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Chapter 1

Artificial Intelligence in Medicine

and Biology

Recent years have seen medicine and artificial intelligence cross their roads and
proceed together: after first genomic regions were sequenced and interpreted,
the science scenario changed dramatically, fusing medicine, biology and biochem-
istry. Statistics have been always a valid support on epidemiology or diagnosis,
but since the data became more complex, the needs included new mathemati-
cal models and high computational power. Today computer science – through
machine learning and intelligent systems – integrates medicine and biology in sev-
eral fields: from sequence analysis to protein structure and function prediction,
to gene regulatory networks modelling, to molecular design, to medical diagnosis.
Medical and biological data have been characterised theoretically, with the design
of very large data bases with ad-hoc standard structures.

Biological systems are complex systems, medical measures are extremely vari-
able – even under the same conditions – and indirect indicators of real processes.
For instance, plasma analyses can describe only partially the body condition
through specific markers as viral load, immune cell count, presence of chemicals
or micro-organisms.

The HIV scenario sees the drug resistance development by the viral genomic
variation under drug pressure: the high mutation rate determines a huge state
variable space and the infection-replication (since the virus attacks the immune
system which produces viral antibodies) convolve extremely complex mechanisms.
There is a large number of different drugs that attack different viral targets genes:
they have to be properly combined in order to control the viral suppression and
the chance of resistance rise. Moreover, in the human body virus/drug interac-
tions are affected by a host of co-factors, either uncontrollable or unobservable,
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6 CHAPTER 1. ARTIFICIAL INTELLIGENCE IN MEDICINE AND BIOLOGY

Figure 1.1: The viral infection scenario.

like adherence or toxicity (see figure 1.1).

1.1 Aims of the Thesis

The objective of this thesis is to model mathematically several aspects of the
HIV-1 infection, replication and treatment design. The purpose is to investigate
a mathematical framework that explains the biological mechanisms of the viral
replication and infection in the human body, along with the immune response.
This will be the basis on which the treatment settings will be explored in or-
der to model the viral evolution towards the drug resistance: the final aim is to
provide a better understanding of the genetic mechanisms involved in the devel-
opment of drug-escaping mutants, along with predictive models for the treatment
optimisation.

1.2 Road Map

This thesis is structured in three parts:

• Part I (Introduction) The aim of the thesis and the mathematical method-
ologies to be applied in the medicine/biology scenario are presented. An
introduction to HIV and AIDS scenario is given, describing the general clin-
ical and biological settings, the data collection policies, the issues concern-
ing treatment design and resistance onset. A detailed biological description
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of the infection and replication mechanisms in the human body is finally
provided.

• Part II (Mathematical Modelling of HIV-1 Infection, Replication and Evolu-
tion) This part covers three main aspects of the viral evolution in the host:
(i) viral replication dynamics through differential equations and stochas-
tic modelling (accounting for drug pressure and resistance mutants onset);
(ii) modelling of viral mutational pathways under selective drug pressure
(through mutagenetic trees and Markov chains); (iii) statistical analyses
(univariable, stratified) and unsupervised learning techniques (clustering,
dimensionality reduction) for discovering relevant mutational patterns in
equilibrium-like situations (naive/treated, success/failure groups).

• Part III (Statistical Learning for HIV-1) A description on the machine
learning techniques used is given, along with discussion about validation
(in-sample, extra-sample error estimation) and loss functions. Feature se-
lection (filter, embedded and wrapper) and model comparison are exten-
sively investigated. Models for the viral tropism prediction and for the
in-vivo therapeutic optimisation are then applied and compared, providing
results and discussions on the prediction performances, along with the opin-
ions of biological experts on the model feature importance and prediction
behaviours.





Chapter 2

Biological Background On HIV

Many microorganisms can enter the human body and cause harm, including
viruses, fungi, bacteria, protozoa. Once inside the body, the primary goal of a
microorganism is to survive and reproduce itself. Most antimicrobial agents are
designed to kill these pathogens or prevent them from reproducing.

When a microorganism as a virus continues to replicate despite the pressure
of a drug, mutants are selected that more efficiently adapt themselves to grow
in the presence of a certain drug concentration: this results in the phenomenon
of drug resistance. When drug resistance occurs, the efficacy of the drug – or
combination of drugs – is reduced. Over time, the treatment can stop working
completely. Evolution consists of a selective pressure from the environment that
acts on organisms: it selects the best individuals from populations, favouring
mutations that appear randomly on the gene pool; advantages acquired from
mutations is transmitted to progeny.

The Human Immunodeficiency Virus (a Lentivirus belonging to two major
families, HIV-1 and HIV-2) has a rapid rate of mutation and has developed
through this resistance to antivirals. A brief introduction for non-biologists is
given in [88], although we are going to describe more in depth its replication
and infection mechanisms. If untreated, HIV-1 causes a progressive deteriora-
tion of the immune system leading almost relentlessly to AIDS (Acquired Im-
mune Deficiency Syndrome) and death due to opportunistic infections. Modelling
mechanisms of HIV drug-resistance requires the investigation the viral genome
(which is in the form of RNA) and genes encoded within. A gene is a sequence
of nucleotides (four varieties: Adenine, Cytosine, Thimine, Guanine), while the
genome produces proteins that are important in the virus life cycle. A protein
is a sequence of amino acids, which are encoded by blocks of three adjacent nu-
cleotides in the genome, called codons. Genomic sequences are the building blocks
of biological mechanisms: computer science is today necessary to investigate the

9



10 CHAPTER 2. BIOLOGICAL BACKGROUND ON HIV

genes and their functions; even simple organisms like viruses are characterized
by long character sequences. The basic theory for sequence analysis, which in-
cludes (multiple) alignment algorithms and phylogenetics, can be found in the
book by Brunak [94], which is also a complete and generic guide for the whole
set of derived subtasks.

In this chapter we will describe first in detail the biological mechanisms of
HIV: a complete understandment of this part is not mandatory, since the basic
needed biological concepts will be re-explained through the following chapters
when facing specific modelling scenarios, but it is useful if the reader wants to
make a more careful study.

2.1 In Depth on HIV-1 Biology

This section gives a more detailed description of the pathogenesis of HIV-1 infec-
tion and of the replication mechanisms. It is composed by material coming from
the compendium “HIV Medicine 2006”, freely available on the Internet [128].
We used this book as a reference for every biological and clinical aspect of HIV
infection.

2.1.1 Pathogenesis of HIV-1 Infection

Since the initial description of the human immunodeficiency virus type I (HIV-1)
in 1983 and HIV-2 in 1986, these two viruses have been identified for almost 20
years as the primary cause of the Acquired Immunodeficiency Syndrome (AIDS).
As HIV-1 is the major cause of AIDS in the world today, our discussion will be
primarily limited to HIV-1 infection. Worldwide, the number of HIV-1 infected
persons exceeds 40 million, the majority of whom live in the developing countries
of Sub-Saharan Africa, Asia and South America. In addition, new problems re-
lating to the short- and long-term toxicity of drug treatments and the occurrence
of resistance mutations in both circulating and transmitted viruses are emerging.
In most countries in South East Asia and Africa, the incidence and prevalence of
HIV-1 infection continues to increase and surpass that of Europe and North Amer-
ica. However, due to the high costs of drug regimens and the lack of a healthcare
infrastructure in these developing countries, the widespread use of Anti Retrovi-
ral Therapy (ART) is currently still difficult. Even in countries where there is
access to treatment there are only limited options for a first-line regimen and,
possibly in the near future, access to a second regimen. The further course of
the HIV-1 pandemic, therefore, mainly depends on how and to what degree the
developing countries with a high HIV-1 prevalence are able to take advantage
of the medical progress achieved in Europe and North America, and whether an
effective prophylactic vaccine becomes available in the near future. An under-
standing of the immunopathogenesis of HIV-1 infection is a major prerequisite
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for rationally improving therapeutic strategies, developing immunotherapeutics
and prophylactic vaccines. As in other virus infections, the individual course of
HIV-1 infection depends on both host and viral factors.

The course of infection with HIV-1 in HIV-infected humans may vary dra-
matically, even if the primary infections arose from the same source. In some
individuals, with a long-term non-progressive HIV-1 infection (i.e. lack of decline
in CD4+ T-cell counts, or chronic infection for at least 7 years without the de-
velopment of AIDS), a defective virion was identified [75]. Thus, infection with
a defective virus, or one that has a poor capacity to replicate, may prolong the
clinical course of HIV-1 infection. However, in most individuals, HIV-1 infection
is characterized by a replication-competent virus with a high daily turnover of
virions and, in general, it is more likely that the rate of progression from HIV
infection to AIDS is determined by multiple factors related to both the immune
system and the virus.

Thus, host factors may also determine whether or not an HIV-1-infected in-
dividual rapidly develops clinically overt immunodeficiency, or whether this in-
dividual belongs to the group of long-term non-progressors, who represent about
5 % of all infected patients. The identification and characterisation of host fac-
tors contributing to the course of HIV infection, including immunological defense
mechanisms and genetic factors, will be crucial for our understanding of the
immunopathogenesis of HIV infection and for the development of immunothera-
peutic and prophylactic strategies [44].

2.1.2 The Structure of HIV-1

HIV-1 is a retrovirus and belongs to the family of lentiviruses. Infections with
lentiviruses typically show a chronic course of disease, a long period of clinical
latency, persistent viral replication and involvement of the central nervous system.
Visna infections in sheep, Simian Immunodeficiency Virus infections (SIV) in
monkeys, or Feline Immunodeficiency Virus infections (FIV) in cats are typical
examples of lentivirus infections. Using electron microscopy, HIV-1 and HIV-2
resemble each other strikingly. However, they differ with regard to the molecular
weight of their proteins, as well as having differences in their accessory genes.
HIV-2 is genetically more closely related to the SIV found in sootey mangabeys
(SIV) rather than HIV-1 and it seems likely that it was introduced into the
human population by monkeys. Both HIV-1 and HIV-2 replicate in CD4+ T-
cells and are regarded as pathogenic in infected persons, although the actual
immune deficiency may be less severe in HIV-2-infected individuals.
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Figure 2.1: Structure of an HIV virion particle.

The Morphologic Structure of HIV-1

HIV-1 viral particles have a diameter of 100 nm and are surrounded by a lipopro-
tein membrane. Each viral particle contains 72 glycoprotein complexes, which
are integrated into this lipid membrane, and are each composed of trimers of an
external glycoprotein gp120 and a transmembrane spanning protein gp41. The
bonding between gp120 and gp41 is only loose and therefore gp120 may be shed
spontaneously within the local environment.

During the process of budding (when the virus after reproducing exits the
infected cell), the virus may also incorporate different host proteins from the
membrane of the host cell into its lipoprotein layer, such as HLA class I and II
proteins, or adhesion proteins such as ICAM-1 that may facilitate adhesion to
other target cells. The matrix protein p17 is anchored to the inside of the viral
lipoprotein membrane. The p24 core antigen contains two copies of HIV-1 RNA.
The HIV-1 RNA is part of a protein-nucleic acid complex, which is composed of
the nucleoprotein p7 and the reverse transcriptase p66 (RT). The viral particle
contains all the enzymatic equipment that is necessary for replication: a Reverse
Transcriptase (RT), an Integrase p32 and a Protease p11 (figure 2.1).

The Organization of the Viral Genome

Most replication competent retroviruses depend on three genes (see figure 2.2):
gag, pol and env : gag means group-antigen, pol represents polymerase and env
is for envelope.
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Figure 2.2: HIV genes.

The classical structural scheme of a retroviral genome is: 5’LTR-gag-pol-env-
LTR 3’. The LTR (Long Terminal Repeat) regions represent the two end parts
of the viral genome, that are connected to the cellular DNA of the host cell
after integration and do not encode for any viral proteins. The gag and env
genes code for the nucleocapsid and the glycoproteins of the viral membrane; the
pol gene codes for the reverse transcriptase and other enzymes. In addition,
HIV-1 contains six genes (vif, vpu, vpr, tat, rev, nef ) in its 9kB RNA that
contribute to its genetic complexity. Nef, vif, vpr, vpu were classified as accessory
genes in the past, as they are not absolutely required for replication in vitro.
However, the regulation and function of these accessory genes and their proteins
have been studied and characterized in more detail in the past few years. The
accessory genes, nef, tat, rev are all produced early in the viral replication cycle.
Tat, rev are regulatory proteins that accumulate within the nucleus and bind
to defined regions of the viral RNA: TAR (transactivation-response elements),
found in the LTR; and RRE (rev response elements), found in the env gene,
respectively. The tat protein is a potent transcriptional activator of the LTR
promoter region and is essential for viral replication in almost all in vitro culture
systems. Rev is also a nuclear export factor that is important for switching from
the early expression of regulatory proteins to the structural proteins that are
synthesized later. Nef has been shown to have a number of functions: it may
induce downregulation of CD4 and HLA class I molecules from the surface of
HIV-1-infected cells, which may represent an important escape mechanism for
the virus to evade an attack mediated by cytotoxic CD8+ T-cells and to avoid
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recognition by CD4+ T-cells. Nef may also interfere with T-cell activation by
binding to various proteins that are involved in intracellular signal transduction
pathways. Vpr seems to be essential for viral replication in non-dividing cells such
as macrophages. It may stimulate the HIV-LTR in addition to a variety of cellular
and viral promoters. Vpu is important for the virus budding process, because
mutations in vpu are associated with persistence of the viral particles at the
host cell surface. Vpu is also involved when CD4-gp160 complexes are degraded
within the endoplasmic reticulum and therefore allows recycling of gp160 for
the formation of new virions. Some recent publications have highlighted a new
and important role for vif in supporting viral replication. Vif -deficient HIV-
1 isolates do not replicate in CD4+ T-cells, some T cell lines (non-permissive
cells) or in macrophages. Vif -deficient isolates are able to enter a target cell and
initiate reverse transcription, but synthesis of proviral DNA remains incomplete.
In vitro fusion of permissive and non-permissive cells leads to a non-permissive
phenotype, suggesting that the replication of HIV depends on the presence or
absence of a cellular inhibitor.

2.1.3 The HIV replication cycle

HIV entry

CD4 as a primary receptor for HIV CD4 is monomeric glycoprotein that can be
detected on the cell surface of about 60 % of T-lymphocytes, on T-cell precur-
sors within the bone marrow and thymus, and on monocytes and macrophages,
eosinophils, dendritic cells and microglial cells of the central nervous system. The
extracellular domain of the CD4 on T-cells is composed of 370 amino acids; the
hydrophobic transmembrane domain and the cytoplasmic part of CD4 on T-cells
consist of 25 and 38 amino acids, respectively. Within the extracellular part of
CD4, four regions D1-D4 have been characterized that represent immunoglobulin-
like domains. Residues within the V2 region of CD4 (amino acids 40-55) are
important for the bonding of gp120 to CD4 and this region overlaps the part
of the CD4 where its natural ligands, HLA class II molecules, bind. The bind-
ing of gp120 to CD4 is not only a crucial step for viral entry, but also interferes
with intracellular signal transduction pathways and promotes apoptosis in CD4+
T-cells. In the past couple of years, the idea of blocking CD4 as the primary cel-
lular receptor of HIV has regained interest. CD4, as a primary and necessary
receptor for HIV-1, HIV-2 and SIV, was already characterized in 1984. However,
experiments, using non-human cell lines transfected with human CD4, showed
that expression of human CD4 on the cell surface of a non-human cell line was
not sufficient to allow entry of HIV. Therefore the existence of additional human
coreceptors necessary for viral entry was postulated (i.e. CXCR4 and CCR5).
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Chemokine receptors as coreceptors for HIV entry CD8 T cells from HIV-infected
patients are able to suppress viral replication in co-cultures with HIV-infected
autologous or allogenic CD4+ T-cells, and this is independent from their cyto-
toxic activity. In 1995 Cocchi identified the chemokines MIP-1a, MIP-1beta and
Rantes in supernatants from CD8+ T-cells derived from HIV-infected patients,
and was able to show that these chemokines were able to suppress replication
in a dose-dependent manner of some, but not all, viral isolates tested. MIP-1a,
MIP-1beta and Rantes are ligands for the chemokine receptor CCR5, and a few
months later several groups were able to show that CCR5 is a necessary core-
ceptor for monocytotropic (M-tropic) HIV-1 isolates. A few weeks earlier, the
chemokine receptor CXCR4 (fusin) was described as being the coreceptor used by
T-cell-tropic (T-tropic) HIV isolates. Monocytotropic (M-tropic) HIV-1 isolates
are classically those viruses that are most easily propagated in macrophage cul-
tures, are unable to infect T-cell lines (i.e. immortalized T-cells), but are able to
easily infect primary T-cells from peripheral blood samples. Conversely, T-cell-
tropic HIV-1 isolates have classically been identified as being those that are easily
propagated in T-cell lines, and grow poorly in macrophages, but are also able to
easily infect primary T-cells from peripheral blood samples. Thus, it should be
noted that both M-tropic and T-tropic HIV-1 variants can easily infect primary
human non-immortalized T-cells in vitro. Chemokines (chemotactic cytokines)
and their receptors have been previously characterized with regard to their role in
promoting the migration (chemotaxis) of leukocytes and their pro-inflammatory
activity. They are proteins of 68-120 amino acids which depend on the structure
of their common cysteine motif, and which may be subdivided into C-X-C (alpha-
chemokines), C-C (beta-chemokines) and C- chemokines. Chemokines typically
show a high degree of structural homology to each other and may share the re-
ceptors they bind to. Chemokine receptors belong to the group of receptors with
seven transmembranic regions (7-transmembrane receptors), which are intracellu-
larly linked to G-proteins. SDF-1 (Stromal Cell-Derived Factor 1) was identified
as the natural ligand of CXCR4 and is able to inhibit the entry of T-tropic HIV-1
isolates into activated CD4+ T-cells. Rantes (regulated upon activation T cell
expressed and secreted), MIP-1alpha (Macrophage Inhibitory Protein) and MIP-
1beta represent the natural ligands of CCR5 and are able to inhibit the entry of
M-tropic HIV-1 isolates into T cells. A schematic model is depicted in Figure 2.3:
T-tropic HIV-1 isolates mainly infect activated peripheral blood CD4+ T-cells
and cell lines and use CXCR4 for entry into the CD4+ target cell. M-tropic iso-
lates are able to infect CD4+ T-cells, monocytes and macrophages, and depend
on the use of CCR5 and CD4 for viral entry. In this scenario, the pharmaceutical
company Pfizer developed a CCR5 antagonist (called Maraviroc, which has been
recently released in the market) in order to block the virus when entering the
cell.
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Figure 2.3: Inhibition of virus entry of CCR5-utilizing (monocytotropic) and
CXCR4-utilizing (T-cell tropic) HIV isolates by the natural ligands of the
chemokine coreceptors CCR5 and CXCR4.

The interaction of gp120 and the cellular receptors is now understood in more
detail. Gp120 primarily binds to certain epitopes of CD4. Binding to CD4 in-
duces conformational changes in gp120 that promote a more efficient interaction
of the V3 loop of gp120 with its respective coreceptor. Membrane fusion is de-
pendent on gp120 coreceptor binding. Gp41, as the transmembrane part of the
envelope glycoprotein gp160, is crucial for the fusion of the viral and the host
cell membrane. T20 is the first of several peptides that bind to gp41 and has
been tested in clinical trials for suppressing viral replication. Using transfected
cell lines, besides CCR5 and CXCR4, other chemokine receptors, such as CCR3,
CCR2, CCR8, CCR9, STRL33, Gpr 15, Gpr 1, APJ and ChemR23, were identi-
fied and shown to be used for entry by certain HIV isolates. APJ may represent
a relevant coreceptor within the central nervous system. Despite this broad spec-
trum of potentially available coreceptors, CCR5 and CXCR4 seem to represent
the most relevant coreceptors for HIV-1 in vivo. The importance of CCR5 as
the predominant coreceptor for M-tropic HIV isolates is underscored by another
observation. The majority of individuals with a genetic defect of CCR5 are re-
sistant to infection with HIV-1 [31]. In vitro experiments show that lymphocytes
derived from these individuals are resistant to HIV-1 infection using M-tropic
isolates but not to infection with T-tropic isolates. Lymphocytes from these indi-
viduals do not express CCR5 on their cell surface and genetically have a 32 base
pair deletion of the CCR5 gene. Worldwide, a few patients have been identified
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that have acquired HIV-1 infection despite a homozygous deletion of the CCR5.
As expected, all of them were infected with CXCR4-using HIV-1 isolates. In epi-
demiological studies, the allelic frequency of the CCR5 gene deletion is 10-20%
among Caucasians, particularly amongst those of Northern European descent.
The frequency of a homozygous individual is about 1% in Caucasians. Studies
conducted on African or Asian populations, however, do not find this 32 base pair
deletion of the CCR5, suggesting that this mutation arose after the separation
of these populations in evolutionary history. Individuals that are heterozygous
for the 32 bp deletion of the CCR5 show a decreased expression of CCR5 on
the cell surface and are more frequently encountered within cohorts of long-term
non-progressors compared to patients who have a rapid progression of disease. In
addition to the 32bp deletion of the CCR5, other genetic polymorphisms, withre-
gard to the chemokine receptors (CCR2) or their promoters (CCR5), have been
described. Based on the occurrence of these polymorphisms within defined pa-
tient cohorts, they were associated with a more rapid or a more favourable course
of disease, depending on the particular polymorphism. Recently a whole genome
analsis has identified other 3 potential hits associated with a low viral set point
and slow rate of progression in untreated individuals [44]. In patients who have
a rapid progression of disease (rapid drop in CD4+ T-cell count), virus isolates
that use CXCR4 as a predominant coreceptor tend to be frequently isolated from
their cells, in comparison to patients with a stable CD4+ T- cell count. The
expression of coreceptors on CD4+ T-lymphocytes depends on their activation
level. CXCR4 is mainly expressed on naive T-cells, whereas CCR5 is present
on activated and effector/memory T-cells. During the early course of HIV-1
infection, predominantly M-tropic HIV-1 isolates are detected. Interestingly, M-
tropic HIV-1 isolates are preferentially transmitted regardless of whether or not
the donor predominantly harbours T-tropic isolates. At present, it remains un-
clear whether this in vivo preference of M-tropic HIV-1 isolates is determined by
selected transportation of M-tropic isolates by sub-mucosally located dendritic
cells or whether the local cytokine/chemokine milieu favors the replication of M-
tropic viruses. Recent studies suggest that M-tropic HIV-1 viruses are able to
hide more easily from the immune system by replicating in macrophages, in com-
parison to T-tropic viruses, thus giving them a survival advantage in the infected
individual. The blockade of CCR5, therefore, seems to represent a promising
target for therapeutic intervention, as we already mentioned citing the Pfizer’s
Maraviroc CCR5 antagonist.

Postfusion Events

Following membrane fusion the virus core uncoats into the cytoplasm of the
target cell. These early events have recently been studied in more detail. HIV
can enter into rhesus lymphocytes but replication is stopped before or during
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Figure 2.4: Life cycle of HIV.

early reverse transcription. This intracellular blockade is mediated by a cellular
factor, TRIM5a, which is a component of cytoplasmic bodies and whose primary
function is yet known. HIV-1 entry into quiescent T cells is comparable to HIV-1
entry into activated T cells, but synthesis of HIV-1 DNA remains incomplete in
quiescent cells. The conversion of viral RNA into proviral DNA, mediated by the
viral enzyme reverse transcriptase (RT), occurs in the cytoplasm of the target
cell and is a crucial step within the viral replication cycle (see figure 2.4).

Blockade of the RT by the nucleoside inhibitor zidovudine (AZT) was the
first attempt to inhibit viral replication in HIV-1 infected patients. Reverse tran-
scription results in double-stranded HIV DNA with LTR regions (Long Terminal
Repeats) at each end. HIV-1 enters into quiescent T cells and reverse tran-
scription may result in the accumulation of proviral, non-integrating HIV-DNA.
However, cellular activation is necessary forintegration of the proviral HIV DNA
into the host cell genome after transportation of the pre-integration complex into
the nucleus. Cellular activation may occur in vitro after stimulation with antigens
or mitogens, in vivo activation of the immune system is observed after antigen
contact or vaccination or during an opportunistic infection. In addition, evidence
is emerging that HIV-1 gp120 itself may activate the infecting cell to enhance
integration. Besides monocytes, macrophages and microglial cells, latently in-
fected quiescent CD4+ T-cells that contain non-integrated proviral HIV DNA
represent important long-living cellular reservoirs of HIV. Since natural HIV-1
infection is characterized by continuing cycles of viral replication in activated
CD4+ T-cells, viral latency in these resting CD4+ T-cells likely represents an
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accidental phenomenon and is not likely to be important in the pathogenesis of
this disease. This small reservoir of latent provirus in quiescent CD4+ T-cells
gains importance, however, in individuals who are treated with cART, since the
antivirals are unable to affect non-replicating proviruses and thus the virus will
persist in those cells and be replication competent to supply new rounds of in-
fection, if the drugs are stopped. Thus, the existence of this latent reservoir has
prevented HAART from entirely eradicating the virus from infected individuals.
Persistence of HIV in quiescent CD4+ T-cells and other cellular reservoirs seems
one of the main reasons why eradication of HIV is not feasible. If it is ever possi-
ble to achieve, a more detailed knowledge of how and when cellular reservoirs of
HIV are established and how they may be targeted is of crucial importance for
the development of strategies aiming at HIV eradication. Cellular transcription
factors such as NFkB may also bind to the LTR regions. After stimulation with
mitogens or cytokines, NFkB is translocated into the nucleus where it binds to
the HIV-LTR region, thereby initiating transcription of HIV genes. Transcrip-
tion initially results in the early synthesis of regulatory HIV-1 proteins such as
tat or rev. Tat binds to the TAR site (Transactivation Response Element) at the
beginning of the HIV-1 RNA in the nucleus and stimulates transcription and the
formation of longer RNA transcripts. Rev activates the expression of structural
and enzymatic genes and inhibits the production of regulatory proteins, therefore
promoting the formation of mature viral particles. The proteins coded for by pol
and gag form the nucleus of the maturing HIV particle; the gene products coded
for by env form the gp120 spikes of the viral envelope. The gp120 spikes of the
envelope are synthesized as large gp160 precursor molecules and are cleaved by
the HIV-1 protease into gp120 and gp41. The gag proteins are also derived from
a large 53 kD precursor molecule, from which the HIV protease cleaves the p24,
p17, p9 and p7 gag proteins. Cleavage of the precursor molecules by the HIV-1
protease is necessary for the generation of infectious viral particles, and therefore
the viral protease represents another interesting target for therapeutic blockade.
The formation of new viral particles is a stepwise process: a new virus core is
formed by HIV-1 RNA, gag proteins and various pol enzymes and moves towards
the cell surface. The large precursor molecules are cleaved by the HIV-1 pro-
tease, which results in the infectious viral particles budding through the host cell
membrane. During the budding process, the virus lipid membranes may incor-
porate various host cell proteins and become enriched with certain phospholipids
and cholesterol. In contrast to T cells, where budding occurs at the cell sur-
face and virions are released into the extracellular space, the budding process in
monocytes and macrophages results in the accumulation of virions within cellular
vacuoles. The replication of retroviruses is prone to error and is characterized by
a high spontaneous mutation rate. On average, reverse transcription results in
1−10 errors per genome and per round of replication. Mutations can lead to the
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Figure 2.5: HIV-1 Replication Process and Drug Targets

formation of replication-incompetent viral species. But, mutations causing drug
resistance may also accumulate, which, provided that there is selection pressure
under certain antiretroviral drugs and incomplete suppression of viral replica-
tion, may become dominant. In addition, viral replication is dynamic and turns
over quickly in infected individuals at an average rate of 10 new virus particles
being produced and subsequently cleared per day. Thus, within any individ-
ual, because of the extensive virus replication and mutation rates, there exists
an accumulation of many closely related virus variants within the population of
viruses, referred to as a viral quasispecies. The selection pressure on mostly the
pre-existing mutations may not only be exerted by certain drugs, but also by
components of the immune system, such as neutralizing antibodies or cytotoxic
T cells (CTL). However there is not very strong evidence that CTL plays a major
role in controlling HIV infection [12].

2.2 Treatment Design against HIV Replication

Antiretroviral drugs act by blocking the functions of certain viral genes: by now
they are reverse transcriptase, protease, integrase and entry – see figure 2.5 – but
the virus can develop mutations to escape the drug inhibition.

Summarising the above description, in the virus life cycle (when it reproduces)
the genome string has to be copied from a generation to the next one. Soon after
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HIV enters the body, the virus begins reproducing at a rapid rate and billions of
new viruses are produced every day. In the process, HIV produces both perfect
copies of itself and copies containing errors (and copying errors occur frequently).
The so-called wild type virus is the strain that has naturally evolved as it has the
highest replication capacity: before therapy is started, it is the most frequent
strain in the body and dominates all other quasispecies.

Mutations can change the viral structure or its functions and then modify its
interaction with the environment: the high mutation rate of HIV (combined with
the fact that it attacks the immune system) leads to difficulties in the design of a
vaccine, and to a rapid selection of mutant strains that are likely to be resistant
to antiretroviral drugs. The first Anti Retro-viral drug to be introduced was
Zidovudine (AZT) in 1987, initially made from the anchovies’ sperm.

At present a few classes of drugs are approved by the FDA (Food and Drug
Administration) of USA and EMEA in Europe as antiviral treatment against
HIV: these are the Reverse Transcriptase inhibitors (RTI, divided in Nucleo-
side/tide NRTI and Non-Nucleoside NNRTI), Protease inhibitors (PI) Fusion in-
hibitors (FI) or Entry Inhibitors (EI) and Integrase Inhibitors (II); each class acts
against a step of the viral replication process, and there are around 20 different
molecules available in the clinics. A summary is given in table 2.1.

By comparing the nucleotide sequence of a viral isolate against a wild type
subtype reference (in fact HIV-1 harbours different subtypes, resulting from dif-
ferent lineages of evolution), mutations in the genome can be extracted. Usually
mutations are identified with a number representing a codon (a position in the
genomic sequence), headed by a letter that indicates the amino acid present in
the wild type (i.e. the standard virus, without mutations) and followed by an-
other letter that describes the amino acid replaced in the mutant. For instance,
a mutation that usually confers resistance to the antiretroviral drug Lamivudine
(3TC) is the M184V: it indicates that in codon 184 the amino acid Methonine
(M) has been replaced by Valine (V).

During infection there is not a single virus in a persons body, but a large
population of mixed viruses called quasispecies. Mutant variants are too weak to
survive and/or cannot reproduce as efficiently as the wild-type.; as a result, they
are under-represented in the body. A drug usually works by blocking a key step of
the virus life cycle. Some variants have mutations that allow the virus to be partly,
or even fully, resistant to an antiretroviral drug. In a person receiving continuous
therapy, mutant resistant strains have an advantage over wild type strains and
can become dominant in the patient. This is called selective resistance, because
the mutant is selected by the drug and results in treatment losing its efficacy.
Treatment of selected mutants is more challenging because therapy options are
reduced. If there remains viral replication despite a change in drug regimen,
new mutations can be selected and, furthermore, there are mutations (such as



22 CHAPTER 2. BIOLOGICAL BACKGROUND ON HIV

commercial name acronym
Nucleoside/tide

retrovir AZT
combivir AZT+3TC
epivir 3TC

emtriva FTC
epzicom ABC+3TC
trizivir ABC+3TC+AZT
truvada TDF+FTC
videx DDI
viread TDF
zerit D4T

ziagen ABC
Non-Nucleoside

rescriptor DLV
intelence TMC125
sustiva EFV

viramune NVP
Protease

agenerase APV
lexiva FPV
norvir RTV

prezista DRV
reyataz ATV
aptivus TPV
crixivan IDV
invirase SQV
fortovase SQV
kaletra LPV
viracept NFV

Fusion-Entry
fuzeon T20

selzentry Maraviroc
Integrase

isentress Raltecavir

Table 2.1: List of FDA approved ARV drugs for HIV-1 treatment.

the insertion at codon 69 in the Reverse Transcriptase gene) that cause cross-
resistance to a whole class of antiretrovirals (NRTI-inhibitors). It has been shown
that during treatment interruptions as short as 2 months, HIV reverts to wild
type, but maintains low concentrations of the resistant mutants, so if a previously
experienced drug is reused resistance shortly arises.

Because the virological potency of single drugs is limited, combined thera-
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pies (i.e. involving multiple drugs used concomitantly) are an approach to avoid
resistance. If a virus becomes resistant to a drug, but it is inhibited by many
different others, it can still be suppressed to undetectable levels (although com-
plete eradication is not possible with current regimens). Combination therapy is
often called cART (combined Anti Retroviral Therapy) or HAART (Highly Ac-
tive Anti Retroviral Therapy), when more than two drugs in different classes are
administrated. Mutations can also occur under cART or HAART, even though
at a lower rate. The era of HAART began in 1996 with the introduction of PI
and NNRTI regimens and resulted in dramatic improvements in morbidity and
mortality of HIV disease, as shown by a decreased incidence of opportunistic in-
fections, tumours, and deaths. Despite all the therapeutic advantages achieved
during the last decade, including the development of cART, once an individual
has become infected, eradication of the virus still remains impossible. Usually
cART produce a marked reduction of plasma viral load within three-four weeks
from starting the drugs, and can be sustained for a long period of time (current
estimates of the rate of viral rebound in patients starting from drug-naive are in
the range of 8% per year [14]. HAART typically containing from three to five
different drugs (usually two NRTI and at least one PI – sometimes enhanced by
a small dose of RTV – or an NNRTI), are highly potent against HIV but its use
is often associated with tolerance and toxicity problems.

2.3 Experimental Settings and Data Collection

Before being approved and commercialised by the FDA, drugs follow a long pro-
cedure in which their efficacy is tested through different phases (namely, phase I
to phase IV): first they are designed, synthesised and put in viral cultures; if they
are proven to be effective in-vitro, they will be tested for absorption levels and
toxicity in-vivo, until they are judged to be relatively safe in humans and effec-
tive in suppressing HIV replication. In-vitro studies however are always carried
out – even after the introduction of the drug into the market – in order to fully
characterise the resistance profile of the compund. In-vitro and in-vivo studies
provide data that can be used for mathematical and statistical modelling.

In-vitro studies are collections of experiments that measure how a mutated
virus responds in culture to inhibition by a single drug, compared with the repli-
cation of the wild type under the same drug pressure: the phenotype is a numeric
indicator of viral replication power, expressed as Fold Change of the drug con-
centration needed to inhibit 50% of the viral replication as compared to a wild
type drug-susceptible reference viral strain: the data sets are typically pairs of
genotype sequences and fold changes (FC) values. For each antiretroviral drug
there are currently thousands of such genotype-FC Pairs freely available and the
quality of the data – standing fixed environment conditions and repeatability –
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is fairly high. These tests are expensive compared to the cost of sequencing a
viral strain, so a first challenge for mathematical modelling was to try to estimate
phenotypic FC values associated with the corresponding genotype sequences.

In-vivo studies are usually conducted using data collected from patients in
clinical practice , i.e. plasma viral loads measured before and after a therapy
switch: usually a therapy is stopped and considered failing when the Viral Load∗

in the patient’s blood is greater than a certain threshold (current HIV-treatment
guidelines recommend a switch in therapy if viral load is > 500 copies/mL) and/or
the CD4+ T† cell counts are very low; when there are is an appreciable number
of copies of the virus in plasma (e.g. > 500 copies/mL), HIV can be sequenced
to identify the selected mutations. Unfortunately, both because of technical and
political reasons, large data sets containing both patients genotypic and clinical
data are rare. Data coming from randomised control trials (based on precise
therapeutic protocols usually led by a team of physicians and where patients
are controlled weekly) are normally the most reliable ones, but the access to
these data is not always free and their sample size is typically small; in contrast,
observational cohort studies or clinical cohort databases(collections of clinical
reports from one or more hospitals) have a large sample size, but suffer from
potential biases due to time delays, missing data and the inclusion of non-adherent
patients. In addition, in-vivo viral load measurements are potentially biased by
systematic errors due to intrinsic limitations of the viral load assays currently in
use: indeed, viral load measures are reliable within 1 Log and assays in use in
the clinic cannot detect viral load when the number of copies is under certain
limits (e.g. 500 or 50 cp/ml); genotype sequencing methods have an accuracy
of 90% in detecting mutations if they are present, but performances decrease
using plasma samples with low viral concentrations. Even input errors are not
negligible: data bases are often not automated and have inefficient relational
structures and implementations, mostly data are recorded manually from paper
clinical reports to spreadsheets. In a clinical database, thousands of variables
are recorded but the variability of in vivo data is extremely high and the space
of investigation is large: for example, in theory there could be ˜20400 possible
genotypes (in the sequenced region of polymerase) and
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combinations. But in practice only certain cART are allowed, either for toxicity
reasons, either because the treatment guidelines encourage combinations that
have been proven to be effective and discourage a combination different from
2NRTI+1NNRTI or 2NRTI+1PI.

∗Viral Load is the virion count in the plasma
†CD4+ T are immune cells targeted and infected by the virus and, therefore, a measure of

immuno-suppression
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Chapter 3

Overview on HIV-1 Infection,

Replication and Evolution

The investigation of HIV-1 infection, replication and evolutionary mechanisms
can be devised in two main scenarios:

• spreading and evolution within the population (macro-evolution)

• mechanisms of infection, replication and evolution within the single infected
organism with or without drug pressure (micro-evolution)

The first scenario concerns HIV phylogenetics and epidemiology: the scope of
this thesis is not to investigate such a field, but some interesting connections
can be found between the spreading of an infectious disease in the population (in
terms of subtype characterisation) and the evolution of resistant mutations within
one treated single individual. For this reason, is useful to give a set of proper
references: for the phylogeny in general, the book by Salemi [124] is probably
one of the best in commerce for practical applications, while for more theoretical
aspects the books by Felsenstein [45] and Nei [42]; for epidemiology, apart from
the standard statistical modelling techniques, we suggest the articles by Goodreau
[57] that investigate interesting approaches based on complex-networks.

The second point refers to the mathematical models derived so far in order
to describe and simulate the viral infection in the human body, the replication
in the cell and the genetic evolution: currently, several methodologies are used:
from ordinary deterministic (or stochastic) differential equations (mainly for the
infection-replication mechanisms), to cellular automata, to probabilistic networks
(for the mutational pathways modelling). They explore (together or separately)

• viral interactions with human cells

27



28
CHAPTER 3. OVERVIEW ON HIV-1 INFECTION, REPLICATION AND

EVOLUTION

• pharmacokinetics/pharmacodynamics

• resistant viral strain evolution

For the case of differential equations, all the models of the infection-replication
phase can be seen as extensions/reinterpretations of the basic predator-prey
model [127].

There are some crucial points that see a partial failure of most (if not all)
of these models: the extreme complexity of human metabolism, the imprecision
in measuring and partial un-observability of key variables. For instance, in-
vivo clinical markers for the majority of patients consist of viral RNA charge,
CD4+ and (sometimes) CD8 cell counts: differentiation between infected and
un-infected cells cannot be estimated unless estimations coming from specific
experiments are made; no information about latently infected cells is available;
viral sequences resemble the predominant population in the plasma.

During most ARV treatments HIV can follow different mutational pathways to
develop resistance, depending on drug pressure, viral population size and fitness
of the resistant mutants. Knowledge about the probability and time needed to
select different resistant strains, joined with pathways description, can increase
confidence about long-term therapies. Even if HIV-1 is a simple RNA virus and
the resistant mutations develop through copying errors, modelling the evolution
of resistant quasi-species is far from being a simple problem, being similar to the
subtype evolution and spreading of the viral population in the world.

A stochastic model, Markov Chains and Mutagenetic Trees will be the ap-
proaches of present thesis towards the objective of dynamics modelling, while
univariable and multivariable statistics will be executed on the equilibrium states.



Chapter 4

Differential Equations and

Stochastic Modelling

4.1 Overview

Several mathematical models have been investigated for the description of viral
dynamics in the human body: HIV-1 infection is a particular and interesting
scenario, because the virus attacks cells of the immune system that have a role
in the antibody production and its high mutation rate permits to escape both
the immune response and, in some cases, the drug pressure. The viral genetic
evolution is intrinsically a stochastic process, eventually driven by the drug pres-
sure, dependent on the drug combinations and concentration: in this paper the
viral genotypic drug resistance onset will be the main focus addressed. The the-
oretical basis will be the modelling of HIV-1 population dynamics as a logistic
equation with a time dependent therapy efficacy term, while the viral genome
mutation rate will be a stochastic process and follow a poisson distribution. Fi-
nally, the instant probabilities of drug resistance will be estimated by means of
sigmoid functions trained from in-vitro phenotypes. The drug-resistance mod-
elling framework allows also for inclusion of more detailed viral-immune-inhibition
population dynamics.

The stochastic-logistic modelling usefully predicted long-term virologic out-
comes of evolved HIV-1 strains for selected antiretroviral therapy combinations.
Simulations were run for mono- and bi-therapies, for highly active antiretroviral
therapies and for unadherent therapies. Sequential treatment change episodes
(including drug sparing and recycling) were also exploited with the aim to eval-
uate optimal synoptic treatment scenarios. For a set of widely used combination
therapies, results were consistent with findings reported in literature.
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Figure 4.1: HIV-1 Target Cells and Infection Process

4.1.1 Biological Mechanisms of HIV-1 Infection

Infection by HIV-1 is a particularly interesting scenario because this virus directly
attacks cells of the immune system and its high mutation rate permits to escape
both the immune response and, in some cases, the drug pressure.

HIV-1 primarily infects vital cells of the human immune system such as helper
T cells (specifically T cells with CD4+ receptor), macrophages and dendritic
cells. The exact process through which HIV-1 leads to immuno-suppression and
eventually to Acquired Immuno-Deficiency Syndrome (AIDS) is still debated,
but several mechanisms have been postulated by experimental evidences. Upon
entering a target cell, the viral RNA genome of HIV is converted to a double-
stranded DNA by the reverse transcriptase gene, within the polymerase viral
genomic region. The viral DNA is then integrated into the cellular DNA by the
integrase gene, so that the genome can be transcribed. Finally, the protease gene
allows the production of new infectious virions. HIV-1 can also hide latently in
infected cells, waiting quiescently until some environmental condition activates
its reproduction.

The host immune response and the viral infection are connected within three
principal mechanisms: (i) direct viral killing of infected cells; (ii) increased rates
of apoptosis in infected cells; (iii) killing of infected CD4+ T cells by CD8 cy-
totoxic lymphocytes that recognise infected cells (figure 4.1). When CD4+ T
cell numbers decline below a critical level, cell-mediated immunity is lost, and
the body becomes progressively more susceptible to opportunistic infections. If
untreated, eventually most HIV-infected individuals develop AIDS and/or die for
opportunistic infections.

HIV differs from many other viruses as it has very high genetic variability.
This diversity is a result of its fast replication cycle, with the generation of 109 to
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1010 virions per day, coupled with a high mutation rate of approximately 3×10−5

per nucleotide base per cycle of replication. This complex scenario leads to the
generation of many variants of HIV in a single infected patient in a brief time-
span. The fact that the immune system is not able to control the infection is also
due to this high genetic variability.

4.1.2 State of the Art on HIV-1 In-Vivo Dynamics Modelling

The literature includes a plethora of systems of ordinary deterministic differential
equations (ODE), that consider different aspects of the infection, viral replication,
immune response and treatment effect (accounting also for pharmacokinetics).
So far, from the naive application of predator-prey [127] equations, the models
have been extended to account for competition and cooperation of cohabitant
species (i.e. virus, immune response, latent cells, et cetera). In order to model
the viral resistance to drug pressure, refinements of these equations have been
produced: from simple modifications of the ODE using time-invariant coefficients
for drug efficacy, to multi-strain models to describe viral mutants. Stochastic
and cellular automata models have been also introduced, investigating mainly
population dynamics and immune response behaviours.

A milestone is the system introduced by [11] where the basic model presented
is:

dT

dt
= s + pT (1− T

Tmax
)− dT T −KViT (4.1)

dT ∗

dt
= (1− ηRT )kViT − δT ∗ (4.2)

dVi

dt
= (1− ηPR)NδT ∗ − cVi (4.3)

dVni

dt
= ηPRNδT ∗ − cVni (4.4)

where T are uninfected CD4+ T cells, T ∗ are infected CD4+ T cells, Vi and
Vni are infectious and non-infectious virions respectively, ηi are the drug class
efficiencies (here protease and reverse transcriptase). Cytotoxic response (CD8),
latent and long-lived cells are not included in the model, neither the presence
of multiple viral strains. Refinements of this basic model – amongst the many
variation on a theme – include: further studies by [92], that take into account
intra-cellular time delays; a recent work by [92] on latently infected cell activation;
several papers by [4] [5] that analyse simplified bi-phasic exponential slopes for
viral load changes, along with accurate parameter estimation; similar models by
[131] [85] and a recent literature review by [78]. A major concern regarding all
the ODE-based models is in the efficacy of (combination) therapies is modelled
only by means of constant terms, that shrink the viral reproduction rates. The
knowledge of this efficacy must be known a-priori and does not depend on (nor
drives) the viral genotype evolution.
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Multiple-strain models (i.e. different equations for different viral mutant
species) are an attempt to explain the drug resistance onset, where the con-
stant terms for drug efficacy have different values for each mutant specie. A
drawback of this approach is that the viral population is simply divided in a
few additional equations, that represent resistant and susceptible population for
different inhibitors. In [104] population dynamics are analysed using an ODE
model and a stochastic one. A different approach is to consider the development
of mutations as a process directly driven by the drug pressure, as proposed by
[103] and [118].

A paper which has marked similarities with the approach here presented is the
one by [80]: the study investigates the evolution of resistant viral strains under
time-varying drug combinations. A very simple scenario made by three ideal
drugs and three corresponding ideal resistance mutations is given, with different
replication parameters (arbitrarily fixed) for each mutant under a certain drug
pressure. Numerical simulations are carried out to estimate viral evolution, using
a sampling from a Poisson distribution to determine whether mutations occur in
any one round of replication and to calculate the number of cells created in the
next generation. However, it is stated clearly that the model allows only for
general considerations on treatment change policies or unadherence problems.
There is no attempt to create a specific model using real drugs and actual HIV
mutation rates.

The last set of models present in literature uses cellular automata to describe
HIV-1 strategies of immune evasion, by [18] [17]: mutation, fitness, viral diversity
and predictive markers of disease progression are analysed, but only relative to
the infection of host cells, without accounting for drug administration effects,
neither drug-resistance emergence.

4.2 Logistic Stochastic Model: Theory

The proposed model is based on a few assumptions about the rate of HIV-1
replication in humans. Most of these are consistent with the current scientific
knowledge. First, it is assumed that patients are chronically infected with HIV-1,
i.e. they are in a clinical latency stage some time after the date of seroconversion
and at low risk of developing constitutional symptoms and AIDS-defining events.
This corresponds to a steady-state equilibrium in which the viral load has reached
a constant value in the host, with a corresponding constant immune cell count.
Secondly, it is assumed that neither CD4+ or cytotoxic T lymphocytes have a
direct role in controlling viral dynamics: the virus, when perturbed, tends to go
back to the steady-state following a logistic reproduction equation as described
by [125]. The quadratic term that shrinks the growth is intended to account
intrinsically for the interaction between virions and immune system. Latently
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infected cells are instead took into account, allowing for a special reservoir in
which the virions are not reached by the drugs. The usage of this simplified
population dynamics equation is justified by the fact that has an exact solution
when considering constant parameters.

The continuous version of the logistic model is described by the differential
equation

dV

dt
=

rV (Vmax − V )
Vmax

(4.5)

where V is the viral load, r > 0 is the Malthusian parameter (rate of population
growth) and Vmax is the so-called carrying capacity (i.e. the maximum sustainable
population). Dividing both sides by Vmax then gives the differential equation

dV

dt
= rV (1− V

Vmax
) (4.6)

The solution to the equation (with V0 being the initial population) is

V (t) =
VmaxV0e

rt

Vmax + V0(ert − 1)
(4.7)

Usually the growth rate term r is a positive constant, but for negative values
it can lead the population to extinction. Suppose then that the application of
a therapy reduces the population growth, shrinking the viral reproduction by a
η ∈ [0, 1] constant term. It can be modelled by the following modified equation

dV

dt
= (1− η)rV − rV 2

Vmax
(4.8)

which can be rewritten as

dV

dt
= (1− η)rV (1− V

(1− η)Vmax
) (4.9)

resulting in a new steady state of (1−η)Vmax. Alternatively, it would be possible
to define the more general equation

dV

dt
= rV (1− V

Vmax
)− sV (4.10)

in which the term s in not simply a percentage reduction of the growth rate (like
it was η in the previous equation). Rewriting the equation in

dV

dt
= (r − s)V (1− V

r−s
r Vmax

) (4.11)

depending on the values of r and s, different equilibrium could be reached, like
the complete eradication if r < s (remember that r is positive by definition).

The assumption of a constant effect of therapy however is fairly unrealistic –
this is also the shortfall of the ODE models previously described – because there
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is evidence that under drug pressure the virus develops escaping mutations and
the viral load ultimately rebounds to Vmax.

Instead of defining explicitly a set of equations for each possible resistant
strain (which is the approach of the multi-strain models), a coefficient η(t) =
η(V (t), C(t)) ∈ [0, 1] can be introduced, which will depend on the viral population
V (t) – identified by a set of mutations in the viral genome present at time t and
dependent on the combination therapy C.

The viral population V is a set of single individuals V = v1 . . . vN (N ≤ Vmax).
Each individual vi has associated a set of mutations: vi, defined as a binary
vector vi = [mi,1 . . . mi,M ] ∈ {0, 1}M , where 1 (0) codes the presence (absence)
of a mutation. Mutations are intended as amino acidic substitutions in the viral
genotype with respect to a HIV-1 wild type reference sequence (namely, subtype
consensus B). Thus, the viral population can be defined as a binary matrix M

of mutations. Through time, this matrix will change randomly according to the
distribution of the real mutations observed experimentally.

The aim of this paper is not to derive an analytical solution of the corre-
sponding differential equation, since η(t) is a complex time-varying function. In
contrast, an algorithmic simulation procedure is designed to simulate it numer-
ically. Of note, this procedure can be applied also to a more complex systems,
for example designing approximate numerical solutions for the set of equations
in [11] or directly extending the [18] lattice model.

The assumption made for the algorithmic simulation is that η can be consid-
ered constant for a very short time (i.e. one day, which is reasonable, since it is
known that the virus undergoes significant changes over time over a time-scale
of weeks), so that an estimation of the number of virions for the following time
step can be calculated using the exact solution of the logistic equation. In order
to do this, an average η̂(t) = η̂, t <= 1, that is representative of the whole viral
population resistance is needed.

The procedure is as follows:

• time t, cART Ct = {ct,1 . . . ct,K}, viral population Vt = vt,1 . . . vt,N

• for each virion vt,i ∈ Vt calculate efficacy of each single drug ct,k ∈ Ct

according to the mutations mt,i of vt,i : ηt,i,v,ck
= f(vt,i, ct,k) = f(mt,i, ct,k).

Combine the single efficiencies into one overall η′t,i,C =
⋃

k ηt,i,ck
, where the

union is the probabilistic sum (η1
⋃

η2 = η1 + η2 − η1η2)

• calculate η̂t,C =
∑N

i=1 η′t,i,C
N as average constant and fed to the solution of

logistic equation

• calculate the number of virions Nt+1 = |V |t+1 at time t + 1 and the popu-
lation change ∆N = Nt+1 −Nt
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• let the population Vt reproduce and mutate (according to the rates above
calculated): Vt+1 = g(vt,i, η

′
t,i,C , ∆N) where g updates the number of viri-

ons, and update the mutation matrix Mt+1 = h(Mt)

Functions f, g, h, represent the efficacy of a single drug against a (mutant) virus
isolate, the reproduction function and the stochastic mutation drift respectively.

The function f(mt,i, ct,k) = ηt,i,v,ck
depends on the mutations of a virus iso-

late and on the specific drug considered: it can be easily defined using the results
coming from in-vitro phenotypic tests. In-vitro studies are collections of exper-
iments that measure how a mutant virus responds in a culture to a single drug
inhibition: the phenotype is a numeric indicator of viral replication power, ex-
pressed as fold change of the drug concentration needed to inhibit 50% of the
viral replication as compared to the wild type drug-susceptible reference viral
strain, under the same drug pressure. Predicting single in-vitro phenotypes from
viral genotypic data is a widely explored task. Multiple linear regression, decision
trees and support vector machines applied to genotype-phenotype pairs are able
to perform predictions that explain correctly up to 80% of phenotypic variance
[90]. Analysis of phenotype predictions (among naive and treated patients) re-
veals in general a bimodal nature of distributions, as can be seen in figure 4.2.
In [90], the probability density of predicted phenotypic Log10 fold change y is
described using a two-component Gaussian mixture model for each drug:

αφ(y, µ1, σ1) + (1− α)φ(y, µ2, σ2) (4.12)

where φ(y, µi, σi) is the density of a normal distribution i with mean µi and stan-
dard deviation σi; α is the mixing parameter. Assuming µ1 < µ2, the resistant
population belongs to the Gaussian centred in µ2. Parameters are estimated by
expectation maximization algorithm. A log-likelihood ratio is defined to decide
whether a given phenotype is more likely belonging to the resistant or susceptible
sub-population:

l(y) = log
Pr(res|y)
Pr(sus|y)

(4.13)

From Bayes’ formula it follows

l(y) = log
Pr(y|res)Pr(res)

Pr(y)

Pr(y|sus)Pr(sus)
Pr(y)

= log
φ(y, µ1, σ1)
φ(y, µ2, σ2)

+ log
Pr(res)
Pr(sus)

(4.14)

By approximating l(y) with its tangent l′(y) in y0, the probability of resistance
Pr(res|y) is the logistic function of l′(y) for a given viral genotype with respect
to a drug:

Pr(res|y) ≈ 1
1 + e−l′(y)

(4.15)

The efficacy η of a treatment against a given viral strain is obviously

η(m, c) =
1

1 + el′(fc(m))
(4.16)
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Figure 4.2: Estimation of drug resistance (1-efficacy) probability (y axis) given
the distribution of phenotypic Log10 fold changes in a viral population sample (x
axis), for a given generic drug, using two-component Gaussian mixture model.

where c is a drug compound, m is a viral isolate genotype and yc = fc(x) is
the Log10 fold change phenotype (prediction) for virus m and drug c, having
η(c,m) ≈ Pr(sus|yc).

In this paper, multiple linear regression models were trained on public genotype-
phenotype data sets provided by Stanford University (http://hivdb.stanford.edu),
considering viral genomic sequences in the polymerase region and reverse tran-
scriptase or protease inhibitors approved by Food And Drug Administration
(www.fda.gov): training set cardinality for single drugs ranged from ≈ 200 to
≈ 1000 samples. Mutations were extracted from consensus B reference, con-
sidering all positions, even if not previously reported in literature as associated
to resistance. Space (≥ 2000 variables) was reduced using sequentially a filter
based on univariable rank-sum test on Log10 fold changes and stepwise selection
based on M5 algorithm [99]. Regression results were consistent with state of
the art and yielded correlation values between predicted and observed pheno-
types ρ ∈ (0.88, 0.97) in 10-fold cross validation. The two-component Gaussian
mixture models parameters were estimated from a random sample (1500) of poly-
merase sequences (naive or drug experienced) drawn from the Los Alamos HIV
data bases (www.hiv.lanl.gov/), with high concordance with previous estimates
by [90].

Function g(vt,i, η
′
t,i, ∆N) = Vt+1 updates the number of virions in the popu-

lation, yielding |Vt+1| = |Vt| + ∆N . In order to do this and to assure that only
the resistant individuals survive or reproduce, virions vt,i are ordered ascending
by the their η′t,i: if ∆N > 0, ∆N individuals are added to Vt, by drawing them
sequentially from the ordered population; if ∆N < 0, individuals are instead
deleted sequentially but in the reverse order (i.e. the less resistant viruses are
killed). Moreover, since complete eradication is not possible, a fixed number of
virions is kept safe from the drug pressure at each time iteration: if the viral pop-
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ulation reaches low concentration (< 500 cp/ml), the hidden virions are recalled:
this accounts also for latently infected cell activation in the body. For each virion
that survives or reproduces, the random mutation procedure is executed at each
time step.

Function h(Mt) = Mt+1 drives the mutation process: for each genome mt,i of
vt,i (an individual that reproduces), the number k of possible new mutations for
each new generated individual is given by a Poisson distribution

Pr(k) =
λke−k

k!
(4.17)

where Pr(k) is the probability of having k mutations. Since the average error
rate in HIV-1 is 3.4 × 10−5 per nucleotide [86] [52] and the polymerase (reverse
transcriptase plus protease) is ≈ 1500 bases, the resulting λ value is 0.051. The
mutations in polymerase do not have all the same probability to appear, thus
when a substitution happens, a codon and amino acid are sampled from a dis-
tribution that is representative of the prevalence of mutations in the drug-naive
HIV+ population (see figures 4.3 and 4.4). The relative frequencies of all muta-
tions in polymerase are calculated considering the whole naive viral population
stored in the Los Alamos HIV data bases (www.hiv.lanl.gov/). Clearly, when a
mutation which is already in the genome happens to be added, this is removed.
In absence of drug pressure, thus, the viral population tends to accumulate mu-
tations following the naive distributions; but when a rare resistant mutation is
acquired, maybe resulting from treatment selection, the probability to lose it is
extremely low.

4.3 Logistic Stochastic Model: Application and Results

The logistic stochastic model was implemented using Java ( c© Sun Microsystems)
programming language. The set of drugs considered was: zidovudine (AZT),
lamivudine (3TC), emtricitabine (FTC), tenofovir (TDF), abacavir (ABC), efavirenz
(EFV) as reverse transcriptase inhibitors; lopinavir (LPV) as protease inhibitor.
The growth rate r was set to 0.44 and latent reservoir size fixed on 500 cp/ml,
according to experimental and literature evidences, when the rise in viral load
for AZT monotherapy is expected to show before 90 days after the treatment
initiation in drug-naive patients. With the same set of parameters, as a proof,
LPV monotherapy showed to be more powerful in suppressing viral load than
AZT. Initial viral population was 10’000 cp/mL and initial viral mutation matrix
generated according to relative frequencies estimated using drug-naive sequences
stored in Los Alamos HIV data bases (www.hiv.lanl.gov/). Long-term end point
was set to 2 years.

Simulations for specific drug combinations were run for 30 times, collecting the
median values of Log10 viral load distribution through days. Suboptimal ther-
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Figure 4.3: Distribution of mutations in Reverse Transcriptase among ART-naive
sequences.

Figure 4.4: Distribution of mutations in Protease among ART-naive sequences.
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apies considered were: AZT and LPV monotherapy, AZT+LPV dual therapy.
Combination therapies considered were: AZT+3TC+EFV, AZT+3TC+ABC,
TDF+FTC+EFV. Additional simulations were run for unadherent AZT+3TC+ABC
(1 missed dose every three days), drug sparing policy (AZT, then AZT+3TC after
90 days when first viral rebound > 1500 cp/ml, then AZT+3TC+EFV at second
same viral rebound), treatment change (whenever viral load > 1500 cp/ml) from
AZT monotherapy to 3TC+LPV and then back to AZT, drug holidays under
AZT+3TC+EFV HAART. An experimental simulation was set up considering
the random administration of a single drug every day among the set of {AZT,
3TC, ABC, EFV, LPV}.

Figure 4.5 depicts viral load over time (one simulation run) for suboptimal
therapies and HAART given to drug-naive patients. A first test to assess model
behaviour was to execute a Wilcoxon rank-sum test on the median viral load
distributions over time to compare combination therapies. It yielded that, in
first line therapy, HAART significantly (p < 0.05) ensured lower viral loads than
suboptimal therapies. This result – although already well stated in literature
– was consistent with the findings in [30], in which it was shown that patients
receiving ≥ 3 active drugs had a significantly lower risk of virological failure than
patients receiving ≤ 2 active drugs, using survival analysis. Moreover, it was also
shown that resistance scores based on phenotype prediction provided significant
prediction of 24 weeks virological failure.

More interestingly, the comparison between AZT+3TC+EFV against TDF+FTC+EFV
showed that the latter HAART did not lead to viral load rebound (i.e. resistant
mutants did not grow in the population) during the first two years, whilst for
the former the median time to the first viral rebound > 1500 cp/ml was 520
days. In fact TDF and FTC are recently approved drugs of the same type of
AZT and 3TC respectively, but with higher potency. This has been also shown
in [10], where a regimen TDF+FTC+EFV demonstrated superior virologic and
immunologic effects compared with a regimen of fixed-dose AZT+3TC+EFV,
through 96 weeks in a randomised open-label trial.

Figure 4.6 depicts viral load over time (one simulation run) for the additional
set of simulations run for unadherent, random administration, drug sparing, drug
recycling and drug holidays. The simulations showed that the poor adherence
yielded higher risk of virological failure, with slope comparable to a suboptimal
dual therapy, but with the worst result of a three-drug resistant virus. Random
administration of a single drug every day did not increase the chance of success
over the HAART, yielding large inter quartile ranges in viral load distribution
over time. Regarding drug sparing, the scenario deserves some considerations: in
[80] it was stated that the sequential addition of a drug to ongoing regimens is
not a favourable policy, since selects inevitably a cross-resistant population. This
is partly true, because it was not considered the time in which a drug should be
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Figure 4.5: Viral load change through time for mono, dual therapies and HAART.

added. Since the probability to select resistant mutations increases when viral
load is high, if a drug is added right after the viral load starts to increase, the
chance of emergence of cross-resistant variants can be reduced. The drug sparing
policy here analysed (first AZT, then AZT+3TC and then AZT+3TC+EFV),
considered a drug addition after 90 days when first viral rebound was > 1500
cp/ml and another right after the second same viral rebound. There was no sta-
tistically significant difference under the rank-sum test against AZT+3TC+EFV
HAART. But in this situation the model undergoes to some limitations, because
the role of latent reservoirs and immune response becomes more important. How-
ever, the drug sparing policy could have a reason only considering the fact that
HAART regimens can be associated with increased toxicity and poor adherence,
as pointed out in [47], otherwise it is not worth the risk to miss the optimal
timing.

By its design, the model of viral mutation emergence is prone to maintain the
(rare) resistant mutations acquired. Thus, in the scenario of switching (when-
ever viral load > 1500 cp/ml) from AZT monotherapy to 3TC+LPV and then
back to AZT at second failure, almost no inhibition effect from the second AZT
administration could be measured, even if the combination 3TC+LPV did not
share any cross-resistant mutation with AZT.

As it concerns the simulations for drug holidays, in which an HAART was
periodically interrupted (in this case AZT+3TC+EFV suspended every 6 months
for 3 months), no appreciable differences were found in the selection of resistant
mutants with respect to the same HAART. Indeed, if the drug interruption time
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Figure 4.6: Viral load change through time for unadherent therapies, random
administration and selected treatment change episodes.

is shorter and more frequent, this is equivalent to an unadherent therapy. But
the difference is crucial, since with poor adherence the virus is able to reproduce
under selective pressure. In therapy interruption, instead, the virus grows without
selecting any particular mutation: thus, if the drug pressure is sufficiently high
to avoid the selection of resistant mutants before the interruption, the overall
distribution of mutations in the population follows the wild type. Structured drug
holidays have the advantage to reduce the toxicity problems, but the disadvantage
of a high viral concentration for several months (higher probability to infect other
people or for CD4+ depletion, et cetera).

Figure 4.6 shows the evolution of the viral genome for one simulation con-
sidering AZT+3TC+ABC triple therapy. Only resistance-associated mutations
are listed. The cumulative probability of selecting a particular mutation over
time depends either on the prevalence in the population, or on the individual
contribution to drug resistance (the coefficient in the linear regression model for
phenotype), which can be calculated independently when analysing a single drug
pressure. But the logistic stochastic model – by averaging over different runs –
can derive distributions for combination therapies.

4.4 Conclusion

The logistic stochastic equation is a relatively simple model intended to describe
the principal aspects of viral genotypic drug resistance evolution under the ad-
ministration of (combination) therapies. The stochastic drift for genotypic vari-
ation follows a Poisson distribution and in absence of drug pressure respects the
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Figure 4.7: Evolution of mutations associated to resistance for reverse transcrip-
tase inhibitors under triple therapy.

wild type mutation prevalence. The definition of a time dependent combination
therapy efficacy requires a numerical solution of the model equation. An instant
overall efficacy term is designed as a function of mutations in a viral genome, by
means of in-vitro phenotypic resistance estimation, combining single drugs. The
administration of a therapy changes the mutational drift by selecting resistant
mutants that result ultimately in viral load rebound. Under these assumptions,
the designed framework allows also for inclusion of more detailed viral-immune-
inhibition dynamics rather than the simple logistic behaviour.

The model predicted long-term virologic outcomes and evolved HIV-1 resis-
tant strains. Median values and confidence intervals were assessed via multiple
runs. Several simulations were executed considering mono-, bi-therapies, highly
active antiretroviral therapies, poor adherence, drug recycling and drug holidays
scenarios. Drug sparing policies were also exploited. For a set of commonly
used combination therapies, results were shown to be consistent with statisti-
cal findings previously reported in literature (corroborated by the usage of rank
sum test). The model proved to be an useful tool for devising new treatment
strategies. In this sense, multiple simulations can assess the effectiveness (and
compare) different HAART, while the exploration and optimisation of sequential
treatment change episodes has the aim to ensure the largest and longest-lasting
viral load reduction, either when in presence of reduced therapeutic options or
toxicity/adherence problems.

Future perspectives foresee the usage of a more complex model – rather than
the logistic one – describing virus-host interactions, accounting for CD4+ T cell,
cytotoxic T lymphocytes response, latent reservoirs and CTL escaping mutations.
The most suitable candidate is the framework provided by [18] [17], that works
on discrete time steps and already investigates the interactions with the immune
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system. Another possible improvement, finally, is to include in the model the
drug concentrations or half lives.





Chapter 5

Statistical and Unsupervised

Analyses

The aim of this chapter is to study HIV-1 evolutionary patterns associated with
exposure to specific combinations of drugs. The scenario is not dynamic, i.e.
only equilibrium situation types will be explored, like, for example, the wild type
strains or the heavily-treated strains equilibrium. With equilibrium, we refer
to the steady state that the virus reaches in the host when the environmental
conditions are constant: this means also consant drug pressure and fully acquired
resistance, or no drug pressure and wild type condition.

Univariable and multivariable analyses are the ideal methodological tool when
the objective is to identify patterns of drug-resistant mutations either from in-
vivo data or using information collected from patients’ routine clinical practice.
Conversely, a more in depth investigation for time-dependant mutational path-
ways evolution will be presented in section 7 with Mutagenetic Trees and Markov
chain models.

5.1 Methods

In this section, univariable (stratified) statistical tests (χ2) will be performed
in order to find out which mutations are significantly associated with resis-
tance/susceptibility to which drug or drug combination, whilst Unsupervised
Learning (UL) will be carried out in order to identify patterns of mutations:
for this purpose both Hierarchical and Partitional Clustering (HC, PC) will be
executed on selected viral population samples. Dimension reduction techniques
will be also explored, like Principal Component Analysis (PCA) and Multi-
Dimensional Scaling (MDS). These techniques are grouped in the definition of

45
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UL because the data analysis do not require an objective or output function,
but explores independently the variable space partition. A general introduction
to UL can be found in [66] and [134]. More specifically, Cluster Analysis has a
variety of goals. It relates to grouping or segmenting a collection of objects (i.e.
observations, individuals, cases, or data rows) into subsets or clusters, such that
those within each cluster are more closely related to one another than objects
assigned to different clusters. Central to all of the goals of cluster analysis is the
notion of degree of similarity (or dissimilarity) between the individual objects
being clustered.

In Hierarchical Clustering the data are not partitioned into a particular clus-
ter in a single step. Instead, a series of partitions takes place, which may run
from a single cluster containing all objects to n clusters, each containing a single
object. Hierarchical Clustering is subdivided into agglomerative methods, which
proceed by series of fusions of the n objects into groups, and divisive methods,
which separate n objects successively into finer subgroups. Agglomerative tech-
niques are the most commonly used and this is the method that will be adopted
in this investigation, even if divisive techniques have been also designed. Hi-
erarchical clustering may be represented by a two dimensional diagram known
as dendrogram which illustrates the fusions or divisions made at each successive
stage of the analysis.

Regarding Partitional Clustering, the method k-means [69] is one of the sim-
plest unsupervised learning algorithms to solve a clustering problem. The proce-
dure follows a simple and easy way to classify a given data set through a certain
number of fixed a priori clusters (i.e. k clusters). The main idea is to initially
define kt0 centroids, one for each cluster. These centroids should be placed in a
cunning way because the final clustering result can depend on the chosen location
of the initial centroids. So, the best choice is to place them as much as possible
far away from each other or set up a comparison of different clustering runs with
initial random centroid assignments. The next step is to take each observation
under study and to associate it to the nearest centroid. When all observations
are allocated to a centroid, the first step is completed and A first grouping is
done. At this point, kt+1 new centroids need to be recalculated so that they
are barycentres of the clusters resulting from the previous step. After creating
these kt+1 new centroids, a new binding needs to be done between the same data
set observations and the nearest new centroid. A loop is then generated so that
these two steps are repeated a certain number of times until the centroids are
stabe (i.e. no longer change their location). Of note, the clustering around a
centroid is regulated by the k-mean algorithm that aims at minimizing an ob-
jective function (a squared Euclidean distance error function) with an iterative
procedure. Although it can be proved that the procedure does always terminate,
the k-means algorithm does not necessarily find the most optimal configuration,
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corresponding to the global objective function minimum. The algorithm is also
significantly sensitive to the initial randomly selected cluster centroids. That’s
why the k-means algorithm can be run multiple times to try to reduce this effect.
Moreover, k-means clustering is appropriate only when the Euclidean distance
is a suitable metric and the procedure, since uses an average evaluator, is not
robust against the presence of outliers (i.e. observations that produce very large
distances).

Instead of the naive k-means method, in this thesis, we will use an improved
version of this algorithm, named k-medoids or Partition Around Medoids (PAM),
which uses median values instead of mean (and therefore it is more robust to
outlier). This approach has also the advantage of being able to handle a distance
matrix that can be calculated with any distance rather than just the Euclidean
one.

In addition, a model-based clustering approach, using Gaussian Mixture Mod-
els (GMM) and Expectation Maximisation (EM) algorithm, will be executed. It
has been shown that k-means is a hard version of the GMM-EM, in the sense
that it does not use continuous cluster assignments as the GMM-EM.

Regarding dimensionality reduction techniques, linear combinations of vari-
ables to explain the data variance will be explored by using both PCA and MDS,
a method to graphically represent multi-dimensional data in lower dimensions.

The list below summarises all the methods used in this chapter with the
appropriate references:

• Statistics: non parametric univariable (stratified) χ2 test on cross tabula-
tions with adjustment for multiple testing (Benjamini-Hochberg and cross-
validation) [105]

• Clustering:

– Hierarchical Clustering HC: agglomerative methods with average group-
ing, binary distances [68] [97] and multiscale bootstrap resampling [61]

– Partitional Clustering PC: Partition Around Medoids PAM [66] with
silhouette analysis for optimal cluster number assessment; Gaussian
Mixture Model Clustering GMM with Expectation-Maximisation EM
algorithm for optimal cluster number assessment [50]

• Dimensionality reduction: Principal Component Analysis PCA [15]; Multi-
Dimensional Scaling MDS (with Kruskal’s Non-metric method on binary
distance matrices) [25] [108]

In this chapter we assume that the mathematical domain for viral genotypes
is defined as a n-dimensional binary vector which codes the presence or absence
of a particular mutation. However, note that the procedure to extract mutations



48 CHAPTER 5. STATISTICAL AND UNSUPERVISED ANALYSES

from a virus isolate against a consensus reference is not a trivial one and becomes
more complex when analysing different genes. We posticipate the description of
this procedure to section 9.2.1, in which the problem is faced for one of the most
problematic genes, the envelope. But the procedure has been showed to work
even more robustly for protease and reverse transcriptase.

5.2 State of the Art

Clinical evidences and statistical analyses of resistance data have shown over the
past few years that HIV-1 seems to have some preferred evolutionary pathways
varying with the class of inhibitors to which is exposed [121]. For Nucleoside and
Nucleotide (or Thymidine Analogues) Reverse Transcriptase Inhibitors (NRTI)
two patterns frequently emerge: {M41L, L210W, T215Y} (TAM1) and {K70R,
D67N, K219QE, T215F} (TAM2)∗. Two other rare patterns are also observed:
the T69-INSERTION complex and the Q151M complex (that are both often
detected along with some TAMs, plus {A62V, V75I, F77L, F116Y}). Finally,
additional mutations are significantly associated with the use of nucleosides; some
are exclusively selected by a particular drug (i.e. M184VI for Lamivudine, that
gives hyper-susceptibility to Zidovudine OR L74V that seems more specific for
Abacavir): {E44D, K65R, L74V, Y115F, V118I, M184VI}.

A different set of mutations in the reverse transcriptase region is associated
with reduced susceptibility to Non-Nucleoside Inhibitors (NNRTI): this is due
to the fact that nucleosides and NNRTI, at molecular level, act in a different
way. Also a list of mutations associated with reduced susceptibility to Protease
Inhibitors (PI) has been defined for each drug in this class. In general, some mu-
tations shows cross-resistance to other drugs of the same class or other classes,
others instead show the opposite behaviour (i.e. if detected they are likely to
increase HIV-1 susceptibility to other drugs). The number of mutations that
seem to be directly selected by antiretroviarl treatment is constantly updated by
panels of experts [121] although a consensus is often not reached by all experts.
One possible way to identify mutations that are genounely associated with drug
exposure is to perform univariable tests comparing the observed frequency of mu-
tations in populations of treated or ART-naive patients. However, this approach
has limitations as it is not able to reveal the complex mechanisms of dependencies
between mutations (and drugs) and does not take into account the viral evolution
through time.

Multivariable analyses and Unsupervised Learning are a further step, useful
to find correlations, clusters, antagonisms, that should be checked against our
virological hypotheses.

∗please note the different amino acidic substitutions at position 215
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Figure 5.1: Pairwise φ correlation coefficients between mutations (part view),
with red indicating maximal observed positive covariation and blue maximal ob-
served negative covariation. Boxes indicate pairs whose covariation behaviour de-
viates significantly from the independence assumption, according to Fishers exact
test and correction for multiple testing using the Benjamini-Hochberg method at
a false discovery rate of 0.01. The classical mutational complexes form distinct
clusters, from left to right: TAM1, Q151M-complex, TAM2.

One of the most complete studies to date is the work by Sing [116], investigat-
ing single mutations and patterns associated with drug resistance/susceptibility:
it was used univariable analysis, hierarchical clustering and multidimensional
scaling, with the aim to confirm/reject the expert panel list (IAS/USA) [121]
and to find novel mutations.

Figure 5.1 (from [116]) shows a distance matrix among RT mutations ob-
tained from NRTI treated genotypes using normalised φ-coefficient measure: φ-
coefficient is a measure of correlation for binary data), where φ = 1 means positive
covariation, i.e. the probability of detecting two mutations in the same genotype
is very high. The TAM1, TAM2 and Q151-complex patterns are clearly evi-
denced, as can also be seen in the multidimensional scaling picture showed in
figure 5.2, where novel (not present in IAS/USA official list [121]) mutations are
also included.

Although this type of analysis has improved our understanding of mutational
patterns, there is still need to analyse mutational covariation in more depth.
Indeed, for NRTI, apart from the well established TAM1 and TAM2 patterns,
along with THE Q151M complex, the scenario for the identification of novel
relevant mutations and relative pathways has so far led to less clear results. For
example, the role of M184V is strongly treatment dependent, suggesting that
it may be implicated in other mechanisms beside those already established (the
hyper-susceptibility given to AZT and TDF and the resistance to 3TC and FTC).
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Figure 5.2: Multidimensional scaling plot of novel (shown in black) and classical
mutations (in white; main TAMs indicated by a cross), showing a two-dimensional
embedding which optimally (according to Sammon’s stress function [25] [108])
preserves the distances among the mutations, as derived from the φ correlation
coefficient. Distances between mutations at a single position were treated as
missing values.

The pattern of accumulation of mutation D67N is also unclear as this mutation
is usually found in conjunction with the TAM2 pattern, but also often present in
TAM1 populations [27]. V118I seems to act in the same way, as no significant
difference in prevalence was found when comparing TAM1 and TAM2 profiles,
at least when the analysis was restricted to the whole NRTI-treated population,
without accounting for treatment covariation.

Therefore, not only specific drugs, but also treatment combinations may be
expected to play a crucial role in selecting mutational pathways: for this rea-
son, we decided to carry out a set of stratified analyses. Of note, it would have
been also possible to perform a logistic or linear multivariable analysis control-
ling all factor simultaneously, but with the limitation of analysing only linear
combinations.

Finally, the individuation of patterns for Protease mutations gave less encour-
aging results: the mutations associated to resistance did not seem to cluster in
well characterised groups as for the RT.

5.2.1 The Impact of Naive Polymorphisms against the Resistance

Development

A more interesting issue is the analysis of the associations between the detection
of specific mutations or polymorphism at the time of treatment initiation and the
probability of virological success (or risk of failure) on that therapy. Similarly,
this type of analyses (for example a survival analysis) can be used to test whether
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some polymorphisms detected in a population starting ART from drug-naive is
associated with a reduced risk of detecting resistance mutations at virological
failure. We carried out this study for the specific case of mutation R83K, a
polymorphism in the RT region that was shown to be more prevalent in ART-
naive patients as compared to ART-exposed patients in a previous analysis [116].
The analysis was conducted using longitudinal data from patients enrolled in the
Spallanzani, Catholic University of Sacro Cuore clinical data bases and from the
ICONA Italian cohort for naive to antiretrovirals. We showed that mutation
R83K was negatively associated with TAMs and was associated with a lower risk
of detection of TAMs at virological failure of first line therapies. Results of this
analysis were presented in [43].

5.3 Results

An univariable analysis was performed to test whether there was an associa-
tion between the detection of specific mutations and the probability of being
treated/drug-naive (grouping together viral sequences treated within the same
drug class) and of experiencing success/failure on treatment. In this latter anal-
ysis, success was defined as the achievement of an undetectable viral load (< 500
cp/ml according to the less sensitive assay) measured after 8 weeks of treat-
ment. These two analyses had the objective of identifying which mutations were
selected by which drug and which mutations where likely to influence the viro-
logical outcomes, respectively. This univariable analysis has a limitation: indeed
the probability of virological success is higher in patients starting from drug-naive
than in those who had previous exposure to treatment and, therefore, the associ-
ation between mutations that are highly prevalent in the ART-naive population,
along with the chance of virological success could simply be due to confounding.
For the χ2 analysis, all results were adjusted either by 10-fold cross-validation
or Benjamini-Hochberg method. Only mutations detected with prevalence ≥ 3%
were used in this analysis.

The more specific analysis on the potential protective role of polymorphisms
detected in drug-naive patients against the accumulation of resistance failure,
however, was not completely executed because the information in the available
data bases was not complete for all the variables in all patients. But we stress
again that, when carrying out this type of analysis, it is crucial to adjust for all
possible covariates (such as the different RTI backbone, the number of therapy
lines previously experienced, etc.) that can mask the associations of interest.

For sake of simplicity, we will not report here the results of the analyses of
mutations in the protease gene associated with protease inhibitors: these analyses
have been carried out in the same settings, either with respect to (stratified)
univariable analysis or cluster analysis.
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When analysing data coming from clinical records with the obective of try-
ing to identify novel resistance-associated mutations, the results of the analysis
may be biased by the data collection policy. On the other hand, evaluating the
existence of significant association between mutations and phenotypic resistance
using in-vitro data (i.e. phenotypic tests) is often considered an “easy job”: in
this setting the statistical results are less likely to be biased by other factors and
phenotypic measures are extremely reliable; however it is possible that associa-
tions that are very strong in-vivo are not detected by correlation analyses using
viral load (when used as a proxi of an in-vivo phenotype). Testing for correla-
tions using in-vivo data and laboratory markers as the independent variables (e.g.
CD4 count and viral load), is a difficult task because analyses must be stratified
or controlled for a large number of factors (and this typically leads to loss of
statistical power). In particular, the potential confounding effect of the specific
combination therapy used is not negligible and marked noise effects are expected
because of patients metabolic variability.

5.3.1 Data Collection and Descriptive Statistics

A first general analysis was carried out using viral sequences coming from the
EuResist data base [98]; patients were divided according to whether – at the time
of the test – were still ART-naive or pre-treated with NRTI or PI: a sequence
was classified as belonging to the treated group if the patient experienced at
least one NRTI or one PI for ≥ 12 months, whilst it was grouped in the ART-
naive category if – at the time when the plasma sample was collected – the
corresponding patient had never previously received any drug. All sequences were
included in the analysis, regardless of patients’ subtype. As a result, because the
prevalence of mutations varies according to HIV subtype, the estimate of the
overall prevalence or resistance may be biased but the selection of mutations
under the pressure of a certain drug should be less affected by this potential
bias, as long as the analysis is restricted to equilibrium-type scenarios. In other
words, it may be possible that a priori the development of escaping mutations is
dependant on viral subtype, but after a reasonably long period of time it is likely
that the natural selection process changes the mutational prevalence towards that
of a consensus resistant population. Although we cannot rule out the fact that
the selection of resistant patterns may also vary by subtype, by the definition
itself, a subtype is an evolved strain from an ancestor.

Figure 5.3 shows the subtype distribution in the EuResist database: as ex-
pected, subtype B is the most prevalent (85%), while only complex recombinant
form 02 AG and subtypes C, F1 and A1 are present in a prevalence ≥ 2%.

The sequences were also grouped with respect to whether a viral load < 500
cp/ml was achieved after 8 weeks of treatment (defined as virological success)
and the analysis was stratified by specific treatments. The total number of pol
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Figure 5.3: Subtype prevalence in EuResist.

sequences included in the EuResist DB was 19257. The study population con-
sisted of 6203 sequences in pretreated patients and 2569 in drug-naive patients
for a total of 8772 sequences. Out of 2523 sequences for which a viral load after
8 weeks was available, for 1692 the viral load was < 500 cp/ml. We then calcu-
lated the risk of virological failure stratified by specific drugs contained (without
controlling for the remaining drugs) in the regimen: these risks were 21% (196
failures out of 799) for AZT, 23% (320 failures out of 1413) for 3TC, 39% (295
failures out of 756) for DDI and 30% (249 failures out of 818) for TDF.

The prevalence of the different therapies used in the whole EuResist DB is
depicted in figure 5.4: as expected, there was a large variability in the combination
used, where AZT+3TC, D4T+3TC were frequently used nucleoside backbones.
The presence of suboptimal therapies (i.e. combinations including less than three
drugs) reflects the fact that data were collected in a wide time window, starting
before 1996. The distribution of sequences by calendar year or type of treatment is
not given here (but that of the specific drugs used is shown in the next paragraph)
because not strictly necessary for the purpose of this thesis, although these results
should be reported when trying to publish in a peer reviewed journal.

A stratified analysis was then carried out after further dividing the study
ppulations in specific subsets: sequences were analysed after stratifying by com-
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Figure 5.4: Prevalence of (combined) Anti Retroviral Therapies in EuResist.

bination treatments, i.e. for nucleosides backbones: AZT+3TC (n=494, 385
successes), DDI+D4T (n=234, 120 successes) AND 3TC+TDF (n=229, 155 suc-
cesses). Patient could have concomitantly received a PI or a NNRTI, but they
had to be on exactly two nucleosides backbone.

5.3.2 Univariable Analysis

Figure 5.5 shows the frequencies of specific mutations in drug-naive and NRTI treated
patients in Euresist and the results of the χ2 analysis. According to the prevalence
of changes we constructed bunary variables indicating the presence or either a
single amino-acidic substitutions or “any” substitution at a codon position. The
mutations or codon showed in the figure were all those that were found to be sig-
nificantly associated with patients’ drug exposure with p ≤ 0.01. After correcting
for multiple comparison, adj.p ≤ 0.1.

Most of these mutations were those included in the ias-usa list [121] list.
In contrast, the analysis here is based purely on the difference in prevalence
between art-naive and pretreated patients and therefore shows both mutations
with particulary high ad those with particularly low prevalence in pretreated as
compared to drug-naive. the identification of mutations that are less frequent in
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pretreated patients is useful as it has been hypothesised that the accumulation
of these mutations carries a cost for the virus and its detection could potentially
represents an obstacle for further development of resistance. this was shown for
mutation RT R83K, which seems to be associated with a delayed accumulation
of tams [116] in patients receiving zidovudine. Although, these results could not
be repeated in the EuResist data set.

The second analysis that investigates the relationship between detection of
specific mutations and the risk of virological success/failure (stratified by treat-
ments), is summarised in tables 5.2 and 5.1: since the sample size was not large,
we used a cross-validated chi-square test. Again, the majority of mutations identi-
fied to be significantly associated with the virological response were also included
in the IAS list [121], with a few exceptions: mutations 44D and 69D in the RT
region have been recently excluded from the IAS list because they are not thought
to have a major impact in reducing susceptibility to nucleosides inhibitors, but
they were significantly associated with viral load in almost all subsets of this anal-
ysis; similarly both position 43 and mutation 208Y were associated with failure.
In a number of subsets, the R83K as well as other polymorphisms were found
to be associated with an increased probability of success, although only in the
subset of patients receiving DDI. However, in order to establish whether there is
something genuinely going with DDI we should formally test for interactions.

The results of this analysis need to be interpreted with caution as they are
not adjusted for the exact nucleoside backbone or patients’ previous drug his-
tory. Unexpectedly, mutation M184V was found to be associated with virological
failure to AZT-containing regimens, while there is some evidence suggesting that
this substitution produces hyper-susceptibility to this drug. The confounding
here is likely to be the fact that AZT is often used in combination with 3TC, and
it is well known that M184V confers high resistance to 3TC. In addition, a few
mutations selected by NNRTI such as K103N, showed a significant association
with risk of virological failure in this analysis. This is also expected as there was
a relatively high prevalence of regimens containing NVP or EFV.

It’s worth to point out also that for some mutations (like 116Y), although
the frequency is higher in virological failure than success, the prevalence in the
latter group is nearly zero, so the chances to detect these mutations in pre-treated
patients is still very small and probably clinically irrelevant.

Table 5.3 refers to the analysis stratified by NRTI backbones. The number of
significant associations decreases dramatically compared to the previous analysis:
this was possibly expected, at least because we partially avoid the confounding
effect of co-administrated drugs, though still the treatment history could have an
effect. Most of polymorphisms typical of drug-naive patients that were found to
be significantly associated with virological response in the previous analysis were
no longer associated here. This may suggest that the few that remained associ-
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Figure 5.5: Prevalence of mutations in Reverse Transcriptase among NRTI-
treated and naive population. Only significant variables showed (adj.p < 0.1)
among univariable analysis
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TDF (249 fail on 818)

χ2 ± mutation failure success

49.569 3.802 210W 0.281 0.091
45.418 4.034 210any 0.317 0.112
43.482 4.224 215any 0.566 0.309
36.664 2.498 118I 0.241 0.083
36.664 2.498 118any 0.261 0.091
31.976 3.539 215Y 0.347 0.166
28.248 3.120 208any 0.120 0.025
27.173 2.132 41L 0.359 0.186
25.853 2.026 41any 0.378 0.200
22.946 2.971 208Y 0.090 0.018
20.533 2.374 69D 0.117 0.037
20.276 4.026 44any 0.124 0.037
17.230 1.729 43any 0.181 0.077
15.928 1.991 43E 0.114 0.040
14.236 2.385 69any 0.237 0.127
14.208 3.575 44D 0.090 0.028
12.924 2.350 67any 0.378 0.248
12.595 3.008 103any 0.361 0.236
12.368 2.777 103N 0.287 0.184
11.158 4.321 123N 0.080 0.030
9.738 5.185 67N 0.307 0.199
8.335 3.081 74any 0.165 0.090

3TC (320 fail on 1413)

χ2 ± mutation failure success

87.729 3.883 215any 0.533 0.261
62.561 3.980 210W 0.293 0.115
59.788 3.441 118any 0.269 0.100
59.724 2.957 118I 0.237 0.088
56.438 4.042 215Y 0.346 0.160
53.009 4.639 210any 0.321 0.144
49.901 4.833 208Y 0.102 0.017
48.276 3.290 41L 0.370 0.190
46.626 3.223 208any 0.119 0.025
44.516 3.288 41any 0.383 0.204
41.490 4.400 67any 0.333 0.170
34.573 3.167 184V 0.336 0.197
34.454 2.955 184any 0.371 0.213
33.536 4.273 67N 0.275 0.141
28.923 3.172 219any 0.262 0.137
28.098 2.535 44any 0.121 0.041
24.739 3.473 116Y 0.037 0.003
24.146 2.657 77L 0.037 0.004
20.155 2.791 69any 0.176 0.089
20.122 3.273 69D 0.078 0.025
18.228 2.296 44D 0.085 0.033
17.442 2.246 203any 0.105 0.043
17.112 2.858 103any 0.274 0.172
17.015 1.611 215F 0.106 0.046
16.314 2.225 151M 0.040 0.009
16.258 2.126 43any 0.169 0.091
15.357 2.060 190any 0.138 0.069
14.894 3.068 98any 0.169 0.094
14.852 2.339 190A 0.092 0.046
14.574 1.772 70R 0.188 0.115
13.613 2.617 181any 0.152 0.084
13.207 2.174 181C 0.130 0.068
11.782 4.445 219E 0.063 0.024
11.709 4.343 39A 0.121 0.063
11.659 4.380 122E 0.436 0.347
11.657 4.292 103N 0.201 0.133
11.642 1.984 228any 0.131 0.072
10.485 1.671 74any 0.114 0.061
10.199 1.251 70any 0.210 0.138
9.521 3.544 188L 0.036 0.010
9.164 4.940 101any 0.112 0.060
8.166 5.785 62V 0.037 0.012

Table 5.1: Stratified analysis on success/failure EuResist data set, p < 0.01,
adj.p < 0.1. The columns for failure/success display the relative frequency of
mutations in the subsets.
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AZT (196 fail on 799)

χ2 ± mutation failure success

42.762 6.052 184V 0.418 0.233
38.859 4.382 215any 0.337 0.129
30.772 2.742 70R 0.166 0.050
30.545 3.359 184any 0.474 0.254
28.179 4.129 67any 0.204 0.066
26.136 4.593 67N 0.168 0.055
24.498 2.026 70any 0.199 0.070
23.719 3.511 41L 0.207 0.078
22.653 3.222 41any 0.224 0.090
21.180 3.118 215Y 0.158 0.068
20.890 2.633 219any 0.168 0.058
20.686 2.999 210W 0.134 0.045
17.536 2.625 118any 0.168 0.065
17.420 2.919 219Q 0.098 0.027
16.856 2.662 210any 0.163 0.063
16.095 2.395 118I 0.145 0.059
12.398 6.853 215F 0.068 0.015
11.400 2.895 69any 0.143 0.063
9.197 4.792 69D 0.047 0.010
8.696 3.176 245any 0.240 0.363
8.338 1.416 77L 0.015 0.001
8.338 1.416 116Y 0.015 0.000
7.026 4.716 44any 0.061 0.018
6.894 1.317 334any 0.046 0.113

DDI (295 fail on 756)

χ2 ± mutation failure success

30.415 2.745 215any 0.637 0.421
18.968 2.380 118I 0.190 0.086
18.968 2.380 118any 0.224 0.102
18.323 1.766 41L 0.456 0.302
14.933 2.324 210W 0.286 0.171
14.902 2.470 215Y 0.384 0.276
14.407 1.387 41any 0.468 0.323
14.161 2.315 43any 0.214 0.108
13.927 2.309 69D 0.090 0.030
13.480 2.343 210any 0.329 0.204
11.177 4.234 43E 0.099 0.037
10.979 4.185 37F 0.108 0.205
10.699 1.672 67any 0.400 0.280
10.654 4.120 37any 0.112 0.210
9.886 2.417 208any 0.092 0.035
9.881 1.484 122E 0.446 0.342
7.901 4.083 83K 0.141 0.225
7.497 4.076 69any 0.183 0.104

Table 5.2: Stratified analysis on success/failure EuResist data set, p < 0.01,
adj.p < 0.1. The columns for failure/success display the relative frequency of
mutations in the subsets.

ated (i.e. mutations R83K and codon 245) really affect the chance of achieving
virological success. Of note, mutation M184V is associated with lower chance
of virological success in patients receiving the AZT+3TC combination, although
phenotypic data show that this mutation confers hyper-susceptibility to AZT.
However, it is conceivable that this effect is overcompensated by the reduced
susceptibility to 3TC.

No additional comments to the role of specific mutations will be given here,
leaving to the physicians/biologists the hard job of validating these findings by
comparing them with the current state of knowledge acquired from clinical and
laboratory practice. However, because our study population have a large sample
size and the analyses have been appropriately adjusted (even if still the hystorical
bias was not eliminated), we are confident that this preliminary investigation
can be used at least as a starting point for a more detailed future analysis.
These results are indeed important for the issue of deriving predictive models
for treatment optimisation as they give some indication about which mutation
are the most likely determinants of virological response, reducing the large space
state of mutations in the pol gene.
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mutation χ2 failure success

AZT+3TC (n=494, successes=385)

184V 26.928 ± 3.252 0.275229358 0.093073592
184any 25.027 ± 3.476 0.302752294 0.101298701
70R 23.443 ± 3.54 0.142201835 0.030519481

215any 20.816 ± 3.908 0.302752294 0.114285714
70any 19.308 ± 3.452 0.174311927 0.044155844
67any 10.45 ± 3.799 0.146788991 0.049350649
77L 9.595 ± 1.629 0.027522936 0
116Y 9.595 ± 1.629 0.027522936 0

118any 9.089 ± 4.854 0.183486239 0.075324675
334any 8.083 ± 1.416 0.018348624 0.111688312
215Y 10.362 ± 5.935 0.155963303 0.062337662

245any 6.911 ± 2.643 0.229357798 0.376623377
62V 6.987 ± 4.581 0.032110092 0.002597403

211any 7.863 ± 2.99 0.495412844 0.654545455

D4T+DDI (n=234, successes=120)

215Y 10.432 ± 4.026 0.456140351 0.279166667
69D 5.656 ± 3.779 0.085526316 0.016666667
83K 7.834 ± 4.171 0.144736842 0.3
118I 11.617 ± 1.661 0.184210526 0.05

118any 11.617 ± 1.661 0.219298246 0.058333333
122E 7.024 ± 4.681 0.451754386 0.2875

215any 10.976 ± 2.313 0.675438596 0.45

3TC+TDF (n=229, successes=155)

210W 13.353 ± 1.446 0.351351351 0.138709677
215Y 10.804 ± 2.227 0.415540541 0.193548387

103any 8.933 ± 1.969 0.418918919 0.219354839
118I 16.578 ± 1.858 0.304054054 0.096774194

118any 16.578 ± 1.858 0.324324324 0.096774194
122E 7.461 ± 1.198 0.506756757 0.296774194

122any 6.915 ± 1.253 0.567567568 0.374193548
208Y 9.468 ± 1.885 0.114864865 0.019354839

208any 7.909 ± 1.884 0.135135135 0.032258065
210any 12.883 ± 1.595 0.378378378 0.15483871
215any 7.422 ± 1.48 0.554054054 0.35483871

Table 5.3: Univariable analysis on exclusive NRTI backbones from EuResist DB,
p < 0.01, adj.p < 0.1. The columns for failure/success display the relative fre-
quency of mutations in the subsets.
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5.3.3 Clustering

A first step to identify mutational patterns in the viral population is to perform
an unsupervised analysis using the data of the entire population, without any pre-
selection or grouping. This analysis shows how the mutations cluster together,
regardless of previous drug experience. It is a starting point that it is usually
useful to increase our understanding of the mutational patterns that can arise
in treated populations: in fact, several wild-type clusters corresponding to poly-
morphism aggregations are typically found, along with the clusters formed by the
“evolved” resistant sub-population, which can be due to transmitted resistence
or pre-existing minority variants.

Figure 5.6 shows the results of Hierarchical Clustering using all the genotypic
sequences stored in the EuResist data base (n=19257). The distance measure
chosen was the Jaccard coefficient (defined in section 10.3.6 with equation 10.11),
with average aggregation method: results were assessed by bootstrap re-sampling
(100 replicates). Red boxes enclose branches with p ≤ 0.05. The usage of Jaccard
coefficient is a preferable choice rather than the Hamming distance (Euclidean is
not suitable for binary data) since it enhances the common changes.

By focusing initially just on the wild type groups, two main clusters can be
identified at the top of dendrogram roughly including the mutation clusters {272P,
293V, 277R, 286A, 281R, 297K} and {291D, 292I, 245Q}. In addition to well
characterised clusters that are found in treated populations (also see the tables
of the previous section) these mutations, that are detected prevalently in the
wild type populations and are considered polymorphisms, showed a significant
tendency to cluster. The χ2 test provided evidence for a higher prevalence of
them in drug-naive as opposed to treated populations. Some of these mutations
are also less likely to be detected if other resistant mutations are present. the
question of whether they actually concur to the risk of long-term development
of resistance remains open. To a certain extent, this is also true for mutaion
RT R83K as discussed in previous sections, Although there is more evidence
that 83K may have an active role at selecting the pattern of HIV evolution as
a results of virological failure. When looking at the clusters observed in the
treated populations (bottom of figure), a number of interesting issues deserve to
be discussed. First of all, TAM1 {41L, 210W, 215Y} and TAM2 {67N, 70R, 219Q,
215F} patterns were again clearly characterised using this method. Mutations
118I and 135T seem to correlate with TAM1, while {69N, 214L, 218E} are closer
to the TAM2 cluster. The significant association between polymorphism 214L and
TAM2 mutations has been reported in other studies [20]. Mutations 184V that
is usually equally frequent with or without TAM, appeared to cluster with 123E
and 211K. Other interesting mutational profiles contained pairs of mutations:
{208Y, 44D}, {69D, 228H}, {101E, 190H} and {83K, 35I}.

An interesting feature of Partitional Clustering (PC) is that this method is
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Figure 5.6: Hierachical clustering of Reverse Transcriptase sequences (n=19257)
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able to identify overlapping patterns of mutations. Figure 5.7 depicts PC per-
formed on the same population that was used for the HC analysis: a PAM using
binary Jaccard similarity was executed, with optimal cluster number selection
through silhouette comparison [66]. As shown in the figure, this method not only
was able to identify a number of different clusters (similar to those obtained by
HC), but also helped to explain the possible roles of mutations such as D67N,
that, as already mentioned, are frequently detected both together with TAM1
and TAM2 mutations, thanks to the fact that a mutation can appear in more
than one cluster. It is also possible to colour the clusters by decreasing density
(in this example going from red to blue) and to draw them according to their
relative distances. The two-dimensional representation is achieved by plotting
the first two components obtained from a Singular Value Decomposition (SVD,
similar to PCA) of the original matrix. However, using this graphical solution,
only the 11% of the variance is explained.

Nevertheless, the PAM execution seemed less efficient than other methods at
identifying well characterised mutational patterns: a lot of clusters were found
(more than 30), most of them with just one mutation.

Using GMM-EM clustering (model based, with optimal number of cluster
assignment done by cross validation), we obtained a lower number of clusters,
also assigning prior probabilities to each one. A list of the identified clusters with
the corresponding prior probability is shown below, including for each cluster the
mutations that had a mean prevalence probability ≥ 0.5.

{123E} 0.3208

{41L,184V,210W,211K,215Y} 0.1502

{wild-type} 0.1287

{211K,272P,293V} 0.0953

{67N,70R,123E,184V,219Q} 0.0868

{123E,272P,281R,297K} 0.0582

{35T,122E,174K,177E,200A,211K,245Q,286A,291D,292I,293V} 0.0538

{122E,174K,177E,200A,211K} 0.0535

{41L,67N,118I,122E,184V,210W,211K,215Y} 0.0527

Again, the identified groups are fairly coherent with those indicated by the
HC and PAM analyses: TAM1 and TAM2 were retrieved, although in a mixed
cluster including also 184V, as well as the wild-type configurations (including
some of the previously clustered together naive polymorphisms). The advantage
GMM-EM over the HC analysis is that mutations can belong at the same time to
different clusters. Thus, mutations that do not follow any preferential pathway
or distribute independently (such as 184V, 211K or D123E) are also evaluated
and interestingly can be allocated to clusters despite the fact that they may not
have any role in a certain evolutionary pattern.
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Figure 5.7: Partitional (PAM) clustering of Reverse Transcriptase sequences
(n=19257)
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As an additional description, I show the results of the MDS method which was
executed on the variable distance matrix, reducing the space to two dimensions
(figure 5.8), and the PCA solution for the first two components (figure 5.9). As
shown in the figure, PCA was only able to discriminate between treated and
naive sequences, bacause this takes into account the majority of variance in the
mutational distribution.

After restricting the analysis to the set of sequences that were associated with
treatment failure, the PCA was able to give a better discrimination (figure 5.10),
retrieving TAM1 and TAM2 in the first two components. In contrast, GMM-EM
clustering produced a set of clusters in which mutation 41L had a predominant
role, Unexpectedly, even in presence of TAM2.

{RT_41_L,RT_210_W,RT_215_F,RT_98_any} 0.2289

{wild-type} 0.1529

{RT_41_L,RT_184_V,RT_215_Y,RT_37_F,RT_123_E} 0.1332

{RT_123_E} 0.1078

{RT_41_L,RT_67_N,RT_70_R,RT_215_F,RT_219_Q} 0.1001

{RT_67_N,RT_70_R,RT_219_Q,RT_123_E} 0.0672

{RT_41_L,RT_210_W,RT_215_Y} 0.0484

{RT_41_L,RT_67_N,RT_184_V,RT_210_W,RT_215_Y,RT_203_any} 0.0476

{RT_41_L,RT_67_N,RT_210_W,RT_215_Y,RT_118_I} 0.0454

{RT_41_L,RT_190_A,RT_210_W,RT_215_Y,RT_123_E} 0.0274

{RT_41_L,RT_184_V,RT_215_Y,RT_135_T} 0.0214

{RT_184_V,RT_123_E,RT_135_T} 0.0197

5.3.4 Discussion

Given the large number of tests that have been executed, it is difficult to draw
specific conclusions on the basis of the results presented in the previous sections,
but the investigation was intended to give hints for focusing on more detailed
analyses, with the aim of selecting data groups also with more constraints, such
as the stratification (or multivariable adjustment) for treatment or treatment
history. Moreover, the different clustering techniques revealed that HC – though
limited to pairwise agglomerative covariation – depicted very clearly the muta-
tional pattern spaces (confirming the well known TAM patterns and giving new
reasonable clusters), whilst PC – that should be more flexible – led to more
confusing groups.

Regarding clustering of mutations in the protease gene, we show the results
of HC and PCA applied to a very large number of sequences, proving that in this
region the patterns are less likely to appear (figures 5.12 and 5.11).

Perhaps PI mutations should be examined specifically one by one in a number
of stratified scenario but this should be the purpose of ad-hoc studies.
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Figure 5.8: Multi Dimensional Scaling of Reverse Transcriptase sequences
(n=19257)
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Figure 5.9: Principal Component Analysis of Reverse Transcriptase sequences
(n=19257)
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Figure 5.10: Principal Component Analysis of treated sequences leading to viro-
logic failures (n=531).

Because of the incresing variability in type of mutational events, pathway
courses and in the effect of drug combinations on HIV evolution, a precise pro-
tocol for analysis should be followed. Thus, in conclusion, studies considering
genotypes and data on therapies that have been used in the clinics for a long
time are generally able to provide more robust results and can also provide useful
information for the development of new drugs.

Finally, a number of fundamental steps of the process of data collection and
analysis in the context of epidemiological studies of HIV resistance are sum-
marised below:

• collect sequences performed in drug-naive patients

• collect sequences at time of virological failure of treatment (best if the
plasma sample was collected at the end of a 6 months period of uninter-
rupted drug pressure)

• control inthe analysis for treatment backbones or other covariates such as
year of test or number of previously used/failed therapy lines

• collect phenotypic data
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Figure 5.11: Principal Component Analysis of protease mutations (n=27211).

• collect clinical markers before and after therapy initiation and multiple
follow up sequences

• perform univariable χ2 analysis to compare the prevalence of mutations in
naive/treated groups after adjusting for multiple testing

• perform univariable χ2 (stratified) analysis adjusted for multiple testing and
multivariable (e.g. linear or logistic regression models including covariates
such as RTI/PI backbones, et cetera, looking not only at p-values, but also
at goodness of fit) with outcome the percentage of patients with a viral load
¡50 or ¡500 cp/ml in certain time window after starting therapy

• perform adjusted univariable analysis (using the Wilcoxon rank sum test)
to compare the median phenotypic log fold change according to the detected
mutations, testing also other multivariable models (linear, non-linear like
random forests) that give feature evaluation.

• select mutations showing significant association with the outcomes of inter-
est (e.g. drug history, virological response)
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Figure 5.12: Hierarchical Clustering of protease mutations (n=27211).

• perform correlation and covariation analysis among relatively prevalent mu-
tations in order to find positive and negative associations between them
(cross tabulations or clustering, eventually tested against random scores)

• perform time to event type analyses (aka survival analysis: univariable
Kaplan Maier curves and multivariable Cox regression) to test whether a
certain mutation is associated to the rate of development of other mutations
and/or virological response to treatment





Chapter 6

Markov Chain Models

In this chapter we make the hypothesis that the evolution of HIV genome under a
fixed and continuous drug pressure is a stationary ergodic process: in other words,
we suppose that the information present in a viral genotype (i.e. the mutations)
– during a period in which therapy is unchanged – determines the probabilities
for the evolutionary pathways, regardless the evolutionary steps that drove to
that particular genotype.

6.1 Methods and Data

6.1.1 Theory

In probability theory, A stationary ergodic process is a stochastic process which
exhibits both stationarity and ergodicity. In essence, this implies that the random
process will not change its statistical properties over time.

Stationarity is the property of a random process THAT guarantees that its
statistical properties, such as the mean value, its moments and variance, will not
change over time. In other words, a stationary process is one whose probability
distribution is the same at all times.

An ergodic process is one which conforms to the ergodic theorem. The the-
orem allows the time average of a conforming process to equal the ensemble
average. In practicaL terms, this means that statistical sampling can be per-
formed in one instant across a group of identical processes or sampled over time
on a single process with no change in the measured result.

In physics and thermodynamics, the ergodic hypothesis says that, over long
periods of time, the time spent in some region of the phase space of micro-states
with the same energy is proportional to the volume of this region, i.e. that all
accessible micro-states are equally probable over a long period of time. The
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ergodic hypothesis is often assumed in statistical analysis. The analyst often
assumes that the average of a process parameter over time and the average over
the statistical ensemble are the same. Irrespective of whether this is true or not
(but in some scenarios it can be proven mathematically), the analyst assumes that
observing a process for a long time is equivalent to sampling many independent
realisations of the same process. The assumption seems inevitable when only one
stochastic process can be observed, like, for example, the variations of a price on
the market. It can be easily demonstrated that this hypothesis is often erroneous.

In summary, we can say that a process is stationary if its averages are indepen-
dent of the starting sampling time. A process is ergodic if the temporal averages
(calculated on any process realisation) are exactly the same of the ensemble av-
erages calculated at any instant. A stationary process is not necessarily ergodic;
in fact, the stationary property implies that the averages are independent of the
date of origin, but does not require that these averages are always the same in
any process realisation. Vice-versa, an ergodic process is always stationary.

A Markovian process is a stochastic process with limited memory (one back-
ward step for first-order). A Markov Chain is defined as a Markovian process,
with discrete time t parameter and xt random variable, that can assume finite
values (each value is a state and the process is said finite-state). To study the
evolution of this dynamical system, we calculate the probability that in a cer-
tain time t the random variable xt will be in a state p(xt) = i, i = 1..s, where
S = {1..s} is the state set.

The two main properties of Markov Chains are, given conditional probability
p(a, b) = p(b|a)p(a):

• Markov property: p(xk = ik|xk−1 = ik−1, . . . , x0 = i0) = p(xk = ik|xk−1 =
ik−1), i.e. the probability of being in a certain state at time k depends only
on what happened immediately before.

• Stationary property p(xk = j|xk−1 = i) = p(x1 = j|x0 = i), i.e. the
probability to go from state i to j is the same irrespective of time history.

A stochastic P matrix, whose elements are pij = p(x1 = j|x0 = i), is the
transition matrix P . The transition matrix, together with the initial probabilities
vector p0 = (p1, . . . , ps) is sufficient to describe the entire system. Moreover, the
probabilities after k steps are: p0P

k.
The transition matrix P is then defined regular if all the elements of any n-th

power Pn are positive. If P is regular (neither reducible or periodic) then the
following holds:

• limn→∞ Pn = P ∗

• the system is ergodic
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• If all the rows of P ∗ are identical, then the system is completely ergodic
and the state of the system ad infinite does not depend on the initial one

Figure 6.1 explains with a simple example a Markov chain graph: suppose
that the stock market is defined by two states {positive, negative} and that the
trend is assumed to be dependent only on the previous configuration.

Figure 6.1: Markov Chain: a simple example for stock market trend evolution.

6.2 State of the Art

One attempt to model the HIV-1 evolution has been presented in [122], in which
a Markov chain of viral evolution was constructed using data from viral clones
coming from Protease Inhibitor-naive patients. The procedure used to estimate
the transition probabilities is extremely interesting and it is worth having a look at
the assessment of the confidence values for the probability values in the matrices
(and because data were partially longitudinal). The number of states was created
by clustering mutations with the k-means algorithm (see previous chapter for a
descritpion of this method). A not so large number of states in the process
permits a better estimation of the transition probabilities, but, potentially, only
evolutionary end-points are taken into account. Clusters in fact are intrinsically
partitioning the data, so the estimated transition matrix is likely to be diagonal
(i.e. states are conservative).

In this chapter a more detailed analysis is performed (see [2]): the idea is to
focus on a pre-specified therapy combination, in order to remove the confounding
effect associated with the use of multiple drugs: moreover, states will be selected
on the basis of the most frequent mutations patterns (e.g. using a rougher way
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than the partitioning analysis described above) and grouping the remaining states
altogether into a “dummy-bridge” state. Of note, only resistant-associated mu-
tations will be considered. Transitions will be estimated by relative frequencies
– because longitudinal data is available – and errors assessed through confidence
measures on counts.

The proposed solution aims at reducing the huge number of states defined by
the full genotype space, which would be theoretically 2m, where m is the num-
ber of codon considered, without losing the intermediate configurations that a
clustering could ignore (an improvement from the previous analysis in [122]); in
addition, the dummy-bridge state tends to account for low-frequency combina-
tions: another solution will be introduced in chapter 7, where the Markov states
will be reduced to a subset of state transitions in which mutations can only be
accumulated, while in the model described here mutations can also be lost.

6.2.1 Domain Coding and Descriptive Statistics

Consider a set of states defined by binary codes representing mutational configu-
rations of genotypes. Then, it is possible to estimate the transition probabilities
matrix from a data set including consecutive genotypes pairs while a patient was
kept on a fixed cART regimen in discrete, roughly constant time steps. Of note,
there are more accurate procedures to estimate probabilities from non-constant
time steps (see again [122]) but they will not be used here. Figure 6.2 shows the
coding for the mutation vectors.

392 consecutive genotype pairs were extracted from the ARCA [102] data
base form patients who were kept on a AZT+3TC containing treatment (this
regimen could contain NNRTI or PI, but not any other NRTI). 18 codons out of
the IAS/USA [121] NRTI resistance list were considered (2004 update): {41, 44,
62, 65, 67, 69, 70, 74, 75, 77, 115, 116, 118, 151, 184, 210, 215, 219}. If there
was a change from consensus at specific codon, no effort was made to distinguish
between speific amino acidic substitutions.

The mean time between two genotyping was 173 days (st.dev 146), while the
mean therapy duration was 780 days (st.dev 499) from samples collected between
1993 and 2004. 119 different mutational patterns were identified from the 784
genotypes. Five states were selected according to uncertainty measure on counts
< 20% (high frequency patterns): {184}, {wild type}, {70, 184}, {41, 184, 215},
{70}, other low frequency patterns were unified in {other} state.

The complete Markov chain transition matrix was estimated by relative fre-
quencies, with time step t = 6 months (i.e. rougly 180 days).
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Figure 6.2: State coding for HIV-1 data.

6.3 Results

A graph of the estimated transition probabilities of this Markov chain is shown in
figure 6.3. The estimation procedure identified three conservative states: {184},
{wild type} and {41, 184, 215} (range 53-58%). This finding seems to be consis-
tent with evidence showing that strains of HIV harbouring the mutation M184VI
have increased fidelity [120], i.e. are less likely to drift.

Interestingly, the model also shows that the viral populations that are kept
under the pressure of AZT+3TC containing therapy are likely to remain wild
type, i.e. a combination including this nucleoside pair has high genetic barrier:
this is because (if present) a third drug was an active PI or NNRTI, in fact under
pure dual therapy M184VI would develop more quickly. Of note, the estimated
probabilities of the transition matrix are here prone also to the variability of the
other drugs present in the regimen.

However, the model also suggests that when the mutation K70R is detected,
either with M184V or by itself, the chance of remaining in this state is reduced
from 58% to 37% (i.e. the probability of accumulating further mutations in-
creases). States with K70R were predicted to be antagonist with states contain-
ing M41L and T215Y (no arrow between the 2 states, in agreement with the
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previously reported TAM1 vs. TAM2 patterns, see section 5), while M184VI was
linked with either of these two states with similar probabilities, indicating that
no preferential association exists with TAM1 or TAM2 profiles.

From the {wild type} state there was a probability of 0.43 to accumulate other
mutations, with 14% chance to develop {184} and a smaller chance of suddenly
acquiring {41, 184, 215} at the same time or {70, 184} or {70}. Overall, the
probability for a mutated strain to revert back to {wild type} was in the order of
0.1. This is consistent with the results of epidemiological studies showing that,
under the pressure of continuous treatment, there is very little chance to revert
from mutant to wild type. Actually, the only reasonable way in which we foresee
this is in the poor patient’s adherence or treatment interruption.

From a methodological point of view, the limit of the n-th power of the
transition matrix T converged and the rows were identical, indicating that both
conditions for the process to be complete ergodic were satisfied, i.e. the system
state ad-infinitum does not depend on the initial one.

The n-th power of T is: {0.1754, 0.3294, 0.0356, 0.0470, 0.0312, 0.3813}
referring to the state ordering in table 6.1. From this vector, there is an almost
equal probability to remain wild type or to develop mutations, but no preferential
pathway is found.

Conservative states can be also found through clustering. In order to make
comparisons, we executed Partitional Clustering (Gaussian Mixture Modelling
GMM using Expectation Maximisation EM algorithm for the selection of the
optimal number of clusters, see again 5). The clustering was performed using
the same 784 genotype vectors: 5 clusters were selected, as shown in figure 6.4:
(i) {41, 184, 215} (prior probability 0.19); (ii) {67, 70, 184, 215, 219} (prior
probability 0.09); (iii) {77, 116, 151} (prior probability 0.01); (iv) {wild type}
(prior probability 0.58); (v) {70, 184} (prior probability 0.13). The clusters
identified with this method nicely match the Markov states. Moreover, GMM-
EM WAS able to isolate the rare Q151 complex cluster which, in contrast, was
allocated to the dummy-bridge state by Markov modelling because of its low
frequency. We foresee here that still a proper configuration for the states is
needed.

6.4 Conclusions

In order to model a first-order Markov chain following the procedure described
above, a large number of states are required and this may lead to possible wrong
estimates for the transition probabilities, especially if the number of genotype
pairs is relatively small (119 different states having 392 transition pairs). But we
state that the clustering approach could not be appropriate since is more prone
to find already evolved patterns. Here, the transition matrix has been estimated
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Figure 6.3: Markov Chain Graph for HIV-1 Evolution under AZT+3TC contin-
uous drug pressure.
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T {184} {wild type} {70, 184} {41, 184, 215} {70} {other}
{184} 0.5854 0.2439 0.0244 0 0 0.1463

{wild type} 0.1419 0.5743 0.027 0.0203 0.027 0.2095
{70, 184} 0.0625 0.125 0.375 0 0.0625 0.375

{41, 184, 215} 0.0667 0.1333 0 0.5333 0 0.2667
{70} 0.0909 0.0909 0.0455 0 0.3182 0.4545
{other} 0.0467 0.22 0.02 0.04 0.0267 0.6467

Table 6.1: Transition Matrix.

Figure 6.4: GMM-EM clustering for mutational pattern identification under
AZT+3TC continuous regimen.
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considering constant time steps: a more accurate algorithm needs to be applied
to take into account variable time steps.

Dimension reduction must be investigated: a way to do this could be the
modelling through Petri Nets (PN).

If opportunely modelled, Petri Nets would allow the estimation of the prob-
ability of following different mutational pathways over a long-term period with
treatment, thus potentially being able to provide useful information to the physi-
cians, regarding – for instance – the durability of a certain treatment or the risk
of developing cross-resistance.

6.4.1 Future Perspectives: Petri Nets

Petri Nets were introduced by A.Petri in 1962 [96]. This type of models are able
to give a compact representation of systems with large state space. In fact, PN
do not require to represent explicitly all the possible state values of a system, but
only the rules that determine its evolution.

A Petri Net is one of several mathematical representations of discrete dis-
tributed systems. As a modelling language, it graphically depicts the structure
of a distributed system as a directed bipartite graph with annotations. As such,
a Petri Net has place nodes, transition nodes, and directed arcs connecting places
with transitions. The difference between a place and a transition, in summary, is
that a place represents an event variable (like a mutation in HIV) and a transi-
tion represents a causal effect propagating from a place configuration to another.
There are then tokens, that propagate from places to transitions: roughly, they
can be interpreted as activating the places through time being propagated by
transitions from a place to another. Arcs run between places and transitions.
The places from which an arc runs to a transition are called the input places
of the transition; the places to which arcs run from a transition are called the
output places of the transition. Places may contain any number of tokens. A
distribution of tokens over the places of a net is called a marking. Transitions
act on input tokens by a process known as firing. A transition is enabled if it
can fire, i.e. there are tokens in every input place. When a transition fires, it
consumes the tokens from its input places, performs some processing task, and
places a specified number of tokens into each of its output places. It does this
atomically, i.e., in one non-interruptible step. Execution of PN is nondetermin-
istic: multiple transitions can be enabled at the same time, any one of which
can fire; none are required to fire – they fire at will, between time 0 and infinity,
or not at all (i.e. it is totally possible that nothing fires at all). Since firing
is nondeterministic, Petri Nets are well suited for modelLing the concurrent be-
haviour of distributed systems. So far, simple PN are able to describe sequencing,
parallelism, synchronicity, concurrency and choice. Moreover, several extensions
have been designed in order to take into account other properties (coloured PN,
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stochastic PN [71] [62]).
In order to model the mutational pathways, however, my feeling is that PN

should be extended with inhibitory arcs and stochastic transitions. Stochastic
Petri Nets SPN [62] are a formalism developed in the field of computer science for
modelling system performance. SPN consist of places and transitions as well as a
number of functions. The basic functions are input, output and weight functions.
The initial state of the system is represented by the initial marking. SPN can
be represented graphically, with places represented as circles and transitions as
rectangles, and input and output functions as directed arcs. An example of an
SPN might be a computer system consisting of two processors which receive jobs
from a common buffer. This system might have 3 places (buffer, processor 1 and
processor 2) and 5 transitions (jobs arriving in buffer, jobs being transferred to
one of the processors (N=2) and jobs being completed by processors (N=2)).

SPN have discrete state spaces, defined by the number of objects in each
place (the marking). Places can be linked to transitions as input places, and
transitions can be linked to output places. Transitions are said to be enabled
when there are enough objects in each of the input places. Enabled transitions
can fire, removing objects from their input places and adding objects to their
output places. Enabled transitions fire according to exponential distributions,
characteristic of Markov processes.

Petri Nets have been widely applied also in biology [22], for the modelling
of gene-regulatory networks or chemical reactions. In a schematic way, we can
describe the configurations for modelling chemical reactions:

• Place ↔ Molecular Species

• Transition ↔ Reaction

• Input Arc ↔ Defines reagent of reaction

• Output Arc ↔ Defines product of reaction

• Weight Function ↔ Rate of reaction

• Marking of SPN ↔ State of reaction system

Having the number of molecules of each species, the initial marking is the initial
state of the system. The interpretation for a transition being enabled is that
enough of all the reagents must be present for the reaction to complete, while the
interpretation of a transition firing is a single molecular reaction.

In a similar way, we could define a PN that models the mutational path-
ways of HIV, where a place correspond to a mutation (plus an initial place that
correspond to the wild-type) and a transition allows for the emergence of new
mutations, with the possibility to lose or maintain in the dominant population
the one accumulated. The graphical representation is shown in figure 6.5: this
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Figure 6.5: Petri Net Modelling of Mutational Pathways.

is a simplified graph, because the transition probabilities are not shown. The
difference between an empty circle and a circle including the token is in the sense
that the presence of a token codes the presence of a mutation in the population.

Within the context of using PN models to model HIV evolution, it would
be easy to define the suitable configurations for mutational events, but there is
still a main problem: the topology of the net that best suits this phenomenon
needs to be discovered. In fact, the number of possible transitional events is the
same as the number of states of a complete Markov chain and this issue needs to
be addressed. Rather than a search on the power set, a possible way of dealing
with this problem would be to use heuristic algorithms, maybe starting with
low-order interactions (one-place transitions, two-place, et cetera. . . ), or genetic
algorithms.

The advantage of PN against Markov chain models would be that no selection
of states is needed, whilst the advantage against Mutatgenetic Trees models would
be the possibility to explore more flexible pathways, allowing also for mutation
loss.





Chapter 7

Mutagenetic Trees

In this chapter we’ll introduce Mutagenetic Trees and mixtures of Mutagenetic
Trees. These models represent a restricted Markov chain model (and also a
special case of a Bayesian network) in which only subsets of the space state can
be reached: the assumption is that there can be only an accumulation of single
events, i.e. – if the acquisition of a mutation is an event – mutations in the viral
genome cannot be lost. This constraint permits the shrinkage of a considerable
number of states (a problem that we partially solved in the previous chapter with
the usage of a “dummy” bridge state), but has the drawback to ignore all the
configurations in which mutations revert to the wild type amino acid.

In the next section a set of theoretical bases will be given, along with the
validation of different trees configurations on large clinical data sets. Results
will show that – however – the fashionable Mutagenetic Trees Mixture models
are not able to describe data (in terms of likelihood) than simpler models that
take into account either only independent behaviour of mutations or mutation
accumulation which is not position-specific (i.e. only the number of acquired
mutations is important).

7.1 Theoretical Bases

7.1.1 Data Representation

Let {1, . . . , l} be a set of genetic events. A mutagenetic tree on l events is a tuple
Υ = (V, E, r, p):

• V = {0, 1, . . . , l} is the vertices set with null event X0 always observed
and binary random variables X1, . . . , Xl indicating random occurrence of
mutational events

83
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• E is the set of edges, with p : E → [0, 1] such that

– (V,E, r) is a connected branching rooted at 0

– for all edges e = (u, v) ∈ E: p(e) = Pr(Xv = 1|Xu = 1)

– we set Pr(Xv = 1|Xu = 0) = 0 ∀(u, v) ∈ E (i.e. an event can occur
only if its predecessor in the tree has occurred)

• each vertex has at most one entering edge in a branching, so pv = p(u, v)
for e = (u, v) ∈ E

The mutagenetic tree model Υ is a Bayesian tree model with transition matrices

(P (Xv = b|Xu = a))a,b=0,1 =

(
1 0

1− pv pv

)

on each edge (u, v).

7.1.2 Likelihood Computation

A mutagenetic tree Υ induces a probability distribution on the set of all muta-
tional patterns. the probability that Υ generates a sample x is:

• Let S ⊆ V the set of events specified in x

• If there exists a subset E′ ⊆ E such that S is the set of all vertices reachable
from r in the induced subtree Υ = (V [E′], E′) then x can be generated by
Υ and

P (x|Υ) =
∏

e∈E′
p(e) ·

∏

e∈(S×V \S)

(1− p(e))

• If there is no such edge subset, the topology of Υ does not allow for gener-
ating x and hence P (x|Υ = 0)

The likelihood computation can be done efficiently by traversing the mutagenetic
tree in a breadth-first search starting from the root.
We call Υ a star if all edges e ∈ E leave the root vertex r. the star topology
models events as being independent of each other. In terms of the likelihood a
star is characterized as:

Lemma 1. A mutagenetic tree is a star if and only if all 2l possible patterns of
events have positive likelihood.
Proof: If Υ is a star,

L(x|Υ) =
∏

j|xj=1

Pr(j) ·
∏

j|xj=0

(1− Pr(j)) > 0

since Pr(j)=Pr(j|r) ∈ (0, 1) by definition. If Υ is not a star, there’s at least one
edge (j1, j2) with j1 6= r and any pattern with xj1 = 0 and xj2 = 1 has likelihood
zero.
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Figure 7.1: Different trees and corresponding reachable Markov states

7.1.3 Tree Reconstruction

The structure and the parameters of a mutagenetic tree can be estimated effi-
ciently from all pairwise probabilities of genetic events applying Desper’s algo-
rithm [3]. The structure is reconstructed as the solution to the maximum weight
branch problem [65] in the complete graph on l + 1 vertices with weights w that
depend only on the pair probabilities as

w(u, v) = logPr(u, v)− log(Pr(u) + Pr(v))− log(Pr(v))

easily estimated from counts in the data. Since trees can only represent a limited
set of acyclic dependency structures, this model class is too restricted for many
applications.

7.1.4 Explanation

So, a mutagenetic tree is a tree and from its root (that represents the event that
always happens) depart (many) arrows. Each arrow is an event that can happen
with a certain probability p and going through vertices means that you acquire
that event and don’t lose it. Multiple arrows branching from the same node
explain different pathways, but are not mutually exclusive as one could think at
first sight. That’s why the sum of probabilities in each level of the tree can be
more than one. Each p of an edge (u, v) in fact describes the probability to acquire
event v after you gained event (u). If you want to calculate the probability of a
certain pattern x you simply multiply the probabilities of the path that drives
you to your pattern (if you can get it, otherwise is zero), multiplying again by
1 minus the first step of the other paths and the path that is following. Look
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at figure 7.1 to see how the compact tree draws represent the reachable Markov
states.

7.1.5 Mixture Models

Definition

Suppose that Y1, . . . , Yk are multivariate discrete random variables with range Ω
that are distributed according to mutagenetic trees

Υ = (V, Ek, r, pk), k = 1 . . . K

respectively. Let ∆1, . . . , ∆k ∈ {0, 1} be binary random variables with Pr(∆k =
1)=αk. We call the model

Ψ =
K∑

k=1

αkΥk

with αk ∈ [0, 1] and
K∑

k=1

αk = 1

that generates the random variable Y =
∑K

k=1 ∆kYk, a K-mutagenetic tree mix-
ture model.
Thus, the likelihood of a pattern of events x in the mixture model is

L(x|Ψ) =
K∑

k=1

αkL(x|Υk)

Throughout we’ll consider mixture models that have a special structure in the
first mutagenetic tree Υ1. We assume that, in addition to different pathways
of accumulation of events, there’s a certain probability β of any event occurring
spontaneously independent of all other events. Thus, Υ1 is a star with p(e) = β

for all e ∈ E1 (but it can be possible also to define different βs for each event).
Υ1 is called the noise component of the model. Including a star in the mixture
model ensures that all patterns of events have positive likelihood.
In figure 7.2 we show a 3-mutagenetic tree mixture model estimated from HIV-
1 genotypic data coming from patients treated with zidovudine (AZT). From
the wild type (null event) each node represents the accumulation of a resistant
mutation.

7.1.6 EM-like Learning Algorithm

Given the number of trees K, we want to reconstruct a K-mutagenetic trees mix-
ture model from observed patterns X. This task would be easy if we knew for
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Figure 7.2: 3-mutagenetic trees mixture model Ψ = 0.19Υ1 + 0.47Υ2 + 0.34Υ3

for the development of AZT resistance

each pattern of events from which component(s) of the model it has been gen-
erated: we would apply K times the reconstruction technique for a single tree.
However this information is missing and we have to estimate it from the data too.
This procedure results in an algorithm similar to the Expectation Maximisation
(EM) algorithm [28]. Our goal is to find mutagenetic trees Υ1, . . . ,ΥK and mix-
ture parameters α1, . . . , αK that maximise the log likelihood of the data, which
can be written as

N∑

i=1

log
K∑

k=1

αkL(xi|Υk)

if the xis are independent. The responsibility of model component k for sample
xi is defined as

γik = Pr(∆k = 1|Ψ, xi)

Let Nk =
∑

i=1 Nγik be the weighted number of samples generated by Υk. In an
iterative fashion, we estimate γ (E step) and Ψ (M step) from the data. Given
an estimate of Ψ =

∑K
k=1 αkΥk, we can estimate γ by

γik =
αkL(xi|Υk)∑K

m=1 αmL(xi|Υm)

Given an estimate of γ we update Ψ as follows. For the noise component (k = 1)
we choose the star topology and estimate β as the rate of occurrence of any event
in this component,

β =
1

lN1

l∑

j=1

N∑

i=1

γi1xij



88 CHAPTER 7. MUTAGENETIC TREES

For K ≥ 2 we first estimate all joint probabilities between pairs of evemts within
the kth component:

pk(j1, j2) =
1

Nk

N∑

i=1

γikxij1xij2

Next we reconstruct Υk from pk by solving the maximum weight branch problem
described in the previous section. Edges with pk(j1, j2) ≤ 0.01 are previously
deleted from the complete graph in order to avoid weakly connected components
within one mutagenetic tree. Finally the mixture parameters are updated by the
equation

αk =
Nk

N
=

1
N

N∑

i=1

γik

We iterate the E step and the M step until the log likelihood function does not
increase any more. To run the algorithm we need initial values for the respon-
sibilities γik. The starting solution can be picked up at random, but in general
this strategy yield poor results. The two common approaches to overcome this
problem are either to sample many random starting solutions, or to identify a
single promising initial solution. To limit computational costs we decided for the
latter approach and perform an ordinary k-means clustering (with best starting
points chosen from 100 independent random runs) with k = K − 1 on the set
of patterns using squared Euclidean distance as dissimilarity measure [66]. From
the k-means clusters assignments we derive the initial responsibilities

γik =

{
1/2 if sample xi belongs to cluster K − 1

1
2(K−1) else

The procedure is summarized in figure 7.3. It is differing from a true EM algo-
rithm in the fact that the tree reconstruction step does not provide a maximum
likelihood estimate. Thus, unlike with a true EM algorithm, this modified version
is not guaranteed to converge to a local maximum of the log likelihood function.

7.1.7 Model Selection Criteria

The determination of the number of tree components in the mixture model is a
model selection problem. Model selection aims at identifying models that provide
an accurate fit to the data, generalize well, and are no more complex than needed
to explain the data. The problem can be viewed as an optimization problem
involving two basic components [134]:

• a strategy for searching through the family of possible model structures
efficiently

• a measure (criterion) for scoring different model structures
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Figure 7.3: EM-lke algorithm for learning a K-mutagenetic trees mixture model
from data

In the context of mixtures of mutagenetic trees, the model family is indexed by
the number of tree components K such that searching is trivial. Here we address
the second issue, namely the choice of the model selection criterion. A widely
used and simple approach to model selection is cross-validation [66]. The score
implicitly used by cross-validation is the estimated extra-sample performance.
The motivation for this score is that we would like to fit a model which not only
accounts for the training data, but also generalizes well to unseen data. In or-
der to obtain an approximately unbiased estimate, the number of partitions used
in cross-validation needs to be set large enough and this makes the procedure
time-consuming. Another popular criterion for approximating the extra-sample
performance is the Bayesian Information Criterion (BIC) [53]. Let M be a statis-
tical model with parameters θ and effective number of parameters d. The effective
number of parameters is also called the effective number of degrees of freedom,
or the dimension, or the complexity of M . The BIC score is defined as

BIC = logP (D|θML, M)− d

2
logN (7.1)
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where θML denotes the maximum likelihood estimate of the parameters of the
model using the training data set D. N denotes the size of the training data
set. BIC implicitly implements Occam’s Razor [73]: A good model is supposed
to be highly likely, given the training data (the first term in 7.1) while having
low complexity (the second term in 7.1). Thus, this trade-off penalizes both
too complex and too simple models, and is aimed at selecting a model with
intermediate complexity that is just right to account for the data set. BIC is
only asymptotically consistent, i.e. it chooses the true model if it is contained in
the model space as N →∞, which is often suboptimal for finite data in practice.
Another difficulty with applying BIC is that identifying the effective number of
parameters can be deceiving (see [117] for details).

Modified BIC We define the similarity between two tree components Υi and Υj

of the mixture model by

Sij = Sji = 1− ‖Ai −Aj‖∞
l

∈ [0, 1] (7.2)

where Ai and Aj denote the adjacency matrices of Υi and Υj , respectively. The
matrix infinity norm is defined by ‖A‖∞ = maxi

∑
j |aij |, the maximum absolute

row norm. Therefore, the term ‖Ai−Aj‖∞ measures the maximum difference of
outgoing edges between the two trees. We define the redundancy R of a mixture
model as the maximum similarity among its tree components

R = maxi6=j(Sij) (7.3)

For large K and for models containing redundant structural parts, we want to
incorporate the redundancy R into our model selection criterion. For a fixed
data set D and all K ≥ 1, let ΨK be the K-mutagenetic trees mixture model
estimated from D and let dK be its dimension. Consider

BICR = logP (D|θ, ΨK)− (1 + R)× dK

2
logN (7.4)

which doubles the penalty term for two identical tree components. We use the
weighted average between standard BIC and BICR defined by

BICw = w × BIC + (1− w)× BICR (7.5)

with weight w = min( 1
l+1max(dK−dK−1, 0), 1). The idea of this weighting is that

for a large increase in d (due to new model structure) we prefer standard BIC,
while for a small increase in d (due to repetitive model structure) we consider
BICR and hence penalise redundancy more heavily. The min and max terms are
used to bound w between 0 and 1, because in rare cases d or R may actually
decrease with increasing K.



7.2. EVALUATION OF TREE MODELS ON DATA 91

7.1.8 First Discussion

A mutagenetic tree is a way to model a Markov chain in a compact way, and
it’s indeed a Bayesian net with some restrictions. Which is the advantage? First
of all, when you’re dealing with accumulation and dependencies of events – and
maybe a lot of events – you don’t have to model all the Markov states, thus
obtaining a more compact (and robust) model.

The mixtures complicate the understandability, but offer some advantages.
Depending on its topology, a tree can have different expressive power. A single-
edge branching tree describes a unique pathways and does not allow any other
kind of conditional dependencies, while a star tree is capable to describe all pat-
terns, but in the naive-Bayes assumption. So a (linear) combination of trees can
be an acceptable tradeoff between expressive power and compact representation:
but one can augment the described pathways also modifying the internal struc-
ture of the trees; two trees can represent the same pathways of a single tree, but
with different conditional probabilities.

7.2 Evaluation of Tree Models on Data

7.2.1 Previous Work

Mutagenetic tree mixture models have been proved to be a good model for learn-
ing HIV-1 evolutionary pathways under drug pressure. The following results are
coming from [113]. Model selection was assessed through cross-validation and
BIC value, while the goodness of fit was explored not only in terms of likelihood,
but also generating random samples from the tree mixture models and compar-
ing their frequency histogram. Data set was consisting of 364 instances of AZT
genotypes with resistant phenotype.

Goodness of Fit A random sample from a K-mutagenetic trees mixture model
Ψ =

∑K
k=1 αkΥk can be drawn by generating a uniform random number and

decide according to the mixture parameters αs which mutagenetic tree to use.
In the selected tree we draw each edge e ∈ E independently with probability
p(e). the sample consists of all events that are reachable from r in the induced
subgraph. We want to quantify how closely a trained mixture model reproduces
the empirical probability distribution on Ω = 21,...,l. To compare two histograms
H1,H2 ∈ N2l

we use the cosine distance, defined in terms of angle spanned by
the histogram vectors as

dist(H1,H2) = 1− cos∠(H1, H2) = 1− < H1,H2 >

‖ H1 ‖‖ H2 ‖ ∈ [0, 1]

Using cross-validation we calculate for each partition of the data into training
and test set the histogram distance between test data and
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• training data

• simulated data drawn from the optimal mixture model

• simulated data drawn from a single mutagenetic tree model

• simulated data drawn from a single star model with non-uniform edge
weights

The three models are estimated from the training data and the size of the simu-
lated sample equals that of the training data. The first histogram distance mea-
sures only the effect of finite sampling, whereas the other distances include losses
that are due to imperfect model assumptions and/or parameter estimates. We
compare the optimal mixture model with a single mutagenetic tree model and
with a star model representing the null hypothesis of independence of events.
Figure 7.4 shows the distribution of all distances for 100 runs of 10-fold-cross-
validation each. Histograms generated from the estimated mixture model closely
resembled the observed data. In contrast, both the single tree model and the
independence assumption provide inferior model fits.
In the same cross-validation runs we have determined the percentage of samples
that remain unexplained by the non-trivial components of the mixture model.
The mean percentage of samples with likelihood zero in all but the noise com-
ponent was 13%. Thus, the mixture model maps 87% of the observed patterns
onto the identified mutagenetic trees. For the optimal model on the full data
it happens to be the case that the only pattern that can be generated by both
non-trivial trees is the null pattern. The following table reports the distribution
of samples among trees in detail.

L(x|Υ1) L(x|Υ2) L(x|Υ3) fraction description
> 0 > 0 > 0 31.6% null patterns
> 0 > 0 = 0 30.2% 70-219 pathway
> 0 = 0 > 0 25.0% 215-41 pathway
> 0 = 0 = 0 13.2% noise

7.2.2 Mutagenetic Tree Mixture Model Validation on Large Clinical

Data Sets

The investigation will be focused on comparing different models of evolution us-
ing a large training set obtained from the German AREVIR data base [29] and
a large test set coming from the Italian ARCA retrospective cohort [102].
We selected 9 different drugs, according to large test sets available (≥ 395 in-
stances, which was the smallest size, belonging to LPV set): genotypes were
selected simply collecting all the sequence made under each treatment.
Various models were tested:
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Figure 7.4: Box-plot of histogram distances from 100 10-fold cross-validation
runs. From left to right: distances between histograms of test data and training
data (first box), simulated data from the optimal mixture model (second box),
simulated data from the single tree model (third box), simulated data from the
null model (fourth box). Simulated data are drawn from the models that have
been fitted on the training data. The null model refers to the independence
assumption of events and is a single star with non-uniform edge weights

• the mutagenetic tree mixture

• a single mutagenetic tree

• a star model (which assumes independence of events)

• an accumulation model (which does not takes into account the singular
events, but only their accumulation in unspecified order)

Tree Selection and Topology The first thing that we can notice, before assessing
performances, is that the modified BIC criterion for the optimal number of trees
selection does not work well: for instance, for 3TC drug (see figure 7.8) a set
of three identical trees was selected, in despite of the penalty for tree similarity.
Could it be due to the large training set size?
Another surprising thing is that the pathways for AZT are different from the
ones discovered formerly using instances obtained from genotype/phenotype re-
sistant pairs (in-vitro tests, compare figures 7.5 and 7.2, M41L and K70R have
exchanged places). A possible explanation for this can be the fact that the ex-
amples extracted from in-vivo data are under combined treatments and are not
discriminated by a resistance cut-off value (in fact we found some wild type geno-
types using this selection criterion).
The trees obtained for the protease inhibitors (we show here the mixture model
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Figure 7.5: mutagenetic tree mixture model for AZT

Figure 7.6: independence model for AZT

obtained for IDV in figure 7.10) are not showing defined pathways, they resemble
much more a star model.

Likelihoods and Responsibilities We collected results for training set data in table
7.1 and for test data in table 7.2.

The log likelihood (and responsibilities in the mixture model or percentage of
explained pathways in the single tree model) results obtained from the test data
can be used to assess significant differences among models and among drugs.
However, the choice of a suitable statistical test is not so trivial. We have a
vector of log likelihoods (calculated on the samples) for each model and for each
drug: fixing the attention to one drug, clearly the distribution of log likelihoods
is not gaussian, so a non-parametric test must be used. A Wilcoxon-signed-rank
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Figure 7.7: accumulation model for AZT

Figure 7.8: mutagenetic tree mixture model for 3TC
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Figure 7.9: mutagenetic tree mixture model for D4T

Figure 7.10: mutagenetic tree mixture model for IDV

Table 7.1: AREVIR data base (training set). Maximum K was set to 4, modified
BIC was used to select optimal K, a tolerance value of 0.05 was set for the model
fit.

mixture model oneTree indep. accum.
drug n= E K loglike mod.BIC resp. resp. loglike loglike
D4T 2109 8 4 -6301.58 -6400.81 0.15 0.26 -8357.4 -3775.5
AZT 1629 7 4 -4488.60 -4566.43 0.21 0.21 -5831.4 -2727
3TC 2845 4 4 -3517.07 -3556.84 0.05 0.05 -3632.2 -2953.2
DDI 1177 9 4 -4381.76 -4470.14 0.13 0.27 -5168.6 -2101.5
IDV 770 14 4 -4629.60 -4770.60 0.14 0.35 -5144.3 -1628.5
NVP 663 8 2 -1743.74 -1773.73 0.07 0.03 -1716.8 -759.01
SQV 664 10 4 -3143.99 -3247.09 0.13 0.22 -3517.5 -1320.8
LPV 317 17 4 -2164.86 -2327.46 0.26 0.34 -2482.2 -603.81
NFV 1089 10 4 -5035.96 -5153.44 0.13 0.20 -5540.7 -1919.1
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Table 7.2: ARCA data base (test set)

mixture model oneTree independ. accumul.
drug n= loglike resp. resp. loglike loglike
D4T 2122 -10687.00 0.47 0.51 -8424.80 -3674.00
AZT 2434 -7736.80 0.36 0.36 -7760.90 -3746.80
3TC 2690 -3549.60 0.04 0.04 -3723.90 -3065.80
DDI 1255 -5422.80 0.25 0.39 -5455.30 -2245.30
IDV 817 -5311.60 0.58 0.61 -5822.10 -1737.30
NVP 596 -1515.16 0.07 0.03 -1517.80 -731.84
SQV 873 -3589.10 0.33 0.33 -4201.00 -1706.30
LPV 395 -4038.30 0.83 0.83 -4473.30 -1318.10
NFV 662 -3848.90 0.49 0.50 -3497.70 -731.84

test for two groups (or a simpler sign test, that does not requires simmetry or a
Kruskal-Wallis for multiple comparisons) seems appropriate, but relies on median
comparisons. Judging a log likelihood vector ”better” than another one involves
some arbitrary steps: a model can fit better a fraction of the data, while the
other can be better in average.
The sign test was made comparing -for each drug- the log likelihood vectors ob-
tained from the test data: the mixture model was tested against the independent
and the accumulation model. All results were significant (p< 10−3)∗. Figures
7.11, 7.12 and 7.13 show the log likelihood distributions in the test set for the
three different models regarding AZT drug, while figures 7.14 and 7.15 plot the
differences between the mixture model log likelihoods and the star and accumu-
lation model respectively. Finally, figures 7.16 and 7.17 plot mixture model
likelihoods versus star and accumulation models (jittered with some uniform ran-
dom noise). Again, for the remaining drugs we plot mixture vs independent and
mixture vs accumulation likelihoods (figures 7.18 7.19 7.20 7.21 7.22 7.23 7.24
7.25 7.26 7.27)

The accumulation model outperforms both models: this can be useful if we
need to calculate a time-indicator of resistance developing, for which just the
number of accumulated mutations is important, but the evolutionary pathways
are lost.
Now we can think about the comparison of models in the general framework. A
model has to perform good in each drug scenario: so, we can use the log likelihood
sum (maybe normalized, having different sample set sizes) as indicator value and a
drug as a random sample. The normal distribution again does not hold, and again
a Wilcoxon test can be appropriated, because anyway the models should at least
behave coherently among different drugs. In the previous work ([113]) mixture

∗except for AZT (mixture vs accumulation p=0.6827), LPV (mixture vs star p=0.02722)
and NVP (mixture vs star p=0.5131)
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Figure 7.11: AZT: Likelihood distribution for mixture model

model was proven to be better than single tree and independent model through
cross-validation: however, the test was made only for AZT. Surprisingly, with
AREVIR and ARCA data sets we obtained different results. Even though the
sign test gave -almost for all drugs- significant differences between the models, the
Wilcoxon test made on the overall drug scenario was not significant comparing
the mixture model with the star, while it was (though not extreme) with the
accumulation (see table 7.3).

In terms of responsibilities, no significant differences were found between the
percentage of samples explained by the noise component in the mixture model
and the percentage of unexplained patterns in the single tree model, either in
the training set or in the test set (p=0.12 and p=0.7997). The responsibilities
due to the noise component however increase from the training set to the test set
(except for 3TC, NVP, and less in SQV), while the mean log likelihood remains
more stable for all models.

7.2.3 Conclusions

Still two issues have to be investigated: first, the effect of combination of treat-
ments in the tree estimation and in the genetic barrier computation; secondly,
the set of mutations (events) to be included in the trees. For the first problem,
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Figure 7.12: AZT: Likelihood distribution for independence (star) model

one important correlated issue is the selection criterion of genotypic sequences for
each drug. Actually it’s not completely true that every genotype made under a
treatment is a resistant genotype, and this could bias a bit our analyses: among
the several reasons, one can be the un-adherence or the bad adsorption; for in-
stances -the worst case- test set for SQV contained 103 wild type patterns out of
873, while other drugs assessed to very low percentages. A better choice would
be to select only genotypes with resistant phenotype, but again we could end up
with less data and assumption that in-vitro resistance is in-vivo resistance. More-
over, the nuisance effects due to combined treatments can be significant as well:
as we pointed out in the multivariate analysis, different drug combinations can
lead to different evolutionary pathways compared to the monotherapy. So, why
do we estimate single-drug trees? A natural solution should be to train models
using different sets and choose the best validation results (so, single-drugs, drug-
combinations, phenotypic-resistant.. but test set should be comparable with a
common indicator).
The second problem is also crucial: the event set for each drug, in fact, is made by
resistance associated mutations approved by the IAS/USA [121]. We know that
there are these novel mutations that participate to the resistance development,
then they should be included in the event set (as also discrimination between dif-
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Figure 7.13: AZT: Likelihood distribution for accumulation model

ferent amino acidic substitutions, as RT 215 Y and RT 215 F that are in TAM1
and TAM2 respectively). Can a large number of events create problems in the
tree building process? How about a heuristic event selection pre-processing? Fi-
nally, under this large test sets the mixture model seemed not to be significantly
better than the independent model -though almost for all drugs a small fraction
of the data was always better explained- and more surprisingly the responsibil-
ities of the mixture model due to the noise component were comparable to the
fraction of data unexplained by a single tree model. The accumulation model
still should be an option, considering also the fact that the increasing number of
mutations has always been proven significantly correlated with the resistance in
clinical studies.
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Figure 7.14: AZT: differences between mixture model and independence model
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Figure 7.15: AZT: differences between mixture model and accumulation model

Figure 7.16: AZT: scatterplot of mixture model vs independence model likelihood
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Figure 7.17: AZT: scatterplot of mixture model vs accumulation model likelihood
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Figure 7.18: LPV: scatterplot of mixture model vs star model likelihood
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Figure 7.19: D4T: scatterplot of mixture model vs star model likelihood
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Figure 7.20: IDV: scatterplot of mixture model vs star model likelihood
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Figure 7.21: 3TC: scatterplot of mixture model vs star model likelihood

Figure 7.22: NVP: scatterplot of mixture model vs star model likelihood
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Figure 7.23: SQV: scatterplot of mixture model vs star model likelihood

Figure 7.24: DDI: scatterplot of mixture model vs star model likelihood
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Figure 7.25: NFV: scatterplot of mixture model vs star model likelihood

Figure 7.26: SQV: scatterplot of mixture model vs accumulation model likelihood
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Figure 7.27: NVP: scatterplot of mixture model vs accumulation model likelihood

mixture vs star mixture vs accumulation
training set p=0.6048 p=0.001851

test set p=0.9314 p=0.002756

Table 7.3: Wilcoxon test for model comparison
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Chapter 8

Overview and Methods

In this part we’ll explore the application and comparison of several machine
learning techniques applied to different classification and regression problems
regarding HIV-1. In this first chapter we’ll give a quick review of the methods used
in general (that will be specified again case by case in the different sections). The
aim of this introduction is not to give deep theoretical explanation of the methods
(for which proper references will be given), but to show the general methodologies
and frameworks that can be applied in data mining scenarios relative to biology
and medicine fields: a major problem when facing data mining in fact is not only
the model choice and performance assessment, but also – and mainly – the input
domain coding, the feature selection and extraction, the model selection criteria.

The following chapters will describe the applications of such methods for the
development of expert systems on HIV-1 classification/regression problems:

• Prediction of in-vitro phenotypic resistance to drugs from viral genotypic
sequence

• Prediction of viral tropism (coreceptor usage) from viral genotypic sequence
and clinical attributes

• Prediction (classification and regression) of clinical outcomes for in-vivo
antiretroviral therapeutic combinations from clinical, historical and viral
attribute domains

The problems are closely related, either for the domain specifications or for the
input-output scenario. In fact, the main issue is the building of in-silico prediction
models that use clinical and genomic can mimic in-vitro experiments (often much
more expensive to be carried on than a simple viral sequencing) or can help in
taking clinical decisions for in-vivo therapy design.

113
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8.1 Machine Learners

The following methods were extensively investigated. We won’t describe the
theoretical aspects of each technique, since the purpose of this thesis is not to
review, but to apply and compare statistically them, in conjunction with feature
analysis and robust validation, on the biology-medicine data scenario. We assume
that the reader is confident with the methods, giving appropriate references.

• Multiple Linear Regression (MLR)

• Logistic Regression (LR) [106] [35]

• (Bagged) Decision Trees, Random Forests (DT, RF) [23] [77] [74] [76]

• Support Vector Machines (SVM) [67]

• Rule Based Methods (RB) [132]

• Instance Based Reasoning (IBR) [7]

MLR and LR have the advantage to be yet easy to interpret models and the
possibility to assess statistical significance of variables, along with the suitability
to be enhanced with several feature selection techniques. DT are understandable
models and can explore non-linear dynamics, but they suffer of poor predictive
ability, thus have to be enhanced with bagging techniques or within the RF
framework. SVM are among the best models regarding optimisation, moreover
are extremely flexible when using different kernels: they’ve been criticised for
poor interpretability, though some considerations can be done regarding variable
importance analysing support vector weights. RB probably are the models that
are more similar to human reasoning: there are several rule finding policies, but
so far their power can be considered similar to DT.

Maybe surprisingly, we avoided the usage of Neural Networks: a motivation
raises from the fact that the parameter optimisation (in the sense of activation
functions, hidden layer topology, etc) is often cumbersome, the training algo-
rithms have to be tuned properly in terms of epochs, the over training needs to
be faced with care (maybe with weight decay).

Regarding the implementations (for example we’ll use C4.5 for DT and Platt’s
algorithm for SVM [67]), we will always use the procedures given in the references.

8.2 Loss Functions and Validation

8.2.1 Loss Functions

Along with the validation techniques, different loss functions are available for
classification problems in literature [66]. In the different scenarios, we’ll use
losses that can catch different nuances:



8.2. LOSS FUNCTIONS AND VALIDATION 115

1. accuracy ( TP+TN
TP+TN+FP+FN )

2. specificity & sensitivity ( TN
TN+FP , TP

TP+FN )

3. AUC of ROC curve

4. f-measure (2·PPV ·sensitivity
PPV +sensitivity )

where TP, TN, FP, FN stand for True Positives, True Negatives, False Positives,
False Negatives respectively. PPV is the Positive Predicted Value and is equal
to TP

TP+FP . Depending on the problem settings, one function will be preferred to
the others: for example, in the tropism prediction the sensitivity towards the X4
detection will take a major role.

For regression, correlation and RMSE will be used.

8.2.2 Validation

The main issue in validating a model is to derive an error estimation for the
entire input space, i.e. a general performance measure. For this reason the error
calculated for the training samples is not a reliable indicator. There are several
statistical procedures designed for the achievement of a robust prediction error
indicator, which can be divided into two main families:

• In-Sample Prediction Error Estimate

– Akaike Information Criterion AIC [58]

– Bayesian Information Criterion BIC [53]

– Minimum Description Length MDL [66]

• Extra-Sample Prediction Error Estimate [66]

– Test Set Error

– k-fold Cross Validation (CV)

– Bootstrap

In-Sample Prediction Error Estimates

The usage of adjusted measures on the training error (as in-sample prediction
error estimate) is not only useful for optimising a more robust model, but can
be used also as a quick indicator of the model performances for unseen data:
although these indicators are demonstrated to be inferior to the error estimation
coming from k-fold CV, they are computationally inexpensive. The most famous
error measure that can be directly calculated from the training error is the Akaike
Information Criterion.
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Akaike Information Criterion The Akaike Information Criterion (AIC) is a sta-
tistical model fit measure. It quantifies the relative goodness of fit of various
previously derived statistical models, given a sample of data. It uses a rigorous
framework of information analysis based on the concept of entropy. The driving
idea behind the AIC is to examine the complexity of the model together with
goodness of its fit to the sample data, and to produce a measure which balances
between the two. The formula is

AIC = 2k − 2ln(L) (8.1)

where k is the number of parameters, and L is the likelihood function. When
errors are assumed to be normally distributed, AIC is computed as AIC = 2k +
n · ln(RSS/n), where n is the number of observations and RSS is the residual
sum of squares. A model with many parameters will provide a very good fit to
the data, but will have few degrees of freedom and be of limited utility. This
balanced approach discourages overfitting. The preferred model is that with the
lowest AIC value.

The Bayesian Information Criterion is another indicator, introduced by Schwarz
in 1978 [53], which definition was already given in section 7.1.7.

Performance Assessment, Model Comparison and Selection

The state of the art for error evaluation, independently from the loss functions, is
to execute the x-fold cross validation or the bootstrap [66], when a large test set is
unavailable. These procedures however cannot tell about the distribution of the
error estimation and about comparisons of different models. One solution is to
execute multiple independent runs of x-fold cross validation, obtaining a normal
distribution under mild conditions. In this way, two different models can be
evaluated and compared (each against the other or each against a null hypothesis)
using a t-statistic. The usage of a naive Student’s t-test can be however biased
due to the sample overlap: an adjusted Student’s t-test was proposed by Bengio
[133] and holds for multiple cross validation runs:

adj.t =
1
kr

∑
k

∑
r xij√(

1
kr + n2

n1

)
σ

(8.2)

where k, r are the number of folds and runs respectively, n1 is the training set size,
n2 is the test set size, σ = 1

kr

∑
k

∑
r(xij−m) is the standard error, xij = aij−bij

is the error difference between the two distributions, m = 1
kr

∑
k

∑
r xij and the

degrees of freedom are df = kr − 1.
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8.3 Feature Selection

The loss functions above described tend to minimise the error or maximise the
correlation between observed and predicted vectors. They do not take account
for the number of parameters used. In usual engineering scenarios the parameters
to be optimized are few and related to significant variables as position, speed,
acceleration: in a biological framework instead there is a huge number of variables
(for example all the mutations in the viral genotype) and a corresponding large
parameter space. Many of the input variables can be non-significant for the model
and many parameters mean that the system can be easily overfitted.

Feature Selection is closely related to the Occam’s principle, for which models
that use a minor number of parameters are preferred under the same prediction
performances. This is useful when dealing with high-dimensional data sets, where
many input attributes could be irrelevant and redundant to the dependant vari-
ables and act just as a noise. By allowing learning algorithms to focus only on
highly predictive variables, their accuracy can be even improved. Feature selec-
tion – following the definition by Weston et al. [123] – is the problem to find the
feature subset of a certain size that leads to the largest possible generalisation or
equivalently to minimal risk. In literature the feature selection techniques have
been grouped in three methodologies [56]:

• Filter

• Wrapper

• Embedded

Filter methods independently rank and select relevant features using different
criteria, regardless the prediction method, thus they do not incorporate learning;
under certain independence or orthogonality assumptions, they can be optimal
with respect to a given predictor. Wrapper methods assess subsets of variables
according to their usefulness to a given predictor: these methods use a learning
algorithm to measure the quality of subsets of features without incorporating
knowledge about the specific structure of the prediction function. In contrast to
filter and wrapper approaches, in embedded methods the learning part and the
feature selection cannot be separated.

8.3.1 Filters

• Variable Importance Ranking

• Correlation-Based Feature Selection

The variable importance ranking can be done via any statistical test made with
respect to the class or output attribute. Usually univariable tests are carried on
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and ranked by their statistical significance. Depending on the variable types, non-
parametric or parametric (Wilcoxon, Mann-Withney, Student’s, Chi-Square, et
cetera) tests can be used, also taking into account for multiple comparisons. The
execution of an univariable test however cannot tell much about variable inter-
dependencies, confounding terms or higher-order interactions. Stratification can
be a way to handle this, or the usage of multivariable techniques.

A way to handle the inter-correlation between variables and select subset of
relevant features, yet under the independence assumption, is the Correlation-
based Feature Selection method CFS [83]. At the heart of the CFS algorithm is a
heuristic for evaluating the worth or merit of a subset of features. This heuristic
takes into account the usefulness of individual features for predicting the class
label along with the level of inter-correlation among them. The hypothesis on
which the heuristic is based can be stated as

Good feature subsets contain features highly correlated with

the class, yet uncorrelated with each other

In CFS a merit function is defined:

MeritS =
krcf√

k + k(k − 1)krff

(8.3)

where MeritS is the heuristic merit of a feature subset S containing k features, rcf

is the mean feature class correlation f ∈ S and rff is the average feature-feature
inter-correlation. The numerator can be thought of as giving an indication of
how predictive of the class a group of features are; the denominator of how much
redundancy there is among them. The heuristic handles irrelevant features as
they will be poor predictors of the class. Redundant attributes are discriminated
against as they will be highly correlated with one or more of the other features.
In order to have a common criterion, all the numeric features are discretised and
entropy plus information gain measures are used.

The purpose of feature selection is to decide which of the initial features to
include in the final subset and which to ignore. If there are n possible features
initially then there are 2n possible subsets. The only way to find the best subset
would be to try them all; this is clearly prohibitive for all but a small number
of initial features. Various heuristic search strategies are often applied to search
the feature subset space in reasonable time (we describe them in the Wrapper
section). Standard implementation of CFS starts from the empty set of features
and uses a forward best first search with a stopping criterion of five consecutive
fully expanded non-improving subsets.

CFS assumes that features are conditionally independent given the class. Ex-
periments show that CFS can identify relevant features when moderate feature
dependencies exist. However, when features depend strongly on others given the
class, CFS can fail to select all the relevant features.
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8.3.2 Embedded Methods

Overfitting during the training phase can be major problem, especially when in
presence of a large input attribute space. Different Machine Learners can be more
or less prone to overfitting, depending on their internal optimisation mechanisms.
Random Forests and Decision Trees, for instance, can perform feature selection
in the training phase (see the next chapter). Neural Networks, on the other hand,
do not have any criterion: for this reason mechanisms such as weight decay have
been proposed (see [66]).

• Decision Trees: Decision Trees can be viewed as embedded methods for
feature selection, in the sense that they are iteratively built by splitting the
data depending on the value of a specific feature: in most of cases only a
subset of input features will be included in the tree. The split points are
chosen according to a specific criterion used to evaluate the feature impor-
tance regarding the classification: among the criteria, mutual information,
cross-entropy, gini index are the most used. Well known tree building
methods in literature are CART [23] and C4.5 [74]. We will also use the
LogitBoost implementation for Logistic Model Trees [35].

• Ridge Regression: see [106]

• Fuzzy Criteria: The idea for a Fuzzy criterion (developed by the author)
rises from the AIC definition and the penalty term of Ridge Regression: it’s
re-interpreted in fuzzy terms. While the AIC formula is fixed and selects
variables only based on their statistical significance and the penalty term
in Ridge Regression penalises the weights, families of parameterized fuzzy
functions that take into account the number of parameters and the loss
function can be designed, in order to decide with more flexibility how much
the model has to be simple (i.e. how many parameters are included) joined
with its goodness of fit. This can be viewed as an embedded method be-
cause the parameter selection is performed in the same phase of parameter
optimisation during the training process. For details, see [87].

8.3.3 Wrappers

As introduced, wrapper methods consist in using the prediction performances of
a given learning machine to assess the relative usefulness of variable subsets. In
practice three steps have to be followed:

• Search space of the variable subsets

• Loss and Risk functions to assess the prediction performances of a learning
method in order to guide and evaluate the subset search
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• Machine Learning Models to be used

Exhaustive search on the power set of the input attributes is feasible only if
the number of variables is not too large (the problem is known to be NP-hard).
Greedy-heuristic searches are used in practice: best-first, branch and bound, ge-
netic algorithms, simulated annealing, hill climbing, random searches. Among
these cited, forward and backward selection (known as nested subsets methods)
are fast and easy to implement greedy strategies. Forward selection iteratively
adds variables if the are proven to improve performances under a certain risk
indicator, while backward removes variables if they result not in affecting the
predictor’s error. It has been showed that simple (single variable addition) for-
ward selection however – for non-linear cases – can be problematic when it’s true
the case that two variables are not significant alone, but together they are.

8.3.4 Heuristic Functions and Optimisation Algorithms

Simple optimization algorithms are often limited to regular convex functions. Ac-
tually, most real problems lead to face multi-modal, discontinuous, non-differentiable
functions. To optimise such functions traditional research techniques use gradient-
based algorithms [34], while new approaches rely on stochastic mechanisms: these
latter base the search of the next point basing on stochastic decision rules, rather
than deterministic processes, requiring then weak conditions for the objective
functions. Genetic Algorithms, Simulated Annealing and Random Searches (see
again [34]) are among these, and often are used either when the problems are
difficult to be defined, either when “comfortable” properties – such as differen-
tiability or continuity – are missing. For the most known heuristics in literature,
we can give the following references

• Forward or Backward subset selection [66]

• (Fuzzy) Genetic Algorithms, developed by the author [87]

• Simulated Annealing [19]

• Random Searches [34]

• Bubble Selection, developed by the author [81]

Bubble Selection

Since the Bubble Selection will be used in a Wrapper FS in conjunction with IBR
for in-vivo therapy optimisation, we describe the algorithm in detail in table 1:
Bubble Selection it is a derivative-free quasi-random search that considers size-
varying feature sets and accomplishes the Occam’s principle. In Bubble Selection
elements in the power set of the attributes are heuristically evaluated, preferring
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low-cardinality subsets. Since not only one variable is added at each iteration,
the independence assumption is relaxed.

Algorithm 1: Bubble Selection Algorithm

available feature set Ctot of size K, learning model M
current feature set C = ∅
best performance indicator pB = p(C, M)

while stop criterion on desired performance is not reached do
/* growth and shrinkage phases:
· generate positive random number r (through a discrete generation
function from a normal distribution d = ceiling(abs(N (0, σ))), where σ
is tuned according to desired variance of the number of features to be
added)
· add r random features to the current set C, but if a feature to be
added is already present, remove it from with probability p */
r=ceiling(abs(NormRand(0,σ)))
foreach int i = 1 to r do

j = new random uniform ∈ {1, . . . , K}
if cj ∈ C then

u = new random uniform ∈ (0, 1)
if u < p then

Cnew = C − {cj}
end

else
Cnew = C ∪ {cj}

end
end
/* evaluate the performance of the current feature set p(Cnew,M)
(using a robust in-sample or extra-sample performance estimator) and
compare with pB (with a statistical test) */
if p(Cnew,M) is better than pB then

C = Cnew

pB = p(Cnew,M)
end

end

8.3.5 Feature Extraction and Generation

In this section we cite some additional procedures for Feature Analysis: apart
from PCA, HC and PC, used in chapter 5, the others were not applied in the
experimental settings, but for completeness we group them together with the
proper references.

Feature Extraction can be defined as any transformation applied to the orig-
inal variable state with the double objective to reduce dimensionality (as for



122 CHAPTER 8. OVERVIEW AND METHODS

Feature Selection) and to extract relevant characteristics. The difference with
Feature Selection is that the input space is transformed in another space (of
less dimensionality). There are currently several procedures that extract relevant
characteristics from the input space: most of them can be viewed as a preliminary
unsupervised learning. So far, we can cite:

• Principal Component Analysis PCA [15], Independent Component Analysis
ICA [24] [66]

• Factor Analysis, Multiple Correspondence Analysis MCA [79]

• Wavelet Smoothing [66]

• Linear Vector Quantization [66]

• Clustering

– Partitional Clustering PC (k-means, k-medoids, fuzzy c-means, fuzzy
subtractive, gaussian mixture models GMM) [50]

– Hierarchical Clustering HC (agglomerative, divisive) [68] [97]

Of note, in this chapter we did not reviewed any bayesian or maximum-likelihood
method concerning the feature generation, which however deserves a citation [21]
(in literature it is also known as semi-supervised learning).



Chapter 9

In-Vitro: Viral Tropism

Assessment

HIV-1 shows a tremendous genetic variability, resulting from fast replication (as
many as 1010 virions per day are generated) coupled with a high mutation rate
(approximately 10−5 per nucleotide per replication cycle). Even a single in-
fected patient harbours a swarm of related HIV-1 variants (quasispecies), rather
than a distinct strain, at any time point. HIV-1 uses its surface protein gp120
(coded by the env gene) to bind T lymphocytes or macrophages through a spe-
cific interaction with the CD4 receptor. In 1996, Gallo et al [100] discovered
that some proteins known as chemokines were inhibiting the virus entry into
cells. Subsequent studies showed that HIV-1 additionally requires chemokine
receptors when entering into CD4+ cells. The two most used co-receptors are
CXCR4 for viral T-lymphocyte-tropic (T-tropic or X4) strains [46] and CCR5
for macrophage-tropic (M-tropic or R5) strains [59] [16] [60] [114]. Of note, the
categorisation in R5 and X4 variants is highly correlated, but not identical, to
M- or T-tropism; the same holds for the classification into nonsyncytium- versus
syncytium-inducing viruses [33]. HIV-1 initially binds to CD4 through a specific
portion of gp120. The following interaction between the coreceptor (CCR5 or
CXCR4) and a different part of gp120 (mainly the hypervariable V3 loop region)
induces a conformational change resulting in exposure of a hydrophobic stretch
of a second viral surface protein (gp41). This mediates the virus-cell membrane
fusion step leading to release of the virus genome into the target cell [32]. The
critical importance of HIV-1 coreceptors in vivo was confirmed by the obser-
vation that host subjects homozygous for a genetic deletion compromising the
CCR5 functionality are naturally resistant to the infection [114] [130]. Based on
these evidences, coreceptor antagonists are under development, particularly to
halt disease progression in the subset of patients where drugs of other classes are

123
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not effective anymore [95]. Since CCR5 and CXCR4 antagonists can be toxic
and are not cross-effective, it is essential to know the virus coreceptor tropism
in patients candidate to treatments. Moreover, HIV-1 can evolve during treat-
ment and switch co-receptor usage, escaping inhibition by the drug. Dual-tropic,
or R5X4, viruses, targeting both CCR5 and CXCR4 expressing cells have also
been reported. In vitro assays (phenotypic tests) developed so far for analysis of
coreceptor tropism are time-consuming, costly and poorly standardised. Alter-
natively, the env virus sequence can be conveniently obtained through standard
laboratory procedures and the virus coreceptor tropism has then to be inferred
by using in-silico prediction systems.

9.1 State of the Art

The first model introduced was the charge rule, proposed by De Jong in 1992
[64], which analysed the gp120 V3 loop region. It was defined as follows:

IF there is a positively charged amino acid at position 11 or 25

(Lysine, Arginine or Histidine)

THEN predict CXCR4

ELSE predict CCR5.

Following this simple model, that actually performed with good specificity, sub-
sequent works were due to Resch [129], Pillai [107], Jensen [84] and Sing [115].
Resch proposed a Neural Network method on 216 examples, validated through
bootstrap: this resulted in a significant improvement with respect to the charge
rule. Pillai tested different techniques, including Support Vector Machines and
Decision Trees: the input space was defined extracting mutations from a mul-
tiple alignment of the V3 loop (271 sequences) and the methods yielded little
performance improvements. This work lacked accuracy in terms of sequence
manipulations, since alignments did not take into account ambiguous positions,
insertions or deletions. Recently, Jensen introduced a method of scoring V3
amino acid sequences on the basis of position-specific scoring matrices (PSSM).
Sing presented a rigorous general learning-validation methodology based on max-
imisation of AUC under ROC curves, using multiple learning techniques on a
larger data set made of 1’110 sequences. There have been also a web-service
built after Sing’s analyses and on further improvements presented in [41], the
geno2pheno[coreceptor] [54], that uses also additional variables as clinical mark-
ers.

The latest work published was again improvement of Sing’s work and came
from the same research group, lead by O. Sander [51]: the authors produced a
hybrid SVM model based on sequence and structural analysis inputs of the V3
loop, with SVM parameter optimisation through bootstrap. Using multiple cross
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validation and rank-sum tests, they showed that structural descriptors are able to
improve significantly prediction performances. While the structural analysis was
a promising step towards a more accurate coreceptor prediction, Sander’s work
had a few drawbacks: only the V3 loop region was analysed; some tricks had to be
used when facing sequences with insertions or deletions and calculating structural
descriptors; no feature selection was performed; domain coding of sequences was
limited to dummy variables representative of amino acids in codons. Our paper
has the aim to provide a more accurate domain coding of the sequences (through
physicochemical properties), along with the evaluation of clinical markers and
subtype. In addition, feature analysis and selection is extensively evaluated in
conjunction with a wide set of machine learner comparisons. We’ll show that
further improvements in prediction performances can be achieved even without
structural descriptors, gaining also more understandable models.

9.2 Data and Methods

9.2.1 Data Collection

Viral sequences were taken from the open access Los Alamos HIV repository
[101]. The extraction criteria were the following:

• organism: HIV-1, any subtype, including recombinant forms, excluding
problematic sequences (i.e. high content of non-ACTG characters, likely
contamination with a laboratory strain, hyper-mutation, synthetic sequences,
sequences containing an artefactual deletion)

• genomic region: at least V3 loop sequence in env

• coreceptors: at least CCR5 or CXCR4 reported

Additional data available for these sequences were also retrieved and stored for
further analyses, including mode of HIV transmission, geographic region of isola-
tion, subtype and clinical markers. Only clinical markers and subtype were used
as additional information to be fed to the machine learners, because epidemio-
logical variables were biased towards coreceptor usage. Table 9.1 reports data
set sizes, compared with the ones used in previous works. Of note, Sander used
a training set which was not allowing sequence replicates, while Sing allowed for
replicates, even within the same patient, using a particular validation procedure
for avoiding bias. The data used in the cited studies come from the Los Alamos
repository, though the sample size increased through time. Sander and Sing used
also an additional set of samples coming from different clinics, which however
is copyrighted. While previous modelling approaches limited the analysis to the
short V3 loop region (part of gp120), our investigation was extended to the whole
viral genomic regions available, with gp120 and gp41 in env.
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data set no. of sequences no. of patients R5 X4 R5X4

Los Alamos 2896 593 2114 430 352

Sing [115] 1100 332 769 210 131
Sander [51] 1100 (514 after duplicate removal) 332 363 151 ?
Resch [129] 216 177 169 18 29
Pillai [107] 271 ? 168 82 21

Table 9.1: HIV-1 sequences - coreceptor usage pairs

Sequence Selection, Alignment and Mutation Extraction The sequence collection
policy is essential in order to avoid positively biased results. We pointed out that
previous works did not use the same policy.

The Los Alamos repository contains a considerable number of viral clones
obtained from the same patient: a raw collection of sequences thus would lead
to the presence of replicates in the data sets. The policy to keep all different
sequences (restricting to a particular genomic region) however should be avoided
as well, since the real population distribution would not be respected.

Two identical sequences can be considered as two different observations when
coming from different patients, but two identical sequences coming from the same
patient can be considered as replicates. Of note, the term identical is defined in
the sense of an exact match between a pairwise alignment of two nucleotide se-
quences, cutting to the shorter sequence. This notion however is far too strict,
since the variability of HIV-1 within the same individual is extremely high: an-
other approach could be to consider the amino acidic translation, though losing
the information about silent mutations and needing to handle ambiguous amino
acidic codes.

The proposed policy is to collect all the viral sequences that contain at least
the V3 loop, keeping just one sequence per patient (the largest found) except
when in presence of different coreceptor usage. Possible replicates among dif-
ferent patients are allowed, in order to respect the population distribution. For
the analyisis, dual tropic viruses are pooled to the X4 variant set, because the
clinically relevant feature is the ability to use CXCR4, irrespective of combined
CCR5 use.

The total number of sequence retrieved after this filter is in table 9.2. Of
note, there were 244 sequences with no patient code, that were treated as coming
from the same person.

no. of seqs. no. of patients only V3 env R5 X4
659 593 390 269 507 152

Table 9.2: Filtered Data Set

As it concerns the sequence alignment and characterisation of input domain,
so far the most used approach has been to execute a multiple alignment of all
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the sequences and then record with dummy binary variables the amino acids at
each codon, following the numbering of a consensus reference sequence (namely
HXB2 [72], whose clones are X4). This solution has the advantage to produce
robust alignments, but – for instance – can produce also insertions, deletions
and particularly frameshifts within the consensus reference, losing the standard
reference numbering. In addition, the procedure is computationally intensive:
this is not a problem since has to be done only one time for the majority of
sequences, but every time a new prediction is needed, a new sequence must be
aligned against the multiple alignment.

We propose here an alternative solution, which is faster and has some ad-
vantages: the idea is to align pairwisely each sequence to HXB2, extracting only
the mutations (and insertions or deletions) with respect to the reference strain
and the standard numbering; thus, for each sequence, the differences against the
reference are recorded.

The Smith-Waterman-Gotoh [119] [93] local nucleotide pairwise alignment
algorithm was used, with high gap penalty and EDNAFULL scoring matrix.
Then aligned triplets were translated into amino acids using the correct coding
frame. In addition, ad-hoc procedures for ambiguous nucleotides (R, Y, K, M, S,
W, B, D, H, V, N codes∗) interpretation, frameshift detection and correction (it
can happen that some insertions or deletions are not in frame) were executed. In
summary, for each sequence a mutation list was derived, as the following example,
where the first letter represents the reference amino acid, the number is the codon
and the following letter(s) are the substitutions found.

..S110?,L111?,W112?,D113?,S128T,T132S,D133N,K135R,S142N,S143N,

S144N,G145E,R146G,I148del,E153D,I154M,S162T,S164N,I165M,R166K,

G167D,K168R,F175L,Y177H,I182V,ins184N,ins184K,ins184K,ins184T,

D185N,N186K,D187N,T188I,S190N,K192I,T194I,V200T,S209T,T236K,E268K,

I272L,V275D,A281T,T290E,S291T,K305R,R308H,I309M,Q310del,R311del,

A316Y,F317V,V318H,ins318T,I320K,G321A,K322I,N325D,M326I,I333L,

R335S,A336S,A346V,S347T,G354del,N355K,I360V,Q363H..

If the sequence was shorter than the env, missing parts were treated as missing
values “?”. Also highly ambiguous configurations (like “NNN”, where N indicates
any of the four bases) were treated as missing information. All the amino acidic
substitutions found for each codon in the data set were coded as dummy binary
variables if their frequency was above 3%. In addition, for each codon a general
binary variable was also set, defining the presence of “any” amino acidic substi-
tution in the position, along with other two bits for the presence of insertions or
deletions. Finally, subtype was also recorded as a nominal macro-indicator, using
the standard Los Alamos nomenclature.

∗R = A or G; Y = C or T; K = G or T; M = A or C; S = G or C; W = A or T; B = C or
G or T; D = A or G or T; H = A or C or T; V = A or C or G; N = any base.
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Physicochemical and Clinical Domain Coding The binary coding of mutations is
a suitable input for machine learning. But amino acids can be also classifed with
respect to their physicochemical properties, that take an important role in the
corresponding protein structure. For this reason, knowing also that the 11/25
rule comes from the analysis of positively charged amino acids, an additional set
of variables was derived, pooling the substitutions at each codon with respect to
these properties. Amino acids were classified as: hydrophilic, hydrophobic, acidic
or basic. Table 9.3 summarises the classification.

Another set of input variables was then generated pooling together clinical
attributes, namely: Viral RNA Load (Log10 cp/mL), CD4+ and CD8+ counts
(cells/mm3). Sing [41] in fact reported that CD4+ are significantly associated
with coreceptor usage.

amino acid characteristic
C, N, Q, S, T, Y hydrophilic

A, F, I, L, M, P, V, W hydrophobic
H, K, R basic

D, E acidic

Table 9.3: Characterisation of amino acid properties

The final attribute space consisted of 74 binary attributes coding the single
amino acidic mutations in V3 loop, 2215 binary attributes coding the whole set of
mutations (any, amino-specific, ins-del, physicochemical) in env, plus attributes
coding subtype (nominal), CD4+, CD8+ and Viral Load (numeric).

9.2.2 Statistical Learning Methods

Statistics and Clustering Univariable χ2 [105] and rank-sum tests were executed
between input domain variables and viral tropism: in order to assess robustness
against multiple testing, all the tests were 10-fold cross validated. Then Unsuper-
vised Learning was applied to analyse mutational covariation, using Hierachical
Clustering (HC) [68] [97]: HC was executed using Jaccard coefficient and agglom-
erative average linkage, while p-values were assessed through multiscale bootstrap
resampling [61].

Machine Learners The Supervised Learning technologies considered were:

• Support Vector Machines (SVM) [67]

• Decision Trees (DT) [23] [74]

• Random Forests (RF) [77]

• Rule Based Methods (RB) [132]
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• Logistic Regression (LR) [106] [35]

• Instance Based Reasoning (IBR) [7]

Support Vector Machine parameters (either using linear or Radial Basis Func-
tion kernels) were optimised through a grid search on a bootstrap sample of the
training set (cost C ∈ [1, 5] and gamma γ ∈ [0.0001, 0.5]). Ridge parameter r

of Logistic Regression was optimised with the same procedure (r ∈ [0.0001, 12]).
Instance Based Reasoning used Euclidean distance, Nadaraya-Watson evaluation
function and linear kernel. For any other general theoretical aspect of the learning
technologies, we refer to the book by Hastie [66].

Feature Selection The huge cardinality of the input attribute set (more than
2’000 dimensions) requires a strong feature analysis. Filter methods were applied
to reduce input space, using either χ2 analysis or rank-sum or Correlation-based
Feature Selection (CFS), through stepwise heuristics on the attribute power set
[83]: CFS evaluates the worth of a subset of attributes by considering the in-
dividual predictive ability of each feature, along with the degree of redundancy
between them. Embedded methods were applied intrinsically by DT splitting and
pruning procedures, rule finding policies for RB (Repeated Incremental Pruning
to Produce Error Reduction (RIPPER) [132]) and (optimised) Ridge Shrinkage
[106], LogitBoost [35] or stepwise selection based on Akaike Information Criterion
(AIC) [58] for Logistic Regression.

Software The data mining suite Weka [112] and the mathematical programming
language R [111] were used as base software for all analyses carried on.

Validation and Performance Assessment

As described in the methods section, accuracy, AUC, sensitivity, specificity and
f-measure, will be evaluated, along with the usage of multiple cross validation for
performance assessment and model selection.

9.3 Results

9.3.1 Univariable and Covariation Analysis

In this section univariable analysis will be carried on in order to discover variables
significantly associated with coreceptor usage: these findings will be also used for
feature selection in the machine learning phase. Then variable covariation will
be investigated.

Table 9.4 show descriptive statistics for clinical markers and subtypes: under
univariable rank-sum analysis (andalso chi-square on discretisation) low CD4+



130 CHAPTER 9. IN-VITRO: VIRAL TROPISM ASSESSMENT

counts were found to be significantly associated with X4 viruses (p ≤ 0.01, also
previously reported in [41]). Subtype was also significantly associated (p ≤ 0.01)
to coreceptor usage under chi-square test. In particular, subtypes B and D were
associated with X4 viruses, whilst A, C and 02 AG with R5 (min p ≤ 0.05 for
02 AG).

marker average (st.dev) % missing median X4 median R5

CD4+ cells/mm3 391 (366) 66 35 334
Viral Load Log10 cp/mL 4.898 (1.009) 67 - -
CD8 cells/mm3 1146 (910) 98 - -

subtype no. (tot=659) prevalence preval. X4 preval. R5

B 235 0.357 0.477 0.333
01 AE 39 0.059 - -
C 199 0.302 0.174 0.352
02 AG 19 0.029 0.000 0.039
A1 23 0.035 - -
D 32 0.048 0.121 0.028
A 36 0.056 0.001 0.073
other 58 0.008 - -
missing 18 0.027 - -

Table 9.4: Descriptive statistics for clinical markers and subtype attributes. Me-
dian values and prevalence were reported for X4/R5 groups only if the rank-sum
or chi-square test was significant (adj.p ≤ 0.05).

As it concerns mutations, there were no missing values in the V3 loop by defi-
nition, but ouside this region the missing values ranged from 20% to 70%, depend-
ing on the sequence lengths. Table 9.5 reports χ2 values for the top ranked vari-
ables (p < 0.01), with standard deviations obtained from cross-validation. Figure
9.1 shows then prevalence for the mutations significantly associated with tropism.
Out of 2215 mutation variables, 130 resulted significant: most of them were po-
sitions within the V3 loop, but a few positions in other env region were also
detected (362 hydrophobic, 440 basic, 293 hydrophobic among the best ranked).
The physicochemical coding and the “any” coding for mutations resulted to be
highly discriminant when the corresponding positions were detected significant.

Regarding positions in V3 loop, as expected position 306 (corresponding to
position 11 in the reference V3 numbering) plays a dominant role. Position 322
(i.e. 25 ) is significant, but there are other more discriminant positions, namely
302(7 ), 303(8 ), 323(26 ), 301(6 ), 313(16 ), 321(24 ). Note that also some inser-
tions and deletions are detected significant: 306 del, 321 ins, 307 del, plus other
lower ranked. Jensen [84] reported that V3 sequences with ins-del are typically
X4, while here the opposite holds, since the reference strain is actually X4. Ins-del
can produce sensible conformational changes and mutant structures are difficult
to be modelled with standard software. Sander [51] reported that structural de-
scriptors are sufficiently robust to handle sequence variants containing ins-del
(actually the designed structural descriptors ignore them), obtaining slightly dif-
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ferences in prediction performances.
It’s worth to point out here that, indeed, all the results are biased by the align-

ment procedure: if two different alignment schemes are used, this can produce a
systematic error in mutation detection and coding; this is not a big problem in
the modelling phase, but can lead to misunderstanding when comparing differ-
ent analyses. For instance, the pairwise alignment (Smith-Waterman-Gotoh +
frame corrections) algorithm here implemented not always reports the same set
of mutations that the geno2pheno[coreceptor] [54] web-service gives.

In figure 9.2 Hierarchical Clustering to assess mutational covariation is de-
picted. Physicochemical indicators or “any” substitution codes were used only
if no specific amino acids were found significant in the previous analysis. The
covariation analysis was restricted to the sole V3 loop. Red boxes assess signifi-
cance for branches (p < 0.05) From the graph, some defined associations can be
easily found. At a threshold height of 0.35, the following clusters are identified:
{317ins, 318A}; {311I, 308S, 306del, 307del}; {322I, 320 hydrophilic, 326I}. The
associations probably have a role for the stabilisation of the mutant structure and
for the tropism, but it seems that mutations positively associated with X4 viruses
tend to behave more independently (see for example 306S, 303I and 308K, 300Y
and 307T. . . ). This could be explained by the fact that just a few changes are
needed towards a coreceptor switch, along with the relative low frequency of X4
strains and related mutations.

9.3.2 Prediction Models

Assessing robustness and improvements in coreceptor usage prediction engines
involves two scenarios: first, to compare different models and derive error es-
timation for the naive set of dummy variables in the V3 loop; second, verify
whether the usage of additional descriptors (physicochemical, clinical) improves
performances using different methodologies as well. The second point requires
also accurate feature selection, since the input spaces grows dramatically (from
74 to 2000+ attributes). Moreover, different loss functions must be evaluated,
since the class distribution in the data set is unbalanced.

Multiple Cross Validation is an effective solution for comparing model per-
formances: in fact, the error estimation calculated from multiple CV runs yields
Gaussian distributions that can be compared through a t-test, assessing p values
for statistically significant differences.

Table 9.6 shows results for different models, trained using the sole V3 loop
region, without physicochemical neither clinical indicators. As expected, best
models are found to be SVM and Logistic, as also pointed out on [115] and [51].
Even if direct comparison with the performances published by other studies is not
possible (due to slightly different data sets and sequence selection policies used),
raw numbers are consistent with Sander’s [51] results when SVM are applied
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Figure 9.1: Frequency of amino acidic substitutions significantly associated with
coreceptor usage (p < 0.01). Azure is for R5 and purple for X4.
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χ2 st.dev variable

176.721 5.779 306 any
122.682 8.621 302 any
115.506 7.164 303 any
81.606 5.761 323 any
83.334 6.407 301 any
78.858 4.068 subtype
78.313 8.378 313 any
74.404 6.504 321 basic
72.098 4.527 303 hydrophobic
66.98 2.118 321 acidic
61.722 4.082 303 I
53.993 3.362 302 acidic
53.775 4.394 321 D
52.217 1.588 302 K
53.685 7.61 322 I
46.888 4.617 300 Y
45.22 4.114 315 hydrophilic
43.313 4.799 315 any
42.846 6.17 302 hydrophilic
42.989 4.201 315 Q
40.972 4.367 306 del
38.093 3.124 321 ins
37.639 3.654 320 hydrophilic
37.453 4.389 301 hydrophilic
36.876 6.26 322 hydrophobic
35.603 3.933 307 del
35.27 3.058 303 acidic
34.594 4.145 321 R
34.213 3.008 307 hydrophilic
34.125 4.773 316 hydrophobic
32.478 3.684 323 hydrophobic
31.398 4.388 313 L
31.41 5.724 325 hydrophilic
31.2 2.313 304 any

31.098 6.553 310 G
30.369 3.315 319 A
29.031 3.832 310 acidic
28.699 5.172 316 V
28.225 3.002 309 L
28.052 3.541 313 hydrophilic
28.124 3.819 326 I

χ2 st.dev variable

27.859 3.651 323 V
25.363 3.082 307 T
24.505 2.412 321 K
23.448 4.229 313 hydrophobic
23.018 3.219 322 any
22.978 2.814 308 S
22.865 3.438 328 acidic
22.358 2.595 317 hydrophobic
21.969 2.862 319 hydrophobic
21.137 2.154 311 any
20.932 1.51 316 T
20.269 1.983 306 S
19.519 3.317 326 hydrophobic
19.153 3.911 323 hydrophilic
18.718 3.87 310 hydrophilic
18.531 3.567 308 H
17.481 2.05 310 R
16.69 1.974 317 any
16.71 3.16 308 acidic
15.321 2.425 327 any
15.007 2.487 328 any
14.881 3.205 320 K
14.362 1.865 308 hydrophilic
14.455 2.498 311 hydrophobic
13.835 2.983 328 R
13.468 2.75 320 acidic
13.264 1.259 CD4+
12.825 1.031 362 hydrophobic
13.708 3.55 318 acidic
13.065 2.847 309 hydrophilic
13.039 2.529 307 any
12.188 2.057 328 K
11.796 0.893 362 A
11.556 2.151 304 hydrophobic
11.563 1.634 319 any
11.875 1.788 311 I
11.327 1.791 348 hydrophilic
11.372 1.939 321 Q
10.97 1.936 440 basic
10.327 0.501 316 hydrophilic
10.613 2.216 293 hydrophobic
10.28 1.855 351 basic
10.28 1.855 351 D

Table 9.5: Cross validated chi-square test on variables and viral tropism cross
tabulations (first 85 results shown)
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Figure 9.2: Bootstrapped hierarchical clustering of mutations significantly asso-
ciated with coreceptor usage. Red boxes enclose branches with p < 0.05. Jaccard
similarity coefficient and average linkage method used.
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only V3 loop multiple cross validation

model feature selection accuracy %
(st.dev)

AUC
(st.dev)

sensitivity
(st.dev)

f-measure
(st.dev)

SVM lin – 90.32 (3.35) 0.89 (0.06) 0.70 (0.11) 0.94 (0.02)

SVM RBF – 89.59 (3.62) 0.91 (0.05) 0.69 (0.10) 0.93 (0.02)

Logistic ridge shrinkage 88.77 (3.38) 0.89 (0.06) 0.68 (0.11) 0.93 (0.02)

Logistic LogitBoost 88.51 (3.51) 0.89 (0.05) 0.66 (0.12) 0.93 (0.02)

RF split/prune/rand 88.26
(3.65)*

0.88 (0.06) 0.63 (0.12)* 0.93 (0.02)

RB RIPPER 87.10
(3.84)*

0.80 (0.06)* 0.64 (0.12) 0.92 (0.02)*

DT split/prune 86.42
(3.83)*

0.81 (0.07)* 0.57 (0.13)* 0.92 (0.02)*

IBR – 86.33
(3.64)*

0.82 (0.08)* 0.52 (0.14)* 0.92 (0.02)*

majority
class

– 76.93
(0.60)*

0.50 (0.00)* 0.00 (0.00)* 0.87 (0.00)*

Table 9.6: Model comparison (10 independent runs of 10-fold CV) using only the
V3 loop genomic region with naive amino acid encoding, without physicochemical
or clinical attributes. Values with * are significantly worse than the best model.

without the addition of structural descriptors.
Sander reports 90.00% accuracy and 0.92 AUC, without giving st.dev; when

structural descriptors are added, performances increase (91.56% accuracy, 0.93
AUC) and the improvement is proven to be statistically significant (p = 0.002).
Sensitivity is reported at a fixed specificity 0.95 (0.73 and 0.80 without and with
structural descriptors respectively), which is higher than the pure sensitivity: the
choice is reasonable, since they accept a fixed number of false positives, but in this
study we prefer to show the pure sensitivity and specificity rates. In summary,
these first results obtained using the sole V3 loop, without additional indicators,
seem comparable with Sander’s naive model and seem inferior to his enhanced
model, which was exactly the expectation. Of note, the Logistic model obtained
through ridge shrinkage could be preferable to a SVM, since uses a small set of
variables (whose importance and p values can be assessed multivariately looking
at the odds ratios and standard errors) and is simple to understand.

Let’s examine now how the models behave when the complete set of attributes
(i.e. env region, physicochemical properties, clinical variables) is fed to them.
Table 9.7 shows that again Logistic Regression and SVM are the best methods:
moreover, these models are significantly better – wrt any loss function – than
the best model obtained using the sole V3 loop, with naive variable encoding
(p < 0.05). The reported values are also higher than the results presented by
Sander using the structural descriptors (but still this is not a proper way to make
comparisons).

Apart from the pure performance issues, let’s note that the best performing
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env region, physicochemical,
clinical inputs

multiple cross validation

model feature selection accuracy %
(st.dev)

AUC
(st.dev)

sensitivity
(st.dev)

f-measure
(st.dev)

Logistic ridge shrinkage +
CFS

92.76 (3.07) 0.93 (0.04) 0.76 (0.10) 0.95 (0.02)

SVM RBF – 92.75 (3.19) 0.91 (0.06) 0.78 (0.10) 0.95 (0.02)

Logistic ridge shrinkage 91.62 (3.34) 0.92 (0.04) 0.72 (0.12) 0.95 (0.02)

Logistic LogitBoost +
CFS

91.73 (3.13) 0.91 (0.05)* 0.73 (0.11) 0.95 (0.02)

Logistic LogitBoost 90.87
(3.24)*

0.91 (0.05)* 0.72 (0.11) 0.94 (0.02)*

RF split/prune/rand
+ CFS

89.41
(3.26)*

0.91 (0.05)* 0.68 (0.12)* 0.93 (0.02)*

RB RIPPER 89.17
(3.60)*

0.82 (0.06)* 0.67 (0.12)* 0.93 (0.02)*

RF split/prune/rand 88.73
(3.17)*

0.90 (0.05)* 0.60 (0.11)* 0.93 (0.02)*

DT split/prune +
CFS

88.30
(3.59)*

0.84 (0.06)* 0.62 (0.12)* 0.93 (0.02)*

RB RIPPER + CFS 87.83
(3.81)*

0.80 (0.06)* 0.64 (0.12)* 0.92 (0.02)*

IBR CFS 87.63
(3.52)*

0.84 (0.06)* 0.60 (0.12)* 0.92 (0.02)*

DT split/prune 87.35
(3.45)*

0.83 (0.06)* 0.60 (0.11)* 0.92 (0.02)*

majority
class

– 76.93
(0.60)*

0.50 (0.00)* 0.00 (0.00)* 0.87 (0.00)*

Table 9.7: Model comparison (10 independent runs of 10-fold CV) using the
whole env region, with physicochemical encoding and clinical attributes. Values
with * are significantly worse than the best model.

model is a Logistic Regression with a considerable low number of variables (ap-
plying first univariable + CFS filter). Physicochemical properties were included,
along with a few positions in env outside the V3 loop region. Subtype A and
CD4+ were also selected by univariable and by CFS filter, but their significance
was lost in the multivariable analysis. After applying an additional stepwise se-
lection using AIC, CD4+ was dropped from the model (in fact, the weight was
also set close to zero with the ridge shrinkage). Table 9.8 shows the most compact
model obtained, which is still among the best models in terms of accuracy and
AUC.

9.4 Conclusions

Discussion In this paper a new domain coding for in-silico modelling of HIV
tropism is proposed, that takes into account the whole env region, physicochemi-
cal properties of amino acids and clinical markers. Univariable analysis is carried
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variable estimate std.error z-value Pr(> |z|) sign.

(Intercept) 10.6713 16.9266 0.630 0.528402
env 306 any -3.7963 0.7195 -5.276 1.32e-07 ***
env 302 any 1.6593 0.7548 2.198 0.027925 *
env 301 any 2.1777 1.0100 2.156 0.031071 *
env 313 any 1.6468 0.4943 3.331 0.000864 ***
env 321 basic -0.5858 0.3752 -1.561 0.118453
env 321 acidic 1.3595 0.5635 2.413 0.015833 *

env 303 I 7.3132 9.9710 0.733 0.463285
env 309 L 1.7320 0.9442 1.834 0.066591 .

env 311 any -8.6866 16.9227 -0.513 0.607734
env 302 K 5.3314 10.8174 0.493 0.622114

env 192 hydrophobic 2.0997 0.6328 3.318 0.000907 ***
env 315 any -0.9634 0.3509 -2.746 0.006041 **

env 320 hydrophilic -0.8753 0.5394 -1.623 0.104666
env 310 G 2.6024 0.7615 3.417 0.000632 ***

env 169 hydrophilic 1.1246 0.6414 1.753 0.079546 .
subtype A -4.5072 4.7387 -0.951 0.341535

env 328 acidic 0.7813 0.3935 1.986 0.047072 *
env 306 G 2.0825 0.6790 3.067 0.002164 **

env 293 hydrophobic 1.2269 0.4312 2.845 0.004442 **
env 195 acidic 1.3055 0.8207 1.591 0.111683

env 209 hydrophilic -1.1828 0.6293 -1.879 0.060188 .
env 325 hydrophilic 2.8179 1.2872 2.189 0.028579 *

Table 9.8: Logistic model built after χ2 + CFS + stepwise AIC feature selection.
Coefficients for X4 prediction. Null deviance: 711.80 on 658 degrees of freedom.
Residual deviance: 266.05 on 636 degrees of freedom. AIC: 312.05. Significance
p-values are: ’***’ p ≤ 0.001; ’**’ p ≤ 0.01; ’*’ p ≤ 0.05; ’.’ p ≤ 0.1.

on to select significant features and covariation of mutations is assessed through
hierarchical clustering. A wide set of machine learning and feature selection
methods is then applied and models are compared through t-tests on multiple
validation runs. SVM and Logistic Regression (LR) models are found to be the
best techniques, while the enhanced input domain coding ensures a performance
increment which is statistically significant under different loss functions. Specifi-
cally, clinical markers (CD4+ cell counts) are found to be independent predictors
of tropism, though in multivariable LR analysis the p-value increases and they
can be dropped. The inclusion of mutations in the env region instead gives a few
positions outside the V3 loop that are significantly associated (either under uni-
variable or multivariable) with tropism, while the physicochemical coding takes
the major role for the assessment of performance improvements. Finally, the best
model turns out to be a LR that uses a considerable low number of variables:
the importance of such a result is not only in the improvement of the state of
the art for sequence-based learning methods, but also in the fact that the derived
LR is compact and easy to interpret (and variable importance can be assessed
multivariately, with odds ratios and standard errors).
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Future Perspectives The improvement gained with the usage of physicochemical
properties and clinical markers in the input attribute space, along with the anal-
ysis of the env region, could be easily coupled with the structural descriptors de-
fined in [51], in order to see if further statistically significant improvements in the
coreceptor prediction can be achieved. At the same time, additional information
about positive-negative charge of amino acids can be added. Another interesting
issue that should be investigated is the structural comparison between different
chemokines and HIV V3 loop, with a proper mathematical description. Specific
chemokines act as natural ligands for HIV coreceptors (particularly RANTES,
MIP1-alpha, MIP1-beta for CCR5) and have been shown to block HIV replica-
tion in vitro [37] [39]. Finding an effective way to learn their structure-function
correlation can provide additional information that can be modelled to improve
the capability of predicting HIV coreceptor use from env sequence.



Chapter 10

In-Vivo: Therapy Optimisation

and Follow Up Prediction

Predicting the actual viral load changes following treatment switches is a chal-
lenging task. The individual variability of immune response to infections adds
considerable noise and the large number of possible drug combinations, along
with mutational patterns, makes the problem complex. Other treatment-related
factors – such as pharmacokinetics and patient adherence to therapy – play a
crucial role in the control of virus replication and the development of resistance,
but they’re typically unknown.

10.1 State of the Art

Association of three or more antiretroviral drugs (HAART, Highly Active Anti
Retroviral Therapy) has led to significant decreases in HIV-related morbidity and
mortality by reducing often viral replication to undetectable levels [1]. However,
complete eradication is not feasible with the current treatment armamentarium:
drug-resistant variants can ultimately develop in patients, though most of them
in high income countries can avoid resistance if adherence is good. These mutants
display different degrees of decreasing susceptibility to the ongoing treatment reg-
imen and often cross-resistance to other agents. This results in virologic rebound
and eventually disease progression [82]. As long as drug resistance accumulates, it
is critical to choose the appropriate drugs and build a “salvage” therapy resulting
in the largest and longest-lasting viral load reduction. More than 100 mutations
occurring in the HIV pol∗ gene have been found implicated in resistance to 20

∗the polymerase gene is implicated in the viral reproduction and two major regions are
targeted by current inhibitors: Reverse Transcriptase and Protease

139
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available HIV-1 inhibitors.
Although robust (virtual) phenotyping and genotyping methods have been

established, most experts eagerly awaits a support decision tool able to predict
in-vivo response to treatment in terms of viral load as well as CD4+† cell count
change, along with a rank of suitable therapies. This task could be pursued either
by a naive learning procedure from genotype to treatment response, or adding
information from in-vitro resistance, or deriving more discriminant indicators.
Most of the currently available algorithms for genotype interpretation are Rule-
Based (RB) [9] [8] [13]. Alternative approaches have been proposed, including
Neural Networks (NN) [63] [40], Fuzzy-Rule-Based (FRB) systems [38] and DTs
that take into account derived features through evolutionary pathways modelling
[91] [109]. Overall, current models lack a rigorous input space modelling and
performance evaluation, in terms of feature selection, feature extraction and er-
ror validation robustness assessment. For instance, RB methods ([8] [13]) were
not properly validated, but only proven significantly associated with treatment
outcome (through logistic multivariable analysis); in addition, they rely only on
genotypic information. Neural Network based methods ([63] [40]), though ex-
plored a larger set of attributes, did not provide a clear data collection policy:
this can yield positively biased results due the presence of replicates. Finally,
the most promising approach based on DT and mutagenetic trees ([91] [109])
used non-standard data collection (now being re-considered), which demonstrated
lower performances tested on the actual standard data.

10.2 Data Collection, Domain Coding and Methods

EuResist

The EuResist [98] [36] project is a STREP funded by the European Union within
the Sixth framework Programme since January 2006, for the development and the
management of a data warehouse, aiming at integrating virological and clinical
information and developing antiretroviral (ARV) treatment optimisation tools.
Several private and academic partners are working together collecting data (Uni-
versity of Siena, Ita; Karolinska Institute, Swe; Caesar, Ger), integrating data
bases (IBM Haifa Research Lab, Isr), providing statistics (Kingston University,
UK), building prediction tools through machine learning (Informa CRO, Ita;
RMKI, Hun; Max Planck Institute, Ger; University of Roma TRE, Ita; IBM
Haifa Research Lab, Isr) and providing web services (Informa CRO, Ita; IBM
Haifa Research Lab, Isr). The work presented in this paper is at the base of
the implementation of one out of four prediction engines that will be ultimately
integrated as a public web service.

†measure of immune response
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By now the integrated DB is composed mainly by three national data bases
(Italian, German and Swedish) and smaller satellite sources. It is probably the
largest data base in the world as it concerns the collection of clinical, genomic
and epidemiological data, and its size is increasing through time with the spon-
taneous addition of new sources. Table 10.1 summarises the size of the principal
information available, but also other tables are present, like real phenotypic data,
HBV/HCV co-infections, CD8+ markers.

Even if this is out of the scope of this paper, it’s worth to note that the DB
is indeed a valuable source for all kind of statistical analyses, either concerning
macro- (like phylogenetic analysis, epidemiology) or micro-objectives (analyses on
selected therapy combinations, mutations). Moreover, the consortium agreements
permit the collaboration with external partners when in presence of data sharing
and related studies.

The EuResist Integrated DB
patients 17078

viral sequences 19444
therapies 59982

CD4+ isolates 279506
viral load RNA isolates 214516

Standard Datum instances
with missing baseline info 2523
with complete baseline info 2176

Table 10.1: Number of instances for tables and standard data views on the inte-
grated EuResist data base (July 2007 update).

Standard Datum Definition

A view on the Integrated DB was created following the Standard Datum definition
proposed by the HIV Forum for Collaborative HIV Research [49] [26] and further
implemented by the EuResist consortium.

In the Standard Data view, each instance is representing a Treatment Change
Episode (TCE): a TCE corresponded to the real situation in which a patient
starts a (new) anti retroviral therapy, either for the first time or after a previous
failure. Usually the physicians decide a new combination therapy considering the
patient’s clinical background and actual condition (baseline), toxicity/adherence
odds and eventually evaluating the report of an in-vitro resistance test. The
patient is then followed up and the viral load or CD4+ cells are measured by
subsequent analyses usually at 8, 12, 24, 48 weeks and more. The treatment is
not interrupted and considered successful if the viral load is kept at undetectable
levels, if the patient tolerates the therapy, if the CD4+ counts are high. When
the viral load rebounds (due to lack of adherence or viral drug resistance rise) or
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AIDS-defining events happen, usually the therapy (from one drug to the entire
regimen) is changed, though this is not a necessary condition (a therapy change
can be decided for other circumstances).

Figure 10.1 shows an ideal TCE as an instance of the view on EuResist DB:
corresponding baseline variables (viral genotypes, clinical markers) were consid-
ered in a constrained time window around the new therapy start date ([-90,0]
days). Patients’ demographics and past treatments were collected when available.
The aim was to predict a short-term (eight weeks, in a time window of [+4,+12])

Figure 10.1: Standard Datum Instance

follow up outcome in terms of virological success – defined as the achievement of
less than 500 copies of viral RNA load or decrease from the baseline value by two
or more Logs –.

When in presence of multiple baseline or follow up data, the values closest to
the therapy start date and 8th week follow up respectively were taken.

Additional minor constraints were also included, along with the exclusion of
“suspicious” instances (for example the usage of Fusion Inhibitors as first line
therapies): indeed, the Integrated DB is a retrospective cohort with data coming
from heterogeneous and not equally reliable sources.

The genotypes collected were aligned through CLUSTALW [70] to subtype‡

B consensus reference and mutations were extracted for each position in Reverse
Transcriptase (RT) and Protease (PR), accounting also for ambiguous positions
and missing values (i. e. shorter region sequenced), with a frequency threshold of

‡subtypes are the different genetic lineages of HIV-1, unevenly distributed in different geo-
graphic regions.
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4% (more than 400 mutations were found). A typical genotype thus was a list of
mutations of the form:

Protease (PR) mutations:

L10FIR,N37T,R41K,M46I,L63P,I66IV,A71V,V82T,I84V,L90M,I93L,C95F

Reverse Transcriptase (RT) mutations:

M41L,D67N,L74V,K103N,D123E,E138Q,I178L,M184VI,Q207E,L210S,T215Y

where the first letter coded the amino acid found in the consensus reference, the
number was the codon position and the following letter(s) coded the substitu-
tion(s) present in the viral isolate. Genotypes were coded as real vectors in [0,1],
where each element represented an amino acidic substitution in a codon position
and the value was the fraction of the specific change observed in the sample§.

No restrictions on therapies were contemplated, i. e. suboptimal treatment
regimens made of less than three drugs were allowed: for this reason, in this
paper the general combined Anti Retroviral Therapy (cART) term was used in
place of the more specific HAART (defined as the use of at least three drugs
belonging to more than one drug class). The following ARVs, all currently ap-
proved by the Food and Drug Administration (FDA) [48] and European Medicines
Agency (EMEA) [6] were considered: nucleotide/nucleoside reverse transcrip-
tase inhibitors AZT, D4T, DDC, ABC, 3TC, FTC, DDI, TDF (NRTIs); non-
nucleoside reverse transcriptase inhibitors DLV, EFV, NVP (NNRTIs); protease
inhibitors APV (or FPV), ATV, IDV, LPV, NFV, RTV, SQV, TPV, DRV, along
with boosting RTV¶ (PIs). DRV, DLV and TPV were excluded from the analysis
due to low frequency.

Attribute Domains Table 10.2 summarises the attributes fed to the Machine
Learners. Also derived features are included (described further). Sizes of se-
lected training sets were showed in table 10.1.

As also described in figure 10.1, the input domain for a TCE consists of
mandatory attributes which are the baseline (i.e. closest to the start date of
the new therapy) viral sequence, with extracted mutations, and the new therapy
(cART). The optional attributes consist of baseline markers (viral load and CD4+
cell counts), patients’ demographics and epidemiological information (age, sex,
ethinicity, mode of HIV transmission, viral subtype. . . ), along with information
about past treatments (total time exposure for each drug and time since the ad-
ministration was stopped). Derived features consist of new features which can be
calculated from the former attribute space, using different combining functions.

§in the text, mutations will be named only referring to the substitution in a specific position
of the gene, i. e. PR 33 F will correspond to L33F in Protease.

¶a sub-therapeutic low dose of RTV used to enhance the activity of a companion PI through
a favourable pharmacokinetic interaction
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attribute domain type
cART {0, 1}d mandatory
baseline viral RNA load R optional
baseline viral genotype mutations from consen-
sus B

[0, 1]n mandatory

baseline viral subtype nominal optional
baseline viral genotype consensus B match N optional
baseline CD4+ cell counts R optional
steady-state viral RNA load R optional
steady-state CD4+ cell counts R optional
risk nominal optional
ethnicity nominal optional
country of origin nominal optional
country of infection nominal optional
age N optional
gender nominal optional
drug total time exposure Rd optional
drug time since not used Rd optional
drug history function [0, 1]d derived
NRTI previous usage {0, 1}d derived
NNRTI previous usage {0, 1}d derived
PI previous usage {0, 1}d derived
phenotypes Rd derived
literature resistance associated mutation accu-
mulation

Rd derived

number of drugs used N derived
fuzzy phenotypic score (optimistic) R derived
fuzzy phenotypic score (pessimistic) R derived
fuzzy literature resistance rules score (opti-
mistic)

R derived

fuzzy literature resistance rules score (pes-
simistic)

R derived

differential equation approx. (pessimistic) R derived
differential approx. (optimistic) R derived
second-order and third-order variable interac-
tions

{0,1} derived

8th week viral RNA load R mandatory
8th week success {0, 1} mandatory,

derived

Table 10.2: Standard Datum Attribute Space.
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For instance, the phenotype is calculated using the baseline viral sequence and
gives information about the in-vitro resistance for a single drug pressure. The ac-
cumulation of mutations listed in literature counts specific mutational changes for
each drug listed as resistant in literature guidelines. Fuzzy resistance scores use
the former information of accumulation of mutations to calculate overall efficacy
scores for a cART. Second- and third-order variable interactions set up additional
dummy variables to account for mixed effects. Next section will describe each
derived feature in detail.

Out of 2523 suitable instances (2176 with baseline viral RNA load), 2269
were used for training and validation, while 254 (244 with baseline info) instances
were reserved as independent test set. Data set with multiple observation was
composed by 3688 instances, with complete information.

Subtype assignment was calculated trough a BLAST search [110] on an up-
dated reference subtype sequence data set from Los Alamos data base [101].

Machine Learners, Feature Selection, Losses, Validation Procedures The Super-
vised Learning technologies considered were:

• (Bagged) Decision Trees (DT) [74] [23] [76]

• Random Forests (RF) [77]

• Logistic Regression (LR) [106] [35]

• Instance Based Reasoning (IBR) [7]

Feature Selection was carried on using (i) filter methods based on univariate
analysis and Correlation-Based Feature Selection (CFS) [83], (ii) embedded se-
lection based on (boosted) tree splitting and ridge shrinkage for Logistic mod-
els [106] [35], (iii) wrappers with heuristics developed by the authors [81] were
explored. Specifically, from the whole set of attributes, a filter based on non-
parametric univariable analysis (Chi-Square and Wilcoxon rank-sum adjusted
for multiple testing) selected attributes significantly associated with treatment
response (p ≤ 0.05): this selected set of features was fed to all the MLs. Then
features were selected by the embedded methods specific of each ML: intrinsic
splits and pruning on DTs or ridge shrinkage on Logistic Regression, plus the
usage of CFS. References are also given in the introductory section 8.3.

Loss functions considered were AUC and accuracy. Multiple 10-fold CV was
carried on for model selection and performance assessment.

10.3 Feature Derivation

All the features and additional indicators presented here have been derived inde-
pendently from the training data, in order to avoid any bias in the performance
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estimation. Each derived feature is calculable directly from the mandatory at-
tributes of the Standard Datum: in this way no additional information is re-
quested in the input. Experimental results will show that adding these features
to the ML models significantly improves the results.

10.3.1 Phenotypes

One immediate idea is to add an estimation of in-vitro drug resistance to the
input attribute set. The in vitro resistance of a given virus isolate (representa-
tive of patient’s viral population), known as phenotypic test‖, is done through
cumbersome and time-consuming assays, performed at high cost by a few spe-
cialised companies. Alternatively, predicting the phenotype to single drugs from
viral genotype has been accomplished with increasing accuracy. Multiple Linear
Regressors (MLR), Decision Trees (DT) and Support Vector Machines (SVM) ap-
plied to genotype-phenotype pairs are able to perform predictions that explains
correctly up to 80% of phenotypic variance [55] [90] [89].

Multiple Linear Regression (MLR) was shown to compete with more com-
plex models and was the choice for this experiment. MLR models were trained
and validated on a large set of genotype-phenotype pairs [126], obtaining Log
Fold Change predictors for each drug compound. Thus, virtual phenotypes were
calculated at any Treatment Change Episode (TCE) for each drug in the cART.

Feature selection was carried on selecting first variables significant under uni-
variable chi-square analysis and then applying stepwise selection, assuming con-
ditional independence on variables. The procedure resulted able to shrink the
input space set from more than 400 variables (i.e. mutations) down to dozens.
Table 10.3 reports cross-validation performances (Pearson’s ρ correlation between
predicted and observed outcome) for each drug.

Apart from the importance to have extremely reliable in-silico models to sim-
ulate laboratory experiments, the usefulness of these methods is in the sense that
they can be applied to viral sequences associated to in-vivo data, in order to
derive phenotypic values to be used as derived features for therapy optimisation.
The results obtained ensure high performances, considering also the large training
sample sizes. MLR models are competitive with SVM implemented in [55], but
have the advantage to be more understandable: moreover, the feature selection
techniques gave a reduced set of mutations in perfect agreement with previously
reported statistics [121], which weights resemble also the resistance/susceptibility
contributions (see table 10.4 for a few examples).

‖the phenotype is measured as a fold change, representing the drug dosage needed to inhibit
the 50% of the viral mutant replication wrt wild type reference value, in laboratory cultures
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NRTI & NNRTI ρ no. ex.
AZT 0.9408 939
ABC 0.9428 894
3TC 0.9735 934
D4T 0.9201 918
DDC 0.9398 891
DDI 0.8836 889
TDF 0.9148 770
DLV 0.9243 963
EFV 0.9309 957

PI ρ no. ex.
IDV 0.9669 936
NFV 0.9613 943
NVP 0.8784 972
RTV 0.9718 930
SQV 0.9702 954
APV 0.9679 944
LPV 0.9662 756
ATV 0.9572 342

Table 10.3: Phenotype Prediction: 10-fold cross validation ρ correlation

D4T Fold Change Log = 0.0594 · RT 44 A +0.0733 · RT 44 D
+0.0242 · RT 62 V +0.0627 · RT 67 N +0.0713 · RT 69 D +0.0221 ·
RT 70 R +0.1096 · RT 75 M -0.0183 · RT 83 K +0.2528 · RT 116 Y
+0.0222 · RT 118 I +0.7002 · RT 151 M -0.0831 · RT 184 V +0.1137
· RT 210 W -0.012 · RT 211 K -0.0226 · RT 214 L +0.1131 ·
RT 215 F +0.1255 · RT 215 Y +0.0231 · RT 219 Q -0.0442
APV Fold Change Log = -0.3956 · PR 88 S +0.1918 · PR 90 M
+0.2225 · PR 54 V +0.2416 · PR 46 I +0.4812 · PR 84 V +0.0491
· PR 82 A +0.286 · PR 33 F +0.469 · PR 32 I +0.0993 · PR 10 I
+0.1869 · PR 34 Q +0.0825 · PR 73 S +0.1598 · PR 47 V +0.1767 ·
PR 10 F +0.1263 · PR 24 I +0.7521 · PR 50 V +0.21 · PR 46 L
+0.0712 · PR 55 R +0.065 ·PR 58 E +0.2508 ·PR 54 M +0.0781
·PR 67 F +0.0893 ·PR 48 V -0.0401 · PR 82 T +0.0861 · PR 33 I
-0.0236 · PR 88 D -0.2071

Table 10.4: Phenotype Prediction: MLRs for D4T and APV

10.3.2 Previous Class Exposure and Combined Drug History

A first rough indicator was defined: the previous exposure to NRTI, NNRTI and
PI classes was recorded as a binary variable, calculating if before any TCE the
patient experienced a drug pressure in a specific class for more than one year.

In a more detailed way, instead, total time exposure and time elapsed from
the last exposure could be calculated for each drug at any TCE. A combined
function was then defined as:

f(t, s) = e−k s
t ∈ [0, 1] (10.1)

where k is tuning constant, t is the time of exposure and s is the time elapsed from
the last exposure, calculated for each TCE. The effect of this function was to give
a measure of the effect of a therapy not only based on the current drugs taken,
but also to take into account for how long a compound was taken previously and
the time since it was not used.
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10.3.3 Derived Fuzzy Scores

In this section a set of Fuzzy scores that give indications about viral resistance –
associating mutations and drugs – will be defined, translating the existing medical
knowledge bases. In [121] a set of practical rules for the treatment of resistant
viral strains is given, based on summary statistics taken from the literature studies
published so far about HIV drug resistance. These “rules” usually are of the form:

IF the viral genotype shows

three or more mutations

in the set {M41L, D67N, K70R, L210W, T215Y, T215F, T219E}

THEN resistance to AZT is high

The same holds for phenotypic tests: depending on the resistance fold change val-
ues obtained from in-vitro tests, using a patient’s viral isolate, a set of compounds
can be discarded for the next therapy. The set of parameters used, along with
choice of membership functions or logical, aggregation operators is arbitrary: it’s
an attempt to translate into Fuzzy formulae the medical protocols. Procedures
towards the automatic derivation or improvement of these rules are not carried on
in this study. However, it will be shown in the results that they are significantly
associated with the treatment outcomes.

Phenotype-Based Resistance and Efficacy Scores It is possible to design a fuzzy
Membership Function (MF) which calculates the resistance r ∈ [0, 1] as a sigmoid
function of the Log Fold Change for phenotype p and technical cutoff∗∗ c.

r =
1

1 + e−(p−c)
(10.2)

Obviously the shape of the function could be optimised (for example estimating
an optimal separation between two Gaussian), but usually cutoffs reported in
literature are a reliable source.

• pessimistic resistance score: suppose that the resistance to a single drug
concurs to the total resistance of a combined Anti Retroviral Therapy
(cART) under an unknown function. From a probabilistic point of view, if
the drugs were acting independently, the probability of overall cART resis-
tance would be the product of the single resistance values. However this
not the case: in fact many resistances are indeed cross-resistances, drugs
interact and moreover the virus mutates through time just in relation to
drug pressure and efficacy. Visual inspection of a product-based resistance
score did not gave satisfiable results. Instead, let’s suppose that actually

∗∗the cutoff is the fold change value from which a viral isolate is considered to be completely
resistant to the drug
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the single resistances will sum (it’s unrealistic, but simulates the fact that
through time the cross-resistant strains win). It can be set up a fuzzy

∨
that calculates this overall pessimistic resistance to a generic cART T .

ρ(T ) =
∨

∀d∈T

(rd) =
∨

∀d∈T

(
1

1 + e−(pd−cd)

)
(10.3)

where
∨

is the probabilistic sum (i.e. a∨ b = a + b− ab) of each rd for any
drug in the cART. If there is a boosted PI, the corresponding r value is
multiplied for 0.85 (accounting for the fact that RTV boosting dose helps
the PI adsorption).

• optimistic score for efficacy. The above indicator considers ineffective even
a therapy with just one drug for which the resistance is 1. In reality this is
not the case: usually a cART can suppress viral load below 500 copies if it is
composed by three or four (active) compounds in three different inhibition
classes (NRTI, NNRTI, PI). A common quadruple therapy is made by 2
NRTIs, 1 NNRTI and 1 PI. It is possible then to use this information to
design an efficacy estimation for each drug class and for a cART: assume
that to have complete efficacy in NRTI class at least two drugs must be
taken, while in order to have complete overall cART efficacy at least three
drugs must be active. The corresponding fuzzy formulae are:

ηNRTI(T ) = min

{
1,

∑
(1− rd)

2

}
, ∀d ∈ NRTI, d ∈ T (10.4)

ηNNRTI(T ) = min
{

1,
∑

(1− rd)
}

, ∀d ∈ NNRTI, d ∈ T (10.5)

ηPI(T ) = min
{

1,
∑

(1− rd)
}

, ∀d ∈ PI, d ∈ T (10.6)

If RTV booster is present, 0.15 is added to ηPI . Finally the total efficacy
η(T ) will be

η(T ) = min

{
1,

ηNRTI + ηNNRTI + ηPI

3

}
(10.7)

Scores Based on Literature Resistance Mutations The calculation is similar to
the above scores, but it relies on the resistance hypotheses published on the
international guidelines [121]. The fuzzy MF is related to how many resistance
mutations accumulate for each drug, including cross-resistance clusters. The
resistance for a single compound (o for a cross-resistant cluster) is

rd = min

{
nd

Nd
, 1

}
(10.8)

where nd is the number of resistance mutations accumulated and Nd is the number
needed to achieve complete resistance.
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• pessimistic resistance score: calculated in the same way as for the phenotype-
based score

ρ(T) =
∨

∀d∈T

(rd) =
∨

∀d∈T

(
min

{
nd

Nd
, 1

})
(10.9)

• optimistic efficacy score: same as for phenotype-based score.

10.3.4 Simulation of Viral Replication through Time

Many papers have been published regarding the simulation of viral replication
through time (Perelson [11] uses Ordinary Differential Equations, without ac-
counting for viral evolution). Here a simple equation was used, parametrised on
a constant (trough 8 weeks) viral resistance ρ (which can be one of the scores
above defined, being ρ = 1− η)

dV

dt
= ρP − cV = ρcVequil − cV (10.10)

which solution is V = V0e
−ct + ρVequil(1− e−ct) → V8Weeks = ρVequil, Of note, it

does not take into account CD4 or CD8, neither gives ρ a time dependency (like
monotonic decreasing): the approximation is simply a percentage reduction from
the steady state equilibrium.

10.3.5 Second- and Third-Order Variable Interactions

An interesting issue is to derive again from the EuResist data base a set of sig-
nificant associations among mutations and drugs to see if they resemble (confirm
or reject) medical hypotheses.

From a rigorous learning perspective, it can be considered “unfair” to use
derived indicators from existing knowledge bases, even if they have been estimated
from independent studies. The analysis of second- and third-order interactions
between variables can point out combinations between drugs and mutations that
are significantly associated with treatment response.

The codification for higher-order interactions can be made by dummy vari-
ables. Specifically, the following were considered:

• mutation × drug

• drug × drug

• drug × drug × drug

Note that they take into account only “and” associations: in fact, a combined
dummy variable is non-zero iff all the single are non-zero. Thus, more com-
plex logical associations like “variable a and not b” or “variable c or d” are not
modelled.
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The space set generated, though, yielded an extremely large feature set (more
than 12’000 not-null variables), due to the fact that in the Standard Data hun-
dreds of mutations are observed with a frequency > 4% and the number of avail-
able drugs is 20 circa.

10.3.6 Distance Measures for HIV Data

Since the input space is not a simple vector in Rn, in order to apply Instance
Based Reasoning, a set of new ad-hoc distances was designed for each different
input domain.
For vectors in Rn and binary (i.e. therapies, phenotypes and resistance vectors
obtained by fuzzy functions) let’s introduce the Tanimoto (or cosine) coefficient,
which for binary vectors is also called Jaccard :

Tanimoto(a, b) =
a · b

‖a‖2 + ‖b‖2 − a · b ∈ [0, 1] (10.11)

If the complementary of Tanimoto similarity is defined as 1 − Tanimoto(·), a
distance measure is obtained: it has been shown that this has higher discriminant
power under text classification.
For variables in R (i.e. viral load Log, CD4+ counts) a Gaussian function is
defined:

d(a, b) = e−
|a−b|2
2σ2 (10.12)

where σ is the standard deviation observed in the population.
For nominal variables (risk, gender, country of infection. . . ) the following criteria
is chosen:

d(A,B) =





1 if (A 6= B) ∧ (A 6=?) ∧ (B 6=?)
0.5 if (A =?) ∨ (B =?)
0 if (A = B) ∧ (A 6=?) ∧ (B 6=?)

(10.13)

where ? stands for missing or unknown attribute value.

All the single distances are combined using the overall sum.
There is need to point out here that no theoretical justification for the choice

of these distance function is here given. The choice of the Tanimoto coefficient
rises from the fact that for high dimensional vectors the Euclidean distance suffers
more the curse of dimensionality. The usage of a Gaussian function for the real
variables tries to take into account the natural variability of clinical measures,
which can be tuned through the σ value.
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10.4 Results

10.4.1 Univariable Filter: Selection of Statistically Significant Fea-

tures

A preliminary filter was applied to the whole data to select for significant fea-
tures under univariable non-parametric analysis: higher-order interactions were
considered present in the derived features or were directly coded into dummy
variables (see section 10.3.5). Drug history and Fuzzy scores were all detected
significant (the one based on phenotypes and the one from literature guidelines)
along with almost all mutations listed in [121] when in presence of a correspond-
ing drug known to be not active (p < 0.05). Without considering higher-order
dummy variables (treated separately), from more than 400 variables, ˜200 were
detected significant and fed to the machine learners. Table 10.5 reports first 60
highest results.

Higher-order interactions (drug × drug, drug × mutation, drug × drug ×
drug) generated more than 12’000 variables: of these, a thousand circa have been
detected significant and were passed to embedded selection.

Different methods were experimented, using different feature sets, increasing
the feature set space from a base model to more complex. Parameter tuning and
model selection was made through multiple CV (10 runs).

10.4.2 Classification of 8th Week Follow Up Virological Success

Tables 10.6 and 10.7 show prediction performances for Logistic, Decision Trees,
Random Forests and Instance Based Reasoning (best models under different sce-
narios) varying feature spaces.

The base models that included only genotypes and cARTs (or worse only
cARTs) gave little improvements compared to a null model. The inclusion of
baseline markers (viral RNA load and CD4+ cell counts) improved significantly
the performances, but was still significantly worse than a model trained using de-
rived features. Other attributes like epidemiological indicators (risk factors, route
of infections) and drug histories were detected significant as well and improved
slightly the performances. In fact, the presence of macro-indicators like the coun-
try of infection or the ethnicity was consistent with the source heterogeneity of
the integrated DB.

Among the models that used derived features, relying only on one Fuzzy score
(the one based on resistant mutations listed in literature) gave a compact model
which was equally powerful as a model which included all significant attributes
selected by univariable analysis. Regarding machine learning model choice, De-
cision Trees were not as powerful as Logistic Regression or Random Forests: due
to its easier understandability, then, Logistic Regression could be preferred.
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The local IBR behaves similarly: the wrapper feature selection method and
ad-hoc distances are able to yield a better local approximation than the base
(cART + mutations) model. Moreover, in the next paragraph it will be shown
that performance rate can be enhanced using an enlarged Case Base.

Table 10.8 instead presents results obtained using dummy variables, coding
higher-order interactions between drugs and mutations. No derived features were
included in the attribute space, since the objective was to discover again discrim-
inant associations. Accuracy and AUC were even higher than the values obtained
using the Fuzzy scores, moreover the feature selection yielded a compact model.
This was an extremely interesting result, that demonstrated how an accurate
investigation of the space state can lead to optimal results.

For completeness, two compact Logistic models are reported in tables 10.9,
10.11 and 10.10: they used Fuzzy scores and higher-order interactions respec-
tively. Significance p values are shown under multivariate analysis. As expected,
Fuzzy score and baseline markers are significant also in the multivariate. The
coefficients reported for drugs don’t have to be misinterpreted, because of either
the intercept value or the fact that these dummy variables are not calculated with
respect to any therapeutic backbone. Actually, immediate interpretation of vari-
able importance is not easy: for example, mutation PR 33 F takes always a role
in the second model, whereas its function would be intrinsically dependent on the
usage of a PI. In the model that uses the Fuzzy resistance score, other variables
can be viewed as adjustments, while in the mixed effect model the interpretation
is tougher.

Table 10.12 finally gives error estimation on the test set. Results resemble
the errors estimated through CV, thus proving the robustness of parameter op-
timisation techniques and validation procedures.

Classification of 8th Week Follow Up Virological Success using Multiple Ob-

servations and Adjusted Validation

As described in section 10.2, a view that includes multiple observation for a TCE
can assure a more confident estimation of the 8th week follow up, partially solving
the viral “blips” problems. This is useful for the usage of a local estimator.
In order to avoid positively biased results, coming from the classification of a
TCE with itself, the cross validation procedure has been corrected, avoiding the
presence of the same TCE either in the fold-test or the training set. Moreover,
all the TCE in the test set have been completely removed from the reference
case base, providing the same test domain as for the previous models. Table
10.13 shows results coming from the wrapper optimisation via Bubble selection
heuristic. With multiple observations, IBR reached the best ranked Logistic
model.
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10.4.3 Regression of 8th Week Follw Up Viral RNA Load

It has to be pointed out here that the regression problem is far more complex
than the classification one, due to the high variability of RNA measures within
individuals (±0.5 Logs even in a small time window) and to detection limits
of instruments (some have a resolution of 500 cp/ml, some other of 50 cp/ml).
While the classification problem divides between detectable levels of HIV-RNA
and undetectable levels (so, below higher detection limit), the regression problem
faces the actual viral RNA charge prediction, with the bias of saturating all
the undetectable instances (i.e. all the successes) at 500 copies. These premises
reduce the chances to achieve satisfying results, even with an accurate application
of the ML techniques described so far.

Attribute selection and feature derivation has been carried on in the same
way as for classification problem. Bagged Decision Trees and IBR resulted to
be the best models. The considerations about feature sets are the same as de-
scribed for the classification problem: derived features improve indeed prediction
performances significantly, but the correlation values cannot go above 0.6.

Table 10.14 show results for Bagged DTs, while table 10.15 for IBR.

10.5 Conclusions

Discussion In this study a wide range of Feature Selection and Feature Extrac-
tion/Derivation techniques was applied to real clinical and biological HIV data.
Different ML methods (local and global) were applied and statistically compared
in order to build prediction models either for in-vitro or in-vivo problems.

For the specific problem of phenotype prediction, MLR models were proven to
be competitive with the State of the Art (SoA) techniques, but preferable due to
their compactness (achieved thanks to Feature Selection) and understandability.

Regarding in-vivo therapy success classification and eager learning, it was
shown that baseline markers, epidemiological and historical information do im-
prove performances over the naive cART + genotype model (at now SoA). Actu-
ally, the inclusion of derived features lifts further performances, still significantly
(p < 0.05). Of note, one fuzzy score is based on the existing medical knowledge
and another one on the in-vitro phenotypes: this means that at now the rules
used by physicians are indeed effective and that the phenotypic testing (or virtual
phenotyping through genotype-based models) is a valid help in clinical practice.
The analysis of higher-order interactions among variables provided then com-
pletely data-driven models able to compete with the Fuzzy-enhanced ones.
Lazy IBR, a completely non-linear local approximation, showed equally good be-
haviour with the designed distance functions, better with the usage of multiple
observations. Considering that the EuResist integrated DB is continuously in-
creasing in size, yielding a denser space, IBR is an acceptable alternative if there
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is no need to discover an approximating function (i.e. a model).
It’s important also to address the impact of the models presented for the sci-

entific community: phenotype predictor is not a new discovery – geno2pheno [55]
is working good since a couple of years – but the simplicity of MLR is a prefer-
able alternative. The most important results are the models for in-vivo follow
up classification. In a therapy optimisation perspective, the model can be run
with a set of allowed cARTs (presumably HAARTs) and give a rank of suitable
therapies with the corresponding probability of success. Moreover, this study is
investigating one out of four prediction engines that are being designed at the
same time under the EuResist project, with a further aim of model integration.

From a pure analysis of model power, accuracy of ˜76% and correlation of
˜0.6 can be not satisfactory: however, these results are the best ever obtained
in the field (using the approved standard TCE datum policy) and are supported
by the largest data base in the world. Plasma analyses are just an indirect way
to observe the reality and the variability of the body response adds noise to
the system (until it remains unknown). In this study the whole set of clinical,
biological and epidemiological attributes currently retrievable has been explored
(except for HLA information, i.e. the human genome. . . ), so it could be that
these performances are really an upper bound: there is the chance to design
more efficient features or to model better the unobserved variables that at now
act as stochastic fluctuations.

Future Perspectives Since the fuzzy indicators derived from literature guidelines
showed to be significantly associated with prediction improvement, the next step
can be to use the existing decision algorithms (REGA, Stanford [8] [13]) as ad-
ditional indicators and fed them to the MLs. In addition, the importance of
higher-order dummy variables, explaining conditional dependence between vari-
ables, suggests that automated reasoning (like association rule discovery) could
provide new findings: if it is performed on an independent set, these rules can be
added as well to the feature space.
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avg-chi-square st.dev var.name

296.259 7.95 fuzzyLiteratureResistanceMutScore optimistic
291.145 10.754 diffEquaSolution fuzzyLiteratureResistanceMutScore pessimistic
255.836 8.056 LPV pheno logFC
249.535 6.336 literatureResMut LPV
243.712 10.444 RTV pheno logFC
236.108 7.943 literatureResMut APV
232.1 7.57 APV pheno logFC

231.898 7.646 literatureResMut RTV
221.861 10.196 IDV pheno logFC
218.863 11.915 ATV pheno logFC
212.272 8.229 literatureResMut IDV
204.644 14.473 D4T pheno logFC
198.759 8.302 SQV pheno logFC
192.762 9.492 diffEquaSolution fuzzyLiteratureResistanceMutScore optimistic
190.274 7.095 TPV pheno logFC
184.509 8.375 fuzzyLiteratureResistanceMutScore pessimistic
183.171 8.959 literatureResMut ATV
180.86 14.426 fuzzyPhenoResistanceScore optimistic
179.869 12.001 RT 69 INS Complex
179.405 11.748 AZT pheno logFC
173.229 5.561 ABC pheno logFC
167.79 7.516 literatureResMut SQV
167.4 7.65 literatureResMut NFV

166.387 7.372 TDF pheno logFC
158.203 14.23 TAMs
158.203 14.23 literatureResMut D4T
158.203 14.23 literatureResMut AZT
155.202 7.04 diffEquaSolution fuzzyPhenoResistanceScore pessimistic
152.811 9.364 AZT combinedUsage
151.366 6.248 DDI pheno logFC
149.529 6.751 NFV pheno logFC
148.915 8.057 AZT totalTimeExposure
148.322 8.78 NRTI experienced
145.173 9.129 AZT sinceNotUsed
142.947 8.442 fuzzyPhenoResistanceScore pessimistic
142.487 8.525 SQV totalTimeExposure
141.581 9.596 drugHistoryScore
134.62 12.707 FTC pheno logFC
132.388 8.204 SQV combinedUsage
131.665 18.016 3TC pheno logFC
130.71 9.036 SQV sinceNotUsed
126.221 7.919 DDI totalTimeExposure
122.145 8.323 DDI sinceNotUsed
122.061 7.731 NVP pheno logFC
120.81 8.399 literatureResMut TPV
117.247 6.421 3TC totalTimeExposure
116.695 5.804 D4T combinedUsage
114.937 4.573 D4T sinceNotUsed
114.661 5.377 D4T totalTimeExposure
113.592 6.785 3TC sinceNotUsed
112.228 7.11 diffEquaSolution fuzzyPhenoResistanceScore optimistic
111.792 7.854 DDC sinceNotUsed
111.611 7.974 DDC totalTimeExposure
110.773 6.352 3TC combinedUsage
109.375 6.606 DDC pheno logFC
108.697 7.35 RNA equil log
106.418 8.417 DDI combinedUsage
105.804 7.624 RTV totalTimeExposure
103.621 7.633 PI experienced
102.576 6.828 DDC combinedUsage

Table 10.5: univariable chi-square analysis
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model feature set accuracy %
(st.dev)

AUC of
ROC
(st.dev)

majority
class

none 67.08
(0.18)*

0.50 (0.02)*

Logistic cART 67.45
(1.89)*

0.65 (0.05)*

Logistic cART + IAS muta-
tions

72.90
(2.51)*

0.71 (0.04)*

Logistic cART + IAS muta-
tions + baseline mark-
ers

72.94
(2.53)*

0.75 (0.04)*

Logistic cART + fuzzy resis-
tance scores + base-
line markers + drug
class exposure + epi-
demiological

75.45 (2.89) 0.77 (0.05)

Decision
Tree

all filtered attributes
(including derived)

72.64
(2.82)*

0.68 (0.04)*

Logistic all filtered attributes
(including derived)

75.13 (2.16) 0.77 (0.03)

Random
For-
est (30
trees)

all filtered attributes
(including derived)

75.44 (2.26) 0.77 (0.03)

Table 10.6: Classification of 8th week follow up success - Multiple CV Results
for Logistic, DT and RF (10 independent runs). Values with * are significantly
worse than best models (p < 0.05)
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feature set k̂ kernel accuracy %
(st.dev)

cART 8 TriCube 66.18
(0.36)*

cART + IAS mutations 16 Linear 70.88
(0.23)*

cART + IAS mutations + baseline
markers

16 Linear 72.98
(0.18)*

gender, subtype, consensusB match,
no of drugs, mutations, cART, time
exposure to drugs, phenotype, liter-
ature resistance mutation clusters,
baseline markers, equilibrium mark-
ers

30 Linear 75.99 (0.14)

Table 10.7: Classification of 8th week follow up success - Multiple CV Results
for Instance Based Reasoning (10 independent runs). Kernel and k̂ optimised by
multiple CV accuracy maximisation; feature sets manually tuned and selected by
Bubble search. Values with * are significantly worse than best models (p < 0.05)

model feature set accuracy %
(st.dev)

AUC of
ROC
(st.dev)

Logistic all filtered attributes
(higher-order interac-
tions)

76.61 (2.40) 0.79 (0.03)

Table 10.8: Classification of 8th week follow up success - Multiple CV Results
for Logistic (10 independent runs) using higher-order dummy variables.
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variable estimate std.err z.value Pr(> |z|) signif.
(Intercept) 6.888 1.151 5.984 0.000 ***
consensusB match 0.001 0.000 1.506 0.132
age 0.006 0.009 0.636 0.525
risk = vertical transmission -2.019 0.663 -3.046 0.002 **
country of origin = ITA -0.249 0.178 -1.398 0.162
subtype = D 1.710 1.085 1.577 0.115
3TC 0.310 0.219 1.413 0.158
AZT 0.706 0.213 3.312 0.001 ***
RTV booster 0.793 0.250 3.169 0.002 **
D4T -0.145 0.211 -0.685 0.493
DDC 0.490 0.959 0.512 0.609
DDI 0.440 0.222 1.984 0.047 *
FTC 0.565 0.382 1.479 0.139
LPV -0.099 0.195 -0.507 0.612
SQV -0.993 0.323 -3.077 0.002 **
NRTI experienced -0.557 0.243 -2.287 0.022 *
NNRTI experienced -0.358 0.233 -1.540 0.124
PI experienced -0.222 0.235 -0.945 0.345
no. of drugs -0.096 0.153 -0.625 0.532
RNA equilibrium Log -0.745 0.138 -5.397 0.000 ***
CD4 equilibrium 0.001 0.000 3.905 0.000 ***
RNA baseline Log -0.218 0.104 -2.094 0.036 *
Fuzzy score on resist. mutations -4.710 0.509 -9.254 0.000 ***

Table 10.9: Logistic model built after univariable filter, CFS and ridge shrinkage,
with derived Fuzzy scores. Coefficients for the success prediction. Null deviance:
1398.0 on 1181 degrees of freedom. Residual deviance: 1042.0 on 1159 degrees of
freedom. AIC: 1088. Signif. codes: ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1.
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variable estimate std.err z.value Pr(> |z|) signif.
(Intercept) 2.287 0.692 3.305 0.001 ***
PR 54 V -0.442 0.330 -1.340 0.180
NRTI experienced -0.303 0.169 -1.795 0.073 .
PR 82 A -0.461 0.275 -1.672 0.094 .
RNA equil log -0.601 0.091 -6.589 0.000 ***
PR 10 I -0.304 0.160 -1.901 0.057 .
PR 84 V -0.620 0.273 -2.276 0.023 *
no. of drugs 0.582 0.080 7.291 0.000 ***
RNA baseline Log -0.201 0.070 -2.883 0.004 **
PR 33 F -1.235 0.395 -3.127 0.002 **
SQV and PR 54 V -2.020 1.138 -1.775 0.076 .
PI experienced -0.248 0.167 -1.482 0.138
RT 210 W -0.164 0.239 -0.683 0.494
PR 90 M 0.144 0.188 0.765 0.444
PR 46 I 0.003 0.221 0.016 0.988
age 0.014 0.006 2.183 0.029 *
DDI and ABC and TDF -2.739 0.860 -3.184 0.001 **
RT 215 Y -0.224 0.225 -0.993 0.321
CD4 equilibrium 0.000 0.000 3.238 0.001 **
subtype = D 1.858 0.644 2.883 0.004 **
AZT and LPV 0.232 0.425 0.547 0.584
APV and PR 10 I -1.443 0.456 -3.164 0.002 **
D4T and RT 215 Y 0.001 0.320 0.003 0.998
D4T and DDI -0.271 0.185 -1.467 0.143
AZT and 3TC and LPV 0.479 0.487 0.983 0.326
NVP and RT 184 V -0.842 0.303 -2.780 0.005 **
RT 41 L -0.076 0.187 -0.405 0.686
RT 67 N 0.013 0.171 0.076 0.940

Table 10.10: Logistic model built after univariable filter and CFS. Coefficients
for the success prediction. Null deviance: 2875.4 on 2268 degrees of freedom.
Residual deviance: 2185.8 on 2214 degrees of freedom. AIC: 2295.8. Signif.
codes: ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1.
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variable estimate std.err z.value Pr(> |z|) signif.
D4T and RT 210 W -0.316 0.381 -0.830 0.407
LPV and PR 54 V -0.620 0.406 -1.528 0.126
APV and PR 84 V -1.852 1.172 -1.581 0.114
NFV and PR 82 A -1.584 1.122 -1.411 0.158
RTV and PR 64 L -2.281 1.219 -1.872 0.061 .
consensusB match 0.001 0.000 1.685 0.092 .
PR 10 F -0.786 0.349 -2.253 0.024 *
IDV and PR 90 M -1.267 0.449 -2.824 0.005 **
DDC and RT 215 Y -1.002 0.846 -1.185 0.236
NFV and PR 46 I -1.921 1.123 -1.711 0.087 .
DDC and 3TC -13.130 1455.000 -0.009 0.993
DDC and 3TC and NVP -2.772 1672.000 -0.002 0.999
D4T and ABC and NVP -15.510 784.500 -0.020 0.984
APV and PR 16 E 14.420 397.800 0.036 0.971
NNRTI experienced -0.312 0.165 -1.895 0.058 .
D4T and RT 67 N 0.036 0.269 0.133 0.894
RT 184 V -0.313 0.123 -2.539 0.011 *
NVP and RT 215 Y -0.080 0.337 -0.238 0.812
FTC and TDF 0.345 0.261 1.321 0.186
RTV and PR 54 V 0.369 1.217 0.303 0.762
SQV and PR 62 V -0.792 0.455 -1.740 0.082 .
DDI and RT 181 C -0.753 0.264 -2.850 0.004 **
EFV and RT 103 N -1.527 0.542 -2.816 0.005 **
AZT and RT 70 R -1.441 0.315 -4.578 0.000 ***
LPV and PR 30 N 1.103 0.584 1.888 0.059 .
D4T and DDI and RTV -15.030 585.900 -0.026 0.980
D4T and DDI and APV -1.950 1.014 -1.924 0.054 .

Table 10.11: Logistic model built after univariable filter and CFS using higher-
order interactions (continued). Coefficients for the success prediction. Null de-
viance: 2875.4 on 2268 degrees of freedom. Residual deviance: 2185.8 on 2214
degrees of freedom. AIC: 2295.8. Signif. codes: ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’
0.1 ’ ’ 1.
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model feature set accuracy
%

AUC
of
ROC

majority
class

none 66.93 0.50

Logistic cART 68.50 0.60
Logistic cART + IAS mutations 73.62 0.70
Logistic cART + IAS mutations + baseline mark-

ers
72.83 0.72

Logistic cART + fuzzy resistance scores + baseline
markers + drug class exposure + epidemi-
ological

78.35 0.77

Decision Tree all filtered attributes (including derived) 71.26 0.74
Logistic all filtered attributes (including derived) 79.13 0.79
Random For-
est (30 trees)

all filtered attributes (including derived) 76.77 0.75

Logistic all filtered attributes (higher-order inter-
actions)

76.77 0.77

IBR (k̂ = 8,
TriCube ker.)

cART 65.86 not.av

IBR (k̂ = 16,
Linear ker.)

cART + IAS mutations 68.67 not.av

IBR (k̂ = 16,
Linear ker.)

cART + IAS mutations + baseline mark-
ers

71.08 not.av

IBR (k̂ = 30,
Linear ker.)

gender, subtype, consensusB match, no of
drugs, mutations, cART, time exposure
to drugs, phenotype, literature resistance
mutation clusters, baseline markers, equi-
librium markers

75.98 0.73

Table 10.12: Classification of 8th week follow up success - Test Set Error for
Models (n=254)
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IBR Multiple CV Test Set

feature set k̂ kernel accuracy
%
(st.dev)

accuracy
%

AUC

country of infection, eth-
nicity, mutations, IAS mu-
tations, cART, compound
time exposure, time elapsed
since last compound usage,
phenotype, baseline mark-
ers, equilibrium markers

30 Linear 76.52
(0.53)

77.11 0.75

Table 10.13: Classification of virologic success at week 8 - Multiple Observations
data set - Adjusted Multiple CV Results for Instance Based Reasoning (10 inde-
pendent runs) and Test Set evaluation. Kernel and k̂ optimised by multiple CV
accuracy maximisation; best feature set selected by Bubble search.

75 Bagged Decision Trees
Multiple 10-fold CV (10 independent runs)

feature set correlation
(st.dev)

RMSE
(st.dev)

cART + IAS mutations + baseline
markers

0.56
(0.06)*

0.67
(0.05)*

all filtered attributes (including de-
rived)

0.55
(0.07)*

0.68
(0.05)*

fuzzy scores + baseline markers + epi-
demiological

0.57
(0.07)

0.66
(0.05)

Test Set Evaluation
feature set correlation RMSE
cART + IAS mutations + baseline
markers

0.5356 0.684

all filtered attributes (including de-
rived)

0.4967 0.7017

fuzzy scores + baseline markers + epi-
demiological

0.5648 0.6675

Table 10.14: Regression of actual viral load at week 8 - Results for Bagged DTs.
Values with * are significantly worse than best model (p < 0.05).
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IBR Multiple CV Test Set

feature set k̂ kernel correlation
(st.dev)

correlation

cART 16 Linear 0.159
(0.007)

0.288

cART + IAS mutations 32 TriCube 0.326
(0.007)

0.365

cART + IAS mutations +
baseline markers

32 Linear 0.537
(0.003)

0.587

age, ethnicity, subtype, con-
sensusB match, no. of drugs,
mutations, IAS mutations,
cART, time elapsed since last
compound usage, phenotype,
baseline markers, equilibrium
markers

28 Linear 0.590
(0.003)

0.569

Table 10.15: Regression of actual viral load at week 8 - Multiple CV Results for In-
stance Based Reasoning (10 independent runs) and Test Set evaluation (n=249).
Kernel and k̂ optimised by multiple CV correlation maximisation; feature sets
manually tuned and selected by Bubble search.
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