:

∇2
[

θ0 + ǫθ1 + ǫ2θ2 + o(ǫ2)
]

+ γ {sin [2(θ0 − δ)]

+2 cos [2(θ0 − δ)]
[

ǫθ1 + ǫ2θ2 + o(ǫ2)
]

+ o(Ψ2)
}

ǫV = 0
(3.38)

Equating to zero all the coefficients multiplying the same powers of ǫ in eq. (3.38),

I obtain

ǫ0 : ∇2θ0 = 0

ǫ1 : ∇2θ1 + γ sin [2(θ0 − δ)]V = 0

ǫ2 : ∇2θ2 + 2γ cos [2(θ0 − δ)] θ1V = 0

...

(3.39)

All eqs. (3.39) are Poisson-like equation, with forcing terms generally dependent on

lower order solutions and excitation V : in other words, the nonlinear equation (3.35)

has been transformed in an infinite set of linear Poisson equations, coupled through the

respective forcing terms. From the first of (3.39) I get that, at order 0 (i.e. without

perturbation)1, the director distribution does not change. For orders larger than 0,

solutions of eq. (3.39) at the cell boundaries must be zero.

Being linear equations, they can be solved by the Green function technique as discussed

in the former sections; hence, the solutions of (3.39) are

θ1(x, t) = −γ sin[2(θ0 − δ)]

∫∫

G(x, t, ζ, η)V (ζ, η)dζdη

θ2(x, t) = −2γ cos[2(θ0 − δ)]

∫∫

G(x, t, ζ, η)V (ζ, η)θ1(ζ, η)dζdη

= γ2 sin[4(θ0 − δ)]

∫∫

G(x, t, ζ, η)V (ζ, η)

{∫∫

G(ζ, η, ζ ′, η′)V (ζ ′, η′)dζ ′dη′
}

dζdη

...

(3.40)

1This is not more true if the unperturbed θ takes different values at the boundaries.
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Setting ǫ = 1 and considering terms up to the second order I get

θ1(x, t) = −γ sin[2(θ0 − δ)]

∫∫

G(x, t, ζ, η)|A(ζ, η)|2dζdη

θ2(x, t) = γ2 sin[4(θ0 − δ)]

∫∫

G(x, t, ζ, η)|A(ζ, η)|2
{∫∫

G(ζ, η, ζ ′, η′)|A(ζ ′, η′)|2dζ ′dη′
}

dζdη

θ(x, t) ∼= θ0 + θ1 + θ2
(3.41)

Defining a normalized intensity profile as |A|2 = Pf(x, t) being 1
2Z

∫∫

f(x, t)dxdt =

1, with P the beam power and Z the medium impedance, finally I get for θ

θ = θ0 + γPg1(x, t) + γ2P 2g2(x, t) (3.42)

having introduced















g1(x, t) = − sin[2(θ0 − δ)]

∫∫

G(x, t, ζ, η)f(ζ, η)dζdη

g2(x, t) = sin[4(θ0 − δ)]

∫∫

G(x, t, ζ, η)f(ζ, η)

{∫∫

G(ζ, η, ζ ′, η′)f(ζ ′, η′)dζ ′dη′
}

dζdη

(3.43)

Eq. (3.42), combined with eq. (3.43), is the solutions of eq. (3.35) for small powers.

As it is obvious from the previous analysis, I can get the expression of θ in a power series

with respect to beam power P , where for every added term I have to solve an additional

Poisson equation. As it will be demonstrated below, for typical powers (P ≤ 5mW ),

considering terms up to P 2 as in eq. (3.42) provides a very good approximation in

undoped liquid crystals.

3.2.4.2 Solution in a Finite Rectangular Geometry

In the case of the rectangular geometry already studied in sections 3.2.2-3.2.3, eq. (3.35)

turns into

∇2
ξυθ + γN sin [2(θ − δ)] |A|2 = 0 (3.44)

with the same coordinate transformations used in the above cited cases and where

γN = γa2. Owing to the adopted geometry, the Green function to be used in eq. (3.43)
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is given by (3.19). So g1 = sin[2(θ0 − δ)]
∑∞

m=1
1

πmVm(υ) sin(πmξ) where for Vm(υ)

the equations derived above keep their validity. If the excitation field |A|2 is not the

product of two functions, both of them dependent only from one transverse variable, I

have to compute g2(ξ, υ) through the general expressions (3.21) and (3.22), with forcing

term |A|2θ1 [see eq. (3.43)]. In the opposite case, i.e. when |A(ξ, υ)|2 = fξ(ξ)fυ(υ), I

have

|A(ξ, υ)|2θ1(ξ, υ) =

∞
∑

l=0

Al(ξ)Bl(υ) (3.45)

being Al(ξ) = 1
πlfξ(ξ)V

ξ
l sin(πlξ) and Bl(υ) = fυ(υ)V υ

l (υ). It is easy to demonstrate

that

g2(ξ, υ) = sin[4(θ0 − δ)]
∞
∑

m=0

1

πm
sin(πmξ)

∞
∑

l=0

Gm
l F

m
l (υ) (3.46)

having defined

Fm
l (υ) =

∫ ∞

−∞
Bl(η)e

−πm|(υ−η)|dη (3.47)

Gm
l =

∫ 1

0
sin(πmζ)Al(ζ)dζ (3.48)

Equation (3.48) is formally identical to eq. (3.23) and can be computed by means

of eq. (C.13), as demonstrated in C.3. Equation (3.47) has no analytical expression,

even in the Gaussian case, so I must evaluate them numerically. Computed g1 and g2

for Gaussian profiles with 〈ξ〉 = 0.5 and 〈ξ〉 = 0.75 are shown in fig. 3.6 and fig. 3.7,

respectively: the two functions possess the same shape with very good approximation,

i.e. g2(ξ, υ) ∼= cg1(ξ, υ). This means that the reorientation angle in NLC and the solu-

tions of Poisson equation behave nearly the same for ω << 11. As a direct consequence,

the amount of nonlocality does not depend on beam power if, to describe θ, I need to

use only terms up to P 2 (see appendix C.1). Noteworthy, for ξ = 0.5, g1 is cylindrically

symmetric around the cell center in an area wider than the beam.

I now compare the results for Gaussian beams, obtained through eq. (3.42) and a

full numerical approach based upon a Gauss-Seidel relaxation scheme: such comparison

1Of course this result is valid in a rectangular geometry infinitely extended in one dimension.
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Figure 3.6: Plots of g1 (a,d) and g2 (b,e) for 〈ξ〉 = 0.5. The corresponding profiles are

plotted in (c) and (f) versus ξ (g1 solid line, g2 squares) and υ (g1 dashed line, g2 triangles),

normalized to one (the cross sections are in υ = 0 and ξ = 0.5, respectively). Results for

g1 and g2 perfectly overlap. Excitation waists are ω = 0.03 (a,b,c) and ω = 0.1 (d,e,f),

respectively.

Figure 3.7: As in fig. 3.6, but for 〈ξ〉 = 0.75.
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3.2 Role of the Boundary Conditions on the Nonlinear Index Perturbation

is shown in fig. 3.8. All the simulations are run for a cell width a = 100µm, an initial

director angle θ0 = π/6 and a coefficient γ correspondent to NLC E7. In the numerical

algorithm, the boundary conditions along υ are imposed by fixing the perturbation to

0 at a finite distance, chosen such that θ close to the excitation undergoes negligible

variations when this distance is increased.

I define θmax as the maximum reorientation angle, fixed an excitation field. Figs. 3.8(a)

and 3.8(b) report θmax versus beam power P , for two different beam positions. In both

cases a good approximation is reached using only linear term in P up to P = 2mW ,

i.e., a linear relationship between θ and the intensity. For powers up to 4mW I need

accounting also for the term proportional to P 2. Fig. 3.8(c) shows the behavior of θmax

for two different powers, furnishing the magnitude order of the nonlinearly induced

perturbation, as the beam is moved across the cell from the center (〈ξ〉 = 0.5) to the

edge (〈ξ〉 = 1). As predictable, the perturbation diminishes as the beam gets closer

to the boundary, the anchoring effects becoming stronger. Finally, fig. 3.8(d) shows

the absolute and relative error for P = 4mW , defined as |θnum − θtheory| and |θnum −
θtheory|/|θnum|, respectively, where θnum (θtheory) is the distribution angle numerically

calculated (theoretically, for terms up to P 2). It is evident that the differences between

the two approaches are larger when |υ| is larger, due to the boundary conditions along

the infinite dimension in the numerical code. However, the maximum relative error is

less than 0.6%, proving a good agreement between the two methods.

3.2.5 Highly Nonlocal Limit for the 2D Case

Let me consider a ∆ρ given by eq. (3.21) and Vm(υ) by eqs. (3.25) and (3.26). The

n-th derivative along ξ is ∂n∆ρ
∂ξn =

∑∞
m=1

1
πmV

ξ
mVm(υ)∂n[sin(πmξ)]

∂ξn . Therefore, for n = 2

I get:

∂2∆ρ

∂ξ2
= −

∞
∑

m=1

πmV ξ
mV

υ
m(υ) sin(πmξ) (3.49)

Similarly, the second derivative along υ is:

∂2∆ρ

∂υ2
=

∞
∑

m=1

1

πm
V ξ

m

d2V υ
m(υ)

dυ2
sin(πmξ) (3.50)

In the Poisson 2D case and for a Gaussian shape, eqs. (3.25) holds valid: deriving

it I obtain
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(a) θmax for 〈ξ〉 = 0.5 (b) θmax for 〈ξ〉 = 0.8

(c) θmax versus 〈ξ〉 (d) Absolute and relative error

Figure 3.8: Fig. 3.8(a) and 3.8(b) show the maximum reorientation angle θmax versus

beam power for 〈ξ〉 = 0.5 and 〈ξ〉 = 0.8, respectively. Green and blue curves represent

the solutions taking into account terms up to P and P 2, respectively, whereas the red

curve is the full numerical solutions. Fig. 3.8(c) reports θmax versus beam position 〈ξ〉,
for P = 0.2mW (blue line) and P = 4mW (green line). Fig. 3.8(d) shows the absolute (in

degrees) and relative errors between theoretical and numerical results, for P = 4mW . In

all figures a = 100µm, w = 2.8µm and θ0 = π/6.
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3.2 Role of the Boundary Conditions on the Nonlinear Index Perturbation

d2V υ
m

dυ2
=
ωt
√
π

2
e(

πm
2 )

2
ω2

t

{

eπmυ

[

(πm)2erfc

(

υ

ωt
+
πm

2
ωt

)

+
4√
πω2

t

(

υ

ωt
− πm

2
ωt

)

e
−
(

υ
ωt

+πm
2

ωt

)2]

+e−πmυ

[

(πm)2erfc

(

− υ

ωt
+
πm

2
ωt

)

− 4√
πω2

t

(

υ

ωt
+
πm

2
ωt

)

e
−
(

υ
ωt

−πm
2

ωt

)2]}

(3.51)

In υ = 0 I get

d2V υ
m

dυ2
= ωt

√
πe(

πm
2 )

2
ω2

t

[

(πm)2erfc
(πm

2
ωt

)

− 2

√
πm

ωt
e−(πm

2 )
2
ω2

t

]

(3.52)

Substituting eq. (3.52) into (3.50) and setting ξ = 0.5 I obtain

∂2∆ρ

∂υ2

∣

∣

∣

∣

ξ=0.5,υ=0

=
∞
∑

m=1

ωt√
πm

V ξ
me

(πm
2 )

2
ω2

t

[

(πm)2erfc
(πm

2
ωt

)

− 2

√
πm

ωt
e−(πm

2 )
2
ω2

t

]

sin
(πm

2

)

(3.53)

Figure 3.9: Plot of ∂2
∆ρ

∂ξ2 (triangles) and ∂2
∆ρ

∂υ2 (stars), computed in ξ = 0.5, υ = 0 versus

integer index m.

Fig. 3.9 shows the results computed from eqs. (3.53) and (3.49), evaluated in

ξ = 0.5, υ = 0: the two derivatives are equal, theoretically confirming that the index

well perceived by the beams in the highly nonlocal limit is symmetric in the plane ξυ,

as previously discussed. Furthermore, the sum of the two series approaches 0.5, as
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expected from the method in section 2.5.1.11.

I demonstrated such property for the simple and screened Poisson equations, but it is

easy to understand that this remains valid also for liquid crystals, being g1 = g2 (see

section 3.2.4.2).

1Using the same notations it is ∆ρ2 = 0.25.

57



3.3 Soliton Trajectory

3.3 Soliton Trajectory

3.3.1 General Expression for the Equivalent Force

I begin by considering a beam propagation described by a generalized nonlinear Schröedinger

equation

2ik
∂A

∂s
+ ∇2

⊥A+ 2n0k
2
0∆n(|A|)A = 0 (3.54)

To investigate the behavior of the soliton center I can apply the Ehrenfest’s theorem

to eq. (3.54) (49). I get

m
d2 〈r〉
ds2

= m
d2
(

∫∫

|ψ|2 rdxdt
)

ds2
= −

∫∫

|ψ|2 ∇V dxdt (3.55)

where I set m = k, V = −
(

k2
0

m

)

n0∆n and ψ = A√
∫∫

|A|2dxdt
so that

∫∫

|ψ|2dxdt = 1.

If V (x, t, s) = V1(x, s) + V2(t, s) from eq. (3.55) I obtain for the x-component of r (the

behavior of t is analogous)

k
d2 〈x〉
ds2

= −
∫

ϕ(x)
∂V1

∂x
dx (3.56)

where

ϕ(x) =

∫

|ψ(x, t)|2dt (3.57)

If I consider a 1D problem, i.e. only one transverse coordinate, eq. (3.56) can be

directly obtained from the Ehrenfest’s theorem. Eq. (3.56) is valid also if the field, i.e.

ψ, is in the form |ψ|2 = X(x)T (t). It provides

m
d2 〈x〉
ds2

= −
∫

dx

∫

X(x)T (t)
∂V (x, t, s)

∂x
dt =

= −
∫

X(x)

{∫

T (t)
∂V (x, t, s)

∂x
dt

}

dx =

= −
∫

X(x)
∂Veq(x, s)

∂x
dx

(3.58)

where I defined Veq(x, s, 〈x〉) =
∫

T (t)V (x, t, s)dt as a 1D equivalent potential. The

last case includes, for example, Gaussian shapes corresponding to soliton profiles in

highly nonlocal media (31).
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In the rest of the chapter I will refer to Veq, implying that all the results maintain their

validity also for V1. In eq. (3.58) I use X(x) = ηs(x − 〈x〉) and F (x, s) = −∂Veq/∂x.

The subscript s on η indicates that, in general, the exact form of the beam depends

on s (for example breathers). Therefore F is the local force, i.e. the derivative of the

potential with inverted sign. It is possible to define a force acting on the beam center

and given by

Fm
X (〈x〉 , s) ≡

∫

F (x, s)ηs(x− 〈x〉)dx (3.59)

In the general case the shape of F depends on the value of 〈x〉, e.g. when the

boundary conditions at a finite distance affect the nonlinear response. I can write

F (x, s) = Gs(x − 〈x〉 , 〈x〉), where the subscript s indicates the dependence of G

from the shape of η. Substituting the latter in eq. (3.59) I obtain Fm
X (〈x〉 , s) =

∫

Gs(x − 〈x〉 , 〈x〉)ηs(x − 〈x〉)dx. If I assume Gs(x − 〈x〉 , 〈x〉) = Gs(x − 〈x〉), i.e. the

potential shape remains unchanged when the beam center is moved, the only effect is to

translate the potential by 〈x〉; hence, I get Fm
X (〈x〉 , s) =

∫

Gs(x− 〈x〉)ηs(x− 〈x〉)dx =
∫

Gs(y)ηs(y)dy = Fm
x (s): the force does not depend on beam position. The dependence

on s is due to the variations in beam profile during propagation (for example a waist

varying with s). The beam trajectory can be evaluated by eq. (3.56):

〈x〉 (s) =
1

m

{

∫ s′

s0

∫ s′′

s0

Fm
X (s′)ds′ds′′ +

d 〈x〉
ds

∣

∣

∣

∣

s=s0

(s− s0) + 〈x〉 (s0)

}

i.e. a parabolic trajectory for the beam when Fm
X is constant.

If ηs(y) is even and Gs(y) is odd, i.e. the potential is even, then Fm
X = 0. The

beam propagates along a straight line with a slope dependent on its initial velocity,

i.e. its initial phase front. If the velocity at the beginning is null, the beam center

does not move along the propagation. Physical systems matching these hypotheses

are infinitely extended highly nonlocal media featuring V1 = k(P )(x − 〈x〉)2, where

Gaussian-shaped solitons exist. Another example is an infinitely extended 1D Kerr

medium where V1 = kη(x− 〈x〉).
Now I turn back to the general case. Developing Gs in power series around the point
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x = 〈x〉,

GS(x− 〈x〉 , 〈x〉) =W0(〈x〉) +W1(〈x〉)(x− 〈x〉) +W2(〈x〉) (x− 〈x〉)2 + . . .

=

∞
∑

n=0

Wn(〈x〉) (x− 〈x〉)n (3.60)

where

W0 = Gs|x=〈x〉 = − ∂Veq

∂x

∣

∣

∣

∣

x=〈x〉

Wn =
1

n!

∂nGs

∂(x− 〈x〉)n

∣

∣

∣

∣

x=〈x〉
= − 1

n!

∂n+1Veq

∂xn+1

∣

∣

∣

∣

x=〈x〉
, n = 1, 2, . . .

(3.61)

I want to underline how the variables Wi are in general dependent from s in two

ways: dependence of 〈x〉 (i.e. the position of Veq) from s and dependence of Veq shape

from the variation in beam profile along s. Force Fm
X is found to be (remembering

∫

ηs(y)dy = 1)

Fm
X =

∫

ηs(x− 〈x〉)
[

W0(〈x〉) +W1(〈x〉)(x− 〈x〉) +W2(〈x〉) (x− 〈x〉)2 + . . .
]

dx =

=W0(〈x〉) +W1(〈x〉)
∫

ηs(y)ydy +W2(〈x〉)
∫

ηs(y)y
2dy + . . . =

=W0(〈x〉) +

∞
∑

n=1

Wn(〈x〉)
∫

ηs(y)y
ndy

The final result for Fm
X is

Fm
X (s) =

∞
∑

n=0

Wn(〈x〉) 〈yn〉η (3.62)

being 〈yn〉η =
∫

ynη(y)dy.

Eq. (3.62) together with eqs. (3.58) and (3.59) rule the beam trajectory in nonlinear

media where the optical propagation is governed by the NNLSE, regardless the specific

nonlinear index perturbation ∆n(|A|). The force Fm
X changes with s due to two reasons:

variations in Veq through Wn and variations in intensity through 〈yn〉 terms. Interest-

ingly, eq. (3.62) describes the beam motion even in inhomogeneous linear media, i.e.

when the index profile ∆n does not depend on beam intensity. The term corresponding
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to n = 1 is always zero for the definition of 〈x〉. Finally, if η(y) is even, all the odd

terms in eq. (3.62) are zero, being
〈

y2j+1
〉

= 0 ∀j ∈ N, independently from Veq, i.e. in

every medium.

3.3.2 Power series for the Equivalent Force

In general, Wn =
∑∞

l=0
cln (〈x〉 − x0)

l can be written using a Taylor expansion around

〈x〉 = x0, where x0 is the initial beam position, Substituting in eq. (3.62) I get

Fm
X (〈x〉) =

∞
∑

n=0

∞
∑

l=0

cln (〈x〉 − x0)
l 〈yn〉η (3.63)

Without loss of generality I can set x0 = 0. If the problem is invariant under the

transformation x → −x (reflection with respect to the plane x = 0), the force on the

beam must be odd; this implies c2l
n = 0 (l = 0, 1, 2, . . .). Inserting the last in eq. (3.63)

I get Fm
X (〈x〉) =

∑∞
n=0

∑∞
l=0

c2l+1
n 〈x〉2l+1 〈yn〉η. The beam undergoes an equivalent

potential

V m
X (〈x〉 , s) = −

∫ 〈x〉

0
Fm

X (x′, s)dx′ = −
∞
∑

n=0

∞
∑

l=0

1

(2l + 2)
c2l+1
n 〈x〉2l+2 〈yn〉η (3.64)

For small displacements from x = 0 in (3.64), x powers larger than 2 can be ne-

glected; hence, the potential V m
X takes the form

V m
X (〈x〉 , s) = −1

2

( ∞
∑

n=0

c1n 〈yn〉η

)

〈x〉2 (3.65)

Eq. (3.65) tells me that for small amplitude motions the beam is subjected to

a classical harmonic oscillator potential, with an equivalent spring constant K =
∑∞

n=0 c
1
n 〈yn〉η dependent on s. The quantity K depends on beam profile momenta

〈y〉η, that remain unchanged in soliton propagation: in the latter case K varies with s

only through the coefficients cln.
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3.3.3 Highly Nonlocal Case

Let me change prospective and consider an infinitely narrow beam, i.e. η(y) = δ(x −
〈x〉). From eq. (3.62) I obtain

Fm
X = W0(〈x〉) (3.66)

Physically, beams much narrower than the width of the nonlinear response, i.e. in

the highly nonlocal regime, are affected only by the derivative of the nonlinear index

profile computed on the beam center. I stress how eq. (3.66) keeps its validity whenever

Wn terms for n ≥ 2 are negligible with respect to W0.

I can apply eq. (3.65) under hypotheses employed for its derivation (see 3.3.2); potential

is then given by

V m
X (〈x〉 , s) = −1

2
c10 〈x〉2 (3.67)

When c10 is constant along s, the potential exerted on the beam does not change

with 〈y〉n, i.e. the beam width does not affect its trajectory. Thus, the beam moves

along a sinusoidal trajectory around x = 0, with an amplitude determined by initial

conditions and a period Λ = 2π
√

k
c10

.

3.4 Soliton Oscillations in a Finite-Size Geometry

In this section I apply the theory developed in the latter section to investigate beam

motion in nonlocal media of finite size. I will focus on the four cases presented in section

3.2, considering Gaussian shapes and their evolution in the presence of an equivalent

force given by eq. (3.66) due to the different distance from boundaries. Such results

will be confirmed by numerical simulations based on the NNLSE, and by experiments

in NLC.

3.4.1 Poisson 1D

Applying eqs. (3.56), (3.66) and (3.61) to the nonlinear index perturbation (3.8) in the

normalized transverse unit ξ = x/a and considering |A|2 = Ce−ξ2/ω2
with C =

k2
02PLZ0√
πωaβn0
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(i.e. a 1D Gaussian beam with power density PL per unit wavefront), I get:

W0 = C

{[

erf

(

1 − 〈ξ〉
ω

)

+ 〈ξ〉
[

erf

(

−〈ξ〉
ω

)

− erf

(

1 − 〈ξ〉
ω

)]]

− ω√
π

[

e−
〈ξ〉2
ω2 − e−

(1−〈ξ〉)2
ω2

]}

(3.68)

From eq. (3.68) the equivalent force behaves like 1/a, i.e. increases as the cell

thickness decreases. Noteworthy, it is W0(0.5 − 〈ξ〉) = −W0(0.5 + 〈ξ〉), in agreement

with symmetry. Fig. 3.10(a) plots W0 versus 〈ξ〉, showing a linear trend for the force

and, thus, an effective potential which is harmonic. The propagating soliton undergoes

sinusoidal oscillations with period independent from the initial position (〈ξ〉 in s = 0),

in agreement with Ref. (85). Moreover, since the force acting on the beam does not

depend on its waist, the soliton trajectory is determined by the power but not by the

waist [the latter periodically varying along s in the case of breathers (51)]. Finally, since

W0 is linear with PL, the oscillation period evolves with the square root of the power

density [Fig. 3.10(b)]. Numerical (1+1)D simulations of the corresponding NNLSE

equation confirm the theoretical findings: the beam trajectories depend only on PL,

but not on beam waist: therefore, all the self-confined waves with equal power feature

the same motion in the plane ξs. Fig. 3.10(c-d) shows a typical numerical results for

breather excitation, whereas fig. 3.10(b) shows the comparison between numerical and

theoretical oscillation period Λ, demonstrating a perfect agreement.

3.4.2 Poisson and Screened Poisson 2D

Let me consider two 2D cases: Poisson and screened Poisson equations. The nonlinear

perturbation is ruled by eqs. (3.10) or (3.28), respectively, and the equivalent potential

Veq (defined in section 3.3.1) is expressed by:

Veq(〈ξ〉) =
∞
∑

m=1

1

Θm
V ξ

mV
υ
m sin(πmξ) (3.69)

with V υ
m =

∫∞
−∞ V υ

m(υ)fυ(υ)dυ/
∫∞
−∞ fυ(υ)dυ 1.

For a Gaussian beam eq. (3.26) holds, whereas from eq. (3.25) V υ
m is (see appendix

1The denominator is required to normalize the wavefunction.
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3.4 Soliton Oscillations in a Finite-Size Geometry

Figure 3.10: (a) Force W0 acting on soliton versus beam position 〈ξ〉. Such curve is

independent from the beam waist up to ω = 0.1. (b) Oscillation period Λ versus density

power PL computed theoretically (solid line) and numerically (symbols), for β = 106,

a = 100µm and initial position 〈ξ〉 (s = 0) = 0.6 (numerical period for other launching

positions differs for less than 1%): such behavior is proportional to P−1/2 due to the

linear relationship between nonlinear perturbation and field intensity. (c-d) Plot of the

field intensity into the plane ξs for ω = 0.01 and PL = 0.15mW/m, for a beam launched

in 〈ξ〉 = 0.8 and with null initial velocity. Wavelength is 633nm and n0 = 1.3.

C.4 for the detailed computation):

V υ
m =

1√
π
e

(

Θm√
2

ωt

)2

F (Θmωt) (3.70)

where F is defined by eq. (C.17) and Θm in section 3.2.3: in the Poisson case it is

Θm = πm. Typical profile in the Poisson case are plotted in fig. 3.11(a).

From eq. (3.69) and (3.66) it is easily found that

W0(〈ξ〉) = C
∞
∑

m=1

V ξ
mV

υ
m cos(πm 〈ξ〉) (3.71)

with C =
2k2

0PZ0

πω2a2βn0
. At variance with the 1D case, the force decreases with the cell

thickness a as a−2, having fixed all the other parameters.

Fig. 3.11(b) plots W0 for µ/κ = 0 (Poisson case) and µ/κ = 100 (the plot is limited

to 〈ξ〉 > 0.5 due to the odd symmetry around axis ξ = 0.5): the force has a nonlinear
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3.4 Soliton Oscillations in a Finite-Size Geometry

behavior (its slope increases in proximity of the boundaries) and is stronger in the

Poisson case being the nonlocality higher. Moreover, in the Poisson case the force is

almost independent from the beam waist (for ω < 0.1 and 〈ξ〉 < 0.9) as in the 1D case,

while in the screened case force it varies with the waist due to the lower nonlocality, the

latter stronger for smaller beam widths. Fig. 3.11(c) shows the soliton trajectories in

the plane ξs for beams at a fixed power, impinging normally on the cell (i.e. with a null

initial velocity) and computed through eq. (3.56): the soliton oscillates sinusoidally,

with a period Λ [shown in fig. 3.11(d)] decreasing as the beam is launched closer to a

boundary, due to the anharmonicity of the potential V m
X (see section 3.3.2). Finally,

given the linear relationship between the nonlinear index perturbation and the intensity

profile, the period decreases with power as P−1/2.

W2 can be computed from [see eqs. (3.69) and (3.61)]:

W2(〈ξ〉) = −C
∞
∑

m=1

(πm)2V ξ
mV

υ
m cos(πm 〈ξ〉) (3.72)

Fig. 3.11(e) shows the first two terms of the force Fm
X [see eq. (3.62)], W0 and

W2 〈y〉2, respectively. The first order is dominant, being typically about three magni-

tude orders larger than the other ones.

Finally, in the highly nonlocal approximation and in the Poisson case, the potential

V m
X is given by (3.67), with [see appendix C.5 for details]:

c10 = 2C

∞
∑

m=1

πmV υ
m(−1)m

∫ 0.5

0
e−

t2

w2 cos(πmt)dt (3.73)

A comparison between the complete form of W0 and its linear approximation

c10(〈ξ〉 − 0.5) is reported in fig. 3.11(e): good accuracy is obtained for beams with

oscillation amplitudes less than 0.15.

3.4.3 Liquid Crystals

3.4.3.1 Model

In the case of liquid crystals, where optical propagation is governed by the first of

eqs. (2.18), eq. (3.54) is valid with the positions V = −
(

k2
0

2m

)

Dx∆n1 and ∆n =

1For the sake of simplicity I assumed Dx = Dt.
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3.4 Soliton Oscillations in a Finite-Size Geometry

(a) Equivalent potential Veq(〈ξ〉)
(inverted in sign) versus ξ.

(b) Equivalent force W0(〈ξ〉) versus

〈ξ〉.

(c) Soliton trajectories for P =

2mW .

(d) Oscillation period Λ for P =

2mW .

(e) Comparison between Wn terms.

Figure 3.11: (a) Equivalent potential Veq (with inverted sign) versus ξ for 〈ξ〉 = 0.5, 0.7

and 0.9 (solid line with squares) and corresponding intensity profile (solid line). The inset

shows the distance among beam peak 〈ξ〉 and maxima −Veq positions ξpeak versus 〈ξ〉. (b)

Equivalent force W0 versus beam positions 〈ξ〉 in the Poisson/screened Poisson case for

ω = 10µm (squares/triangles) and ω = 2.2µm (solid line/circles). In the second case I

took µ/κ = 100. (c) Nonlinear trajectories in the plane ξs in the Poisson case for different

initial beam positions and null input velocity, and (d) corresponding oscillation period Λ

versus initial beam positions 〈ξ〉 (s = 0). The beam power is 2mW , β = 100, a = 100µm,

λ = 633nm and n0 = 1.3. (e) First order force (i.e. W0) (red line) and second order force

(i.e. W2 < y2 >) (black line) acting on the soliton. Blue straight line represents linear

approximation for W0, stemming from eq. (3.73).
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3.4 Soliton Oscillations in a Finite-Size Geometry

ǫa
[

sin2(θ − δ) − sin2(θ0 − δ)
]

, with m = k0ne cos δ. In section 3.2.4.2 I demonstrated

that, for typical (experimental) powers, only terms up to P 2 must be considered to reach

a good approximation; hence, I can set ∆n = ǫa
{

sin[2(θ0 − δ)]Ψ + cos[2(θ0 − δ)]Ψ2
}

and, from eq. (3.42), perturbation angle is Ψ = γPg1 +γ2P 2g2. Thus, considering only

terms up to P 2, I get:

∆n ∼= ǫa
{

sin[2(θ0 − δ)]
(

γPg1 + γ2P 2g2
)

+ cos[2(θ0 − δ)]γ2P 2g2
1

}

(3.74)

Therefore, the equivalent potential Veq (defined in section 3.3.1) is:

Veq = V L
eq + V NL

eq (3.75)

where I defined
(

|A|2 = Ce−[ξ2/ω2
x+υ2/ω2

t ] with C = 2Z0/
(

neπωxωta
2
)

)

V L
eq = − ǫak0

2ne cos δ
sin[2(θ0 − δ)]

(

γP
√

πω2
t

∫ ∞

−∞
e
− υ2

ω2
t g1dυ +

γ2P 2

√

πω2
t

∫ ∞

−∞
e
− υ2

ω2
t g2dυ

)

V NL
eq = − ǫak0

2ne cos δ
cos[2(θ0 − δ)]

γ2P 2

√

πω2
t

∫ ∞

−∞
e
− υ2

ω2
t g2

1dυ

(3.76)

The force W0 acting on the soliton is (section 3.3.1):

W0 = WL
0 +WNL

0 (3.77)

being WL
0 =

∂V L
eq

∂ξ

∣

∣

∣

ξ=〈ξ〉
and WNL

0 =
∂V NL

eq

∂ξ

∣

∣

∣

ξ=〈ξ〉
the terms stemming from linear and

quadratic parts1 of ∆n, respectively. Substituting definitions of g1/2 [see eqs. (3.43)]

in (3.76), the two forces WL
0 and WNL

0 are:

WL
0 =

ǫak0

2ne cos δ
sin[2(θ0 − δ)]

{

γCP sin[2(θ0 − δ)]

( ∞
∑

m=1

V ξ
mV

υ
m cos(πm 〈ξ〉)

)

+γ2C2P 2 sin[4(θ0 − δ)]

[ ∞
∑

m=1

cos(πm 〈ξ〉)
( ∞
∑

l=1

Gm
l H

m
l

)]}

(3.78a)

1With respect to Ψ.
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WNL
0 =

ǫak0

2ne cos δ
cos[2(θ0−δ)] sin2[2(θ0−δ)]γ2C2P 2

∞
∑

m=1

∞
∑

l=1

1

ml
[m cos(πm 〈ξ〉) sin(πl 〈ξ〉)

+ l cos(πl 〈ξ〉) sin(πm 〈ξ〉)]Mml(〈ξ〉) (3.78b)

being Hm
l =

∫∞
−∞ Fm

l (υ)e
− υ2

ω2
t dυ and Mml(〈ξ〉) = V ξ

mV
ξ
l

∫∞
−∞ V υ

m(υ)V υ
l (υ)e

− υ2

ω2
t dυ.

Figure 3.12: (a) Comparison between different components of the total force W0 versus

beam positions: the black line stems from WNL
0 , blue and red lines stem from WL

0 , Ψ

and Ψ2 terms, respectively. Power is 1mW . (b) Boundary force W0 versus beam position

〈x〉 = 〈ξ〉 a for P = 1 (blue line), 2 (red line) and 3mW (black dotted line) in E7 and

thickness a = 100µm. (c) Corresponding oscillation period Λ versus 〈x〉 (s = 0) for zero

initial momentum (i.e. beams normal to the input interface) computed from the Ehrenfest’s

theorem (solid line) and full numerical simulations (stars). Black corresponds to P = 3mW ,

red to P = 2mW and blue to P = 1mW . (d) Calculated trajectories of a 2mW nematicon

versus propagation s for several input positions 〈x〉 (s = 0). Wavelength is 633nm.

Let me consider a Gaussian beam as in the former cases. Fig. 3.12(a) compares the

contributions stemming from the various W0s, whereas fig. 3.12(b) shows the acting

force W0 for various powers and a fixed cell thickness a (taken equal to 100µm as

in actual samples). Fig. 3.12(c) graphs the soliton oscillation period versus initial
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3.4 Soliton Oscillations in a Finite-Size Geometry

(a) Intensity on plane xs. (b) Intensity on plane ts.

(c) Intensity isosurface.

Figure 3.13: Soliton intensity profile in the plane xs (a), ts (b) and intensity isosurface (c).

The initial beam profile is a Gaussian with waist of 2.8µm, beam center in x = 70µm, t = 0

and power of 3mW . The wavevector is normal to the input interface (i.e. null initial

velocity) and wavelength is 633nm. Cell thickness is 100µm.

positions and fig. 3.12(d) the sinusoidal trajectories in the plane xs for a fixed power:

the beams impinge normally to the input interface, therefore their initial velocity is

null. Fig. 3.12(c) shows results for the oscillation period computed by full-numerical

simulations (see appendix B): the agreement is very good. Finally, fig. 3.13 shows the

numerically computed soliton profile for a beam with P = 3mW , win = 2.8µm and

〈x〉 (s = 0) = 70µm, demonstrating its sinusoidal oscillation in the plane xs.

3.4.3.2 Experiments

To verify these findings, a series of experiments was carried out in an L = 4mm long

NLC cell of thickness a = 100µm and width > 1cm, containing the commercial E7.
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3.4 Soliton Oscillations in a Finite-Size Geometry

Figure 3.14: (a) 3D sketch of the experimental configuration: the molecular director lies

in the cell plane st ≡ zy and the transverse dynamics takes place in xs. (b) Side view:

spatial solitons are excited with an input angle α and propagate along s (grey line) in the

plane xs; as power increases, so does the repulsive force and the nematicon is pushed away

from the (lower) boundary (black line).

The glass interfaces were treated to ensure planar molecular orientation in st with optic

axis at θ0 = 30◦ with respect to the normal z to the input interface [fig. 3.14(a)]. In

this geometry, the reference systems xts is rotated with respect to xyz by the walk-off

δ = 7◦ around x, as explained in chapter 2 [see fig. 3.14(a)]. The soliton evolution

along st, as well as at the output in xt (s = L), were imaged with a microscope and a

CCD camera, collecting either the light scattered through the top of the cell (section

2.2) or the transverse profile at the output, respectively. A small offset with respect

to x = a/2 and an angular tilt α were impressed on the input wavevector to maximize

the soliton x-displacement versus power [fig. 3.14(b)]. Nematicons were excited using

extraordinarily-polarized beams launched off-center (i.e. 〈x〉 6= a/2) at the wavelength

1.064µm.

Figure 3.15 compares some of the experimental results with the corresponding predic-

tions from eqs. (3.78), as the input power is varied for a given set of launch conditions.

The input angle is modeled as a not null initial velocity, i.e. d〈x〉
ds

∣

∣

∣

s=0
= tanα. Fig.

3.15(a) shows the calculated trajectories for an input beam in s = 0 and 〈x〉 (s = 0) =

58µm, with input wavevector normal to ŷ and forming an angle of 0.6◦ with ẑ. Clearly,

under the given excitation, the soliton is expected to interact with the boundary-driven

potential and oscillate for a fraction of the period Λ shifting along x in z = L as the
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3.4 Soliton Oscillations in a Finite-Size Geometry

power changes. The acquired photographs of the output in xt are superimposed and

shown in fig. 3.15(b) for various powers (from 0.5 to 6mW ), demonstrating the pre-

dicted power-dependent repulsion due to the boundary potential. Such nonlinear trans-

verse dynamics along x is in excellent agreement with the results from the integration

of eq. (3.58) [using eqs. (3.78) for the force] using the sample parameters, as displayed

in fig. 3.15(c).

Figure 3.15: (a) Calculated soliton trajectories for the conditions used in the experiments

(see text) and input powers P = 1.5, 3, 6mW , respectively. (b) Collected and superimposed

photographs of spatial soliton profiles at the cell output for various powers; the squares

correspond to the symbols in (c). (c) Experimental (squares) and calculated (line) output

positions versus input power. To fit the experimental data I assumed a coupling coefficient

for the power of 50%.
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4

Vector Solitons in Nematic

Liquid Crystals

4.1 Vector Solitons: an Introduction

The simplest vector solitons (VS) are shape-preserving self-localized solutions of cou-

pled Schröedinger nonlinear evolution equations (6). Among them, Manakov spatial

solitons (88) can be derived by the inverse scattering technique and were first ob-

served in AlGaAs with orthogonally-polarized collinear beams interacting incoherently

(89). Two-wavelength vector solitons in Kerr media were predicted by De La Fuente

and co-workers (90), whereas VS consisting of bright and dark solitons were reported

by Shalaby and Barthelemy (91). Quadratic solitons belong to the class of VS, be-

cause they encompass the parametric interaction of waves at different wavelengths

(48; 92; 93). The resulting self-guided beams, in general, have energy flows along

directions depending on relative powers and birefringence (92). In photorefractives,

VS were demonstrated in various forms, ranging from incoherent VS (94) to VS with

bright and dark solitary components (95), soliton dipoles (96) and multimode solitons

(94; 97). The term molecule soliton was introduced to embrace the rich and complex

VS phenomenology (35).

In this chapter I study the propagation of vector solitons in NLC encompassing two

beam of two different wavelengths, i.e. a bi-color soliton. I will show how numerical

results are in good agreement with experimental observations. The results discussed

here were partially published in Ref. (98).
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4.2 Cell Geometry and Basic Equations

4.2 Cell Geometry and Basic Equations

Let me consider two beams at two different wavelengths, λ1 and λ2 respectively, which

impinge with arbitrary angles on a cell in an anisotropic configuration, with wavevectors

k1 and k2 belonging to the plane yz (see fig. 4.1). I define θj = θ0j + Ψ the angle

between the director n̂ and the wavevector kj (j = 1, 2) [see fig. 4.1(c)], with θ0j the

value when the optical reorientation is negligible, i.e. in the linear regime, and Ψ the

perturbation induced by light. I get θ0j = θ0 − θrif
j (if both wavevectors are parallel to

z θ0i = θ0)
1, where θrif

j is the angle between axis z and kj , and θ0 the angle between

n̂ and ẑ [fig. 4.1(d)], imposed by the rubbing on the glass slides along yz (fig. 4.1). I

assume, without loss of generality, that λ2 > λ1, i.e. δ2 < δ1. Furthermore, I define the

axis s as the direction in the midst of the individual Poynting vectors2. The equations

describing soliton propagation are

K∇2
⊥θ +

ǫ0ǫa1

4
|A1|2 sin [2(θ1 − δ1)] +

ǫ0ǫa2

4
|A2|2 sin [2(θ2 − δ2)] = 0 (4.1)

2ik0jnej cos δj
∂Aj

∂sj
+Dtj

∂2Aj

∂t2j
+Dxj

∂2Aj

∂x2
j

+ k2
0jδǫttjAj = 0 (j = 1, 2) (4.2)

being θ the angle formed by n̂ and z.3 Eq. (4.1) is expressed in the reference system

xts as defined above: the second derivative of the director angle distribution along s

was neglected4. Moreover, in eq. (4.1) terms coming from the interference between the

two beams were neglected due to their fast variation in time, with a frequency5 much

larger than the typical cut-off in NLC(58; 60).

Eqs. (4.2) are written respectively in the frameworks xjtjsj , obtained by rotating

xyz by an angle βj around x̂ [fig. 4.1(d)]; additionally, in eq. (4.2) the relation

between nonlinear perturbations on the dielectric tensor ǫ and angles θj is δǫttj =

ǫaj

[

sin2(θj − δj) − sin2(θ0j − δj)
]

(j = 1, 2). For small perturbations, i.e. for low beam

1Angles are considered positive (negative) when y > 0(y < 0), for absolute values below π.
2With reference to fig. 4.1(d) the angle β between s and z is given by (β1 + β2) /2.
3Angles θ, θ1 and θ2 differ each other for a constant so their derivatives are equal.
4Clearly, this approximation is good as long as the angle between s1 and s2 is small.
5Obviously this frequency is proportional to the difference c

λ1
− c

λ2
, being c the light-speed in

vacuum.
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4.2 Cell Geometry and Basic Equations

(a) Side view (b) Top View

(c) Electromagnetic vectors (d) Angles respect to cell reference system

Figure 4.1: Sketch of the cell and excitation schematic. Fig. 4.1(a) shows the cell side

view, i.e. plane xz. Both wavevectors k1 and k2 lie in the mid-plane to avoid undesired

displacements along x due to boundary effects (see chapter 3). Fig. 4.1(b) shows the plane

yz, i.e. the molecular reorientation plane: in absence of excitation, n̂ forms an angle θ0

with ẑ owing to rubbing. The two wavevectors, in the most general case, have different

directions. In 4.1(c) I plot the relevant vectors for electromagnetic propagation: n̂ is the

molecular director, sj the Poynting vector, tj the extraordinary electric field polarization,

δj the walk-off and θj the angle between director and kj (j = 1, 2). In fig. 4.1(d) I graph

the vectors in the cell reference system xyz: θrif
0j and βj are the angles formed by kj and sj

with ẑ, respectively. All quantities are referred to the single beam propagation, i.e., when

the other beam is absent.
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4.3 Highly Nonlocal Limit

powers, I can linearize δǫtt and, consequently, eqs. (4.2) turn into

2ik0jnej cos δj
∂Aj

∂sj
+Dtj

∂2Aj

∂t2j
+Dxj

∂2Aj

∂x2
j

+k2
0jǫaj sin [2(θ0j − δj)] (θj−θ0j)Aj = 0 (j = 1, 2)

(4.3)

4.3 Highly Nonlocal Limit

4.3.1 Reorientation

In full analogy with the analysis of a single beam developed in section 2.5.1.1, lineariza-

tion of eq. (4.1) gives:

K∇2
⊥Ψ +

{ǫ0ǫa1

2
|A1|2 cos [2(θ0 − δ1)] +

ǫ0ǫa2

2
|A2|2 cos [2(θ0 − δ2)]

}

Ψ

+
ǫ0ǫa1

4
|A1|2 sin [2(θ0 − δ1)] +

ǫ0ǫa2

4
|A2|2 sin [2(θ0 − δ2)] = 0

(4.4)

Formally, eq. (4.4) can be written as L′ = [L+ a′(x, t) + b′(x, t)] Ψ = a(x, t)+b(x, t)

with the boundary condition Ψ|C = 0, being C the curve which describes the cell

edges. Therefore, L′ is a linear operator acting on Ψ, formed respectively by L, the

Laplacian, and by the multiplication for the functions a′ and b′, proportional to the

forcing terms a and b, respectively. Given that L′ is linear, the general solution has the

form Ψ = Ψa + Ψb, where L′Ψa = a(x, t) and L′Ψb = b(x, t) and where the boundary

conditions Ψa|C = 0 and Ψb|C = 0 must be applied. The next step is to Taylor-expand

both perturbation and fields as for a single field. Problems can arise from the presence

of the terms a′Ψ and b′Ψ, which destroy the symmetry t/− t with respect to the beam

center. To simplify the mathematical description I neglect these terms in eq. (4.4),

obtaining

K∇2
⊥Ψ +

ǫ0ǫa1

4
|A1|2 sin [2(θ0 − δ1)] +

ǫ0ǫa2

4
|A2|2 sin [2(θ0 − δ2)] = 0 (4.5)

Let me focus on the accuracy of the employed approximation. I have to check that

cos [2(θ0 − δj)] Ψ0 <<
1

2
sin [2(θ0 − δ2)] (j = 1, 2) (4.6)

is verified in actual cases. The left hand side of eq. (4.6) is about 0.02 for Ψ0 ≈
2◦ (according to the full numerical simulations this corresponds to a beam power of
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about 2mW ), whereas the right hand side is about 0.38: this confirms the validity

of the approximation. Therefore, having separated the effects of the two beams, two

uncoupled Poisson equations must be solved:

K∇2
⊥Ψj +

ǫ0ǫaj

4
|Aj |2 sin [2(θ0 − δj)] = 0 (j = 1, 2) (4.7)

Noteworthy, eqs. (4.7) possess invariance for translation along t, i.e. if Ψ(x, t) is a

solution when |A|2 = g(x, t), then Ψ(x, t− t0) is still a solution if |A|2 = g(x, t− t0).

Finally, the solution for the perturbation angle under all these approximations is

Ψ = Ψ1+Ψ2 = Ψ
(1)
0 +Ψ

(2)
0 +Ψ

(1)
2

[

x2 + (t− 〈t1〉 (s))2
]

+Ψ
(2)
2

[

x2 + (t− 〈t2〉 (s))2
]

(4.8)

having defined

Ψ
(j)
2 =

ǫ0ǫaj

16K
|Aj |2x=0,t=0 sin [2(θ0 − δj)] (j = 1, 2) (4.9)

The functions 〈tj〉 (s) depict the transversal coordinate of the j-th beam peak as the

latter propagates along s, i.e. its trajectory in the plane ts.

4.3.2 Optical Propagation

In the section 4.3.1 I found an approximate solution for the director distribution in the

highly nonlocal limit. Using this result in eq. (4.3) provides

2ik01ne1 cos δ1
∂A1

∂s1
+Dt1

∂2A1

∂t21
+Dx1

∂2A1

∂x2
1

+

+k2
01ǫa1 sin [2(θ0 − δ1)]

{

Ψ0 + Ψ
(1)
2

[

x2
1 + (t1 − 〈t1〉)2

]

+ Ψ
(2)
2

[

x2
1 + (t1 − 〈t2〉)2

]

}

(4.10)

2ik02ne cos δ2
∂A2

∂s2
+Dt2

∂2A2

∂t22
+Dx2

∂2A2

∂x2
2

+

+k2
02ǫa2 sin [2(θ0 − δ2)]

{

Ψ0 + Ψ
(1)
2

[

x2
2 + (t2 − 〈t1〉)2

]

+ Ψ
(2)
2

[

x2
2 + (t2 − 〈t2〉)2

]

}

(4.11)
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4.3 Highly Nonlocal Limit

being Ψ0 = Ψ
(1)
0 + Ψ

(2)
0 and with the two reference systems related by the transfor-

mations (valid for small ∆β = (β2 − β1) /2)

{

t1/2
∼= t± s tan ∆β

s1/2
∼= s

(4.12)

It is easy to recognize that eqs. (4.10)-(4.11) are coupled Schröedinger-like equations

with a parabolic potential, i.e. two coupled quantum oscillators written in two different

frames (coupling takes place by means of Ψ
(j)
2 , which depend on the intensity peak of the

j-th beam [see (4.9)]). To complete the analogy, I set ~ = 1, mj = (k0jnej cos δj)/Dj ,

Vj = −γjΨ(xj , tj , sj) and γj = (k2
0jǫaj sin [2(θ0 − δj)])/(2k0jnej cos δj). Finally, in my

case, time is substituted by the propagation coordinate s.

4.3.3 Soliton Trajectory

In this section I investigate the trajectories as beams propagate inside the cell. To this

purpose, I apply the well-known Ehrenfest theorem for the Schröedinger equation (49),

relating particles mean velocity to the potential in non-relativistic quantum mechanics.

The Ehrenfest theorem provides

mj
d2 〈rj〉
ds2j

= −
∫∫

|ψj |2∇Vjdxdt (j = 1, 2) (4.13)

being 〈rj〉 =
∫∫

rj |ψj |2dxdt, ψj = Aj/
√

∫∫

|Aj |2dxdt, r = xx̂+tt̂ and ∇ = ∂
∂x x̂+ ∂

∂t t̂.

Writing eq. (4.13) in the reference system xts yields

mj
d2 〈xj〉
ds2j

= −
∫∫

|ψj |2
∂Vj

∂xj
dxdt (4.14)

mj
d2 〈tj〉
ds2j

= −
∫∫

|ψj |2
∂Vj

∂tj
dxdt (j = 1, 2) (4.15)

From section 4.3.2 it is1 Vj = −γj

{

Ψ0 + Ψ
(1)
2

[

x2
j + (tj − 〈t1〉)2

]

+ Ψ
(2)
2

[

x2
j + (tj − 〈t2〉)2

]}

.

Substitution of the integrals in the right hand side of eqs. (4.14)-(4.15) leads to

1I note that the next formula for the refractive index profile was computed in the highly nonlocal

regime, without any ansatz on beam profile; see section 4.3.1.
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4.3 Highly Nonlocal Limit

(a) Initial position (b) Motion due to the mutual attraction

Figure 4.2: Reciprocal interaction between two beams (red and blue profiles) due to the

nonlocal index perturbation. For the sake of simplicity, one beam (the blue) is fixed in the

space; actually, the interaction is mutual and both beams move along t. In 4.2(a) the blue

beam induces an index well (black line) which exerts a force (proportional to the slope of

black curve) on the red one, consequently moving it from t1 to t2 [fig. 4.2(b)].

mj
d2 〈xj〉
ds2j

= 2
(

Ψ
(1)
2 + Ψ

(2)
2

)

〈xj〉 (4.16)

mj
d2 〈tj〉
ds2j

= 2
[

Ψ
(1)
2 (〈tj〉 − 〈t1〉) + Ψ

(2)
2 (〈tj〉 − 〈t2〉)

]

(j = 1, 2) (4.17)

Being 〈xj〉 = 0 for even intensity profiles, eq. (4.16) shows there is no force acting

on the beams along x, thereby the beam is undeflected in the xs plane. Conversely, in

the xt plane the beams perceive a force proportional to the misplacement between the

two waves. Specifically, I find

m1
d2 〈t1〉
ds21

= 2Ψ
(2)
2 (〈t1〉 − 〈t2〉) (4.18)

m1
d2 〈t2〉
ds22

= 2Ψ
(1)
2 (〈t2〉 − 〈t1〉) (4.19)

Solutions of eqs. (4.18)-(4.19) provide the soliton trajectories in plane tjsj . Note

how every beam is affected only by the potential of the other one and the reciprocal

attraction [Ψ
(j)
2 < 0 from (2.14)] increases as the distance, which does not depend on the

reference system, decreases [see figs. 4.2(a)-4.2(b)]. In general, quantities Ψ
(j)
2 (j = 1, 2)

depend on sj through the beams’ peak intensity variation, as predicted by (2.14). To

get a closes form for 〈tj〉 I neglect these fluctuations; noteworthy, this condition is

fulfilled if the single beams are solitons.
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4.3 Highly Nonlocal Limit

Writing eqs. (4.18)-(4.19) in the system xts, I use (4.12) and, remembering that s ∼= s1,

I obtain

m1
d2 〈t1〉
ds2

= 2Ψ
(2)
2 (〈t1〉 − 〈t2〉) (4.20)

m1
d2 〈t2〉
ds2

= 2Ψ
(1)
2 (〈t2〉 − 〈t1〉) (4.21)

From eq. (4.21) I derive 〈t1〉 = 〈t2〉 − m2

2γ2Ψ
(1)
2

d2〈t2〉
ds2 ; substituting into eq. (4.20) I

found a single fourth order equation:

D
d4 〈t2〉
ds4

+ C
d2 〈t2〉
ds2

= 0 (4.22)

with C = m1 +m2
γ1Ψ2

2

γ2Ψ
(1)
2

and D = −m1m2

2γ2Ψ1
2
. Setting α =

√

C/D the general integral

of eq. (4.22) is:



















〈t1〉 = −
(

1

α2
+

m2

2γ2Ψ
(1)
2

)

[k1 cos(αs) + k2 sin(αs)] + k3s+ k4

〈t2〉 = − 1

α2
[k1 cos(αs) + k2 sin(αs)] + k3s+ k4

(4.23)

Let me briefly discuss the main properties of (4.23); a qualitative sketch of the

resulting trajectories is in fig. 4.3. The terms linear in s represent a common mean

direction of propagation for the two beam energies, i.e. the propagation of a multi-color

vector soliton, determined by the balance between the beam powers and, in general,

distinct from the case of a single beam. Conversely, the sinusoidal terms are related

to single beam oscillations around the mean propagation direction, as shown in fig.

4.3, and the two beams oscillate in phase opposition. Eventually, the oscillation period

becomes independent from the initial conditions but is a function of the power balance.

4.3.4 Solution for Initially Overlapping Beams

To get a solution for a specific set of launch conditions, I have to impose the correspond-

ing boundary conditions to establish the constants k1, k2, k3 and k4. For example, let

me consider two beams of different wavelengths launched normally to the cell input in-

terface, i.e. with both wavevectors parallel to z or β1 = δ1, β2 = δ2 and β = (δ2 + δ1) /2

and at the same point; thus 〈t1〉 (s = 0) = 〈t2〉 (s = 0) = 0, d〈t1〉
ds

∣

∣

∣

s=0
= − tan∆β and
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4.3 Highly Nonlocal Limit

Figure 4.3: Plot of vector soliton trajectory. Angle between vector soliton direction and z

is given by β+ ρ, where β is the angle between axis s and z (see note 2) and ρ = arctan k3

from eq. (4.23). Single solitons oscillate sinusoidally around this direction, keeping a

phase shift equal to π. s1 and s2 represent single beam energy direction when other beam

is lacking. In this plot beams are launched at the same point, i.e. their positions are

identical in z = 0.

d〈t2〉
ds

∣

∣

∣

s=0
= tan ∆β, where ∆β = δ2−δ1

2
1 (I suppose that for each beam the derivative in

s = 0 is unchanged with respect to the single beam case). After some simple algebra I

find k1 = k4 = 0, k3 = tan∆β

(

1 +
4γ2Ψ

(1)
2

α2m2

)

and k2 = tan∆β
4γ2Ψ

(1)
2

αm2
. Replacing these

in eq. (4.23) the beams trajectories are























〈t1〉 = −
(

1

α2
+

m2

2γ2Ψ
(1)
2

)

tan ∆β
4γ2Ψ

(1)
2

αm2
sin(αs) + tan∆β

(

1 +
4γ2Ψ

(1)
2

α2m2

)

s

〈t2〉 = − 1

α2
tan ∆β

4γ2Ψ
(1)
2

αm2
sin(αs) + tan ∆β

(

1 +
4γ2Ψ

(1)
2

α2m2

)

s

(4.24)

Therefore, the vector soliton propagates along a direction at an angle ∆ with z,

given by:

∆ = β + ρ = β + arctan

[

tan ∆β

(

1 − 2m1γ2Ψ
(1)
2

m1γ2Ψ
(1)
2 +m2γ1Ψ

(2)
2

)]

(4.25)

1In my case ∆β > 0 because I have λ1 > λ2.
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4.3 Highly Nonlocal Limit

If beam 1 is not present, I have Ψ
(1)
2 = 0, i.e. ∆ = δ2; if beam 2 is absent,

I have Ψ
(2)
2 = δ1, i.e. ∆ = δ1; in both cases the oscillation amplitudes go to zero

and the period to infinity, as expected. The results obtained for θ0 = π/6, λ1 =

1064nm and λ2 = 633nm from eqs. (4.24) and (4.25) are shown in fig. 4.4: every

vector soliton property is established by the balance between individual beam powers.

Let me discuss the results for the oscillation amplitudes. For Ired > 89Wmm−2 the

absolute value of the amplitudes increases monotonically with IIR; physically, at low

IIR the red attraction is dominant and the infrared beam collapses into red without

oscillations, whereas for higher IIR infrared force begins to contrast the red attraction

and the oscillation amplitude increases. This process continues until the infrared beam

becomes stronger than the red: at this point, the amplitude decreases as IIR is grows.

This behavior is visible in the range displayed in figs. [4.4(a)]-[4.4(b)] for Ired = 7

and 48Wmm−2. Moreover, the amplitudes are in phase opposition having the sign

inverted: in particular, the red (infrared) oscillation amplitude is positive (negative)

being its energy direction above (below) ∆. To conclude the discussion about oscillation

amplitudes, it is important to note that their size is a few microns, making their

observation very hard due to the blur caused by scattered photons.

The oscillation period is graphed in fig. 4.4(c): for a given Ired the period diminishes as

IIR increases, and vice versa, owing to the larger attractive force between the beams.

Fig. 4.4(d) plots the vector soliton propagation angle ∆: when the infrared is negligible

I have ∆ = δ1, i.e. propagation along the red walk-off (∆ → δ2), when the red is

negligible with respect to the infrared, the propagation is along the infrared walk-off

(∆ → δ1). Comparing, for example, blue and green curves it is easy to see that the

transition between these two limits is as sharp as the parameter Ired is low, being the

red strength weaker.

The red oscillations and the infrared beam act asymmetrically on the interaction, being

the refractive index well (induced at a fixed power) larger for red wavelengths than for

infrared due to the larger coupling between the optical field and the NLC at higher

frequencies.
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4.3 Highly Nonlocal Limit

(a) Oscillation amplitude for beam at λ2 =

633nm

(b) Oscillation amplitude for beam at λ1 =

1064nm

(c) Oscillation period (d) Vector soliton propagation angle ∆

Figure 4.4: [Fig. 4.4(a)] plots the oscillation amplitude B = − 1

α2 tan ∆β
4γ2Ψ

(1)
2

αm2
for the

beam at λ = 633nm versus the peak infrared intensity IIR. Each curve corresponds to

a different red intensity peak Ired: 7Wmm−2(blue), 48Wmm−2(red), 89Wmm−2(black)

and 130Wmm−2(green), this correspondence being valid for all the other subfigures. Fig.

[4.4(a)] plots the infrared oscillation amplitude A = −
(

1

α2 + m2

2γ2Ψ
(1)
2

)

tan ∆β
4γ2Ψ

(1)
2

αm2
. Fig.

[4.4(c)] reports the oscillation period (2π/α) versus the two intensity peaks. Finally, fig.

[4.4(d)] shows the propagation angle (in degrees) of the vector soliton with respect to z,

versus the two intensity peaks; dashed straight lines indicate the single beam walk-off for

red (red line) and infrared beams (blue line), respectively. Intensities used in these plots

correspond to a few milliwatts for waists of 2÷10µm, typical values in actual experiments.
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4.4 Breathing

4.4 Breathing

4.4.1 Coupling Geometry

To explore the breathing behavior I focus on the case of two collinear Poynting vectors,

i.e. S1 = S2. In such way the two different reference frames x1t1s1 and x2t2s2 coin-

cide; hence, the propagation equations for the two components at different wavelengths

can be written in the same coordinate system xts (see section 4.2). In practice, it is

possible to achieve this condition by tilting one wavevector with respect to the other.

In simulations and experiments reported hereafter, I assume k1 normal to the input

interface, i.e. parallel to ẑ [fig. 4.1(a)-4.1(b)], and k2 rotated until ŝ2 = ŝ1 (see fig.

4.5).

(a) Different Poynting vectors directions (b) Collinear Poynting vectors

Figure 4.5: Fig. 4.5(a) shows beam profiles when both wavevectors k1 and k2 are normal

to the input interface. Fig. 4.5(b) shows the case of collinear energy propagation directions

for the two beams, having kept k1 fixed and having rotated k2.

To enlighten the most important physical properties I assumed θ0 = π/6 (a different

rubbing produces only quantitative differences).

4.4.2 Comparison Between Numerical Simulations and Experimental

Observations

In this section I discuss the results of numerical simulations of eqs. (4.1)-(4.2) (employed

code is described in section B.1) and their comparison with experiments. For the

experimental work a NLC cell was employed as in fig. 4.1, with θ0 = π/6 with respect

to axis z. The cell is of thickness a = 100µm and is filled with E7. Two extraordinarily

polarized Gaussian beams at wavelengths 633 (red) and 1064nm (IR) are launched
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4.4 Breathing

as explained in section 4.4.1, and the propagation is investigated by acquiring the

scattered light through the cell top by means of a microscope and a CCD camera.

The light behavior at both wavelengths is monitored but, in order to prevent chromatic

distortions due to the microscope, the infrared component is filtered out; for this reason

I present only images of the visible component at 633nm. Additional optics are arranged

such that both beams have equal Rayleigh lengths of 60µm, so that diffraction lengths

are similar. The corresponding minimum waists are 2.8 and 3.7µm for red and IR,

respectively. The soliton propagation distance is nearly twenty times the diffraction

length.

Firstly, the linear behavior is investigated, i.e., when each beam diffracts either in the

absence of the second one or in the presence of negligible XPM; then both components

are launched to exploit XPM and generate a VS thanks to the combined effect. I report

the experimental photographs in fig. 4.6 in the plane ts. In the first plot of fig. 4.6 a

1.2 mW IR beam is launched , together with a low-power red beam (a power of 0.1mW ,

i.e. a negligible contribution to reorientation dynamics) is used as a probe to scan the

index well induced by the IR1. The IR beam is unable to self-localize, as the red probe

diffracts. The second panel of fig. 4.6 displays the case of a 0.4mW red beam launched

alone: self-focusing does not occur and beam diffracts. Instead, when 1.2mW IR and

0.4mW red beams are injected together, as in the last panel of fig. 4.6, the nonlinear

response is enhanced through incoherent XPM and supports a self-localized wave, i.e.,

a two-color vector soliton.

The white contour lines in fig. 4.6 are the simulation results. Owing to the actual

experimental limitations (that include the use of a non-achromatic lens, wavelength

dependent Fresnel reflections and scattering, the presence of a inhomogeneous NLC

transition layer in 0 < z < 100µm), in the simulations I implement a phase-front

curvature for the input beams and assume unequal coupling coefficient at the two

wavelengths. To investigate the breathing of these multicomponent beams, both red

and IR input powers Pred and PIR are varied, respectively, while keeping the launch

conditions (Rayleigh length, tilt, polarization) fixed. Figure 4.7 (left column) shows the

1I remind that shorter wavelengths are better confined than longer ones: this means that, assuming

that both beams undergo the same index profile, red diffraction implies IR diffraction as well. In fact,

given the better coupling with NLC molecules, the red index well is even deeper than the IR one for a

given director distribution.
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Figure 4.6: Color-coded acquired intensity profiles for red light in the plane ts (i.e. after

a rotation by δ). Contour maps of the calculated intensity distributions are superimposed

(white lines) to the experimental data. (a) A weak 0.1mW red beam is co-launched with

a 1.2mW IR beam; (b) a 0.4mW red beam is injected in the absence of IR; (c) 0.4mW

red and 1.2mW IR beams are co-launched and generate a vector soliton. The simulations

were carried out taking effective input coupling efficiency of 40% and 50% for red and IR

and initial beam curvatures of radius -130 m (waist in z = −40µm), respectively.
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4.4 Breathing

experimental yz evolution of a red beam with fixed power as the IR power is increased;

clearly, the red beam becomes more confined as IR power increases due to a deeper

index well, as expectable on the basis of XPM [see eq. (4.1)]. The right column shows

the predicted behavior of the red component in the plane ts, demonstrating an excellent

agreement with measurements.

Figure 4.7: Left column: acquired intensities profiles at 633nm in the plane yz. Intensity

levels are normalized to scattering losses along s. Right column: corresponding numerically

computed intensities in the plane st. Input power Pred at 633nm is 1.6mW , while IR powers

are PIR= 0 (a, b), 0.7 (c, d) and 2.4mW (e, f), respectively. In-coupling parameters are

as in fig. 4.6.

Finally, the left column of fig. 4.8 shows color-coded maps of the measured peak

intensity (normalized to scattering losses) of the red component versus s (horizontal

axis) and the total optical power P = Pred + PIR (vertical axis) for a fixed input

Pred at 633nm. The characteristic breathing of the nonlocal vector soliton is non

periodic and changes with total excitation, being more sensitive to the red (i.e., a

similar behavior occurs at lower total powers if Pred is higher). This is primarily

due to the larger anisotropy at 633nm, i.e., a greater amount of energy coupled with

the medium through reorientation, and a deeper refractive well for a given director
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4.4 Breathing

distribution. The simulations, plotted in the right column for the peak intensity after

integration across thickness x and normalization to input power at 633nm, display the

same trend: for a fixed total power P , a larger Pred makes the soliton more confined

and the breathing periods versus s decreases, in good agreement with the experimental

results. The departure between acquired and calculated maps are due to scattering

losses as well as beam aberrations caused by a distorted director distribution at the

input interface, both effects neglected in the simulations.

Figure 4.8: Normalized red peak intensity Ired in the observation plane st (right axes)

versus s and total excitation Pred +PIR (left axes) for a fixed Pred. (a) thru (d): measured

data, (e) thru (h): calculated data (after integration along x) assuming coupling parameters

as in fig. 4.6. Pred is 0.1 (a, e), 0.4 (b, f), 1.0 (c, g) and 1.6mW (d, h), respectively. Both

experimental and numerical data are normalized to the value in s = 0.
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5

Dissipative Self-Confined Optical

Beams in Doped Nematic Liquid

Crystals

5.1 Gain and Solitary Waves Propagation

Since losses are a detrimental factor in the propagation and use of spatial solitons,

the investigation of solitary waves in the presence of dissipative terms, e.g. gain or

absorption, was carried out mostly within the context of the complex Ginzburg Lan-

dau equation, (99; 100) with attention to the potential applications in lasers (101). In

previous chapters I discussed nonlinear optical propagation in undoped nematic liquid

crystals; in this chapter I study nonlinear wave propagation when a luminescent dye is

added to the NLC, inducing an optical gain. To model dye effects in NLC I will use

various models, beginning with the simplest case: a gain dependent neither from signal

intensity (gain saturation) nor space coordinates (for example, pump spatial profile).

Interestingly, a negative gain can be used to describe the scattering losses, that play

an important role in the nematic phase due to the orientational order [see chapter 1

and references (58; 60)]. I will later consider a gain dependent on intensity, i.e. gain

saturation, and a gain dependent on pump profile, i.e. varying in space. In every case

the optical pump propagates along the x axis [see 5.1(a)]; eventually, I will consider a

pump co-propagating with the signal beam; then, I will study the interaction of two

solitons at two different wavelengths, i.e. a vectorial soliton (see chapter 4), with power
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exchange between them induced by the dye.

I will assume a suitable concentration of dopants in order to obtain the desired gain.

Gain and luminescence have been reported in several dye-doped liquid crystals, includ-

ing nematics (102; 103; 104) cholesterics (105; 106; 107; 108) and blue phases (109)

in planar and cylindrical geometries. Results, although referred to a particular class

of highly nonlocal nonlinear media such as NLC, are qualitatively valid in all highly

nonlocal media where spatial solitons can be generated [see (31) and chapter 3].

5.2 Light Self-Confinement in Dye Doped Nematic Liquid

Crystals: Model

I refer to a nematic liquid crystalline cell as sketched in fig. 5.1. Two glass slides

sandwich a liquid crystal layer [fig. 5.1(a)] of thickness d = 100 µm. I take that, in

the absence of an external excitation, the molecular director n̂ (i.e., the optic axis) is

homogeneously distributed in the sample and lies on the yz plane at an angle θ0 with the

longitudinal z-axis [fig. 5.1(b)]. For the sake of simplicity, I limit my investigation to the

case of zero voltage applied across the cell, in order to avoid beam-shift in the xs plane

due to birefringent walk-off (47; 81). The latter would require the wave propagation to

be treated vectorially. Figure 5.1(c) shows the reference system xts after rotating xyz

by the walk-off angle δ around the x-axis. In this way, the versor ŝ corresponds to the

direction of the Poynting vector. The propagation of extraordinary polarized light in

the paraxial approximation along s is governed by a nonlocal nonlinear Schröedinger

equation (NNLSE) (see chapter 1)

2ik
∂A

∂s
+ ∇2

⊥A+ k2
0∆n(|A|)A− 2ik0neγA = 0 (5.1)

where A is the slowly-varying envelope of the electric field, ne the (linear) extraor-

dinary refractive index, k0 the vacuum wavenumber, Dx/t the anisotropic diffraction

coefficients, γ ∈ R the amplitude gain (loss) coefficient and δǫtt the nonlinear optical

perturbation induced on the dielectric tensor ǫ via reorientation. The last term takes

into account the power exchange between the light beam and the external environment.

Clearly, no soliton propagation is admitted by eq. (5.1) due to the lack of a loss (gain)

term balancing the gain (loss). Hereafter, I take δǫtt = ǫa
[

sin2(θ − δ) − sin2(θ0 − δ)
]

, with ǫa the optical anisotropy, δ the walk-off angle and θ the angle between the
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Figure 5.1: Sketch of the un-biased NLC cell geometry: (a) lateral view, (b) top view.

The arrows represent the mean molecular direction (NLC director). (c) Reference systems

xyz and xts: the latter is a rotation of the former around x by the walk-off angle δ; s is

the direction of energy flow. In (a) is shown pump direction.

wavevector k and the director n̂ in the presence of an electromagnetic perturbation.

This means I neglect other possible nonlinearities, such as the thermo-optic effect (69)

and cis-trans transformations (110). Therefore, the reorientational profile of the angle

θ is ruled by the Euler-Lagrange equation (chapter 1),

K∇2
⊥θ +

ǫ0ǫa1

4
|A1|2 sin [2(θ − δ1)] = 0 (5.2)

beingK the (intermolecular) elastic coefficient in the single constant approximation.

While in un-doped NLC γ is mainly determined by scattering losses (absorption being

usually negligible in the optical spectrum) and it is negative, if a suitable dye is present

and the sample is illuminated by a pump (laser), γ can become positive and introduce

amplification. I simulate beam evolution at wavelengths λ = 633 and 1064nm using

a nonlinear beam propagator (BPM) (see appendix B for details), using a Gaussian

input profile with waist w = 2.8µm and assuming θ0 = π/6 (kept constant hereafter).

Throughout this chapter, I refer to the physical parameters of the commercial liquid

crystal E7 (K = 12×10−12N, ne = 1.5646 and ǫa = 0.7093 for λ = 633nm, ne = 1.5456

and ǫa = 0.6130 for λ = 1064nm) and assume a dye-concentration able to activate the

NLC at the wavelength of the launched beam.
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5.3 Constant Optical Amplification

5.3 Constant Optical Amplification

In the simplest case, γ can be approximated by a constant, i.e., independent from both

the spatial coordinates (the spatial distribution of the pump) and the intensity I ∝ |A|2

(i.e., no gain saturation). Fig. 5.2 shows a comparison between soliton propagation

in undoped NLC [fig. 5.2(a)] and dye-doped NLC [fig. 5.2(a)]: in the latter case the

power increases with s; moreover, breathing features are affected by the incremented

power. In this example, for γ = 100m−1 there are four maxima in intensity along s,

whereas for zero γ the maxima are only three. To better address this issue (i.e., the

breathing behavior versus gain), fig. 5.3 displays the results at λ = 633nm for initial

beam powers of 0.5, 1.0, 1.5 and 2.0mW , respectively, plotting the beam waist across

t versus propagation s, wt(s) = 2

√

∫

It(t,s)t2dt
∫

It(t,s)dt
, with It(t, s) =

∫ d
0 |A|2dx the intensity

averaged along x. The quantity wt is well suited to describe beam (soliton) breathing

during amplification (or attenuation if γ < 0) along s. From the numerical simulations I

find that wt(s) ∼= wx(s) when wx/t are much smaller than d, wx being the waist across x

(fig. 5.3). As predicted for highly nonlocal solitons in undoped media (γ = 0) (31; 51),

the breathing period decreases as the initial power Pin increases. Therefore, for a fixed

γ 6= 0, the propagation distance between two waist minima reduces (increases) owing

to amplification (attenuation). A finite γ affects the mean beam waist, which reduces

(grows) with s for γ > 0 (γ < 0). I repeated the calculations at λ = 1064nm; fig. 5.4

shows the computed waist wt(s) for Pin = 0.5 and 2.0mW : self-confinement is obtained

only when the power is large enough to induce self-focusing. Moreover, since diffraction

is stronger than in the red (for the same powers), waist oscillation periods are larger

than in fig. 5.3 (see chapter 2 for details).

Figure 5.5 shows the beam profile for λ = 633nm at s = 1.5mm with Pin = 0.25mW

and γ = 0 or γ = 1000m−1, respectively. In the second case, the gain suffices to en-

hance the nonlinear confinement and overcome diffraction: indeed, there is a region

where the waist begins to decrease. Afterwards, beam width oscillates due to the in-

terplay of nonlinear self-focusing and diffractive spreading.

After the investigation on beam breathing, I discuss the amplification and its rela-

tionship with the propagation coordinate s. To this extent, I can define the beam

power amplification at a fixed s as G(s) = P (s)/Pin, i.e. the ratio between the power

in s and in s = 0. I find that G(s) = exp (2γs) if the self-induced waveguide has
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5.4 Role of Gain Saturation

(a) (b)

Figure 5.2: Numerically simulated beam propagation in the cell of fig. 5.1, in the presence

of a constant gain γ. Fig. 5.2(a) and 5.2(b) show the results for γ = 0m−1 (passive medium)

and γ = 100m−1 (active medium), respectively. The input profile is Gaussian with a waist

equal to 2.8µm. Wavelength is 633nm.

a numerical aperture large enough to confine all the input light and prevent losses

due to the coupling to the radiation modes. Therefore, at low input powers only

part of the excitation gets trapped and G is reduced by a constant factor (i.e. I can

write G(s)|Pin = ηcoupling(Pin) exp (2γs) with ηcoupling the initial coupling to modes

of the self-induced guide, which clearly depends on the initial beam power), whereas

above threshold (dependent on wavelength through diffraction), the power amplifica-

tion reaches a maximum and saturates (i.e. ηcoupling saturates to 1) for large enough

Pin. Figure 5.6 shows the calculated G versus γ for various input powers at two differ-

ent wavelengths: the gain is higher and saturates above Pin = 0.5mW at λ = 633nm

[fig. 5.6(a)], while at λ = 1064nm it keeps increasing with power [fig. 5.6(b)] until

Pin = 3.0mW due to the stronger diffraction.

5.4 Role of Gain Saturation

5.4.1 Mechanism for Dye Luminescence: a Simple Model

The simplest way to model optical gain in the interaction between signal, pump and

luminescent dye is to consider the dye as a three level system (four level systems are

similar but more involved to compute), as in laser theory (111).
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5.4 Role of Gain Saturation

Figure 5.3: Calculated wt [first and second row, (a)(d)] and wx [third and fourth row,

(e)(h)] versus propagation s and gain or loss γ for λ = 633nm. The input beam waist is

always 2.8µm. Input powers Pin are 0.5 (a), (e); 1 (b), (f); 1.5 (c), (g); and 2mW (d), (h),

respectively. The resulting self-confined beam is nearly cylindrically symmetric.
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Figure 5.4: Calculated wt at λ = 1064nm for an initial waist of 2.8µm. (a) wt versus s

and gain γ, (b) wt versus s for γ = 0m−1 (solid line), γ = 40m−1 (squares) and γ = 80m−1

(triangles); the input power Pin is 0.5mW . (c) and (d) Same as in (a) and (b) but for

Pin = 2mW . The waist is larger than at 633nm (fig. 5.3) due to stronger diffraction.

Figure 5.5: Beam profiles at s = 1.5mm for (a) γ = 0m−1 and (b) γ = 0m−1 at

λ = 633nm. The input power is 0.25mW, and the input waist is 2.8µm. Beam FWHM

versus s for (c) γ = 0m−1 and (d) γ = 1000m−1. For zero gain, the beam diffracts (c),

while it self-confines (and breathes) in the presence of amplification.
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Figure 5.6: Amplification G(s) versus γ in s = 1.5mm. Results for (a) λ = 633nm,

(b) λ = 1064nm. Input powers are 0.5 (solid line), 1.0 (squares), 2.0 (stars) and 4.0mW

(triangles), respectively.

A diagram of dye energy levels is in fig. 5.7: pump photons allow the molecules to

jump from level 1 to 3, followed by a non radiative decay to level 2. Finally, a radiative

decay from level 2 to 1 provides photon emission stimulated by the signal. Therefore

the signal beam is amplified, if dye is pumped at the appropriate wavelength. From

the balance in level population (111) I get

Figure 5.7: Energy diagram of opti-

cal gain in a three level system.

nd ≡ n2 − n1 =
A(R) −B

C(R)Is +D(R)
N (5.3)

n1 and n2 being the density populations per

unit volume in level 1 and 2, respectively, N the

dye density per unit volume, Is the signal intensity

and R the pumping rate R = αpIP , where IP and αP are the pump intensity and

its cross-section, respectively. In eq. (5.3) I defined A(R) ≡ X(R)/τ32, B ≡ 1/τ21,

C(R) ≡ αs[2+X(R)], D(R) ≡ X(R)/τ32 +[1+X(R)]/τ21, with X(R) ≡ R/[R+1/τ32];

αs is the cross-section for the signal. The optical gain γ is related to the population

difference nd by αs (111), i.e. γ = αsnd. I can rewrite the gain as

γ =
K(R,N)

Is + I0(R)
(5.4)

95

cap_amplificazione/figures/EPS/gain.eps
cap_amplificazione/figures/EPS/dye_levels.eps


5.4 Role of Gain Saturation

having definedG0(R,N) = N [A(R)−B]/C(R), I0(R) = D(R)/I(R) andK(R,N) =

G0I0. The parameter I0 depends on the dye density, while K depends also on the

Figure 5.8: Optical gain γ versus signal beam intensity Is.

pumping rate R. Physically, G0 represents the optical gain at low intensity, i.e. with-

out saturation, whereas I0 is the saturation intensity, defined as the value which halves

the gain (see fig. 5.8). Finally, I stress that both N and R are design parameters, to

be chosen according to the required features.
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Figure 5.9: Beam waist wt versus s in the presence of saturable gain for (a) γ0 = 100

and (b) 500m−1 for Pin = 1.0 (solid line), 1.5 (squares) and 2.0mW (triangles). (c) and

(d) Amplification G versus s for (c) γ0 = 100 and (d) 500m−1 (correspondence between

lines and powers as above). In all cases I0 = 1.8 × 1010Wm−2.
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5.5 Role of the Pump Profile

5.4.2 Gain Saturation: Numerical Analysis

I numerically investigate the effects of a gain γ dependent on the intensity I by assuming

γ = γ0/(1 + I/I0) [eq. (5.4)], the latter being able to model saturation in a three or

four level system [such as NLC doped with luminescent dyes, where both γ0 and I0 are

related to pumping rate and dye concentration (102; 103; 104)(section 5.4.1)]. Figure

5.9 shows the calculated wt for γ0 = 100 and 500m−1, for three values of Pin (1.0, 1.5

and 2.0mW ) and I0 fixed at 1.8× 1010W/m2. Similar to the case of a constant γ, for a

given input power the soliton oscillation period and mean waist decrease as γ0 becomes

larger. Note that, as wx(wt) departs from the soliton existence curve w = w(P,win),

the beam oscillates aperiodically. The amplification G has an exponential behavior

versus s if powers are very low (no saturation, not shown), but shows a quasi-linear

trend at high powers [figs. 5.9(c) and 5.9(d)], with slopes getting lower and lower as

Pin increases, due to the saturation.

Figure 5.10 plots amplification G computed at
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P
in

 [mW]

G
(s

=
2m

m
)

Figure 5.10: Soliton amplification

G at s = 2mm versus input power

Pin for γ0 = 100m−1 and I0 = 1.8 ×
1010Wm−2 (solid line) or I0 = 3.6 ×
109Wm−2 (squares).

s = 2mm versus Pin for two different I0, γ0 being

fixed at 100m−1. The curves have a maximum

due to the interplay between diffraction (stronger

at lower power) and gain with saturation: at low

power the gain raises owing to a better guidance

in the self-induced index well (fig. 5.6), whereas

for higher powers a gain reduction due to the sat-

uration sets the amplification behavior. The max-

imum G, occurring at the balance of the two de-

scribed effects, rises and shifts towards high pow-

ers for larger I0, as predictable; eventually, amplification is stronger for larger I0, keep-

ing fixed γ0.

5.5 Role of the Pump Profile

Now I consider the effect of a space-dependent gain γ due to a spatial dependence

of the dye density N or of the pumping rate R; the last case, for example, can be

determined by the pump profile, being R = αpIp (section 5.4.1). I take a Gaussian

pump [e.g. illuminating the cell from above with a laser beam, see fig. 5.1(a)] of the
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5.6 Co-Propagating Pump

form γ = γ0 exp
{

−
[

(t/wPt)
2 + (s− sP )2/w2

Ps

]}

. As characteristic of highly nonlocal

systems, the propagating beam remains nearly Gaussian (31; 112) but the amplification

G(s) depends on the spatial superposition between pump and soliton, i.e., G(s) =

exp (2ηγ0s), with η < 1 being an overlap integral. As a consequence, G(s) can exhibit

small deviations from the exponential form, owing to the soliton breathing, i.e., a

varying η. For instance, fig. 5.11(a) shows the case of an infinitely extended pump

along s, i.e., wPs → ∞, and wPt = 2µm: the differential amplification dG/ds depends

on the overlap between signal and pump. Note that the maxima in dG/ds and the

pump are slightly offset due to the overall amplification, i.e. by varying the beam

power with s the overlap integral has an additional dependence from the amplitude of

the signal. Figure 5.11(b) shows the results for sP = 0.75mm and wPs = 500µm: the

differential gain is determined by both the pump profile and the overlap dependence

on signal breathing.

Figure 5.11: Differential gain dG/ds for (a) Pin = 1mW , λ = 633nm, wPs → ∞,

wPt = 2µm and γ0 = 100m−1 (solid line with no symbols) and beam waist wt (line

with triangles) versus s. (b) As in (a) but for wPs = 500µm and a pump centered in

s = 0.75mm. The pump profile is shown for comparison (line with squares). In (c) and

(d) are shown the schematic for the pump profile (in red) and for the signal beam (black

curves) corresponding to (a) and (b), respectively.

5.6 Co-Propagating Pump

In this last section I analyze the behavior of a dye doped NLC when two beams of differ-

ent wavelengths are launched inside the medium, supposing that the two frequencies are
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5.6 Co-Propagating Pump

such that the shortest wavelength acts as a pump for the other, i.e. a co-propagating

pump (see section 5.1). From chapter 4 and eq. (5.1), the optical propagation is

modeled by

2ik01ne1 cos δ1
∂A1

∂s
+Dt1

∂2A1

∂t2
+Dx1

∂2A1

∂x2
+ k2

01δǫtt1A1 − 2ik01ne1γ1A1 = 0

2ik02ne2 cos δ2
∂A2

∂s
+Dt2

∂2A2

∂t2
+Dx2

∂2A2

∂x2
+ k2

02δǫtt2A2 − 2ik02ne2γ2A2 = 0

(5.5)

where I took two collinear Poynting vectors for the two waves (see chapter 4) and

suffix 1(2) indicates the shorter (larger) wavelength, i.e., beam 1 is the pump. Invoking

photon number conservation in the infinitesimal volume dV centered in r and consid-

ering a stationary condition (no change in time), I can write dΦ1/ds + dΦ2/ds = 0,

where Φ1 and Φ2 are fluxes of photons in dV for pump and signal fields, respectively;

therefore, dΦ1 (dΦ2) are the pump (signal) photons absorbed (emitted) between s and

s + ds, having assumed that every absorbed pump photon produces a signal photon,

i.e. a unitary efficiency through the mechanism illustrated in section 5.4.1. According

to (5.5) it is dIj/ds = 2γjIj (j = 1, 2), thus I obtain

γ2 = −I1
I2

f2

f1
γ1 (5.6)

where fj (j = 1, 2) are the beam frequencies and I used I ∝ Φ. I take γ1 constant

for the sake of simplicity. From eq. (5.6) the signal gain is proportional to the pump

absorption γ2 and depends on the ratio between pump and signal intensities, respec-

tively; thus, the signal undergoes an amplification variable in space, similarly to section

5.5, but with a gain variation in the transverse plane xt, as well. A multiplicative coef-

ficient, given by ratio between the two electromagnetic frequencies, limits the available

gain.

Fig. 5.12 shows typical numerical results: power is transferred from pump to signal

by means of the dye. This process ends when the pump intensity becomes too low to

allow population inversion in the dye molecules.
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5.6 Co-Propagating Pump

(a) λ = 633nm

(b) λ = 532nm

Figure 5.12: Example of co-propagating pumping. In 5.12(a)[5.12(b)] is reported the

behavior of signal(pump) field at 633nm(532nm) on the plane xs. Initial waist is 2.8µm for

both beams and power is 0.3mW and 1mW for λ = 633nm and λ = 1064nm, respectively.
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6

Conclusions

In this thesis I have analyzed several aspects of nonlinear light propagation in nonlocal

media, with particular reference to NLC. I studied nonlinear optical propagation of

single beams in NLC, showing experimentally solitons and their readdressibility with

applied bias for a fixed input polarization using a new geometry for the input interface.

I theoretically investigated nonlinear light propagation in NLC, focusing on soliton pro-

files and breathing. The results are qualitatively valid in all highly nonlocal media. I

addressed the role of boundaries in soliton propagation in nonlocal media, demonstrat-

ing that, in finite size sample, a force due to the nonlinear index well is exerted on

the beam, with a related motion depending on power. Two-color solitons in NLC have

been demonstrated for the first time, addressing the interaction between the two com-

ponents and reaching an excellent agreement between experiments and theory. Such

results are relevant to the study of the properties of optically-written guides in any kind

of nonlocal media. I also studied dye-doped NLC and the effects of light amplification

on soliton propagation, being these results useful for the future design of lasers based

on light self-confinement, a very intriguing issue due to the peculiar properties of the

material and its unique tunability.

All of these results are useful in the design of devices for the all-optical signal processing,

from all-optical switching to demultiplexing and routing.
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Appendix A

Optical Properties of NLC

A.1 Scattering in a NLC Cell

From eq. (1.11), when a plane wave polarized along î propagates inside a liquid crys-

talline medium, the differential cross section for the scattered light around k̂out is given

by

dσ

dΩ
=

(

ǫak
2
0

4π

)

〈

|nη(q)|2
〉

∑

µ=1,2

[(

î · âµ

)(

f̂ · n̂
)

+
(

î · n̂
)(

f̂ · âµ

)]2
(A.1)

being kout the scattered field wavevector.

My objective is to compute the optical power scattered by the NLC along x̂ (i.e. k̂out =

k0x̂) for the cell sketched in fig. 2.1, in order to understand the scattering behavior for

different applied biases, when ordinary or extraordinary waves are launched.

Assuming equal moduli for incident and scattered wavevectors (i.e., neglecting the index

differences due to anisotropy), I have q ≈ k0

√
2

2 (x̂ + ẑ). Electric field polarizations for

o and e components are êo and êe, respectively. From section 2.4

ê0(V) = cos [ϕ(V)] x̂ − sin [ϕ(V)] ŷ (A.2)

êe(V) =
ǫ−1 · ˆde(V)

|ǫ−1 · d̂e(V)|
(A.3)

where ϕ(V ) = arctan[tan(ξmax)/ cos(θ0)] (see section 2.3 for the definition of ξmax)

and d̂e(V) = sin [ϕ(V)] x̂ + cos [ϕ(V)] ŷ is the polarization of the extraordinary electric
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A.1 Scattering in a NLC Cell

displacement field (see figure 2.3 for the definition of ϕ). The dielectric tensor ǫ is

evaluated using the director direction in the cell mid-plane, which depends on V as

well.

To assess the power scattered parallel to x̂, I have to integrate (A.1) over all the

possible polarizations for the scattered field, i.e. to take into account the contributions

stemming from every f̂ lying in the plane yz. Furthermore, I have to substitute the

versor î with êe (êo) when I compute the power scattered from the extraordinary

(ordinary) component.

Results are shown in fig. A.1 for a wavevector and n̂ forming an angle equal to π/4 at

V = 0. In absence of an applied bias, the scattered powers are equal, whereas when

V is increased, extraordinary scattering is enhanced and the ordinary one reduced,

becoming null for V > 3V . In practice, at high V the scattering from the ordinary

polarization is mainly due to the multiple scattering.

Figure A.1: Scattered power versus applied bias V when all the input power is coupled

into ordinary (red line) or extraordinary (blue line) polarizations.
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A.2 Derivation of the Electromagnetic Ruling Equation in NLC

A.2 Derivation of the Electromagnetic Ruling Equation

in NLC

In a generic non magnetic anisotropic uniaxial medium, the electric field obeys the

equation

∇× [∇× E] = ∇(∇·E) −∇2E = k2
0ǫ(r)·E (A.4)

where the dielectric tensor components for a liquid crystal are given by (58; 60) ǫij =

ǫ⊥δij + ǫaninj , with δ the Kronecker delta, nj the j-th component of the director n̂, ǫ⊥

and ǫ‖ the dielectric constant values normal and parallel to the optic axis, respectively,

and ǫa = ǫ‖ − ǫ⊥ the dielectric anisotropy.

I consider the wavevector along z by writing E = Aeik0nez; if A is a constant the

solution is a plane wave and I can define the tensorial operator L(ne) as

L(ne) · A ≡
[

n2
e(ẑẑ − I) + ǫ

]

· A = 0 (A.5)

where the last equivalence stems from eq. (A.4) and I is the identity matrix. As

well known, in uniaxial media, given a certain propagation direction, there are two

plane wave eigensolutions, ordinary and extraordinary waves. Being the ordinary po-

larization normal to the optic axis, it is subjected to the Freedericksz transition and,

for low enough powers, cannot induce reorientation and related nonlinearities. For this

reason hereafter I take into account only the extraordinary component. The effect of

reorientation is to perturb the dielectric tensor such way that ǫ = ǫ0 + η2δǫ, where

ǫ0 is the unperturbed dielectric tensor taken uniform in absence of an electromagnetic

field, and δǫ is its nonlinear variation. η is a smallness parameter, set to unity at the

end of the derivation. I write the electric field in the reference system xts as

E =
[

t̂Ee + ηFe + η2Ge + o(η3)
]

eik0nez0 (A.6)

where Ee, Fe and Ge depend on multiple slow scales defined by r = r0 +ηr1 + . . .+

ηnrn, being r = xx̂ + tt̂ + sŝ. Moreover, from the former expansion for the position
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A.2 Derivation of the Electromagnetic Ruling Equation in NLC

vector I get ∇ = ∇0 + η∇1 + . . .+ ηn∇n. Substituting into eq. (A.4) I have

(∇0 + η∇1 + . . .) ×
{

(∇0 + η∇1 + . . .) ×
[

(

t̂Ee + ηFe + η2Ge + . . .
)

eik0nez0

]}

=

k2
0

(

ǫ0 + η2δǫ
) (

t̂Ee + ηFe + η2Ge + . . .
)

eik0nez0

(A.7)

At order o(η) I have the relationship

(

∇0 ×∇0 − k2
0ǫ
)

Fee
ik0nez0 + ∇0 ×

[

∇1 ×
(

t̂Eee
ik0nez0

)]

+ ∇1 ×
[

∇0 ×
(

t̂Eee
ik0nez0

)]

= 0

(A.8)

Ee does not depend on the slowly varying scale x0, t0, s0, because in the limit η → 0

the solution must dovetail to the plane wave of the linear case. Furthermore, Fe does

not depend on x0, t0, s0 because at the slower scale the electric field has to remain

unchanged. Eq. (A.8) becomes

k2
0L(ne) · Fe = ik0ne

{

ẑ ×
[

∇1 ×
(

t̂Ee

)]

+ ∇1 ×
[

ẑ ×
(

t̂Ee

)]}

(A.9)

Remembering ẑ = s cos δ + t sin δ eq. (A.9) yields

k2
0L(ne) ·Fe = ik0ne

[

−2 cos δ
∂Ee

∂s1
t̂ + sin δ

∂Ee

∂x1
x̂ +

(

cos δ
∂Ee

∂t1
− sin δ

∂Ee

∂s1

)

ŝ

]

(A.10)

From its definition versor t̂ is an eigenvalue of operator L(ne) with eigenvalue zero,

thus the solvability condition for eq. (A.10) is k2
0 t̂ · [L(ne) · Fe] = 0 that, by means of

(A.10), becomes

∂Ee

∂s1
= 0 (A.11)

At order o(η2) I get

∇0 ×
[

∇0 ×
(

Gee
ik0nez0

)]

+ ∇0 ×
[

∇1 ×
(

Fee
ik0nez0

)]

+ ∇1 ×
[

∇0 ×
(

Fee
ik0nez0

)]

+

+ ∇0 ×
[

∇2 ×
(

t̂Eee
ik0nez0

)]

+ ∇2 ×
[

∇0 ×
(

t̂Eee
ik0nez0

)]

=

k2
0ǫ · Gee

ik0nez0 + k2
0δǫ ·

(

t̂Ee

)

eik0nez0 −∇1 ×
[

∇1 ×
(

t̂Eee
ik0nez0

)]

(A.12)
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A.2 Derivation of the Electromagnetic Ruling Equation in NLC

Being Ge independent from r0, (A.12) turns into

k2
0L(ne) · Ge = −k2

0δǫ ·
(

t̂Ee

)

+ ik0ne {ẑ × [∇1 × Fe] + ∇1 × [ẑ × Fe]}+

∇1 ×
[

∇1 ×
(

t̂Ee

)]

+ ik0ne

{

∇2 ×
[

ẑ ×
(

t̂Ee

)]

+ ẑ ×
[

∇2 ×
(

t̂Ee

)]}

(A.13)

Then, the solvability condition is

k2
0 t̂ · [L(ne) · Ge] = 0 (A.14)

Substituting eq. (A.13) into eq. (A.14) I derive

− k2
0 t̂ · δǫ · t̂Ee + ik0ne {ẑ × [∇1 × Fe] + ∇1 × [ẑ × Fe]} · t̂+

∇1 ×
[

∇1 ×
(

t̂Ee

)]

· t̂ + +ik0ne

{

∇2 ×
[

ẑ ×
(

t̂Ee

)]

+ ẑ ×
[

∇2 ×
(

t̂Ee

)]}

· t̂ = 0

(A.15)

I want to transform eq. (A.15) so that only the component Ee appears, i.e., I need

Fe expressed as function of Ee and its derivatives. Setting the solvability condition eq.

(A.11) into (A.10) I get

k2
0L(ne) · Fe = ik0ne

[

sin δ
∂Ee

∂x1
x̂ + cos δ

∂Ee

∂t1
ŝ

]

(A.16)

Since components along the t direction are lacking, the problem of finding Fe from

(A.16) is bidimensional. Defining a new tensorial operator T in the plane xs as

T =

(

−n2
e + ǫ⊥ 0
0 −n2

e sin2 δ + ǫ⊥ + ǫa cos2(θ − δ)

)

=

(

λx 0
0 λs

)

(A.17)

and using (A.5), eq. (A.16) modifies into

Fe =
ine

k0
T−1(ne) ·

[

sin δ
∂Ee

∂x1
x̂ + cos δ

∂Ee

∂t1
ŝ

]

(A.18)

Substitution of eq. (A.18) into (A.15) yields

−k2
0δǫttEe −

n2
e sin2 δ

λx

∂2Ee

∂x2
1

− n2
e cos2 δ

λs

∂2Ee

∂t21
− ∂2Ee

∂x2
1

− 2ik0ne cos δ
∂Ee

∂s1
= 0 (A.19)
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A.2 Derivation of the Electromagnetic Ruling Equation in NLC

Finally, performing the limit η → 1 and defining Dx = 1 + n2
e sin2 δ

λx
, Dt = n2

e cos2 δ
λs

and δǫtt = t̂ · ǫ · t̂ I can write (47; 52)

2ik0ne cos δ
∂Ee

∂s
+Dt

∂2Ee

∂t2
+Dx

∂2Ee

∂x2
+ k2

0δǫttEe = 0 (A.20)

Equation (A.20) is the sought equation which governs extraordinary wave propaga-

tion in NLC, in the limit of low optical powers.
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Appendix B

Numerical Algorithm

B.1 Simulations of Nonlinear Optical Propagation in NLC

My purpose is to numerically simulate the PDE system given by (2.18), here rewritten

2ik0ne cos δ
∂Ee

∂s
+Dt

∂2Ee

∂t2
+Dx

∂2Ee

∂x2
+ k2

0ǫa
[

sin2(θ − δ) − sin2(θ0 − δ)
]

Ee = 0

(B.1)

K∇2
xtθ +

ǫ0ǫa
4

sin [2(θ − δ)] |Ee|2 = 0 (B.2)

Eqs. (B.1) and (B.2) rule optical nonlinear propagation and director reorientation

in NLC, respectively. My integration scheme works as follows: I compute the θ distribu-

tion at the input plane through eq. (B.2), with Ee(x, t, s = 0) known because its profile

is determined by the specific input beam. From the knowledge of θ(x, t, s = 0), I can

easily compute the nonlinear refractive index, given by ǫa
[

sin2(θ − δ) − sin2(θ0 − δ)
]

,

in the same plane. Afterwards, I can use eq. (B.1) to find how the optical field Ee

propagates until s = ∆s, being ∆s the integration step along s (in this way I neglect

reflections along s, see sections B.1.1 for further details.). I can repeat the same set of

operations for the plane s = ∆s and, iterating the procedure, it is straightforward to

find the beam profile in a zone as long as I wish. Now I discuss the single algorithm

implemented in C++ to solve the single equations.
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B.1 Simulations of Nonlinear Optical Propagation in NLC

B.1.1 Optical Equation

To solve the optical equation I implemented a beam propagation method (BPM) that

allows to compute the field distribution from an input field, neglecting reflections in

propagation1. A splitting method (113) was applied to solve the initial value problem

of equation (B.1). Rewriting eq. (B.1) in order to isolate the operator governing the

evolution along s, I get

∂Ee

∂s
= LtEe + LxEe + L∆nEe = LEe (B.3)

where I defined the operators Lt = i Dt
2k0ne cos δ

∂2

∂t2
(diffraction along t), Lx = i Dx

2k0ne cos δ
∂2

∂x2

(diffraction along x), L∆n = i k0
2ne cos δ δǫtt (index-well action) and L = Lt + Lx + L∆n.

Formally, the solutions of (B.3) in the interval [s s+∆s] can be written as Ee(s+∆s) =

ei∆sLEe(s) = ei∆sLtei∆sLxei∆sL∆nEe(s). Let me consider the three equations

∂Ee

∂s
= LtEe (B.4)

∂Ee

∂s
= LxEe (B.5)

∂Ee

∂s
= L∆nEe (B.6)

and assume that an exact or approximated method is available to solve each equa-

tion in the interval [s s+∆s], i.e., there are three discretized operators Uj (j = t, s,∆n)

such that

Ee(s+ ∆s) = Uj(s+ ∆s, s)Ee(s) (B.7)

For a small enough propagation step2 I get that a correct numerical solutions of eq.

(B.3) in the interval [s s+ ∆s] is (113)

Ee(s+ ∆s) = U∆n(s+ ∆s, s)Ux(s+ ∆s, s)Ut(s+ ∆s, s)Ee(s) (B.8)

1The nonlinear index variations I study are small, thereby this condition is satisfied.
2The step must be chosen empirically; in particular, I have run numerical simulations for several

∆s: the accuracy is sufficient when the solutions become independent from the employed propagation

step.
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B.1 Simulations of Nonlinear Optical Propagation in NLC

In my case, L∆n is exactly solvable, and I easily get U∆n(s+∆s, s) = ei∆s
k0

2ne cos δ
δǫtt .

Instead, to solve diffraction operators Lx and Lt I use a finite difference (FD) method,

the Crank-Nicolson, which is always stable (113).

Let me take as an example Lx, being the solution procedure for Lt absolutely similar.

I have to solve the tridiagonal linear system composed by

Ee
m+1
n,l −Ee

m
n,l = i

Dt

2k0ne cos δ

∆s

2∆t2

[

Ee
m
n+1,l + Ee

m
n−1,l − 2Ee

m
n,l + Ee

m+1
n+1,l + Ee

m+1
n−1,l − 2Ee

m+1
n,l

]

(B.9)

being Ee
m
n,l = Ee(t = n∆t, x = l∆x, s = m∆s), and ∆t and ∆x the numerical

steps along t and x, respectively. At the edges of the numerical grid, I must define the

appropriate boundary conditions: in particular, I neglect reflections at the interfaces

between glass and NLC, therefore I have to simulate an infinitely extended medium.

Two different kinds of boundary conditions were applied to this extent: absorbing

boundary condition (ABC) (114) and transparent boundary conditions (TBC) (115).

In the ABC case I multiply the beam at every step for a physical absorber, sufficiently

lossy to adsorb the outgoing waves but with a sufficiently smooth profile to prevent

spurious reflections. In the TBC case, the field values at the grid boundaries are cho-

sen so that they match the diffractive outgoing waves.

TBC have the advantage of being independent from the specific excitation, thereby the

results are the same when light is self-localized, being the radiated power very low.

Some slight differences appear when I simulate the linear behavior, with the TBC al-

gorithm providing a better performance. In the numerical simulations shown in this

thesis both methods were employed.

B.1.2 Reorientational Equation

To solve eq. (B.2) I use a nonlinear Gauss-Seidel relaxation method (113). First of all,

I transform eq. (B.2) in a set of FD equations, setting θ = θ0 at the cell edges: the

found set is nonlinear owing to the presence of the term sin[2(θ − δ)]. Such equation

system is linearized by a step of the Newton iteration. Guessing an initial solution for θ

(similar to the expected solution), I recursively solve the equations via the Gauss-Seidel

algorithm, which requires the substitution of the obtained values as soon as they are
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B.1 Simulations of Nonlinear Optical Propagation in NLC

computed. The iterations are stopped when the difference, defined by a well-suited

functional, between new and old solutions is below an established threshold, which

depends on the desired accuracy.

Let me focus on the boundary conditions. In the numerical code only finite boundary

conditions can be implemented: such hypothesys agrees with actual situation along

the x direction, whereas along t actual geometry has an infinite thickness. In order

to get a good approximation of infinite case, I enlarge the grid across t until I obtain

stabilization of θ profile in the zone where the beam is placed. Furthermore, accuracy of

the numerical code was tested by comparing the numerical findings with those derived

by a perturbative approach coupled with the Green function technique. All details are

reported in section 3.2.4.2.
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Appendix C

Analysis of the Index

Perturbation Profile

C.1 FWHM Computation for the Nonlinear Index Per-

turbation

Assuming that the nonlinear index perturbation ∆n is bell-shaped and symmetric

with respect to beam axis (for homogeneous nonlinear media excited by a Gaussian

beam, this hypothesis is certainly verified.) I can take the FWHM∆n
xi

proportional

to
〈

x2
i

〉

∆n
=
∫∫

x2
i ∆ndxdt/

∫∫

∆ndxdt (i = 1, 2;x1 = x, x2 = t), with a coefficient

dependent on the specific ∆n shape. Being ∆n =
∑∞

m=1 (∆nm/m!) ∆ρm, I get

〈

x2
i

〉

∆n
=

(∫∫
∑∞

m=1 (∆nm/m!) ∆ρm
)

x2
i dxdt

∫∫

∆ndxdt

=

∑∞
m=1 (∆nm/m!)

〈

x2
i

〉

∆ρm I∆ρm

∫∫

∆ndxdt

(C.1)

where I∆ρm =
∫∫

∆ρmdxdt. Equation (C.1) tells me that the width of ∆n is an

average of all the ∆ρm widths, with weight
(∆nm/m!)I∆ρm
∑∞

l=1(∆nl/l!)I
∆ρl

. Moreover, if
〈

x2
i

〉

∆ρm does

not change with m, I can easily derive
〈

x2
i

〉

∆n
=
〈

x2
i

〉

∆ρ
.

Keeping only the first two terms in (C.1) I obtain

〈

x2
i

〉

∆n
=
〈

x2
i

〉

∆ρ1

∆n1I∆ρ

∆n1I∆ρ + ∆n2I∆ρ2

+
1

2

〈

x2
i

〉

∆ρ2

∆n2I∆ρ2

∆n1I∆ρ + ∆n2I∆ρ2

(C.2)
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C.2 Computation of V υ
m(υ) in the Gaussian Case

Now, let me consider ∆n = ∆n1∆ρ, but ∆ρ =
∑∞

m=0 ∆ρmP
m where P is the

beam power; that is, I am considering a nonlinear relationship between ∆ρ and field

intensity I. The former results keep their validity if I perform the substitutions ∆n→
∆ρ,∆ρm → ∆ρm, (∆nm/m!) → Pm. I obtain

〈

x2
i

〉

∆ρ
=

∑∞
m=1 P

m
〈

x2
i

〉

∆ρm
I∆ρm

∫∫

∆ρdxdt
(C.3)

Finally, I treat the asymmetric case. The results found above are valid also for σ
g/s
x/t ,

if appropriate symmetric functions are constructed and used instead of ∆n (or ∆ρ).

For example, if I compute σg
x, I have to take into account ∆n only for x larger than the

x coordinate of the perturbation peak; the function values in the remaining part of x

axes are chosen so that the total function is even with respect to its maximum.

C.2 Computation of V
υ
m(υ) in the Gaussian Case

From eq. (3.24) I know that

V υ
m(υ) =

∫ ∞

−∞
fυ(η)e−πm|υ−η|dη (C.4)

Assuming a Gaussian shape for the beam along υ, i.e. fυ(υ) = e
− υ2

ω2
t , I have

V υ
m(υ) =

∫ ∞

−∞
e
− η2

ω2
t e−πm|υ−η|dη (C.5)

Eq. (C.5) is equivalent to

V υ
m(υ) =

∫ ∞

υ
e
− η2

ω2
t eπm(υ−η)dη +

∫ υ

−∞
e
− η2

ω2
t e−πm(υ−η)dη (C.6)

Completing the squares in the exponents (C.6) provides

V υ
m(υ) = eπmυe(

πm
2 )

2
ω2

t

∫ ∞

υ
e
− 1

ω2
t
(η+πm

2
ω2

t )
2

dη + e−πmυe(
πm
2 )

2
ω2

t

∫ υ

−∞
e
− 1

ω2
t
(η−πm

2
ω2

t )
2

dη

(C.7)
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C.3 Computation of V ξ
m

Eq. (C.7) can be expressed as

V υ
m(υ) =

√
π

2
ωte

(πm
2 )

2
ω2

t

[

eπmυerfc

(

υ

ωt
+
mπ

2
ωt

)

+ e−πmυerfc

(

− υ

ωt
+
mπ

2
ωt

)]

(C.8)

being erfc(x) ≡ 2√
π

∫∞
x e−y2

dy. Eq. (C.8) is the searched result. Fig. C.1 shows

the found profile of V υ
m(υ).

Figure C.1: Plot of V υ
m(υ) versus υ for m = 1, 10, 20, 30, 40, 50. Smaller values for m

correspond to higher peaks.

C.3 Computation of V
ξ
m

From eq. (3.23)

V ξ
m =

∫ 1

0
fξ(ζ) sin (πmζ)dζ (C.9)

Eq. (C.9) can be written as

V ξ
m =

1

2i

∫ ∞

−∞

[

eiπmζ − e−iπmζ
]

fξ(ζ)rect1(ζ − 0.5)dζ (C.10)
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C.3 Computation of V ξ
m

where rectb(x) is 1 for x ∈ (−b/2 b/2), 0 elsewhere. Using the Fourier transform

properties I obtain

V ξ
m = −ℑ

{

F [rect1(ζ − 0.5)fξ(ζ)]
(

ν =
m

2

)}

(C.11)

where operators F and ℑ stand for Fourier transformation and imaginary part, re-

spectively. Convolution theorem provides F [rect1(ξ − 0.5)fξ(ξ)] = F [rect1(ξ − 0.5)] ∗
F [fξ(ξ)], being ∗ the convolution operator. Defining fξ(ξ) = g(ξ − 〈ξ〉) and F[g](ν) =

g̃(ν), knowing that F [rect1(ξ − 0.5)] (ν) = e−iπνCa(πν) and F [fξ(ξ)] (ν) = e−2πi〈ξ〉ν g̃(ν),

eq. (C.11) becomes

V ξ
m = −ℑ

{∫ ∞

−∞
e−iπνCa(πν)e−2πi〈ξ〉(m

2
−ν)g̃

(m

2
− ν
)

dν

}

(C.12)

If Ca(πν) is very narrow with respect to g̃ (ν), i.e., the beam is much smaller than

the cell width a, if 〈ξ〉 is not too close to the cell edges, eq. (C.12) yields

V ξ
m

∼= −ℑ
{

e−iπm〈ξ〉g̃
(m

2

)

∫ ∞

−∞
Ca(πν)dν

}

= sin (πm 〈ξ〉)g̃
(m

2

)

(C.13)

For a Gaussian beam along ξ, i.e. fξ(ξ) = e
− ξ2

ω2
x , I can easily derive g̃(ν) =

√
πωxe

−π2ω2
xν2

. Therefore, eq. (C.13) becomes

V ξ
m(〈ξ〉) ∼=

√
πωx sin (πm 〈ξ〉)e−π2ω2

x(m
2 )

2

(C.14)

Eq. (C.14) is the result I looked for.

115



C.4 Computation of V υ
m

C.4 Computation of V
υ
m

In the Gaussian case fυ(υ) = e
− υ2

ω2
t , recalling eq. (3.24), V υ

m is written as:

V υ
m =

∫∞
−∞ V υ

m(υ)e
− υ2

ω2
t dυ

πω2
t

=

=
1

2
√
πωt

e

(

Θmωt
2

)2 ∫ ∞

−∞

[

erfc

(

υ

ωt
+

Θmωt

2

)

e
Θmυ− υ2

ω2
t + erfc

(

− υ

ωt
+

Θmωt

2

)

e
−Θmυ− υ2

ω2
t

]

dυ

(C.15)

Substituting y = υ
ωt

± Θmωt
2 in the first and second integral, respectively, I get:

V υ
m =

1√
π
e

(

Θm√
2

ωt

)2 ∫ ∞

−∞
erfc(y)e−(y−Θmωt)

2

dy (C.16)

Defining the new function F (x) =
∫∞
−∞ erfc(x′)e−(x′−x)2dx′ I finally have:

V υ
m =

1√
π
e

(

Θm√
2

ωt

)2

F (Θmωt) (C.17)

The results are shown in fig. C.2.

Figure C.2: Plot of V υ
m versus integer index m.

116

Appendix/figures/plot_vmeta_cost.eps


C.5 Force in the Poisson 2D for Small Displacements

C.5 Force in the Poisson 2D for Small Displacements

In 2D Poisson and screened Poisson case the force acting on the beam is given by [eq.

(3.71)]:

W0(〈x〉) = C
∞
∑

m=1

V ξ
mV

υ
m cos(πm 〈ξ〉) (C.18)

For small displacements, from eq. (3.63):

Fm
X (〈ξ〉) ∼= c10 (〈ξ〉 − ξ0) (C.19)

being

c10 =
∂W0(〈ξ〉)
∂ 〈ξ〉

∣

∣

∣

∣

〈ξ〉=ξ0

(C.20)

The first derivative of W0 is:

∂W0

∂ 〈ξ〉 = C
∞
∑

m=1

πm

Θm
V υ

m

∂
[

V
〈ξ〉
m cos(πmξ)

]

∂ 〈ξ〉

= C
∞
∑

m=1

πm

Θm
V υ

m

[

∂V
〈ξ〉
m

∂ 〈ξ〉 cos(πmξ) − πm sin(πm 〈ξ〉)V ξ
m

]

= C
∞
∑

m=1

πm

Θm
V υ

m cos(πm 〈ξ〉) ∂V
ξ
m

∂ 〈ξ〉 −
∞
∑

m=1

(πm)2

Θm
V υ

mV
ξ
m sin(πm 〈ξ)〉

= S1 + S2

(C.21)

Recalling eq. (3.23), taking ξ0 = 0.5 and guessing fξ(ξ) = e−
ξ2

w2 , S1 and S3 com-

puted in 〈ξ〉 = 0.5 are:

S1|〈ξ〉=0.5 =
4C

w2

∞
∑

m=1

V υ
2m

∫ 0.5

0
t sin(2πmt)e−

t2

w2 dt (C.22)

S2|〈ξ〉=0.5 = −4C
∞
∑

m=0

π(2m+ 1)

2
V υ

2m+1

∫ 0.5

0
cos[π(2m+ 1)t]e−

t2

w2 dt (C.23)

Finally, substituting eqs. (C.22)-(C.23) into (C.20) I get:

c10 = 2C
∞
∑

m=1

πmV υ
m(−1)m

∫ 0.5

0
e−

t2

w2 cos(πmt)dt (C.24)
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