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Preface

The research described in this thesis concerns the Localization Problem within

two different fields of interest: Mobile Robotics and Sensor Networks. Over the

past decade, a strong interest was shown by the research community in building

heterogeneous frameworks able to integrate robotics components with sensorial

devices. Interest in developing these systems comes from the astonishing num-

ber of possible applications, which can be conceived by exploiting their inherent

robustness and flexibility.

This thesis is motivated by the observation that in order to build such complex

systems some basic services must be provided in advance. Among them, the

localization service holds an important rule in both fields: robots must know their

location while performing a task in order to safely interact with their environment,

while sensor devices must be aware of their location (at least roughly) in order

to properly supply services.

The thesis is organized into three parts:

• Part I addresses the localization problem in the robotics context. Initially,

the state of the art is presented. Afterward, three different approaches are

proposed and simulations along with experimental results are given. Finally,

a comparative analysis is performed and results are discussed.

• Part II addresses the self-localization problem in sensor networks. After a

preliminary analysis of the state of the art, two approaches coming from

the probabilistic framework are derived, and their capabilities are investi-

gated through simulations and experimental results. Finally, a comparative

analysis is performed and results are discussed.

• Part III proposes a possible integrated framework for the coverage problem.

The classic scenario is extended by a sensor network which provides coordi-

nation to the robots by exploiting its distributed nature. In particular, this

work investigates how the dynamics of the coverage problem are modified

by the introduction of such a sensor network. Finally, conclusions are drawn

and future work is proposed.
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Chapter 1

Introduction

Mobile Robotics is a challenging interdisciplinary field. Research groups who

converge to this area are often characterized by different theoretical backgrounds

stemming from mechanical to artificial intelligence. Since a mobile robot has to

move around within its environment and perform autonomously almost any task,

it must be able to safely interact with it. In order to achieve that, a localization

module should always be included in a robotics control architecture. This module

should provide reliable pose information for the robot even in the presence of

noisy data and unpredictable environmental interactions. Due to the difficulty

of obtaining reliable pose information, the localization problem has been a highly

active field of research over the last two decades.

1.1 The Localization Problem in Mobile Robotics

In mobile robotics, one of the most important goals is to realize the complete

autonomy of the robot. A mobile robot must be able to safely interact with its

environment in order to achieve such autonomy. For this reason, the availability

of reliable pose information is critical. The localization problem aims to estimate

the robot’s pose in an environment, using data coming from sensors. However,

the interaction between the robot and the environment, along with the presence

of noisy sensors readings make the problem extremely challenging.

The localization problem is usually classified into three different problems:

position tracking, global localization and kidnapped robot. This classification,

which reflects the way the research community approached the problem over the

years, underlies an increasing complexity due to the progressive release of some

simplifying assumptions.

Initially the research community, given a starting position of the robot, has

focused its attention on developing techniques for keeping track of the robot’s

current position by exploiting both exteroceptive (e.g. sensor readings) and in-

teroceptive (e.g. dead-reckoning) information (i.e. position tracking problem).

Successively, with the release of this assumption, new techniques were investi-

2



CHAPTER 1. INTRODUCTION 3

gated focused mainly on maintaining the multi-hypothesis until some evidences

were achieved (i.e. global localization problem). Finally, the problem of having

new data that force the estimation of an already localized robot at a completely

different position has been taken into account (i.e. kidnapped robot problem).

The emergence of Multi-Robot Systems (MRS) has gained great attention in

recent years. Indeed, a team of robots brings several interesting advantages. The

reliability of a multi-robot system is higher as tasks can be performed even if a

member fails. In addition, the time required to execute a task is often significantly

sped up. However, cooperation and collaboration underlying a multi-robot sys-

tem introduce new challenges. In regard to the localization problem, algorithms

originally developed for the single-robot context may be used by parallelization:

an instance of the algorithm for each robot. Unfortunately, this approach does

not take into consideration the inherent collaborative and cooperative nature of a

multi-robot system . Conversely, a better localization accuracy can be generally

obtained when collaboration among robots is taken into account. Therefore, new

paradigms have been proposed to properly exploit all the information available.

1.2 State of the art

1.2.1 Single-Robot

The Localization problem has been widely investigated by several research com-

munities in the last two decades. Historically, the position tracking, i.e. the

instance of the localization problem where a prior knowledge about the starting

position of the robot is available, has been the first problem to be investigated.

The probability theory has over the years proved to be a powerful framework

for modeling the localization problem as a stochastic estimation problem. From

a probabilistic standpoint, the state of the robot (pose), which is defined in

terms of position (x, y) and orientation θ, is described by means of a probability

distribution called belief over the whole state space.

The Kalman Filter is likely the most famous approach based on this frame-

work [86]. Kalman based methods represent the belief by means of a Gaussian

distribution over the state space of the robot: the mode of the distribution yields

the current robot position, while the variance represents the accuracy of the esti-

mation. Gaussian distribution, described by means of only two parameters, has

two important advantages: from a mathematical point of view a discretization

of the state space is not required [107], while from a computation standpoint, an

on line implementation can be easily faced [121].

Some works for relative localization based on dead-reckoning exploit Kalman

Filter techniques to improve the accuracy of their estimations. [16, 134]. Dead-

reckoning is a popular technique used to estimate the current position of a robot

by exploiting simple geometric equations (the kinematics of the robot) on odo-

metric data. Since the starting position of the robot is assumed as its reference
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frame, this technique provides a relative localization of the robot. In particular,

in [16] a low-cost solid-state inertial navigation system (INS) for mobile robotics

applications is described. Error models for the inertial sensors are generated and

included in an extended Kalman filter (EKF) for estimating the position and ori-

entation of a moving robot vehicle. However, this approach is limited by the fact

that orientation information are not exploited for the calculation of the position.

In [134] the mobile robot localization problem is decomposed into two stages; atti-

tude estimation followed by position estimation. Two Kalman filters are exploited

to form the ”smoother” in the attitude estimation loop. The smoother exploits

the special nature of the data fused: high frequency inertial sensor (gyroscope)

data and low frequency absolute orientation data (from a compass or sun sensor).

During each time interval one of them propagates the attitude estimate forward

in time until it is updated by an absolute orientation sensor. At this time, the

second filter propagates the recently renewed estimate back in time. This way,

the limited observability of the system is optimally exploited by combining the

outcome of the two filters.

Other works use Kalman filter techniques to perform absolute localization ex-

ploiting beacons, landmarks or satellite signals [100, 20]. In [100] the authors

developed a system in which the basic localization algorithm is formalized as a

vehicle-tracking problem, employing an EKF to match ”geometric” beacon ob-

servations (environment features) to a navigation map to maintain an estimate

of the mobile robot. Geometric beacons, introduced in [60, 61], are a special

type of targets with two important properties that can be reliably observed in

successive sensor measurements and that can be accurately described by means

of a concise geometric parametrization. In [20], the authors proposed a theo-

retical development and experimental implementation of a complete navigation

procedure for use in an autonomous mobile robot for structured environments.

Estimates of the vehicle’s position and orientation are based on the rapid ob-

servation of visual cues located at discrete positions within the environment. In

this context, the extended Kalman filter is used to combine these visual obser-

vations with sensed wheel rotations to produce optimal estimates continuously.

The complete estimation procedure as well as the control algorithm developed

are time independent.

Finally, some approaches use Kalman Filter techniques to combine both rel-

ative and absolute sensor data [73, 121]. In [73] a low-cost strategy based on

well calibrated odometry is presented for localizing mobile robots. The paper

describes a two-step process for correction of “systematic errors” in encoder mea-

surements followed by fusion of the calibrated odometry with a gyroscope and

GPS resulting in a robust localization scheme. A Kalman filter operating on data

from the sensors is used for estimating position and orientation of the robot. In

[121] the authors propose a localization algorithm which exploits a Kalman Fil-

ter for the integration of data coming from both interoceptive and exteroceptive
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sensors such as encoders, gps, inertial platform and laser range-finders. The lo-

calization system is integrated within a navigation system providing a reliable

feedback to it.

Kalman based approaches have proven over the years to be an effective and

robust solution for tracking the robot pose. However, Gaussian distributions

cannot be applied to describe the multi-hypothesis. Therefore, these methods

are ineffective to deal with the global localization problem, i.e. the instance of

the localization problem where no prior knowledge of the robot starting position

is available.

Some works provide extensions of methodologies introduced to solve the po-

sition tracking problem [10, 85, 7]. The underlying idea of these approaches is

the concept of parallelization: allocating a (Gaussian) probability distribution

for each plausible hypothesis and then providing a technique for selecting the

most likely hypothesis over time with respect to sensor evidence. In [10] sev-

eral Gaussian hypotheses are exploited to represent the probability distribution

of the robots location in the environment. In [85] the authors propose a hy-

brid localization method which exploits multiple Kalman Filters for hypothesis

tracking and probability theory for evidence fusion. A feature-based description

of the environment is required for the hypothesis generation. In [7] hypotheses

are generated using a constraint-based search in the interpretation tree of pos-

sible local-to-global-pairings. This way, a set of continuously located position

hypotheses of unbounded accuracy is obtained. The same approach holds for

tracking: hypotheses are tracked and split as soon as location ambiguities arise

from uncertainties and sensing.

Unlike the approaches described thus far, which are characterized by a contin-

uous description of the probability distribution, other works introduce suitable

discretization of the state space.

Some approaches are based on the construction of certainty grid maps [37, 36].

Certainty grid maps, introduced by [114], have been initially designed to provide

a probabilistic model of the robots environment. They have also been successfully

used for collision avoidance [25, 26, 27] and path planning [33, 113]. In [37], grid

maps have been exploited for the estimation of the absolute position of a robot.

The idea is to accumulate in each cell of the position probability grid the posterior

probability of this cell referring to the current position of the robot. As the pose

of a robot is described entirely by its position and orientation, the discretization

of the state space leads to a three dimensional problem. Although this approach

provides interesting results, it suffers from excessive computational overhead [36].

Other works rely on Monte Carlo Integration methods[59] for the discretiza-

tion of the state space [67, 97, 162]. These methods were first investigated in

the early 70’s [77, 76, 3]. However, they have been neglected for almost two

decades due to the lack of computational capability. They have been rediscov-

ered around the 90’s as a consequence of the significant technological progresses.
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Nowadays, Monte Carlo techniques are successfully applied to solve estimation

problems in several research areas, such as computer vision [83], wireless telecom-

munications [152] and chemistry [55]. In [67] the authors propose a Monte Carlo

based algorithm called Monte Carlo Localization (MCL) for mobile robot local-

ization. This approach represents an evolution of the earlier works based on

grid maps. In fact, although the probabilistic framework has been maintained, a

sampling-based method for approximating the probability distribution is intro-

duced. This way, the computational complexity is lowered. In [97] the authors

introduce Real-Time Particle Filters (RTPF) to deal with constraints imposed

by limited computational resources. This approach make use of all sensor infor-

mation even when the filter update rate is below the update rate of the sensors.

This is achieved by representing posteriors as mixtures of sample sets, where

each mixture component integrates one observation that arrives during a filter

update. The weight of the mixture components are computed so as to minimize

the approximation error introduced by the mixture representation. This way, the

computational resources are focused only on valuable sensor information. In [162]

the authors propose an improvement of the previously described RTPF to make

more efficient the trade-off between accuracy, simplification and robustness. This

is achieved by exploiting probability retracing, consecutive window filtering, and

adaptive particle set size.

Although Monte Carlo Integration methods have the significant advantage of

approximating (almost) any distribution they suffer from the degeneracy (aka

depletion) problem, i.e., the problem of having most of the particles with a neg-

ligible weight after few iterations [8, 58]. This weakness is problematic especially

to deal with the kidnapped robot problem, i.e. the problem of having new data

that force the estimation of an already localized robot at a completely different

position.

Different techniques have been proposed to deal with the depletion of samples

[103, 160, 110, 98]. This phenomenon might be naively mitigated increasing

the number of particles used to approximate the distribution. Unfortunately,

in this way an increasing computational effort is experienced. A better way to

approach the degeneracy phenomenon is to introduce a resampling step in order

to augment the diversity among particles [92]. In addition, a proper measure of

such a degeneracy might be introduced so that the resampling step is performed

anytime a significant depletion of the particles set is observed [103]. In [57],

to further mitigate this phenomenon, the authors suggest a suitable candidate

of the important function, i.e., a candidate that minimizes the variance of the

importance weights conditioned upon the data [160]. In [110], a cluster-based

extension of the MCL method is proposed. This algorithm introduces the idea of

clusters of particles to track multiple distinct hypotheses, where each cluster is

considered as an independent hypothesis about the robot’s pose. It works on two

different levels: at particle level, the classical Bayesian formulation is adopted
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to update hypotheses, while at cluster level, the hypothesis with the highest

probability is used to determine the robot’s pose. Although distinct hypotheses

can be maintained over time, having a constant number of clusters makes the

kidnapped robot problem more difficult. In fact, as robots start moving, the

coverage of the environment is no longer guaranteed.

In [98] the authors propose an alternative re-sampling schema, based on genetic

algorithms, to mitigate the sample impoverishment problem. The algorithm is

able to maintain the diversity of particles during the resampling process by means

of the crossover genetic operator. However, it has been conceived only to solve

the position tracking problem on a landmark-based framework.

1.2.2 Multi-Robot

The emergence of Multi-Robot Systems (MRS) introduces new challenges for

the localization problem. In fact, the inherent collaborative and cooperative

nature of these systems requires new paradigms to be properly exploited. Indeed,

frameworks for solving the localization problem in the multi-robot context might

be naively obtained by extending classical approaches developed for the single

robot context, e.g parallelizing their execution. However, this way the inherent

collaborative nature of the system is completely neglected. Instead, better results

can be obtained by taking into account all the available information.

Multi robot systems can be classified in regards to their architecture into two

categories: centralized and decentralized [41]. Centralized architectures are char-

acterized by a single control robot (leader) that is in charge of organizing the

activities of the other robots. The leader takes part in the decision process for

the whole team, while the other members act according to the dispositions of

the leader. Conversely, decentralized architectures are characterized by “self-

organization”, i.e., each robot is autonomous in the decision process with respect

to each other. However, all robots share a common goal and their actions are

toward its achievement.

Localization techniques have been developed with respect to these two archi-

tectures. In a centralized system, a leader collects data provided by the team

and performs the localization process for the whole group. In a decentralized

system, each robot performs its estimation and exchanges data with the other

robots to improve the localization process. Both paradigms present advantages

as well as drawbacks. Normally, the assignment of a task is easier in a centralized

system compared to a distributed one, as the leader is the only one in charge of

it. Additionally, centralizing the computation requires only one robot, or few if

redundancy is taken into account, with suitable hardware capabilities. However,

this leads to a lack of robustness as, once a leader fails, the system becomes un-

able to accomplish the task. These disadvantages can be overcome removing the

central processing unit and spreading all the decisional issues over the team. This

way, since each robot acts independently, modularity and robustness are achieved
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[122]. Obviously, suitable hardware capabilities for all robots are required in this

case.

Moreover, in a centralized fashion, a supervisor collects all the data coming

from the robots and provides an estimate of the poses for the robots in the

team. This approach requires all members to continuously communicate with

the supervisor. In order to maintain the communication, robots need either

to move closely to the supervisor or to implement a mobile ad-hoc network.

Therefore some constraints on robots mobility have to be defined to guarantee

at least one communication-path from any robot to the supervisor at each time

instant. The decentralized approach, referred in literature as collaborative or

cooperative localization, assumes that each robot in the workspace uses its own

sensors, exchanges data only with other robots within its neighborhood, and runs

a local algorithm to estimate its own pose.

In [96] the concept of mobile landmark is introduced. The authors consider

a team of robots exploring an unknown environment without any beacon. The

exploration is carried out using the robots themselves as landmarks. Each vehicle

repeats move-and-stop actions and acts as a landmark for the other robots, while

a data fusion algorithm collects data to improve the estimate of the relative

positioning of the robots. According to the authors, this mechanism works well in

uncharted environments since the concept of landmark is intrinsically exploited.

In [127], the idea previously introduced is exploited to improve the exploration

of an unknown environment. In detail, underlining how the odometry errors

might heavily affect the mapping of the environment, the authors introduce a

mapping technique which acts also to minimize the effects of inherent navigation.

A similar solution is proposed in [129, 130] where a new sensing strategy, named

robot tracker, is exploited to improve the accuracy of the pose estimation of each

robot. The robots explore the environment in teams of two; each platform is

equipped with a robot tracker sensor that reports the relative position of the

other robot. Measurements are used in a particle filter to update the poses of the

multi-robot system together with the associated uncertainties. All the solutions

above mentioned suffer from the following limitations: only one robot is allowed

to move at any given time, and the team has to maintain sensorial contact at all

times.

A different collaborative scheme, based on estimation theoretical framework,

is presented in [65], where two robots are supposed to navigate in a partially

known environment. At every meeting they stop and improve their localiza-

tion by exchanging their beliefs, i.e. the posterior probability density over the

state space conditioned to measurements. A particle filter is at the base of the

algorithm, giving the possibility to handle a non Gaussian shaped belief, and

achieve localization. Another promising solution is proposed in [133, 115] and

reviewed in [105, 106], where a Kalman based algorithm is used to realize collab-

orative localization. During the navigation cycle, each robot collects data from
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its proprioceptive sensors to perform the prediction step of a Kalman filter while

sharing information from the exteroceptive sensors with the rest of the team dur-

ing the update. The authors introduce a distributed algorithm based on singular

value decomposition of the covariance matrix. In this way, the centralized fil-

ter is decomposed into a number of smaller communicating filters, one for each

robot. However, this approach can be applied only if inter-robot communication

can be consistently guaranteed. If not, problems related to the maintenance of

cross-correlations terms arise. In [82], a distributed approach based on maxi-

mum likelihood estimation is described. Robots are equipped with sensors that

allow them to measure the relative pose and identity of nearby robots, as well as

sensors that allow them to measure changes in their own pose. Therefore, local-

ization is obtained using only the robots themselves as landmarks. In [135], the

authors focus on the problem of examining the effect on localization accuracy of

the number N of participating robots and the accuracy of the sensors employed.

In detail, the improvement in localization accuracy per additional robot as the

size of the team increases is investigated.

1.3 Part I Organization

The first part of the dissertation is focused on the Localization problem in Mobile

Robotics. The remaining portion of Part I is organized as follows. In Chapter

2 an improved Monte Carlo Filter is proposed along with some experimental

results. In Chapter 3 a spatially structured evolutionary approach is presented

and experimental results are discussed. In Chapter 4 an alternative biology-

inspired framework is devised and experimental results are given. In Chapter

5 these algorithms are compared in terms of performance and computational

complexity and conclusions are drawn. Note that, in order to make the treatment

of each subject as self-contained as possible, each chapter is provided with a

preliminary theoretical background, the description of the problem settings and

the discussion of individual simulations and experimental results.



Chapter 2

Monte Carlo Clustered Evolutionary Filter

In this chapter an enhanced Monte Carlo Filter is proposed: the Clustered Evolu-

tionary Monte Carlo Filter (CE-MCL). This algorithm attempts to overcome the

classical Monte Carlo Filter drawbacks such as the depletion problem. In order to

achieve that, it takes advantage of an evolutionary approach along with a cluster-

ing method. In particular, the former is exploited to quickly find out local maxima,

whereas the latter, being dynamical, helps to obtain an effective exploration of the

environment. The ability to provide a smart partition set of the research space

along with the guarantee to converge within each subset, make the algorithm able

to solve the localization problem and maintain the multi-hypotheses. Exhaustive

experiments, carried on the robot ATRV-Jr manufactured by iRobot, are shown

to prove the effectiveness of the proposed CE-MCL filter.

2.1 Monte Carlo Integrations Methods

A suitable framework for the localization problem can be devised exploiting the

probability theory. From a probabilistic point of view, the robot’s pose can be

described by a probability distribution called belief. As a result, the localization

problem consists of estimating the belief over the state space conditioned on the

data.

A Bayesian framework to estimate this probability distribution, called Marko-

vian Framework, has been introduced in [66]. The key idea is to recursively com-

pute the belief by means of the Bayes rule as new sensors measurement comes.

In literature the belief is defined as:

Bel(xk) = p(xk | Dk), x ∈ Ξ, (2.1)

It represents the probability to have the robot at location xk at time k, given all

the data Dk up the time, where Ξ is the set of all poses.

In mobile robotics, data (Dk) can be broken down into control data (Uk)and

perceptual data (Zk). Control data represents the inputs of the system and, as

they are not always known, are retrieved by encoders or other proprioceptive

10
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sensors. Perceptual data represents information about the environment, such as

laser measurements. As a consequence, prior and posterior belief can be defined

as follows:

Bel−(xk) = p(xk | Uk−1, Zk−1). (2.2)

that it is the belief the robot has got, after the integration of the control data

uk−1, and before it receives the perceptual data zk.

Bel+(xk) = p(xk | Uk−1, Zk). (2.3)

that is the belief the robot has got once the perceptual data zk has been in-

tegrated. Regarding to the integration data, several considerations need to be

made:

i) Using the Total Probability Theorem the Bel−(xk) can be rewritten as:

Bel−(xk) =

∫

Ξ
p(xk | xk−1, Uk−1, Zk−1) × (2.4)

p(xk−1 | Uk−1, Zk−1)dxk−1.

The equation states that the prior belief of being in state xk is the sum of the

probabilities of coming from state xk−1 to state xk given all the earlier sensor

measurements. The second term of the integral represents the belief at time

(k − 1), as the robot pose at generic step k does not depend on the action

that is performed at the same step. To further simplify the formulation, the

assumption to have a Markov environment can be introduced. The key idea

is to consider the past and future data independent, with the knowledge of

the current state [66]. As a consequence the prior belief can be written as:

Bel−(xk) =

∫

Ξ
p(xk | xk−1, uk−1) × (2.5)

Bel+(xk−1)dxk−1.

ii) Using the Bayes rule the posterior can be rewritten as:

Bel+(xk) = p(zk | xk, Uk−1, Zk−1) × (2.6)

p(xk | Uk−1, Zk−1)

p(zk | Uk−1, Zk−1)

The equation states that the posterior belief is the conditional probability

of observing zk, weighted by the ratio of the prior belief of being in state

xk, Bel−(xk), and the probability of observing measurement zk conditioned

on all information so far. To further simplify the formulation, the Markov

assumption can be adopted again. As a result the posterior belief can be

rewritten as:

Bel+(xk) =
p(zk | xk) Bel−(xk)

p(zk | Uk−1, Zk−1)
(2.7)
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iii) As a combination of the equations mentioned above, the recursive formula-

tion for localization is:

Bel+(xk) = η p(zk | xk) × (2.8)
∫

Ξ
p(xk | xk−1, uk−1)Bel+(xk−1)dxk−1,

where η represents p(zk | Uk−1, Zk−1) and can be viewed as a normalization

factor.

As the integrals above are not tractable, several efforts have been devoted to

approximate the state space in order to make the recursive equation above simple

to be computed.

Monte Carlo integrations methods extend the Markovian framework by means

of a sampling approach to represent the posterior distribution (belief). These

methods have the significant advantage of not being subject to any linearity or

Gaussianity constraints on the model, and they also offer interesting convergence

properties. As a consequence, these methods turn out to be a powerful tool

to deal with the global localization problem. The Perfect Monte Carlo Sampling

draws N independent and identically distributed random samples {x(1)
k , . . . , x

(N)
k }

according to Bel+(xk). Consequently, the approximation of the posterior distri-

bution is given by

Bel+(xk) ≈
1

N

N∑

i=1

δ
x
(i)
k

(xk − x
(i)
k ), (2.9)

where δ
x
(i)
k

(xk−x
(i)
k ) represents the delta-Dirac mass located in x

(i)
k . However, due

to the difficulty of efficiently sampling from the posterior distribution Bel+(xk)

at any sample-time k, a different approach is required. An alternative solution

is the Sequential Importance Sampling approach. The key idea is of drawing

samples from a normalized importance sampling distribution π(xk | dk) which

has a support including that of the posterior belief Bel+(xk). In this case, the

approximation of the posterior is given by

Bel+(xk) ≈
N∑

i=1

w
(i)
k δ

x
(i)
k

(xk − x
(i)
k ), (2.10)

where the importance weight is computed as

w
(i)
k = w

(i)
k−1 ·

p(zk | x
(i)
k )Bel−(xk)

π(xk | dk)
. (2.11)

In mobile robotics, a suitable choice of the importance sampling distribution

π(xk | dk) is the prior distribution Bel−(xk) [78]. With this choice, the impor-

tance weight can be easily computed as:

w
(i)
k = w

(i)
k−1 · p(zk | x

(i)
k ), (2.12)
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and the importance sampling distribution can be written in a recursive fashion:

π(xk | dk) = p(xk | xk−1, uk−1) · Bel+(xk−1). (2.13)

Such formulation has the advantage of allowing an on-line evaluation of the im-

portance weight as long as new data is available; however it causes the degeneracy

problem, i.e. the problem of having most of the samples with a negligible weight

after few iterations. A common approach to overcome this problem is to provide

a resampling step, which aims to replace particles with small importance weight

by means of a suitable strategy. The algorithm 1 shows a typical implementation

schema for a Sequential Monte Carlo filter with resampling step. The majority of

works in literature relies on this schema, with a specialization for the resampling

approach adopted.

Algorithm 1: Sequential Monte Carlo Filter

Data: Bel+(xk−1) = {x(i)
k−1, w

(i)
k−1} , uk−1 , zk

Result: Bel+(xk)

/* Importance Sampling */

Compute π(xk | dk−1) = p(xk | xk−1, uk−1) · Bel+(xk−1)1

for i=1 to Ns do2

Sample x̃
(i)
k ∼ π(xk | dk−1)3

Evaluate w
∗(i)
k = w

∗(i)
k−1 ·

p(zk|x̃
(i)
k

)Bel−(xk)

π(xk|dk−1)4

end5

/* Normalization */

for i=1 to Ns do w̃
(i)
k =

w
∗(i)
k

P

Ns
j=1 w

∗(i)
k6

Evaluate Neff = 1
P

Ns
i=1(w̃

(i)
k

)27

/* Degeneracy Test */

if Neff ≥ Nthres then8

{x
(i)
k , w

(i)
k } = {x̃

(i)
k , w̃

(i)
k }9

else10

/* Resampling */

{x(i)
k , w

(i)
k } = ResamplingProcedure({x̃(i)

k , w̃
(i)
k })11

end12

Bel+(xk) = {x(i)
k , w

(i)
k }13

2.2 The Clustered Evolutionary Monte Carlo Filter

The Clustered Evolutionary Monte Carlo filter (CE-MCL) has been conceived

following the classical Sequential Monte Carlo filter schema mentioned above.

The algorithm works on two different levels:
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• Local level.

• Global level.

At local level the algorithm finds out local maxima within each cluster, whereas

at global level the best hypothesis is obtained by a comparison among the optimal

solutions provided by each cluster.

In order to realize such behavior, the algorithm introduces two strategies:

• A dynamical clustering at resampling step.

• An evolutionary action at each time-step.

2.2.1 Dynamical Clustering

The dynamical clustering provides a collection of particles subset that represents

the best partition of the environment and where the probability to find out the

real robot location is higher. Cluster identification is performed by means of

the DBscan algorithm, which relies on a density-based notion of clusters [64].

Such algorithm offers several good properties, such as the ability of finding out

clusters of arbitrary shapes, the advantage of collecting the noisy points, and an

acceptable computational complexity. In particular, the possibility of collecting

all the points belonging to any cluster turns out to be very useful in this context.

In fact, it can be viewed as another mean to improve the diversity among particles.

Moreover, in order to guarantee both a minimal coverage of the environment

and further mitigate the degeneracy problem, a random action is introduced

along with the dynamical clustering at resampling step. Such action reduces the

similarity among particles randomly drawing a percentage of new samples.

2.2.2 Evolutionary Action

The evolutionary action, instead, is introduced to quickly find out local max-

ima within each cluster. From a genetic point of view a cluster represents the

population, while the state space vector is the encoding string, e.g. the chromo-

some. The model of the sensor p(zk | xk) is adopted as fitness function. This

choice makes the local maxima to be prominent candidates to localize the robot,

being the p(zk | xk) part of the importance weight formulation as well. The

evolutionary action is based on the probabilistic operators:

• Mutation.

• Crossover.

Mutation creates a fixed percentage of new particles sampling from a circular

area centered on the selected chromosome (Fig. 2.1), whose radius is defined as

follows:

ρk =
1

√

w
(i)
k

. (2.14)
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The idea of defining the radius as an inverse function of the importance weight,

Resampling Radius

Resampling Area

Particle

1

(i)
�ω
k

Figure 2.1: Choice of resampling area for mutation

reflects the consideration that particles, with a considerable importance weight

should be located closer to the real robot than the others. Therefore, filling this

area should be promising for a quicker localization. On the other hand, crossover

creates a fixed percentage of new particles combining chromosomes belonging to

the same cluster. The idea of selecting parents within the same subset, avoids

unlikely recombination to happen, being clusters spatially organized.

At the end, the Clustered Evolutionary Monte Carlo Filter, taking advantage

of these strategies, is able to both globally localize the real robot location and

solve the kidnapped robot problem, as well as to maintain the multi-hypotheses.

The algorithm 2 shows a possible implementation schema for The Clustered

Evolutionary Monte Carlo Filter.

2.2.3 Computational Complexity

In order to evaluate the computational complexity of the algorithm, several anal-

yses have been performed. A detailed theoretical study has been done along with

an empirical validation of the obtained results. According to such a study, two

different cases have to be taken into account:

• Simple step.

• Resampling occurrence.

In the first case, when the resampling is not considered, the complexity of

the algorithm turns out to be O(N · M), where N is the number of particles

and M is the number of segments describing the environment. Conversely, when

the resampling occurs, the DBscan effort has to be considered. In this case the

overall complexity of the algorithm is given by max{O(N · log(N)),O(N · M)},
where O(N · log(N)) is the computational load of the DBscan [64]. Two remarks

are now in order: the first one is that the number of segments (M) is usually

at least one order of magnitude smaller than the number of particles (N); the

second is that the resampling step, during a typical execution, takes less than
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Algorithm 2: Clustered Evolutionary Monte Carlo Filter

Data: Bel+(xk−1) =
SNclust

j=1 {x(i)
k−1, w

(i)
k−1}j , uk−1 , zk

Result: Bel+(xk)

/* Importance Sampling */

Compute π(xk | dk−1) = p(xk | xk−1, uk−1) · Bel+(xk−1)1

for i=1 to Ns do2

Sample x̃
(i)
k ∼ π(xk | dk−1)3

Evaluate w
∗(i)
k = w

∗(i)
k−1 ·

p(zk|x̃
(i)
k

)Bel−(xk)

π(xk|dk−1)4

end5

/* Normalization */

for i=1 to Ns do w̃
(i)
k =

w
∗(i)
k

P

Ns
j=1 w

∗(i)
k6

/* Evolutionary Action */

for j=1 to Nclust do7

{x̄
(i)
k , w̄

(i)
k }j ←

8

<

:

Mutation({x̃
(i)
k , w̃

(i)
k }j)

Crossover({x̃(i)
k , w̃

(i)
k }j)8

end9

Evaluate Neff = 1
P

Ns
i=1

(w̄
(i)
k

)210

/* Degeneracy Test */

if Neff ≥ Nthres then11

[{x(i)
k , w

(i)
k }j , Nclust] = [{x̄(i)

k , w̄
(i)
k }j , Nclust]12

else13

/* Resampling */

/* 1◦ Step: Random action */

{x̂(i)
k , ŵ

(i)
k } ← Random({x̄(i)

k , w̄
(i)
k })14

/* 2◦ Step: Re-Clustering */

[{x(i)
k , w

(i)
k }j , Nclust]← DBScan({x̂(i)

k , ŵ
(i)
k })15

end16

Bel+(xk) =
SNclust

j=1 {x(i)
k , w

(i)
k }j ;17
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10% of the overall number of iterations. Therefore, it is correct to state that the

real complexity that should be considered is the one of the simple step: O(N ·M).

2.3 Performance Evaluation

The proposed algorithm has been tested in both simulated context and with real

data in order to validate its capability to deal with the global localization problem.

Several aspects have been thoroughly investigated. Particular attention has been

paid to give evidence of the ability to carry on multi-hypotheses as well as to

prove the ability to re-localize the robot when a kidnap occurs. Two different

types of analysis have been performed. The first one has demonstrated the global

algorithm aptitude to localize the robot as well as to carry on multi-hypotheses.

The second more specialized analysis has proved the local algorithm capability to

converge within each cluster. In the following both simulations and experimental

results are reported.

2.3.1 Problem Settings

Computer Simulations Simulations have been carried out in a framework devel-

oped under Matlab by the authors. This framework provides different kinematic

models for the robot, such as the unicycle model, as well as an emulation for sev-

eral sensors such as a laser rangefinder. Moreover, the environment is described

by a set M of segments. This framework supports both a complete simulated

context as well a test-bed to run data coming from a real robot. These two differ-

ent operative modalities turn out to be very useful, both to test the correctness

and the effectiveness of the algorithm.

Real Robot Context Experiments have been carried out on the mobile platform

ATRV-Jr (All Terrain Robot Vehicle Junior) manufactured by iRobot. It is a skid

steering vehicle mainly designed to operate in outdoor environments. The ATRV-

Jr has 4 wheels differentially driven by 2 DC motors: the motion is achieved by

a differential thrust on the wheel pairs at the opposite sides. The mobile robot is

equipped with 17 sonar rangefinders, a laser scanner ( Sick LMS-220), an inertial

platform (Crossbow DMU-6X), and a GPS receiver (Garmin GPS35-HVS). The

sensory system is connected to the ATRV-Jr’s on board PC (Pentium II, 350

MHz) running Linux, through serial port on a Rockeport multiserial port card.

The robot is delivered with a software development environment called MOBIL-

ITY, which provides full access to the software servers available on the mobile

platform. In particular, each server is assigned to control a specific hardware

component (sensors and actuators). In this way all of them are reachable from

the network exploiting a CORBA interface.
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Figure 2.2: Rectangular environment: CE-MCL iteration

2.3.2 Evaluation Criteria

Two indexes of quality have been chosen to evaluate the correctness of the algo-

rithm: the percentage of estimation failures and the entropy measurement of the

particle set. The first one gives information about the reliability and the accu-

racy of the solution, the second one, coming from the information theory [140],

provides a measurement of the uncertainty for a given random, and it is defined

as:

H(χ) =
n∑

i=1

pi log2(
1

pi
)

where, pi is the probability of the i-th outcome for a given event χ. In this

context, entropy can be properly applied to give an evaluation of the persistence

of the diversity among particles.

2.3.3 Simulations

Simulations were performed to investigate the algorithm capability to carry on the

multi-hypothesis. Fig. 2.2 shows a typical CE-MCL iteration step for the rectan-

gular environment. Points (green) represent particles, whereas circles (red) are

located at the center of the mass of each cluster and, segments (blue) describe the

mean orientation for all particles within each cluster. Due to the environmental

symmetries, at each time-step at least two subset of hypotheses are maintained,

in particular the ones located at the extreme of a segment splitting the environ-

ment in two equal parts. Further, such behavior seems to be reasonable as sensor

data support both locations, nothing that the laser beam range is limited to 8 m.
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2.3.4 Robot in Real Environments

The robot was put into three different indoor office-like environments:

• Entire building floor.

• T-shaped hall.

• Corridor.

The first and second environments, shown respectively in Fig. 2.3 and Fig. 2.5

have been exploited to test the algorithm capability to solve both the global

localization problem and the kidnapped robot problem. On the other hand, the

third environment, shown in Fig. 2.7, has been exploited to investigate the local

algorithm capability to converge within each cluster.

Entire building floor

Fig. 2.3 shows a typical CE-MCL estimation result for the complex environment

previously mentioned. Points (red) represent the most likely hypotheses at each

time step, whereas the line (blue) represents the real robot path. In particular,

S is the robot start point, K is the location at which the robot is kidnapped, R

is the start point after the kidnap and finally, G represents the goal point of the

robot. The algorithm has been able to find out a rough estimation of the robot
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Figure 2.3: Complex environment: CE-MCL estimation result

path without any knowledge about the starting robot location. Moreover, Fig.
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2.3 evidences the algorithm’s ability to realize when a kidnap occurs, thus re-

localize the robot. The remaining noisy points, consequence of a temporary bad

estimation, prove the algorithm’s tendency to explore the whole environment as

well as to carry on the multi-hypotheses at each time step. Further, they might

be easily removed, for instance relying on the kinematic model constraints of the

mobile robot. The algorithm has been run several times in this environment to

estimate the percentage of failures; the mean value settles around 30%, while the

variance is ±4%. Fig. 2.4 shows the measurement of entropy for the experiment

mentioned above. The red line represents the theoretical maximum entropy for

the given set of particles, whereas the blue line describes the entropy during the

algorithm execution, and the black line is its mean value. In order to maintain

the diversity among the particle set, such value should be high. However, the

algorithm should also be able to converge to the real robot location. For the

CE-MCL algorithm, the mean value settles around an intermediate value, giving

evidence of the algorithm’s aptitude to balance both needs.
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Figure 2.4: Complex environment: CE-MCL entropy measurement

T-shaped hall

Fig. 2.5 shows a typical CE-MCL estimation result for such environment. The

presence of structural ambiguities along with the noisiness of laser readings, due

to the nature of glass, make the localization problem more difficult. Despite the

fact that the accuracy of the estimation is lower than the previous experiment,



CHAPTER 2. MONTE CARLO CLUSTERED EVOLUTIONARY FILTER 21

and the percentage of failures is markedly higher (mean value 40%, variance

±5%) the algorithm has been able to localize the robot, even under these critical

conditions. Fig. 2.6 shows the measurement of entropy for this environment. As
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Figure 2.5: T-shaped environment: CE-MCL estimation result

in the previous experiment, the value settles around the median value, proving

the algorithm’s ability to maintain the diversity among the particles set.

Corridor

Fig. 2.7 shows a sequence of CE-MCL iterations for the corridor. This sequence

of images describes the algorithm behavior between two resampling steps. In par-

ticular, when the first resampling occurs (a), the algorithm recognizes six clusters

(the last one is the collection of noisy points) with a visible dispersion for the el-

ements within the environment. The following iterations point out the CE-MCL

tendency to centralize the hypotheses around the center of mass of each cluster.

Moreover, after few time-steps, clusters are coarsely located along a line crossing

the corridor. This deployment underlines the algorithm tendency to maintain

only the most likely hypotheses after a full exploration of the environment. Two

aspects of interest have been considered to study the convergence of particles

within each cluster: a measure of similarity and the state variables variance.

From a mathematical standpoint, both the state space variables analysis and the

measurement of entropy give evidence of these considerations. Fig. 2.8 shows a
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Figure 2.6: T-shaped environment: CE-MCL entropy measurement

typical variance trend within a cluster for all three state variables: peaks indicate

the resampling effect, whereas slopes give evidence of the algorithm aptitude to

make particles converge within each cluster. Fig. 2.9 exhibits a typical measure-

ment of entropy within a cluster: the trend is similar to the previous one due to

the relationship among these concepts, when restricted to a single cluster.

2.4 Considerations

In this chapter an enhanced Monte Carlo Filter has been presented to deal with

the localization problem: the Clustered Evolutionary Monte Carlo Filter (CE-

MCL). This algorithm has been conceived to overcome the classical Monte Carlo

Filter drawbacks. This goal has been achieved taking advantage of an evolu-

tionary approach and a clustering method. In particular, the former has been

exploited to quickly find out local maxima, whereas the latter, being dynami-

cal, helps to obtain an effective exploration of the environment. The ability to

provide a smart partition set of the research space along with the guarantee to

converge within each subset, make the algorithm able to solve the localization

problem and maintain the multi-hypotheses. Note that the combined use of clus-

ter+genetic offers several interesting advantages. At local level, being the size

of research space smaller, the localization of the best solution is faster and the

probability to stall on a suboptimal solution is lower. At global level, being the

clustering dynamical and data-driven, an implicit parallelization of the research

is possible and a better coverage of the environment is obtained, focusing the
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Figure 2.7: Corridor-like environment: CE-MCL sequence of iterations

attention where the probability to find out the real robot pose is higher. Exhaus-

tive analyses have been performed on the robot ATRV-Jr manufactured by the

IRobot, with the employment of several environments, to prove the effectiveness

of the proposed algorithm. In particular, two different kinds of experiments have
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Figure 2.8: Corridor-like environment:
CE-MCL variance

Figure 2.9: Corridor-like environment:
CE-MCL entropy measurement

been considered: the first one has proved the algorithm ability to solve the global

localization problem, even when a kidnap occurs; the second one has given evi-

dence of the algorithm tendency to converge within each cluster and to guarantee

an efficient exploration of the environment. Such analyses have shown the im-

portant role of the dynamical spatial clustering to provide an effective partition

of the research space on which apply the evolutionary action. Therefore, the

CE-MCL can find out local-maxima, guarantee a convergence to the most likely

hypotheses, maintain the diversity among particles and localize the robot.



Chapter 3

A Spatially Structured Genetic Algorithm

In this chapter a novel approach based on spatially structured genetic algorithms

is proposed. This approach takes advantage of the complex network theory for

the spatial deployment of the population. In fact, modeling the search space with

complex networks and exploiting their typical connectivity properties, results in a

more effective exploration of such space. On the other hand, the introduction of

spatial structures in evolutionary algorithms helps to create evolutionary niches.

Since niches represent regions in which particular solutions are preserved, a nat-

ural way to maintain the multi-hypothesis is achieved. The approach originally

developed for the single-robot context has been successively extended to deal with

the multi-robot context. A technique for integrating the information exchanged

by robots anytime they meet is proposed with the aim of extending their sensory

capabilities.

3.1 Theoretical Background

3.1.1 Complex Networks

Complex Networks are graphs of nodes or vertices connected by links or edges,

currently used to describe many natural or artificial systems: the brain, for in-

stance, can be modeled as a network of neurons, and the Internet as a complex

network of routers and computers linked by several physical means. From the

beginning, complex networks have been investigated by the graph theory com-

munity, who proposed several models, such as regular and random graphs; since

then several other communities have been interested in this topic. Today, a main

research issue is to figure out the relationship between structural and dynamic

properties of the networks.

Regular graphs, introduced to describe systems made of a limited number

of nodes, were revealed to the research community to be inadequate with the

appearance of large-scale networks. This has lead the community to focus their

attention on random graphs. According to [120], once the probability p of having

a connection among pairs of nodes is fixed, a random graph with N nodes and

25
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about pN(N − 1)/2 links, can be obtained randomly selecting a pair of nodes

and linking them with such probability p. This model has been extensively used

since particular properties of complex networks, such as the small-world property

or the scale-free one, have been discovered.

To better understand such properties, some basic concepts about complex

networks have to be introduced: the average path length, the cluster coefficient

and finally the degree distribution.

The average path length L of the network is the mean distance between two

nodes, averaged over all pairs of nodes, where the distance between two nodes is

defined as the number of the edge along the shortest path connecting them.

The cluster coefficient C of the network is the average of Ci over all nodes i,

where the coefficient Ci of node i is the average fraction of pairs of neighbors of

the node i that are also neighbors of each other.

The degree distribution of the network is the distribution function P (k) describ-

ing the probability that a randomly selected node has exactly degree k, where

the degree k is the number of links a node owns.

Watt-Strogatz Barabasi-Albertµ

Figure 3.1: Watt-Strogatz and Barabási-Albert models with 30 nodes

From a formal point of view, regarding these basic properties, several com-

plex network models can be correctly defined. Regular graphs, for instance, are

characterized by a high cluster coefficient, approximately C ∼= 3/4 and a large

average path tending to infinity as N → ∞. Random graphs have a low cluster

coefficient, approximately equal to the probability p defined above, and a short

average path Laver
∼= lnN/(pN). In [154] the Small-World model is proposed to

better describe real systems. It shows properties of both the regular and random

graphs, such as a high cluster coefficient and a short average path, underlining the

fact that, in reality, the circle of acquaintances of people is not only restricted to

their neighbors. In [15] the Scale-Free model is presented. This model, relying on

the power-law degree distribution, overcomes the limitations of the previous ones

through a hierarchical description of nodes. As a consequence, in a scale-free

network preferential attachments are possible. This model, for instance, turns

out to be very useful to describe airline routing maps.
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Two examples of the above described networks are reported in Fig. 3.1; for a

complete overview of complex networks the [153] is suggested.

3.1.2 Spatially Structured Genetic Algorithms

Spatially Structured Genetic Algorithms (SSGAs) represent a special class of

Genetic Algorithms (GAs), which are described in Appendix B, where the pop-

ulation is spatially distributed with respect to some discrete metric. SSGAs are

characterized by different properties than standard GAs, such as the capability

to preserve the diversity or to create evolutionary niches.

SSGAs can be properly described by exploiting the graph theory. In this

context, given a population P = {p1, . . . , pn} and a graph G = (V,M), where V =

{v1, . . . , vn} is the set of vertices and M = {(i, j) = 1 : ∃ link between i and j} is

the incidence matrix, a Spatially Structured Genetic Algorithm can be obtained

by defining an isomorphism F(·) from P to V so that:

F : P → V (3.1)

Therefore, a SSGA is a variation of a Simple Genetic Algorithm (described in

Appendix B) where selection is performed by exploiting the topology of the graph

underlying the population in spite of using the roulette wheel.

Note that, this formalization was already used to introduce the graph based

genetic algorithms in [9]. Here, the idea was to prevent the loss of diversity by

imposing geographical structure to the population to limit choice of crossover

partners. Finally, a more comprehensive treatment of this class of genetic algo-

rithms is given in [146]

3.2 The proposed spatially structured genetic algorithm over complex net-

works

The proposed SSGA provides a framework for both single robot and multi-robot

localization problem. It takes advantage of the complex network theory for the

deployment of the population. Giving such a structure to the population leads

to several interesting advantages, such as the capability to carry on the multi-

hypothesis paradigm.

In this context, a chromosome encodes the state of the robot, represented

through its position and orientation (x, y, θ). From an algorithmic standpoint,

a SSGA reflects the classical SGA schema described in Appendix B with a spe-

cialization regarding the structure of the population. In the initialization step, a

population is randomly generated and its individuals are connected to obtain a

complex network, typically small-world and scale-free. At each epoch k, the pop-

ulation evolves dynamically, according with the kinematic model of the robot and

the input applied, maintaining the topology of the network. Such a topology is

exploited during the selection phase, which is trivially realized picking up all the
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pairs of linked elements. In the reproduction stage the mating rules represented

in Table 3.1 are used to choose the probabilistic transition operator.

To apply the mating rules, each individual is labeled with the tag high or low,

computed by means of a comparison between the fitness of the individual itself

and the average fitness of the population.

Table 3.1: Mating rules

Node 1 Node 2 Action Basic principles

Low Low Both self-mutate Mutation
High Low Node 2 is replaced with Elitism and

a Mutation of Node 1 Mutation
Low High Node 1 is replaced with Elitism and

a Mutation of Node 2 Mutation
High High The lower is replaced with Elitism and

the Crossover on the two Crossover

Regarding the probabilistic transition operators: crossover picks up two ele-

ments and performs a convex combination of them with probability pcross, while

mutation picks up an element and modifies its chromosoma, inversely propor-

tional to its fitness, with probability pmutat.

3.2.1 Independent Evolution

Anytime a robot is moving and no other one is within its communication range,

the only information available is the data coming from its sensors. Therefore,

each robot performs an independent evolution computing a measure of similarity

between data coming from a real robot and the expected one computed for a

given hypothesis. Specifically, the fitness function of an individual i weights the

compliance between the exteroceptive measurements (zk) retrieved by the robot

and the ones (ẑk) expected by the individuals itself

Φi(zk, ẑk) =
1

L

L∑

j=1

1√
2πσ

e
−(z

j
k
−ẑ

j
k
)2

2σ (3.2)

where σ is the confidence of the sensor and L is the number of measurements

considered. The pseudo-code in algorithm 3 shows a possible implementation

schema for a generic step k of independent evolution for the proposed SSGA.

3.2.2 Cooperative Evolution

The same approach holds when considering multi-robot localization. In this case,

although for each robot a population is initialized and lets evolve independently,

a collaboration can be set-up any time when robots meet. The key idea is to

integrate the observations coming from the components in such a way that the

sensory system capability of each robot is extended. In order to achieve that, the

relative position and orientation of the robots in the team are assumed available

along with the sensor data, while the fitness function is augmented in the following
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Algorithm 3: The proposed SSGA - iteration k

Data: Population of size n: {V = {pj,k}, M}, Φ(·), e(·)
Result: V = {pj,k+1}

/* Average Fitness Evaluation */
Φaver =

Pn

i=1 Φ(pi,k)/n1

/* Incidence Matrix Selection */
for i=1 to n do2

for j=i to n do3

if M(i, j) = 1 then4

switch Compare({Φ(pi,k), Φ(pj,k)}, Φaver) do5

case High-High6

if Φ(pi,k) > Φ(pj,k) then7

pj,k = Crossover(pi,k, pj,k)8

else9

pi,k = Crossover(pi,k, pj,k)10

end11

case High-Low12

pj,k = Mutation(pi,k)13

case Low-High14

pi,k = Mutation(pj,k)15

case Low-Low16

pi,k = Mutation(pi,k) pj,k = Mutation(pj,k)17

end18

end19

end20

end21

{pj,k+1} = {pj,k}22

/* Kidnap Detection */
if Kidnap Condition then23

Spreading Action24

end25

way

Φi(zk, ẑk) =
1

L
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j=1
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2σ +

R∑

r=1

1

Lr

Lr∑

l=1

1√
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−(zl

k
−ẑl

k
)2

2σ (3.3)

where R is the number of the robot of the team in the viewing area and Lr the

number of sensor of the r–th robot. The second addendum weights the compli-

ance of the measurement of the team formation with respect to the formation

replicated around the i-th individual. In this way the localization algorithm re-

sults completely distributed and collaboration is possible even when robots move.

Cooperation turns out to be fundamental in reducing the perceptual aliasing, as

the more data available the higher the probability to converge to a single loca-

tion. It is well known that a genetic approach helps to maintain a population of

multiple hypotheses. In particular, SSGA, due to their convergence proprieties,

usually maintain equally probable hypotheses and, in presence of sufficient and

not ambiguous information, converge to a neighborhood of the solution. This

fast takeover is related to the structure of the space of interactions and can be
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exploited monitoring the formation of a single cluster.

Although the algorithm is able to solve the global localization problem with

a proper random initialization, an additional strategy, able to perceive when a

kidnap occurs, is required in order to spread the population over the search space

again and then re-localize the robot. In this work, the fitness function Φ(·) and

the edge function e(·), i.e., the fraction of potential mating couples (couples with

different genotypes) over the network (the number of links) [9], are used to trigger

the spreading action. The edge function gives an evaluation of the dispersion of

the population. Specifically for a well-localized robot, a high percentage variation

of the fitness along with a considerable dispersion of the population (a high value

of the edge function), are reliable symptoms of a kidnap.

3.2.3 Computational Complexity

The analysis of the computational complexity is important to evaluate the ca-

pability of an algorithm to run online. For this reason, a detailed theoretical

investigation along with an empirical validation of the obtained results has been

performed. The pseudo-code proposed in Algorithm 3 presents two nested loops

in which the dominant operation is the fitness evaluation whose complexity for

each element of the population is O(M), where M is the number of segments

describing the environment. As a consequence, the overall complexity for this

naive implementation results in O(M · N2), where N is the size of the popula-

tion. However, a more effective implementation can be provided by observing

that:

• The fitness value for each element of the population can be stored during

the evaluation of the average fitness function (algorithm 3 - line 1).

• A mating rule is applied only when a link is available between two elements

(algorithm 3 - line 4).

This way the complexity can be significantly lowered. In fact, pre-evaluating the

fitness and storing it reduces the complexity of the dominant operation within

the nestled loop to a constant factor O(1). On the other hand, the two loops

can be replaced with a vector indexing all the couples with a link. Since for

the considered topologies the number of links is proportional to the size of the

population, i.e., (k−1)·N/2 with k node degree of each node, the over complexity

of the algorithm is reduced to O(k · N · M) = (k−1)·N ·M
2 .

The first element is the cost of scanning all the couples with a link, while the

second is the cost of evaluating the fitness for the whole population.

3.3 Performance Evaluation

The proposed Spatially Structured Genetic Algorithm has been extensively in-

vestigated in both simulated environment and with real robot data. Real ex-
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periments allow to validate the algorithm in different real-world contexts, while

simulations are useful for tuning the algorithm parameter and for validating the

multi-robot extension. In the following, some results of the experimental cam-

paign are presented. The exposition is organized in two paragraphs, the first

analyzes the behavior of the algorithm for single robot localization while the

second reports some results for multi-robot.

3.3.1 Problem Settings

Computer Simulations. Simulations have been carried out in a framework devel-

oped under Matlab by the authors. This framework provides different kinematic

models for the robot, such as the unicycle model, as well as an emulation for sev-

eral sensors such as a laser rangefinder. Moreover, the environment is described

by a set M of segments. This framework supports both a complete simulated

context as well a test-bed to run data coming from a real robot. These two

different operative modalities turn out to be very useful, both to test the cor-

rectness and the effectiveness of the algorithm. Details about robot, sensors and

environment modeling are provided in Appendix A.

Real Robot Context. Experiments have been carried out on the mobile platform

ATRV-Jr manufactured by iRobot. It is a skid steering vehicle mainly designed to

operate in outdoor environments. The ATRV-Jr has 4 wheels differentially driven

by 2 DC motors: the motion is achieved by a differential thrust on the wheel pairs

at the opposite sides. The mobile robot is equipped with 17 sonar rangefinders,

a laser scanner (Sick LMS-220), an inertial platform (Crossbow DMU-6X), and

a GPS receiver (Garmin GPS35-HVS). The sensory system is connected to the

ATRV-Jr’s on board PC (Pentium II, 350 MHz) running Linux, through serial

ports on a Rockeport multiserial port card. The robot is delivered with a software

development environment called MOBILITY, which provides full access to the

software servers available on the mobile platform. Each server is assigned to

control a specific hardware component (sensors and actuators). In this way all

interfaces are reachable from the network exploiting a CORBA interface.

3.3.2 Single robot localization

Simulations

The first simulation characterizes the topological model adopted for the network

with respect to the persistence of several evolutionary niches, corresponding to

several hypotheses. Such analysis has pointed out, for the Watt-Strogatz model,

that a network degree equal to 3 and a rewiring probability of 0.1 are a satisfac-

tory set of parameters; a similar analysis, reported in [70], shows that for these

values, such a network shows a high clustering coefficient and a small average path

length. This condition increases the selection pressure (the speed of convergence

is high but not maximum) along with the persistence of niches. For the scale-free
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Figure 3.2: Small-world (left) and scale-free (right) networks

Barabási-Albert model the behavior is slightly different due to the presence of

hubs, i.e., highly connected nodes. Scale-free networks have a shorter takeover

time (the time it takes for the single best individual to conquer the whole popu-

lation), that could lead the SSGA to converge too rapidly towards an incorrect

solution in a noisy environment, as it can be see in Fig. 3.2. For this reason the

experiments presented below have been carried out using Watt-Strogatz model.

Robot in Real Environment

The ATRV-Jr was put into two different indoor office-like environments:

• Corridor.

• Lobby.

The Corridor The robot, starting in S, moves downward and, after a U-turn

around iteration 100, is kidnapped in K (iteration 120) to appear in N where it

goes on until E (Fig. 3.3). In the first 15 iterations, the network, randomly spread,

forms some clusters, one of these will survive and after 20 iterations a single

cluster remains as winner. Consequently, the tracking of the correct position is

accomplished with very low errors: the best hypothesis, i.e., the individual of

the population having the best fitness, has a mean Euclidean distance of about

15 cm from the real robot location. During the U-turn (iterations 95–110) some

measures, which do not correctly fit with the environmental model, along with

the inaccuracy of the odometric prediction, will result in an inaccurate tracking.

The fitness function is also affected by this situation, but the small increasing of

the edge function shows how the network begins to explore new solutions in the

surroundings to recover the error.

The kidnap sensing strategy, as previously shown, relies on the use of the fitness

function along with the edge function. In particular, an analysis has been carried

out to find out the relationship between the kidnap event and the variation of

these functions. According to the experimental results, when a kidnap occurs,
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Figure 3.3: (a) Map of the first environment and path of the robot (S:start, K:kidnap point;
N:new start; E: end of path) - (b) Fitness function - (c) Edge function.
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Figure 3.4: First Environment. (a) Dispersion along x axis - (b) Dispersion along y axis.

the fitness function drastically decreases, whereas the edge function considerably

increases because of the probabilistic operators effect. Consequently, a variation
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of the fitness function along with an increase of the edge function has been used

as a threshold. In Fig. 3.3 (b) and (c) this situation is clearly represented. Note

that after the kidnap, the dispersion along y axis increases as long as the error

along y. However, as shown in Fig. 3.4, the error is quickly recovered in few

iterations as the network starts to correctly track the robot.
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Figure 3.5: (a) Map of the second environment and path of the robot (S:start, K:kidnap point;
N:new start; E: end of path) - (b) Fitness function.

The Lobby The robot, starting in S, moves upward and, after a straight path, is

kidnapped in K (iteration 250) to appear in N where it goes on until E (Fig. 3.5) .

As in the previous experiment, after an initial random deployment of the network,

few clusters are maintained until the one representing the real position remains

as a winner. Note that, in average both values of the fitness function and edge

function are respectively lower and higher compared to the previous experiment.

This can be explained by the fact that the map available for this area was less

accurate. However, it turned out to be a good scenario to test the robustness of

the kidnap sensing strategy. In fact, although the two indexes were more “noisy”,

the kidnap event has been properly recognized.

An increment of the dispersion along both axes is experienced due to the kidnap

event, . In addition, Fig. 3.6 shows the trend of the dispersion along both axes. I
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Figure 3.6: (Second Environment. (a) Dispersion along x axis - (b) Dispersion along y axis.

3.3.3 Multi-robot localization

The first simulation has been carried out in a simple environment with only one

wall and two landmarks. It has been intentionally exploited as the information

coming only from laser rangefinders are not sufficient to fully distinguish among

all hypotheses.

Fig. 3.7 shows the behavior of the algorithm at some time-steps, when the

collaboration among robots is deactivated. Robots are represented by triangles

and populations are reported as dots with orientation given by small segments.

In (a), after only 4 iterations, each robot recognizes only one landmark, as a

consequence each population tends to dispose along a circle whose radius is the

measured distance. Note the ability of the algorithm to expand all hypotheses

to cover all possible locations. In (b), with regard to robot 1, hypotheses tends

to dispose along a line as soon as the wall is recognized. In particular, the

shape of this line is given by the integration of data related to the wall with the

observations of the landmark. In (c), after 48 iterations, the situation after few

other iterations is shown: as predictable, robots cannot fully localize themselves

due to the lack of information available.

Fig. 3.8 shows the behavior of the algorithm at the same time-steps, when

the collaboration among robots is activated. Robots are assumed to be able to

communicate to each others within a range of 5 m. In this case, even after few

steps (4 iterations) the situation is less ambiguous (a). In fact, in (b) (iteration

24) robots are already localized, even though with a perceptible uncertainty,



CHAPTER 3. A SPATIALLY STRUCTURED GENETIC ALGORITHM 36

-6

-4

-2

0

2

4

6

1

2

1

2

(a)

-6

-4

-2

0

2

4

6

1

2

1

2

-8 -6 -4 -2 0 2 4 6 8
-6

-4

-2

0

2

4

6

1

2

1

2

(b)

(c)

Figure 3.7: First simulation in independent
mode: iterations 4 (a), 24 (b) and 48 (c)
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Figure 3.8: First simulation in collaborative
mode: iterations 4 (a), 24 (b) and 48 (c)

underlined by the hypotheses arrangement. In (c), having the cooperation been

activated for long enough, robot are fully localized proving that the cooperation

can better exploit data.

The second simulation has been carried out in a highly symmetrical environ-

ment. Also in this case, information coming only from laser rangefinders are not

adequate to fully distinguish hypotheses.

Fig. 3.9 shows the behavior of the algorithm at some time-steps when the

collaboration among robots is deactivated. At the beginning, as no prior informa-

tion is available, hypotheses are uniformly spread over the whole environment.

Afterwards, according to data coming from sensors, some regions turn out to be
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Figure 3.9: Second simulation in independent mode: iterations 12 (a), 24 (b) and 48 (c)
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Figure 3.10: Second simulation in collaborative mode: iterations 12 (a), 24 (b) and 48 (c)

more likely than others. Therefore, individuals tend to cover these areas. How-

ever, as expected, robots cannot fully localize themselves relying only on the laser

rangefinder data because of the nature of the environment.

Fig. 3.10 shows the behavior of the algorithm at the same time-steps when

the collaboration among robots is activated. Robots are assumed to be able to

communicate with each other within a range of 5 m. Also in this case, as no prior

information is available at the beginning, hypotheses are spread uniformly over

the whole environment. However, due the cooperation between the two robots,

a different behavior can be noticed. In fact, extending the perceptual capability

of a robot, a better “sight” of the environment is obtained. Therefore, some

structural ambiguities can be easily overcome.

The third simulation has been carried out considering three robots. Fig. 3.11

shows the 55-th iteration: in (a) the algorithm behavior when the cooperation is

deactivated is reported, while in (b) the same situation with the support of the

cooperation is shown. Also in this context, it can be easily noticed as extending

the perceptual capability of a robot improves its localization. In particular, due to

the nature of the environment, robots 2 and 3 take advantage of the collaboration

to disambiguate their position, while robot 1 can localize itself simply exploiting

the laser rangefinder data. Moreover, the framework allows different perceptual
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Figure 3.11: Third simulation in independent (a) and collaborative (b) mode: iteration 55

extensions to exist. In fact, while robot 3 extends its perception using data

coming from both robots 1 and 2, these robots exploit only data coming from

one robot.

3.4 Considerations

In this chapter a novel approach based on spatially structured genetic algorithms

for mobile robot localization has been proposed. It takes advantage of the com-

plex network theory for the deployment of the population in order to more quickly

find out the optimal solution. In fact, modeling the search space by means of

complex networks results in a more effective exploration. In addition, giving such

a structure to the population leads to several interesting advantages such as the

capability to create evolutionary niches. Since niches are regions in which par-

ticular solutions are preserved, a natural way to carry on the multi-hypothesis

is obtained. This approach has been successively extended to deal with the

multi-robot context. The idea is to exploit the underlying collaborative nature of

multi-robot systems so that the perceptual aliasing can be reduced, as the more

data available the higher the probability to converge to the exact location. This

is achieved by integrating observations coming from several robots so that the

sensory system capability of each robot is extended. In order to realize that, rel-

ative position and orientation of the robots are exchanged along with the sensor

data. Real experiments have been carried out to prove the algorithm capability to

deal with the global localization problem and validate the strategy that has been

proposed to sense when a kidnap occurs, while extensive simulations have been

performed to validate the strategy proposed for the multi-robot context. Accord-

ing to the simulation results, the collaborative technique significantly reduces the

perceptual aliasing, particularly when the interaction with the environment does

not provide enough information.



Chapter 4

A Bacterial Colony Growth Framework

In this chapter, a new-biology inspired approach is proposed. The idea is to exploit

models of species reproduction to provide a suitable framework for maintaining

the multi-hypothesis. The Bacterial Colony Growth Algorithm(BCGA) provides

two different levels of modeling: a background level that carries on the multi-

hypothesis and a foreground level that identifies the best hypotheses according

to an exchangeable strategy. In addition, a collaborative policy for the multi-

robot context is proposed. Collaboration among robots is obtained by exchanging

sensory data and their relative distance and orientation. This information is

integrated into the framework in such a way that the convergence aptitude is

enhanced redefining the condition (nutrient or noxious ) of the environment.

4.1 Models of Species Evolution

The evolution of species has been modeled mathematically with different ap-

proaches. Historically, systems of deterministic differential equations suitable for

large population dynamics were the first proposed [104] [148] [150]. More re-

cently, in order to model in-vivo reactions such as metabolic or gene regulations,

stochastic differential equations [38] and lattice gas automata using Monte Carlo

Algorithms [137] have been introduced.

4.1.1 Competitions and Cooperation among Cohabitant Species

The basic model (apart from the Malthusian one [104]) for describing species

evolution is the logistic model, introduced by Verhulst [148]. In this model, the

Malthusian natality factor r is a linear function of the population numerousness

N(t)

r(N(t)) = r0 − r′N(t) (4.1)

where r0 and r′ are opportune positive constants typical of the population. From

the above equation, it follows that the population grows when the natality rate is

39
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positive and the numerousness is not too large (below r0/r
′). Eq. (4.1) describes

an auto-regulation linked to the numerousness in the natality process. Introducing

eq. (4.1) in the Malthusian equation dN
dt

= RN(t), where R = r−m is the growth

rate, m being the mortality factor, the logistic equation is defined as:

dN(t)

dt
= (r0 − r′N(t) − m)N(t) (4.2)

= R0N(t)

(

1 − N(t)

K

)

where R0 = r0 −m is the population growth rate in the absence of intra-specific

competition and the ratio K = R0
r′

is the carrying capacity. The solution of this

differential equation is:

N(t) =
K

1 + ( K
N(0) − 1)e−R0t

(4.3)

In an evolutionary framework, different species compete for the same resources

in order to survive. In other words, the growth of different species is limited

by a common factor. Supremacy (survival) of one species over the others is

determined by natural selection. The logistic equation previously introduced for

a single species can be properly modified to model such competition. For two

species, assuming the overall numerousness ((N1(t) + N2(t))) as the common

factor, the following equations can be derived:

dN1(t)

dt
=

(

1 − (N1(t) + N2(t))

K1

)

R1N1(t) (4.4)

dN2(t)

dt
=

(

1 − (N1(t) + N2(t))

K2

)

R2N2(t) (4.5)

Subsequently, the predator-prey was introduced by Volterra and Lotka [150].

Here the authors consider an environment composed by two populations in which

predators eat prey.

dH(t)

dt
= (a − bP (t))H(t) (4.6)

dP (t)

dt
= (kH(t) − c)P (t) (4.7)

Depending on the constant values, the populations can present different behav-

iors, including periodic ones.

Competition and cooperation can be modeled in a more general framework,

where different species are living in the same environment. Consider again a

biological system comprised of two populations P1, P2 and a limited resource

that both populations need. To use the resource, P1 and P2 begin to compete.

Let’s assume that if one population extinguishes, the other one grows according

to logistic law dPi(t)
dt

= aiPi(t) − biP
2
i (t). Moreover, in the cohabitation, there is
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an encounter term cP1(t)P2(t) that has a control effect. The evolution is then

described by:

dP1(t)

dt
= (a1 − b1P1(t) − c1P2(t))P1(t) (4.8)

dP2(t)

dt
= (a2 − b2P2(t) − c2P1(t))P2(t) (4.9)

where ais are the growth rates, bis are the intra-specific competition coefficients,

cis are inter -specific competition coefficients.

In a similar way, a model for the cooperation can be designed in which a pop-

ulation will extinguish if the other one is lacking. In this model, the genetic

evolution of species (either by sexual reproduction, i.e. genetic mixtion, or mu-

tation) is not explicitly defined. In order to handle this, several solutions can be

presented. One is to allow new speciation and consider different evolved genetic

strains of the same species as different competitive-cooperative populations. An-

other is to introduce correction terms in the reproduction rates as a result of the

overall evolution of a species (interpreted as modified replication capacity).

4.2 The Bacterial Colony Growth Algorithm

A major issue of the global localization problem is maintaining a set of hypotheses

about the robot pose until a reasonable confidence level of estimation is reached.

The Bacterial Colony Growth Algorithm takes this issue into account. As a result,

it provides two levels of modeling:

• The Background Level that provides a suitable framework for modeling and

carrying on the multi-hypothesis.

• The Foreground Level exploits several exchangeable strategies to track the

robot pose.

4.2.1 Background Level: Multi-Hypothesis Modeling

The models of species reproduction introduced above can be effective in describ-

ing and maintaining the multi-hypothesis. In this context, a population of hypo-

thetical robots is considered. Each robot is seen as a bacterium in a biological

environment, say Escherichia Coli, which reproduces asexually. One interesting

phenomenon observed in the unicellular organisms is the chemo-taxis response,

in which the cellular movement is oriented towards or away from a chemical

compound. Mobile bacteria as E. Coli swim towards areas with a higher con-

centration of nutrient compounds like sugars (attractors) or amino acids, and

away from higher concentrations of noxious compounds (repulsors), so that its

motivation is similar to that of a particle in a vector field based on a gradient

method. Clearly, the environment is composed of different areas characterized

by compounds and concentrations which vary over time. Another interesting

characteristic of protozoa is that they can form colonies and aggregate in specific
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regions. Conversely, when no favorable conditions are present, they wait latently

for better times to reproduce (bet-hedging).

In the mobile robot localization context, the nutrient areas represent regions

where the measurements −→mrt , provided by the real robot, match with some of

the population estimated measurements −→mpts (and bad matches define noxious

areas). Moreover, the kinematic model allows bacterial movement. At the same

time, attractive and repulsive areas change dynamically according to the real

robot movements. In the nutrient areas, the bacteria (robots) can reproduce and

form colonies (clusters of robot hypotheses), whose growth is limited by the total

resources of the environment and by the colony size. Thus, a natural way of

maintaining the multi-hypothesis is achieved. In addition, the growth limitation

curbs the unbounded growth of the best hypotheses as well as the extinction of

other small-medium size colonies.

Specifically, when a bacterium is in a nutrient area, its chances of reproducing

and forming a colony are higher while its replication chances are lowered by over-

population. Moreover, if the nutrient area is shifting somewhere else, the colony

first tries to expand slightly (dispersion), then starts to disintegrate if nutriment

is no longer available (the environment becomes noxious), as can be clearly ob-

served when a kidnap occurs. Finally, when attractive areas are unavailable or

unreachable, the bacteria become latent and stop reproducing, wandering until

suitable conditions are found. The bacterial colony growth algorithm (BCGA)

Algorithm 4: Bacterial Colony Growth Algorithm

Data: Pt = {p1,t . . . pN,t}
Result: Pt+1 = {p1,t+1 . . . pN,t+1}

i = 1;1

while (i ≤ N) do2

latency flag l = TRUE;3

j = 1;4

while (j ≤ N ∧ i ≤ N) do5

generate r ∈ U [0, 1];6

calculate f1(
−→mpj,t

,−→mrobott) = n ∈ [0, 1];7

calculate f2(pj,t, Pt+1) = d ∈ [0, 1];8

if (r < n · (1− d)) then9

pi,t+1 = reproduction(pj,t, n);10

i = i + 1;11

l = FALSE;12

end13

j = j + 1;14

end15

if (l = TRUE) then16

pi,t+1 = betHedging(Pt);17

i = i + 1;18

end19

end20

is shown in detail in Algorithm 4. The reproduction policy for each bacterium-

robot is driven by both the match with the real robot measurements and the
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colony density in the local area. In detail, the nutrient or noxious environment

condition is described by the formula:

f1(
−→mpj,t

,−→mrt) =
1

M

M∑

i=1

e−

„

mi,pj,t
−mi,rt

«2

2σ2 (4.10)

where σ is tuned coherently with the robot measure confidence intervals.

The colony density is defined as:

f2(pj , P ) = min

{

1,
1

νN

N∑

i=1

(

e−
‖pj−pi‖

2

2σ2

)}

(4.11)

where ‖ · ‖ is the Euclidean distance between two points, with ν ∈ [0, 1] and σ

controlling the maximum colony size and the spatial radius respectively.

If a bacterium belonging to a colony Ci in a determined spatial radius is con-

sidered as an individual in a species Si (colony), the corresponding deterministic

differential equation which holds for large populations is:

dSi

dt
= f1(Si)



1 −



f2(Si, N) +
∑

k 6=i

f2(Sk, N)







Si (4.12)

Note that if f2(Si) is approximated with Si

N
, the logistic law is obtained while the

growth is limited by the density and the size of the other colonies, with
∑

k Sk ≤
N as a boundary condition. Here it is assumed that a colony is determined by a

small radius in which nutrient conditions and density can be considered constant.

If a bacterium reproduces out of this radius, then it is considered either migrating

to another colony or forming a new one. The spatial reproduction of a bacterium

p depends on the environmental condition: if favorable, the bacterium reproduces

in a small neighborhood; otherwise it migrates according to a normal distribution,

whose variance is inversely proportional to the nutriment conditions.

reproduction(p) =







xp = N (xp,
σ1

f1(p))

yp = N (yp,
σ1

f1(p))

ϑp = N (ϑp,
σ2

f1(p))

(4.13)

Note that as f1(p) approaches zero, the normal distribution tends to the uniform

one: the bacterium is randomly dragged, wandering for attractive areas and the

bet-hedging strategy is achieved.

This behavior turns out to be very effective, in particular when a robot is al-

ready roughly localized and a kidnap event occurs. In this case, as soon as the

hypothesis measurements no longer match the real one, the reproduction rules at

the base of the BCGA will provide an immediate response to the kidnap. That

is, colonies will start to expand in a Gaussian way with a standard deviation pro-

portional to the matching criteria. Moreover, since a kidnap is a “drastic” event

when compared to the most common sensor problems (such as the inability of a
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laser rangefinder to deal with glass walls), the standard deviation will approach

zero more quickly, providing an automatic resampling of the search-space. In this

way, a complete “reset” of the environmental conditions is achieved, enabling the

algorithm to look in areas previously considered noxious as well. Indeed, this

approach is far more innovative than the Monte Carlo Filter (MCF), as no addi-

tional heuristic is required to “sense” the kidnap event since it is automatically

handled by the dynamics of the equations.

4.2.2 Foreground Level: Multi-Hypothesis Choice and Interpretation

The competitive logistic model presented in the last section and its implementa-

tion within the BCGA represent a simple but flexible model for multi-hypothesis.

Depending on the problem issues, a set of more complex equations and corre-

sponding behaviors can be devised, as shown below in some practical examples.

In the global localization problem, it is often the case that the hypothesis choice

strategy is directly related to the algorithm. Strategies might include maximum

probability, maximum fitness, et cetera. In a wider context, referring to sensor

fusion, the multi-hypothesis characterization and its interpretation can be di-

vided and independently carried out. More specifically, for any general problem

setting, two possible strategies can be devised:

• Augment the complexity of species evolution model and keep a naive decision

strategy.

• Keep the species evolution model simple and design a set of more accurate

decision strategies using the distributions resulting from a simple BCGA.

Augmenting the model complexity requires a deeper investigation of the robot

dynamics and behaviors related to the environment and the sensor measurements.

Conversely, while a more simplistic model might be less robust in carrying on

the multi-hypothesis, an accurate foreground strategy could compensate for this

shortcoming. It is worth noting that the decision to modify the reproduction

equation or the hypothesis choice depends highly on the experiment scenario.

If the robot measurements are reliable, a naive reproduction scheme may be

sufficient when combined with an accurate kinematic model. If the measurements

are not sufficiently reliable, as in the case of laser sensors striking glass or when

complex robot movements lead to phenomena such as sliding, the policy must be

further investigated.

Choosing the best hypothesis is a good example of naive foreground strategy.

In the case of the BCGA, the densest colony within the most nutrient area is se-

lected. Unfortunately, this solution can lead to unrealistic optimum fluctuations.

A more robust technique is achieved by introducing a weighted mobile temporal

mean of the most likely hypotheses. If the aim is to preserve all plausible hy-

potheses, a proper multi-tracking strategy might be considered, e.g., performing

a clusterization over the colonies and describing the trajectory of each hypothesis
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by the barycentre of a cluster. Alternatively, the bacterial reproduction schema

might be modified when sensor data are known to be unreliable.

In this work, three different policies have been investigated:

• Best colony for simulation environment.

• Mobile temporal mean for real environment.

• Modified reproduction for real environment.

The mobile temporal mean has been adopted as a good compromise between

efficacy and simplicity. Note that even though a similarity with the weighted

resampling step of the MCF might be found when using the mobile temporal

mean as a foreground strategy, a fundamental difference arises. In the MCF,

weights affect the survival of hypotheses (particles), while in the BCGA, weights

are introduced only to perform a comparison among colonies.

The modified reproduction is instead designed to augment the robustness of

the hypotheses survival against measurement faults. The fitness reproduction

chances of a bacterium do not depend only on fitness f1 and density f2, but also

on ancestoral characteristics. The idea is that a bacterium, when reproducing,

transmits its genes to the progeny and determines if they will be more or less

effective in reproduction during following generations. A way to express this with

formulae is:

r = f1k
(1 − f2k

) (4.14)

h =
1

K

k−1∑

i=1

f1i
(4.15)

r̂ = r + h − rh (4.16)

where r is the reproduction probability previously introduced, h is the “genetic

help” (equal to the average fitness of the ancestors over the generations), and r̂

is the modified reproduction probability. This reproduction schema provides a

better estimation of the hypotheses distribution, allowing for a simple foreground

strategy such as the naive best-colony strategy.

4.2.3 Collaborative Localization

The BCGA algorithm provides an effective localization strategy when the single-

robot context is considered. However, it does not take into account collaboration

among robots. An algorithmic extension (CBCG) can be devised in order to

exploit information derived by collaboration among robots. In detail, once two

real robots (say r1 and r2) meet, i.e, they are within their range of visibility

V , sensor data along with relative distance and orientation are exchanged. This

information will be used to improve the localization process as follows (supposing

two robots are moving in the environment and omitting the temporal index):
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• Consider two robot populations P1 and P2, composed by single hypotheses

p1
i ∈ P1 and p2

j ∈ P2, and let the real robot r1 be seen by r2.

• The robot r2 communicates to the robot r1 its relative distance and orien-

tation along with a subset of its population for which f1(p
2
j) ≥ φ (where φ

can be set arbitrarily) holds.

• Each p1
i exploits this information to refine areas potentially nutrient with

regard to its own estimate. Specifically, p1
i updates its fitness through a

modified version of the (4.10) able to take into account data sent by r2.

The modified version of the nutrient or noxious environmental condition, for

each p1
i ∈ P1, is given by:

f̂1(p
1
i ) = f1(p

1
i ) + f3(p

1
i ) − f1(p

1
i ) · f3(p

1
i ) (4.17)

where f1(p
1
i ) = f1(

−→mp1
i
,−→mr1) (time index is not shown) and f3(p

1
i ) represents the

weighted projection of the estimate of r2 on r1, which can be defined as:

f3(p
1
i ) = max

{

f1(p
2
j) · e−

‖p2
j−p1→2

i ‖2

2σ2

}

, (4.18)

∀p1
i ∈ P1,∀p2

j ∈ P2

where p1→2
i is the estimate of robot r2 with respect to the hypothesis p1

i of the

robot r1. Furthermore, (4.17) can be viewed, from a probabilistic perspective,

as a “union” that redefines a probability distribution with regard to additional

information coming from another source.

4.2.4 Parameter Optimization

An open problem for the MCF, the BCGA and related techniques is the parameter

optimization, such as the choice of the initial number of particles (or bacteria) or

the definition of the variance for reproduction area. An a priori determination

of these parameters is difficult. It can depend on the size of the deployment

area, the ambiguity of both paths and sensors, as well as the kinematic model

reliability. If the real robot path is available, the algorithm can be run several

times with different parameter configurations and the resulting tracking errors

can be compared through statistical tests. This way, parameters can be optimized

and a satisfying performance can be achieved, lowering the number of bacteria.

In this study a non-parametric Wilcoxon rank-sum test [157] was adopted to

compare median error vectors on the iteration steps. The Wilcoxon rank-sum

test is a non-parametric statistical analysis of the differences in the distributions

of two groups. This test is the equivalent of the Student’s t-test for normal

distributions, but relaxes the Gaussian requirement and allows for comparison

through median and rank.

The test can be useful in performance comparisons when two robust indicators

are derived from experimental settings. For this study, a performance indicator
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vector was generated with the aim of measuring the model behavior over time.

Specifically, at each time step, the median (or mean) of the pose error resulting

from 50 independent model runs is taken. In this way, a non-parametric distribu-

tion of pose errors over time is achieved. If two models have to be compared, e.g.

the BCGA against the MCF or two BCGA with different parameter settings,

the corresponding performance indicator vectors are calculated and compared

with the rank sum statistics. Thereby, probability values explaining the model

differences are obtained.

4.2.5 Computational Complexity

To evaluate the ability of an algorithm to run in an on-line context, the computa-

tional complexity becomes a very useful analysis. Therefore, a detailed theoretical

study has been performed along with an empirical validation of the obtained re-

sults. The algorithm presents two nested loops in which the dominant operation

is the density estimation function, linear with the population size. At first glance,

the complexity turns out to be O(n3) in the worst case, O(n2) in the best case,

and µ · n3 = O(n3) in the mean case, where µ ∈ [0, 1] is the mean reproduction

factor. However, the density function can be dynamically calculated with increas-

ing complexity, linear with the first loop, thus the worst case can be reduced by

a factor of two and the mean case becomes O(n3) = µ·n2·(n+1)
2 . The complexity

remains cubic, but with low constants. Coupled with the fact that in general the

BCGA needs a lower number of bacteria compared to the number of particles

needed for the MCF, its use in an on-line context is favorable. The next step will

be an even lower bounded implementation.

4.3 Performance Evaluation

The proposed Bacterial Colony Growth Algorithm has been thoroughly investi-

gated in both a simulated environment and with real robot data. Experiments

carried out with the robot showed the capability of the algorithm to solve the

localization problem in different real-world contexts, while simulations were fun-

damental for tuning the algorithm parameters, exploring the kidnap and val-

idating the multi-robot collaborative strategy. The exposition is organized in

two paragraphs, the first analyzes the behavior of the algorithm for single robot

localization while the second reports some results for multi-robot.

4.3.1 Problem Settings

Computer Simulations. Simulations have been carried out in a framework devel-

oped under Matlab by the authors. This framework provides different kinematic

models for the robot, such as the unicycle model, as well as an emulation for sev-

eral sensors such as a laser rangefinder. Moreover, the environment is described

by a set M of segments. This framework supports both a complete simulated
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context as well a test-bed to run data coming from a real robot. These two

different operative modalities turn out to be very useful, both to test the cor-

rectness and the effectiveness of the algorithm. Details about robot, sensors and

environment modeling are provided in Appendix A.

Real Robot Context. Experiments have been carried out on the mobile platform

ATRV-Jr manufactured by iRobot. It is a skid steering vehicle mainly designed to

operate in outdoor environments. The ATRV-Jr has 4 wheels differentially driven

by 2 DC motors: the motion is achieved by a differential thrust on the wheel pairs

at the opposite sides. The mobile robot is equipped with 17 sonar rangefinders,

a laser scanner (Sick LMS-220), an inertial platform (Crossbow DMU-6X), and

a GPS receiver (Garmin GPS35-HVS). The sensory system is connected to the

ATRV-Jr’s on board PC (Pentium II, 350 MHz) running Linux, through serial

ports on a Rockeport multiserial port card. The robot is delivered with a software

development environment called MOBILITY, which provides full access to the

software servers available on the mobile platform. Each server is assigned to

control a specific hardware component (sensors and actuators). In this way all

interfaces are reachable from the network exploiting a CORBA interface.

4.3.2 Single Robot

Simulation

The simulated environment was configured as a large indoor area with several

ambiguous zones (rooms), with a few poses uniquely defined (Fig. 4.1). The

robot was simulated moving along a fixed path for 300 steps (step interval at 1s).

A kidnap condition at time t = 100 was added. The simulated laser sensors had

a limit of 8m, while two random zero-mean artificial noise variables were added

to the kinematic model and to the observation model respectively.

In order to assess the BCGA performances and robustness, a preliminary phase

of parameter tuning was performed. Then, 50 independent test runs were car-

ried out. The final BCGA, after tuning, was configured with an initial random

population of 300 bacteria, a maximum colony fraction size ν = 0.3, a colony

radius σr = 10m, a sensor measure deviation of σm = 0.1, a tolerance in pose

of σ2
x = σ2

y = 0.1 and σ2
ϑ = 0.05. The strategy for the best hypothesis selection

was the best bacterium in the densest colony. This is a naive strategy for the

hypothesis choice (in Section 4.3.2 a set of more effective strategies are presented)

but it turned out to be satisfactory in this context.

According to the simulation results, the BCGA algorithm was able to carry on

the multi-hypothesis and successfully localize the robot after a few iterations. It

was also able to quickly re-localize the robot when a kidnap occurred (Fig. 4.11).

Robot in Real Environment

The ATRV-Jr was put in three indoor office environments:
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• Corridor.

• Lobby.

• Entire building floor.

The environments were selected with increasing complexity and size. All of them

contained ambiguous areas (including corridors, similar rooms, et cetera) and

places in which both sensors and kinematics fail (glass doors, smooth floors, et

cetera). Laser rangefinders were set to high definition and small range mode (8m),

so that the overall coverage of the environment would not always be guaranteed.

The Corridor. The robot moved through the corridor, making 180◦ U-turns at

each dead-end (Fig. 4.3). The sampling frequency was 5Hz and an accurate

Kalman path estimation was available for comparison. The environment featured

highly ambiguous pathways and areas, especially in the middle of the corridor and

in the two almost identical niches at each end. Tracking was further complicated

due to sliding phenomena impacting encoder data and noise affecting laser mea-

surements (especially in the U-turn, where glass doors were also present). The

foreground strategy was not limited to the trivial best-colony (or best-particle)

choice. More complex problem settings demanded more robust hypotheses dis-

crimination. Experimental results suggested that the simple competitive-logistic

model was powerful enough to carry on the multi-hypothesis. However, a bet-

ter tracking performance was obtained by exploiting the modified reproduction

schema.

In particular, the following two configurations were taken into account:

1. Mobile temporal mean with the simple-competitive logistic law.

2. Modification of the reproduction law as in eq. (4.16).

In order to assess robustness and performance, a set of 50 independent runs were

collected both for the first and the second strategies, with different parameter

settings. For the mobile mean strategy, the optimally tuned BCGA was set up

with the following parameters: an initial random population of 200 bacteria (as

it was a smaller area compared to the simulated one); a maximum colony fraction

size ν = 0.5; colony radius σr = 1m; sensor measure deviation of σm = 0.1; and

tolerance in pose of σ2
x = σ2

y = 0.05 and σ2
ϑ = 0.005. Colonies grew and moved

coherently with the robot poses, except in the region corresponding exactly to

the U-turn. Here, the longest lasting colony (and so far, the correct one) depleted

(due to the inability of sensors to properly work in presence of elements made

with glass and the imprecision of the kinematic model), but recovered rapidly.

Another difficulty occurred in the middle region of the corridor. Due to the

symmetry of the environment, two high-density colonies were growing and mov-

ing in opposite directions. The depletion experienced during the U-turn, along

with the similarity of sensor data readings, due perhaps to the limited laser range,
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Figure 4.3: Real environment - Corridor - BCGA.
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made the best mobile mean fail occasionally. Fig. 4.3 shows several steps of the

algorithm’s execution, where the thick (red) triangle represents the best hypoth-

esis while the (blue) star is the real robot pose. Colonies are created w.r.t. the

locations which better match with the sensor data, e.g. steps a, b, f . Colonies

expanded (enhancing the state-space exploration) when in the presence of am-

biguous areas, data or kinematic failures, e.g. steps g, h. Fig. 4.4 shows the

median tracking error over 50 independent runs. Note that the mobile mean pol-

icy leads to a quick recovery from the U-turn depletion, even though problems in

the middle corridor are experienced.

Experimental results indicate that the modified reproduction schema combined

with the naive best-colony strategy performs better. In particular, a lower lo-

calization error is experienced and a reduced number of bacteria is required in

order to successfully localize the robot (tests were made with 30 and 300 bacte-

ria). Although a better performance is always experienced when the number of

bacteria is increased (no matter what strategy is adopted), the second strategy

outperforms the first even when considering only 30 bacteria. In this context,

the Wilcoxon-test could be properly exploited to find out the optimal number of

bacteria to use w.r.t. a desired error level. Fig. 4.4 and 4.5 show the algorithm

performance when considering the mobile mean and the modified reproduction

schema with the best-colony strategy.

The Lobby. This second environment (Fig. 4.6) presents a wider area when

compared to the corridor previously discussed. Here, the robot started from

the bottom and travelled upward, turning around and returning to the bottom

again. The environment was less ambiguous, but the available map was less

accurate as well, e.g. the slope of the incline on the top wall was incorrect.

Again, 50 experiments were run and a Kalman path estimation was available for

comparison.

The modified reproduction schema presented in eq. (4.16) was used and the

number of bacteria was varied (30, 100 and 300). The rank-sum statistics again

showed better performances for the 300-bacteria (which explains the lower recov-

ery time after measurement failures, Fig. 4.7 and 4.8). In addition, the median

error was below 0.5 meters for all settings. In the turning region, although the

algorithm suffered from map inaccuracy, it was robust enough to track the robot

(Fig. 4.7 and 4.8). Fig. 4.6 shows several steps of the algorithm execution. The

thick (red) triangle represents the best hypothesis, while the (blue) star is the

real robot pose. As for the previous experiment, colonies were created w.r.t. the

locations which better matched the sensor data, e.g. steps b, c, d. Moreover, an

expansion of colonies was noticed when in the presence of environmental ambi-

guities, e.g. steps a, f .
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Figure 4.4: Real environment - Corridor - BCGA: Median pose error over 50 trials. Mobile
temporal mean with the simple-competitive logistic law.
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Figure 4.5: Real environment - Corridor - BCGA: Median pose error over 50 trials. Modified
Reproduction Law with Naive best hypothesis choice. Runs with 300 (solid black line) and 30
(dash red line) bacteria.
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Figure 4.6: Real environment - Lobby - BCGA.
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Figure 4.7: Real environment - Lobby - BCGA: Median pose error over 50 trials. Modified
Reproduction Schema for best hypothesis choice. Runs with 300 (solid black line) and 100
(dash red line).

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

D
is

ta
n
ce

 E
rr

o
r 

[m
]

Figure 4.8: Real environment - Lobby - BCGA: Median pose error over 50 trials. Modified
Reproduction Schema for best hypothesis choice. Runs with 300 (solid black line) and 30 (dash
red line) bacteria.
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Figure 4.10: Real environment - Entire Building Floor - BCGA: Median pose error over 50
trials. Modified Reproduction Schema for best hypothesis choice. Runs with respectively 300
(solid black line) and 100 (dash red line) bacteria.

Entire Building Floor. This is the largest environment where the BCGA was

tested. It is the first floor of the Computer Science Engineering Dept. of Roma

TRE University. It features a smooth, glossy ceramic floor, rough white walls

and several glass doors and windows. The robot started from the bottom-left

small niche and moved towards the first large area with the pillar surrounded

by glass doors. Then, it continued through the left corridor and finally turned

right into the upper horizontal corridor (Fig. 4.9). The total path was 1000 time

steps, with sampling frequency at 5Hz. Also in this case, a reliable Kalman path

estimation was available to evaluate the algorithm tracking capability.

The BCGA was run 50 times with three different population sizes (300-150-50).

With less than 150 bacteria it was almost impossible to find and track the robot,

while with 300 bacteria the pose error was acceptable. The modified reproduction

strategy turned out to be the only one able to provide good performance, even

though some problems were experienced, in particular, along the last part of the

path (the long corridor). Fig. 4.10 shows the median errors w.r.t. a population

size of respectively 300 (solid black line) and 150 (dash red line) bacteria.

4.3.3 Multi-Robot

In order to assess model performances, a set of 100 independent BCGA and

CBCG runs was executed, recording the pose error at each time step, design-

ing and maintaining a fixed path for two robots that would allow also mutual

localization. Table 4.1 describes the algorithm parameters setting adopted for
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simulations. Specifically, at each iteration of a given trial, a pose error was com-

puted with respect to the best hypothesis choice described above. Median and

mean errors over the 100 trials were evaluated as performance indicators, ob-

taining a non-parametric distribution of the errors over time to be statistically

investigated.

Table 4.1: Algorithm Parameters Setting

Parameter Description Value

N Population Size 50÷ 100
L No. of Pattern Beams 7
l Beam Range [m] 12
σl St. Dev. Laser Beam Noise [cm] 10
σp St. Dev. Spatial Radius Bound [m] 2
ν Density Bound [%] 50
σ1 St. Dev. x-y Reproduction Area [cm] 10
σ2 St. Dev. Angle Reproduction Area [rad] 0.05
V Range of Robot’s Visibilty [m] 15

Two environment, specifically designed to make convergence challenging, are

proposed. In detail, Fig. 4.11 and 4.14 show such environments along with the

related paths for two robots. The first environment presents rooms with struc-

tural similarity among them, while the second allows for symmetric paths. Thus

ambiguous situations can arise in both cases. Note that, for clarity of exposition

only simulations involving two robots are provided. However, collaboration it is

not limited to that, indeed it scales well with respect to the number of robots.

Figs. 4.12 to 4.16 show the performances of the algorithm for both robots

in the two environments. Dashed lines (red) describe localization errors for the

autonomous policy, while solid lines (blue) refer to the collaborative policy. In

both scenarios communication among robots is available only in the second half

path: thus no improvement can be provided from the collaborative approach until

this event occurs.

The median, which cuts off outliers, underlines the accuracy of the localization

technique showing a negligible error. Conversely, the mean reveals the robustness

more broadly: the CBCG is more effective than the BCGA in terms of successful

trials. This means that, in the ill situations for which the convergence lacks for

one robot, processing the information from the mutual localization enhances the

hypotheses convergence. Furthermore, a Wilcoxon rank test [157], detailed in

Tab. 4.2, corroborates this result proving a significant statistical difference (p ≤
1.2 · 10−4) in performances when considering collaborative against autonomous

strategy.

4.4 Considerations

In this chapter a new, biology-inspired robot localization approach has been pro-

posed. The framework, the Bacterial Colony Growth Algorithm, is composed of

two different levels of execution: a background level and a foreground level. The
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Table 4.2: Wilcoxon rank test

Robots p-value rank sum z-value

Environment 1
R1 4.5368 · 10−7 2.6366 5.0449
R2 8.2272 · 10−9 2.6906 · 104 5.7637

Environment 2
R1 5.1633 · 10−7 2.3072 · 104 5.0201
R2 1.2119 · 10−4 2.2274 · 104 3.8437

first takes advantage of models of species reproduction to maintain the multi-

hypothesis, while the second selects the best hypotheses according to an ex-

changeable specialized strategy, usually problem dependent. Indeed, this modular

structure makes the algorithm very adaptive when considering different scenarios

and objectives. The framework has been successively extended to deal with the

multi-robot context by introducing the Collaborative Bacterial Colony Growth

strategy (CBCG). Collaboration is exploited any time robots are within their

range of visibility by exchanging sensory data along with their relative distance

and orientation. Sender’s information is exploited by the receiver to redefine ar-

eas that can be nutrient with regard to its estimate. This way, in the ill situations

for which the convergence lacks for one robot, processing the information from

the mutual localization enhances the hypotheses convergence.

Real experiments, carried out within three different environments with different

characteristics and incremental difficulties, have been performed to validate the

effectiveness of the proposed BCGA. Additional tracking strategies, more suitable

for a real context, have been devised and discussed. Experimental results have

shown the BCGA capability to maintain the multi-hypothesis in these scenarios.

Moreover, thanks to the specialized foreground strategies, satisfactory tracking

capabilities have been achieved. On the other hand, simulations along with proper

statistical analysis have been run to validate the CBCG extension. According to

the simulation results, the localization effectiveness increases drastically, in terms

of robustness, when collaboration is properly exploited. This is corroborated also

by the result of the Wilcoxon rank test. Indeed, it shows a significant statistical

difference in performances when considering the collaborative strategy activated

against the autonomous one.
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Figure 4.11: Environment 1: S{1,2} are start points, G{1,2} are goal points.

0 20 40 60 80 100 120 140
0
2
4
6
8

10
12
14
16

Iteration

[m
]

Average Estimation Error

0 20 40 60 80 100 120 140
0
2
4
6
8

10
12
14
16

Iteration

[m
]

Median Estimation Error

Figure 4.12: First Environment, Robot 1.
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Figure 4.13: First Environment, Robot 2.
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Figure 4.14: Environment 2: S{1,2} are start points, G{1,2} are goal points.
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Figure 4.15: Second Environment, Robot 1.
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Figure 4.16: Second Environment, Robot 2.



Chapter 5

Algorithms Discussion and Comparison

Three different approaches for the Localization Problem in Mobile Robotics have

been proposed thus far. In chapter 2 an enhanced Monte Carlo Filter aiming to

overcome the classical MCF drawbacks has been proposed. In chapter 3 an evolu-

tionary approach which provides a natural way to carry on the multi-hypothesis

by exploiting the complex network theory for the deployment of the population is

described. In chapter 4 an alternative biology-inspired framework for maintaining

the multi-hypothesis is devised. Here, a comparative analysis is provided.

5.1 Algorithms Comparison

In the previous chapters three different approaches for the Localization Problem

in Mobile Robotics have been described. Here, these approaches are compared

to give evidence of their advantages and weaknesses. For this reason, the way

how the multi-hypothesis is kept over time and how the kidnapped robot prob-

lem is faced are briefly recalled for each algorithm. Successively, a comparative

statistical analysis is described. In detail, two different aspects of interest are

investigated: the accuracy of the estimation and the computational complexity.

5.1.1 Multi-hypothesis paradigm

One of the crucial aspects of the design of an algorithm for global localization

in mobile robotics, is the capability to carry on the multi-hypothesis over time.

Indeed, when a robot is moving within an environment characterized by sym-

metries, its localization module should keep track of all the likely locations until

enough data is gathered to distinguish the correct hypothesis. This aspect was

taken into account when developing all of the proposed algorithms.

For the CE-MCF this is achieved by means of a dynamic clusterization. Hy-

potheses are grouped by exploiting a density-based notion of cluster and the sur-

vival of different hypotheses is achieved by performing the reproduction locally

within each cluster. At the same time, due to the capability of the clustering

62
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algorithm to collect noisy points, i.e., points that do not belong to any cluster,

the diversity among particles is preserved.

For the SSGA this is achieved by exploiting the complex network theory for

the spatial deployment of the population. In fact, the introduction of spatial

structures in evolutionary algorithms helps to create evolutionary niches, while

exploiting complex networks model such as the Watt-Strogatz, guarantees their

persistence. Now, since niches describe regions where particular solutions are

preserved, the maintenance of the multi-hypothesis is obtained.

For the BCGA this is achieved by exploiting the logistic models of species

evolution. In particular, the framework is inspired by the observation that some

families of bacteria tend to form colonies when in presence of favorable condi-

tions. Bacteria representing hypothetical robot locations move according to the

kinematics equations. However, their tendency to group and form colonies is

regulated by the logistic equations where the favorable conditions are given by

the measurement match and over-population control.

5.1.2 Kidnapped Robot problem

The kidnapped robot problem is probably the most captious among the three

instances of the localization problem. In fact, starting from a well-localized robot,

it implies both the capability to recognize a sensorial fault (kidnap detection) and

re-locate the robot. In particular, being able to recognize a sensorial fault is not

trivial at all. Indeed, the algorithm at the same time must be robust enough

not to be deceived by a “noisy” situation, e.g. a temporary inability of the

sensor to perceive the environment such as laser-beams against glass elements,

and sensitive enough to figure out when something really is wrong.

For the CE-MCF the detection of a kidnap event is achieved by systematically

checking the degeneracy of the population and performing a resampling step

anytime this value becomes lower than a pre-defined threshold. This can be

explained by observing that a drastic degeneracy is experienced in few steps

anytime a kidnap occurs. As a consequence, a kidnap can be treated as a special

case of the degeneracy problem. Note that, this does not hold for the classic

MCF since the depletion is a severe problem on its own. On the contrary, the

CE-MCF is able to preserve solutions and mitigates the degeneracy by exploiting

the dynamic clusterization. Therefore, a drastic depletion is a good indicator of

a kidnap event.

For the SSGA the detection of a kidnap is performed by a dedicated technique

which exploits the fitness function along with the edge function. In particular,

the former measures the compliance between real data (coming from the robot)

and expected one (computed by each individual) while the latter evaluate the

dispersion of the population. In this way a simple way to detect a kidnap is

obtained since a high percentage variation of the fitness along with a consider-

able dispersion of the population (a high value of the edge function) are reliable
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symptoms of a kidnap.

For the BCGA a kidnap is automatically detected as a side-effect of the of

the species evolution model at the basis of the reproduction, which is driven by

the environmental condition. In particular, anytime the environment becomes

noxious, bacteria migrate elsewhere according to a normal distribution whose

standard deviation is inversely proportional to the nutriment condition of the en-

vironment. Now, since a kidnap drastically change the environmental conditions,

the standard deviation will approach zero very quickly and therefore bacteria will

be automatically spread over the whole environment.

5.1.3 Performance Analysis

The environment shown in Fig. 5.1 was exploited for the comparative analysis.

It describes a portion of the Department of Computer Science and Automation

of the University of “Roma Tre”. It was chosen as a consequence of its particular

structure. In fact, it is composed of two long corridors with several indentations

which lead to various symmetrical areas difficult to distinguish. Therefore, it

turns out to be a very tough test bed for the validation of a localization algorithm.
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Figure 5.1: Test bed for comparative analysis.

In regard to the experiment, the ATRV-Jr robot started moving from the point

Start. After around 480 iterations it was kidnapped from the point Kidnap and

“tele-transported” to the point Restart. From there, it kept moving until the

point Goal was reached. Each algorithm was run 30 times and a statistical analy-

sis was performed. The following aspects of interest were investigated: capability
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to carry on the multi-hypothesis, to re-localize the robot after a kidnap and the

accuracy of the estimation. A reliable estimation of the real path, computed by

a Kalman Filter technique, was available for comparison.

Experimental results in terms of mean and median values over 30 trials are

given in Figs. [5.2, 5.3], Figs. [5.4, 5.5], and Figs. [5.6, 5.7]. Respectively for

the CE-MCF, for the SSGA and for the BCGA. Note that, a better insight of

the algorithms performance is provided by exploiting both mean and median

operators. In fact, while the median cuts off outliers by considering mainly the

successful trials to analyze the accuracy of the localization technique, the mean

reveals the robustness more broadly taking into account any outcome.
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Figure 5.2: CE-MCF - 3000 particles - Mean
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Figure 5.3: CE-MCF - 3000 particles - Median

According to the experimental results, the proposed algorithms were able to

effectively solve the global localization problem along with the kidnapped robot
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problem. Note that, due to the presence of highly symmetrical areas within

the environment, algorithms were sometimes temporarily deceived. However, the

exact location was always re-established taking advantage of the capability to

carry on the multi-hypothesis over time.
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Figure 5.4: SSGA - 600 chromosomes - Mean
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Figure 5.5: SSGA - 600 chromosomes - Median

Figs. [5.2, 5.3] show the performance of the CE-MCF when considering 3000

particles. Experiments were performed with a number of particles ranging from

1000 to 5000. However, satisfactory performance in terms of capability to localize

the robot and solve the kidnapped robot problem were achieved with a sampling

of at least 3000 particles. By observing the two plots, the CE-MCF does not

seem to be significantly influenced by the presence of symmetrical areas. This is

due to the fact that after a while the cluster associated to the real robot location



CHAPTER 5. ALGORITHMS DISCUSSION AND COMPARISON 67

has become predominant over the others. Although this seems a good property,

it might turn out to be counterproductive as the capability of the algorithm to

recognize a kidnap is lowered. This limitation is inherent to the nature of the

Monte Carlo Filtering techniques where the weight of particles directly influence

the survival of hypothesis. The introduction of an evolutionary action along with

clusterization mitigates this weakness but it cannot be completely overcome.
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Figure 5.6: BCGA - 150 bacteria - Mean
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Figure 5.7: BCGA - 150 bacteria - Median

Figs. [5.4, 5.5] show the performance of the SSGA when considering 600 chro-

mosomes. Experiments were performed with a number of chromosomes ranging

from 300 to 1000. A satisfactory performance, in terms of ratio between accuracy

of estimation and computational complexity was achieved considering at least a

population of 600 chromosomes. Although some preliminary tunings of the kid-

nap detection function were required, the algorithm showed to properly localize



CHAPTER 5. ALGORITHMS DISCUSSION AND COMPARISON 68

the robot and solve the kidnapped robot problem. The presence of several peaks

can be explained by the tendency of the algorithm to continuously “jump” from

one niche to the others when data fits similar locations. In particular, the almost

identical trend of both mean and median plots underlines the tendency of this ap-

proach to always explore the state space and therefore keep the multi-hypothesis

over time.

Figs. [5.6, 5.7] show the performance of the BCGA when considering 150 bac-

teria. It is interesting to point out the capability of this approach to succeed with

a very small population of bacteria. This is due to the introduction of the lo-

gistic models of species evolution which effectively carry on the multi-hypothesis

over time. Moreover, the “jittering” phenomenon, experienced by the other two

approaches when choosing the best hypothesis, is significantly mitigated by the

use of the mobile temporal mean as a foreground strategy. Note that, this does

not lead to any loss of diversity among bacteria as the multi-hypothesis is inde-

pendently maintained over time by the background strategy.

5.1.4 Computational Complexity

The computational load is one of the most important aspects of an algorithm,

particularly if it needs to run on-line. For this reason a comparative analysis of

the computational complexity of the proposed algorithms is provided. In order to

do that, the asymptotic notation (a mathematical notation used to describe the

asymptotic behavior of functions) is considered. Its purpose is to characterize a

function’s behavior for very large (or very small) inputs in a simple but rigorous

way that enables comparison to other functions [11].

Table 5.1: Computational Complexity

Algorithm CE-MCF SSGA BCGA
Complexity O(N · M) O(k · N · M) O(N3)

Values N=3000, M=80 k=3, N=600, M=80 N=150

Table 5.1 summarizes the computational load of the proposed algorithms along

with the parameter setting used for the comparative analysis. In detail, in chap-

ter 2 the computational complexity of the CE- MCF was derived to be O(N ·M),

where N represents the number of particles involved and M is the number of

segments required for the description of the environment. In chapter 3 the com-

putational complexity of the SSGA was evaluated to be O(k ·N ·M) = (k−1)·N ·M
2 ,

where k is the degree of each node (i.e. number of links for each node), N rep-

resents the number of individuals and M is the number of segments required

for the description of the environment. Finally, in chapter 4 the computational

complexity of the BCGA was determined to be O(N3) = µ·N2·(N+1)
2 in the worst

case, where N represents the number of bacteria and µ is the mean reproduc-
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tion factor. In order to provide a fair comparison, the real parameters adopted

for the previous experiment are considered. The number of segments required

to described the environment was M = 80. The CE-MCF was configured with

N = 3000 particles. The SSGA adopted the Watt-Strogatz model with k = 3

and a population of N = 600 chromosomes. Finally, the BCGA was setup with

150 bacteria.

According to this scenario, the SSGA followed by the CE-MCF, provides the

lowest computational complexity while the BCGA has the highest complexity

with the worst case being O(N3). However, empirical evidence showed that the

BCGA computational complexity is significantly lowered to O(N2 · logN) in the

mean case. This observation coupled with the small number of bacteria required

for solving the problem make the BCGA an appealing approach.

5.2 Considerations

In the previous chapters, three different approaches to the Localization Problem

in Mobile Robotics have been proposed. In this chapter, the main features of these

approaches have been reviewed and a comparative analysis has been performed.

The capability to carry on the multi-hypothesis over time and solve the kidnapped

robot problem have been mainly investigated. For this reason, an additional

environment composed by two long corridors with several indentations has been

exploited. In this way, the localization problem becomes even harder due to the

presence of several structural similarities. Each algorithm was run 30 times and

a comparative statical analysis was performed.

Experimental results, carried out with the robot ATRV-Jr manufactured by

iRobot, showed comparable performances. Indeed, all the proposed algorithms

were able to solve both the localization and kidnapped robot problems. Among

them, the CE-MCF provided the more reliable path estimation, even though a

considerable amount of particles was required to achieve such a result. The SSGA

performed satisfactorily, even though a strong tendency to “jump” from one niche

to the others was experienced when data fits more than one location. Finally,

the BCGA turned out to be an interesting approach, although theoretically the

worst case of the computational load is quite problematic. However, the limited

number of bacteria required for solving the localization problem along with the

empirical evidence of a significantly lowered mean case make this approach very

appealing.

Future work should be devoted to experimentally validate the techniques pro-

posed for the multi-robot scenario.
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Chapter 6

Introduction

Wireless Sensor Networks (WSN) are at the forefront of emerging technologies

due to the recent advances in Micro-Electro-Mechanical Systems (MEMS) technol-

ogy. The inherent multi-disciplinary nature of WSN attracted scientists coming

from different areas stemming from networking to robotics. WSN are considered

to be unattended systems with applications ranging from environmental sensing,

structural monitoring, and industrial process control to emergency response and

mobile target tracking. Most of these applications require basic services such as

self-localization or time-synchronization. The distributed nature and the limited

hardware capabilities of WSN challenge the development of effective applications.

Therefore, this field has drawn a great amount of attention within the research

community in the last years.

6.1 The self-localization problem in Sensor Networks

A sensor network consists of a collection of nodes deployed in an environment

that cooperate to perform a task. Each node, which is equipped with a radio

transceiver, a micro-controller and a set of sensors, shares data to reach the com-

mon objective. Sensor networks provide a framework in which, exploiting the

collaborative processing capabilities, several problems can be faced and solved

in a new way. However, it comes along with several challenges such as limited

processing, storage and communication capabilities as well as limited energy sup-

ply and bandwidth. Performing a partial computation locally on each node, and

exploiting inter-node cooperation, is the ideal way to use sensor networks. Un-

fortunately, this modus-operandi is highly constrained by the reduced hardware

capabilities as well as by the limited energy resources that makes communication

very expensive in terms of life-time for a node. As a consequence, these con-

straints must be taken into account when developing algorithms able to operate

in a distributed fashion.

Sensor networks can be of interest to different areas of application, ranging

from environmental monitoring [42, 155], civil infrastructures [88, 108], medical
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care [142, 123] to home and office applications [144, 101]. In each field, the de-

ployment of a sensor network has provided interesting advantages. For instance,

in the context of environmental monitor the introduction of a sensor network

made it possible to keep environments intrinsically threatening for human beings

[155] under surveillance, or in the context of medical care it made it possible

to remotely monitor the health condition of patients by continuously extracting

clinical relevant information [123].

However, in order to build these application, some basic services, such as time

synchronization or nodes localization, are generally required. In fact, basic middle

ware services, such as routing, often rely on location information, e.g., geographic

routing [29, 145, 94]. Specifically, the localization problem in Sensor Networks

consists of finding out the locations of nodes in regards to any topology or metric

of interest. This problem turns out to be difficult to solve. In fact in [84, 62] it was

proven that a sufficient condition for a sensor network to be localizable cannot

be easily identified. This holds even when considering the availability of perfect

measurements. Further, several analyses showed that, especially when using the

received signal strength indication (RSSI), having reliable ranging information is

fairly practical [156, 158, 12].

6.2 State of the art

A taxonomy of localization algorithms for sensor networks can be drawn ac-

cording to the computational organization, i.e., centralized and distributed, to

the mechanism adopted for estimating location, i.e., range-based or range free,

and finally in regards to the availability of anchors nodes, i.e. anchor-based or

anchor-free.

Centralized algorithms exploit a central computer to perform all the complex

computations using information gathered by nodes [54, 139, 30]. Distributed algo-

rithms dispense the computation over the network, allowing each node to perform

locally and compensating for the lack of global knowledge through an intensive

collaborative processing [112, 45, 43]. Both schemes offer advantages and draw-

backs. Centralized algorithms provide interesting performance but they lack in

scalability and robustness. Distributed algorithms provide high robustness and

scalability but the development of effective collaborative processing algorithms is

challenging.

Range-based algorithms exploit point-to-point distances or angle estimates in

order to perform the localization task [124, 141, 119]. Range-free algorithms do

not make any assumption about the availability or reliability of this information

[80, 102, 158]. Although range-free approaches are appealing as a cost-effective

alternative to more expensive range-based approaches, their performance may

lack in accuracy.

Anchor-based algorithms rely on the availability of location information for
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some special nodes in order to localize the network [63, 136]. Anchor-free meth-

ods determine the geometry of the network simply by exploiting local interaction

among nodes [126, 159]. Anchor-based algorithms have the advantage of directly

localizing nodes within a global reference frame, but their accuracy is affected by

the number of anchor nodes and their distribution in the sensor field [35]. Con-

versely, anchor-free methods scale better and do not required expensive hardware,

although only relative location estimates can be provided.

Centralized algorithms represent the first attempt to solve the localization

problem in sensor networks. In [54], the authors propose the semi-definite pro-

gramming approach (SDP) to solve the localization problem. The idea is to model

geometric constraints between nodes as linear matrix inequalities (LMIs), then

use the semi-definite programming theory to solve it. The result is a bounding

region for each node, representing feasible locations where nodes are supposed to

be. The idea to use a set of convex constraints in order to estimate the position

of a node is very elegant, but it turns out to be inaccurate as constraints do not

use precise data range. Moreover, the algorithm provides a good estimation only

when having anchors densely deployed on the boundary of the sensor network, a

condition that can not always be guaranteed. This approach is extended to deal

with noisy distance measurements in [23]. The idea is to take advantage of an

additional technique to mitigate the inaccuracy of the solution provided by the

SDP formulation. In fact, the solution provided by the DSP, though not accurate,

represents by the authors a good starting point for a gradient-descent method.

Furthermore, numerical results show that by means of this approach it is possi-

ble to obtain a solution very close to the optimal one. This approach provides

a significant improvement of the SDP-based algorithms’ performance. However,

the distributed formulation is the result of a clusterization and a local execution

of the algorithm within each subset. Therefore, the computational complexity is

merely mitigated reducing the number of nodes but the approach still remains

almost centralized. In [139], the authors propose an algorithm that uses con-

nectivity information, i.e., which nodes are within the communication range of

which others, to derive the locations of the nodes in the network. This algorithm

is based on multidimensional scaling (MDS), a set of data analysis techniques that

display the structure of distance-like data as a geometrical picture [28]. It can

be broken down into three steps. Starting with the given network connectivity

information, an all-pairs shortest-path algorithm is run to roughly estimate the

distance between each possible pair of nodes. After, the multidimensional-scaling

is applied over these data to derive node locations. Finally, location estimates

are normalized with respect to nodes whose position is known.

Distributed algorithms better fit the inherent collaborative nature of sensor

networks. In [112], the authors developed an algorithm focused on providing more

robust local maps. The idea is to split the problem into a sub-set of smaller regions

in which the localization is performed taking advantage of the probabilistic notion
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of robust quadrilaterals. A robust quad is a set of four nodes fully-connected by

distance measurements and well-spaced in such a way that no ambiguity can

arise, even when in the presence of noise. The algorithm, which does not require

anchors, merges the sub-regions using a coordinate system registration procedure.

Such a procedure maps local reference systems into a global one providing the

best fitting matrix when in presence of a set of common nodes. An optional

optimization step can be provided in order to refine the local map first. The

weakness of this approach, as pointed out by the same authors, is that under

conditions of low node connectivity or high measurement noise, the algorithm

may be able to localize only a reduced number of nodes. In [43], the authors

propose an approach where localization is performed by exploiting clustering

information. Starting from locally-aware anchors, an initial set of calibrated

nodes is built. This set is then expanded to include iteratively all the cluster-

heads. Due to the iterative nature of this approach a refining step is required in

order to provide reliable location estimates. Once the cluster-heads have been

fully localized, the remaining follower nodes, i.e., non-cluster-head nodes, can be

localized.

Range-free algorithms instead may offer a valid alternative anytime distance-

information are not available, due perhaps to stringent hardware limitations. In

[80], a range-free localization algorithm called APIT is proposed. In this work,

the environment is first isolated into triangular regions defined by beacons and

successively each node checks whether it is inside or outside of these regions to de-

termine its location. Combinations of anchor positions can be used to reduce the

diameter of the estimated area. Although an interesting insight on how localiza-

tion error affects a variety of location-dependent applications such as geographical

routing or target tracking is provided, an impractical number of beacons might

be required to achieve satisfactory performances. In [158], a sequence-based RF

localization algorithm called Ecolocation is proposed. The idea is to determine

the location of unknown nodes by examining the ordered sequence of received sig-

nal strength (RSS) measurements taken at multiple reference nodes. The authors

propose a constraint-based approach that provides for robust location decoding

even in the presence of random RSS fluctuations due to multi-path fading and

shadowing. However, the algorithm performance is heavily conditioned by the

number of available reference nodes. In [34], the authors propose a RF-based

distributed localization method where location are estimated by simply averag-

ing the positions of all the anchors it is connected to. Obviously, the accuracy

of the estimation is strictly related to the density of anchors deployed in the en-

vironment and the density required to obtain an acceptable estimation is fairly

practical.

Anchor-free algorithms may finally represent a valid alternative solution in case

prior knowledge about location are not available and an estimation in regards to a

global reference frame is not required. In [126], the authors propose the Anchor-
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Free Localization algorithm (AFL), an algorithm where all nodes concurrently

calculate and refine their coordinate information. In detail, AFL is composed

of two steps. During the first step, a folder-free graph embedding is computed

starting from the original embedding and selecting five ad-hoc reference nodes

used to approximate the polar coordinate of any other node. Successively, a

mass-spring based optimization is performed in order to correct and balance

localized errors. In [159], an anchor-free node localization protocol, which exploits

clusterization to achieve scalability, is proposed. Such a protocol consists of three

steps: network-bootstrapping, local position discovery and global localization.

During the first step clusters are identified and a “breadth first spanning tree”

rooted at the head of each cluster is performed. Since each node is able to

measure distances from its neighbors (by exploiting some TOA technique) and

a route exists from it to the cluster headset, all local distance information are

sent to the cluster heads. This information will be used during the second step

to build a local map at each cluster head. Finally, in the third step cluster

heads collaborate in order to obtain a global map of the network. Such a global

coordinate system can be built from the local maps by simply exploiting matrix

rotations, translations and mirroring.

6.3 Part II Organization

The second part of the dissertation is focused on the Self-Localization problem

in Sensor Networks. The remaining portion of Part II is organized as follows.

In Chapter 7 the Interlaced Extended Kalman Filter formulation along with

some experimental results is proposed. In Chapter 8 the distribued Interlaced

Information Filter is described and experimental results are given. In Chapter 9

the two approaches are compared in terms of performances and computational

complexity and conclusions are drawn. Note that, in order to make the treatment

of each subject as self-contained as possible, each chapter is provided with a

preliminary theoretical background, the description of the problem settings and

the discussion of individual simulations and experimental results.



Chapter 7

Distributed Interlaced Extended Kalman Filter

In this chapter, following the collaborative processing paradigm typical of sensor

network philosophy, a new distributed approach is proposed. The resulting Inter-

laced Kalman Filter consists of several reduced-order Kalman Filter implementa-

tions, each one run (on-board) by a node. At each time step, a node updates the

estimate of its location by combining the latest observations with the latest esti-

mates broadcasted by its neighbors. As a result, a flexible decentralized framework

with an acceptable computational complexity is achieved. Moreover, it does not

require any prior knowledge when an estimation on a relative coordinate system

is desired and turns out to be very robust even in the presence of noisy distance

measurements.

7.1 Interlaced Kalman Filter

The Interlaced Kalman Filter (IKF) has been proposed in [71] to reduce the

computational load of the estimation process for a class of nonlinear systems.

The fundamental idea of the IKF is derived from the multi-players dynamic game

theory, where the optimal solution is given by letting each player choose its

strategy as optimal response to the strategy chosen by the other players [118].

IKF is applied to nonlinear system that can be fully linearized by means of an

appropriate partition of the state space variables. In this way IKF consists of

p parallel KF implementations, each one devoted to estimating only a subset of

the state variables, while considering the remaining parts as deterministic time

varying parameters. The linearization error is partially alleviated increasing the

noise covariance matrices [71].

For sake of clarity, let us consider a system whose model can be written as (for

the first filter i = 1 and j = 2, while for the second i = 2 and j = 1)

x
(i)
k = Ã

(i)
k x

(i)
k−1 + f (i)(x

(j)
k−1, uk) + w(i)k

zk = C(i)(x
(j)
k )x

(i)
k + d(i)(x

(j)
k ) + v

(i)
k

(7.1)

where Ã
(i)
k = A(i) + F (ij)(x

(j)
k−1) and w(i)k ∼ N (0, Qk), v(i)k ∼ N (0, Rk) are
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zero-mean uncorrelated white process noise vectors respectively characterized by

the covariance matrices Qk and Rk. The IKF equations proceed from KF filter

First
KalmanFilter

Second
Kalman Filter

z -1

z -1

(1)
kx |k

(2)

|k k-1
P

(1)

|k k-1P

k
u

k
y

∧

(2)

k/kx
∧

(1)
kx |k-1

∧

(2)
kx |k-1

∧

(1)

|k kP

(2)

|k kP

Figure 7.1: Interlaced Kalman Filter

equations, as shown in Fig. 7.1. At the k-th step, each sub-filter forms a predic-

tion by exploiting its estimate along with the one provided by the other filters,

according to the following equations:

x̂
(i)
k|k−1 = Ã

(i)
k x̂

(i)
k−1|k−1 + f (i)(x̂

(j)
k−1|k−1) (7.2a)
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being J
F,(ij)
x,j and J

f,(i)
x,j the Jacobians of the relations F (ij)(x

(j)
k−1|k−1)x

(i)
k−1|k−1 and

f (i)(·) with respect to x
(j)
k .

After the prediction step the estimates computed by the two sub-filters are ex-

changed and used during the update step. In this step the observation prediction

is formed and compared with the measure zk provided by the system

x̂
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where the Kalman gain is computed applying the relation
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From equations (7.3) and (7.6) can be noticed that the process and measure-

ment noise covariance matrices Q
(i)
k and R

(i)
k are suitably increased by the addi-

tion of positive semi-definite quantities that take into account the error introduced

by the decoupling operation. As shown in [133], indeed, it is easy to recognize

that the term added to Rk in (7.6) represents the cross-correlation between the

filters due to the innovation process, while the term added to Q
(i)
k in (7.3) is

related to the cross-correlation induced by the propagation process.

Note that, in a deterministic framework, sufficient conditions that guarantee

the local convergence of the estimator are established in [72]. This formulation

of IKF assumes that both substate transition mapping and observation mapping,

i.e. equations (7.1), depend affinely on their arguments. If these assumptions

are released, the algorithm can still be applied by applying linearization to every

subsystem at each step. In this way, the Interlaced Extended Kalman Filter

(IEKF) is obtained.

7.2 IEKF for Sensor Network

A distributed Interlaced Kalman Filter can be formulated in regard to the Sensor

Network scenario described in Appendix C. Specifically, Ω parallel reduced-order

EKFs are implemented. Each one runs on a node and is devoted to estimate its

location. Due to the specific nature of the system, the filter is characterized by

the prediction step of a linear KF and the correction step of an EKF.

7.2.1 Prediction

In the following a set of equations describing the prediction step of the proposed

Interlaced Kalman Filter for the i-th node is given:

x̂
(i)
k|k−1 = x̂

(i)
k−1|k−1

P
(i)
k|k−1

= P
(i)
k−1|k−1

+ Q̃k (7.7)

Q̃
(i)
k = Q

(i)
k

Note that, the system is naturally fully decoupled, i.e. the state transition of

each node does not affect the location of the other nodes. As a consequence, the

term Q̃
(i)
k , described in (7.2b), does not have to be computed. The term Q(k) is

used instead.
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7.2.2 Correction

In the following a set of equations describing the correction step of the proposed

Interlaced Kalman Filter for the i-th node is given:
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where N (i) is the neighborhood of the i-th node. Note that, due to the non-

linearity of the mapping, the Jacobian of the maps h(·) described in C.6 have to

be used, instead of matrix C(i)(·), in equations (7.4) and (7.6). Moreover, when

a node detects another one, the covariance update is calculated according to eq.

(7.4b). However, since the position of an anchor does not affect the location of

the node, the term R̃
(i)
k is not computed in (7.6). The term R(k) is used instead.

7.2.3 Complexity analysis

Providing an analysis of the computational complexity is particularly important

in all contexts where the limited hardware capabilities call for effective algorithm

implementations. Indeed, it is well known that the main drawbacks related with

the implementation of localization algorithms based on EKF approaches are due

to huge computational load and memory occupancy.

Let us assume N to be the dimension of the state space and M the number

of observations available (neighbors of a node), with N < M . The dominant

operation at each iteration is the inversion of the innovation (or residual) covari-

ance matrix S. Now, since S ∈ RM×M the complexity results O(M3) when a

naive implementation of the matrix inversion is considered. However, it may be

reduced to O(M2.376) according to the analysis provided in [51].

If a slight decrease of the estimation accuracy is acceptable, this computational

complexity can be even further reduced. This can be achieved by updating the

estimate considering a single observation at a time. This way, the complexity of

the filter becomes O(NM), where O(N) is the complexity for each update and

M is the number of time it is required.

Finally, since the dimension of the state space is fixed (N = 2), the complex-

ity scales as O(M), which is indeed an interesting trade-off between estimation

accuracy and computational requirements suitable with the limited hardware re-

sources of nodes.
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7.3 Performance Evaluation

The proposed distributed Interlaced Kalman Filter has been thoroughly investi-

gated in both simulated environments and with real data. Experiments carried

out with MICAz (MPR2400) platform showed the capability of the algorithm in

several real contexts, while simulations were fundamental to investigate its scal-

ability. The exposition is organized in two parts: the first analyzes the behavior

of the framework within a simulate context while the second reports some results

with real data.

7.3.1 Problem Setting

Computer Simulations Simulations have been carried out in a framework devel-

oped under Matlab by the authors. This framework provides an implementation

of the sensor network scenario modeling given in Appendix C. It supports both

a complete simulated context as well a test-bed to run data coming from real

hardware. These two different operative modalities turn out to be very useful,

both to test the correctness and the effectiveness of the algorithm.

Real Context The network has been built with the MICAz (MPR2400) plat-

form, a generation of Motes from Crossbow Technology. The MPR2400 (2400

MHz to 2483.5 MHz band) uses the Chipcon CC2420, IEEE 802.15.4 compli-

ant, ZigBee ready radio frequency transceiver integrated with an Atmega128L

micro-controller. It provides also a flash serial memory, as well as a 51 pin I/O

connector that allows several sensor and data acquiring boards to be connected

to it. MICAz platform comes along with TinyOS, an open-source event-driven

operating system designed for wireless embedded sensor networks. It features

a component-based architecture which enables rapid innovation and implemen-

tation while minimizing code size as required by the severe memory constraints

inherent in sensor networks. TinyOS component library includes network proto-

cols, distributed services, sensor drivers, and data acquisition tools, all of which

can be used as–is or be further refined for a custom application.

7.3.2 Evaluation Criteria

In order to evaluate the effectiveness of the proposed algorithm, two indexes of

quality have been taken into account:

• Estimation Accuracy.

• Convergence Velocity.

The estimation accuracy is expressed in terms of distance between the real node

location and the estimated one provided by the filter. The Euclidian distance

is exploited as metric. In particular, maximum, minimum and average error are

given so that a comprehensive view of the situation is obtained. The velocity
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Figure 7.2: Estimation error vs. Density of anchor deployment: variable number of anchors
(from 1 to 9), fixed number of nodes (70).

of convergence is given in terms of the number of iterations required for the

algorithm in order to stabilize around a certain value.

7.3.3 Simulation

Simulations have been carried out in order to investigate the scalability of the

proposed IEKF. Particular attention has been devoted to the robustness and

accuracy of the estimation. In detail, the following aspects have been taken into

account:

• Density of anchor deployment.

• Density of node deployment.

• Level of noise of observations.

Fig. 7.2 shows the result when considering a variable number of anchors,

ranging from 1 to 9, with a fixed number of nodes 70. According to this result,

the algorithm performs better in terms of estimation accuracy and convergence

rate when considering an increasing number of anchors. In detail two different

behaviors can be recognized, considering anchors ranging from 1 to 3 or from 5

to 9. This provides a way to define the optimal number of anchors to be used for

a real deployment with respect to some parameters of interest.

Fig. 7.3 shows the result when considering a variable number of nodes, ranging

from 10 to 90, with a fixed number of anchors 5. According to this result, the

algorithm performs slightly better, in terms of convergence rate, when considering
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Figure 7.3: Estimation error vs. Density of nodes deployment: variable number of nodes (from
10 to 90), fixed number of anchors (5).
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Figure 7.4: Estimation error vs. Level of noise of observations: variable level of noise (std
ranging from 0.01m to 0.5m), fixed number of anchors (5), fixed number of anchors (30)

an increasing number of nodes. However, the accuracy of the estimations seems

not to be influenced by the number of nodes available. This can be explained by

the fact that the accuracy is mainly related to the number of available anchors

and the noise of observations.



CHAPTER 7. DISTRIBUTED INTERLACED EXTENDED KALMAN FILTER 83

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2

3

4

5

6

7

8

[m]

[m
]

Figure 7.5: First configuration for the network deployment: anchors (1-3) were arranged on the
border, while nodes to be localized (4-8) were randomly positioned.

Fig. 7.4 shows the result when considering a variable level of noise with a

standard deviation ranging from 0.01 m to 0.5 m, with both a fixed number of

anchors 5 and nodes 30. According to this result, the algorithm performs better,

in terms of convergence rate, when considering a decreasing level of noise.

7.3.4 Experimental Results

Real experiments involved several indoor environments of the robotics labora-

tory of University of “Roma Tre” for the network deployment. Two different

configurations have been built and several data acquisitions have been done.

Moreover, different anchors arrangements have been considered to better under-

stand whether the performances might be influenced by the anchor locations.

Real locations were measured manually taking advantage of the regularity of the

flooring grid.

Specifically, Fig. 7.5 describes the first configuration that has been considered.

Eight nodes have been deployed and three different sets of three anchors have

been considered, namely {1, 2, 3}, {2, 7, 8}, {3, 4, 5}. In addition, each node was

ideally within the communication range of each other so that a full connected

graph was available.

Further, Fig. 7.6 describes the second configuration that has been exploited.

In this case, ten nodes were deployed and three different sets of anchors have

been considered, i.e., {1, 2, 3}, {1, 6, 7}, {5, 9, 10}. Again, each node was ideally
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Figure 7.6: Second configuration for the network deployment: anchors (1-3) as well as nodes to
be localized (4-10) were almost randomly arranged.

within the range of communication of each other in order to have a full connected

graph.

A comparison against a centralized version of an Extended Kalman Filter is

provided. It aims to understand the advantages as well as the drawbacks that

arise when decentralizing an algorithm. In particular, 100 trials were run for each

configuration. Afterwards, the collected data was used to compute the indexes

of interest given in 7.3.2.

IEKF vs. EKF

Here a comparison of the proposed Interlaced Extended Kalman Filter (IEKF)

against a centralized Extended Kalman Filter (EKF) is provided. In regards to

the first configuration shown in Fig. 7.5, the results of the centralized and dis-

tributed algorithms averaged over 100 trials are collected in Table 7.1. Here a

synoptic comparison between the two approaches can be found. According to the

accuracy of available data, both algorithms are able to localize all nodes within

the network with similar performances. As expected, EKF performs slightly

better, especially in terms of maximum error and convergence velocity. This

is related to the more comprehensive interpretation of data typical of a cen-

tralized approach which always takes advantage of the complete knowledge of

cross-correlation terms. These terms at the same time influence the convergence

rate which is quicker compared to the IEKF.
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Extended Kalman Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 7.85 2.84 5.95 12
{2,7,8} 11.28 3.24 7.33 10
{3,4,5} 8.81 6.31 7.99 12

Distributed Interlaced Extended Kalman Filterr

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 8.12 3.18 6.36 15
{2,7,8} 11.49 3.92 6.14 13
{3,4,5} 10.17 3.87 7.48 29

Table 7.1: First Deployment. Centralized EKF vs. Distributed IEKF.

Note that, for both algorithms better results were achieved when anchors were

deployed along the borders. This is particularly crucial in a distributed context

where the lack of data, locally experienced by each node, needs to be balanced by

its consistency. Indeed, this arrangement reduces the possibility of symmetrical

solutions which might fit data properly.

Extended Kalman Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 10.65 4.88 7.6 18
{1,6,7} 10.47 2.62 5.73 13
{5,9,10} 9.76 1.06 6.88 17

Distributed Interlaced Extended Kalman Filterr

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 11.18 4.09 7.96 25
{1,6,7} 11.06 2.57 6.59 26
{5,9,10} 12.71 1.96 5.63 24

Table 7.2: Second Deployment. Centralized EKF vs. Distributed IEKF.

In regards to the second configuration shown in Fig. 7.6, the results of the

centralized and distributed algorithms averaged over 100 trials are collected in

Table 7.2. Also in this case the EKF performs slightly better compared to the

IEKF. However the IEKF, apart from all the advantages deriving from it dis-

tributed nature, still provides effective estimations with a reasonable accuracy.

As far as the computational complexity is concerned, Table 7.3 shows the per-

formance for both the distributed IEKF and the centralized EKF. Due to the

small instance of the localization problem, the difference of the computational

load cannot be appreciated. It should be noticed, however, that the IEKF up-

date can be split in several smaller updates running independently on different

processors (one for each node that needs to be localized), while the same paral-

lelism cannot be achieved by EKF.
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Table 7.3: Full update time over an Intel Pentium M 725 (1.6GHz)

Conf. EKF IEKF
[s] [s]

1 0.0024 0.0021
2 0.0038 0.0027

7.4 Considerations

In this chapter a new approach for the self-localization problem is proposed. A

distributed Interlaced Extended Kalman Filter has been developed by following

the collaborative processing paradigm typical of sensor network philosophy. It

consists of a set of reduced-order Kalman Filters, each one run by a node which

collaborates in order to provide a reliable estimation for the whole network. The

fundamental idea of the IKF is derived from the multi-players dynamic game the-

ory, where the optimal solution is given by letting each player choose its strategy

as optimal response to the strategy chosen by the other players. In particular,

each node iteratively updates its estimate by combining its latest observations

(in terms of inter-node distances) with the latest estimates broadcasted by its

neighbors. Several simulations were performed to investigate the scalability of

the approach in regard to the density of anchors, the density of the nodes and

with respect to the level of noise of observations. Moreover, real experiments

involving MICAz platform were performed to validate the capability of the pro-

posed approach in a real context. In addition, a comparison of the proposed

IEKF against a centralized formulation of the EKF was performed to investi-

gate both advantages and drawbacks concerning a distributed implementation.

According to the experimental results, the centralized EKF performs in average

slightly better. This can be explained by the different amount of data available

at each iteration for the centralized formulation compared to the distributed for-

mulation. Indeed, this is particularly crucial for any adverse contexts, e.g., a

collinear anchor deployment, where such a lack of information results in a severe

deterioration of the performances.



Chapter 8

Distributed Extended Information Filter

In this chapter a new approach based on Information Theory for the self-localization

problem is proposed. A Decentralized Extended Information filter is built starting

from a centralized formulation by means of some simplifying assumptions. Each

node runs a reduced-order filter to estimate its location. This is achieved locally by

combining the most recent observation with the latest estimates provided to each

node by its neighbors. Note that, an Information Filter is essentially a Kalman

Filter expressed in terms of measures of information about the parameters (state)

of interest (rather than direct state estimates and their associated covariance).

However, moving to this dual domain may result in an effective reduction of the

computational complexity when some specific assumptions are met.

8.1 The Information Filter

An Information Filter (IF) is essentially a Kalman Filter (KF) expressed in

terms of measures of information about the parameters (state) of interest rather

than direct state estimates and their associated covariances [75]. The two key

information-analytic variables are the information matrix and the information

state vector, where the term information is used according to the Fisher defini-

tion.

8.1.1 Theoretical Formulation

The Fisher information matrix Yk is the amount of information that an observable

random variable z carries about an unobservable parameter x upon which the

likelihood function of z, L(x) = p(z | x), depends. It can be derived as the

covariance of the score function, that is the partial derivative, with respect to

some parameter x, of the logarithm (commonly the natural logarithm) of the

likelihood function. If the observation is z and its likelihood is L(x) = p(z | x),

87
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then the score Sk(x) can be described as follows:

Sk(x) = ∇x ln p(zk | xk) (8.1)

=
∇x p(zk | xk)

p(zk | xk)
(8.2)

Moreover, being the expectation of the score:

E[Sk(x)] =

∫ ∇x p(zk | xk)

p(zk | xk)
p(zk | xk) dzk (8.3)

= ∇x

∫

p(zk | xk) dzk (8.4)

= ∇x 1 = 0 (8.5)

the Information matrix Yk is simply the second order moment of the score function

Sk(x), as follows:

Yk = E[Sk(x)Sk(x)T ] (8.6)

= E[{∇x ln p(zk | xk)}{∇x ln p(zk | xk)}T ] (8.7)

Furthermore, if the following regularity condition holds:
∫

Hx(p(zk | xk)) = ∇x∇T
x p(zk | xk) = 0 (8.8)

where Hx is the square matrix of second-order partial derivatives (i.e., Hessian

Matrix), the Information matrix Yk can be also written as:

Yk = −E[∇x∇T
x ln p(zk | xk)] (8.9)

At this point, when the likelihood function p(z | x) is a Gaussian distribu-

tion and the posterior conditional distribution is Gaussian as well, described as

p(xk | z) ∼ N (x̂k, Pk), then it can be proved [117] that the Information Matrix is

equal to the inverse of the covariance matrix Pk as follows:

Yk = P−1
k . (8.10)

Likewise, the information state vector yk can be easily derived as the product of

the inverse of the information matrix and the state estimate as follows:

yk = Yk x̂k (8.11)

= P−1
k x̂k. (8.12)

8.1.2 The Information Filter: Algorithmic Derivation

The Information Filter formulation can be easily derived from the Kalman Filter

formulation under the assumption of Gaussianity previously stated. The Kalman

filter is essentially a set of mathematical equations that implements a predictor-

corrector type estimator. It can be proven to be optimal in the sense that it
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minimizes the estimated error covariance when some presumed conditions are

met [107]. The two key-variables are the estimate of the state of interest and its

associated covariance, respectively x̂ and P .

Given a dynamical system whose model is described the following equations:

xk = Fk xk−1 + Bk uk−1 + wk−1 (8.13)

zk = Hk xk + vk (8.14)

where xk is the state of the system of interest at time k, Fk is the state transition

matrix from time k−1 to time k, Bk is the input matrix, uk−1 is the input control

vector, wk ∼ N (0, Qk) is the related Gaussian with zero mean and uncorrelated

process noise, Hk is the observation matrix and vk ∼ N (0, Rk) is the related

Gaussian with zero mean and uncorrelated observation noise. The Kalman Filter

implementation can be summarized by the following set of equations:

• Prediction

x̂k|k−1 = Fkx̂k−1|k−1 (8.15)

Pk|k−1 = [FkPk−1|k−1F
T
k + Qk]

• Correction

x̂k|k = xk|k−1 + Kkνk

νk = zk − Hkx̂k|k−1 (8.16)

Kk = Pk|k−1H
T
k S−1

k

Sk = HkPk|k−1H
T
k + Rk

Pk|k = (I − KkHk)Pk|k−1

where Pk|k and x̂k|k are respectively the covariance matrix and the state of interest

at time i given information up to time j, according to the Barshalon notation

[14]. The Information Filter implementation can be obtained from the previous

set of equations by performing the substitutions given in eq. (8.12) and eq. (8.10)

as follows:

• Prediction

Yk|k−1 = [FkY −1
k−1|k−1F

T
k + Qk]

−1

Lk|k−1 = Yk|k−1FkY
−1
k−1|k−1 (8.17)

yk|k−1 = Lk|k−1yk−1|k−1
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• Estimation

Yk|k = Yk|k−1 + Ik

yk|k = yk|k−1 + ik (8.18)

Ik = HT
k R−1

k Hk

ik = HT
k R−1zk

.

A more comprehensive description of the Information Filter derivation is given

in [117].

8.2 The Extended Information Filter for Sensor Networks

Due to the nonlinear nature of the observation model, the linear Information

Filter previously introduced cannot be applied as it is. An extension to deal with

the non-linearity of the observation model is required. Note that having a linear

prediction model results in a “hybrid” Information Filter: with the prediction

equation of a linear IF and the estimation equation of an Extended IF. In the

following, a centralized formulation of the filter is proposed. Then, a decentralized

one based on simplifying assumptions is devised. However, both filters can be

summarized by the same two-stage formulation:

• Prediction

Yk|k−1 = [Y −1
k−1|k−1 + Qk]

−1

Lk|k−1 = Yk|k−1Y
−1
k−1|k−1 (8.19)

yk|k−1 = Lk|k−1yk−1|k−1

• Estimation

Yk|k = Yk|k−1 + Ik

yk|k = yk|k−1 + ik (8.20)

Ik = JHT
k R−1

k JHk

ik = JHT
k R−1z′k

z′k = νk + JHkx̂k|k−1

νk = zk − h(x̂k|k−1)

Differences between the centralized formulation and the distributed formulation

are merely related to the state space dimension and to the construction of the

Jacobian matrix JH.
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8.2.1 Centralized Formulation

In order to derive the extended version of the estimation step, the Jacobian

matrix JH with respect to the observation model has to be computed. Given a

generic observation z
(i,j)
k , representing the distance from the node i to the node

j measured by the node i, the related Jacobian row is:

Jh(i,j) = [· · · ∂h(i, j)

∂xi

∂h(i, j)

∂yi
︸ ︷︷ ︸

i

· · · ∂h(i, j)

∂xj

∂h(i, j)

∂yj
︸ ︷︷ ︸

j

· · · ] (8.21)

where:

∂h(i, j)

∂xi
=

xi
√

(xi + xj)2 + (yi + yj)2

∂h(i, j)

∂yi
=

yi
√

(xi + xj)2 + (yi + yj)2

Now, given a subset of M nodes, all of them within the range of visibility of each

other, the Jacobian matrix Jh(i) for a generic node i is given by:

Jh(i) =












Jh(i,1)

...

Jh(i,k)

...

Jh(i,M)]












(8.22)

=












∂h(i,1)
∂x1

∂h(i,1)
∂y1

· · · ∂h(i,1)
∂xi

∂h(i,1)
∂yi

· · · · · ·
...

...

· · · ∂h(i,k)
∂xk

∂h(i,k)
∂yk

∂h(i,k)
∂xi

∂h(i,k)
∂yi

· · · · · ·
...

...

· · · · · · ∂h(i,M)
∂xi

∂h(i,M)
∂yi

· · · ∂h(i,M)
∂xM

∂h(i,M)
∂yM












Therefore, the complete Jacobian matrix JH is given by the juxtaposition of the

Jacobian matrix computed for each node as follows:

JH = [Jh(1) · · · Jh(i) · · · Jh(Ω)]T (8.23)

where the temporal index k has been omitted while describing the Jacobian ma-

trix for the sake of clarity.

8.2.2 Decentralized Formulation

A decentralized formulation can be derived from the centralized formulation pre-

viously stated by means of some simplifying assumptions. As previously pointed

out, the system model is linear and fully decoupled thus suitable for a decen-

tralized implementation. Conversely, the Jacobian Matrix Jh(i), defined for each



CHAPTER 8. DISTRIBUTED EXTENDED INFORMATION FILTER 92

node i in eq. 8.24, features some couplings that require approximations to de-

centralize the computation. Specifically, for each node i the other nodes of the

network are assumed to be landmarks. As a consequence, for a generic Jacobian

row Jh(i,j), the partial derivatives of node j are always naughts. Therefore, the

related Jacobian Matrix Jh(i) for a given node i is:

Jh(i) =












Jh(i,1)

...

Jh(i,k)

...

Jh(i,M)]












=












· · · ∂h(i,1)
∂xi

∂h(i,1)
∂yi

· · ·
...

· · · ∂h(i,k)
∂xi

∂h(i,k)
∂yi

· · ·
...

· · · ∂h(i,M)
∂xi

∂h(i,M)
∂yi

· · ·












(8.24)

In this way the complete Jacobian matrix JH, described in eq. 8.23, turns out

to be a block-matrix. Therefore, it can be easily decomposed in order to have

several reduced-order filters. In particular, each node runs a reduced-order filter

with the aim of estimating its location with respect to information in terms of

observations and latest estimates coming from the other nodes.

8.2.3 Complexity Analysis

The analysis of the computational complexity is important to validate the per-

formance of an algorithm. In this case, due to the limited storage, processing

and communication capabilities typical of this hardware, it becomes even more

crucial.

Let N be the dimension of the state space of a node and M the number of its

neighbors, with M >> N . For a given node, at each time step k the dominant

operation is the computation of the information matrix I(k). It consists of the

inversion of a (diagonal) matrix and two multiplications between matrixes. Since

the Jacobian JH ∈ RM×N , the overall computational complexity is O(N2M).

Note that, this complexity is significantly lowered by the diagonal nature of the

covariance matrix R. In fact, both inversion and multiplication involving a diag-

onal matrix have a complexity which scales with the size of the matrix.

Finally, since the dimension of the state is fixed (N = 2), the computational

complexity scales as O(M). Therefore, it is suitable for an online implementation

even when in presence of hardware with limited capabilities.

8.3 Performance Evaluation

The proposed distributed Extended Information Filter has been thoroughly inves-

tigated in both simulated environments and with real data. Experiments carried

out with MICAz (MPR2400) platform showed the capability of the algorithm

in several real contexts, while simulations were fundamental to investigate the

scalability of the framework. The exposition is organized in two parts: the first
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analyzes the behavior of the framework within a simulated context while the

second reports some results with real data.

8.3.1 Problem Setting

Computer Simulations Simulations have been carried out in a framework devel-

oped under Matlab by the authors. This framework provides an implementation

of the sensor network scenario modeling given in Appendix C. It supports both

a complete simulated context as well a test-bed to run data coming from real

hardware. These two different operative modalities turn out to be very useful,

both to test the correctness and the effectiveness of the algorithm.

Real Context The network has been built with the MICAz (MPR2400) plat-

form, a generation of Motes from Crossbow Technology. The MPR2400 (2400

MHz to 2483.5 MHz band) uses the Chipcon CC2420, IEEE 802.15.4 compli-

ant, ZigBee ready radio frequency transceiver integrated with an Atmega128L

micro-controller. It provides also a flash serial memory, as well as a 51 pin I/O

connector that allows several sensor and data acquiring boards to be connected

to it. MICAz platform comes along with TinyOS, an open-source event-driven

operating system designed for wireless embedded sensor networks. It features

a component-based architecture which enables rapid innovation and implemen-

tation while minimizing code size as required by the severe memory constraints

inherent in sensor networks. TinyOS component library includes network proto-

cols, distributed services, sensor drivers, and data acquisition tools, all of which

can be used as–is or be further refined for a custom application.

8.3.2 Evaluation Criteria

In order to investigate the effectiveness of the proposed localization technique,

two indexes of quality are exploited considering several anchors deployment:

• Estimation Accuracy.

• Convergence Velocity.

The accuracy of the estimation is given in terms of distance between the estimated

and the real location of a node. The Euclidian distance is adopted as metric.

Maximum, minimum and average errors computed over the whole network are

considered. The velocity of convergence is given in terms of the number of steps

required by the algorithm to stabilize around the best estimation. This index

provides an evaluation of the “reactivity” of the algorithm.

8.3.3 Simulation Results

Simulations have been performed to investigate the scalability of the proposed

distributed Information Filter with respect to some factors of interest. A network

of 50 nodes, randomly deployed in an 10 × 10m environment was considered.
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Two factors were made varying and their influence on both the accuracy of the

estimation and the velocity of convergence was evaluated:

• Observation Noise.

• Anchor Density.

The default setting for these factors were N (0, σ) with σ = 15 cm for the obser-

vation noise and 10 the number of anchors randomly deployed.

N (0,σ) Max Error Min Error Mean Error Convergence
[cm] [cm] [cm] [cm] [steps]

5 2.98 0.21 1.19 35
10 5.05 0.27 2.33 37
20 9.46 0.70 4.06 40

Table 8.1: Scalabiliy Analysis w.r.t. Observation Noise.

Number of Max Error Min Error Mean Error Convergence
Anchors [cm] [cm] [cm] [steps]

10 5.52 0.36 2.19 33
15 5.35 0.30 2.16 31
20 5.02 0.41 2.15 20

Table 8.2: Scalabiliy Analysis w.r.t. Anchors Density.

Tab. 8.1 shows the simulation results when changing the variance of the obser-

vation noise, while keeping the number of anchors fixed to 10. In particular, the

accuracy of the algorithm decreases when increasing the variance of the obser-

vation noise. Likewise, the number of steps required for the convergence of the

algorithm slightly increases as well.

Tab. 8.2 shows the simulation results when varying the number of anchors while

keeping the variance of the observation noise fixed to σ = 15 cm. Note that, the

higher the number of anchors, the quicker the convergence of the algorithm. In

addition, a minor improvement of the estimation accuracy is experienced when

increasing the number of anchors.

8.3.4 Experimental Results

Real experiments involving two different sensor network deployments are re-

ported. The network was arranged taking advantage of the regularity of the

flooring grid and real locations were manually measured exploiting such a regu-

larity. Different anchors configurations have been investigated for each configu-

ration.

Fig. 8.1 shows the first deployment where 10 nodes were considered. Each

node was ideally within the communication range of each other. This way a full

connected graph was achieved.
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Figure 8.1: First configuration for the network deployement.

Fig. 8.2 shows the second deployment where 11 nodes were considered. Again,

each node was ideally within the communication range of each other in order to

have a full connected graph.

A comparison between the distributed formulation and the centralized formula-

tion is provided. It aims to evaluate how the assumption required for distributing

the algorithm may affect its performances.

Decentralized EIF vs Centralized EIF

Table 8.3 describes the result of the experiment involving the first environment

(Fig. 8.1). Three different arrangements of anchors were considered, each one

involving three nodes. According to experimental results for this configuration,

varying the set of anchors does not significantly influence the accuracy of estima-

tion. This holds for both the centralized and distributed formulation. In regard to

the convergence velocity, the centralized formulation turns out to perform better.

This can be explained by the fact that within the distributed formulation each

node has only a local view of the global situation. Therefore, each estimate is

computed by only partially exploiting the whole amount of information available.

Table 8.4 describes the result of the experiment involving the second environ-

ment (Fig. 8.2). Three different arrangements of anchors were considered again,

each one involving three nodes. A deterioration of the performance is experienced

for the decentralized formulation with respect to the third one. Indeed, the cen-
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Figure 8.2: Second configuration for the network deployment.

Centralized Extended Information Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 12.09 2.86 6.41 5
{1,6,7} 10.93 1.90 5.88 12
{5,9,10} 13.13 3.37 7.93 13

Distributed Extended Information Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 13.13 4.28 8.70 24
{1,6,7} 13.56 1.86 7.21 33
{5,9,10} 13.44 1.93 5.64 21

Table 8.3: First Deployment. Centralized EIF vs Decentralized EIF.

Centralized Extended Information Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]
{1,2,4} 23.93 2.71 11.68 7
{3,4,5} 25.08 4.31 11.22 6
{6,10,11} 18.47 5.84 10.95 10

Distributed Extended Information Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]
{1,2,4} 18.12 3.97 13.75 34
{3,4,5} 22.26 10.86 15.12 33
{6,10,11} 31.7 7.62 17.14 35

Table 8.4: Second Deployment. Centralized EIF vs Decentralized EIF.
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tralized formulation is able to overcome the weakness of such a collinear anchors

deployment. It is attained by properly exploiting the amount of information

available. However, this cannot be achieved by the decentralized formulation.

Note that, the algorithm may converge to an alternative admissible solution.

Indeed, given Ω nodes with Θ anchors, “symmetrical” solutions may exist with

respect to the deployment of the anchors. In the case of perfect communication

among nodes, i.e., no packet is lost, placing anchors on the boundary is a suffi-

cient condition to have an unique solution when full connectivity among nodes is

available. However, in a real system some nodes may not be able to communicate

with other nodes. Therefore in practice, alternative plausible solutions in regard

to the available data may always exist. Experiments pointed out that some of

the anchors deployment are more critical than others in terms of convergence

capability.

8.4 Considerations

In this chapter a new approach based on Information Theory for the self-localization

is proposed. Starting from a centralized formulation, a distributed Extended In-

formation Filter (EIF) is built by means of some simplifying approximations.

Each node runs a reduced-order EIF which aims to estimate its location. At

each iteration, a node updates its estimate by combining its latest observations

with the most recent estimates broadcasted by its neighbors. Simulations along

with real experiments have been provided to investigate the effectiveness of the

approach. Simulations showed the scalability of the algorithm with respect to

the observation noise and the density of available anchors. While real experi-

ments, carried out exploiting the MICAz (MPR2400) platform (a generation of

Motes from Crossbow Technology), validated the algorithm capability in a real

context. In order to investigate the robustness of the proposed approach, several

anchors arrangement were considered. Experimental results showed that unless

a particular situation is met, e.g. collinear anchor deployment, varying the set

of anchors does not significantly influence the accuracy of estimation. Finally, a

comparison of the distributed formulation against the centralized formulation is

provided in order to understand how the simplifying assumptions might influence

the performance. Experimental results showed that the centralized formulation

is able to better overcome issues related to the anchors deployment. In addition,

a quicker convergence is experienced for the centralized formulation. However,

the distributed formulation still provides satisfactory performance along with all

the advantages derived from distributing the computation.



Chapter 9

Algorithms Discussion and Comparison

In the previous chapters 7 and 8 two approaches for the Self-Localization problem

in Sensor Networks have been proposed. The first, inspired by the multi-players

dynamic game theory, consists of a set of reduced-order parallel Kalman Fil-

ters, while the second, based on the Information Theory, is made up of a set of

reduced-order Information Filters. A comparative analysis of both the computa-

tional complexity and performance is faced in this chapter to determine which

algorithm is better under what condition.

9.1 Algorithms Performance Comparison

Here an analysis to investigate both advantages and weakness of the proposed

algorithms is proposed. Note that, both the Interlaced Extended Kaman Filter

and the Extended Information Filter are derived from the Bayesian Frameworks.

Therefore, it is reasonable to expect similar performance.

The evaluation is performed in terms of accuracy of the estimation, velocity

of convergence and number of messages exchanged at each iteration. The sen-

sor network deployment shown in Fig. 9.1, exploited for the analysis of both

algorithms in the previous chapters, has been considered as common test-bed.

Table 9.1 shows the results for both algorithms with respect to several anchors

arrangements.

9.1.1 Performance Evaluation

Providing an accurate estimation of node locations is fundamental for several

applications such as environmental monitoring or tracking in order to operate

properly. Moreover, the localization process should be performed minimizing the

computational effort. According to the table, both approaches provide satisfac-

tory results: the estimation is accurate and it is achieved within few iterations.

As far as performances as concerned, little differences can be noticed, even

though the IEKF seems to perform slightly better in terms of estimation accu-

racy. This can be explained by the fact that while the cross-correlation terms

98
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Figure 9.1: Test-bed Deployment for algorithms comparison.

Distributed Interlaced Extended Kalman Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 11.18 4.09 7.96 25
{1,6,7} 11.06 2.57 6.59 26
{5,9,10} 12.71 1.96 5.63 24

Distributed Extended Information Filter

Anchors Max Error [cm] Min Error [cm] Mean Error [cm] Conv. [Steps]

{1,2,3} 13.13 4.28 8.70 24
{1,6,7} 13.56 1.86 7.21 33
{5,9,10} 13.44 1.93 5.64 21

Table 9.1: Distr. IEKF vs Distr. EIF.
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are completely neglected by the IEF, these terms are exploited by the IEKF to

suitably increase the measurement noise covariance matrix R. Therefore, the

IEKF offers the advantage to partially compensate the error introduced by the

de-coupling action. Conversely, as far as the velocity of convergence is concerned,

both algorithms provide comparable performances.

9.1.2 Messages Exchanged

An important aspect of the algorithms evaluation is the number of messages which

need to be exchanged among nodes at each iteration. The limited battery life

typical of a sensor network device demands to regulate the communication among

nodes in order to extend the operability of the whole network. Also in this case,

both approaches seem to meet the requirement as the convergence is achieved

exchanging few messages at each iteration. In detail, messages can be classified in

two groups: communication and observation messages. The first type of message

is used to exchange information among nodes while the second type is exploited

by the ranging technique given in Appendix D. Since the ranging technique

can be always substituted, the analysis is only focused onto the communication

messages.

For the IEKF, at each iteration any node i within the observation range of

a given node j must broadcast its latest information, i.e., x
(i)
k|k−1 , P

(i)
k|k−1 These

information will be exploited by the node j during the correction step to build

the Kalman gain. Therefore, for every single node one message needs to be sent

and M messages are supposed to be received at each iteration.

Similar is the situation for the IEF. In fact, also in this case every single node

needs to be aware of the latest estimates of its neighbors in order to perform the

estimation step. However, in this case only the state estimate x
(i)
k|k−1 must be

sent.

9.2 Computational Complexity Analysis

Here, a comparative analysis regarding the computational complexity of both

the Extended Information Filter and the Interlaced Kalman Filter previously pro-

posed is faced. In order to achieve that, the asymptotic notation (a mathematical

notation used to describe the asymptotic behavior of functions) is considered. Its

purpose is to characterize a function’s behavior for very large (or very small)

inputs in a simple but rigorous way that enables comparison to other functions

[11]. Furthermore, in order to easily analyze the filter equations, a formalism has

been introduced with the aim of describing the matrix operations and the related

computational complexity:

• SUM(NxM,NxM) = O(N · M)

• SUB(NxM,NxM) = O(N · M)
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• MUL(NxM,MxP) = O(N · M · P )

• INV(NxN) = O(N3)

Note that, for sake of simplicity, the asymptotic complexity assumed for these

operations does not reflect the most efficient implementation available so far.

However, it does not affect the validity of the analysis since the complexity of the

most efficient implementations scale approximatively the same. Furthermore,

all the elementary operations related to scalar values have been assumed with

complexity O(1).

9.2.1 The Interlaced Extended Kalman Filter

The complexity of the Interlaced Extended Kalman Filter described in Section

7.2 running on-board of a node can be summarized as in Table 9.2.

Table 9.2: Interlaced Extended Kalman Filter Computational Load

x̂k|k−1 = x̂k−1|k−1 -
Pk|k−1 = [Pk−1|k−1 + Qk] SUM(NxN,NxN)

x̂k|k = xk|k−1 + Kkνk SUM(Nx1,Nx1)

MUL(NxM,Mx1)

νk = zk − h(x̂k|k−1) SUB(Mx1,Mx1)

MUL(NxN,NxM)

Kk = Pk|k−1JhT
k S−1

k MUL(NxM,MxM)

INV(MxM)

Sk = JhkPk|k−1JhT
k + Rk MUL(MxN,NxM)

SUM(MxM,MxM)

MUL(NxM,MxN)

Pk|k = (I − KkJhk)Pk|k−1 SUB(NxN,NxN)

MUL(NxN,NxN)

R̃k = diag{Rk + JH
j
kP

j

k|k−1JH
j
k

T} MUL(1xN,NxN)

∀j ∈ N (i) MUL(1xN,Nx1)

M times

Three remarks are now in order:

• Only matrix operations have been taken into account,

• The complexity of the Jacobian construction has been neglected,

• The complexity of the observation evaluation has been neglected.

The first observation underlines that the asymptotic behavior of the algorithm is

desired. The second observation comes from the consideration that the computa-

tional complexity of the Jacobian is always lighter compared to other operations.
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Thus, it will be omitted for sake of clarity. The third observation follows the

same reasoning as the second one.

9.2.2 The Extended Information Filter

The complexity of the distributed Extended Information Filter described in 8.2

running on-board of a node can be summarized as in Table 9.3.

Table 9.3: Extended Information Filter Computational Load

INV(NxN)

Yk|k−1 = [Y −1
k−1|k−1 + Qk]

−1 SUM(NxN,NxN)

INV(NxN)

Lk|k−1 = Yk|k−1Y
−1
k−1|k−1 MUL(NxN,NxN)

yk|k−1 = Lk|k−1ŷk−1|k−1 MUL(NxN,Nx1)

Yk|k = Yk|k−1 + Ik SUM(NxN,NxN)

INV(MxM) (diag)
Ik = JhT

k R−1
k Jhk MUL(NxM,MxM) (diag)

MUL(NxM,MxN)

yk|k = yk|k−1 + ik SUM(Nx1,Nx1)

ik = JhT
k R−1z′k MUL(NxM,Mx1)

MUL(MxN,Nx1)

z′k = νk + h(x̂k|k−1) SUM(Mx1,Mx1)

INV(NxN)

MUL(NxN,Nx1)

νk = zk − h(x̂k|k−1) SUB(Mx1,Mx1)

The same considerations that have been done for the IEKF still hold here.

9.2.3 IEKF vs. EIF

In order to find out the differences between the two algorithms, the matrix oper-

ations have been compared:

Table 9.4, which summarizes the set of operations required by both algorithms

at each iteration, can be simplified considering that from an asymptotical stand-

point, some operations, such as sum, subtraction or transposition, have a lower

order than other ones, such as multiplication or inversion.

Table 9.5 can be further simplified considering that from an asymptotical point

of view, the number of occurrences, if not related to any of the parameters of

interest, does not influence the complexity of the algorithm.

Table 9.6 describes the subset of operations characterizing the computational

complexity of the two approaches. The dominant operation for the EIF can

be either the multiplication of a matrix N × M with a matrix M × N with

complexity O(N2 ·M) or the inversion of a matrix N×N with complexity O(N3),
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Table 9.4: Computational Complexity: Comparative Table I

IEKF EIF
SUM(NxN,NxN) INV(NxN)

SUM(Nx1,Nx1) SUM(NxN,NxN)

MUL(NxM,Mx1) INV(NxN)

SUB(Mx1,Mx1) MUL(NxN,NxN)

MUL(NxN,NxM) MUL(NxN,Nx1)

MUL(NxM,MxM) SUM(NxN,NxN)

INV(MxM) INV(MxM) (diag)
MUL(MxN,NxM) MUL(NxM,MxM) (diag)
SUM(MxM,MxM) MUL(NxM,MxN)

MUL(NxM,MxN) SUM(Nx1,Nx1)

SUB(NxN,NxN) MUL(NxM,Mx1)

MUL(NxN,NxN) MUL(MxN,Nx1)

MUL(1xN,NxN)xM SUM(Mx1,Mx1)

MUL(1xN,Nx1)xM INV(NxN)

MUL(NxN,Nx1)

SUB(Mx1,Mx1)

Table 9.5: Computational Complexity: Comparative Table II

IEKF A.C.C. EIF A.C.C.
INV(NxN) O(N3)

MUL(NxM,Mx1) O(N · M) INV(NxN) O(N3)
MUL(NxN,NxN) O(N3)

MUL(NxN,NxM) O(N2 · M) MUL(NxN,Nx1) O(N2)
MUL(NxM,MxM) O(N · M2)
INV(MxM) O(M3) INV(MxM) (diag) O(M)

MUL(MxN,NxM) O(N · M2) MUL(NxM,MxM) (diag) O(N · M)
MUL(NxM,MxN) O(N2 · M)

MUL(NxM,MxN) O(N2 · M)
MUL(NxM,Mx1) O(N · M)

MUL(NxN,NxN) O(N3) MUL(MxN,Nx1) O(M · N)
MUL(1xN,NxN)xM O(N2 · M)
MUL(1xN,Nx1)xM O(N · M) INV(NxN) O(N3)

MUL(NxN,Nx1) O(N2)

Table 9.6: Computational Complexity: Comparative Table III

IEKF A.C.C. EIF A.C.C.
MUL(NxM,Mx1) O(N · M) INV(NxN) O(N3)

MUL(NxN,NxN) O(N3)
MUL(NxN,NxM) O(N2 · M) MUL(NxN,Nx1) O(N2)

INV(MxM) O(M3)
MUL(MxN,NxM) O(N · M2)

MUL(NxM,MxN) O(N2 · M)
MUL(NxN,NxN) O(N3) MUL(MxN,Nx1) O(M · N)

MUL(NxN,Nx1) O(N2)
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where N is the dimesion of the state space and M is the number of observations.

Conversely, for the IEKF the dominant operation can be either the inversion of a

matrix N ×N with complexity O(N3) or the inversion of a matrix M ×M with

complexity O(M3).

The use of one technique over the other depends upon the reciprocal dimension

between the state space and the observations. If the dimension of the state space

is lower than the dimension of the observations N < M , the EIF turns out to be

computationally more efficient than the IEKF. Conversely, if the dimension of the

state space is higher than the dimension of the observations N > M , the IEKF

performs better even though the complexity is the same from an asymptotical

point of view. Indeed, this is due to the fact that several operations with cubic

complexity in N are required by the EIF at each iteration. Note that for the

Sensor Network scenario, the dimension of the state space for each node is fixed

to N = 2, while the dimension of the observations is strictly related to the number

of nodes Ω deployed into the environment. Therefore the Extended Information

Filter turns out to be more effective than the Interlaced Extended Kalman Filter.

Special case: single observation update

Thus far an analysis where M observations were processed all together at each

iteration has been provided. If a slight decrease in accuracy of the estimation

is acceptable, the computational complexity can be even further reduced. This

can be achieved by updating the estimate considering a single observation at a

time. In this case, for the IEKF the inversion of the innovation is reduced to

the inversion of a scalar. The dominant operation is given by the multiplication

required for the computation of this scalar and its complexity becomes linear with

the dimension of the state. However, since it has to be repeated M times the

real complexity becomes O(N ·M), which is indeed significantly lower compared

to the previous one (O(M3)). Note that, the situation for the EIF is completely

different . In fact, even if the computational load required for the construction

of the Innovation matrix becomes linear with the dimension of the state, several

inversions of matrixes N × N are still required at each iteration. Therefore in

this case any potential advantage simply vanishes.

9.3 Considerations

In the previous two chapters two novel approaches to deal with the Self-Localization

Problem in Sensor Networks have been proposed. Here, these approaches, namely

the Interlaced Extended Kalman Filter and the distributed Extended Information

Filter, have been compared. The comparison has been performed by exploiting

a common sensor network deployment, shown in Fig. 9.1, which involves ten

nodes. Experimental results evidence comparable performance underlining the

algebraic equivalence of the two approaches. Indeed, both approaches come from
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the Bayesian framework as they are derived from the “classical” Kalman Filter

formulation. However, few interesting peculiarities can be pointed out.

The Interlaced Extended Kalman Filter seems to perform slightly better in

terms of estimation accuracy compared to the Extended Information Filter. This

can be explained by the mechanism provided by the IEKF to (partially) balance

the approximation introduced by the de-coupling operation, i.e., the augmenta-

tion of the observation noise covariance matrix by the cross-correlation terms.

On the other hand, the EIF seems computationally more convenient. In fact, it

provides approximatively the same computational load as the the IEKF in the

special case but processing all the observation together at each iteration.

Due to the algebraic equivalence of the two approaches, future research might

be focused on providing such an interlacement-like strategy for the EIF as well.

In this way the higher accuracy obtained by the IEKF might be achieved by

the EIF too while preserving the computational advantages which make the EIF

appealing in a multi-sensor fusion context.



Part III

Mobile Robotics and Sensor Networks as

Integrated Framework: A case study
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Chapter 10

A Framework for Multi-Robot Node Coverage in

Sensor Networks

Area coverage is a well-known problem in robotics. Extensive research has been

conducted for the single robot coverage problem in the past decades. More recently,

the research community has focused its attention on formulations where multiple

robots are considered. In this work, a new formulation of the multi-robot coverage

problem is proposed. The novelty of this work is the introduction of a sensor net-

work, which cooperates with the team of robots in order to provide coordination.

The sensor network, taking advantage of its distributed nature, is responsible for

both the construction of the path and for guiding the robots. The coverage of the

environment is achieved by guaranteeing the reachability of the sensor nodes by

the robots. Two distributed algorithms for path construction are discussed. The

first aims to speed up the construction process exploiting a concurrent approach.

The second aims to provide an underlying structure for the paths by building a

Hamiltonian path and then partitioning it. A statistical analysis has been per-

formed to show the effectiveness of the proposed algorithms. In particular, three

different indexes of quality, namely completeness, fairness, and robustness, have

been studied.

10.1 Introduction

Area coverage has been investigated by the robotics research community through

the years. Indeed, this problem lends itself to several applications in different

fields, from industrial, such as lawn-mowing [5] or vacuum-cleaning [50], to mili-

tary such as de-mining [69], or humanitarian, such as search and rescue operations

[125].

The robot area coverage problem is the problem of determining a path that

must be followed by a robot in order to completely cover the environment. Several

approaches, ranging from grid decompositions of the environment to the develop-

ment of heuristics, have been proposed. More recently, formulations which extend

107
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the problem to the multi-robot context have been introduced. The idea is to take

advantage of the cooperation among the robots to provide higher robustness as

well as to lower the time required to complete the task.

Indeed, three major issues define the area coverage problem, according to [46]:

the capability to generate paths that are able to completely cover the environ-

ment; the time required to complete the coverage operations; and finally, the

availability of a priori information of the environment. Additionally, a fourth

issue derives from the presence (or absence) of obstacles.

In this work,, a new formulation for the Multi-Robot Coverage problem is

proposed. The novelty of this work is the introduction of a sensor network, which

cooperates with the team of robots in order to provide coordination to it. This

work investigates how the dynamics of the area coverage problem are modified

when introducing a sensor network into the system. The sensor network, taking

advantage of its distributed nature, is responsible for both the construction of the

path and for guiding of the robots. Here, we focus on the distributed construction

of paths. Specifically, two distributed algorithms have been provided. The first

one aims to speed up the construction process exploiting a concurrent approach.

The second aims to provide an underlying structure by building a Hamiltonian

path and then partitioning it. A statistical analysis has been performed to show

the effectiveness of the proposed solutions. In particular, three different indexes

of quality, namely completeness, fairness, and robustness, have been studied.

10.2 Related Work

10.2.1 Robot Area Coverage

The (area) coverage problem was shown to be related to the covering salesman

problem in [6]. Specifically, the covering salesman problem is a variant of the

traveling salesman problem where, instead of visiting each city, an agent must

visit a neighborhood of each city that minimizes the travel length for the agent.

In [6], this problem was proven to be NP-hard making use of the reduction from

the (NP-hard) problem “Hamiltonian Circuit in Planar Bipartite Graphs with

Maximum Degree 3” to the problem “Hamiltonian Circuit in Grid Graphs”.

In [46], two different formulations of the coverage problem are described: of-

fline and online. The offline formulation assumes robots to be equipped with a

map of the work area, [68, 79, 2]. The online formulation does not assume any

prior information about the environment to be available for the robots, [93, 143,

131]. Moreover, coverage algorithms can be classified into deterministic and non-

deterministics according to [128]. Deterministic approaches ([95, 111, 40, 161]

) guarantee the complete coverage of the environment, while non-deterministic

approaches ([151, 17, 44]) cannot.

In [68], the problem of covering a continuous planar area by a square-shaped

tool attached to a mobile robot is addressed. Here, the authors suggest to sub-
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divide the work-area into disjoint cells, whose size is related to the tool carried

by the robot. Successively, a spanning tree of the graph induced by the cells is

performed, while covering every point precisely once. Hence, the coverage of the

environment is simply obtained by letting the robot circumnavigate the tree.

In [79], an offline formulation of the multi-robot coverage problem is addressed.

A path-planning algorithm which extends the idea proposed in [68] to the multi-

robot scenario is described. The main contribution of this work is the introduction

of the Multi Spanning Tree Coverage (MSTC) problem formulation. The idea

is to optimally divide the spanning-tree previously computed in such a way that

each robot covers an equal portion of the tree. An argumentation about the

robustness and the efficiency of the proposed algorithm is provided as well.

In [2], an extension of the previous approach is suggested. This work is mo-

tivated by the observation that the coverage time can be significantly influenced

by the structure of the spanning trees. As a result of their investigation, the au-

thors claim that an optimal time coverage algorithm for a system with k robots

will result (at least theoretically) in total coverage time of ⌈N/k⌉, where N is

the number of cells. In addition, they prove that robots should be spread out as

uniformly as possible along the spanning tree in order to achieve this goal. In

fact, in this way the k paths will result in almost the same length.

In [93], the authors propose an algorithmic approach to deal with the dis-

tributed complete coverage problem. This work represents an extension to the

single robot sensor-based coverage of unknown environments proposed in [1]. By

assuming that global communication is available among robots, each robot is as-

signed an area of the unknown environment to cover. This area is decomposed

into cells and it is described by an adjacency graph which is incrementally built.

In detail, the Morse decomposition based on the Boustrophedon approach, first

proposed in [47], is exploited by each robot. Robots can achieve a global picture

of the environment by integrating each graph with information coming from other

robots.

In [143], an algorithm for the complete multi-robot coverage of a connected

space with unknown obstacles is presented. This algorithm operates by main-

taining, as far as possible, small uncovered regions between covered areas and

obstacles. In addition, the authors show that repeated coverage can occur only

around regions where the paths between obstacles are less than twice the width

of the robots coverage range. This property holds even when the robots have no a

priori knowledge of the environment, and therefore helps to prevent unnecessary

wastage of time and resources.

In [131], the authors introduce a novel strategy for the exploration of an un-

known environment with a multi-robot system. Communication among robots is

restricted to line-of-sight and to a maximum interdistance between robots. The

proposed strategy produces a spring-like formation which scan the area in strips.

Additionally, in the presence of obstacles the formation is deformed and split in
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two in order to circumvent the obstacle and to adapt to the varying width of

the free space. Moreover, the authors provide an upper bound for the amount

of repeated coverage. This is limited to the areas where paths between obstacles

are too narrow to allow robots to enter and leave the area on non-overlapping

paths.

In [95], an algorithm for efficient cooperative search is described. The idea is

to divide a work area into small pieces in order to make multiple mobile robots

cooperate efficiently. The searching motion of mobile robots is represented by

a queue of paths and the division of the work areas is achieved by allocating

appropriate paths to each robot respectively. In this way, the cost of the searching

can be shared among the multiple mobile robots.

In [111], the problem of cooperative area sweeping by multiple mobile robots

is addressed. The authors propose a non path-following approach called On-

Line Goal Selection (OGS) algorithm for robot motion planning in autonomous

behavior. Cooperation is achieved by organizing the robots as a decentralized

market-like structure and task-sharing is addressed by exploiting a negotiation

mechanism.

In [40], a distributed cooperative coverage algorithm named DCR is described.

It represents an extension of an earlier complete single-robot algorithm called

CCR [39]. In detail, DCR executes independently on each robot in a team where

the individual robots do not know the initial locations of their peers and applies

to systems of robots operating in a rectilinear environment that use only intrinsic

contact sensing to determine the boundaries of the environment.

In [161], a polynomial-time multi-robot coverage heuristic named the Multi-

Robot Forest Coverage (MFC) is proposed. This approach relies on an algorithm

for finding a tree cover with trees of balanced weights (one for each robot). In

addition, the authors provide an analysis which shows the cover time to be at

most eight times larger than the optimal one.

In [151], the authors introduce a distributed algorithm exploiting the indirect

form of communication adopted by ants. Robots leave chemical odor traces which

evaporate over time and evaluate the strength of smell at every point they reach,

with some measurement error. The effectiveness of this communication scheme to

perform the task of cleaning the floor of an unmapped building, or more broadly

any other task requiring the traversal of an unknown region is investigated.

In [17], two algorithms for solving the 2D coverage problem using a team of

robots are described. Specifically, these algorithms rely on the observation that

local dispersion is a natural way to achieve global coverage. Therefore, both

algorithms are based on local, mutually dispersive interaction between robots

when they are within sensing range of each other. In fact, “spreading out” robots

throughout the environment lowers the risk of having robots too close to each

other, which would result in poor coverage as overlap would be experienced.

In [44], a biologically inspired neural network approach to autonomous coop-
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erative coverage path planning of multiple cleaning robots is proposed. Paths are

generated on-line by using a neural network, where the dynamic of each neuron

is characterized by a shunting neural equation. Robots see each other as moving

obstacles and cooperate to achieve a common sweeping goal.

10.2.2 Hamiltonian Path

In the mathematical field of graph theory, a Hamiltonian path is a path in an

undirected graph which visits each vertex exactly once. A Hamiltonian cycle (or

Hamiltonian circuit) is a cycle in an undirected graph which visits each vertex

exactly once and also returns to the starting vertex. Determining whether such

paths and cycles exist in graphs is the Hamiltonian path problem which is NP-

complete [13].

The Hamiltonian path problem for graph G is equivalent to the Hamiltonian

cycle problem in a graph H obtained from G by adding a new vertex and con-

necting it to all vertexes of G. The Hamiltonian cycle problem is a special case of

the traveling salesman problem (TSP), obtained by setting the distance between

two cities to a finite constant if they are adjacent or to infinity otherwise.

Several centralized approaches providing either exact or approximate solutions

for the TSP have been proposed in literature. Exact solutions are generally ob-

tained exploiting branch and bound techniques [149], linear programming formu-

lations [53], or integer programming formulations [109]. Approximate solutions

are achieved using heuristic local search methods. Heuristics are largely applied

to solve large instances of the TSP as they can compute near optimal solutions

in a relatively short time. Starting from the classical tour construction heuristics

such as nearest neighbor heuristics [87], insertion heuristics [132], heuristics based

on spanning trees [48], savings heuristics [49], and 3-opt [24], further heuristic

approaches have been proposed like simulated annealing [91], genetic algorithms

[116], neural networks [32] or ant-colony [56].

Distributed implementation methods can be found in literature as well. For

instance, a distributed implementation of simulated annealing is described in [4],

while a distributed implementation of a parallel genetic algorithm on a cluster of

workstations is given in [138]. Another distributed approach, which provides a

parallelization of a branch-and-bound algorithm, is proposed in [147].

Many variations of the classical TSP formulation have been proposed over the

years. Among them, the Multiple Traveling Salesman Problem (MTSP) is the

closest to the Multi-Robot Coverage Problem. An interesting extension of the

MTSP is the balanced version for which all paths are required to be of equal

length. An overview of the MTSP formulation and solution procedures can be

found in [22].
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10.3 Problem Formulation

Given a sensor network described by a graph G = (N,L) where N is the set of

nodes (sensors) with cardinality n and L is the set of edges ( connectivity matrix)

and, given a set K of robots with cardinality k, the following assumptions are

made:

• The sensor network is deployed within an open environment without obsta-

cles. (The deployment might be either manual or automatic by a robot. If

by robot, the algorithm proposed in [18] or [19] might be used),

• The quasi-uniform deployment is obtained by placing each sensor node at

exactly one vertex of a noisy grid built over the whole environment,

• Each node knows its location in respect to a global frame (the localization

can be achieved for instance using one of the two approaches proposed in

Part II),

• There is a link layer that provides the abstraction of reliable communication

(for instance using re-transmission),

• The cardinality of the robots set is strictly lower than the cardinality of the

sensors set: k << n.

According to this scenario, the coverage problem consists of constructing k paths,

where a path is defined as an open succession of 2-connected nodes, so that:

• each node belongs to a path

• any pair of paths is disjointed

• all paths are of equal length (optimality condition)

Hence, the coverage of an environmet is achieved by guaranteeing the reachability

of the nodes by the robots. Note that, the introduction of a sensor network allows

some assumptions to be relaxed. Specifically, the following significant differences

can be pointed out with respect to the “off-line coverage” formulation:

• No prior knowledge of the environment is required for the robots

• The number of robots, either joining or leaving the network, can be assumed

to be dynamic

At the same time, this formulation leads to new interesting questions:

• How to provide a fully distributed framework able to build paths as close to

optimality as possible?

• How to handle the eventuality that a robot might join (respectively leave)

the network. This would imply the ability of the network to re-organize the

pre-existing paths in order to keep the “optimality” condition.
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This formulation can be described by the Integer Linear Programming formula-

tion proposed in Appendix E.1 if the distance between adjacent nodes is consid-

ered approximately constant, as a consequence of the quasi-uniform deployment.

In this case, any feasible solution is inherently optimal. However, it is legitimate

to ask how close to optimality can a solution be if a distributed formulation is

considered. Therefore, the following properties, particularly the fairness of the

solution, are investigated in order to evaluate the effectiveness of the proposed

solution:

• Completeness in terms of network coverage, which means having each node

belonging to a path

• Fairness in terms of equal distribution of the duty among the robots, which

means having paths in average of the same length

• Robustness in terms of ability to re-cover from the situation in which a robot

might get broken or a new one might join the network

Indeed, these indexes were already adopted in [79]. Although some similarities

might be pointed out, this work is mainly focused on investigating how the dy-

namics of the problem are modified by the deployment of a sensor network within

the environment.

10.4 The proposed solution

Two different distributed approaches are proposed. Both of them have strengths

and weaknesses that will be discussed in detail. However, due to the NP-hard

nature of the problem, none of them is able to guarantee optimality in a deter-

ministic way. For this reason, statistical analysis is provided in order to validate

their effectiveness. Following the formulation given in Section 10.3, it can be

observed that a fair distribution of the duty is achieved if the number of nodes

belonging to any path is approximately ⌈N/k⌉. Indeed, this is in agreement with

the condition of optimality proposed in [2], for which an optimal algorithm should

lead to a total time coverage of ⌈N/k⌉. In fact, due to the quasi-uniform deploy-

ment of the sensor network, the time required for a robot to travel between two

neighbors can be approximatively considered a constant c in average. Therefore,

a path can be traversed in c · ⌈N/k⌉.

10.4.1 Algorithm I: Overview

The first algorithm constructs paths in a concurrent way. The idea is to use the

distributed nature of the sensor network to speed up the construction process.

There are tree steps:

• Heads Selection

• Coarse Paths Construction
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• Orphan Recovery Policy

Heads Selection

When the presence of the robots is sensed, this information is spread out across

the network, and the heads selection process is triggered. The idea is to select

heads, i.e., nodes where the path construction process is started from, so that a

natural partition of the environment is achieved. Intuitively, this can be explained

by the fact that, as the algorithm is distributed and the construction of the paths

is concurrent, minimizing the interaction improves the performance. More details

will be provided in the next section.

Coarse path construction

This process is started as soon as the heads have been chosen. As previously

stated, the idea is to exploit the distributed nature of the network to speed

up the path construction process. Several policies to make the more effective

local decision have been investigated and their peculiarities will be shown in the

next section. The pseudo-code in Algorithm (5) shows a possible distributed

implementation of the proposed solution, where v and p are respectively the

current tail of the path and its predecessor, N (i) is the set of neighbors of node

i, Nav(i) ⊂ N (i) is the subset of available neighbors describing the possible

candidates to be added and d(i, j) represents a distance between node i and node

j. Fig. 10.1 shows a typical result of the coarse path construction procedure.
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Figure 10.1: Coarse path construction
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Algorithm 5: Coarse path construction

v ← Tail1

p← Tail’s predecessor2

v broadcasts request of availability to N (v)3

Nav(v)← v gains availability responses4

d←∞5

n← 06

for j ∈ Nav(v) do7

v computes d(v, j)8

if d(v, j) < d then9

d = d(v, j)10

n = j11

end12

end13

if n = 0 then14

v notifies to p the end of construction process15

else16

v broadcasts the request of attachment of n17

v receives the reply r from n18

if r = success then19

v notifies to n to start the path construction process20

else21

Nav(v) = Nav(v) \ {n}22

Go to 523

end24

end25

Orphan Recovery Policy

Due to the distributed nature of the system as well as the locality of the decision

process, a second step is required in order to fully cover the environment. Once

the first step is terminated, there might be several incomplete paths with different

lengths. For this reason, a local shortest-path-first-served mechanism is provided

in order to balance the final length of the paths.

Nodes which have not been added to any path, after a period of latency of

attachment request put themselves in the “orphan” status and start this process.

Note that, particular attention should be paid to avoid the formation of crosslinks

when adding orphans to the paths. For this reason, an ad-hoc policy to avoid this

issue has been devised and will be discussed in the next section. The pseudo-code

in Algorithm (6) shows a possible distributed implementation of this step, where

v is an orphan, M(i, j) is the crossing links check function, Att(i, j) is the checks

. Fig. 10.2 depicts how the paths are modified after the Orphan Recovery Policy

is run.

10.4.2 Algorithm II: Overview

The second algorithm involves the construction of an approximate Hamiltonian

path in a distributed way. The idea is to first build a continuous “backbone” and

successively provide an optimal partition of it. The proposed solution involves

two steps:
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Figure 10.2: Final Paths

• Approximate Hamiltonian Path Construction

• Path Partitioning

This algorithm, similar to the “Route First-Cluster Second” approach proposed

in [21] for transportation scheduling, has the great advantage of providing an

underlying structure for the obtained paths. This property turns out to be very

interesting when investigating the robustness of the algorithm(considering a robot

either joining or leaving the scene). In fact, the availability of a continuos “back-

bone” allows for an easy reconfiguration, i.e., modification of paths, by exploiting

only local information.

Approximate Hamiltonian Path Construction

When the presence of the robots is sensed, the approximate Hamiltonian path

construction process is triggered. A fully distributed algorithm which makes local

decisions based on a heuristic approach is provided. Moreover, an additional step,

namely the “Path Refining” process, is given as well in order to add nodes which

have not been included into the path after the first step is run. Note that, the

proposed algorithm builds an approximate Hamiltonian path, since the final path

might not include all nodes due to the locality of the decision process. However,

these nodes can be simply added to the paths as branches. This situation does

not significantly influence the performance, as in practice it happens very rarely

and involves a negligible percentage of nodes (less than 1%). The pseudo-code in

Algorithm (7) shows a possible distributed implementation of the first step of the
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Algorithm 6: Orphan Recovery Policy

v ← Orphan1

v broadcasts request of attachment to N (v)2

Nav(v)← v gains availability responses3

Nsav(v)← v sorts Nav(v) w.r.t. ascending length of path4

M, MB ←∞5

B, p, pB ← 06

for j ∈ Nsav(v) do7

Att(v, j)← v computes attachment condition8

if Att(v, j) = Branch then9

v computes M ′(v, j)10

if M ′(v, j) < MB then11

MB = M ′(v, j)12

pB = j13

end14

else15

v computes M(v, j)16

if M(v, j) < M then17

M = M(v, j)18

p = j19

end20

end21

end22

if p 6= 0 then23

v sends request of attachment to p24

v receives the reply r from p25

if r = success then26

v sets its status from “orphan” to “visited”27

else28

Go to 229

end30

else if pB 6= 0 then31

v sends request of attachment to p32

v receives the reply r from p33

if r = success then34

v sets its status from “orphan” to “visited”35

else36

Go to 237

end38

end39

proposed approach, while the path refining process is the same as in Algorithm (6)

without sorting the neighbors. Fig 10.3 shows a typical result of the Hamiltonian

path construction procedure after the first step, while Fig 10.4 depicts the final

path once the refinement has been run.

Path Partitioning

This second step aims to fairly distribute the duty among the robots so that

each of them has to travel in average the same distance. The availability of a

Hamiltonian path along with the knowledge of the number of robots within the

network make it possible to solve this process locally without the requirement of

additional communication among nodes. In detail, the i-th node performs the

following operation to find out which path it belongs to:
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Figure 10.3: Approximate Hamiltonian Path construction
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Figure 10.4: Refining Step

Pi =







⌈
hi−N(mod k)·⌈N

k ⌉
⌊N

K ⌋

⌉

+ N(mod k) if hi > N(mod k) ·
⌈

N
k

⌉

⌈

hi

⌈N
k ⌉

⌉

otherwise

(10.1)
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Algorithm 7: Approximate Hamiltonian path construction

v ← Tail1

p← Tail’s predecessor2

v broadcasts request of availability to N (v)3

Nav(v)← v gains availability responses4

d←∞5

n← 06

for j ∈ Nav(v) do7

v computes d(i, j)8

if d(v, j) < d then9

d = d(v, j)10

n = j11

end12

end13

if n = 0 then14

v notifies to p the end of the path construction15

else16

v broadcasts the notification of attachment of n17

v receives the acknowledgments of notification by n18

end19

where, Pi is an integer representing the path number, N is the number of nodes,

k is the number of robots (paths), hi is the position of the i-th node in the

Hamiltonian path and, ⌈x⌉ is the ceiling function which converts the argument

x to the smallest integer not less than x, while ⌊x⌋ is the floor function which

converts the argument x to the highest integer less than or equal to x. The

equation (10.1) is a consequence of the following observation about the division

operator:

a = b · c + d (10.2)

a = (b − d) · c + d · (c + 1) (10.3)

which simply says that a set of a nodes can be partitioned in d subsets of car-

dinality (c + 1) and (b − d) subsets of cardinality c. In this way, a simple but

effective way to guarantee fairness when partitioning the Hamiltonian path is

achieved.

10.5 Algorithmic Analysis

The proposed algorithms are made up by several steps. In this section, a deeper

investigation for the most relevant aspects is provided.

10.5.1 Heads Selection

As the system is fully distributed and the paths are built concurrently, the selec-

tion of the heads turns out to be crucial for the performance of the algorithm.

Note that, the effectiveness of a selection cannot be validated independently from

the other steps. Indeed, it is strictly related to the local policy that has been

adopted for the path construction. This underlines the complexity that arises

when dealing with distributed algorithms.
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Several approaches have been investigated, the following two turned out to be

the most prominent:

• Selecting the heads roughly at the center of mass of the k regions in which

the environment is supposed to be partitioned

• Selecting the heads equidistantly along the border of the network

Both strategies confirm the intuition for which having a natural partition of the

environment allows each path to “grow” independently. In fact, a minimization

of the interactions leads to a minimization of the packets that need to be sent

over the network. This is explained by the fact that the majority of the traffic

over the network is due to the negotiations of a node among different paths.

Simulations have been performed to prove the effectiveness of both approaches.

According to the results, the second technique turns out to scale better with the

size of the network. Indeed, it was quite expected, as it was developed purposely

to overcome the limitations of the first technique.

10.5.2 Local Policies for Path Construction

The area coverage problem has been proved to be NP-hard [6]. The distributed

nature of the system does not help to make it easier. Therefore, the assumption

of considering heuristics to solve the problem is reasonable. Here, the idea is to

provide a local mechanism to effectively explore the environment.

At the beginning the following simple policies have been investigated:

• Naive Random Policy

• Closest-Neighbor Policy

• Closest-to-the-Head Policy

• Closest-to-the-Barycenter Policy

As expected, the random policy does not provide good results, though it might

be considered as a lower bound for the performance of the system. Unfortunately,

the policy based on the choice of the closest neighbor does not produce satisfying

results either. This can be explained by the fact that, none of them provides

any kind of cooperation. Note that, cooperation is meant in an “implicit” way.

In other words, it should be achieved as an emerging phenomenon rather than

by an explicit action. This motivation inspired the development of the last two

policies, which showed to perform significantly better. In fact, as paths become

“attractive”, interactions get implicitly minimized (emerging cooperation).

However, the best performances have been achieved when considering a hybrid

policy. More clearly, starting from the following considerations:

• Both the Closest-To-The-Head Policy and the Closest-To-The-Barycenter

Policy produce paths which do not move too far away from the head. How-

ever, the paths tend to be a little bit too jagged
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• The Closest-Neighbor Policy produces paths which are very straight. How-

ever, they tend to interfere with each other.

A solution, which introduces the concept of virtual distance, has been devised.

Specifically, a virtual distance is defined as the linear combination of two factors:

V d(x1, x2, x3) = α · ‖x1 − x2‖ + (1 − α) · ‖x1 − x3‖ (10.4)

where, {x1, x2, x3} ∈ R2 represent three location, ‖x‖ is the Euclidean metric

and α is a tunable parameter. At this point, a flexible way of taking into account

two different aspects when making local decisions is provided.

10.5.3 Crossing Links Formation

The crosslink formation has been thoroughly investigated for several problems,

such as geographical routing ([90, 89]). Here, a simple solution, which turns out

to be very effective for the particular structure of the problem, has been adopted.

In order to explain it, consider the situation depicted in Fig. 10.5. According

Figure 10.5: Crosslink situation

to it, nodes {A,B,C} belong to the same path, while node D is an orphan.

Moreover, the pair of segments AC,CB represent the actual paths, while the

pair of segments DA,DC and DC,DB describe the links that would be added if

the orphan D were attached respectively to the pair of nodes {A,C} or {B,C}.
It is easy to verify that only one of the two options is “safe”, namely attaching D

to the pair {A,C}. The proposed solution leads to the safe decision, computing

the difference between the lengths of the additional pair of links that would be

added and the link that would be removed. The intuition behind this method

is that the removal of long links coupled with the addition of short ones should

result in lowering the chances to create a crosslink, at least from a probabilistic
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standpoint. In practice, in the case of the example it would be:

Sol = argmin
{1,2}

{M1,M2} (10.5)

where

M1 = DA + DC − AC (10.6)

M2 = DB + DC − CB

represent the difference respectively for the first and second pair of nodes. Fig.

Figure 10.6: Crosslink solution

10.6 shows the correct attachment for the orphan D to the pair {A,C}.

10.6 Analysis on Completeness, Fairness & Robustness

Some properties, namely completeness, fairness and robustness, have been in-

troduced in Section 10.3, as indexes of quality to evaluate the effectiveness of

an approach. Here, an investigation w.r.t. these indexes for both algorithms is

provided.

10.6.1 Test Case

In order to evaluate the performance of the proposed algorithms, a statistical

analysis was performed. A simulation environment developed under Matlab by

the authors has been exploited. The analysis involved several configurations with

an increasing number of nodes, (64, 132, 256). Each configuration were tested con-

sidering an increasing number of robots as well, (4, 6, 8). The connectivity graph

was obtained according to the following parameters: percentage of connected

node 90%, range of connectivity 15% of the longest distance between two nodes.

Finally, for each configuration, 100 trials have been run.
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10.6.2 Algorithm I

This algorithm allows to build paths concurrently exploiting the distributed na-

ture of the sensor network.

Completeness

According to the simulation results, the algorithm is always able to guarantee

completeness as long as there are no isolated nodes. Tab. 10.1. shows the

percentage of‘ “covered” nodes achieved with the first step, namely the Coarse

Path Construction, and the second one, namely the Orphan Recovery Policy.

Although, the algorithm cannot guarantee the full coverage of the environment

Table 10.1: Completeness: Success Percentage

Number of Number of First Step Secont Step
Nodes Robots [% Success] [% Success]

64 {4, 6, 8} {82.06, 88.83, 88.75} {100, 100, 100}
132 {4, 6, 8} {81.44, 81.54, 81.43} {100, 100, 100}
256 {4, 6, 8} {86.00, 86.55, 88.10} {100, 100, 100}

with only one step, the statistical analysis proved the network to be fully covered

after the second step is run.

Fairness

The algorithm has been devised with the aim of balancing the duty among the

robots. Although optimality cannot be guaranteed (in a deterministic way),

statistical results, shown in Tab. 10.2, proves the effectiveness of the proposed

solution. Note that, the ratio Std
Mean V alue

is percent.

Table 10.2: Fairness

Number of Number of Path Length Std

Nodes Robots Mean Value Mean Value

64 {4, 6, 8} {16, 10.6, 8} {10.83, 8.84, 16.54}
132 {4, 6, 8} {33, 22, 16.5} {6.94, 4.90, 5.25}
256 {4, 6, 8} {64, 42.67, 32} {5.41, 2.92, 3.49}

Robustness

This algorithm speeds up the construction of the paths by means of a concurrent

approach. However, this is achieved exploiting locally a heuristic procedure.

Consequently, the resulting paths do not have a common baseline. Therefore,

providing a generic approach to properly modify them whether a robot leaves or

joins the network, is far from being easy to realize. In practice, simulations proved

that any time a robot joins or leaves the network, it is much more convenient

to re-build from scratch the paths rather than trying to modify the pre-existing
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ones. Indeed, this is the main limitation of this algorithm, which is only partially

reduced by the fact that the time required to build the k paths is significantly

lowered by the concurrent approach.

10.6.3 Algorithm II

This algorithm first builds an approximate Hamiltonian path, and successively

performs an optimal partition of it.

Completeness

As the algorithm builds a Hamiltonian path before to assign a duty to each

robot, the completeness is structurally guaranteed as long as there are no iso-

lated nodes. Specifically, Tab. 10.3 shows the percentage of nodes belonging to

the approximate Hamiltonian path after the first and second step. In addition,

the percentage of nodes attached as branches is provided as well. According

Table 10.3: Completeness: Success Percentage

Number of First Step Second Step Isolated Branches
Nodes [% Success] [% Success] [% Nodes]

64 85.19 100 0.11
132 85.23 100 0.08
256 82.04 100 0.07

to the statistical results, shown in Tab. 10.3, although the algorithm cannot be

guaranteed to always provide the exact Hamiltonian Path, in practice it performs

very well.

Note that, the problem of computing a Hamiltonian path is hard, whether

the nature of the system is distributed or not. Indeed, the formulation based on

the Integer Linear Programming, provided in Appendix E.1, gives an evidence of

this complexity. In fact, focusing the attention on the constraint (E.7), known in

literature as “Sub-tour elimination constraint” [99], it can be easily recognized

that the complexity of the problem grows exponentially, in terms of number of

constraints added to the problem, w.r.t. the number of nodes.

Here, although simplicity and reduced computational complexity have been

taken into account when devising this algorithm, the performance achieved is

satisfactory. This is due to the particular nature of the adopted connectivity

graph. Nevertheless, for the context in analysis, this assumption is reasonable, as

the desired connectivity graph can always be achieved by means of an appropriate

tuning of the communication range of the nodes. In practice, the real requirement

is merely the availability of local connectivity between the neighbor as depicted

in Fig. (10.7).
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Figure 10.7: Connectivity

Fairness

The algorithm has been devised with the aim of equally distributing the duty

among the robots. Moreover, unlike the previous approach, here the availabil-

ity of an exact Hamiltonian path guarantees optimality in a deterministic way.

However, as shown in Table 10.3, the Hamiltonian path, due to the distributed

nature of the computation, might not be optimal.

Robustness

The eventuality that a robot might either get broken or join the network can

be handled in a systematic way. This is due to the fact that the availability

of a Hamiltonian path provides a common baseline for the assignment of the

paths. Moreover,both adding a path or deleting a pre-existing one are simply a

specialization of the general rule provided in 10.4.2. Note that, another interesting

aspect can be pointed out: the reactivity of the network, i.e. the time required for

the network to re-organize itself anytime a robot gets broken or a new one joins

the network. In fact, as soon as one of these events is recognized, the time required

for the network to re-organize itself is not related to the re-construction of the

paths, which is instantaneously given by the rule (10.1), but it is only related to

the notification time, i.e., the time required to spread out the information across

the network. This is indeed an interesting property of the algorithm.
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10.7 Performance Analysis

In this section, an analysis about the the complexity in terms of computational

and communication load, of both algorithms is provided.

10.7.1 Algorithm I

Computational Load

During the “Coarse Path Construction”, according to the pseudo-code proposed

in Algorithm (5), the dominant operation is the loop (lines: 7 – 13) in which the

candidate to be added is chosen. The worst case is achieved when the current tail

has to sent p times the request of attachment, where p is the degree of a node,

i.e., the number of its neighbors. The related complexity is

C1(p) = O(p) + O(p − 1) + · · · + O(1) (10.7)

C1(p) = O(p2) (10.8)

where p is the max number of neighbors of each node. Note that, the pseudo-code

provided in Algorithm (5) does not reflect the most efficient implementation. In

fact, a priority queue might be introduced to easily lower the complexity to O(p).

However, this version has been preferred for sake of clarity.

During the “Orphan Recovery” step, according to the pseudo-code proposed

in Algorithm (6), the dominant operation is the loop (lines: 7 – 22 ) in which

the orphan selects the path to be added to. The related complexity is equal to

O(p) where p is the max degree of any node. The worst case is achieved when the

request of attachment for the orphan has to be sent p times. Thus, the complexity

turns out to be

C2(p) = O(p2). (10.9)

Therefore, the overall computational complexity for the construction of each path

is equal to:

C(N ′, p) = N ′ · [α · C1(p) + (1 − α) · C2(p)] (10.10)

C(N ′, p) = O(N ′ · p2) (10.11)

where, N ′ = N
k

is the average number of nodes of a path, with N the number of

nodes and k the number of robots, and α is the percentage of nodes covered at

the first step, which can be retrieved by the statistical analysis.

Communication Load

During the “Coarse Path Construction”, according to the pseudo-code proposed

in Algorithm (5), the number of exchanged packets is determined by the number

of neighbors p of a node (line 4). In detail:

P1(p) = O(p). (10.12)
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During the “Orphan Recovery” step, according to the pseudo-code proposed

in Algorithm (6), the number of exchanged packates is O(p) for each attempt

of attachment (line 3). In the worst case, p attempts are required in order to

successfully attach an orphan (line 29). Consequently, the number of packets

exchanged is:

P2(p) = O(p2). (10.13)

Therefore, the overall number of packets required by the algorithm to build

each path is given by:

P (N ′, p) = N ′ · [α · P1(p) + (1 − α) · P2(p)] (10.14)

P (N ′, p) = O(N ′ · p2) (10.15)

where, N ′ = N
k

is the average number of nodes of a path.

10.7.2 Algorithm II

Computational Load

During the “Approximate Hamiltonian Path Construction”, according to the

pseudo-code proposed in Algorithm (7), the dominant operation is the loop (lines:

7 – 13) in which the candidate to be added is chosen. The related complexity is

C1(p) = O(p) (10.16)

where p is the max number of neighbors of each node.

During the “Path Refining process”, according to the pseudo-code proposed in

Algorithm (6), the dominant operation is the loop (lines: 7 – 22 ) in which the

orphan selects the path to be added to. The related complexity is equal to O(p)

where p is the max number of neighbors of each node. The worst case is achieved

when the request of attachment for the orphan has to be sent p times. Thus, the

complexity turns out to be

C2(p) = O(p2). (10.17)

Therefore, the overall computational complexity is equal to:

C(N, p) = N · [α · C1(p) + (1 − α) · C2(p)] (10.18)

C(N, p) = O(N · p2) (10.19)

where, N is the number of nodes and α is the percentage of nodes covered at the

first step, which can be retrieved by the statistical analysis.

Communication Load

During the “Approximate Hamiltonian Path Construction”, according to the

pseudo-code proposed in Algorithm (7), the number of exchanged packets is de-

termined by the number of neighbors p of a node (line 4). In detail:

P1(p) = O(p). (10.20)
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During the “Path Refining process”, according to the pseudo-code proposed

in Algorithm (6), the number of exchanged packates is O(p) for each attempt of

attachment (line 3), where p is the number of neighbors of a node. In the worst

case, p attempts are required in order to successfully attach an orphan (line 29).

Consequently, the number of packets exchanged is:

P2(p) = O(p2). (10.21)

Therefore, the overall number of packets required by the algorithm in order to

build an approximate Hamiltonian path is given by:

P (N, p) = N · [α · P1(p) + (1 − α) · P2(p)] (10.22)

P (N, p) = O(N · p2) (10.23)

where N is the number of nodes.

10.8 Consideration

The robot area coverage problem has been investigated by the robotics research

community through the years. At the beginning, formulations involving a single

robot were proposed, while more recently teams of robots have been taken into

account.

In this work, a new formulation for the Multi-Robot Coverage problem is

proposed. The novelty is the introduction of a sensor network, which cooperates

with the robots in order to provide coordination to them. This is achieved taking

advantage of the distributed nature of the sensor network. The sensor network

is responsible for both the construction of the path and for guiding the robots.

This work focuses the attention on the distributed construction of paths. Two

different algorithms have been provided. The first one speeds up the construction

process exploiting a concurrent approach. While the second guarantees an under-

lying structure for the paths building a Hamiltonian path and then partitioning

it.

A statistical analysis involving several configurations with different numbers

of nodes and robots has been provided to validate the effectiveness of the pro-

posed approaches. Three indexes of quality, namely completeness, fairness and

robustness, have been exploited to investigate the performances.

According to the statistical results, both approaches proved to perform well.

Moreover, they were shown to be complementary in the sense that the strength

of one approach was the weakness of the other and vice-versa. In fact, the first

algorithm, although it speeds up the the path construction process, turns out

not to be optimal in case whether a robot leaves or joins the network. Con-

versely, the second approach, although it takes more time for the Hamiltonian

path construction, provides reactivity in case a robot either joins or leaves the

network.
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Several challenges still remain for future work. From a theoretical standpoint,

an analytical investigation for the bounds of performances should be considered.

Moreover, a wider definition of robustness involving the failure of the sensor

network, in terms of both communication and functioning, should be taken into

account. Finally, a real implementation of these approaches in order to validate

their effectiveness in a real context should be provided.



Chapter 11

Conclusions and Future Work

In the previous chapters the localization problem has been addressed in two dif-

ferent fields of interest, namely Mobile Robotics and Sensor Networks. For each

field, the state of the art has been presented and different approaches have been

proposed. The effectiveness of each approach has been validated by means of sim-

ulations and experimental results. Furthermore, an additional comparative anal-

ysis has been performed to highlight advantages and weaknesses of each single

approach. In this chapter, conclusions are drawn and future work is discussed.

11.1 Conclusions

This research addressed the Localization Problem in two different fields of in-

terest: Mobile Robotics and Sensor Networks. Indeed, the development of an

integrated framework in which robotic components interact with sensor devices

has caught the interest of the scientific community over the past decades. The

availability of a reliable localization service is crucial in both fields: mobile robots

must know their location to safely interact with their environment while sensor

nodes are often required to be aware of their location (at least roughly) in order

to properly supply services.

In the the robotic context, this research mainly focused on the global localiza-

tion and the kidnapped robot problems. Three different approaches have been

devised. The first approach presented in chapter 2 is an enhanced Monte Carlo

Filter, namely the Clustered Evolutionary Monte Carlo Filter (CE-MCL), which

was developed to overcome the classical Monte Carlo Filter drawbacks, for in-

stance the depletion problem. This was achieved by introducing an evolutionary

action along with a clusterization. The former was exploited to quickly find out

local maxima while the latter to obtain an effective exploration of the environ-

ment. The second approach presented in chapter 3 is a Spatially Structured Ge-

netic Algorithm (SSGA). The idea was to take advantage of the complex network

theory for the spatial deployment of the population. In this way, two interesting

advantages were achieved: a more effective exploration of the state space was

130
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achieved and the creation of evolutionary niches was improved. In particular,

as niches represent regions in which particular solutions are preserved, a natural

way to maintain the multi-hypothesis was obtained. The third approach pre-

sented in Chapter 4 is the Bacterial Colony Growth Algorithm (BCGA). This

framework was inspired by the observation that some families of bacteria tend

to form colonies when in presence of favorable conditions. Therefore, by model-

ing each bacterium as a hypothetical robot location and defining the favorable

conditions with respect to the measurement match, a framework suitable for

the global localization problem was obtained. The resulting framework features

two different levels of modeling: a background level for maintaining the multi-

hypothesis over time and a foreground level for selecting the best hypothesis at

each time step. These approaches were compared in Chapter 5. The compar-

ison was performed letting the robot ATRV-Jr manufactured by iRobot move

within the Department of Computer Science and Automation of the University

of “Roma Tre”. This environment was chosen for its particular structure. In

fact, it is composed by two long corridors with several indentations leading to

various symmetrical areas almost indistinguishable. A statistical analysis involv-

ing both mean and median values over 30 trials was performed. All the proposed

approaches showed to effectively solve the global localization problem along with

the kidnapped robot problem. More importantly, even if algorithms were some-

times temporarily deceived by the presence of several highly symmetrical areas,

the exact location was always re-established taking advantage of the capability

to carry on the multi-hypothesis over time.

In the Sensor Network context, this research addressed the Self-Localization

problem. Two approaches have been proposed. The first approach presented in

Chapter 7 is a Distributed Interlaced Kalman Filter. This approach was inspired

by the multi-players dynamic game theory where the optimal solution is given by

letting each player choose its strategy as optimal response to the strategy chosen

by the other players. It consists of a set of reduced-order parallel Kalman Filters,

each one running (on-board) of a node. Estimations are updated at each time-

step by combining the latest observations with the latest estimates broadcasted

within each neighborhood. The second approach presented in Chapter 8 is a Dis-

tributed Extended Information Filter. This approach based on the Information

Theory is essentially a Kalman Filter expressed in terms of measures of informa-

tion about the parameters (state) of interest (rather than direct state estimates

and their associated covariance). Starting from a centralized formulation a dis-

tributed set of reduced-order filters was achieved by means of some simplifying

assumptions. These approaches were compared in Chapter 9. The comparison

was performed by exploiting a common sensor network deployment composed by

10 Micaz nodes produced by Crossbow. Experimental results highlighted compa-

rable performances underlining the algebraic equivalence of the two formulations.

Indeed, both approaches come from the Bayesian framework as they are derived
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from the “classical” Kalman Filter formulation. In particular, the Interlaced

Kalman Filter performed slightly better in terms of estimation accuracy. This is

due to the “interlacement” mechanisms which balances the approximation (in-

troduced by the de-coupling operation) augmenting the noise covariance matrix

of observations (by adding the cross-correlation terms). On the other hand, by

moving the formulation to the Information domain, the Distributed Extended In-

formation Filter showed an effective reduction of the computational complexity.

Finally, in Chapter 10 a possible integrated framework for the coverage problem

was proposed. In this work the classical multi-robot scenario was extended by

introducing a sensor network. The idea was to exploit the distributed nature of

the sensor network to provide coordination to the robots. In particular, this work

mainly focused on investigating how the dynamics of the coverage problem were

modified by the introduction of the sensor network.

11.2 Future Work

The final objective is the construction of an integrated framework in which mo-

bile robots take advantage of the availability of sensor devices to both extend

their sensorial capability and distribute the computation over the network. This

research represents a small step towards the construction of such a framework.

Several other important problems need to be addressed. Among them, the clock

synchronization problem is important to note. Indeed, the availability of a com-

mon clock is fundamental for applications, such as target tracking where data

not only needs to be shared but also to be exactly located in the appropriate

temporal frame.

In regard to the research proposed in this thesis several aspects need to be

further investigated. In the robotic context, an experimental validation of the

extensions devised for the multi-robot scenario should be faced. In the Sensor

Network context, the proposed approaches should be experimentally validated in

terms of scalability by exploiting networks with different orders of magnitude.

For the integrated framework developed for the coverage problem, an analytical

investigation of the performance boundaries should be considered. Moreover, a

wider definition of robustness involving the failure of the sensor network, in terms

of both communication and functioning, should be taken into account. Finally,

a real implementation of this framework in order to validate its effectiveness in a

real context should be provided.
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Appendix A

Robot, Sensors and Environment Modelling

A.1 Robot kinematics: The unicycle model

The robot pose can be uniquely determined in an environment by means of the

robot position (x, y) and orientation (φ). Here, the unicycle model has been

adopted as the kinematic model for the robot. Such a model is described as

follows:

xk = f(xk−1, uk−1, nk−1)

= xk−1 +






cos φ̃k−1 0

sin φ̃k−1 0

0 1




uk−1 + nk−1 (A.1)

where, xk = [rx, ry, rφ] is the robot pose at time-step k (state), uk−1 is the

input at time k − 1 and nk−1 is a white zero mean noise at the same time-

step. In particular, the system input is uk = (δsk, δθk), where δsk is the vehicle

displacement and δθk is the rotation during the sample time interval δtk, both

measured by proprioceptive sensors.

A.2 Sensors and Environment Modelling

The robot has been equipped with a set of laser rangefinders arranged in a 360◦

pattern. The related observation model, taking into account the fact that the

environment has been described through a set M of segments, is:

zj,k = h(xk,M)

=
|arl

x
j + brl

y
j + cr|

|ar cos θj + br sin θj |
(A.2)

where (ar, br, cr) are the coefficients of the r-th segment and (lxj , lyj , θj) is the

configuration of the laser beam detecting the segment in question.
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Genetic Algorithms

Genetic Algorithms (GAs) are a class of search methods and computational mod-

els inspired by Darwin’s Theory of Evolution. These algorithms, initially inves-

tigated in [81], use a population to explore the search space, by means of prob-

abilistic transition operators like crossover and mutation, in order to find out

the element (chromosome) that best fits a given objective function (fitness func-

tion). This approach reflects a possible mathematical modeling of the nature’s

behavior in which the high adaptability of each creature in its environment is

the result of a long evolutionary process, based on natural selection, mutation,

sexual and asexual reproduction [52]. GAs have been applied in several research

areas to solve optimization problems where the presence of non-differentiable or

non-continuous objective functions makes other methodologies almost useless.

B.1 A Simple Genetic Algorithm (SGA)

A simple genetic algorithm, as it is referred to in [74], usually provides three

steps: initialization, selection and reproduction. The pseudocode in Algorithm 8

shows a possible implementation schema for an SGA, where the roulette wheel is

exploited for selection and crossover and mutation are used for reproduction.

B.1.1 Initialization

Initialization generates an initial population whose elements are encoded by

means of a fixed length string known in literature as genotype, or alternatively

chromosome. Several strategies have been proposed for the initialization; a clas-

sical one is to randomly draw the population. Afterward, the fitness function

has to be evaluated for each element of the population. The identification of a

suitable objective function, able to give a measure of the goodness of an element,

is usually problem-dependent.
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Algorithm 8: A Simple Genetic Algorithm Schema

Data: Fitness function f(·)
Result: p∗

k

/* Initialisation */
Set k = 0; Create Pk = {p1,k, . . . , pn,k}1

while StopCondition(p̃j,k) do2

/* Roulette Wheel Selection */
for i=1 to n do3

x = random(0, 1);4

j = 1;5

while j < n & x <
Pj

l=1
f(pl,k)

P

n
l=1

f(pl,k)
do

6

j = j + 1;7

end8

p̃i = pj,k;9

end10

/* Crossover Reproduction */
for i=1 to n-1 do11

pi,k+1 = Crossover(p̃i, p̃i+1)12

end13

/* Mutation Reproduction */
for i=1 to n do14

pi,k+1 = Mutation(p̃i)15

end16

p∗
k+1 = maxf(·){{p1,k+1, . . . , pn,k+1}};17

k = k + 1;18

end19

B.1.2 Selection

Selection draws an intermediate population where the recombination has to be

applied by preferring individuals with higher fitness over low-fitted ones. Al-

though it can be a deterministic operator, often some random components are

considered. A very popular probabilistic schema is the roulette wheel selection.

The idea is to relate the probability to choose a certain individual to its fitness.

From a probabilistic standpoint, it can be expressed as a random experiment,

where the probability of the individual i to be selected at time k is given by:

P (bi,k) =
fbi,k

∑m
j=1 bj,k

(B.1)

This schema can be graphically described as a “tricked” fortune wheel where

the slots are not equally wide and therefore different outcomes can occur with

different probabilities. Note that, this formula can be applied only if the fitness

value are positive. Otherwise, a proper non-decreasing transformation is required.

B.1.3 Reproduction: Crossover and Mutation

Reproduction acts on the intermediate population in order to generate a new one.

Probabilistic transition operators crossover and mutation, are usually applied.
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Crossover

Crossover mimics the sexual reproduction as it appears in the real world: the

genetic material of two parents is mixed when the gametes of the parents merge.

The interesting property of this operator, along with the capability to introduce

new genetic material and maintain the genetic diversity, is the capability to pro-

duce in average better generations. Several implementations of this operator

can be provided such as the one-point crossover or the n-point crossover. The

one-point crossover which creates a new element swapping a portion of parents

chromosomes with respect to a cutting point is the simplest implementation.

Mutation

Mutation mimics the biological mutation of the genetic material which may occur

to an organism for several reasons such as an exposure to ultraviolet or ionizing

radiation or deliberately for instance as a consequence of an environmental adap-

tation process. From an algorithmic standpoint, this operator is fundamental to

prevent the population from stagnating at any local optima. Like for the crossover

operator, also in this case several implementation can be provided. A classical

implementation involves a probability that an arbitrary bit (or a sequence of bits)

may be changed from their initial value(s).



Appendix C

Sensor Network Scenario Modeling

The deployment of static sensor network consisting of a group of Ω nodes on

a planar environment is considered. A typical sensor network node’s hardware

consists of a microprocessor with reduced computational capability, a radio com-

ponent, several sensor devices, a minimal data storage unit and a battery with

limited life. In addition, a few nodes are supposed to be equipped with an abso-

lute position system device so that localization with respect to a global reference

frame can be obtained for the whole network. Communication among nodes is

possible only if they are within the coverage area of each other.

In this context, the state of the node i at time k is described by its location

with respect to a global reference frame as follows:

x
(i)
k = [ p

(i)
x,k p

(i)
y,k ] (C.1)

Therefore, the state of the whole system is the vector obtained by collecting

the locations of all nodes:

xk =









x
(1)
k

x
(2)
k
...

x
(Ω)
k









(C.2)

C.1 System model

Since the network is assumed to be static, the model of the i-th node is simply

given by:

x
(i)
k = F

(i)
k x

(i)
k−1 + w

(i)
k (C.3)

where F
(i)
k = I2 ∈ R2×2 is the identity transition matrix and w

(i)
k ∼ N (0, Q

(i)
k ) ∈

R2 is a zero mean white noise vector with covariance matrix Q
(i)
k . Note that,
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the system is naturally fully decoupled as the state transition of a node does not

depend upon other nodes.

C.2 Observation model

Nodes are equipped with several sensor devices. In particular, for all these nodes

within the coverage area of each other, a way to measure inter-node distances is

assumed to be available. The related observation model can be obtained consid-

ering the Euclidian distance as follows:

z
(i,j)
k = h(x

(i)
k , x

(j)
k ) + v

(i)
k (C.4)

= ‖ x
(i)
k − x

(j)
k ‖ +v

(i)
k (C.5)

=

√

(p
(i)
x,k − p

(j)
x,k)

2 + (p
(i)
y,k − p

(j)
y,k)

2 + v
(i)
k (C.6)

where ‖ · ‖ is the Euclidean distance and v
(i)
k ∼ N (0, R

(i)
k ) ∈ R2 is a zero mean

white noise vector with covariance matrix R
(i)
k .
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Ranging Technique for MICAz

The Time Difference of Arrival (TDoA) is a technique commonly used in civil and

military surveillance applications to accurately locate targets by determining the

difference between the time of arrival of two pulses characterized by a different

propagation velocity [31].

D.1 Time Difference of Arrival for MICAz

The MICAz (MPR2400) platform is a generation of Motes from Crossbow Tech-

nology. The MPR2400 (2400 MHz to 2483.5 MHz band) uses the Chipcon

CC2420, IEEE 802.15.4 compliant, ZigBee ready radio frequency transceiver in-

tegrated with an Atmega128L micro-controller. It provides also a flash serial

memory, as well as a 51 pin I/O connector that allows several sensor and data

acquiring boards to be connected to it. In particular, two different boards – the

MTS300 and the MTS310 – both provide a sounder as well as a microphone.

The sounder is a simple 4 kHz fixed frequency piezoelectric resonator, while the

microphone can be used either for acoustic ranging or for general acoustic record-

ing and measurement. Therefore, the RF and acoustic (sounder) signals can be

exploited for the TDoA.

D.2 TDoA Analysis

The proposed TDoA for MICAz platforms has been thoroughly investigated in

order to determine the achievable performance. A significant amount of inter-

node distances (more than 200 measurements) were collected and a statistical

analysis was performed. A precision of 3 ∼ 8 cm with a standard deviation of

8 ∼ 14 cm was experienced considering distances ranging from 20 cm to 2.5 m.

In addition, experiments were carried out to verify whether the mutual orien-

tation of nodes might influence the measured distance. For such a reason, two

nodes were arranged on the floor at the distance of 54 cm from each other. Such

a distance was manually measured from the sounder of the emitter to the mi-
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crophone of the receiver. Successively, data was collected considering different

orientations of nodes, in order to simulate a realistic random deployment on the

ground. Table D.1 shows the statistic results using again more than 200 mea-

surements for each configuration. According to this analysis differential mutual

orientations do not significantly influence the measure of distances. However, as

mentioned above, data presents a bias as well as a considerable standard deviation

that makes their use challenging.

Exp. mean std node 1 node 2
value dev orientation orientation

1 0.5781 0.1229 π/2 3π/2
2 0.5734 0.1331 3π/2 0
3 0.5888 0.1146 3π/2 3π/2
4 0.5696 0.1052 3π/2 π
5 0.5933 0.1098 3π/2 π/2
6 0.6008 0.1230 5π/4 3π/4
7 0.5972 0.1217 5π/4 π/4
8 0.5853 0.1136 5π/4 5π/4
9 0.5683 0.1181 5π/4 5π/2
10 0.5892 0.1186 5π/4 π
11 0.5786 0.1239 5π/4 7π/4
12 0.5668 0.1299 0 0

x

y

Antenna

Sounder

Microphone

Figure D.1: Inter-node ranging technique: experimental results.

The bias and the standard deviation describe the uncertainty in the observing

process. Several are the sources of such uncertainty. First of all, the parameters

used to characterize the propagation velocity of an acoustic wave in the air have

been considered fixed, while they change according with humidity and temper-

ature. Secondly, the transmission protocol introduces a delay, which cannot be

taken into account, as it is not directly observable.



Appendix E

The Paths Construction Problem as Integer

Linear Programming

E.1 Simple Partitioning

Given a graph G = (N,L) with N the set of nodes (with cardinality n) and L the

connectivity matrix (with cardinality l), H ∈ N the set of sinks (with cardinality

k) and R the set of partition’s indexes (always with cardinality k). The simple

partitioning problem can be formulated as follows:

min 1 = 1

s.t.
∑

k

∑

i

ph
ij = 1 ∀j ∈ N \ H (E.1)

∑

k

∑

i

ph
ij = 0 ∀j ∈ H (E.2)

∑

k

∑

i

ph
ji = 1 ∀j ∈ H (E.3)

∑

i∈H

∑

j∈N (i)

ph
ij = 1 ∀h ∈ R (E.4)

∑

h∈N (j)

ph
jh ≤

∑

i∈N (j)

ph
ij ∀j ∈ N \ H, ∀h ∈ R (E.5)

∑

k

ph
ij + ph

ji ≤ 1 ∀(i, j) ∈ L (E.6)

∑

(i,j)∈L∩V

ph
ij ≤ |V | − 1 ∀V ⊂ N \ H,V 6= ∅, ∀h ∈ R (E.7)

⌊
N

k

⌋

− 1 ≤
∑

(i,j)∈L

ph
ij ≤

⌈
N

k

⌉

− 1 ∀h ∈ R (E.8)
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where,

ph
(ij) =

{

1 If the link (i, h) belong to the path h,

0 otherwise.
(E.9)

In detail, the (E.1) constrains each node to belong only to one path, the (E.2)

and (E.3) are boundary conditions for the heads. The (E.4) forces the heads to

belong to different paths, the (E.5) is similar to the flow conservation constraint

of network flows problem. Together with constraint (E.1), it forces each node

j ∈ N \ H to have at most one outgoing link (note that sources will have only

an incoming link). The (E.6) avoids the paths to go backward, the E.7, known

in literature as Sub-tour elimination constraint avoids to have isolated cycles.

Finally the (E.8) implies that all paths will have either length
⌊

N
k

⌋
or

⌊
N
k

⌋
+ 1.

The bogus objective function points out that any feasible solution is inher-

ently optimal for this formulation. If the distance between adjacent nodes is not

considered constant, this formulation can be slightly modified to account the min-

imization of the overall length of the paths. Additionally, note that this problem

might not be feasible if the connectivity matrix is not carefully chosen. However,

for a sensor network this problem can be easily overcome by properly tuning the

range of connectivity among nodes.

E.1.1 Shortest Paths Partitioning

In order to minimize the overall length of the paths, the simple partitioning

formulation can be modified by introducing a distance matrix D of Euclidean
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distances between pairs of nodes along with a real objective function.

min
R∑

k

∑

(i,j)∈L

dij · pk
ij

s.t.
∑

k

∑

i

pk
ij = 1 ∀j ∈ N \ H (E.10)

∑

k

∑

i

pk
ij = 0 ∀j ∈ H (E.11)

∑

k

∑

i

pk
ji = 1 ∀j ∈ H (E.12)

∑

i∈H

∑

j∈N (i)

pk
ij = 1 ∀k ∈ R (E.13)

∑

h∈N (j)

pk
jh ≤

∑

i∈N (j)

pk
ij ∀j ∈ N \ H, ∀k ∈ R (E.14)

∑

k

pk
ij + pk

ji ≤ 1 ∀(i, j) ∈ L (E.15)

∑

(i,j)∈L∩V

pk
ij ≤ |V | − 1 ∀V ⊂ N,V 6= ∅, ∀k ∈ R (E.16)

⌊
N

k

⌋

− 1 ≤
∑

(i,j)∈L

pk
ij ≤

⌈
N

k

⌉

− 1 ∀k ∈ R (E.17)

In detail, the cost of a path is defined as the sum of the Euclidian distances

between successive nodes belonging to this path.
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