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Introduction

This thesis is mainly devoted to the construction of new families of examples of minimal
surfaces derived from the family of Costa-Hoffman-Meeks surface.

The study of minimal surfaces in R? started with Lagrange in 1762. He studied the prob-
lem of determining a graph over an open set W in R?, with the smallest area among all
the surfaces that assume given values on the boundary of W.

In 1776, Meusnier supplied a geometric interpretation of the minimal graph equation: the
mean curvature H of a minimal graph vanishes. Nowadays it has become customary to
use the term minimal surface for any surface satisfying H = 0, notwithstanding the fact
that such surfaces often do not provide a minimum for the area.

In all the questions I dealed with in this work, one minimal surface plays the key role. It
is the Costa-Hoffmann-Meeks surface, the most famous minimal surface. The discovery
of the Costa surface was responsible for the rekindling of interest in minimal surfaces in
1982. In that year C. Costa showed in |2, 3] the existence of a complete (i.e., it has no
boundary) minimal surface of finite topology. It has genus 1 and three ends. In [14] D.
Hoffman and W. H. Meeks III showed the embeddedness of this surface (i.e. it does not
intersect itself). Until that moment the only other known embeddable complete minimal
surfaces in R? were the plane, the catenoid and the helicoid. They were discovered over
two hundred years ago, and it was conjectured that these one were the only embedded
complete minimal surfaces. Later D. Hoffman and W. H. Meeks III in [15, 16| generalized
the work of C. Costa showing the existence of a family of complete embedded minimal
surfaces with three ends and genus £ > 1. We denote by M the surface of genus k. It is
known as Costa-Hoffman-Meeks of genus k.

An important property of the minimal surfaces is the non degeneracy. The non degen-
eracy is defined in terms of the space of the Jacobi functions on the surface, that is the
functions which belong to the kernel of the Jacobi operator. This operator is defined as
the linearized of the mean curvature operator.

J. Pérez and A. Ros in [41] showed that the set of the non degenerate properly embedded
minimal surfaces with finite total curvature and fixed topology in R3, has a structure of
finite dimensional real-analytic manifold. As application they showed that for M, with
2 < k < 37, there exists a family of minimal surfaces with three horizontal ends that are
obtained by infinitesimal deformations by M. This result is based on a work ([36]) of S.
Nayatani which assures the non degeneracy of the Costa-Hoffman-Meeks surface only if
its genus takes the values given above. In his work S. Nayatani computed the dimension
of the kernel and the index (i. e. the number of the negative eigenvalues) of the Jacobi



operator about M, but only if 2 < k£ < 37. He showed that the dimension of the kernel
equals 4. The result is true also if £ = 1 (see |37]). From that it follows the non degen-
eracy of M. In chapter 1 I show that it is possible to extend the result of S. Nayatani
for bigger values of k. To be more precise I have shown that for £ > 38 the dimension
of the kernel and the index of the Jacobi operator about M}, are respectively equal to
4 and 2k+3. That allows us to state that the surface M} is non degenerate also for £ > 38.

The non degeneracy of the surface M}, is one of the essential ingredients of the proof due to
L. Hauswirth and F. Pacard ([11]) of the existence of a new family of examples of minimal
surfaces. Thanks to the result described in 1, their construction extends automatically to
higher values of k. The same result is used in the other sections of the thesis. Without
it the constructions that I will describe briefly in the following, would hold only for £ < 37.

The last two chapters of the thesis are devoted to the construction of new families of
examples of minimal surfaces by a gluing procedure (in the same spirit as [11]) which
involves the surface M.

D. Hoffman and W. Meeks made in [17] a systematic study of sequence of complete min-
imal surfaces of increasing genus. In particular they proved that the limit of a sequence
of Costa-Hoffman-Meeks surfaces tends to the union of a catenoid and a plane which
intersects the catenoid through its waist. They also showed that if these surfaces are
appropriately scaled and positioned, then the areas of high curvature tends to a classical
periodic minimal surface, the Scherk fifth surface.

N. Kapouleas tried to give an answer to a question which naturally arises naturally from
the work mentioned above. It is the possibility to desingularize the intersection of minimal
surfaces replacing neighbourhoods of intersections with Scherk singly periodic surfaces.
In [21] he presented a construction which answers positively the question above in highly
symmetric cases. His construction allows to show the existence of minimal surfaces with
finite total curvature, having at least three ends. Unfortunately their genus takes ar-
bitrarly high values: it cannot be prescribed because it must be compatible with the
symmetries. This technique cannot be used to construct low genus examples.

In [20] Kapouleas used the technique of the desingularization to construct constant mean
curvature surfaces with arbitrarily high genus and without symmetries. Following this
work M. Traizet in [48] obtained minimal surfaces with arbitrarily high genus by desin-
gularization of the intersections of a finite number of vertical planes.

N. Kapouleas in [21] announced the preparation of a work concerning a more general

theorem of desingularization valable in a general three-dimensional Riemannian manifold
and which did not require any hypothesis about the symmetry and would have allowed
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the construction of minimal surfaces of arbitrary genus. This result was never published.

In last years the study of minimal surfaces in H? x R, where H? denotes the hyperbolic
plane, and S? x R became more and more active. Various examples of minimal surfaces
in these product manifolds have been constructed, one part of them being inspired by by
known surfaces in R3. In chapter 2, I have shown the existence in the space H? x R, of a
family of minimal examples inspired to M}, with & > 1. This result can be considered to be
as a particular case of the announced general desingularization theorem of N. Kapouleas.
The statement of the main theorem is

Theorem 1. For all k > 1 there exists in H?> x R a minimal surface of genus k, finite
total extrinsic curvature with three horizontal ends: two catenoidal type ends and a middle
planar end.

I glue the image by a homothety of parameter 2, with ¢ sufficiently small, of a compact
part of M along its three boundary curves to two minimal graphs that are respectively
asymptotic to an upper half catenoid and a lower half catenoid defined in H? x R and to
a minimal graph asymptotic to H? x {0}.

The chapter 3 is devoted to the construction of examples of properly embedded singly
periodic minimal surfaces in R?. The results contained in this chapter generalize various
previous results. In particular it is possible to prescribe an arbitrary value of the genus
of the surface in the quotient. The results contained in this chapter (obtained in collabo-
ration with Laurent Hauswirth and M. Magdalena Rodriguez Pérez) have been shown by
the gluing procedure of surfaces.

The Scherk’s second surface is one the most famous minimal surface. It is a properly
embedded minimal surface in R? invariant by one translation 7" we can suppose along the
xo-axis, and can be seen as the desingularization of two perpendicular planes P, and P,
containing the xs-axis. Also we suppose P, P, are symmetric with respect to the planes
{z1 = 0} and {z3 = 0}. By changing the angle between P, P, we obtain a 1-parameter
family of properly embedded singly periodic minimal surfaces, we will refer to as Scherk
surfaces. In the quotient R®/T by its shortest translation 7, each Scherk surface has
genus zero and four ends asymptotic to flat annuli contained in P, /T, P»/T. Such ends
are called Scherk-type ends.

F. Martin and V. Ramos Batista [27] have recently constructed a properly embedded
singly periodic minimal example which has genus one and six Scherk-type ends in the
quotient R?/T, called Scherk-Costa surface, based on Costa surface (from now on, T will
denote a translation in the xo-direction). Roughly speaking, they have removed each end
of Costa surface (asymptotic to a catenoid or a plane) and replace it by two Scherk-type
ends. We have obtain surfaces in the same spirit as Martin and Ramos Batista’s one,
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but with a completely different method. We construct properly embedded singly periodic
minimal surfaces with genus & > 1 and six Scherk-type ends in the quotient R3/T', by
gluing (in an analytic way) a compact piece of Mj to two halves of a Scherk surface at
the top and bottom catenoidal ends, and one periodic flat horizontal annulus with a disk
removed at the middle planar end.

Theorem 2. Let T denote a translation in the xo-direction. For each k > 1, there exists a
1-parameter family of properly embedded singly periodic minimal surfaces in R?® invariant
by T whose quotient in R?/T has genus k and siz Scherk-type ends.

V. Ramos Batista [42] constructed a singly periodic Costa minimal surface with two
catenoidal ends and two Scherk-type middle end, which has genus one in the quotient
R3/T. This example is not embedded outside a slab in R? /T’ which contains the topology
of the surface. We observe that the surface we obtain by gluing a compact piece of M;
(Costa surface) at its middle planar end to a periodic horizontal flat annulus with a disk
removed has the same properties of Ramos Batista’s one.

In 1988, H. Karcher |22, 23| defined a family of properly embedded doubly periodic min-
imal surfaces, called toroidal halfplane layers, which has genus one and four horizontal
Scherk-type ends in the quotient. In 1989, Meeks and Rosenberg [31] developed a general
theory for doubly periodic minimal surfaces having finite topology in the quotient, and
used an approach of minimax type to obtain the existence of a family of properly embed-
ded doubly periodic minimal surfaces, also with genus one and four horizontal Scherk-type
ends in the quotient. These Karcher’s and Meeks and Rosenberg’s surfaces have been gen-
eralized in [43], constructing a 3-parameter family K = {M, , 3}sa,3 of surfaces, called
KMR examples (sometimes, they are also referred in the literature as toroidal halfplane
layers). Such examples have been classified by Pérez, Rodriguez and Traizet [40] as the
only properly embedded doubly periodic minimal surfaces with genus one and finitely
many parallel (Scherk-type) ends in the quotient. Each M, , g is invariant by a horizontal
translation 7' (by the period vector at its ends) and a non horizontal one. We denote
by ]/\\/[/gﬂﬂ the lifting of M, , 5 to R?/T, which has genus zero, infinitely many horizontal
Scherk-type ends, and two limit ends.

In 1992, F.S. Wei [49] added a handle to a KMR example M, in a periodic way, ob-
taining a properly embedded doubly periodic minimal surface invariant under reflection
in three orthogonal planes, which has genus two and four horizontal Scherk-type ends in
the quotient. Some years later, W. Rossman, E.C. Thayer and M. Wolgemuth [45] added
a different type of handle to a KMR example M, (0, also in a periodic way, obtaining a
different minimal surface with the same properties as Wei’s one. They also added two
handles to a KMR example, getting doubly periodic examples of genus three in the quo-
tient. L. Mazet and M. Traizet [29] have recently added N handles to a KMR example
M, 0, obtaining a genus N properly embedded minimal surface in R®/T" with an infinite
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number of horizontal Scherk-type ends and two limit ends. They have also constructed
a properly embedded minimal surface in R?®/7T with infinite genus, adding handles in a
quasi-periodic way to a KMR example.

L. Hauswirth and F. Pacard [11] have obtained higher genus Riemann minimal examples
in R3, by gluing two halves of a Riemann minimal example with the intersection of
a conveniently chosen CHM surface with a slab. We follow their ideas to generalize
Mazet and Traizet’s examples by constructing properly embedded singly periodic minimal
examples whose quotient to R®/T has arbitrary finite genus, infinitely many horizontal
Scherk-type ends and two limit ends. More precisely, we glue a compact piece of a slightly
deformed CHM example M, with bent catenoidal ends, to two halves of a KMR example
My o0 or M, and a periodic horizontal flat annulus with a disk removed.

Theorem 3. Let T denote a translation in the xo-direction. For each k > 1, there exist
two 1-parameter families K1, Ko of properly embedded singly periodic minimal surfaces
in R3 whose quotient in R?/T has genus k, infinitely many horizontal Scherk-type ends
and two limit ends. The surfaces in K1 have a vertical plane of symmetry orthogonal to
the x1-axis, and the surfaces in Ko have a vertical plane of symmetry orthogonal to the
To-GTIS.

L. Mazet, M. Traizet and M. Rodriguez [28] have recently constructed saddle towers with
infinitely many ends: they are non-periodic properly embedded minimal surfaces in R3 /T’
with infinitely many ends and one limit end. In the present paper, we construct (non-
periodic) properly embedded minimal surfaces in R3/T with arbitrary finite genus k > 0,
infinitely many ends and one limit end. With this aim, we glue half a Scherk example
with half a KMR example, in the case k = 0; and, when k£ > 1, we glue a compact piece
of the CHM example M, to half a Scherk surface (at the bottom catenoidal end of M), a
periodic horizontal flat annulus with a disk removed (at the middle planar end) and half
a KMR example (at the top catenoidal end).

Theorem 4. Let T denote a translation in the xo-direction. For each k > 1, there exist
a 1-parameter family of properly embedded singly periodic minimal surfaces in R® whose
quotient in R®/T has genus k > 0, infinitely many horizontal Scherk-type ends and one
limat end.



Introduction

Cette thése porte sur la construction de nouvelles familles d’exemples de surfaces mini-
males derivées de la famille de Costa-Hoffman-Meeks.

L’étude des surfaces minimales dans R? commengca avec Lagrange en 1762. Il étudia le
probléme de la détermination d’un graphe sur un ensemble ouvert W de R2, d’aire la plus
petite parmi toutes les surfaces qui prennent les mémes valeurs au bord de W.

En 1776, Meusnier donna une interpretation géometrique de I’équation des graphes mini-
maux: leur courbure moyenne H est nulle. Aujourd’hui il est habituel d’utiliser I’expression
surface minimale pour toute surface & courbure moyenne nulle, malgré le fait que souvent
telles surfaces ne constituent pas un minimum de Daire.

Dans toute question que j’ai abordée dans cette thése, une surface minimale joue le role
clé. 1l s’agit de la surface de Costa-Hoffmann-Meeks, la plus fameuse parmi les surfaces
minimales. La découverte de la surface de Costa a ravivé l'intérét pour les surfaces min-
imales en 1982. En cette année C. Costa a montré dans |2, 3] I'existence d’une surface
minimale compléte (c’est-a-dire, sans bord) avec topologie finie. Elle est de genre 1 et a
trois bouts. Dans [14] D. Hoffman et W. H. Meeks III ont montré que la surface est aussi
plongée (c’est-a-dire elle n’a pas d’autointersections). En cette époque-la les seules autres
surfaces minimales connues complétes et plongées dans R3, étaient le plan, le caténoide
et ’hélicoide. Elles avaient été découvertes plus de deux cent ans plus tot, et 'on con-
jecturait qu’elles fussent les uniques surfaces minimales complétes et plongées. Plus tard
D. Hoffman et W. H. Meeks III dans [15] et [16] ont généralisé le travail de C. Costa en
démontrant I'existence d’une famille de surfaces minimales complétes plongées avec trois
bouts et genre k£ > 1. Nous posons M, la surface de genre k de cette famille. Elle est
connue sous le nom de surface de Costa-Hoffman-Meeks de genre k.

Une propriété rémarquable de certaines surfaces minimales est la non dégénérescence. La
non dégénérescence est définie en termes de I'espace des fonctions de Jacobi de la surface,
c’est-a-dire les fonctions du noyau de 'operateur de Jacobi. Cet operateur est le linéarisé
de 'operateur courbure moyenne.

J. Pérez et A. Ros in [41] ont montré que I’ensemble des surfaces minimales non dégénérées,
proprement plongées dans R?, de courbure totale finie et topologie fixée, a une structure de
variété analytique réelle de dimension finie. Comme conséquence de cela, ils ont démontré
qu’il existe une famille de surfaces minimales avec trois bouts horizontaux obtenues par
déformations infinitésimales de M, si 2 < k < 37. Ce résultat est basé sur un travail ([36])
de S. Nayatani qui assure que la surface de Costa-Hoffman-Meeks est non dégénérée seule-
ment si le genre prend les valeurs données ci-dessus. Dans son article S. Nayatani a calculé
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la dimension du noyau et l'indice (c’est-a-dire le nombre des valeurs propres negatives)
de 'operateur de Jacobi de M), seulement si 2 < k£ < 37. Il a montré que la dimension du
noyau est égale a 4. Le méme résultat est valable si k& = 1 (voir [37]). Cela implique que
M, est non dégénérée. Dans le chapitre 1 j’ai démontré que le résultat de S. Nayatani est
valable pour valeurs superieures de k. Plus précisement j’ai démontré que pour k£ > 38 la
dimension du noyau et I'indice de 'operateur de Jacobi de M, valent respectivement 4
et 2k + 3. Cela nous permet de conclure que la surface M est non dégénérée aussi pour
k > 38.

La non dégénérescence de la surface M est 'un des ingredients essentiels de la preuve
die a L. Hauswirth et F. Pacard ([11]) de I'existence d’une nouvelle famille d’exemples de
surfaces minimales. Grace au résultat décrit dans le chapitre 1, leur construction s’étend
automatiquement aux valeurs de k plus élevées. Le méme résultat est utilisé dans les
autres sections de la thése. Sans ceci, les constructions briévement décrites ici, ne seraient
valables que pour £ < 37.

Les deux derniers chapitres de la thése sont consacrés a la construction de nouvelles
familles d’exemples de surfaces minimales & ’aide d’une procédure de collage de surfaces
déja connues (parmi lesquelles y figure la surface Mj) du méme style que dans [11].

D. Hoffman et W. Meeks ont présenté dans [17] un étude systématique des suites de sur-
faces minimales complétes de genre croissant. En particulier ils ont démontré que la limite
d’une suite de surfaces de Costa-Hoffman-Meeks tend a I'union d’un caténoide et d’un
plan qui croise le caténoide 1a ou la section est le cercle de rayon le plus petit possible.
Ils ont aussi montré que, si ces surfaces sont rescalées et disposées de fagcon appropriée,
alors les morceaux de surfaces ou la courbure est élevée tendent a une surface minimale
périodique classique, la cinquiéme surface de Scherk.

N. Kapouleas a essayé de répondre a une question naturellement issue du travail cité
ci-dessus. Il s’agit de démontrer la possibilité de désingulariser 'intersection de deux sur-
faces minimales en remplacant des voisinages des intersections par des surfaces de Scherk
simplement périodiques. Dans [21] il a presenté une construction qui repond affirmative-
ment & la question ci-dessus dans les cas hautement symétriques. En fait sa construction
permet de montrer I’éxistence de surfaces minimales de courbure totale finie et au moins
trois bouts. Malheureusement le genre des surfaces ainsi construites prend des valeurs
arbitrairement élevées: la valeur du genre ne peut pas étre prescrite parce que elle doit
étre compatible avec les symétries. Donc ’on peut pas faire recours a cette technique a
fin de construire des exemples de genre petit.

Dans [20], Kapouleas a utilisé la technique de la désingularisation pour construire des
surfaces & courbure moyenne constante de genre arbitrairement grand et sans symétries.
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En s’inspirant de cet article, M. Traizet dans [48] a construit des surfaces minimales sim-
plement périodiques de genre arbitrairement grand par désingularisation des intersections
d’un nombre fini de plans verticaux.

N. Kapouleas dans [21| a annoncé la rédaction d’un autre article dans lequel il aurait
démontré un théoréme de désingularisation plus générale valable dans une variété Rie-
mannienne tridimensionelle quelconque qui ne requerrait aucune hypothése sur la symétrie
des surfaces et qui lui aurait permis de construire des surfaces minimales de genre arbi-
traire. Ce travail n’a jamais été publié.

Lors des derniéres années, 1’étude des surfaces minimales dans les variétés produit H? x R,
ot H? est le plan hyperbolique, et S? x R est devenu de plus en plus vif. Le développe-
ment de la théorie des surfaces minimales dans ces espaces a commencé avec [44] par H.
Rosenberg et a continué par [33] et [32] par W. H. Meeks et H. Rosenberg. Dans [39] B.
Nelli et H. Rosenberg ont démontré ’existence dans H? x R d’une riche famille d’exemples
contenante les hélicoides, les caténoides et, en résolvant des problémes de Plateau, des
exemples de genre plus élevé inspirées de la théorie des surfaces minimales dans R?. Dans
[10] L. Hauswirth a construit et classifié les surfaces minimales feuilletées par courbes
horizontales de courbure constante dans M x R, ou M est H? R? ou bien S%. D’autres
exemples de surfaces minimales de genre 0 dans ces variétés produit ont été décrites par
R. Sa Earp et E. Toubiana dans [46].

Dans le chapitre 2, j’ai démontré l'existence, dans H? x R, d’une famille de surfaces
minimales plongées inspirée de My, pour tout £ > 1. Ce résultat peut étre censé un cas
particulier du théoréme générale de désingularisation annoncé par N. Kapouleas. L’énoncé
du théoréme est le suivant.

Théoréme 1. Pour tout k > 1 il existe dans H? x R une surface minimale de genre k,
courbure totale estrinseque finie avec trois bouts horizontaux: deux bouts de type caténoidal
et un bout plan au milieu.

J’ai collé I'image par une homothétie de paramétre 2, avec ¢ suffisamment petit, d’un
morceau compact de M le long de ses trois courbes de bord & deux graphes minimaux,
qui sont, respectivement, asympotiques & la moitié superieure et a la moitié inferieure
d’un caténoide défini dans H? x R, et 4 un graphe minimal asymptotique a H? x {0}.

Le chapitre 3 est consacré a la construction d’exemples de surfaces minimales simple-
ment périodiques proprement plongées dans R3. Les résultats presentés dans ce chapitre
(obtenus en collaboration avec Laurent Hauswirth et M. Magdalena Rodriguez Pérez)
généralisent plusieurs anciennes constructions. L’une des nouveautés c’est la possibilité
de produire des surface minimales périodiques dont le quotient a une valeur arbitraire du
genre. Tous les résultats que je vais décrire briévement ont été démontrés a l'aide de la
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méthode du collage de surfaces déja introduite ci-dessus.

Apreés le plan et 'helicoide, la premiére surface minimale simplement périodique a été dé-
couverte par Scherk [47] en 1835. Cette surface, connue sous le nom de deuzriéme surface
de Scherk, est proprement plongée dans R3 et invariante par une translation T, qui nous
allons supposer le long de 'axe x5, et qui peut étre vue comme la désingularisation de
deux plans orthogonaux, notés P, et P,, dont I'intersection est I’axe z5. En outre, nous
supposons que Pj, P, soient symétriques par rapport aux plans {z; = 0} et {x3 = 0}. Par
la variation de ’angle parmi P;, P, ’on obtient une famille & un paramétre de surfaces
minimales proprement plongées et simplement périodiques, que nous nommons surfaces
de Scherk. Dans le quotient R?/T, ou T est la translation la plus petite, toute surface
de Scherk a genre égal a zero et quatre bouts plans asymptotiques a des anneaux plats
contenus dans P, /T, P,/T. Tels bouts sont nommés bouts de type Scherk.

F. Martin et V. Ramos Batista [27] ont récemment construit une surface minimale pro-
prement plongée, simplement périodique, de genre égal & un et six bout de type Scherk
dans le quotient R3/T, appelée surface de Scherk-Costa, basée sur la surface de Costa
(dorénavant nous noterons 7" une translation dans la direction ;). En gros, ils ont oté
tout bout de la surface de Costa (asymptotique & un caténoide ou & un plan) et 'ont
remplacé par un bout de type Scherk. Dans ce chapitre nous avons obtenu des surfaces
du méme type que M. Traizet et V. Ramos Batista, mais & ’aide d’'une méthode tout a
fait différente. Nous avons montré I’existence de surfaces minimales proprement plongées,
simplement périodiques, de genre £ > 1 avec six bouts de type Scherk dans le quo-
tient R®/T, par collage d’un morceau compact de M}, des deux moitiés d’'une surface de
Scherk et d’un anneau plat horizontal P/T privé d’un disque. Voici I’énoncé du théoréme.

Théoréme 2. Soit T la translation le long de l'axe x5. Pour tout k > 1, il existe
une famille & un paramétre de surfaces minimales simplement périodiques, proprement
plongées dans R?, invariantes par T, dont le quotient dans R3/T a genre égal k et siz bout
de type Scherk.

H. Karcher dans [22, 23] et W.H. Meeks and H. Rosenberg dans [31] ont montré 1’existence
de deux différentes familles de surfaces minimales plongées doublement périodiques de
genre égal & un et quatre bouts de type Scherk dans le quotient. Ces familles ont été
généralisées par M.M. Rodriguez dans [43], en construisant une famille d’exemples & 3
paramétres, notée I = { M, 5}0.05. Ces exemples sont nommés exemples KMR (ils ap-
paraissent dans la literature aussi sous le nom de "toroidal halfplane layers"). Ils ont été
classifiés par J. Pérez, M. M. Rodriguez et M. Traizet dans [40]. Il s’agit des uniques sur-
faces minimales doublement périodiques, proprement plongées, de genre un et un nombre
fini de bouts paralléles de type Scherk dans le quotient. Toute surface M, , 3 est invariante
par translations soit horizontales, notées T', (il s’agit du vecteur période au bouts) soit non
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horizontales. Soit ]\/zm”g le relévement de M, , 5 A R?/T : il s’agit d’une famille de surfaces
de genre zero, un nombre infini de bouts horizontaux de type Scherk et deux bouts limites.

En 1992, F.S. Wei [49] a rajouté une anse & un exemple KMR de type M, de fagon
périodique, en obtenant une surface minimale proprement plongée doublement périodique
invariante par réflections dans trois plans orthogonaux, de genre 2 et avec quatre bouts
horizontaux de type Scherk dans le quotient. Quelques années plus tard, W. Rossman,
E.C. Thayer et M. Wolgemuth [45] ont rajouté une anse de type différente & un exem-
ple KMR de type M,(0, en obtenant d’autres surfaces minimales avec les mémes pro-
priétés. En outre ils ont rajouté deux anses & un exemple KMR, en montrant I’existence
d’exemples doublement périodiques de genre 3 dans le quotient. Récemment, L. Mazet
and M. Traizet [29] ont rajouté N anses & un exemple KMR de type M, , en obtenant
une surface minimale proprement plongée de genre N dans R?/T avec un nombre infini
de bouts horizontaux de type Scherk et deux bouts limite. De plus ils ont construit une
surface minimale proprement plongée dans R3/T de genre infini, en rajoutant des anses
de facon quasi périodique & un exemple KMR.

L. Hauswirth et F. Pacard [11| ont construit des exemples de type Riemann de genre
élevé dans R?, par collage de deux moitié d’une surface de Riemann avec un morceau
compact d’'une surface CHM choisie de fagcon appropriée. Nous avons suivi leurs idées a
fin da généraliser les exemples de Mazet et Traizet en construant des surfaces minimales
proprement plongées, simplement périodiques, dont le quotient dans R?/T a genre fini
arbitraire, un nombre infini de bouts horizontaux de type Scherk et deux bouts limites.
Plus précisément nous avons collé un morceau compact de la surface M;, (avec les bouts
caténoidaux penchés), les deux moitiés d’un exemple KMR (soit M, » 0 soit M, 3) et un
anneau plat horizontal périodique privé d’un disque. Ci-dessous I’énoncé du théoréme.

Théoréme 3. Soit T une translation le long de ’axe x5. Pour tout k > 1, il existe
deuz familles & un paramétre K1, Ky de surfaces minimales proprement plongées dans R3
simplement périodiques dont le quotient dans R? /T a genre égal a k, un nombre infini de
bouts horizontauz de type Scherk et deuzr bouts limites. Les surfaces dans Ky ont un plan
vertical de symétrie orthogonal a ['axe x1, et les surfaces dans Ko ont un plan vertical de
symétrie orthogonal a l’axe x5.

L. Mazet, M. Traizet and M. M. Rodriguez [28| ont récemment construit des "saddle tow-
ers": ce sont des surfaces minimales non-périodiques proprement plongées dans R? /T avec
un nombre infini de bouts et un bout limite. Le dernier résultat présenté dans le chapitre
3 est la construction de surfaces minimales (non-périodiques) proprement plongées dans
R?/T, de genre arbitraire et fini & > 0, avec un nombre infini de bouts et un bout limite.
La preuve de ce résultat est basée, dans le cas £ = 0, sur le collage d’une moitié de la sur-
face de Scherk et une moitié d’'un exemple KMR; et dans le cas £ > 1, sur le collage d’un
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morceau compact de la surface M, avec une moitié de la surface de Scherk, un anneau
plat horizontal périodique (privé d’un disque) et une moitié d’un exemple KMR.

Théoréme 4. Soit T' une translation le long de ’axe xo. Pour tout k > 0, il existe une
famille & un paramétre de surfaces minimales proprement plongées dans R3, simplement
périodiques, dont le quotient dans R3/T a genre égal a k, un nombre infini de bouts
horizontauzx de type Scherk et un bout limite.
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Introduzione

Questa tesi verte sulla construzione di nuove famiglie di esempi di superfici minime
derivate dalla famiglia delle superfici di Costa-Hoffman-Meeks.

Lo studio delle superfici minime in R? ha avuto inizio con Lagrange nel 1762. Egli studio il
problema della determinazione di un grafico su un insieme aperto W di R? di area minima
tra tutte le superfici che assumono gli stessi valori sul bordo di W.

Nel 1776, Meusnier diede una interpretazione geometrica dell’equazione dei grafici min-
imi: la curvatura media H di un grafico minimo ¢ nulla. Oggi si continua a utilizzare
I’espressione superfice minima per ogni superficie a curvatura media nulla, nonostante il
fatto che spesso tali superfici non minimizzino I’area.

In tutte le questioni di cui mi sono occupato nella tesi, ¢’é una superficie minima che gioca
un ruolo chiave. Si tratta della superficie di Costa-Hoffmann-Meeks di genere k£ > 1, la
piu famosa tra tutte le superfici minime. La scoperta della superficie di Costa risveglio
I'interesse per le superfici minime nel 1982. In tale anno C. Costa dimostro in [2, 3|
’esistenza di una superficie minima completa con topologia finita, di genere pari a 1 e con
tre terminazioni. In [14] D. Hoffman e W. H. Meeks III dimostrarono che la superficie
é anche embedded. Fino a quel momento le sole altre superfici minime conosciute che
fossero complete e embedded in R?, erano il piano, il catenoide e I’elicoide. Esse erano
state scoperte piu di 200 anni prima, e si congetturava che si trattasse delle uniche su-
perfici minime complete e embedded. Piu tardi D. Hoffman e W. H. Meeks III in [15, 16]
generalizzarono il lavoro di C. Costa dimostrando ’esistenza d’una famiglia di superfici
minime complete embedded con tre terminazioni e genere k£ > 1. Indichiamo con M} la
superficie di genere k appartenente a questa famiglia. Essa é nota sotto il nome di super-
ficie di Costa-Hoffman-Meeks di genere k.

Una proprieta importante di alcune superfici minime é la non degenericita. Tale proprieta
é definita in termini dello spazio di funzioni di Jacobi della superficie, cioé le funzioni del
nucleo dell’operatore di Jacobi. Tale operatore é il linearizzato dell’operatore curvatura
media.

J. Pérez e A. Ros in [41] hanno mostrato che l'insieme delle superfici minime non de-
genere, propriamente embedded in R3, di curvatura totale finita e topologia fissata, ha
una struttura di varietda analitica reale di dimensione finita. Come consequenza di cio,
essi ricavarono che esiste una famiglia di superfici minime con tre terminazioni orizzontali
ottenute mediante infinitesime deformazioni di M}, se 2 < k < 37. Questo risultato si basa
su un lavoro (|36]) di S. Nayatani che assicura che la superficie di Costa-Hoffman-Meeks
€ non degenere solo se il genere assume i valori dati sopra. Nel suo articolo S. Naya-
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tani calcolo la dimensione del nucleo e I'indice (cioé il numero degli autovalori negativi)
dell’operatore di Jacobi di M} solo nel caso 2 < k < 37. Egli dimostro che la dimensione
del nucleo ¢ uguale a 4. Lo stesso risultato vale anche per k = 1 (vedere [37]). Cio garan-
tisce che M}, é non degenere. Nel capitolo 1 ho dimostrato che il risultato di S. Nayatani
é valido per valori superiori di k. Piu precisamente ho dimostrato che per £ > 38 la di-
mensione del nucleo e I'indice dell’operatore di Jacobi di My, valgono rispettivamente 4 e
2k+3. Cio mi permette di concludere che la superficie M, € non degenere anche per k£ > 38.

La non degenericita della superficie M, é uno degli ingredienti fondamentali della di-
mostrazione trovata da L. Hauswirth e F. Pacard ([11]) dell’esistenza di una nuova
famiglia d’esempi di superfici minime. Grazie al risultato descritto nel capitolo 1, la
loro costruzione si estende automaticamente ai valori di & piu grandi. Lo stesso risultato
é utilizzato negli altri capitoli della tesi. Senza di esso i resultati ivi esposti e che de-
scriverd brevemente qui, sarebbero validi solo per k < 37.

Gli ultimi due capitoli della tesi sono dedicati alla costruzione di nuove superfici minime
mediante il metodo dell’incollamento di parti di superfici minime gia note (tra le quali
M) nello stesso stile di [11].

D. Hoffman e W. Meeks presentarono in [17] uno studio sistematico delle successioni di
superfici minime complete di genere crescente. In particolare essi hanno dimostrato che il
limite di una successione di superfici di Costa-Hoffman-Meeks di genere crescente tende
all’unione di un catenoide e di un piano che interseca il catenoide nel cerchio di diametro
piu piccolo possibile. Hanno anche dimostrato che, se queste superfici sono riscalate e
disposte in modo appropriato, allora le parti di superfici dove la curvatura é piu elevata
tendono a un’altra superficie minima semplicemente periodica classica, la quinta superfi-

cie di Scherk.

N. Kapouleas cerco di rispondere ad una questione messa in evidenza dal lavoro citato
sopra. Si tratta di dimostrare la possibilita di desingolarizzare le intersezioni di due su-
perfici minime sostituendo degli intorni delle intersezioni con delle superfici di Scherk
semplicemente periodiche. In [21] egli presentd una costruzione che permette di rispon-
dere affermativamente alla questione nei casi in cui le superfici minime che si intersecano
hanno molte proprieta di simmetria. Tale costruzione permette di mostrare 1’esistenza di
superfici minime di curvatura totale finita e almeno tre terminazioni. Sfortunatamente il
genere delle superfici cosi costruite assume valori arbitrariamente elevati: esso non puo
essere prescritto poiché deve essere compatibile con le simmetrie. Quindi non si puo fare
ricorso a questa tecnica per ottenere degli esempi di genere basso.

Lo stesso autore in [20] ha utilizzato la tecnica della desingolarizzazione per ottenere delle
superfici a curvatura media constante di genere arbitrariamente elevato e senza simmetrie.
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Seguendo questo articolo M. Traizet ha ottenuto superfici minime di genere arbitraria-
mente alto mediante la desingolarizzazione delle intersezioni di un numero finito di piani
verticali.

N. Kapouleas annuncio in [21] la redazione di un altro articolo in cui avrebbe dimostrato
un teorema di desingolarizzazione piu generale valido in una varietd Riemanniana tridi-
mensionale qualunque e che non avrebbe richiesto alcuna ipotesi sulla simmetria delle
superfici e che gli avrebbe permesso di ottenere delle superfici minime di genere arbi-
trario. Questo risultato non é mai stato pubblicato.

Gli ultimi anni hanno visto diventare sempre piu vivo lo studio delle superfici minime
nelle varietd prodotto H? x R, dove H? denota il piano iperbolico, e S? x R. In queste
varietd sono stati scoperti vari esempi di superfici minime ispirandosi a quelle conosciute
in R®. Nel capitolo 2 ho dimostrato lesistenza, in H? x R, di una famiglia di superfici
minime embedded ispirata a My, per ogni k > 1. Questo risultato puo essere considerato
come un caso particolare del teorema generale di desingolarizzazione annunciato da N.
Kapouleas. L’enunciato del teorema é il seguente.

Teorema 1. Per ogni k > 1 esiste in H? x R una superficie minima di genere k, con
curvatura estrinseca totale finita con tre terminazioni orizzontali: due di tipo catenoidale
e una di tipo planare.

Questa superficie ¢ stata ottenuta mediante incollamento dell'immagine mediante una
omotetia di parametro €2, con ¢ sufficentemente piccolo, di una parte compatta di M,
lungo le sue tre curve di bordo a due grafici minimi, che sono asintotici, rispettivamente,
alla meta superiore e alla meta inferiore di un catenoide definito in H? x R e a un grafico
minimo asintotico a H? x {0}.

Il capitolo 3 é dedicato alla costruzione di superfici minime semplicemente periodiche
propriamente embedded in R3. T risultati presentati in questo capitolo (ottenuti in col-
laborazione con Laurent Hauswirth e M. Magdalena Rodriguez Pérez) generalizzano varie
precedenti costruzioni e sono stati dimostrati mediante la tecnica dell’incollamento. Una
delle novita rispetto al passato € la possibilita di produrre superfici minime periodiche il
cui quoziente ha genere arbitrario.

La seconda superficie di Scherk é una delle superfici minime pitl famose. E’ propriamente
embedded in R3, invariante rispetto alla traslazione T, che supporremo essere lungo 1’asse
X9, € puo essere considerata come la desingolarizzazione di due piani ortogonali, che de-
notiamo con P; e P, la cui l'intersezione é 1’asse 5. Inoltre supporremo che P;, P, siano
simmetrici rispetto ai piani {z; = 0} e {3 = 0}. Mediante la variazione dell’angolo tra
Py, P, si ottiene una famiglia a un parametro di superfici minime propriamente embedded
e semplicemente periodiche, che chiamiamo superfici di Scherk. Nel quoziente R3/T’, ogni
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superficie di Scherk ha genere pari a zero e quattro terminazioni planari asintotiche a dei
cilindri piatti contenuti in P, /T, P,/T. Tali terminazioni sono dette di tipo Scherk.

Noi abbiamo costruito delle superfici semplicemente periodiche di genere £ > 1 con 6
terminazioni di tipo Scherk nel quoziente R3 /T, mediante incollamento di una parte com-
patta di M}, due meta di una superficie di Scherk e un cilindro piatto orizzontale periodico
privato di un disco. L’enunciato del teorema é il seguente.

F. Martin and V. Ramos Batista [27| hanno recentemente construito una superficie min-
ima propriamente embedded e semplicemente periodica di genere 1 e sei terminazioni di
tipo Scherk nel quoziente R?/T, detta superficie di Scherk-Costa, (d’ora in poi T denota
la traslazione nella direzione x,). Semplificando, essi hanno rimosso ogni terminazione
dalla superficie di Costa rimpiazzandola da due terminazioni di tipo Scherk. Nel capitolo
3 noi otteniamo superfici con caratteristiche analoghe a quella di M. Traizet e V. Ramos
Batista, ma mediante un metodo completamente diverso. Si tratta di superfici propria-
mente embedded semplicemente periodiche di genere & > 1 e con 6 terminazioni di tipo
Scherk nel quoziente R?/T, incollando (in modo analitico) una parte compatta di M a
due meta di una superficie di Scherk e un annulus piatto orizzontale periodico P/T, da
cui abbiamo rimosso un disco.

Teorema 2. Sia T la traslazione lungo l’asse xo. Per ogni k > 1, esiste una famiglia a un
parametro di superfici minime semplicemente periodiche, propriamente embedded in R3,
invarianti rispetto a T, e il cui quoziente in R3/T ha genere pari a k e sei terminazioni
di tipo Scherk.

V. Ramos Batista [42] ha costruito una superficie minima di tipo Costa ma semplicemente
periodica con due terminazioni di tipo catenoidale e due terminazioni di tipo Scherk, di
genere 1 nel quoziente R?/T'. Si tratta di un esempio non embedded all’esterno di uno slab
in R?/T contenente la topologia della superficie. Osserviamo che la superficie da noi ot-
tenuta incollando una parte compatta di M; (la superficie di Costa) con un cilindro piatto
orizzontale privato di un disco, ha le stesse proprieta di quella descritta da Ramos Batista.

Nel 1988, H. Karcher [22, 23| ha definito una famiglia di superfici minime propriamente
embedded e doppiamente periodiche, chiamate toroidal halfplane layers, di genere 1 e con
quattro terminazioni di tipo Scherk nel quoziente. Nel 1989, Meeks and Rosenberg [31]
hanno sviluppato la teoria generale per le superfici minime doppiamente periodiche con
topologia finita nel quoziente, e usarono un approccio di tipo minimax per dimostrare
I’esistenza di una famiglia di superfici propriamente embedded, doppiamente periodiche,
di genere 1 e con 4 terminazioni orizzontali di tipo Scherk nel quoziente. Queste famiglie
sono state generalizzate da M.M. Rodriguez in [43|, che ha costruito una famiglia a 3
parametri, denotata K = {M, 4 3}s.a,p5 € Dota sotto il nome di famiglia di esempi KMR
(una denominazione alternativa presente in letteratura é toroidal halfplane layers). Tali
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esempi sono stati classificati da J. Pérez, M. M. Rodriguez e M. Traizet in [40] come le
uniche superfici minime doppiamente periodiche, propriamente embedded, di genere uno
e un numero finito di terminazioni parallele di tipo Scherk nel quoziente. Ogni superficie
M, . ¢ invariante per traslazioni sia orizzontali, denotate con 7', (si tratta del vettore
periodo in corrispondenza delle terminazioni) sia non orizzontali. Sia ]/\\/[/O@ﬁ il solleva-
mento di M, s a R¥/T : si tratta di una famiglia di superfici di genere zero, un numero
infinito di terminazioni orizzontali di tipo Scherk e due terminazioni limite.

Nel 1992, F.S. Wei in [49] ha aggiunto un manico a un esempio KMR di tipo M, 0 in
modo periodico, ottenendo una superficie minima propriamente embedded doppiamente
periodica invariante per riflessioni rispetto a tre piani ortogonali, di genere 2 e con 4 ter-
minazioni di tipo Scherk nel quoziente. Alcuni anni piu tardi, W. Rossman, E.C. Thayer
e M. Wolgemuth in [45] hanno aggiunto un diverso tipo di manico all’esempio M, g, in
modo periodico, ottenendo una superficie differente ma con proprieta simili a quella di
Wei. Inoltre essi hanno aggiunto due manici a un esempio KMR, ottenendo superfici
doppiamente periodiche di genere 3 nel quoziente. L. Mazet e M. Traizet [29] hanno
recentemente aggiunto /V manici a un esempio KMR di tipo M, o, ottenendo una super-
ficie di genere N, propriamente embedded in R*/T con un numero infinito di terminazioni
orizzontali di tipo Scherk e due terminazioni limite. Essi hanno anche costruito una super-
ficie minima propriamente embedded in R3/T di genere infinito, aggiungendo dei manici
in modo quasi periodico a un esempio KMR.

L. Hauswirth e F. Pacard in [11] hanno costruito superfici minime di tipo Riemann ma
di genere non nullo in R3, incollando le due meta di un esempio di tipo Riemann con
I'intersezione di M), con terminazioni catenoidali inclinate e uno slab. Noi abbiamo se-
guito le loro idee per generalizzare gli esempi di Mazet e Traizet, ottenendo nuove superfici
minime semplicemente periodiche, propriamente embedded, il cui quoziente in R3/T ha
genere arbitrario finito, un numero infinito di terminazioni orizzontali di tipo Scherk e
due terminazioni limite. Piu precisamente abbiamo incollato una parte compatta della
superficie M}, con le terminazioni di tipo catenoidale inclinate, le due meta di un esem-
pio KMR (M, 40 0 M, 3) € un cilindro piatto orizzontale periodico privato di un disco.
Segue I’enunciato del teorema.

Teorema 3. Sia T una traslazione lungo l’asse xo. Per ogni k > 1, esistono due famiglie
a un parametro K1, Ky di superfici minime propriamente embedded in R semplicemente
periodiche il cui quoziente in R?/T ha genere pari a k, un numero infinito di terminazioni
orizzontali di tipo Scherk e due terminaziont limite. Le superfici in Ky hanno un piano
verticale di simmetria ortogonale all’asse x1, e le superfici in Ko hanno un piano verticale
di simmetria ortogonale all’asse x5.

L. Mazet, M. Traizet and M. Rodriguez in [28] hanno recentemente construito delle "saddle
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towers": si tratta di superfici non periodiche propriamente embedded in R3/T con infinite
terminazioni e una terminazione limite. L’ultimo risultato presentato nel capitolo 3 é la
costruzione di superfici minime, propriamente embedded in R?/T, di genere arbitrario e
finito £ > 0, con un numero infinito di terminazioni di tipo Scherk e una terminazione
limite. La dimostrazione di cio é basata, nel caso k = 0, sull’'incollamento di una meta della
superficie di Scherk e una meta di un esempio KMR; e, nel caso k£ > 1, sull’incollamento
di una parte compatta della superficie M, con una meta della superficie di Scherk, un
cilindro piatto orizontale periodico privato di un disco e una meta di un esempio KMR.

Teorema 4. Sia T la traslazione lungo l'asse x4. Per ogni k > 0, esiste una famiglia a un
parametro di superfici minime propriamente embedded in R3, semplicemente periodiche, il
cui quoziente in R3/T ha genere pari a k, un numero infinito di terminazioni orizzontal
di tipo Scherk e una terminazione limite.
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Chapter 1

Index and nullity of the Gauss map of
the Costa-Hoffman-Meeks surfaces

1.1 Introduction

In the years 80’s and 90’s the study of the index of minimal surfaces in Euclidean space
has been quite active. D. Fisher-Colbrie in [7], R. Gulliver and H. B. Lawson in [9] proved
independently that a complete minimal surface M in R3 with Gauss map G has finite
index if and only if it has finite total curvature. D. Fisher-Colbrie also observed that if M
has finite total curvature its index coincides with the index of an operator Ls (that is the
number of its negative eigenvalues) associated to the extended Gauss map G of M, the

compactification of M. Moreover N(G), the null space of Lg, if restricted to M consists of
the bounded solutions of the Jacobi equation. The nullity, Nul(G), that is the dimension
of N(G), and the index are invariants of G because they are independent of the choice of

the conformal metric on M.

The computation of the index and of the nullity of the Gauss map of the Costa surface
and of the Costa-Hoffman-Meeks surface of genus g = 2,...,37 appeared respectively in
the works [37] and [36] of S. Nayatani. The aim of this work is to extend his results to
the case where g > 38.

In [37] he studied the index and the nullity of the operator L associated to an arbitrary
holomorphic map G : ¥ — S?, where ¥ is a compact Riemann surface. He considered
a deformation G; : ¥ — S? t € (0,+00), with G; = G (see equation (1.2)) and gave
lower and upper bounds for the index of Gy, Ind(G;), and its nullity, Nul(G,), for ¢ near
to 0 and +oo and ¢ = 1. The computation of the index and the nullity in the case of the
Costa surface is based on the fact that the Gauss map of this surface is a deformation
for a particular value of ¢ of the map G defined by mo G = 1/¢/, that is its stereographic
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projection is equal to the inverse of the derivative of the Weierstrass p-function for an
unit square lattice. S. Nayatani computed Ind(G;) and Nul(G,) for ¢t € (0, +00), where G
is the map defined above. So the result concerning the Costa surface follows as a simple
consequence from that. He obtained that for this surface the index and the nullity are
equal respectively to 5 and 4.

In [36] S. Nayatani extended the last result treating the case of the Costa-Hoffman-Meeks
surface of genus g but only for 2 < g < 37. He obtained that the index is equal to 2g + 3
and the nullity is equal to 4. Here we will show that these results continue to hold also
for g > 38.

J. Pérez and A.Ros in [41] call a minimal surface non degenerate if the bounded Jacobi
functions about the surface are induced by the isometries of the ambient space. As con-
sequence of the works [36] and [37], the Costa-Hoffman-Meeks surface was known to be
non degenerate with respect to this definition, but only for 1 < g < 37.

The result of S. Nayatani about the nullity of the Gauss map of the Costa-Hoffman-Meeks
surface is essential for the construction due to L. Hauswirth and F. Pacard [11] of a family
of minimal surfaces with two limit ends asymptotic to half Riemann minimal surfaces and
of genus g with 1 < g < 37. Their construction is based on a gluing procedure which
involves the Costa-Hoffman-Meeks surface of genus ¢ and two half Riemann minimal sur-
faces. In particular the authors needed show the existence of a family of minimal surfaces
close to the Costa-Hoffman-Meeks surface, invariant under the action of the symmetry
with respect to the vertical plane x5 = 0, having one horizontal end asymptotic to the
plane x3 = 0 and having the upper and the lower end asymptotic (up to translation)
respectively to the upper and the lower end of the standard catenoid whose axis of revo-
lution is directed by the vector sinfe; + cosfes, 0 < 0y with 6, sufficiently small. That
was obtained by Schauder fixed point theorem and using the fact that the nullity of the
Gauss map of the surface is equal to 4. In [11] the authors refer to this last result as a
non degeneracy property of the Costa-Hoffman-Meeks surface. It is necessary to remark
that here the choice of working with symmetric deformations of the surface with respect
to the plane x5 = 0, has a key role. Because of the restriction on the value of the genus
which affects the result of S. Nayatani, it was not possible to prove the existence of this
family of minimal surfaces for higher values of the genus.

So one of the consequences of our work is the proof of the non degeneracy of the Costa-
Hoffman-Meeks surface for g > 1 in the sense of the definition given in [41] and also, only
in a symmetric setting, in [11]. So we can state that the family of examples constructed
by L. Hauswirth and F. Pacard exists for all the values of the genus.

The author wishes to thank S. Nayatani for having provided the background computations
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on which are based the results about the Costa-Hoffman-Meeks surfaces contained in [36].

1.2 Preliminaries

Let M be a complete oriented minimal surface in R3. The Jacobi operator of M is
L=-A+4+2K

where A is the Laplace-Beltrami operator and K is the Gauss curvature. Moreover we
suppose that M has finite total curvature. Then M is conformally equivalent to a compact
Riemann surface with finitely many punctures and the Gauss map G : M — S? extends
to the compactified surface holomorphically. So in the following we will pay attention to a
generic compact Riemann surface, denoted by ¥ and G : ¥ — S? a not constant holomor-
phic map, where S? is the unit sphere in R? endowed with the complex structure induced
by the stereographic projection from the north pole (denoted by 7). We fix a conformal
metric ds® on ¥ and consider the operator Lg = —A + |dG|?, acting on functions on 3.

We denote by N(G) the kernel of L. We define Nul(G), the nullity of GG, as the dimension
of N(G). Since L(G) = {a - G|a € R?} is a three dimensional subspace of N(G), then
Nul(G) > 3. We denote the index of G, that is the number of negative eigenvalues of L,
by Ind(G). The index and the nullity are invariants of the map G: they are independent
of the metric on the surface >. So we can consider on ¥ the metric induced by G from

S2.

N. Ejiri and M. Kotani in [5] and S. Montiel and A. Ros in [33| proved that a non linear
element of N(G) is expressed as the support function of a complete branched minimal
surface with planar ends whose extended Gauss map is G. In the following we will review
briefly some results contained in [33] used by S. Nayatani in [37].

We will use some definitions and concepts of algebraic geometry. They are recalled in
subsection 1.6.1.

Let v be the meromorphic function defined by m o G. Let p; and r; be respectively the
poles and the branch points of . We denote by P(G) = Y7 n;p;, S(G) = Yt myr;
respectively the polar and ramification divisor of 7. Here n;, m; denote, respectively, the
multiplicity of the pole p; and the multiplicity with which v takes its value at r;. We
define on the surface ¥ the divisor

D(G) = S(G) — 2P(G)

and introduce the vector space H(G) (see [33], theorem 4)
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H(G) = {W € H% (ks + D(GQ)) | Res,,w = 0,1 < i < u,

Re/(l — 7% i(14+7%),27)w =0, Va € Hl(E,Z)} )

where ky is a canonical divisor of ¥ and H;(X,Z) is the first group of homology of 3. Sup-
pose that the divisor D has an expression of the form ) n;v; — > myu;, with n;, m; € N.
An element of H%!(D) can be expressed as fdz, where f is a meromorphic function on ¥
with poles of order not bigger than n; at v; and zeroes of order not smaller than m; at u,.
Equivalently, if gdz, where g is a meromorphic function, is the differential form associated
with the divisor D, the product fg must be holomorphic.

For w € H(G), let X(w) : X\ {r1,...,7,} — R be the conformal immersion defined by

X()(p) = Re / 1= 20+, 2

Then X(w) - G, the support function of X(w), extends over the ramification points
1,...,7, smoothly and thus gives an element of N(G). Conversely, every element of
N(G) is obtained in this way. In fact the map

i HG) — N(@)/LG)
w - [X)-G] (L)

is an isomorphism. This result, used in association with the Weierstrass representation
formula, gives a description of the space N(G). To obtain the dimension of N(G) it is
sufficient to compute the dimension of H((G). Since the dimension of L(G) is equal to 3,
then Nul(G) = 3 + dim H(G).

We denote by A; a one parameter family (0 < ¢ < 4+00) of conformal diffeomorphisms of
the sphere S? defined by

ToAjor w=1tw, weCUI{oo}.

We define for 0 < ¢t < oo
Gt = At oG. (12)

S. Nayatani in [37] gave lower and upper bounds for the index and, applying the method
recalled above, for the nullity of Gy, t € (0, 00), a deformation of an arbitrary holomorphic
map G : ¥ — 5%, where ¥ is a compact Riemann surface. In the same work, choosing
appropriately the map G and the surface Y, he computed the index and the nullity for
the Gauss map of the Costa surface. In fact the extended Gauss map of this surface is a
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deformation of G for a particular value of . We describe briefly the principal steps to get
this result.

Firstly it is necessary to study the vector space H(G). A differential w € H%! (ks + D(G))
with null residue at the ramification points, is an element of H(G,) if and only if the pair
(tv,w) defines a branched minimal surface by the Weierstrass representation. If one
sets v = 1/’ then there exist only two values of ¢, denoted by ¢ < t”, for which the
condition above is verified and moreover dim H(G;) = 1. In other words, thanks to the
characterization of the non linear elements of N(G;) by the isomorphism described by
(1.7), if t = ¢, ¢", Nul(G;) = 4. As for the index, if t = ¢/,¢" then Ind(G;) = 5. Since Gy
is the extended Gauss map of the Costa surface, one can state:

Theorem 1.2.1. Let G be the extended Gauss map of the Costa surface. Then

Nul(G) =4, Ind(G)=>5.

The same author in [36] treated the more difficult case of the Costa-Hoffman-Meeks sur-
faces of genus 2 < g < 37 by a slightly different method. That is the subject of next
section.

1.3 The case of the Costa-Hoffman-Meeks surface of
genus smaller than 38

In this section we expose some of the background details at the base of section 3 of the
work [36]. S. Nayatani provided them to us in [38].

We denote by M, the Costa-Hoffman-Meeks surface of genus g. Let ¥, be the compact
Riemann surface

By ={(z,w) € (CU{o0})*|w™ = 27(z* — 1)} (1.3)

and let Qo = (0,0),P; = (1,0), P~ = (—1,0), Px = (00,00). It is known that M, =
Y, \{Ps, P_, Py}

The following result describes the properties of symmetry of M, and X,.
Lemma 1.3.1. ([1/]) Consider the conformal mappings of (CU {oc0})? :
K(z,w) = (Z,w) Mz,w) = (-2, pw), (1.4)

where p = enggl. The map k is of order 2 and X is of order 2g + 2. The group generated
by k and X is the dihedral group Doy 5. This group of conformal diffeomorphisms leaves
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M, invariant, fizes both )y and Py, and extend to ¥ . Also r fizes the points Py while \
interchanges them.

We set y(w) = w. Let G : ¥, — S? be the holomorphic map defined by
moG(z,w) =vy(w). (1.5)

We denote by 7;, i = 1,...,u, the ramification points of v and by R(G) the ramifica-
tion divisor > % ;. Theorem 5 of [33] shows that the space N(G)/L(G), that we have
introduced in previous section, is also isomorphic to a space of meromorphic quadratic
differentials. This alternative description of N(G)/L(G) that we present in the following,
was adopted by S. Nayatani in [36]. We start defining the vector spaces H(G) and H(G).

~

H(G) = {a € H*?(2ks + R(Q)) | Resri% =0,i=1,... ,u} , (1.6)

o

H(G) = {a e HG) | Re/(l —~%i(1 +72),27)@ =0,Va e Hl(Z,Z)} ,

where ks, is a canonical divisor of ¥. We remark that the elements of H%?(2ks + R(G))
are quadratic differentials (see subsection 1.6.1). Since hereafter we will work only with
quadratic differentials, we can set H°(-) = H%?(-) to simplify the notation. If we sup-
pose that the divisor 2ks, + R(G) has an expression of the form ) n;v; — > m,u;, with
nj,m; € N, an element of H°(2ks 4+ R(G)) can be expressed as f(dz)?, where f is a mero-
morphic function on X with poles of order not bigger than n; at v; and zeroes of order
not smaller than m; at u;. Equivalently, if g(dz)?, where g is a meromorphic function,
is the differential form associated with the divisor 2ky + R(G), the product fg must be
holomorphic.

For o € H(G), let X(0): X\ {r1,...,r,} — R? be the conformal immersion defined by

P ] o
X(@)p) = Re [ (1= %1497 20) 7
Then X (0)-G, the support function of X (o), extends over the ramification points ry, ..., 7,

smoothly and thus gives an element of N(G). Conversely, every element of N(G) is ob-
tained in this way. In fact the map

i H(G) — N(G)/L(G)

o —  [X(0)-G] (1.7)

is an isomorphism. So to obtain the dimension of N(G) it is sufficient to compute the
dimension of H(G). We recall that the dimension of L(G) is equal to 3, so Nul(G) =
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3+ dim H(G).

Since the extended Gauss map of the Costa-Hoffman-Meeks surfaces is a deformation in
the sense of the definition (1.2) of the map G, we need to study the space H(G). From
(1.6) and (1.2) it is clear that H(G) = H(G;) and

H(Gy) = {a € H(G,)] Re/(l — 292 i (1 4+ t292), 2t7)% =0,Va € Hl(Zg,Z)} .

Long computations ([38], see subsection 1.6.2 for some details) show that a basis of the
differentials of the form o/dvy, where ¢ € H(G) = H(G;), and whose residue at the
ramification points of y(w) = w is zero, is formed by

k—1
1 2 dz .
w,(f): Rl with k£=0,...,9—1,

— N2 kA2 k-1
w(2)2<(k )z —k ><i> %, with k£=0,...,9,

k (22 — A2)? w w
o _ (k=22 kA (ayEr e
wy = w22 — A7) <w> - with £=0,...,9—1,
where A = g%.

Now we put attention to the space H(G;). We recall that we are interested in the com-
putation of its dimension. By the definition of H(G;), a differential 0 € H(G;) belongs

to H(Gy) if and only if Voo € H (X, Z) the differential form w = 7 = 7 satisfies

[o=t [ 2w, (18)

Re/y(w)w =0. (1.9)

If these two conditions are satisfied then (-, w) are the Weierstrass data of a branched min-
imal surface. Of course, it is sufficient to impose that these equations are satisfied when
a varies between the elements of a basis of Hy(X,,Z). The convenient basis of Hy(¥,,7Z)
is constructed as follows. Let 3(s) = 1 +¢™2™ 0 < s < 1. Let 5(s) = (8(s),w(5(s))) be
a lift of 3 to ¥, such that, for example, 5(0) = (3,w(0)), with w(0) € R. As stated in
lemma 1.3.1 the group of conformal diffeomorphisms of >J; is isomorphic to the dihedral
group Dag.o. The collection {\ o B,l =0,...,29 — 1}, where X is the generator of Dy o
of order 2¢ + 2, is a basis of Hy(X,,Z) (see [14]).
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Now we must impose (1.8) and (1.9) for o« = A o 3, with [ = 0,...,2¢g — 1. To do that we
collapse (3 to the unit interval. In other terms we deform continously ( in such a way the
limit curve is the union of two line segments lying on the real line. We set

g—1

g—1 g
w = c,(:)w,il) + Z c,(f)w,(f) + Z c,(f)w,(f),
0 0 0

where c,(;) e C.

Taking into account these assumptions, it is possible to show that the equation (1.8), if
the genus ¢ is 2, is equivalent to the following system of four equations (see subsection
1.6.3)

fo=—1hg
fi=0
_ 1.10
p1 = —t*q (1.10)
p2 = —t*qo.
If g > 3 there are the following additional 2g — 4 equations to consider
fe = —t*qg—k+2
z 1.11
{ Py—ttr2 = —2hy, (1.11)

where k =2,...,9 — 1 and

fo= 7(9 +2)° B sin [ —L— K
2(g+1)° g+1 ’

W, @+2)(g+2+k) @\ . ((k+D7
_ ~ 7 | K =1.....g—1
fr = < o + 29 +1) ¢y’ | sin ] kK N ,




and

s) T (1 74)

_g+1r<1+2(
m m ’
F<1_2(g+1)>

1 m—1 m—1
g+1 F(5+2<g+1>>r<1_m)

- —m+2 1 m—1 ’
J r(3-se)

I,

Iin

Km = Jm+2,

m — 2

Lp=——""I. 5.
29 —m+4 "7

The equation (1.9) if the genus g is 2, is equivalent to the following system of two equations
(see subsection 1.6.3)
{ =0 (1.12)

ey = €.

If g > 3 there are the following additional ¢ — 2 equations to consider
di = €g—p42 (1.13)

where k =2,...,9— 1, and

k 2 k
dp = (c,(el)—wc@)) Sin(g m )[k, k=1,...,9—1,

2(g+1) " +1
(g+2)(g+2—k) @ . ((k—1D)x
= - k=0.2,....,q.
€k g+ 1) ¢, sin P Ik, 0,2,...,9

We are looking for the values of ¢ such that the previous systems have non trivial solutions
in terms of cz(»] . Only for these special values of ¢ it holds dim H(G;) > 0 or equivalently
NUI(Gt) > 3.

We start with the analysis of the system (1.10). This system admits non trivial solutions
if and only if ¢ takes three values denoted by t1,t5,t3. Obviously they are functions of g.

If we set s = gﬁ then we can write

Ky V1-8 [T(1-sT(1—
tl_\/J:o_ 2 I(1+s)I(1
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We recall that if g > 3 there are other equations to consider. They are

fk = _t26g—k—i_-2
Pyt = —t>hy,
dp = €g_p42

where &k = 2,...,g — 1. Thanks to the particular structure of the equations, it is possible
to study separately for each set of three equations the existence of solutions. Each set
of three equations admits non trivial solutions if and only if the following matrix has
determinant equal to zero

—Kp (9+2+k) Ky (9+2+ k)L
tQJk (g +2— k?)tZJk (g + 2 — k)[g—k+2
I, —kI, —kJ, ko

After the change of variable [ = g — k + 1 so that 2 < [ < g — 1, it is possible to show

that the determinant is
—(g + 2)(at* 4 bt* + ¢), (1.14)

with
a= (29 =1+ 3) gy 11Jg-111 Ll

b=—=2(g =1+ 1)Jip1Jg-141 K111
c= (U4 Dlgrir1lip1 Kgs1.

We are interested in finding the positive values of ¢ such that
at* + bt> + ¢ = 0. (1.15)

To simplify the notation we introduce the following three functions

_ (TG 3\ T-v)
o= (rd2g) g
L(1—$\T(1+0v)
[<”):(r(1+g)> T(1— )



L(v) = (F(1+ g))2 r(l—v) 1

ri-¥) f+v) I(v)

The discriminant b* — 4ac of the equation (1.15), seen like an equation of degree two in
the variable 2, is negative if and only if X = b?/4ac < 1. It is possible to show that

[2 [ I—1 [+1
X = F? I I . 1.16
2—1 (g+1) (g+1) (g+1) (1.16)

S. Nayatani showed that if 2 < ¢g < 37, then X < 1 and as consequence the equation
(1.15) has not any solution since its discriminant is negative. Then dim H(G;) > 0 only
for t = t1,t9,t3. Summarizing we can state (see [36] for other details):

Theorem 1.3.2. If2 < g <37 and t € (0,+0), then

4 Zf t= tl, t2
Nul(Gy) = 5 if t =13
3 elsewhere.

Since the extended Gauss map of the Costa-Hoffman-Meeks surfaces is exactly Gy,, it is
possible to state that the null space of the Jacobi operator of M, has dimension equal to
4 for 2 < g < 37.

Other values of ¢ for which Nul(G;) > 3 are admitted only if g > 38. In |36] S. Nayatani
conjectured these values were bigger than t3. The proof of the conjecture and its conse-
quences will be showed in sections 1.4 and 1.5.

1.4 The case g > 38

S.Nayatani proved that X is a decreasing function in the variables [,

[ [+1 [—1
.’L‘:—’ = ’Z:
g+1y g+1 g+1

with 2 <1 < g—1. We recall that we have set s = 94%1. We know that for [ = 2 and g = 37
the discriminant of the equation (1.15) is negative. For these values of [ and ¢ the variables
x,y, z, s are respectively equal t0 Zinae = 2Smaz, Ymaz = 3Smaz, Zmaz = Smaz = 1/38. Then
we will study the solutions of (1.15) for i € [0, iq.] (We call admissible values the values
in these intervals ) where i denotes z,y, z, s, because for bigger values of the variables the
discriminant continues to be negative and so the equation (1.15) does not admit solutions.
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All the solutions of (1.15), that we denote by t.(l, g), satisfy t2(l, g) = T} & Ty, with

l
T, = l_—lF(m)](z) (1.17)

and

T, — \/< ! ) P@re - o) (1.18)

-1 [—1
We will prove that, for all the values of [ and ¢, such that 0 < # < Tz = %, with
2< 1< g—1and g > 38, such that 75 is a real number, it holds
t5(s) <t2(l,9). (1.19)

We need study the behaviour of the functions F,I, L, F? I? that appear in (1.17) and
(1.18). This aim is pursued by the use of zero order series of these functions.

The Mac-Laurin series of the functions F(x), G(z), L(y), F*(z), I*(z) for admissible values
of x,y, z are

F(z) =14 Rp(diz)z, I(z) =1+ Ri(d2z)z, L(y) =1+ Rr(dsy)y. (1.20)
F?(x) =14 Rp2(c12)z, I*(2) =1+ Rp(com)z,
where ¢;,d; € (0,1). So we can write
F(.I')[(Z) =1+ RF[(LC,Z), F2<x)[2(2) =1+ RFQIQ(:UVZ)? L(y)](Z) =1+ RLI<y7 Z)v

with
Rpi(z,2) = Rp(dix)x + Ry(daz)z + Rp(dix)Ry(dyz)xz,
Rpep2(x,2) = Rpz(cix)x + Rp2(c22)z + Rpz(ciz) Rp2(c22)xz,

Rri(y, 2) = Ri(dsy)y + Ri(dyz)z + Ri(dez) Ri(dsy)zy.

In the following v(z) denotes the digamma function. It is related to ['(x), the gamma

function, by ;
U(e) = = (nT()).

For the properties of these special functions we will refer to [1].

The following proposition gives useful properties of the functions just introduced.

Proposition 1.4.1. If x € [0, Zyaz), 2 € [0, Zmaz), and y € [0, Ymaz|, the following asser-
tions hold:
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W(x) = Rp2(z) <0

W!(z) >0, so Rp2(x) is an increasing function

W (z) <0

W///

rxrxr

() >0
If we set Y(x) = x W (x), then Y] (z) <0

Y () >0

Y () <O0.

rxrxr

Proof.

1.

Rp(z) = Fl(z) = F(x)Vg(x), where

Up(r) = —(1 —2) — (1 +2) + (% - ;) + 9 (%%) .
We observe that

= 1 1 1
/] -9 @R[ Y ) (2K) 1 Qk‘
Since Up(0) = 2¢ (5) — 2¢(1) = —4In2, »¥(1) < 0 and @M (1) = (22! —
Dy (1) < 0, if k > 1 (see formulas 6.4.2 and 6.4.4 of [1]), we can conclude that
Up(z) < 0 and it is a decreasing function. Since F(z) > 0 then Rp(z) < 0 and
F(z) is a decreasing function.
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2. Ri(z) =1.(2) = 1(2)V;(z), where

() =1 =) + ol +2) = (1-5) v (1+3).

We observe that

vy =2} @Wﬂu) (1 _ %) 2,

k=1

Since 1)®*)(1) < 0 for k > 1 then ¥;(2) < 0 and it is a decreasing function. Since
I(z) > 0 then R;(z) <0.

3. Rp(y) = Ly(y) = L(y)VL(y), where W (y) = —¥;(y). Then ¥ (y) > 0 and it is an
increasing function. Since L(y) = 1/I(y) > 0, then R.(y) > 0.

4. The derivative of Rp is F” (z) = F(2)(V4(z)+ (V). (z)). Since ¥p(x) < 0 and it is

a decreasing function, W2 (x) > 0 and increasing. It holds U2 (x) > ¥%(0) = 161n>2.
(\IJ )/ (:E) -9 i ; Lw(2k) l o ¢(2k)(1) :L,Qk—l
e £ (2k — 1)1 \ 2% 2 '

1

All the coefficients of the series are negative (see the point 1) so (Vr)" (z) < 0 and it
is a decreasing function. In particular (Vr).(z) > (Vr),(Zmas) = —0.19- - . Since
F(z) > 0 and it is a decreasing function we can conclude that

Fglc/x<x) Z F<xmam)<‘y%‘(0) + (\I]F>;:($max)) =6.4---.

5. The derivative of Ry is I” (z) = I(2)(¥%(2) + (¥;).(2)). Since ¥;(2) < 0 and it
is a decreasing function (see the point 2), ¥%(z) > 0 and increasing. It holds
U2(2) < U2 (2p00) = 1.5+ - - 1075,

(W) =23 g (1o 1)
1 £ (2k — 1)! 92k '

1

All the coefficients of the series are negative so (V;)’(z) < 0 and it is a decreasing
function. In particular (V) (2) = (V7). (zmaz) = —0.095- - . Since I(z) > 0 and it
is a decreasing function we can conclude that

[;/z Z ](Zmaxx\p%(o) + (“Dl)lz(zmax» =—0.095---.
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6.

10.

11.

Since Rr < 0 and R; < 0, it holds that
Rpi(x,2) =2 Rp(dix)r + Ri(daz)z,

where d; € (0,1). The point 4 implies that Rr is an increasing function and we
have computed the positive minimum (that we denote by m) value of its derivative.
Thanks to the point 5 we have m > |n|, where n denotes the negative minimum
value of the derivative of R;. Now we observe that

Rp(diz)x + Ry(dyz)z = (Rp(0) + mx)x + (R;(0) + nz)z >

Rp(0)x 4+ R;(0)z 4+ (m +n)a* = Rp(0)z + R;(0)z = Cx.

To obtain this chain of inequalities we used the fact that m +n > 0 and = > z.
Then RF[ 2 Cx.

. We recall that Ry;(y,2) = L(y)I(z) — 1, L(t) = 1/I(t) and

l+1 -1
= > — =z
g+1 g+1
We want to prove that L(y)I(z) —1 > 0 or equivalently L(y) > 1/I(z). But thanks

to the point 3, we have

. Rp2(2) = (I?)'(2) = 2I%*(2)¥(z). From the proof of the point 2, ¥;(z) < 0 and it is

a decreasing function. Since 27/2(z) > 0, then also R;2(z) < 0.

W(z) = (F?),(z) = 2F?(2)¥x(z). In the point 1 we have observed that Up(z) is a
negative and decreasing function. Since 2F?(z) > 0, then also W (z) is a negative
function.

W!(z) = F? (49%(z) + 2(Vg),(z)) . Since Vr(z) < 0 and it is a decreasing function,
U2 (z) is a positive and increasing function. In the proof of the point 4 we observed
that (V). () < 0 and it is a decreasing function. Since 2(Vg), (Zy4.) = —0.38 - - -
and 4W%(r) > 4V%(0) = 641n*2 = 30.74 - - - , we can conclude that W/ (z) > 0.

The explicit expression of W/ is

Wi = %Fz(x) (1695 (2) + 240 p(2)(VF),(2) + A(VF)L,(2)) -

In the proof of the point 1 we observed that Vp(z) is a negative and decreasing
function. So 16W3(x) < 16W%(0) = —1024In*2 = —341.--- . Thanks to the proof
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12.

of the point 10 we know that (Vr),(z) < 0 and it is a decreasing function.

particular 0 > (Vp)! (z) 2 (Vp),(Tmaz) = —0.19--- . We can conclude that
24V p(2)(Ur) (2) < 24(VE) (Tmaz)VE(Tmae) = 12+ - .
As for the last summand, it is negative. In fact

\IJF " _ 22 Qk — 2 (21k¢(2k) (%) . w(%)(l)) .CEQk_Q.

=1

Since all the coefficients of the series are negative, we get
AU p)y, (1) < 4(Vp)7,(0) = —12¢(3) = —144---
where ((-) denotes the Riemann zeta function. We can conclude that
16U () + 24 p () (W), () + A(U5) L () <
< 16W%(0) + 24V (2100 ) (V) (Tnae) + 4(UE)7 (0) = —342.7 - - - .
That assures W/ < 0.

The explicit expression of W " is

W//l

Trx

1
= 1 F(2) (6495 + 19205 (Y p), +48((¥r),)*+

64V P (Vr)zy + 8(VF)opa) -

TTrx

We start observing that, since U is a negative decreasing function,

64V (7) > 6405 (0) = 64(41n2)* = 3782. -

Since (V) (z) is a not positive and decreasing function (point 10), then 192¥% (¥ )"

enjoys the same property. In particular

19202, (U p)! > 192U (2ae) (V) (Timae) = —282. - -

In

From the previous observations it follows that 64U (Up)” > 0, 48((¥x)")? > 0

and they are increasing functions.

As for the last summand which appears in the expression of W/

Txx?

W) =23 57 (e (3) - o) o

=1
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It is a not positive and decreasing function. So we can write

8(U)" (1) = 8(VUp)" (Tmas) = —19.9- - .

TrT TTT

We can conclude W

" (x) > 0. Furthermore from our observations it follows that

W;/;x(x> < (16\1/%(me1> + 24((‘11F>;:)2(xmax)

+16\I/F(xmam>(\I[F)gm(xmax)) < CW
with Oy = 1125.

13. It holds that Y/(x) = W(z) + « W.(x). From the points 9, 10 and 11 we know that
W (x) is a negative increasing function and W) (z) is positive and decreasing for
x € [0, Tyax)- So we can write W (z) < W (zmee) = —4.1--- and W/ (z) < W.(0) =
641n%2 = 30.7--- . Then Y/(2) < W(Zmaz) + TmaeW.(0) < 0.

14. Tt holds that Y/ (x) = 2W/(x) + x W/ (x). From the points 10, 11 and 12 we know
that W/ (z) is a positive decreasing function and W) (x) is negative and increasing.
So we can write W/ (2) > W/ (Zmaee) = 22.--- . and W (x) > W (0) = —641n° 4 —
6¢(3) = —177.--- . Then Y/(z) > 2W. (% maz) + TmaeW,.(0) > 0.

15. It holds that Y (z) = 3W/ (x) + W (x). From the points 11 and 12 we know
that W (x) is a negative increasing function and 0 < W/ (x) < Cy. Then

Y (2) < 3W! (Tmaz) + TmazCw < 0.

rxrxr

O

Proposition 1.4.2. For all the values of |, x,y, z for which Tx(l, z,y, z) is real, it holds

that

1+ CP?
T2(175C,3/72) < %7

where C = —41n 2.

Proof. The epression of T; is given by (1.18). We rewrite it in the following way

T, — %w?m D25 = (= DLW)I().

We start studying the case of Ty not zero. If 1 + R(z,v, 2,1) is the Mac-Laurin series of
the function under the square root then we can write

1

T2 = l——l\/l + R(xvyazvl)a

38



where R(x,y,2,1) = >(Rp2(c12)x(1 + Rp2(c22)2) + Rp2(c2)z) — (12 — 1)Rp(y, 2), and
c1,¢0 € (0,1). Thanks to the points 7,8,9 and 10 of proposition 1.4.1, we know that
Rrr(y,z) 2 0, Rp2(z) < 0 and that Rp2(x) is a negative increasing function, so Rg2(c1x) <
Rp2(x). We can conclude that, if we set

R(z,2,1) = PRp2(2)2(1 + Rp2(cp2)2),
R(z,y,2,1) < PRp2(c12)x(1 4 Rp2(cp2)2) < R(x, 2,1),

1
T = 1 —/1
= l—l\/ + R(z,y,2,1) < 1V + R(x,z,1).

1

then

We know that ,
fi(t)

where ¢ € (0, 1). If we apply this result to the function f(z) = R(z, z,(), we get

1+ f(z 1+ f(0

1+ R(x,z,1) 1 Ri(t, z,1)
T5 < = 1+ R(0,2,1) + -
2 I—1 z—1< (0,21 2 1+R(t,z,l)|t

where ¢ € (0,1). We observe that R(0, z,1) = 0. Then

1 (t, 2,1
2 g e 1 + Rt( & ) |t:c:(333 .
-1 2y/1+ R(t,z,1)

The proof will be completed after having proved the following result. O

Proposition 1.4.3. Under the same hypotheses of proposition 1.4.2
Ri(t, z,1) <cr
1+ R(t,z,1)

Y

where C'= —41n2.
Proof. We set H(z I2(1+ Rp2(co2)z) < 1? and Y (t) = Rp2(t)t. From the expression

) =
of R(t,z,1) = H(z,1)Y(t), it follows that R}(t,z,l) = H(z,1)Y;(t). Furthermore we can

write
Rit.2l) _ HEDY(

1+ R(t,z1) 21+ H( )Y (1)

We know from proposition 1.4.1 that Y () < 0 and Y}/ () < 0, then R}(¢, 2,1) = H(2,1)Y/(t) >

1Y}/ (t), and
1 1

> — .
L+t R(t,z0) 21+ PRY (1)
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We can conclude that
O RsD P
21+ R(t,2,1) _ 2/1+ BY (1)

We shall show that the function on the left side is increasing with respect to the variable
t. The derivative with respect to the variable ¢ of this function is

2 (¥)?
EYVITPY - Pt
2 1+ 12Y

D(t,1) = —

We want to study the sign of D(¢,1). We start observing that 1 +1?Y > 1+ R > 0. So it
is sufficient to prove that the quantity

B(t,1) =2V (1 + 1Y) = *(Y))?
is always not positive. It holds that
Y/ (t) = Rp2(t) + t(Rp2)i(t)

and

Yi(t) = 2(Rp2)y(t) + t(Rp2)g(t).
Then Y (0) = 0, Y/(0) = Rp2(0) = 2C and Y/ (0) = 2(Rp2);(0) = 8\IJF(0)2 = 8C2.
Furthermore we observe that [ > 2. So

E(0,1) = 16C* — 4I*°C* < 0

and the equality holds if [ = 2. The next step is to show that E;(¢,l) < 0. It is possible
to find the following relation

Ei(t,1) =Yy (1 +1°Y)

Observing that 1 +?Y > 0 and Y}/ < 0 (see the point 15 of proposition 1.4.1), we can
conclude that D(¢,1) > 0 (the equality holding if ¢ = 0). We have showed that

Y/ ()
2y/1+12Y ()
is a non decreasing function. It gets the minimum for ¢ = 0 and its value is —C1?. Then
Ri(t, 2,1)

- >
2/1+ R(t, z,1)

and the proof of proposition 1.4.3 is completed. O

—~CI?,
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To achieve the proof of proposition 1.4.2, we need to show that the statement contin-
ues to hold also for values of [, z,y, z for which 75 = 0. To get this aim it is sufficient to
observe that we can extend the result obtained under the hypothesis 75 > 0 for continuity.

As for the first summand which appears in the expression of t2, that is 7}, the following
result holds.

Proposition 1.4.4. For all the admissible values of x, z, it holds that

l
-1
where C = —41n 2.

Proof. We recall that

T, = L P@)I() = 7o (1 + Bir(a, 7))

Thanks to the point 6 of proposition 1.4.1 we have Rp;(z,z) > Cz. Then the result is
immediate. 0
The following result gives the estimate of 2.

Proposition 1.4.5. For all the values of x,y, z for which t* € R, it holds
t2 > 1— Clz,

where C' = —41n 2.

We recall that t> = Ty — Ty. Thanks to propositions 1.4.2 and 1.4.4 we get

2 > %(1 + Cx) + %(—1 —Cl’z) =

Cl Cl? —Cl
1+(l__l_l_1>x_1+(l_—l(l—1)>a:—1—0lx.

L
38"

Now we turn our attention to the function ¢3. We recall that s,,,., =

Proposition 1.4.6. For s € [0, $,n4.]

7
t3(s) <1+ 35
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Proof. We recall that

Vo 4 L(1+9)\ T(1=25) (T(3/2—5/2)\’
ty(s) =T(s) = e (r(1—s)> I'(1+ 2s) (F(1/2+5/2)> '

It holds that

where

B(s) =2+ (1 —s)(—2¢(1 —2s) — 2¢0(1 4 2s) + 3¢(1 — s5) + 3(1 + s)—

3 s 1 s
~(3-3) -0 (3+3)),
To complete the proof we need the following result.

Proposition 1.4.7. If s € [0, Syuaz] then 1 < B(s) < 3.

Proof. We observe that for s € [0, $,0.]
3 s 3 3 1 s 1
22 °) —o. 2o 42 _ - 9.
0<w(2 2)<¢(2> 0.036 , 2< ¢<2+2>< ¢<2><
We can conclude that
1 s 3 s
Y=+ )—w(2-2) <2
1< ¢<2+2) @Z)(2 2)<

(2k)
Yl —s)+Y(l+s)=2 Z I/J(ng[l)s%’

Furthermore

from which it follows that

D(s) = =2¢(1 —2s) —2¢p(1 +2s) + 3(1 —s) + 3YP(1 +s) =2 Z ¢(2k)(1)82k<3 gy,

(2k)!

k>0
If k > 1 then 3 — 22%*! < 0 and ¥ (1) < 0 (see formula 6.4.2 of [1]) then

26(1) = —2ypar = D(0) < D(s) < Dlsas) = —1.146- -,
where ygy = 0.577- - - is the Euler-Mascheroni constant. So

1 <B(s) <2+ (1 —=5)(24 D(Smaz)) <4+ D(Smaz) < 3.
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Since B(s) > 0 then T'(s) is an increasing function and we can deduce that
1 3
< —

11— Smazx

T'(s) = T (Smaz) < 7/2.
The Mac-Laurin series of order zero of T'(s) is 1 4+ T.(cs)s, where ¢ € (0,1). So it is
immediate to conclude that

7
T(s)<1+§s.

O]
The following proposition shows that the eventual solutions ¢, (l,g) > t_(l,g) of the
equation (1.15) are always bigger than 3.

Proposition 1.4.8. tg(gl?) <t_(l,g) forg=1and2 <1< g—1 suchthatt_(l,g9) € R.

Proof. From our observations, it is sufficient to show that ¢3(s) < #*(l,g) holds for
g = 38. Propositions 1.4.5 and 1.4.6 assure that

t2 > 1— Clz,

7
ta(s) <1+ 35

We recall that + = [ls and 2 <[ < g — 1. Then the result is obvious. O

1.5 The index and the nullity of the Costa-Hoffman-
Meeks surfaces

We start recalling some results described in previous sections. We denoted by Gy, t €
(0, +00), a deformation of the map G defined by (1.5). Thanks to theorem 1.3.2 Nul(G;) >
3 only if ¢ assumes special values. If 2 < g < 37 these values are tq, o, t3. If g > 38 there
are additional values. They are the positive solutions of the equation (1.15). We denoted
them by t.(l,g), where 2 < [ < g — 1, and for definition ¢y > ¢_. In previous section
we have proved that the inequality t3(s) < ¢_(I,¢) holds. S. Nayatani showed in [36]
that t3 > t, for ¢ > 2. We can conclude that no one of the t; can be equal to t5. As
consequence Nul(Gy,) continues to be equal to 4 also for g > 38, because dim H(Gy,) is
equal to 1 for all g > 2.

We recall that M, denotes the Costa-Hoffman-Meeks surface of genus g. Since the ex-
tended Gauss map of M, is exactly Gy,, and taking into account the result of S. Nayatani
about the Costa surface (theorem 1.2.1) showed in [37] we have proved the following
result.
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Theorem 1.5.1. The null space of the Jacobi operator of M, has dimension equal to 4
forall g > 1.

Using the definition of non degeneracy given in [41], we can also rephrase this result giving
the following statement.

Corollary 1.5.2. The surface M, is non degenerate for all g > 1.

Now we turn our attention to the results relative to the index of the map G;. We recall that
¥, denotes the compactification of M. S. Nayatani proved in [36] the following result.

Theorem 1.5.3. Let G : &, — S? be the holomorphic map defined by (1.5). If2 < g < 37,

then
29+3 ift<t1,t2<t<t3,t>t3,

Ind(Gt) = 20+4 if t1 <t <ty

For t = t1,t,,t3 we have Nul(G;) > 3, that is the kernel of L, contains at least one non
linear element. The eigenvalue associated to this function is zero. The proof of theorem
1.5.3 is based on the analysis of the behaviour of these null eigenvalues under a variation
of the value of t. Let’s suppose that ¢ # t,t9,t3 but remaining in a neighbourhood of
one of these values. For example we choose ¢;. Then the eigenvalue F that before the
variation was associated to a non linear element of N(Gy,), is not more equal to zero.
To compute the index, it was necessary to understand which is the sign assumed by F,
respectively for ¢t > ¢; and ¢ < t;. Similar considerations are applicable to the eigenvalues
associated with 5 and 3. See [36] for the details.

If g > 38, we have just proved that the other values for which Nul(G;) > 3 are bigger than
t3. The presence of these additional values ¢+ does not influence the value of Ind(G;) if
t < t3. In other terms theorem 1.5.3 continues to hold for g > 38 if we consider 0 < ¢ < #5.
Taking into account also the result of S. Nayatani about the Costa surface (g = 1) showed
in [37], we can give the following statement

Theorem 1.5.4. For all g > 1 the index of the Gauss map of M, is equal to 2g + 3.

1.6 Appendix

This section contains some additional details of the computations made by S. Nayatani.

1.6.1 Divisors and Riemann-Roch theorem

Here we introduce some definitions and concepts of the algebraic geometry. See for ex-
ample [4].
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Let X, be a compact Riemann surface of genus g. A divisor on ¥, is a finite formal sum
of integer multiples of points of X,

D = Z nyx, ng € Z,n, =0 for almost all =x.

The set of the divisors on 3, is denoted by Div(X,). The degree of a divisor is the integer
deg(D) = > n,.

Let C(X,) be the field of the meromorphic functions on 3, and let C(X,)* be its multi-
plicative group of nonzero elements. Every f € C(X,)* has a divisor

div(f) = > v(f)z,

where v, (f) denotes the order of f at z.

Let w be a nonzero meromorphic differential n-form on ;. Then w has a local represen-
tation w, = f,(z)(dz)"™ about each point = of X, where z is the local coordinate about =
and f,(z) € C(X,)*. So we can define in a natural way v,(w) = vy(f,) and also associate
a divisor with a differential form:

div(w) = Z Ve(w)a.

A canonical divisor on ¥, is a divisor of the form div(w) where w is a nonzero meromor-
phic differential form.

Let D € div(X,). We denote by H*™(D) the vector space of the meromorphic differential
n-forms w such that
div(w) + D > 0.

In other terms, if D = div(n), with n differential form with local representation 7, =
g:(2)(dz)™, then the elements of H%"(D) are the differential forms w having a local rep-
resentation w, = f,(2)(dz)" with f, € C(X,) vanishing to high enough order to make the
product f - g holomorphic. We set dim H%"(D) = ((D).

We are ready to state the following result.

Theorem 1.6.1 (Riemann-Roch). Let ¥, be a compact Riemann surface of genus g.
Let ks, be a canonical divisor on . Then for any divisor D € Div(%,),

(D) = deg(D) — g+ 1+ l(ks, — D).

The next result gives information about the canonical divisor and a simpler version of
Riemann-Roch theorem for divisors of large enough order.
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Corollary 1.6.2. Let ¥y, g, D, ks, as above.
e deg(ks,) =29 — 2,

o Ifdeg(D) > 2g — 2 then l(ks, — D) = 0. Equivalently (D) = deg(D) — g + 1.

1.6.2 The determination of a basis of differential forms with null
residue at the ramification points

The ramification points (or branch points) of v(w) = w are the zeroes of

dz  g+1 w9 g+1 (z9(22 - 1))9%

dw  g+2297 122 - A%)  g+2 2971(22 - A?)
17

with A =,/ g%, where g denotes the genus, the pole of v and the origin of C2. That is Qo =

(0,0), Py = (00,0), P, = (A, By,) and S, = (—A,C,,) for m =0, ...,g, where B,,,C,,
denote, respectively, the m-th complex value of /A9(A2 —1) and “R/(—A)9(A2 —1).
We have set PL = (£1,0). We recall that

A~

H(G) = {a € H'(2ks, + R(G))| Resri% —0,i=1,... ,u} , (1.21)

where ky, is a canonical divisor of ¥, and R(G) = Y }'r; is the ramification divisor of
G. In our case it is given by R(G) = Qo + P + Y7 _o(Pn + Sy). Furthermore it holds
H(G) = H(Gy).

As for the canonical divisor ks, , we consider ky, = (9 — 1)P; + (9 — 1)P-. We observe
that deg(ks,) = 29 — 2 like stated by corollary 1.6.2.

To study the space H (G¢) we need understand which are the elements of the space
H°(2ks,+R(G)). Taking into account the definitions of ks, and R(G), then 2ky, +R(G) =
29— 1P +2(g—1)P-+ Qo+ P+ >0 _yPn+>7 _,Sm. Between the quadratic dif-
ferentials o that are in H%(2ks, + R(G)), we consider ones having one of the following
forms:

st (B 2 (1.22)
w Y
-1 dz\?
kol -
sz:l:A(w) . (1.23)

In fact from the definition of HY, it follows that the quadratic differentials to consider can
have a pole of order 0 (differentials of type (1.22)) or of order 1 (differentials of type (1.23))
at P, and S,, for k = 0,...,g. We will determine separately which are the differential
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forms of type (1.22) and (1.23) belonging to H°(2ks, + R(G)). To select the differential
forms of type (1.23) it is convenient to introduce an auxiliar divisor.

D=Qo+ (g+2)Px+2(g—1)Py +2(g —1)P_.

Actually to determine the differential forms of type (1.23) which belong to H°(2ky, +
R(@)) is equivalent to look for the differential forms of type (1.22) which are in H°(D).
We observe that the elements of the vector space H°(D) after the multiplication by the
factor z + A are elements of H°(2ks, + R(G)). It is necessary to remark that to obtain a
basis of H(2ks,+R(G)), we will not take into account the differentials of H%(2ks, +R(G))
that can be constructed from an element of H°(D) as described above. Otherwise the
number of the founded differential forms would exceed the dimension of H°(2ks, + R(G)),
that we can compute as follows. We observe that deg(2ky,, + R(G)) = 6g. Then thanks to
corollary of Riemann-Roch theorem 1.6.2 we conclude that dim H°(2ks, + R(G)) = 5g+1.
So the basis we are looking for counts 5g+ 1 elements. From the observations made above
we can deduce that among the forms of type (1.22), we will consider ones which satisfy
the following conditions

k(g+1)+jg = -1,

j=—2(g-1),

—k(g+1)—j(g+2) > -1

These relations assure that a differential form w of type z*w? (d_2)2, satisfies div(w) +

w

2ks,, + R(G) = 0. These differentials can be classified in three families. Each family is
characterized by particular values of [ and k. That is

1. j=—g+1,...,0,1 and £k = —,
2. 7=2—-2¢g,...,—g and k = —},
3.7=2—-2¢9,...,—gand k= —75 — 1.

As for the forms of type (1.23) we shall consider only the ones which satisfy

k(g+1)+jg > —1,
—k(g+1)—jlg+2)>—(9+2).

These relations assure that a differential form of type z*w’ Zi#A (%)2 , satisfies div(w)+D >
0. We obtain that j = —¢g+1,...,0,1 and k = —j + 1.

Since we are looking for a basis of a vector space we can replace each couple of differentials
! (dz)2 ! ("ZZ)2 by an appropriate linear combination. We observe that

2—A \w ' 24 A \w
1 4 1 _ 771:_22;42
z—A z+A

M2 = 2 _42-
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So in the following we will work with the forms fn, (%)2 and fn (%)2 , where f = 2w’
as described above.

The 5¢g + 1 quadratic differentials we have found forms a basis of H(G,). The last step
is to divide each elements of this basis by dw. After simple algebraic manipulations, we
obtain the following 5g + 1 differential 1-forms:

Zﬁ’—fl(zz,fl#)g for k=-1,0,...,9—1,

wk 2

z_kk(zﬁlﬁ for k:_laoa"'ag_lv

;;’Tﬁ for k=-1,0,...,9—1, (1.24)
#ﬁ for kzl,...,g—l,

2k-1 dz

for k=1,...,9—1.

wFTT (22— A2)

Now it is necessary to select the 1-forms having residue equal to zero at the points Qy, P,
and S, with m = 0,...,g. Thanks to the properties of symmetry of the surface it is suffi-
cient to verify the null residue condition at the points Qq, P, = (A, eott IS AI(A% —1)).
In fact from the coordinates of the points P,, and S,,, we can deduce that for each
Q €{Pn,Sm,k=0,...,g} there exists n € {0,...,2g + 1} such that Q@ = \"(P;), where
A is the conformal diffeomorphism described in lemma 1.3.1. So we can state that the
residue of an arbitrary form w at the point @) is related to the residue at P; by

Resgw = Resp, (A" 1) w.

Applying this result to the differential forms of the list (1.24) and using the the definition
(1.4) of A, it is easy to obtain that Resqw is equal to Respw times a power of £p. So if
Resp,w = 0 then Resqw = 0.

Thanks to algebraic manipulations inspired by the simpler cases where g = 2, 3, it is pos-
sible to find 3¢ linear independent differential forms satisfying the null residue condition.
They constitute the wanted basis.

wy' =——— for k=1,...,9—-1,

k—1 2 2
(2)_2 ((k—2)z —/{A) .
wy = Wk (22— A2 dz for k=0,...,g,
(3) Zk_l((k’ — 2)22 — /{ZAQ)
- wk+1(22 _ A2)2

dz for k=0,...,9—1.
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1.6.3 The equations equivalent to the condition of existence of a
branched minimal surface.

Let w; and w, two meromorphic differential forms on ¥ ;. We write w; ~ w; if there exists
a meromorphic function f on ¥, such that wy, = w; + df. It is possible to prove that:

w® k(g +2) 2
b 2@+1)w

Lo (g2 (gt+k+2) T
‘ 2(9+1)  wht
Using these relations we get:

E+1 2)k k
/w;(gl):—%sinuf(ka /w;(f):—(g—'— ) 2isin — I,
5 g+1 3 2(g—|—1) g+1

)

k=0,....,9,

dz for k=0,...,9g—1.

2 2—k k+1
/w;(:’):(ng )9+ ) o i FF "K,.
5 2(g+1) g+1
(M @ _ 9+2)(g+2-Fk) (k— Dm
Yw, ' = 2isin Iy, /fy = 2181 Jk,
/ﬁ k g 3 k 2(g+1) g+1
2)k k
/’y ,(;’) _(g—I— ) 24 sin T I,
5 2(g+1) g+1
M (k— Dm 2 @ _ (9+2)2g+4-F) (k —2)m
Y w, ' = 2isin Sk, Ywy = 21 Ly,
/ﬂ k g+1 5 k 2(g+1) g+1
2 2—k k—1
/72 ® _ (g+2)(g+ ) gisin FZ LT 5
3 2(g+1) +1
We recall that we must impose that w = g_l c,(:)w,(ﬁl) +>0 c,(f)wk +> 0 ck wk , where
c,(;) € C, satisfies
/w = tQ/ 72 (w)w, Re/’y(w)w =0
fora = Mofforl =0,...,2g—1. Now it is convient to introduce some additional notation.
Let »
_ | Re O
L= { 0 1 } (1.25)

where Ry is the rotation in the plane by 6 = g7 /(g + 1).
If we denote ®(w) = (1 —~2,i(1 ++?), 2v)w, then it is possible to prove

/ L) = /ﬁ N'b(w).
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Since we want to apply this last relation to the differential form w, it is convenient to

remark that:
NO(wy) = (=1)Fp FL(w("),

N D) = (—=1)kp 1 LD(w),
No(w) = (~1)Fp Lo (W),

where p = ¢'7%7. Then the equations
Re/ (1 -2 i(1 +?*4y*)w =0, for 1=0,...,29— 1,
/\ZOB

are equivalent to:

fm[i« 1 ’f}wa{ ’f-“}p]
mm[z« e S (- k-mqk]

k=0,k#1 k=0,k£2

> =D "“}f+Z{ '“'“}p]
z_: {05 Y+ Y {(—1)’“0‘(’“‘”}lqk],

k=0,k#1 k=0,k£2

—t’Re

[ =0,...,29—1. These last equations can be arranged as in the systems (1.10) and (1.11).
The equations

Re/ 2tyw =0, for [ =0,...,29g—1,
)xloB

are equivalent to:

I [i«—l)kp'f}ldk + Y {<—1>’fp<“>}lek] -0,

k=0,k#1

[ =0,...,29—1. These last equations can be arranged as in the systems (1.12) and (1.13).
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Chapter 2

A Costa-Hoffman-Meeks type surface
in H? x R

2.1 Introduction

In the last years the study of the minimal surfaces in the product spaces M x R with
M = H? S? has been becoming more and more active. The development of the theory
of the minimal surfaces in these spaces started with [44] by H. Rosenberg and continued
with [33] and [32] by W. H. Meeks and H. Rosenberg. In [39] B. Nelli and H. Rosenberg
showed the existence in H? x R of a rich family of examples including helicoids, catenoids
and, solving Plateau problems, of higher topological type examples inspired by the theory
of minimal surfaces in R3. In [10] L. Hauswirth constructed and classified the minimal
surfaces foliated by horizontal constant curvature curves in M x R, where M is H?, R?
or S%. Other examples of minimal surfaces of genus 0 in these product manifolds are de-
scribed by R. Sa Earp and E. Toubiana in [46].

C. Costa in [2, 3] and D. Hoffman and W.H. Meeks in [14], [15] and [16] described in
R3 a minimal surface of genus k > 1, finite total curvature with two ends asymptotic to
the two ends of a catenoid and a middle end asymptotic to a plane. We shall denote the
Costa-Hoffman-Meeks surface of genus £ > 1 by M.

The aim of this work is to show the existence in the space H? x R of a family of surfaces
inspired to M. We shall prove the following result

Theorem 2.1.1. For all k > 1 there exists in H> x R a minimal surface of genus k,
finite total extrinsic curvature with three horizontal ends: two catenoidal type ends and a
middle planar end.

We shall observe that it is more convenient to construct a minimal surface enjoying
the same properties mentioned in the statement of theorem in the riemannian mani-
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fold (D? x R, gnyp) Where g,y = —22%2 1 422 Tt is usually denoted by M2(—4) x R,

(1 —23)>

dr?—l—dz%
equals —4. We observe that H? = M?(—1). Once constructed this surface it is easy to
obtain by a diffecomorphism the wanted minimal surface in H? x R.

to point out that the sectional curvature of D? x {0} endowed with the metric

The main result is proved by a gluing procedure (see for example [11]|) usually adopted
to construct in R3 new examples starting from known minimal surfaces. We consider a
scaled version of a compact part of a Costa-Hoffman-Meeks type surface, such that it can
be contained in a cylindrical neighbourhood of {0,0} x R C M?(—4) x R of sufficiently
small radius. Actually it’s possible to prove that, in the same set, the mean curvature of
such a surface with respect the metric gy,,, up to an infinitesimal term, equals the eu-
clidean one. We glue the surface described above along its three boundary curves to two
minimal graphs that are respectively asymptotic to an upper half catenoid and a lower
half catenoid defined in M?(—4) x R and to a minimal graph about M?(—4) x {0} which
goes to zero in a neighbourhood of d,,M?(—4) x {0}. The existence of these surfaces is
proven in sections 2.5 and 2.7.

2.2 Preliminaries

In this work we shall consider the unit disk model for H?. Let (1, x2) denote the coordi-
nates in the unit disk D? and z3 the coordinate in R. Then the space D? x R is endowed

with the metric
_ A(dx? + da3)
JH2 xR (1— 2% — xg)g
As mentioned in the introduction, one of the surfaces involved in the gluing procedure is a
compact part of a scaled version of the Costa-Hoffman-Meeks surface. That is a minimal
surface in R?® endowed with the euclidean metric go. To simplify as much as possible the
proof of main theorem, it is convenient to consider a riemannian manifold endowed with

a metric more similar to gy than the standard metric of H? x R. The best choice is

+ dx3.

dx? + dx’ 9
Ih = (T 12— 122 + dus,

because gny, — go if (21, 22) — (0,0). This is the reason which induces us to give a proof
of theorem 2.1.1 working in the riemannian manifold M?(—4) x R. Now we suppose having
shown the existence of a minimal surface in this riemannian manifold. We need to show
how it is possible to obtain a minimal surface in H? x R. Let g be the metric defined on
D? x R by , ,

4(dxy + dx2)2 + 4dad.

9=49mp = =5 53
R )
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We consider the map f: (D? X R, gg2yr) — (D? x R, g) defined by

T
(x17'/1“27'r3) - ('/L‘thJ 5) . (2]‘)

It is easy to see that it is an isometric embedding. That is the pull-back of the metric g
by f equals gy2,g. So if ¥ is a minimal surface in (D? X R, g), then the image of ¥ by f~!
is a minimal surface in H? x R.

Now we turn our attention to the riemannian manifold M?(—4) x R, mentioned in the
introduction. In the following we shall adopt the simplified notation M? x R. We recall
that the metric g has been defined as 4gp,,, being gp,, the metric of M? x R. As conse-
quence the mean curvature of a surface ¥ in M? x R equals the mean curvature of ¥ in
(D? x R, g) multiplied by 4. So if a surface is minimal in M? x R, also it is minimal with
respect to the metric g.

We can conclude that if ¥ is a minimal surface in M? x R, then f~!(3) is a minimal
surface in H? x R.

Remark 2.2.1. To prove theorem 2.1.1 we shall need consider spaces of functions invari-
ant under the actions of the isometries of R® which let invariant the Costa-Hoffman-Meeks
surface (the rotation about the vertical coordinate axis xs, the reflection with respect the
horizontal plane x3 = 0 and the vetical plane x5 = 0). These are isometries of M*> x R as
well. So we will continue using the same language as we are in R3.

2.3 Minimal graphs in M? x R

We denote by H, the mean curvature of the graph of the function u over a domain in D?.

Its expression is
2H, = Fdiv (L> , (2.2)

1+ F|Vu|?

where F = (1 — 22 — 22)* = (1 — r?)” and div denotes the divergence in R2. For the de-
tails of the computation see subsection 2.12.3.

Let >, be the graph of the function u. In this section we want to obtain the expression of
the mean curvature of the surface >, that is the graph of the function v over ¥, and
close to it. We shall show how it follows from (2.2) that the linearized mean curvature,
that we denote with L,, is given locally by:

L,v := Fdiv ( (2.3)

Vo _ rvu Vu - Vo
1+ F|Vul? VA FVu2)? |
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Furthermore we shall give the expression of H,,,, the mean curvature of the graph of
the function u + v, in terms of the mean curvature of 3, that is H,. In the following we
shall restrict our attention to two cases: the plane (in section 2.5), that is v = 0, and
(in section 2.7) a part of catenoid defined on the domain {(r,6) € M?|r € [r., 1]}, where
re =¢/2.

Here we shall show that:
2H, 1y = 2H, + L,v + FQ,(VFVvu,VFV*), (2.4)
where (), has bounded coefficients if € [r., 1] which satisfies
Q.(0,0) = VQ,(0,0) =0.

To show this, we start observing that:

1 B 1 _ Vu - Vo
V1I+FEVu+0)2 1+ F|Vu]? (1+ F|Vu?)3

+ le(U). (25)

(QQu,1(v) has the following expression

—F|Vu|? 3F2 (Vu - Vo + 1| Vo]2)?

A+ FV Gt )2 (1% FIV(at )| 20

with ¢ € (0,1), and it satisfies Q,.1(0) = VQ,.1(0) = 0. To prove (2.5) it’s sufficient to set

1
1+ FV(u+ to)]?

f(@)

and to write down the Taylor’s series of order one of this function and to evaluate it
in t = 1. That is f(1) = f(0) + f'(0) + 1f”(f), with ¢ € (0,1). We insert (2.5) in the
expression that defines 2H,,,, to get

Fdiv ( Vit ) FV( Vu Vv u + U)Qu,l(v)) =

Y FV(u+u +V
V 1+ F|Vu|? )\/(1 + F|Vul|?)3 (

Vi vy ) + FQ.(VFVu, VEV).

Vv poa
VIt VP VL + FIVaP)y

Since we assume that X, is a minimal surface, we shall consider H, = 0.

2H, + Fdiv (
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Remark 2.3.1. The minimal surfaces in the families we shall construct in sections 2.5
and 2.7, have finite total extrinsic curvature. These minimal surfaces are graphs about the
domain {(r,0) € M?|r € [r., 1]} of functions of class C*“. The total extrinsic curvature
of the graph S of a function u defined on M2, is the integral of the extrinsic curvature,

that s T
/ KopdA / Haa, (2.7)
S S I

where I, I1 denote the determinants of the first and of the second differential form. It
hold that II = biibyy — b3y, I = g11g22 — g3y, dA = /1. For the expressions of the
coefficients of the first and of the second differential form see subsection 2.12.3. Once
their expressions replaced in (2.7) it is clear that, taking into account that u is a C** class
function, fs KendA is bounded. This observation allows us to state that this property
holds also for the surface obtained by a gluing procedure in section 2.11. In fact the total
extrinsic curvature of this last surface equals the sum of the total extrinsic curvature of the
surfaces glued together: that is a compact piece of a Costa-Hoffman-Meeks type surface and
three minimal graphs about the domain described above. Because of the compactness, the
contribution to the total curvature of the piece of the Costa-Hoffman-Meeks type example
15 bounded. Then the result follows immediately, taking into account the observation made
above concerning the graph of C*>< class functions about M?2.

2.4 The mapping properties of the Laplace operator

Now we restrict our attention to the case of the minimal surfaces close to M? x {0},
that is the graph of the function v = 0. In this case we obtain immediately from (2.3)
that L,—q = F'Ag, where Ay denotes the Laplacian in the flat metric g, of the unit disk D?.

In this section we shall study the mapping properties of Ag. In the following we shall
use the polar coordinates (r,#). In particular our aim is to solve in an unique way the
problem:

{ Apw=f in S x [rg, 1]

Wr=ry = ¢

with r¢ € (0, 1), considering a convenient normed functions space for w, f and ¢, so that
the norm of w is bounded by the one of f.

Now we shall define the space of functions we shall work with.

Definition 2.4.1. Given { € N, a € (0,1), and the closed interval I C [0, 1], we define

cte (St x 1)
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to be the space of functions w = w(6,r) in Co*(S* x I) for which the norm

loc
||U)Hc€»a(51 xI)

1s finite and which are invariant with respect to symmetry with respect to the xo = 0 plane,
with respect to the rotation of an angle k]:l about the vertical x3 axis, with respect to the
composition of a rotation of angle 75 about the r3-azis and the symmetry with respect to
the x3 = 0 plane.

We recall that one of the surfaces involved in the gluing procedure we shall follow to prove
the main theorem, is a surface derived by the Costa-Hoffman-Meeks surface. This surface,
as explained in subsection 2.9.1 enjoys many properties of symmetry that we want to be
inherited by the surface obtained by the gluing procedure. This is the reason for which
we have chosen the function space described above.

Proposition 2.4.2. Given ry € (0,1), there ezists an operator

G, CO%(SY % [ro,1]) — C%*(S* x [ro,1])
f = w = GTO(f)

satisfying the following statements

(i) Now = f on S* X [rg, 1],
(ii) w =10 on S' x {ro} and S* x {1},

(i) ||wl|c2.0(51x[ro)) < || f]lcoe(sixfro), for some constant ¢ > 0 which does not depend
on ro.

The proof of this result is contained in subsection 2.12.2.

2.5 A family of minimal surfaces close to M? x {0}

In this section we shall show the existence of minimal graphs over D?* — B,_, having
prescribed boundary and which are asymptotic to it. We recall that r. = ¢/2. We shall
reformulate the problem to use Schauder fixed point theorem. We know already that the
graph of a function v, denoted with ¥, is minimal, if and only if the function v is a

solution of
F (80v+ Qo (VEVY, VFV?) ) =0, (2.8)

This equation is a simplified version (since u = 0) of (2.4). The operator ¢y has bounded
coeflicients for r € [r., 1]. Its expression is div (Vv () 1) where @), ; is given by (2.6).
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Now let’s consider a function ¢ € C*>*(S') which is even with respect to 6, collinear to
cos(j(k + 1)0), (for £ > 1 fixed) with j > 1 and odd and such that

[@lle2a < K. (2.9)

We define
w‘P(': ) = HTe,w('a ')7

where ‘H is the operator of harmonic extension introduced in proposition 2.12.1. The
particular choice of ¢ assures that its harmonic extension belongs to the functional space
of definition 2.4.1.
In order to solve the equation (2.8), we look for v of the form v = w, + w where w €
C>*(S* x [r.,1]) and v = ¢ on S' x {r.}. Using proposition 2.4.2, we can rephrase this

problem as a fixed point problem
w = S(p,w) (2.10)

where the nonlinear mapping S which depends on ¢ and ¢ is defined by

S(g‘)? w) = _GTs (QU (w@ + w)) )

where the operator G is defined in proposition 2.4.2. To prove the existence of a fixed
point for (2.10) we need the following result that states that S is a contraction mapping:

Lemma 2.5.1. There exist some constants ¢, > 0 and ¢, > 0, such that
150, 0)lleza < ce? (2.11)

and, for all € € (0,¢,)
1
|S(,v2) = S(p,v1)llc2a < §||U2 — v1lcza

1S (2, v) = S(p1,0) [z < €2 02 = prllezasn)
for all vi,vy € C**(S' x [r.,1]) such that ||vi]lcze < 2c.e* and for all boundary data
©, 1,02 € C2(S1) satisfying (2.9).

Proof. We know from proposition 2.4.2 that |G, (f)|c2« < ¢|f]|co., then

15(, 0)lle2e < €| Qo (wy) [lco-e,

because w,, is an harmonic function.
To find an estimate of the norm above we recall that |¢||2,. < ke? and thanks to propo-
sition 2.12.1 we obtain

lwollezo < clliplleze < exe™
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Then

ba S llplZaage < et

1Qo0 (wy) [lcoe < cljw

Then we can conclude
15(,0)]|cze < cre™

As for the second estimate, we observe that
1S(p,v2) = S, v1)lc2e < || Qo (wy + v2) — Qo (Wy + v1) ||coa

Thanks to the considerations made above it follows that

[1Qo (wy +v2) = Qo (wy +v1)l|coe < vz = vrlle2elfwpllcze <

< cue?||v — v1|c2ea.

Then
1S (i, v2) — S(p, v1) |z < cue?||va — v1||c2.a

To show the third estimate we proceed as above:

15(p2,v) = S(p1,v)lle2e < €| Qo (W, +v) = Qo (wy, +0) [leoe

< cf|wg, — we, ez [[v]le2a < c2®[[02 — @1]le2.asm).

O]

Theorem 2.5.2. Let be B := {w € C**(S* x [r., 1)) |||w||c2.« < 2¢ke?}. Then the non-
linear mapping S defined above has a unique fized point v in B.

Proof. The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping S is a contraction mapping from the ball B of radius 2c,e* in C>*(S* x [r, 1]) into
itself. This value follows from the estimate of the norm of S(0). Consequently thanks to
Schéuder fixed point theorem, S has an unique fixed point w in this ball. O

We have proved the existence of a minimal surface, denoted with S,,(¢), which is close
to M? x {0}, and close to its boundary is the vertical graph over the annulus By,. — B,._
of a function which can be expanded as

Un(r,0) = Hoo p(r,0) + Vi (r,0),  with ||V, ]|c2e < c22.

The function V,, depends non linearly on ¢, ». Furthermore as it is easy to proof thanks
to the third estimate of lemma 2.5.1, it satisfies

IVin(e, @) (re, ) = Vin(e, @) (re, ez myy < cellp — @llezasn- (2-12)
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2.6 The catenoid in M? x R

The catenoid in the space M? x R can be obtained by the revolution around the x5 axis,
{0,0} x R, of an appropriate curve vy (see [39]). We consider a vertical geodesic plane
containing the origin of M? and the curve 7. Let 7 be the euclidean distance between the
point of v at height ¢ and the x3 axis: we denote with r = r(t) a parametrization of ~.
The surface obtained by revolution of 7, is minimal with respect to the metric gy, if and
only if r = r(t) satisfies the following differential equation (see subsection 2.12.4):

(t)g—z - (%) —(1—r(t) =0. (2.13)

A first integral for this equation is:

(%)2 =Or? — (141 (2.14)

with C' > 2 and constant By the resolution of equation (%)2 = 0, it is easy to prove
that the function r(¢) has a minimum value r,,;, given by:

- /C 02 \/0/2+1 \/0/2_1

Since we assume C' = E%, we get

rmin:\/0/22+1_\/0/22—1 \/_<1+é—1+é+(9((;2)>:

1 1
W—FO (03/2 :€2+O(€6).

We denote with C, and C}, respectively, the part of the catenoid contained in M? x R*
and M? x R,

We set
t. = —€’lne

We need find the parametrization of C; and Cj, as graphs on the horizontal plane respec-
tively for t € [t. —?In2,t. +e?In2] and t € [—t. — e*In2, —¢t. + 2 In 2]. We start finding
the expression of 7(¢) for ¢ in the interval specified before. We denote it by 7.(t).
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Lemma 2.6.1. For ¢ > 0 small enough, we have

w“*

t ¢ t
7.(t) = & cosh o + O(e%=?) and Oyr.(t) = sinh = + O(ee:

)

fort € 0,t. +&21In2]. Moreover if t € [t. —?In2,t. + £21In 2], we derive

re(t) = O() and dyr. = O (7).

Proof. We define the function v(¢) in such a way r.(t) = r.(0) coshv(t), with v(0) = 0
and 7.(0) the minimum for r.(¢). It satisfies

Cr2(0) — (1 +72(0)) =0,

from which
1= Cr?(0) — r(0). (2.15)
Plugging r.(t) in (2.14) and using (2.15), we have

(Ov)? = C — r2(0)(1 + cosh® v(t))
and under the hypothesis

we obtain that (3;v)2 = C + O(e%e:) and then v(t) = VCt + O(c%). We remark a
posteriori that % < v(t) < % + 1 holds for ¢ € [0,¢. + £*In2], € > 0 small enough. Since
7:(0) = Tpin = €% + O(e°), we get

w‘“

re(t) = .(0) coshv(t) = £? cosh (é) + O(%=2) (2.16)

Now we assume that ¢ € [t. — e?In2,t. + €*In2], then r.(t) = O(e) and Or.(t) =
t

sinh (&) + O(eez) = O(e71). O

Now we can prove a lemma that give us the parametrization of the part of catenoid whose

height ¢ belongs to a neighbourhood of t..

Lemma 2.6.2. For ¢ > 0, small enough and t € [t. — e*In2,t. + £2In 2], the surface
Cy can be seen on the annulus {rew; 5 <r< 27"5} as the graph of the function W(r,0)
which satisfies

2r
Wi(r,0) = £*In = + ch,a(s?’), (2.17)

Similarly if t € [—t.—e*In2, —t.+e?In 2], the surface Cy can be seen on {(7“, 0);% <r< 27“5}
as the graph of the function

2r
Wy(r,0) = —®In = + Ocze (%).
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Proof. The first result follow easily from the hypothesis and the equation (2.16). The
second one can be shown observing that C} is the image of C}; by the reflection with
respect to the x3 = 0 plane. In other terms Wy (r,8) = —W,(r,0).

O

2.7 A family of minimal surfaces close to a catenoid on
St x [re,1]

In this section we want to show the existence of minimal graphs over the parts of the
surfaces C; and Cj, (described in previous section) defined on S' x [r.,1] € M? and
asymptotic to them. We know that the graph of the function v + v is minimal, being u
the function whose graph is the catenoid, if and only if v is a solution of the equation

Hyro=0 (2.18)

whose expression is given by (2.4). The explicit expression of L,v is

F (ﬁﬁov + 0, (ﬁ) 0pv — %@u Oy (Foyu) Opv — FOpu 0, (%ﬁru (‘)w)) , (2.19)
where F' = (1 —1r?)2,

_ 2 (C=2)r

A=1+F[Vul” = Cr2—1-—rt

and
1

VOrz —1 — %
1

as it is easy to obtain using (2.14). It’s useful to observe that since we assume C' = =;

oyu ==+

and 7. = £/2, we have that, for r € [r.,1], A =1+ O(&?), O,u = O(g), :
(2C —4)(—r+ o) B
0, A = G = O(e)
and O 4
PRy AT) ),
V(Cr2 — 1 —rt)3
Taking into account these estimates, we can conclude it holds that the operator
_ 1 1 1
Lov:=VA (@ (—) Opv — —50,u 0, (FOu) Opv — FO,u0, (—S&U &m)) =
VA Az Az
10,0 + 1,07 v, (2.20)
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where [;,lo = O(e). Then we can write VAL =F (on + Euv) )

We remark that we have already studied the mapping properties of the operator A, in
section 2.4.

Let >, be the graph of the function w. Then the graph of a function v over ¥, is minimal
if and only if v is a solution of the following equation

Agv + Lyv + VAQ,(v) = 0. (2.21)

Thanks to the observations on the functions A and w,, we can conclude that (), has
bounded coefficients in [r.,1]. Now we consider a function ¢ € C?“(S') which is even
with respect to 6, collinear to cos(j(k + 1)8) (for £ > 1 fixed) and such that

pllcze < Ke®. (2.22)

We define
wlP('? ) = Hrs#’(" )
where the operator H has been introduced in proposition 2.12.1. In order to solve the

equation (2.21), we look for v of the form v = w, + w where w € C**(S* x [r., 1]) and
v = on S* x {r.}. We can rephrase this problem as a fixed point problem, that is

w=S(p,w) (2.23)
where the nonlinear mapping S is defined by
S(p,w) = G, (Bow, + Lu(w, + w) + VAQy (w, +w))

where the operator G is defined in proposition 2.4.2. To prove the existence of a solution
for (2.23) we need the following result which states that S is a contraction mapping.

Lemma 2.7.1. There exist some constants ¢, > 0 and ¢, > 0, such that
15(, 0)lleze < c® (2.24)
and, for all € € (0,&y,)
15(p,w2) ~ S, wn)llene < s — s

[S(p2, w) — S(p1, w)lle2a < ce [|p2 — Prleza(s)

for all wy,wy € C**(SY x [r.,1]) such that ||willcze < 2c.e* and for all boundary data
©, 1,02 € C?(SY) satisfying (2.22).
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Proof. We know from the proposition 2.4.2 that ||G,._(f)|c2.« < ¢/ f]|co.a. Then

15(6,0)||c2e < €| Luwy + VAQ, (w,) [[cow <

¢ (I Luwglleoe + [|Qu (wy) [leow) -
Here we have used the fact that A =14 O(¢?) and that w, is harmonic.

So we need to find the estimates of each summand. We recall that ||¢||cz« < ke. Thanks
to proposition 2.12.1 we get that

[wyllcze < cll@lleza(sty < cee®.

We use (2.20) for finding the estimate of L,w,. We obtain
3

| Luwy||coe < cellwylleza < cye

The last term is estimated observing that

1Qu (wy) lleon < cllwglleea < cue.

Putting together all these estimates we get

1S(, w) ez < c€”

As for the second estimate, we observe that

S(p,wa) = S(p,w1) = =G, (ZU(wso + wy) + VAQ, (w, + w2)> +

Cr. (Lulwy +wn) + VAQy (w, +w))

and
1S (0, wa) — S(,wr) ez <

CHI’u(wtp + w2) - Eu(wtp + wl) + Qu (wtp + w2) — Qy (wtp + wl) HCO*‘1 =

= || Ly(wy — w1) + Qu (W, + wa) — Qu (wy + w1) [[coe <

< [ Lu(wy — wr)fleoe + [|Qu (wy + w2) — Qu (W, + w1)]] cova -

We observe that from the considerations above it follows that

| Ly (we — w1)||coe < cel|we — wil|c2a,
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and
|Qu (wy + w2) — Qu (Wy + w1)]|eo. < clfws — willezallwy|lcz.a

< cpe||we — wy||c2a.

Then
1S (¢, w2) = S, w1)l|e2e < cgl|lwy — wi|e2.0.

To show the third estimate we observe that
1S (2, w) — S(p1,w)]|c2a <

Hf’u(ww - wwl)HCO’O‘ + |Qu (wgog +w) — Qu (w<p1 + w)||CO,a <
cgllpa — pillezacsyy + lwllezallpz — willezasy <

CE”(,OQ — ng”cz,a(Sl).

O

Theorem 2.7.2. Let be B := {w € C**(S* x[r., 1]) | ||w||2.a < 2¢4e*}. Then the nonlinear
mapping S defined above has a unique fized point v in B.

Proof. The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping S is a contraction mapping from the ball B of radius 2c,&* in C**(S! x [r., 1]) into
itself. This value follows from the estimate of the norm of S(p,0). Consequently thanks
to Schauder fixed point theorem, S has a unique fixed point w in this ball. O

We have proved the existence of a minimal surface S;(¢), which is close to the part of
catenoid C; introduced in section 2.6 and close to its boundary is a graph over the annulus
By,.. — B, of the function

2r —
Us(r,0) = e*In = + H,. (1, 0) + Vi(r,0),
with ||V;||¢2.« < ce?. The function V; depends non linearly on ¢, . Furthermore it satisfies

V(e @)(re,) = V(e @) e Mlczamo-ny < cellp = @llezes)- (2.25)

This estimate follows from the lemma 2.7.1.

Now it is easy to show the existence of a minimal surface Sy(¢), which is close to the part
of catenoid denoted by Cj, introduced in section 2.6 and close to its boundary is a graph
over the annulus B,  — B,_. We start observing that Cj, can be obtained by reflection of
C} with respect to the x3 = 0 plane. So we can define Sy(p) as the image of S;(¢) by

the composition of a rotation by an angle 75 about the z3 axis and the reflection with
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respect the horizontal plane. This choice (in particular the apparently unnecessary rota-
tion) is indispensable to assure to the surface we shall construct by the gluing procedure
in section 2.11, to have the same properties of symmetry as the Costa-Hoffman-Meeks
surface. See subsection 2.9.1 for more information.

It is clear that S,(), over the annulus Bs,. — B,_, is the graph of the function

(_Jb(r,G) =0, (7",9— kj—l) .

2.8 The relation between the mean curvatures of a sur-
face in D? x R with respect to two different metrics

In this section we want to express the mean curvature Hy,, of a surface in D? x R with
respect the metric gy, in terms of the mean curvature I, of the same surface with respect
to the euclidean metric go.

We recall that, if z;, x5 denote the coordinates in D? and x5 the coordinate in R, then

dx? + da3

Ghp = — 7 +dwr;, where F = (1 — 22— x%)Q _ (1 _ 7"2)2

and
go = dat + dxi + dri.

If N4y, denotes the normal vector to a surface ¥ with respect to the metric gj,,, then its
mean curvature with respect the same metric is given by

1 _
Hpyp(2) == —3 trace (X — —[VXNhyp]T) ,

where [-]7 denotes the projection on the tangent bunble TS and V is the riemannian
connection relative to gp,,. The mean curvature of ¥ with respect g, denoted by H.(X),
is given by

H.(%) = —%trace (X = —[VxNJ]"),

where N, denotes the normal vector to ¥ with respect to the metric gy and V is the flat
riemannian connection.

The Christoffel symbols, I‘fj, associated to the metric gy, all vanish except

25131

ﬁa

1 2 _ 12 _ 1 _
F11_1—‘21_1—‘12__F22_
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2
F%2 - F§2 = F%l - _Ffl - ﬂ-

VF

Let 0, = 8%1, Oy = 8%2, O3 = 6%3 be the elements of a basis of the tangent space. Now,
if X =53, X0 andY =3 i Y79, are two tangent vector fields, the expression of the
covariant derivative in (D? X R, gp,,,) is given by

ViV =) (X(Yk) + ZX"YJ’FQ;) O
k i,j

It is clear that )
VxY =VxY + ) > XY (2.26)

ij
k=1 i

We suppose that Ny, = (N, N?, N®). From (2.26) we get the relation

2 2
VxNugp = VxNiyp + Y > X NITEO,. (2.27)

k=1 4,j=1

We start evaluating the term V x Ny,,,,. We observe that the normal vector N, = (Ny, No, N3)
to ¥ with respect the metric gy does not coincide with Nj,,. But it is clear that

Nhyp = (Nl,NQ,NS) = (\/FNl, ﬁNz,NB)-

We observe that

3
Vi Ny = Y X(N¥)O = X (VFN)01 + X (VFN3)ds + X (N3)0s.
k=1

We can write X (vVFN;) = (1 — r2)X(Ny,) — X (r?) Ny, for k = 1,2. Since

X(Ne) =3 X0, N and  X(r%) = 201X + 222X,
l
it holds that

3
X(VFN;) = X(Ny) — (221X + 225 X0) Ny — 72 (Z Xlalek> :
=1

for k = 1,2. We can conclude that Vx Ny, = >, X(N*)J is given by

2 2 3
Z X(Nk)ak — <2$1X1 + 2$2X2) Z Nkﬁk — 7“2 Z <Z Xl(?mlNk) 8k.
k=1

3
k=1 k=1 =1
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Inserting this equality in (2.26) and observing that 3>°_, X (N;)0, = VxN., we obtain

2 2 3
VXNhyp == VXNe — (2[[)1X1 + 2.’L'QX2) Z Nkak — 7“2 Z (Z XlaxlNk> 8k

k=1 k=1 =1

Replacing this result into (2.27) we find the expression of Vx Ny, we shall consider to
compute the trace. We will assume X to be a vector field tangent to 3.

2 2 3 2 2
V)(Ne - (2{L‘1X1 + 2{L‘2X2) Z Nkﬁk - T‘2 Z (Z XZE?IZN,C) 8k + Z Z X’NJFfjﬁk
=1

k=1 k=1 = k=11,5=1
(2.28)

We start studying the second summand. (22X, + 225X5) S"2_, N;0j, is the vector whose
components with respect the basis (0;, 0, J3) are given by

2[E1N1 2[E2N1 0 Xl
2I1N2 QI‘QNQ 0 X2
0 0 0 X3

So the trace of the mapping Zle X;0; — (221 X7 + 222 X)) Zizl N0 equals 2(z1 Ny +
I‘QNQ).

The components of the vector
2 3
> (X ) o
k=1 \I=1
with respect the basis (0, 02, 03) are given by

O N1 0, Ny 0,N1 | [ X4
Os, No 0y, No 9,,N> | | Xo
0 0 0 X;

So the trace of the mapping

equals 7% (0, Ny + 0, No) .



As for the last term of (2.28), we can state that > ;_, i X'NIT}0y is the vector whose
components with respect the basis (01, J2, 03) are given by

221 N1 4 2z9 N2 2x9 N1 o 221 N2 X
VF 1 VF 2 \/Fl \/Fz !

B e o] X | (229)
0 0 0 X3

Taking into account the equalities N' = v/FN; and N? = /FN, it easy to conclude that
the trace of the mapping

2
> X0 — Y Y XINT o,

k=1 i

equals 4 (1 N7 + x2N3) . From the definition of the mean curvatures it is easy to obtain
the following relation.

2

r
thp(z) = H.(¥) — (x1 Ny + 22No) + =

5 (O, N1 + 02, N2) . (2.30)

We have proved the following result

Proposition 2.8.1. Let S be a surface in D? X R endowed with the metric gnyp. If Hpyp(-)
denotes the mean curvature with respect to the metric gpyp, He(-) and (N1, N2, N3) denote
respectively the mean curvature and the normal vector to S with respect to go, then

2

r
thp(S) = HC(S) - (1’1N1 + QZ2N2) + —

= (0 N1 +0,,Na) (2.31)

where x1, o are the cartesian coordinates on D? and r?* = z1 + x%

2.9 A scaled Costa-Hoffman-Meeks type surface

In this section we shall describe the surface obtained by scaling of the Costa-Hoffmann-
Meeks surface of genus k& > 1, M, (see C. Costa [2], [3] and D. Hoffman and W. H.
Meeks [15], [16]) and we shall study the mapping properties of its Jacobi operator. We
denote by M . the image of M; by an homothety of parameter €. We shall adapt to our
situation some of the analytical tools used in [11] to show the existence of a family of
minimal surfaces close to M, with one planar end and two slightly bent catenoidal ends
by an angle £ € (—&y,&), & > 0 and small enough. We denote an element of this family
by Mk(ﬁ), then Mk(€)|§:0 = Mk
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2.9.1 The Costa-Hoffman-Meeks surface.

We start by giving a brief description of the surface M. After suitable rotation and
translation, M} enjoys the following properties.

1. It has one planar end F,, asymptotic to the z3 = 0 plane, one top end FE; and one
bottom end Ej, that are respectively asymptotic to the upper end and to the lower
end of a catenoid with x3-axis of revolution. The planar end FE,, is located between
the two catenoidal ends.

2. Tt is invariant under the action of the rotation of angle ,f—fl about the x3-axis, under

the action of the symmetry with respect to the x5 = 0 plane and under the action

of the composition of a rotation of angle Z5 about the x3-axis and the symmetry
with respect to the x3 = 0 plane.

3. It intersects the x3 = 0 plane in k£ + 1 straight lines, which intersect themselves at
the origin with angles equal to 75. The intersection of M with the plane x5 =
const (# 0) is a single Jordan curve. The intersection of M with the upper half
space x3 > 0 (resp. with the lower half space x3 < 0) is topologically an open

annulus.

We denote with X;, with ¢ = ¢, b, m, the parametrization of the end E; and with X, . the
parametrization of the corresponding end F; . of M, .

Now we give a local description of the surface M}, . near its ends and we introduce coor-
dinates that we shall use.

The planar end. The planar end £, . of the surface Mj, . can be parametrized by

X o) i= (52—5” 52um(x)) € R (2.32)

o

where = € B,,(0) — {0} C R2 Here py > 0 is fixed small enough. The function u,, satisfies
the minimal surface equation which has the following form

IR Vu B
2H, =y v o) = (2.33)

It can be shown (see [11]) that the function u,, can be extended at the origin continu-
ously using Weierstrass representation. In particular we can prove that u,, € Cz’o‘(Bpo)
and u,, = ch,a(|:c|k+1), where the expression Ogr.a(g) denotes a function that, together
with its partial derivatives of order less than or equal to n + « is bounded by a constant
times g. Furthermore, taking into account the symmetries of the surface, it is possible to
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show the function w,,, in polar coordinates, has to be collinear to cos(j(k + 1)8), with
7 =1 and odd.

If we linearize in u = 0 the nonlinear equation (2.33) we obtain the expression of an
operator which is, up to a multiplication by £, the Jacobi operator about the plane, that
is L2 = |z|*A¢. To be more precise, the linearization of (2.33) gives

4 .
Luv:|x—|div< v ] Ve VY ) (2.34)

e? V1 |2 Vul? V(L [z Vul?)?

We shall give the expression of H,,,, the mean curvature of the graph of the function u+wv,
in terms of the mean curvature of >, that is H,. In the following we shall restrict our
attention to the planar case, that is u = 0, on a domain of the form {(r,0) € B,,(0)|r €
[r1,72]}. Here we shall show that

1
2H, .\, = 2H, + L,v + |3€C—2Qu(|m|2Vv, z|2V?v), (2.35)

where (), satisfies
Qu(0,0) = VQ,(0,0).
To show (2.35), we start observing that:
1 1 Vu- Vo
VI AN o) I+ 2Vl V(L [z Vul?)?
where the function @), ; satisfies Q,1(0) = VQ,,1(0) = 0. The proof of that is very close

to the one that appears in section 2.3: it’s necessary only to replace F' by |z|*. So we can
omit some details. Secondly we observe that 2H,., is given by

=t . V(u+v)
5 div - -
€ V14 |z[4Vul

= |aI*

+Quav)  (2.36)

Vu- Vo
V(1 + |24 Vul?)

— |2[*V(u +v) = +V(u+v)Qu71(v)> =

- ’x‘4vu Qu(’x‘via ‘$’2V20).

4 . 4
2Hu+@div ( v Vu- Vv ) i
g

V1 2| Vul? VA +[[[Vu?) ) e

From this it follows the wanted expression.
Since we assume that X, is a minimal surface, we shall consider H, = 0.

Following what we have done in section 2.7 replacing F by |z|* we get:
4
| (on + 1+ |24 Vu? (Lyv 4+ Qu(|z* Vv, ]x\QVQU))> =0, (2.37)

2
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where L,v is a second order linear operator with operator with coefficients in O 2.0 (|z]|**).
b

It is important to remark that if the function v satisfies to equation (3.8) with u = u,,
then the graph of the function &2(u,, + v) is minimal. Now we are interested in finding
the equation which a function w must satisfy in such a way the surface parametrized
by X, + wes, that is the graph of w about the middle end £, ., is minimal. That is
equivalent to require that the graph of cu,, + w is minimal. Then we can obtain the
wanted equation by replacing v by w/e? in (3.8). So we get

J[* O [z |2 [7* oo

82

We can write it in the following way

@ 4 2 2 |z[® @ 2 _

=i Aow + /1 + |2)4|Vul? | Law + £°Q, - — Vuw, €2Vw =0. (2.39)
This is the minimal surfaces equation we shall use in following sections.

The catenoidal ends. We denote by X. the parametrization of the standard catenoid
C whose axis of revolution is the x3-axis. Its expression is

X,(s,0) := (cosh s cos @, cosh s sinf, s) € R?

where (s,60) € R x S*. The unit normal vector field about C' is given by

ne(s,0) :=

p—— (cosf,sinf, —sinh s).

The catenoid C' may be divided in two pieces, denoted C.., which are defined as the image
by X. of (R* x S'). For any € > 0, we define the catenoid C. as the image of C' by an
homothety of parameter 2. We denote with Xee = e2X, its parametrization. Of course,
by this transformation, to C'y, correspond two surfaces denoted C. ;.

Up to some dilation, we can assume that the two ends F; . and F} . of M, . are asymptotic
to some translated copy of the catenoid parametrized by X.. in the vertical direction.
Therefore, F; . and Ej,. can be parametrized, respectively, by

Xie=Xee+wne+ oy e3 (2.40)

for (s,0) € (sg,00) x S*,
Xpe = Xee —Wpne — Ope €3 (2.41)

for (s,0) € (—o0,—s0) x S, where oy, 0, € R, functions w;, w, tend exponentially fast
to 0 as s goes to oo reflecting the fact that the ends are asymptotic to a catenoidal end.
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Furthermore, taking into account the symmetries of the surface, it is easy to show the
functions wy, wy, in terms of the (s, ) coordinates, have to be collinear to cos(j(k + 1)0),
with j € N and must satisfy wy(s,0) = —w(—s,0— kL—f—l) Furthermore we have o, = 0y, ..
In section 3 of [30] it is given the expression of the mean curvature operator about of a
surface close to a scaled standard catenoid. We can adapt this result to our situation. We
obtain that the surface parametrized by X.. 4+ w n, is minimal if and only if the function

w satisfies the minimal surface equation H, = 0, where

1 w Vw Viw
Hy,=—-—L > 12 ) )
Eiath * €2 cosh? s e (52 cosh s’ €2 cosh s’ €2 cosh 3)
1 w Vw Vw
. 2.42
e2coshs ©°° (52 coshs’ €2 cosh s’ €2 cosh s) (2.42)

Here Lo is the Jacobi operator about the catenoid, that is

1 2w
B + B + —)
cosh? s ( o b0 cosh? s

and (2. and (3. are linear second order differential operators which are bounded in
C*(R x S*t) for all k, uniformly in e. They satisfy

Lcw =

2:(0,0,0) = Q5.(0,0,0) =0  and  VQ5.(0,0,0) = VQ5.(0,0,0) =0, (2.43)

V2Q3.(0,0,0) = 0. (2.44)
We shall write for short
Q ( ) 1 We qu, VQU)@
c\W = € s )
¢ £2 cosh? s g2 cosh s’ e2coshs’ €2 cosh s

. 9.45
g2coshs °7° \ e2coshs’ e2cosh s’ 2 cosh s ( )

1 ( W VUJ<1> V2w<1> )
For all p < pg and s > s, we define
My.(s,p) = My — [Xie((s,00) x ST U Xpe((—00, —s) x S1) U X,,.(B,(0))] . (2.46)
The parametrizations of the three ends of M}, . induce a decomposition of M}, . into slightly
overlapping components: a compact piece My, o(so+ L, po /2) and three noncompact pieces

X1o((50,00) % 1), Xpo((—00, —50) x S1) and Xy (B,, (0)).

We define a weighted space of functions on M; .
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Definition 2.9.1. Given { € N, o € (0,1) and § € R, the space Cy*(My,.) is defined to
be the space of functions in Cz’a(Mk@) for which the following norm is finite

loc

lwllge ag, .y = lIwlletaan o (sor100/2) |0 0 Ximellera (s, )

+ Sgp e 0 (||w o Xt,eHce,a([s,sH]xsl) + |lwo Xb,s||Céva([—s—1,—s}><51))
5250

and which are invariant under the action of the symmetry with respect to the x5 = 0
plane, that is w(p) = w(p) for all p € My, where p := (v1, —x2,23) if p = (21,22, T3),

2

invariant with respect to a rotation of angle =5 about the x5 azis and to the composition

of a rotation of angle 7= about the x5 axis and the symmetry with respect to the x5 =0
plane.

We remark that there is no weight on the middle end. In fact we compactify this end
and we consider a weighted space of functions defined on a two ended surface. We shall
perturb the surface M} . by the normal graph of a function v € C?’Q(M,w).

2.9.2 The Jacobi operator

The Jacobi operator about M is
LMk,s = AM}C,E + |AMk:,E‘2

where |Ayy, | is the norm of the second fundamental form on M.

In the parametrization of the ends introduced above, the volume forms dvoly;, . can be
written as v, ds df and -y, ds df near the catenoidal type ends and as 7, dr, drs near the
middle end. Now we can define globally on M} . a smooth function

v Mk,e - [07 OO) (247)

that is identically equal to €* on M (so — 1,2p) and equal to v; (resp. s, Vm) on the
end F,. (resp. Ey¢, E,,). They are defined in such a way that on X;.((sg,00) x S') and
on X ((—o00,—sp) x S') we have

v o X.(s,0) ~ &* cosh® s and v o Xp.(s,0) ~ e*cosh? s,

Finally on X,,.(B,,), we have
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It is possible to check that:

)

£552 Cg’OK(Mk,s) — Cg’a(Mk,e)
w — L. (w)

is a bounded linear operator. The subscript § is meant to keep track of the weighted space
over which the Jacobi operator is acting. Observe that, the function v is here to coun-
terbalance the effect of the conformal factor ——— in the expression of the Laplacian in

V0o |

the coordinates we use to parametrize the ends of the surface Mj, .. This is precisely what

is needed to have the operator defined from the space Cg’o‘(Mk,g) into the target space
Cg’a(Mkﬁ).

To have a better grasp of what is going on, let us linearize the nonlinear equation (2.42)
at w = 0. We get the expression of the Jacobi operator about the scaled catenoid C.

1 2
Lo, = ———5— (6§+8§+ . )

g4 cosh? s cosh” s

We can observe that the operator cosh? s L. maps the space (cosh s)? C2((sg, +00) x S1)
into the space (cosh s)° C%*((sq, +00) x S1).

Similarly, if we linearize the nonlinear equation (2.33) at v = 0, we obtain (see (2.3) with
u = 0), up to a multiplication by 1/&%, the expression of the Jacobi operator about the

plane.
1 jz[*
6—4LR2 = 6—4

Ap.

Again, the operator yZ; Lgz = A clearly maps the space C**(B,,) into the space C**(B,,, ).
Now, the function v plays, for the ends of the surface M}, ., the role played by the function
cosh? s for the ends of the standard catenoid and the role played by the function |z|~* for
the plane. Since the Jacobi operator about M. is asymptotic to s%LRz at B, and is

asymptotic to L¢, at E;. and Ej ., we conclude that the operator L. s maps C§’“(Mk,g)
into Cy** (M)

Now we recall the notion of non degeneracy introduced in [11].

Definition 2.9.2. The surface My . is said to be non degenerate if L. 5 is injective for all
o< —1.

It useful to observe that a duality argument in the weighted Lebesgue spaces, implies that

(L.s isinjective) <« (L._s 1is surjective)
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if 0 ¢ 7. See [34] and [19] for more details.

The non degeneracy of Mj, . is related to the mapping properties of L. 5 and to the kernel
of this operator. From the observations made above, it follows that at the catenoidal type
ends and at the middle planar end the Jacobi operators of M, . and M}, are respectively
asymptotic to Lo and Lo, which coincide up to a multiplication by £*. So we could trans-
pose some of the results about the surface M (0) contained in [11] related to the study
of its mean curvature operator, to the surface My ., including non degeneracy. The only
difference is that here we work with spaces of functions invariant with respect to all of
the symmetries of M.

The Jacobi fields. It is known that a smooth one parameter group of isometries con-
taining the identity generates a Jacobi field, that is a solution of the equation Ly, u = 0.
The Jacobi fields of this type which are invariant with respect to the mirror symmetry by
the o = 0 plane, the rotation by ;—L about the x3 axis, the composition of the rotation
by 5 about the x3 axis and the mirror symmetry with respect to the z3 = 0 plane,
are generated by dilations. Of course the Jacobi equation has other solutions which are
not taken into account because they are not invariant under the action of the symmetries

listed above. See [11] for details.

The Killing vector field Z(p) = p, that is associated to the one parameter group of
dilations, generates the Jacobi field

®(p) :==n(p) - p.

It is clear that ®(p) grows linearly and so it is not bounded.

With these notations, we define the deficiency space
D := Span{x: ®, x» ® }

where y; is a cut-off function that is identically equal to 1 on X;.((so + 1,+00) x S'),
identically equal to 0 on M. — X;.((so, +00) x S') and that is invariant under the action
of the symmetries listed above. In particular, we agree that

Xo(+) = xe(—).
Clearly, if 6 < 0,
Los: CO(My)®D — CP*(My.)

w — oy L, w

is a bounded linear operator. The linear decomposition Lemma proved in [26] for constant
mean curvature surfaces (see also [19] for minimal hypersurfaces) can be adapted to our
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setting and thanks to the results of S. Nayatani about the dimension of the kernel of the
Jacobi operator of M shown in [36, 37| and extended in chapter 1, we can state that
there is not any bounded Jacobi field which is invariant with respect to the symmetries
of My, .. We get the following result

Proposition 2.9.3. We choose § € (—2,—1). Then the operator 5575 s surjective.
From that we get the following one about the operator L, s

Proposition 2.9.4. We choose 6 € (1,2). Then the operator L. s is surjective. Moreover,
there exists G. s a right inverse for L. s whose norm is bounded.

2.10 An infinite dimensional family of minimal surfaces
which are close to a compact part of a scaled
Costa-Hoffman-Meeks type surface in M? x R.

We recall that in section 2.8 we found that the mean curvature with respect to the metric
Ghyp of a surface S in M? X R can be expressed in terms of the euclidean mean curvature
of S and the components of the normal vector to the same surface with respect to the flat
metric go.

In this section we shall apply this result to prove the existence of a family of minimal sur-

faces close to the surface M, . contained in a cylindrical neighbourhood of radius r. = ¢/2
of {0,0} x R.

We start giving the statement of a result that can be easily obtained by [11], lemma 2.2.
It describes the region of the surface M}, . which can be parametrized by a graph on a
annular neighbourhood of r. contained in the x3 = 0 plane.

Lemma 2.10.1. There exists ¢g > 0 such that, for all ¢ € (0,e0) an annular part of
the ends Ey., Ey,. and E,, . of My, can be written as vertical graphs over the annulus
By, — B, )2 of the functions

2r
Zy(r,0) = 01 +€*In (&?—2> + ch,a(g?’), (2.48)

Zy(r,0) = —Z, <r,9 - I 1) . (2.49)

As for the parametrization of the planar end, it satisfies

Zon(r,0) = O (52 (é>(k+l)) . (2.50)

b
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Here (r,0) are the polar coordinates in the x3 = 0 plane. The functions O(e®) are defined
in the annulus By, — B, /> and are bounded in cl?’“ topology by a constant (independent
on ) multiplied by e, where the partial derivatives are computed with respect to the vector
fields r 0, and Oy.

Then M, has two ends E, . and E, . which are graphs over the x5 = 0 plane of functions
Z; and Z, defined on the annulus B, — B,_».

We set
Se = —lIne, p.:=2¢

and we define M,CT . to be equal to M, from which we have removed the image of
(8e,+00) x ST by X, ., the image of (—oo, —s.) x S' by X, and the image of B,_(0)
by X,,.. The values of s, and p. have been chosen in such a way the surface M,CT . s
contained in a neighbourhood of radius r. = ¢/2 of {0,0} x R. In this section we shall
prove the existence of a family of minimal surfaces close to M;".. To this aim we shall use
proposition 2.8.1 and we shall follow the work [11].

First, we modify the parametrization of the ends £,., E,. and E,, ., for appropriates
values of s, so that, when r = r. the curves corresponding to the image of

6 — (r cos®,r sind, Z,(r,0)), 6 — (r cosf,r sind, Z,(r,0)) (2.51)

correspond, respectively, up to a vertical translation, to the horizontal curves at heights
+e?1n(2r. /e%).

The curve 0 — (r cosf,r sinf, Z,,(r,0)), if r = r., corresponds, up to a vertical transla-

tion, to an horizontal curve at height 2 (r./e2)” "),

The second step is the modification of unit normal vector field on M} . into a transverse
unit vector field 7. in such a way that it coincides with the normal vector field n. on M,
is equal to e3 on the graph over Bs,. — Bs, /s of the functions U; and U, and interpolate
smoothly between the different definitions of 7, in different subsets of M kT .

Finally we observe that close to F; ., we can give the following estimate:
|e* cosh? s (Lag, v — (e* cosh? s) ™! (950 + Dpov)) | < ¢|(cosh? s)""v] . (2.52)

This follows easily from (2.42) together with the fact that w, decays at least like (cosh® s)~*
on ;.. Similar considerations hold close the bottom end E,.. Near the middle planar
end F,, ., we observe that the following estimate holds:

@]~ (L. v — |z]*e* Agv) | < [z FPV]. (2.53)
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This follows easily from (2.34) together with the fact that w,, decays at least like |z|F+!
on E,, ..

The graph of a function u, using the vector field 7., is a minimal surface if and only if u
is a solution of a second order nonlinear elliptic equation of the form

Ly u=L.u+ Q. (u)

where L M7 is the Jacobi operator about M _, Q. is a nonlinear second order differential
s€ B

operator and L. is a linear operator which takes into account the change of the nor-
mal vector field (only for the top and bottom ends) n. into 7. and of the change of the
parametrization.

This operator is supported in a neighbourhood of {#s.} x S and of {p.} x S'. It is possi-
ble to show that the coefficients of L. are uniformly bounded by a constant times 2. We
start noticing that the conformal factor (cosh®s)~! contributes with a term equal to £2.
Furthermore the fact that (n.,n.) =1+ ch,a(é) in a neighbourhood of {4s.} x S and
the result of [11] appendix B show that the change of vector field induces a linear operator
whose coefficients are bounded by a constant times €. The change of parametrization has
consequences we can estimate as follows. As for the catenoidal ends, by (2.48) we can
determine the difference between the value of s in function of r, for r in a neighbour-
hood of r., and the height of the horizontal boundary curve (see (2.51)) We obtain that
|s—In (%) | is bounded by a constant times . A similar estimate holds for the planar end.

Now, we consider three functions oy, ¢y, ¢, € C**(S') which are even, with respect to 0,
¢y is collinear to cos(j(k + 1)0), with j > 1, v, = —p4(0 — 177, while ¢y, is collinear to
cos(I(k + 1)0), with [ > 1 and odd. Assume that they satisfy

otz + llnlleze + llomlleza < re® (2.54)

We set @ := (¢4, ¥p, ¢m) and we define wq to be the function equal to

1. x4+ Hy,,(se — s,-) on the image of X, . where y. is a cut-off function equal to 0 for
s < so + 1 and identically equal to 1 for s € [sg + 2, s.]

2. x- H,,(s — s, -) on the image of X, . where x_ is a cut-off function equal to 0 for
s > —so — 1 and identically equal to 1 for s € [—s., —sg — 2]

3. Xm Hp. 0, (-, ) on the image of X, ., where x,, is a cut-off function equal to 0 for
p = po and identically equal to 1 for p € [p., po/2]

4. zero on the remaining part of the surface M.
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The cut-off functions just introduced must have the same symmetry properties as the
functions in C;'*(My.). H and H are harmonic extension operator introduced respec-
tively in propositions 2.12.3 and 2.12.2.

We would like to prove that, under appropriates hypotheses, the graph X, about M,CT .
of the function © = we + v, is a minimal surface with respect the metric gp,,. We want
to point out that to construct the graph of the function u, here we consider the normal
vector field with respect to the euclidean metric gy. The equation to solve is:

Hpyp(X,) = 0.

If we denote by N, = (Ni(u), No(u), N3(u)) the unit normal vector to ¥, by equation
(2.31) we can express Hy,,(X,) in terms of the euclidean mean curvature and write the
equation to solve as

T2

Ho(%,) — (21 N1(u) + 22 No(u)) + 5(@1]\71(“) + 0r, No(u)) = 0,

where z, T, are the coordinates on D? and r* = z? + 2. To simplify the notation we set
2 . .

P(wg +v) = x1N1(u) + 22Nao(u) — 5 (0, N1(u) + Op, No(u)). Taking into account that

u = we + v, now the expression of equation to solve is given by

Ly (we +v) = Le(we +v) — Qe(wa + v) — P(we + v) = 0.

The resolution of the previous equation is obtained by the one of the following fixed point
problem:
v="T(d,v) (2.55)

with
T(®,v) =G.50&. (fy (is(w¢ +v) + P(we +v) = Lyr_we + Qc(we + v)))
where § € (1,2), the operator G.; is defined in proposition 2.9.4 and & is a linear
extension operator such that
£ CO(MT) — CO%(My..),

where Cg’“(M,ng) denotes the space of functions of Cy*(M;..) restricted to M. Tt is
defined by v = v in M}, £&v = 0 in the image of [s. + 1,400) x S* by X;., in the
image of (—oo, —s. — 1] x S' by X, and in the image of B,_j» x S' by X, .. Finally £.v
is an interpolation of these values in the remaining part of M}, . such that

(Ev) o Xio(5,0) = (1 + 5. —s)(vo X;o(se,0)), for (s,0) € [se, 5.+ 1] x S,
(Ev) 0o Xpo(5,0) = (1 + 8.+ 8)(vo Xpy(s:,0)), for (s,0)€[—s.—1,—s.] xS,

(6.6) 0 X (9, 6) = (pip - 1) (00 Xalpes0)) Tor (p.0) € [po)2,p2] x S
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Remark 2.10.2. From the definition of &, if suppv N (B,. — B,.2) # 0 then

[(E-v) o m,éHCOva(BPO) <cepllvo Xm,SHCOvO‘(BpO—Bps)-

This phenomenon of explosion of the norm does not occur near the catenoidal type ends:

[[(E-v) 0 X ellcoo(jso,+o0)xst) < €llv 0 Xicllco(fso,scx51)-

A similar equation holds for the bottom end. In the following we shall assume o > 0 and
close to zero.

The existence of a solution v € Cg’a(M,Z .) for the equation (2.55) is a consequence of the
following result which proves that 7" is a contraction mapping.

Lemma 2.10.3. Let ¢ € (1,2). There exist constants ¢, > 0 and ¢, > 0, such that
IT(®, 0|2 < €™ (2.56)

and, for all € € (0,e,), a € (0,1/2)

1
| T(P,v2) — T(q)wl)’lcg*“(Mk’g) S B [v2 — Ul|’c§’“(Mk7€)>

IT(®2,v) = TPy, v)le20a, .y < ce¥2 (| @5 — P12,

where we have set for short

@2 — P1fc2a(sr) = |l0r.2 — Priallezesy + l@o2 — woillezaisty + |0me — @mallezesn
for all v, vy, vy € C3*(My.) and satisfying [vll2e < 20 g%/2

D, Py, Dy € [C3(SY)]? satisfying (2.54).

and for all boundary data

Proof. We recall that the Jacobi operator associated to M} ., is asymptotic to the
operator of the catenoid near the catenoidal ends, and it is asymptotic to the laplacian
near of the planar end. The function wg is identically zero far from the ends where the
explicit expression of Ly, . is not known: this is the reason of our particular choice in
the definition of wg. Then from the definition of we and thanks to proposition 2.9.4 we
obtain the estimate

HSE (V]LMk,a w‘i’) Hcg’o‘(Mk,s) -

(g, — (02 4 38)) (w0 X,0)

CP*([so+1,5c]xS1)

| (Vasz, = (02 +95)) (wa 0 X,.)

€O ([~se,—50—1]xS1)
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P

‘ (/YLMIZ:s — A()) (U)q> O Xm,a)

€O ([pe,po] xS1)

< el feosh~® s 1 0 X0 ey sy € lleosh ™ (0.0 X2 e .

([so+1,s¢] xSt —8e,—80—1]xS1)

e Hp2k+3V(w¢. o Xm’E)HCO""([p57p0]><Sl)

5
<c.et +e.e2 <o

To obtain this estimate we used the following ones:

sup 6763672(5575)6723|¢t|27a <

sup e % ’cosh*2 s(we 0 Xy /0
[so+1,s:] xSt

<c
[s0+1,8¢]x St )}O’Q;[S’SJA} =

66_285|¢t|2,o¢ < 0554

(a similar estimate holds for the bottom end) and

sup  |V(we 0 Xpe)| < ce_a||p2k+3qu>HCo,a([ps,pO]Xsl) < ¢.e?
[ps,po]xsl
together with the fact that s, = —Ine and p. = 2¢, from which e72% = ¢? and p_* = ¢~ °.

Using the properties of L. and the definition of v, we obtain

€ <7L8 w‘l’) leg=ar, .y < 082||w(DOXt"5||C§7a([80+1,sa]><51)+C€2||w(DOXb75||Cg’a([*ss,*50*1]><sl)+

—i—CEZian@ o Xm,s”CO’a([pg,po/Z}xSl) < 6585/2.

The estimate of ||&. (YP(ws)) ||C§,Q(Mk,5) is related to the estimate of the horizontal com-
ponents and their derivatives of order one of the normal vector to surface and to the
definition of the function v (see (2.47)) on M, _. It is convenient to recall that the oper-
ator . extends smoothly a function g € C{**(M[.) to a function Cy* (M) substantially
letting it inchanged on MkT . and setting it equal to the null function on the remaining
part of M .. P keeps track of the difference of the mean curvatures of a same graph of
a function about M,;f . computed with respect to two different metrics. It is sufficient to
estimate the norm of vP(wg) only on M,? ., which is the compact part of Mj . contained
in a neighbourhood of radius 7. = £/2 of {0,0} x R. The function v equals £* cosh® s at
the catenoidal ends of M/ _, equals */|z|* at the middle end, equals £* far away the ends.
Furthermore it is easy to prove that the horizontal components N, Ny of the normal vec-
tor to the graph of wg about the middle end of M,? ., are, in absolute value, smaller than
a constant times 2. We get ||E. (7P(ws)) oo ag, .y < ced?,

yE
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As for the last term, we recall that the operator (). has two different expressions if we
consider the catenoidal type end and the planar end (see equation (2.42) and (2.39)). It
holds that

1€ (vQ: (ws)) ‘|C?’Q(Mk,5) < c,i€5/2.
In fact
2 2
1€ (vQ: (we)) HC?’Q(MIC,E) S e Hm © e C?}i([80+1,35]x51)+
_ e ek
2”62 cosh s ° Xb’e||‘23§}3([—ss,—so—llxsl) + 17 || 5 We O XmeHcM(pa,po/ﬂxSl) S 0585/2.

As for the second estimate, we recall that
T((I), Q)) = Ga,g o 5€ ("y (P(Uhp + ’U) + Zg(wcp + U) — LM}c,e Wy + Q&‘ (’LUq> + U))) .

Then
||T(CI>7 UQ) - T(CI)’ Ul)”cg’a(Mk,s) S
< [l€: (3 (P(aws + v2) = Plwe + 1)) llgoaag, . + I1€: (YEe(2 = v1)) llegeag,

+1E (7 (Qe (we +v1) — Q- (w¢ +v32))) Hcg’“(Mkﬁy

We observe that from the considerations above it follows that

I€- (v (P(ws +v2) = P(wa +v1))) g0y, .y < 2”20z = villczeag, s

s€

1€ <7Le(“2 - “1)> legeqan, oy < el = villeze,

and
||55 (’Y (Qa (w<I> + Ul) - Qa (W¢ + UQ))) ||C§’°‘(Mk,€)

We

o Xielleoa(m,.y + €7 0 Xpellcow(m, )+

< df|vg — UchQ’“(Mke (‘EQH e2cosh s

€2 cosh s
2
+e2” O‘||’ il wq)OXmaHCOaEmg)) ChE ||v2—v1||cza My

Then
||T(@, UQ) — T(®7U1)||C§,Q(Mk’a) < 063/2||U2 — 'U1||C§,O¢(Mk’a)-

To show the last estimate it is sufficient to observe that

T (@2,v) = T(®1,0)lle2oa, .y < N1Ee (7 (P(wa, +v) = Plws, +v))) lcoeag, )+
+H85 (f}/zs(w@z - wq’l)) ||Cg’a(Mk75)+

82



+[[€ (7 (Qe (wa, +v) — Q- (wo, +v))) Hcg‘“(Mk,a) <
< 053/2H¢2 — @1” + cHUHC?’O‘(Mk,E)Hq)Q — CI)1|| < 053/2||CI)2 — cI)1||
OJ

Theorem 2.10.4. Let be B := {w € C;*(M..) | ||w||2,0 < 2¢,6°/%}. Then the nonlinear
mapping T defined above has a unique fized point v in B.

Proof. The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping T is a contraction mapping from the ball B of radius 2c.>? in C?’Q(Mkﬁ) into
itself. This value follows from the estimate of the norm of 7'(®,0). Consequently thanks
to Schauder fixed point theorem, 7" has a unique fixed point w in this ball. O

This argument provides a minimal surface M (®) which is close to M, and has three
boundaries. This surface is, close to its upper and lower boundary, a vertical graph over
the annulus B, — B,_j», with 7. = £/2, whose parametrization is, respectively, given by

2 2
00r:6) = e+ (25) 4 Ho(s. = 1 %5,) 4 i),

T
Up(r,0) = =U, (r,@— o 1)

where s. = —Ine. Nearby the middle boundary the surface is a vertical graph whose

parametrization is

52

Up(r,0) = H,_,,. (7,9) + Vin(1,0).

The boundaries of the surface correspond to r = r.. All the functions V;, i« = t, m, depend
non linearly on ¢, ¢.

Lemma 2.10.5. The function Vi(g,¢:) satisfies ||[Vi(e, o1)(re, ) llcze(B,-B, ,5) < ce? and
IVile, 0i2) (1=, ) = Vile, i) (revs M2 mr—y ) < €72 0ia = @inlleze (2.57)
The function Vin(e, @) satisfies [[Vin(e, ©) (e, ) leza (BB, ,5) < ce? and

[ Vin (e, Spm,2)(p£'a ) = V(e Spm,l)(ps'v ')||C2aa(Bl—Bl/2) < 053/2”90m,2 - @mJHCQ*“ (2.58)

Proof. We start observing that the functions V;, V4, V,,, are the restrictions to F; ., F, ., By, -
of a fixed point for the operator 7. Then the wanted estimates follow from

[Vi(e, @2) (-, -) = Vile, 1) (-, )lleza(s,. B, ,5) < ce®||T (D2, V;) — T(Py, Villlez (g, .y
for i =t,b and

Vi (e, 02) () = Vi€, 1) (- MlezaB,. ~ B, 1) < CllT(P2, Vi) = T(P1, Vi)l 2o (B
and the third estimate of proposition 2.10.3. O]
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2.11 The matching of Cauchy data

In this section we shall complete the proof of theorem 2.1.1.

Using the result of section 2.7, we obtain two minimal surfaces that are perturbations of
two parts of the catenoid defined in M? x R. The first surface, that we denote by S, 4, (:),
after a translation by d; along the x3-axis, can be parameterized in Bs.. — B,_ as the
vertical graph of

2
T,(r,0) = £2In 8—72" tdy + Hy o, (1,0) + O (22),

The second surface, that we denote by Sy 4, (¢p),where ¢,(0) = ¢4 (6 and d, = —d;,

can be parameterized in Bs,.. — B,_ as the vertical graph of

~ 1)

_ _ T
Uy(r,0) = U, 0 —
o(r,6) ! (r’ k+ 1)
Using the result of section 2.5, we can construct the minimal graph S,,(¢,,). It can be
parameterized, in By, — B,._, as the vertical graph of

Un(r,0) = Hyo o (1,0) + (’)Cbz,a(&?Q).

By to the result of section 2.10, we can obtain a minimal surface M,za(\ll), with ¥ =

(Wy, Y, ¥ ), where 1,(6) = 1 (0 — 1), which is close to a truncated and scaled genus k

Costa-Hoffman-Meeks surface and has three boundaries. This surface is, close to its upper
and lower boundary, a vertical graph over the annulus B, — B,_/2, whose parametrization
is, respectively, given by

r

2 2
Ui(r,0) = 0. +€%In <€—Z> + Hy, (s —In—.,60) + (’)Cbz,a(&TQ),

g2’

s
Ui(r0) = =0 (0 - 7 )

where s. = — Ine. Nearby the middle boundary the surface is a vertical graph whose

parametrization is
2

7 € 2
Un:6) = H (516 + Oz (2.
We assume that the parameters and the boundary functions are chosen so that
el + ] + loellozasyy + lemllozacsy+
+[¢ellczacsty + [[mllc2e(sty < Ke?,
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where 7, = d; — 0., the constant k > 0 is fixed large enough. The functions ch,Oz(gz)

replace the functions V;,V,,, V;, V., that appear at the end of sections 2.5, 2.7 and 2.10.
They depend nonlinearly on the different parameters and boundary data functions but
they are bounded by a constant (independent of  and ¢) times 2 in 05 “ topology, where
partial derivatives are taken with respect to the vector fields r0, and Jy. It remains to
show that, for all € small enough, it is possible to choose the parameters and boundary
functions in such a way that the surface

Sta, (¢6) U Sha, (05) U Siuom) U ML_()

is a O surface across the boundaries of the different summands. Regularity theory will
then ensure that this surface is in fact smooth and by construction it has the desired
properties. This will therefore complete the proof of the main theorem.

It is necessary to fulfill the following system of equations

( Ut(rsa ) = Qt(rea )
Ub(rév ) = qb(ré:? )
Un(re, ) = Up(re, -)
arUb(raa ) = arUb(Taa )
87‘Ut(raa ) = aTUt(TE7 )
\ arUm(rsa ) - arUm(TeS? )

on S'. The first three equations lead to the system

{ e+ @ — Py = ch’a (€)

2.59
o — m = Ogpa€2), (2:59)

where 7, = d; — 0;.. The last three equations give the system (we applied lemma 2.12.4
and 2.12.5)

{ Dot + ) = OC;*“<52> (2.60)

a@(@m + @Z)m) = chvo‘ (52)'

Here, the functions O¢u.(g?) in the above expansions depend nonlinearly on the different
parameters and boundary data functions but they are bounded by a constant (independent
of k and ¢) times €% in C** topology. Projecting every equation of this system over the
L2-orthogonal complement of Span{1}, we obtain the system

oy — Py = chva(gz)

Pm — wm = ch*“ (52)
Ooipr + Oyt = O ()
Opom + Oy, = Oc;aa (€2>

(2.61)

85



Lemma 2.11.1. The operator h defined by
02,04(51) N Cl’a(Sl)
© — Ogp

acting on functions that are orthogonal to the constant function in the L*-sense and are
even, 1s tnvertible.

Proof. We observe that if we decompose p =} _ .-, ¢; cos(j0), then
h(e) ==Y ;cos(j0),
j>1

that is clearly invertible from H'(S') into L*(S'). Now elliptic regularity theory implies

that this is also the case when this operator is defined between Holder spaces. O
Using this result, the system (2.61) can be rewritten as
(SOM Pms wb wm) = OCQ’Q (82)' (262)

Recall that the right hand side depends nonlinearly on ¢y, vy, ¥y, ¥, and also on the
parameter 7,. We look at this equation as a fixed point problem and fix x large enough.
Thanks to estimates (2.12),(2.25), (2.57) and (2.58), we can use a fixed point theorem
for contraction mappings in the ball of radius x&* in (C**(S'))* to obtain, for all € small
enough, a solution (p;, @, ¥4, ¥y,) of (2.62). This solution being obtained a fixed point
for contraction mapping and the right hand side of (2.62) being continuous with respect
to all data, we see that this fixed point (s, @, V¢, ¥,) depends continuously (and in fact
smoothly) on the parameter 7. Inserting the founded solution into (2.59) and (2.60), we
see that it remains to solve an equation that can be rewritten under as

= O(e?), (2.63)

where this time, the right hand side depends nonlinearly on 7,. Now, provided x has
been fixed large enough, we can use Leray-Schiuder fixed point theorem in the ball of
radius xe? in R to solve (2.63), for all £ small enough. This provides a set of parameters
and boundary data such that (2.59) and (2.60) hold. Equivalently we have proven the
existence of a solution of systems (2.59) and (2.60). So the proof of theorem 2.1.1 is
complete.

2.12 Appendix

2.12.1 Harmonic extension operators

The results contained in this section are about the existence of some harmonic extension
operators. The first one gives the harmonic extension of a function defined on 0B, to

D2\ B,,.
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Proposition 2.12.1. There exists an operator
H,y : C2(ST) — C2(S" % [rp, 1)),
such that for every even function (0) € C**(S'), the function w, = H,,, solves

Aowy, =0 on S' x[rg,1]
Wy, = ¢ on S'x {ro}.

Moreover,
[[Hroolloza (st < cllellozeais, (2.64)

for some constant ¢ > 0.

Proof. We consider the decomposition of the function ¢ with respect to the basis
{cos(if)}, that is

Y= Z ©; cos(if).
=0

Then the solution w,, is given by

Since 2 < 1, then ()" < (), we can conclude that ||w,||cza(six(ro1)) < €||@]lcza(s)-
O
Now we give the statement of a result whose proof is contained in [6].

Proposition 2.12.2. There exists an operator
H : C*(S") — C25([0, +-00) x 51),

such that for all p € C**(S'), even function and orthogonal to e;, i = 0,1 in the L*-sense,
the function w = H(y) solves

(P+0Hw = 0 m S'x[0,+00)
w = ¢ on S'x{0}

Moreover
IH (@)l c2e 0,400y x51) < € llpllczacsny,

for some constant ¢ > 0.

The following result gives a harmonic extension of a function on R?\ D,.
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Proposition 2.12.3. There exists an operator
Hy : C**(S") — C**(S" x [p, +00)),

such that for each even function p(0) € C>*(S"), which is L*-orthogonal to the constant
function then w, = H;, solves

Aw,=0 on S'x|[p,+0)
w,=¢ on S'x{p}

Moreover, 3
[ Hp,pllc2a(s1x(5100)) < ll@l]c2a(sny, (2.65)

for some constant ¢ > 0.

Proof. We consider the decomposition of the function ¢ with respect to the basis
{cos(if)}, that is

w= Z ;i cos(if).
i=1
Then the solution w,, is given by
wplp8) =3 (2) prcostit)
i=1

Since 2
p

[S—y
-+
=
@
=

i)

N

xSl

< p), we can conclude that |w(r,0)| < c|¢(f)| and then
lwg|loze < cllgl|c2e- O

Lemma 2.12.4. Let u(r,0) be the harmonic extension defined on [ro, +00) X S of the
even funcion ¢ € C**(S') and such that u(ro,0) = ¢©(0). Then

Opu(r,0 — 7/2)jp=yy = —100,U(T, 0)jp=ry-
Proof. If p(0) = >, wicos(if), then the function u is given by

u(r,0) =3¢, (%)icos(ie).

i>0

Then

Ou(r,0) =" ¢, (:_0> icoi(i@)
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and ;
Opu(r,0) = — Z i (TL) isin(if).
0
Consequently

Apu(r,0 —/2) = }:%< )zaMW)

120

from which lemma follows easily. O

Lemma 2.12.5. Let u(r,0) be the harmonic extension defined on [0,70] X S* of the even
funcion ¢ € C*>*(S') and such that u(rg,0) = p(0). Then

8916(7‘, 0 — 7T/2)|r:r0 = ToaTU(T, 9)\7”21”0-
Proof. If p(0) = >, wicos(if), then the function u is given by

ngz( ) cos(i6).

120

Then i cos(if)
ro\? @ cos(i
T 70 = - ) (_>

d,u(r, ) ;wr ;
and

Opu(r,0) = Z¢Z< > isin(i).

120
Consequently
Ogu(r,0 —m/2) = ngz ( ) i cos(if)
120

from which lemma follows easily. l

2.12.2 The proof of proposition 2.4.2

We start giving the statement of a classical result about the injectivity of Ay.

Lemma 2.12.6. Given 0 <19 < r; < 1, let w be a solution of Aqw = 0 on S x [rg, r]
such that w(-,ro) = w(-,r1) =0. Then w = 0.

As consequence of the lemma 2.12.6, the operator Aq is injective. Hence, Fredholm
alternative let us assure that there exists, an unique w € C**(S* X [ro, 1]), with w(6,r)
satisfying:

{mw;fm§X%ﬂ (2.66)

w(-,rg) =w(-,1)=0.

We want to prove the following assertion.
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Assertion 2.12.7. For every 0 <ro <1, f € C™*(S! x [ro,1]) and w € C**(S* x [ro, 1])
satisfying (2.66) there ezists a constant ¢ such that

[wlleo.e(s1xro,17) < €l fllcoe(stxo,n)-

We suppose by contradiction that the assertion 2.12.7 is false, that is it does not exist
a universal constant for which the previous estimate holds. Then, for each n € N, there
exist ro,, and f,, w, satisfying (2.66) (with ro,, f,, w, instead of ro, f,w) such that

sup |fu]=1 and A,:= sup |w,|— 40 as n— oo.
SIX[TOJ“I] Slx[rom,l]

Since S X [ron, 1] is a compact set, A, is achieved at a point (6,,7,) € ST x [ro,, 1].

The sequence of sets I, = [, -] converges (up to some subsequence) to a set that we
denote by I,,. We shall show that it is non empty and contains 1. If ro,, < 1’ < r"” <1,

elliptic estimates allow us to conclude

sup [V el sup [ful+  sup fwal) < e(l+ Ay),

Stx[ro,n,r’] Sx[ro,n,r"] Stx[ro,n,r"]

with c¢ is a constant independent of n.

Then, if n — +o0, TT” — R; <1 and % — Ry > 1. The fact that R; < 1 follows from
the above estimate for the gradient of w,, near r = ry,. That implies that the supremum
A,, cannot be achieved at a point which is too close to 1, that is the the point where
w,, vanishes. In other terms the quotient %ﬂ remains bounded away from 1. Using sim-
ilar arguments it is possible to show that Vw, is bounded near 1 and consequently also

ri remains bounded away from 1. Then we can conclude that [, is not empty. We set

n

J— [Rl,RQ] where 0 < R <1< Ry < +o0 € R.

We define

Wy (0,1) = Aiwn(g,rrn) and ﬁ(@,r) = Ai fn(0,71y),

for all (6,7) € S* x I, with I,, = [ro,./Tn, 1/72]. These functions satisfy r2Aw@, = f,..
From the definition of w,,, we obtain that

- 1
Vw, = A—ann(H,rrn),
then 1A
\Vw,| < c T g

A
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Since the sequences (w,), and (V,), are uniformly bounded, Ascoli-Arzelad theorem
assures that a subsequence of (w0, ), converges on compact sets of S x I, to a non-zero
function we, that vanishes on S* x 0I. The function w,, inherits the properties of w,,.
In particular it holds

Sup |we| = 1. (2.67)
SlxIs

In the same way it’s possible to prove that a subsequence of (f,), converges on compact
sets of S! x I to the function f., = 0 since, if n — oo,

sup |J?n\ — 0.
SixI,

Then the limit function w., must satisfy the differential equation
ADwoo =0

on S' x I, with null boundary conditions on 9. So we can conclude that Vr € I
Woo(0,7) = 0. This function does not satisfy (2.67), a contradiction. This proves the
assertion 2.12.7.

The elliptic estimate

S1x[ro,1] S1x[ro,1

IVw|<C( sup |f|+ sup Iw|>,
]

allow us to get a uniform estimate of Vw. This proves the existence of a solution of
Aow = f defined on S* x [rg, 1] for which it holds

[wllco.a(stxro,1) <l fllcoe(stxiro,)-

Now it is sufficient to use again elliptic estimates to obtain the estimates for the derivatives.

2.12.3 Minimal graphs in (D? X R, gp,,)

In this section, following [39], we shall find the condition to be satisfied such that the graph
2 2
3 of a function defined on D? is minimal with respect to the metric gy, = dxl;d% + dx3,

where F' = (1 — 22 — x3)?. We shall assume that the immersion of ¥ in D? x R is given by:

(l‘h x?) - (l'h T, U(ZL'I, CCQ))

The Christoffel symbols, Ffj, associated to gy, all vanish except

25131

ﬁa

1 2 _ 12 _ 1 _
F11_1—‘21_1—‘12__I122_
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2.2132
I, =05 =0} =-T7 = —=.
12 22 21 1=
Let ey, €9, €3 be the canonical basis of R3. Then ¢; = vV Fey, 9 = VFeq, e3 = e5 are an
orthonormal basis for M2 x R. The coordinate vector fields on ¥ are
€ €
Xlz—l—i-u;lég, XQZ 2

VF VF
with W = /1 4+ F|Vu|?. The induced metric on ¥ is defined by

1
+ul,e3, N = T <—u;1\/ﬁ31 — ), V/Fe +€3> :

1 1
gll I + (ulx1)27 g22 = 75 + (ulx2)27 g12 = ug1x2'

F F
If V denotes the riemannian connection of the metric Ghyp, then the coefficients of the
second fundamental form are

1
by = (Vx, X1, N) = W (

—%u/ + Eu’ +u” e
\/F T1 \/F T2 1213 |
1 [ 2z 2z
by = (Vx, X, N) = W (\/_Flu:u - \/_%u;cz + Ugmffs) )
1 214 221

where we used the following identities

b1z = (Vx, Xo, N) =

"
222

VXle = 2.T1€1 — 2$282 + UH €3, VXQXQ = —2I1€1 + 2]7262 +u

1T 837

leXQ = 21’261 + 2:L’1€2 + UH £3.

12

The mean curvature of > with respect to gy, is given by

_ 1511922 + ba2g11 + b12912

H(XY
( ) 2 911922—9%2

Using the expressions of the coefficients of the first and second fundamental form, we find
that

F Vu
H(Y) = —di _— ] .
x) -1 ( 1+F\Vu\2>
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2.12.4 Minimal surfaces of rotation in (D? x R, gy,,)

In this section, following [39], we shall find the condition to be satisfied such that a surface
2 2
of revolution ¥ in D? x R is minimal with respect to the metric gy, = dxl;d% + dz3,

where F' = (1 — 2% — 22)?. We shall assume that the immersion of 3 in D? x R is given,
in terms of the cylindrical coordinates (r, 0, z), by:

(6,2) = (r(2),6,2),

where r(z) is a function of z.
It is convenient to express the metric gy, in terms of the new coordinates. We find

dr® +r2d6®
Ghyp = ? +dz ,

with F' = (1 —r?)%. The Christoffel symbols, I'};, associated to gp,, all vanish except

1472
r(l —r2)’

2r r(1+17?)
Fil = 1_ 2 F%z = T2 F%Q = Fg1 =

Let e, €2, e3 be the canonical basis of R?. Then the coordinate vector fields on X are

o !
X1 = r’(z)el + €3 Xg = €9, N = %(2)637

with R = + (r'(2))?. The induced metric on ¥ is defined by

1
F

(r'(2))” _ (%)
ja + 17 g22 = r ’

g1 = g12 = 0.

If V denotes the riemannian connection of the metric gy,,, then the coefficients of the
second fundamental form are

_ 1 /2r(r")? = 1 (r(l+r?
b11:<vX1X1aN>:_R_F<1(_T)2 +r”), b = (Vi Xp, N) = RF( <1—7“2>>’

by = (Vx, Xy, N) =0,

where we used the following identities

2r(r')? r(1+r?)
Vx, X; = (1 — 2 +7") e, Vx,Xo = _Welu
(14 r?)
V. Xo=——"—"e,.
X1tz r(1—r2) 2
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The mean curvature of > with respect to gy, is given by

_ 1011922 + b22g11 + b12612

H(X
( ) 2 911922 — 9%2

Using the expressions of the coefficients of the first and second fundamental form, we find
that H(X) = 0 if function r(z) satisfies the following differential equation:

r(2)r"(z) = ((2))* = (L= r(2)") = 0.
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Chapter 3

An end-to-end construction for singly
periodic minimal surfaces

3.1 Introduction

Besides the plane and the helicoid, the first singly periodic minimal surface was discov-
ered by Scherk [47] in 1835. This surface, known as Scherk’s second surface, is a properly
embedded minimal surface in R? invariant by one translation 7' we can assume along
the xo-axis, and can be seen as the desingularization of two perpendicular planes P, and
P, containing the zo,-axis. We assume Py, P, are symmetric with respect to the planes
{z1 = 0} and {z3 = 0}. By changing the angle between P, P, we obtain a 1-parameter
family of properly embedded singly periodic minimal surfaces, we will refer to as Scherk
surfaces. In the quotient R®/T by its shortest translation T, each Scherk surface has
genus zero and four ends asymptotic to flat annuli contained in P, /T, P,/T. Such ends
are called Scherk-type ends.

In 1982, C. Costa [2, 3] discovered a genus one minimal surface with three embedded
ends: one top catenoidal end, one middle planar end and one bottom catenoidal end.
D. Hoffmann and W.H. Meeks [14, 15, 16] proved the global embeddedness for this Costa
example, and generalized it for higher genus. For each £ > 1, Costa-Hoffmann-Meeks
surface Mj, (we will abbreviate by saying CHM example) is a properly embedded minimal
surface of genus k£ and three ends: two catenoidal ones and one middle planar end.

F. Martin and V. Ramos Batista [27] have recently constructed a properly embedded
singly periodic minimal example which has genus one and six Scherk-type ends in the
quotient R3/T', called Scherk-Costa surface, based on Costa surface (from now on, T
will denote a translation in the zo-direction). Roughly speaking, they remove each end of
Costa surface (asymptotic to a catenoid or a plane) and replace it by two Scherk-type ends.
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In this paper we obtain surfaces in the same spirit as Martin and Ramos Batista’s one,
but by a completely different method. We construct properly embedded singly periodic
minimal surfaces with genus k£ > 1 and six Scherk-type ends in the quotient R3/T', by
gluing (in an analytic way) a compact piece of M} to two halves of a Scherk surface at
the top and bottom catenoidal ends, and one flat horizontal annulus P/T with a disk
removed at the middle planar end.

Theorem 3.1.1. Let T denote a translation in the xo-direction. For each k > 1, there
exists a 1-parameter family of properly embedded singly periodic minimal surfaces in R3
invariant by T whose quotient in R3/T has genus k and siz Scherk-type ends.

V. Ramos Batista [42] constructed a singly periodic Costa minimal surface with two
catenoidal ends and two Scherk-type middle end, which has genus one in the quotient
R3/T. This example is not embedded outside a slab in R? /T which contains the topology
of the surface. We observe that the surface we obtain by gluing a compact piece of M;
(Costa surface) at its middle planar end to a flat horizontal annulus with a disk removed
has the same properties of Ramos Batista’s one.

In 1988, H. Karcher [22, 23| defined a family of properly embedded doubly periodic min-
imal surfaces, called toroidal halfplane layers, which has genus one and four horizontal
Scherk-type end in the quotient. In 1989, W. H. Meeks and H. Rosenberg [31] developed a
general theory for doubly periodic minimal surfaces having finite topology in the quotient,
and used an approach of minimax type to obtain the existence of a family of properly
embedded doubly periodic minimal surfaces, also with genus one and four horizontal
Scherk-type ends in the quotient. These Karcher’s and Meeks and Rosenberg’s surfaces
have been generalized in [43], constructing a 3-parameter family IC = {M, » 5}s.a.5 Of sur-
faces, called KMR examples (sometimes, they are also referred in the literature as toroidal
halfplane layers). Such examples have been classified by J. Pérez, M. Rodriguez and M.
Traizet [40] as the only properly embedded doubly periodic minimal surfaces with genus
one and finitely many parallel (Scherk-type) ends in the quotient. Each M, , g is invariant
by a horizontal translation 7" (by the period vector at its ends) and a non horizontal one
T. We denote by Mma’g the lifting of M, , s to R3/T, which has genus zero, infinitely
many horizontal Scherk-type ends, and two limit ends.

In 1992, F.S. Wei [49] added a handle to a KMR example M, in a periodic way, ob-
taining a properly embedded doubly periodic minimal surface invariant under reflection
in three orthogonal planes, which has genus two and four horizontal Scherk-type ends in
the quotient. Some years later, W. Rossman, E.C. Thayer and M. Wolgemuth [45] added
a different type of handle to a KMR example M, (o, also in a periodic way, obtaining a
different minimal surfaces with the same properties as Wei’s one. They also added two
handles to a KMR example, getting doubly periodic examples of genus three in the quo-
tient. L. Mazet and M. Traizet [29] have recently added N handles to a KMR example
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Figure 3.1: A sketch of half a KMR example M, glued to a compact piece of Costa
surface.

M0, obtaining a genus N properly embedded minimal surface in R?*/7" with an infinite
number of horizontal Scherk-type ends and two limit ends. They have also constructed
a properly embedded minimal surface in R®/T" with infinite genus, adding handles in a
quasi-periodic way to a KMR example

L. Hauswirth and F. Pacard [11] have constructed higher genus Riemann minimal ex-
amples in R3, by gluing two halves of a Riemann minimal example with the intersection
of a conveniently chosen CHM surface with a slab. We follow their ideas to generalize
Mazet and Traizet’s examples by constructing properly embedded singly periodic minimal
examples whose quotient to R3/T has arbitrary finite genus, infinitely many horizontal
Scherk-type ends and two limit ends. More precisely, we glue a compact piece of a slightly
deformed CHM example M, with tilted catenoidal ends, to two halves of a KMR example
My a0 0r My (see Figure 3.1) and a periodic horizontal flat annuli with a disk removed.

Theorem 3.1.2. Let T' denote a translation in the xo-direction. For each k > 1, there
exist two 1-parameter families IC1, IKCo of properly embedded singly periodic minimal sur-
faces in R® whose quotient in R3/T has genus k, infinitely many horizontal Scherk-type
ends and two limit ends. The surfaces in K1 have a vertical plane of symmetry orthogonal
to the x1-axis, and the surfaces in Ko have a vertical plane of symmetry orthogonal to the
To-GTLS.

L. Mazet, M. Traizet and M. Rodriguez [28| have recently constructed saddle towers with
infinitely many ends: they are non-periodic properly embedded minimal surfaces in R3/T'
with infinitely many ends and one limit end. In the present paper, we construct (non-
periodic) properly embedded minimal surfaces in R?/T" with arbitrary finite genus k > 0,
infinitely many ends and one limit end. With this aim, we glue half a Scherk example
with half a KMR example, in the case k = 0; and, when k£ > 1, we glue a compact piece
of the CHM example M to half a Scherk surface (at the bottom catenoidal end of M),

97



=5

N
2

Figure 3.2: A sketch of a surface in the family of Theorem 3.1.3

a periodic horizontal flat annuli with a disk removed (at the middle planar end) and half
a KMR example (at the top catenoidal end), see Figure 3.2.

Theorem 3.1.3. Let T denote a translation in the xo-direction. For each k > 1, there
exist a 1-parameter family of properly embedded singly periodic minimal surfaces in R3
whose quotient in R3/T has genus k > 0, infinitely many horizontal Scherk-type ends and
one limit end.

The family of KMR examples is a three parameters family which contains two subfamilies
whose surfaces have a vertical plane of symmetry. In the construction of our examples,
we need to have at least one vertical plane of symmetry in order to control the kernel of
the Jacobi operator on each glued piece. For this reason, we are not able to produce a
3-parameter family of KMR examples with higher genus in theorem 3.1.2.

The paper is organized as follows: in section 3.2, we apply an implicit function theorem to
solve the Dirichlet problem for the minimal graph equation on a horizontal flat periodic
annuli with a disk B removed, prescribed the boundary data on 0B and the asymptotic
direction of the Scherk-type ends. We construct the flat annuli with a disk removed we
will glue to the CHM example at its middle planar end. Varying the asymptotic direction
of the ends and the flux of the surface, we obtain the pieces of Scherk example we will
glue at the top and bottom catenoidal ends of the CHM example (proving theorem 3.1.1)
and to half a KMR example (theorem 3.1.3).
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In section 3.3 we briefly describe the CMH examples M} and obtain, for each genus k,
a l-parameter family of surfaces My (£) by bending the catenoidal ends of M, = M;(0)
keeping a vertical plane of symmetry. This is used to prescribe the flux of the deformed
CHM surface, which has to be the same as the corresponding KMR example we want to
glue (theorem 3.1.2). To simplify the construction of examples satisfying theorems 3.1.1
and 3.1.3, we consider a “no bent” CHM example M;. In section 3.4 we perturb My ()
using the implicit function theorem. We get an infinite dimensional family of minimal
surfaces that have three boundaries.

In section 3.5, we study the KMR examples M, , 3 and describe a conformal parametriza-
tion of these examples on a cylinder. We also obtain an expansion of pieces of the KMR
examples as the flux of M, , 3 becomes horizontal (i.e. near the catenoidal limit). Sec-
tion 3.6 is devoted to the study of the mapping properties of the Jacobi operator about
such M, , s near the catenoidal limit. And we apply in section 3.7 the implicit function
theorem to perturb half a KMR example M, ., obtaining a family of minimal surfaces
asymptotic to half a M, ,o and whose boundary is a Jordan curve. We prescribe the
boundary data of such a surface.

Finally, we do the end-to-end construction in section 2.11: we explain how the boundary
data of the corresponding minimal surfaces constructed in sections 3.2, 3.4 and 3.7 can
be chosen so that the union of these forms smooth minimal surfaces in the conditions of
theorems 3.1.1, 3.1.2 and 3.1.3.

3.2 An infinite family of Scherk type minimal surfaces
close to a horizontal periodic flat annuli

This section has two purposes. The first one is to find an infinite family of minimal sur-
faces close to a horizontal periodic flat annuli ¥ with a disk D, removed. The surfaces of
this family have two horizontal Scherk-type ends E;, 5 and will be glued on the middle
planar end of a CHM surface. We will prescribe the boundary data ¢ on 0D,. Assume
the period T of ¥ points to the xo-direction. Then F;, Fs have the xi-axis as asymptotic
direction.

The second and more general purpose of this section is to show the existence of an infi-
nite family of minimal graphs over > — D, whose ends have slightly modified asymptotic
directions. When the asymptotic directions are not horizontal, these surfaces are close to
half a Scherk surface, seen as a graph over X — D, (see Figure 3.2, above). A piece of one
such surface will be glued to the catenoidal ends of a CHM example M, and to an end of
a KMR example M, . We will prescribe the boundary data on dD;. Since we need to
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prescribe the flux along 0D,, we will modify the asymptotic direction of the ends and we
will choose |T| large.

The Scherk type end. We parametrize conformally the annulus ¥ C R3/T (with
T = |T'|ez) on C* by the mapping

T
Alw) = (—uln(w),0> , weC.
2m

A horizontal Scherk type annulus end E; is the graph of a function h € C>%(B,,(0)) on
a flat annulus A(w) with w € B,,(0) (the function h(w) is bounded and extends to the
puncture (see [12])). The immersion of F; is given by

T
T

Xi(w) = A(w) + hy(w)es = ( o

(0).h(u)) € BT
in the orthonormal frame F = (ey, €9, €3), with w € B,,(0) — {0} C R2. The period T of
the end is along the xs-axis and its asymptotic direction is e;.

The frame F can be changed in function of the asymptotic direction of the end. If Ry
denotes a rotation by the angle # about the x,-axis oriented by e, we consider the end
FE; having a non horizontal asymptotic direction. It can be parametrized by

Xi9(w) = Rg o A(w) + hy(w)Rges.

The asymptotic direction of the end is cosfe; + sinfes. That is equivalent to consider
X(z) = (—% In(z), h(z)) in the frame F(0) = RyF with z € B} (0). The coordinate w is
called Graph coordinate.

The end F, of ¥ is parametrized outside the ball Bral(()) but it admits a parametrization
on the punctured disk. Actually using an inversion we can parametrize the end by

T
Xo(w) = (—%ln(w),hQ(wo ,
with w € B; (0), in the orthonormal frame F(7) = (—ey, —e3,e3). Now the asymptotic
direction of the end is —e;.

In the following, for any given 6 = (6;,60,) € [0, 6y])*> we denote by Ay the immersion of
C* obtained by a smooth interpolation of Ry, o A({|z| < r}), Ry, 0 A({|z| > r~'}) and
A({r < |z| < r71}). Let Ny be the vector field which equals ez on {r < |z| < r~1},
Rg,e3 on {|z| <7} and Ry,e3 on {|z| > r~'}. We consider for a function h € C%%(C) the
immersion

X@JL(Z) = Ag(Z) + h(Z)Ng(Z)
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At the end E;, the mean curvature of Xy, ,(2) = Ap,(2) + h(2)Ny, (see [12]) is given in
terms of the w-coordinate (at the puncture) by

47|wl?

2H(0: 1) = 7

diVo(P_1/2th),

where P = 1 + 4TT‘1|”2‘2||V0h||(2) and the index -9 means that the corresponding object is

computed with the respect to the flat metric of the w-plane. We denote by A the smooth
2

function without zeroes defined by A(w) = % at the puncture. Then at F; we can

write

_ 1
2H = 2\H = P72 A¢h — 5j_D—f’J/?<v0P, Voh)o.

So the mean curvature at the end is zero if h satisfies the equation

1
Aoh — 5P—1<VOP, Voh)o = 0. (3.1)

Definition 3.2.1. Given k € N, a € (0,1) we define the space of functions C*(C) to be
the space of functions of Cl]f)f((C) and for which the following norm is finite

HUHck,a(C) = [u]k,a,(—?a
where [u], . ¢ denotes the usual Cke Hélder norm on the set C.

Let B the ball of radius s excised from C*, such that Xy ,(B;) = Dy is a geodesic ball
of ¥ centered at the (0,0,0). We denote by C**(C — B,) the subspace of the functions
of C%<(C) restricted to C — B, and by [C*%(C — B,)]y the subspace of the functions
vanishing on the boundary.

We denote by H (6, h) the mean curvature of Xy ;. Lemma 4.1 of [12] shows that

H(0,h) : R? x C**(C — B,) — C**(C — B,).
The Jacobi operator about Ay is Ly. We set Ly = \Ly.
Remark 3.2.2. The operators H and Ly are the mean curvature operator and the Jacobi
operator with respect to the metric |dz|* of C. Defining the operators H = AH and Ly =
ALy means to consider a different metric on C. Actually H and Ly are the mean curvature

operator and Jacobi operator with respect to the metric |dz|2/X. From the definition of
at the punctures, it follows that the volume of C with respect this metric is finite.

Ly is a second order linear elliptic operator satisfying |Lou — Au| < ¢(|61] 4 |65])|u| and
the coefficients of Fpu = (A — Ly)u have compact support.

Now we fix s such that Dy = Xy ,(B;) is the geodesic disk of radius 1/2y/c and we let
|T| becoming large. Then s depends on values of € and |T'|. We choose |T| € [4/+/2,+0)
such that s € (0, s9) for a value s fixed.
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Proposition 3.2.3. There exists €9 > 0 and 1y > 0 such that for every e € (0,eq) and
T’ € (no, +00), the operator

G&m : Co’a(@ - Bs) — C2’a(C - Bs)
is a left inverse for A and for all f € C**(C — By), w := G 7|(f) satisfies

Aw = f on C— B,
w € Span{l} on 0B

and ||wl|cza < || fl]|co.a for some constant ¢ > 0 which does not depend on €, |T)|.

Proof. Let u be a solution of Au = f on C — B, with v = 0 on 833; We set
— J=_ 5 u. We want to observe that the metric in use on C is given
vol(C—Bs) JC—B;

by |dz|?/X\. With respect to this metric vol(C — B,) < +oo and [r_p u < occ. So the
function w is well defined and fC—Bs w = 0 with w € Span{1} on 0B;.

w = u—

If the proposition is false, there is a sequence of functions f,,, of solutions w,, and of real
numbers s,, such that

sup |fa|=1, A,:= sup |w,| — +o0 as n — +oo,
C-B., C—B.,
where s,, € [0, s0]. Now we set w,, := w,/A,. Elliptic estimates imply that s, and 0,
converge up to a subsequence, respectively, to s, € [0, sg] and to W, on C — B,_. This
function satisfies
Ay, = 0.

Then ., = const on C — B,__ and f@—Bs Wo = 0, a contradiction with sup w, = 1. [

Now we fix |T| > 4/+/c, 0 € (0,¢)?, s. = # and let ¢ € C*>*(S') be even (or odd) L*-

orthogonal to the function z — 1, with ||¢||¢2.e(s1) < Ke. Let w, = H,, , (see proposition
3.9.2) be the unique bounded harmonic extension of ¢. We would like to solve the minimal
surface equation H(6,v + w,) = 0 with fixed boundary data ¢, prescribed asymptotic
direction 6 and with period |7|. Then we have to solve the equation:

Av = Fy(v 4+ wy,) + Qo(v + w,)

with Qp a quadratic term such that |Qg(vy) — Qg(vs)| < c|v; — v2|%. The resolution of the
previous equation is obtained by showing the existence of a fixed point

v=2S(0,0,v)

where
S0, ¢,v) = Ge | (Fo(v + wy,) + Qo(v + wy,)).
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Proposition 3.2.4. There exists ¢, > 0 and ¢, > 0 such that for all |T| > 4/\/¢ we have

HS(@, 2 O)HCQ’O‘ < CK€2
and for all € € (0,¢e,),

1
156, @, v1) = S0, 0, 02) ez < 5[0z = vrle2e

1S(0, p1,v) — S(0, p2,0)|]c2.0 < cel|pa — 1]z

for all v,vi,v; € C**(C — B,) and satisfying ||v]|cze < 2ck2, for all boundary data
0,01, p2 L 1, whose norm is bounded by a constant k times € and for all 6§ = (01, 05) such
that |01| + |02| < E.

Proof. Using the proposition 3.2.3, the inequality |Lou — Au| < ¢(|601]| + |62])|u| and the
quadratic behavior of )y we derive the estimate of the proposition. The details of the
proof are left to the reader. O

On the set Bys. — Bs_, the function U = v + IZISEM is the solution of the equation (3.1).
Using the vertical translation cyes we can fix the value at the boundary:

U:C0+HSE7<P+U.

Using Schiauder estimate for the equation on a fixed bounded domain

[v(p1) — U(W)Hc%a(@&) < cxéller — %02Hc27a(31)-

This can be done uniformly in (0, 6;). We observe that the function U grows logarithmi-
cally close 0B;.. The hypothesis of orthogonality of ¢ to the constant function, implies
that the function w,, enjoys the same property and is bounded. It is not the case of v which
can be seen as the sum of a bounded function and a function of the form cln(r/s.), where
¢ = ¢(|T,01,02), defined in a neighbourhood of 0B,_. We are able to determine ¢ using
flux formula. Let 71,72 be two closed curves in /T chosen in such a way to correspond
by the conformal mapping to the boundaries of two circular neighbourhoods Ny, N5 of the
punctures corresponding to the ends with linear growth. Let S = C—(B,, UN;UN,). Now
we observe that, being X the parametrization of a minimal surface, then the following

equality holds:
/ AX =0,
S

Thanks to the divergence theorem, if I' = 0S, then

/AX = a—de = (‘3_de + a—de +/ a—de =0,
s r on v On e ON oBs. On
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where 7) denotes the conormal along I'. This equality implies
ou
/ —ds = —sin01|T| — sin 65| T.
dBs, on
By integration we can conclude that on By, — B,_, it holds that
_7l
T

with v+ 1 1. Now we choose |T'| such that %(sin 01 +sinfy) = 1.

U= (sin @y + siny) In(r/s.) + co + w, + vt

We observe that, if , = 6; = 0, we can state that there exists an infinite family of minimal
surfaces which are close to the surface ¥ — D,_. We denote by S,,(¢) one of such surfaces.
It can be seen as the graph about By, — B, of the function

Un(r,0) = co + ﬁ[se,g,(r, 0) + V,,

where V,,, = ch,a<€> and it satisfies

Vi (1) = Vin(@2) ez (Bay. — B..) < cueller — @2llcza(sny, (3.2)

for ¢, 1 € C2(S1).

If (05,01) # 0, we can state that there exists an infinite family of minimal surfaces which
are close to the periodic Scherk type example. After a vertical translation, they can be
seen as the graph about By, — B,, of the function

Uy(r,0) = —In(2r) + co + H,. ,(r,0) + V,

where V; = Ogza(e) and it satisfies

V(1) = Vi(@2)lleza(Bas, - B.,) < Cutllor — @2llezacsy), (3.3)
for ¢o, 1 € 02’a<51)-
Remark 3.2.5. If the boundary data ¢ is an even function, it is clear the surfaces we
have just described are symmetric with respect to the vertical plane x4 = 0. Instead, if the

boundary data ¢ is an odd function and 61 = 05 the surfaces are symmetric with respect
to the vertical plane x1 = 0.
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3.3 A Costa-Hoffman-Meeks type surface with bent
catenoidal ends

In this section we recall the result shown in [11] about the existence of a family of minimal
surfaces close to the Costa-Hoffman-Meeks surfaces of genus k£ > 1, one planar end and
two slightly bent catenoidal ends by an angle £. We denote one member of the family by
M;.(§). Then M;(0) is the family of the Costa-Hoffman-Meeks surface of genus k.

The family of the Costa-Hoffman-Meeks surfaces. Each member of the family of
surfaces My (0), after suitable rotation and translation, enjoys the following properties.

1. It has one planar end F,, asymptotic to the z3 = 0 plane, one top end FE; and one
bottom end Ej, that are respectively asymptotic to the upper end and to the lower
end of a catenoid with xs-axis of revolution. The planar end F,, is located between
the two catenoidal ends.

2

2. It is invariant under the action of the rotation of angle ;=5 about the x3-axis, under
the action of the symmetry with respect to the x5 = 0 plane and under the action
™

of the composition of a rotation of angle ;75 about the z;-axis and the symmetry
with respect to the x3 = 0 plane.

3. It intersects the x3 = 0 plane in £ + 1 straight lines, which intersect themselves at
the origin with angles equal to 75. The intersection of My with the plane x5 =
const (# 0) is a single Jordan curve. The intersection of M; with the upper half
space x3 > 0 (resp. with the lower half space x3 < 0) is topologically an open

annulus.

Now we give a local description of the surfaces M;(0) near its ends and we introduce
coordinates that we will use.

The planar end. The planar end F,, of the surface Mj can be parametrized by

X,(z) = (u%,um(x)> cR3

where z € B,,(0) — {0} C R?. Here py > 0 is fixed small enough. The minimal surface
equation has the following form

Vu
4 3 — . -4
ol div ((1 Tl \Vu\?)l/?) 0 (34)

It can be shown (see [11]) that the function u,, can be extended at the origin continuously
using Weierstrass representation. In particular it is possible to show that u,, € C**(B,,)
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and u,, = ch,a(|l'|k+l), where the expression Ogr.(g) denotes a function that, together
with its partial derivatives of order less than or equal to n + « is bounded by a constant
times g.

If we linearize in u = 0 the nonlinear equation (3.4) we obtain the expression of an
operator which is the Jacobi operator about the plane, that is Lgz = |z|*A. To be more
precise, the linearization of (3.4) gives

L, v = |z|*div < Vv — |2[*Vu Vu- Vv ) ) (3.5)

V1A 2[4 Vul? V(L[] [Vu)?

We will give the expression of H,,, the mean curvature of the graph of the function u+wv,
in terms of the mean curvature of X, that is H,. Here we shall show that

2H, 4y = 2H, + L, + |2[*Qu (/|2 Vv, /|24 V?v), (3.6)

where (), satisfies

Qu(0,0) = VQ,,(0,0).
To show (3.6), we start observing that:
1 B 1 Vu - Vo
VIH RN+ 1+ [ [Vu]? VI [z Vul2)3

where the function @), ; satisfies ), 1(0) = VQ,.1(0) = 0. To prove (3.7) it’s sufficient to
set

= |f*

+ Qu,1(v) (3.7)

1
7t = . :
V1424V (u+ to)]
and to write down the Taylor’s series of order one of this function and to evaluate it
int =1. That is f(1) = f(0) + f'(0) + 3/”(f), with ¢ € (0,1). We insert (3.7) in the
expression that defines 2H,, ., to get

: \% Vu -V
|z[*div ( - —i-(ijlt‘fV)uP — |2[*V (u +v) NG +Tx|4|;u|2)3 + V(u+ U)Q%l(v)) =

Vv = e'Vu Vu - Vo

V1 [t Val? V(L [ Vul?)3

From this it follows the wanted expression.

2H, + |z|*div ( > + 2[*Qu (|2 >V, |2|*V?v).

Since we assume that >, is a minimal surface, we will consider H, = 0. Then we get the
expression of the minimal surfaces equation that we will use in the following sections:

|| (AOU + 1+ [z|4Vul? (L, + Qu|z[* Vo, |$|2V2v))> =0, (3.8)
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where L, is a second order linear operator whose coefficients are in Ogz. (|z]**1) .

The catenoidal ends. We denote by X. the parametrization of the standard catenoid
C whose axis of revolution is the x3-axis. Its expression is

X.(s,0) := (cosh s cos, cosh s sinf,s) € R?

where (s,60) € R x S'. The unit normal vector field about C' is given by

ne(s,0) :=

p—— (cosf,sinf, —sinh s).

Up to some dilation, we can assume that the two ends F; and E, of M) are asymptotic
to some translated copy of the catenoid parametrized by X, in the vertical direction.
Therefore, F; and E}, can be parametrized, respectively, by

X, =X, +wn.+ o e3
for (s,0) € (sg,00) x S*,
Xy =X, —wpn. —ope3

for (s,0) € (—o0, —sg) x St, where 0}, 0, € R, functions wy, w;, tend exponentially fast to
0 as s goes to oo reflecting the fact that the ends are asymptotic to a catenoidal end.

We recall that the surface parametrized by X := X, + wn, is minimal if and only if the
function w satisfies the minimal surface equation which, for normal graphs over a catenoid
has the following form

Low + % (Qz (

cosn s

)+costh3( v )):0, (3.9)

cosh s cosh s

where Lo is the Jacobi operator about the catenoid, that is

1 2w
Lew = 2w + Ofgw + ———5—
¢ cosh? s ( o o cosh? s

and @, Q3 are linear second order differential operators which are bounded in C*(R x S*)
for all k. These functions satisfy Q2(0) = Q3(0) = 0, VQ-(0) = VQ3(0) = 0,V2Q3(0) =0
and then:

7j—1
1Q;(v2) — Qj(vl)HCO’O‘([s,s—i—l]xSl) <c (SUP ||Ui||C270‘([s,s+1]><S1)) v — UlHCQvO‘([s,s—&—l]xSl)

1=1,2
(3.10)
for all s € R and all vy, v, such that ||v;|c2.afss41x51) < 1. The constant ¢ > 0 does not
depend on s.
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The family of Costa-Hoffman-Meeks surfaces with bent catenoidal ends. Using
an elaborate version of the implicit function theorem and following [19] and [26] it is
possible to prove the following

Theorem 3.3.1 ([11]). There exists & > 0 and a smooth one parameter family of
minimal hypersurfaces (My(§))e, for & € (—&o,&0), with two catenoidal ends and one
planar end. In particular M (0) = My, the upper (resp. lower) catenoidal end of My (§) is,
up to a translation along its axis, asymptotic to the upper (resp. lower) end of the standard
catenoid whose axis of revolution is directed by sin & ey 4 cos & es. Moreover M(€) has one
horizontal planar end and is invariant under the action of the symmetry with respect to
the xo = 0 plane.

The upper (lower) end of My(€) is, up to a translation, asymptotic to the upper (lower)
end of the same (standard) catenoid. Then the upper end E;(£) and the lower end Ey(€)
of My (§), if Re denotes the rotation of angle £ about the x, axis, can be parametrized
respectively by

Xt7£ = Rf (Xc + Wt e nc) + Ot €3 + St.e €1 (311)

Xpe = Re (Xe —wpene) — opees — Geen (3.12)
where the functions wy ¢, wp ¢, the numbers o, ¢,G ¢, 0¢, ¢ € R depend smoothly on &
and satisfy

|01 e =0l +lov e =0 FlsrelHvelFllwee—will 20 (50 100y w51y T Wne =Wl o220 (oo —sgyxsr) < €l

for [§] < |-

For all p < pg and s > sy, we define
My(€, 5. ) = Mi(€) — [Xoe((5,00) x §") U Xye((—00, —s) x 1) U X(B,(0))] . (3.13)

The parametrizations of the three ends of M; () induce a decomposition of M () into
slightly overlapping components: a compact piece M (&, so + L, po /2) and three noncom-
pact pieces X;¢((s0,00) X S1), Xpe((—00, —s0) x S') and X,,(B,,(0)).

We define the weighted space of functions on M ().

Definition 3.3.2. Given ( € N, o € (0,1) and 6 € R, the space Cy*(My(€)) is defined to
be the space of functions in Cf’a(Mk(é’)) for which the following norm is finite

loc

lwlleee an ey = Nwllete e soripnsz) + 11w 0 Xmlleta (s, o)

+sup e (Jlw o Xpellot((sstayxst) + 1w 0 Xpgllera(—a1,—sxs))
$2280

and which are invariant under the action of the symmetry with respect to the xo = 0 plane,
that is w(p) = w(p) for all p € My(§), where p := (x1, —x2,x3) if p = (21, T2, T3).

108



We remark that there is no weight on the middle end. In fact we compactify this end
and we consider a weighted space of functions defined on a two ended surface. We will
perturb the surface M (&) by the normal graph of a function u € C?’a and the middle end
E,,, will be just translated in the vertical direction.

The Jacobi operator. The Jacobi operator about M (&) is

L (e) := D) + [Ano

where Ay, )| is the norm of the second fundamental form on M (§).

In the parametrization introduced above of the ends the volume forms dvolys, ) can be
written as v, ds df and 7, ds df near the catenoidal type ends and as ~,, dri dzo near the
middle end. Now we can define globally on M (£) a smooth function

7+ My (§) — [0, 00)

that is identically equal to 1 on M (&, so—1,2p0) and equal to 7; (resp. 7, Vm) on the end
Ey(€) (resp. Ey(€), Ey). Observe that, on X;¢((s0,00) x S') and on Xp¢((—00, —s¢) x S*)
we have

v 0 X£(s,0) ~ cosh® s and v 0 Xpe(s,0) ~ cosh?s.

Finally on X,,(B,,), we have
v 0 Xo(w) ~ [ ™%

Granted the above defined spaces, one can check that:

Les: CRU(My(€) — C3(Mi(€))
w — L) (w)

is a bounded linear operator. The subscript 0 is meant to keep track of the weighted space
over which the Jacobi operator is acting. Observe that, the function v is here to coun-
terbalance the effect of the conformal factor 1 in the expression of the Laplacian

V196, 6

in the coordinates we use to parametrize the ends of the surface M (). This is precisely
what is needed to have the operator defined from the space C;**(M;(€)) into the target
space Cy™(My(€)).

To have a better grasp of what is going on, let us linearize the nonlinear equation (3.9)
at w = 0. We get the expression of the Jacobi operator about the standard catenoid

cosh? s cosh? s

Lo = — (8§+8§+—2 )
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We can observe that the operator cosh” s Lo maps the space (cosh s)° C2%((sg, +00) x S*)
into the space (cosh 5)? C%((sq, 00) x S1).

Similarly, if we linearize the nonlinear equation (3.4) at v = 0, we obtain (see (3.5) with
u = 0) the expression of the Jacobi operator about the plane

]LRQ = |Z“4 A(].

Again, the operator |z|™*Lg: = Ag clearly maps the space C2’Q(Bp0) into the space
C%*(B,,). Now, the function v plays, for the ends of the surface Mj/(¢), the role played
by the function cosh® s for the ends of the standard catenoid and the role played by the
function |x|=* for the plane. Since the Jacobi operator about My (€) is asymptotic to Lge
at E,, and is asymptotic to Lo at E,(§) and Ey(§), we conclude that the operator L
maps C;*(Mj(€)) into C3*(My(€)).

We recall the notion of non degeneracy introduced in [11]:

Definition 3.3.3. The surface My (§) is said to be non degenerate if Le s is injective for
all § < —1.

It useful to observe that a duality argument in the weighted Lebesgue spaces, implies that
(Les  isinjective) << (Le_s is surjective)

if 0 ¢ Z. See [34] and [19] for more details.
The non degeneracy of M, (&) follows from the study of the kernel of L .

The Jacobi fields. It is known that a smooth one parameter group of isometries con-
taining the identity generates a Jacobi field, that is a solution of the equation L, oyu = 0.
These solutions are generated by the following one parameter groups of isometries: the
vertical translations, the translations along the x;-axis, the dilations. We refer [11] for
details.

The group of vertical translations generated by the Killing vector field =(p) = e3 gives
rise to the Jacobi field

3 (p) = n(p) - es.
The vector field Z(p) = p that is associated to the one parameter group of dilation
generates a Jacobi fields

o (p) == n(p) - p-
The Killing vector field =Z(p) = e; that generates the group of translations along the
r1-axis is associated to a Jacobi field

O (p) == n(p) - €.
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Finally, we denote by
4 (p) :=n(p) - (e2 X p)

the Jacobi field associated to the Killing vector field =(p) = ey x p that generates the
group of rotations about the z,-axis.

The Jacobi equation has other solutions which are not taken into account because in the
difference with the four Jacobi fields just introduced they are not invariant under the
action of the symmetry with respect to the x5 = 0 plane.

With these notations, we define the deficiency space
D := Span{y, &/, x, &F . j=0,1}

where y, is a cutoff function that is identically equal to 1 on X, ¢((so + 1,00) x S),
identically equal to 0 on M (£) — Xt ¢((s0,00) x S') and that is invariant under the action
of the symmetry with respect to the x5 = 0 plane. Also, we agree that

Xo(+) = xe(=)-
Clearly for 6 < 0 :
Les: CU(Mp(€) @D — C3(My(€))
w — 7 Lz (w)

is a bounded linear operator.

A result of S. Nayatani shown in [36, 37] and extended in chapter 1 assures that the
bounded Jacobi fields of M}, invariant with respect to the mirror symmetry across the xo =
0 plane, is linear combination of ®%* and ®!'*. This fact together with an adaptation to
our setting of the linear decomposition Lemma proved in [26] for constant mean curvature
surfaces (see also [19] for minimal hypersurfaces) allows us to get the following result

Proposition 3.3.4. We fiz § € (—2,—-1). Then (reducing & if this is necessary) the
operator Le s, for [E] < &o, is surjective and has a kernel of dimension 4.

From that we get the following one about the operator L s

Proposition 3.3.5. We fiz § € (1,2). Then (reducing & if this is necessary) the operator
Le s is surjective and has a kernel of dimension 4. Moreover, there exists Ges a right
inverse for Le¢s that depends smoothly on & and in particular whose norm s bounded
uniformly as €] < &.
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3.4 An infinite dimensional family of minimal surfaces
which are close to Mj(&)

In this section we consider a truncature of M (§). First we recall a result of [11] that
describes the region of the surface which can be parametrized by a graph on a x3 = 0
plane.

Lemma 3.4.1 ([11]). There exists €g > 0 such that, for all ¢ € (0,e0) and all || < € an
annular part of the ends Ei(§), Ey(§) and E,, of My(§) can be written as vertical graphs
over the annulus Bs,. — B,_/s for the functions

Ui(r,0) = o1 +In(2r) — &7 cos + Oce (<),
Up(r,0) = —ope —In(2r) — &1 cos + Ocpe(e),
Up(r,0) = (’)cgo(r_(’““)).

Here (r,0) are the polar coordinates in the x5 = 0 plane. The functions O(e) are defined
in the annulus By, — B,_» and are bounded in C;° topology by a constant (independent

on ) multiplied by e, where the partial derivatives are computed with respect to the vector
fields r 0, and Oy.

Then My(e/2) has two ends E;(¢/2) and E,(¢/2) which are graphs over the 3 = 0 plane
for functions U; and U, defined on the annulus B;,. — B,_ /. We set

1
Se = —élne and p. = 2172,

We define M/ (¢/2) to be equal to My(g/2) from which we have removed the image of
(Se,+00) X S* by X; /2, the image of (—oo, —s.) x S* by X, /> and the image of B,_(0) by
X, In this section we will prove the existence of a family of surfaces close to M/ (¢/2).
We follow the work [11].

First, we modify the parametrization of the end E;(¢/2), Fy(¢/2) and E,,, for appropriates
values of s, so that, when r € [3r./4,3r./2] the curves corresponding to the image of

0 — (r cos@,r sin@,Uy(r,0)), 60— (rcos@,r sinb, Uy(r,0))

correspond to the curve s = £ log(2r).

The curve § — (r cosf,r sin@, U,,(r,0)) corresponds to p = 2.

r

The second step is the modification of unit normal vector field on Mj(e/2) into a trans-
verse unit vector field 7./, in such a way that it coincides with the normal vector field
ne/2 on My(e/2), is equal to ez on the graph over Bs,_j» — Bs,_s4 of the functions U; and
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Uy and interpolate smoothly between the different definitions of 7./, in different subsets
of MI'(g/2).

Finally we observe that close to E;(£/2), we can give the following estimate:

|cosh? s (L, (c/2)v — cosh™ s (92,0 + Oggv) ) | < ¢|cosh™?sv]. (3.14)
This follows easily from (3.9) together with the fact that w,¢ (see (3.11)) decays at least
like cosh™ s on E,(¢/2). Similar considerations hold close the bottom end Fj(s/2). Near
the middle planar end E,,, we observe that the following estimate holds:

||33\_4 (LMk(E/Q)U - |$|4on)‘ < c|]x|2k+3Vv} ) (3.15)

This follows easily from (3.5) together with the fact that u,, decays at least like |z|**! on
E,,.

The graph of a function u, using the vector field 7. /5, will be a minimal surface if and
only if u is a solution of a second order nonlinear elliptic equation of the form

where L7 (/) is the Jacobi operator about MF(g/2), Q. is a nonlinear second order

differential operator and Es/g is a linear operator which takes into account the change
of the normal vector field (only for the top and bottom ends) and of the change of the
parametrization. This operator is supported in a neighbourhood of {+s.} x S! where
its coefficients are uniformly bounded by a constant times ¢ and of {p.} x S! where its
coefficients are uniformly bounded by a constant times 2.

Now, we consider three functions oy, ¢y, @, € C**(S') which are even, with respect to 0,
0y, oy are L2 orthogonal to 1 and cos @ while ,, is L? orthogonal to 1. Assume that they
satisfy

[@tlleze + llpnlleze + lmllcze < me. (3.16)
We set @ := (¢4, ¥b, ¢m) and we define wg to be the function equal to

1. x4+ Hy, (5. — s,-) on the image of X, ./, where x is a cut-off function equal to 0 for
s < so+ 1 and identically equal to 1 for s € [sg + 2, s.],

2. x- H,, (s — s.,-) on the image of X;./» where x_ is a cut-off function equal to 0 for
s > —so — 1 and identically equal to 1 for s € [—s., —s¢ — 2],

3. Xm Hp. 0, (+,-) on the image of X,,, where yx,, is a cut-off function equal to 0 for
r > po and identically equal to 1 for p € [p., po/2],
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4. 0 on the remaining part of the surface M}/ (/2).

The operators H and H are harmonic extensions, introduced in appendix A respectively
in propositions 3.9.2 and 3.9.4.

We would like to prove that, under appropriates hypothesis, the graph about M/ (¢/2) of
the function u = wg + v is a minimal surface. This is equivalent to solve the equation:

Lz (e/o)(we +v) = Lep(we +v) + Qe (we + v)

on M (¢/2), so that the graph of u = wg + v will be a minimal surface. The resolution of
the previous equation is obtained thanks to the one of the following fixed point problem:

v=T(d,v) (3.17)
with ~
T(®,v) = Gepa50E: <7 <L5/2(w¢, +v) — Loz e /2) wo + Q:(we + U)))

where § € (1,2), the operator G./ss is defined in proposition 3.3.5 and & is a linear
extension operator such that

E.: CI(M] (£/2)) — CO*(My(£/2)),

where Cy* (M} (¢/2)) denotes the space of functions of Cy** (Mj,(¢/2)) restricted to M} (¢/2).
It is defined by v = v in M (¢/2), v = 0 in the image of [s. + 1, +00) X S* by X, /s, in

the image of (—oo, —s. — 1) x S' by X, ./ and in the image of B,_j, x S* by X,,. Finally

&.v is an interpolation of these values in the remaining part of M (¢/2) such that

(Ev) 0 Xiepa(s,0) = (14 s — 5)(vo Xyepa(se,0)), for (s,0) € [s.,s.+1] xS,

(Ev) 0 Xpyepa(5,0) = (L + sc + 8)(v 0o Xpepa(se,0) for (s,0) € [—s. —1,—s] x S,

(£.0) 0 X(p,0) = (pip - 1) (00 Xn(pes8)) for (p.6) € [pe/2pe] x 5"

Remark 3.4.2. As consequence of the properties of &, if suppvN (Bpe — Bps/g) # () then
[(€0) © Xonllcvmte) < o710 0 Xinlleoa g5,

This phenomenon of explosion of the norm does not occur near the catenoidal type ends:

||(85U) O Xtﬁ/QHCO,a([SO,J’,OO)XSl) < CHU @) Xt,e/2||Co’a([so,sg]><5'1)-

A similar equation holds for the bottom end.
In the following we will assume o > 0 and close to zero.
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The existence of a solution v € C;'*(M](¢/2)) for the equation (3.17) is a consequence of
the following result which proves that 7" is a contracting mapping.

Lemma 3.4.3. There exist constants ¢, > 0 and €, > 0, such that
IT(2,0)[lgze < e 3/ (3.18)

and, for all e € (0,e,), 0 < a < %,

1
|T(P,v2) — T(®7U1)||C§‘Q(Mk(e/2)) < 2 [v2 — U1||c§»a(Mk(5/2))a

HT((DQ,’U) - T<(I)1’/U)HC§’Q(M]C(5/2)) < ce H(DQ — @1“02,04(51), (319)

where we have set for short
||(I>2 - ‘I)lﬂcza(sl) = ||S0t,2 - SOt,1||c2»a(sl) + ||80b,2 - SOb,IHC?’a(Sl) + H@m,z - SOm,chza(sl)

for all v,v,vy € C3*(M[(¢/2)) and satisfying HUHC?Q < 2¢,%? and for all boundary
data @, @y, Py € [C3*(S)]? satisfying (3.16).

Proof. We recall that the Jacobi operator associated to M (s/2), is asymptotic to the
operator of the catenoid near the catenoidal ends, and it is asymptotic to the laplacian
near of the planar end. The function wg is identically zero far from the ends where the
explicit expression of Ly, (./2) is not known: this is the reason of our particular choice in
the definition of we. Then from the definition of wg, thanks to proposition 3.3.5, to (3.14)
and (3.15), we obtain the estimate

1€ (’VILM,;(E/z) wcb) leg- (aty ey =

"<7LM§(5/2) - (83 + 83)) (we o Xt,s/2)‘

Cg’&([so—‘rl,sg] x S1)

| (Vasziem = (82 +08)) (wo 0 Xiep)

CY*([~se,—s0—1]xS1)

|| (4L —A) w oXm‘
P H(V Mt~ So) (wa ) €O ([pepo] xS

< e eosh 5 (100 0 Xuepo)lla sy 085 0 © X g +

—se,—s0—1]xS1)

087% Hp2k+3v<w¢ e} Xm) ‘ |Co,a([p5,po]xsl)

2 3/2 3/2
L ceg€ —i—cks/ <c,is/.
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To obtain this estimate we used the following ones:

sup e % lcosh ™2 s (we 0 Xiz)2

[so+1,sc]x St

) <c  sup e %220, <
. ~ 5
|O,a,[s,s+1] [50+ 1,5 51 a X

ce |y 2.0 < cpe’

(a similar estimate holds for the bottom end) and

[ sup ) |02k+3v(w¢ o X))l < cs_a/2||02k+3w<1>||C2v°‘([p87po]xsl) < Ck:53/2-
Pe,po] XS

Using the properties of L. /2, We obtain

HSE <7L5/2 w@) Hcg’a(Mk(g/Q)) < CEqu’OXt,s/QHcg’a([50+1,s€]x51)+cgqu)oXb,s/QHcg’a([_s&_s()_l]xsl)‘i‘

+C€1_°‘/2||wq> o Xm”co,a([p&po}xsl) < 0553/2.

As for the last term, we recall that the operator (). has two different expressions if we
consider the catenoidal type end and the planar end (see (3.9) and (3.8)). It holds that

Hga (’7@& (w<1>)) ||C§’°‘(Mk(a/2)) < CkES/Q-

In fact
1€ (VQ: (wa)) ’|C§’“(Mk(e/2)) < dfjwg o Xt,s/2”%};([sﬁlﬁdxslﬁ

2 —a 2 3/2
cllwe © Xoepallcza (. s sty T & lwa 0 Xmllgzaoe popxsn) < ke .

As for the second estimate, we recall that
T(®,v) = Gy 0 & (7 (EE/Q(wq, +0) = Lagr(e/o) wo + Q- (wa + v))) .

Then

1T (@, v2) = (P, v1) |2 (g e 2

< ¢l (’YLe/?(W - Ul)) Hcg»“(Mk(a/Q))"‘CHga (7 (Q= (we +v1) — Q= (wa + v2))) ’lcg’“(Mk(e/Q))‘
We observe that from the considerations above it follows that
1€ <7Le/2(“2 - “1)) leoaagye/ayy < cellva = vallezear, o))

and
1€ (7 (Qe (wa + v1) = Qe (Wa + 2))) [0 (11, (c/2))
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< ellva = villezeag, /2
Then
|T(®, v2) — T((I)Wl)Hcg’a(Mk(E/z)) < cellvy — U1|‘c§*“(MkT(s/2))‘

To show the last estimate it is sufficient to observe that
[T (D2, v) — T(®17U>HC§’O‘(M]€(5/2)) < € (7L(wc1>2 - wfbl)) Hcg’“(Mk(g/g))‘F

—|—||55 (’7 (Qs (w<1>2 + U) - Qa (w<1>1 + U))) ||cg,a(Mk(€/2)) <
e R e L N B A
L]

Theorem 3.4.4. Let be B == {w € C;* (M) |||w||o.0 < 2cxe*?}. Then the nonlinear
mapping T defined above has a unique fized point v in B.

Proof. The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping T is a contraction mapping from the ball B of radius 2c,.£%? in C;*(M[ (¢/2)) into
itself. This value follows from the estimate of the norm of 7'(®,0). Consequently thanks
to Schauder fixed point theorem, 7" has a unique fixed point w in this ball. O

This argument provides a minimal surface M (¢/2, ®) which is close to M; (¢/2) and has
three boundaries. This surface is, close to its upper and lower boundary, a vertical graph
over the annulus B,, — B,_/» whose parametrization is, respectively, given by

Ui(r,0) = 012 +1n(2r) + gr cost + H,,(sc —In2r,0) + Vi(r,0),

Up(r,0) = =022 — In(2r) + %T cosf + Hy,(s: —In(2r),0) + Vi(r, ),

where s. = —1 Ine. The boundaries of the surface correspond to r. = %e7'/2. Nearby
the middle boundary the surface is a vertical graph over the annulus B, — B, . Its
parametrization is

Un(r,0) = H,, o, (1/7,0) 4+ Vi, (1, 6).
All the functions V; for ¢+ = ¢, b, m depend non linearly on ¢, ¢.

Lemma 3.4.5. The functions Vi(e, :), for i = t,b, satisfy ||Vi(e, 0i)(re-, ) ez (BB, ,5) <
ce and

2020 0,5 — 01 ||e2a (3-20)

[Vie, i) (res, ) — Vile, i) (re, ')Hc%a(BrBl/z) < ce
The function Viu(e, @) satisfies [|Vin(e, ) (e, *)l|c2a(B,-B, ) < c€ and

Vi (&, m2) (per ) = Vin(es m1) (s Mleza(Bo—p, p) < CElPm2 — mlleze (3.21)
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Proof. We start observing that after having observed that the functions V;, V;, V,,, are the
restriction to Ei(e/2), Ey(¢/2), E,, of a fixed point for the operator 7. Then the wanted
estimates follow from

1Vi(e,2) (5 ) — Vile, 1) (5 ) ez (Bore—B,_jz) S ce” | T(®s, Vi) — T(Py, V;)Hcg»a(Ei(E/z))a
for ¢ =t,b and
va(gy 902)('7 ) - V’m(€7 ()01)(.? ')HCQVO‘(BQPE—BPE/Z) < CHT(<D27 Vm) - T(®17 Vm)||c2,a(Em)

and the estimate (3.19) of proposition 3.4.3. O

3.5 KMR examples

In this section, we briefly present the KMR exzamples M, , 5 studied in [22, 23, 31, 43]
(also called toroidal halfplane layers), which are the only properly embedded doubly pe-
riodic minimal surfaces with genus one and finitely many parallel (Scherk-type) ends in
the quotient (see [40]).

For each 0 € (0,%), a € [0 7] and 3 € [0, 5] with (a, 3) # (0, 0), consider the rectangular
torus X, = {(z w) € c | w? = (22 + A (2 + A~ )}, where A = A(0) = cot § > 1. The

KMR example M, , g is determined by its Gauss map g and the differential of its height
function A, which are defined on >, and given by:

b d
g(Z, U)) = .azj_’_—? dh = H _z
i(a—bz)
with 5 s
a = a(a, 3) = cos “5= +icos 457;
b= b(a, 3) = sin 252 + isin 412, (3.22)
=) = a&ifﬁ"a>
where K(m fo \/1—2 du , 0 < m < 1, is the complete elliptic integral of first kind.

Such p has been chosen so that the vertical part of the flux of M, , 3 along any horizontal
level section equals 27.

Remark 3.5.1. The following statements give us a better understanding of the geometrical
meaning of a,b defined above:

(i) b — 0 if and only if « — 0 and B — 0, in which case a — 1 +i.
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(i) |b]* + |a|* = 2.
(iii) When 3 =0, then a = (1 +i)cos§ and b= (1414)sin§. In particular, b = O(a).

(iv) When o =0, then a = (1 +1) cosg and b= (—1+1i)sin g In particular, b = O(f).

(v) In general, g‘ = tan £, where ¢ is the angle between the North Pole (0,0,1) € S?

and the pole of g seen in S? via the inverse of the stereographic projection.

The KMR example M, , g can be parametrized on ¥, by the immersion X = (X, X, X3) =
R [ W, where W is the Weierstrass form:

W = <1 (1—g> dh,3<1+g> dh,dh).
2 \yg 2 \y

The ends of M, , 3 correspond to the punctures {4, A’, A", A”} = g7'({0,0}), and the
branch values of g are those with w = 0, i.e.

D = (—iX,0), D' = (i\,0), D" = (3,0), D" = (—1,0). (3.23)
Seen in S?, these points form two pairs of antipodal points: D” = —D and D" = —D'.
(Each KMR example can be given in terms of the branch values of its Gauss map, see [43].)

In [43], it is proven that the above Weierstrass data define a properly embedded minimal
surface M, , 3 invariant by two independent translations: the translation by the period
T at its ends, and the translation by the period T along a homology class. Moreover,
the group of isometries Iso(M,. . 3) of M, , 3 always contains a subgroup isomorphic to
(Z/27,)?, with generators D (corresponding to the deck transformation (z,w) — (z, —w)),
which represents in R? a central symmetry about any of the four branch points of the
Gauss map of M, , g; and F, which consists of a translation by (7 + T). In particular,
the ends of M, , g are equally spaced.

We are going to focus on two more symmetric subfamilies of KMR examples: {M, .0 |0 <
0<%, 0<a<f}tand {Mypp|0<o0 <73, 0< 3 <o} (these two families were
originally studied by Karcher [22, 23]).

1. When o = 3 = 0, M, contains four straight lines parallel to the x;-axis, and
Iso(M, ) is isomorphic to (Z/27Z)* with generators S, Sz, S3, Rp: S is a reflection
symmetry in a vertical plane orthogonal to the z;-axis; S5 is a reflection symmetry
across a plane orthogonal to the zo-axis; S3 is a reflection symmetry in a horizontal
plane (these three planes can be chosen meeting at a common point which is not
contained in the surface); and Rp is the m-rotation around one of the four straight
lines contained in the surface, see Figure 3.3 left. In this case, T' = (0, wp, 0).
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™

Figure 3.4: M, 3, where 0 = T and [ =

2. When 0 < o < %, Iso(M, ) is isomorphic to (Z/2Z)*, with generators D, S, and
Ry, where Sy represents a reflection symmetry across a plane orthogonal to the xo-
axis, and IRy is a m-rotation around a line parallel to the z,-axis that cuts M, .0
orthogonally, see Figure 3.3 right. Now T' = (0, wut,, 0), with ¢, = sing

\/sin2 o cos? a+sin? «

3. Suppose that 0 < 3 < 0. Then M,z contains four straight lines parallel to the
x1-axis, and Iso(M, ) is isomorphic to (Z/2Z)3, with generators S, Ry and Rp:
S1 represents a reflection symmetry across a plane orthogonal to the z;-axis; Ry
corresponds to a w-rotation around a line parallel to the x;-axis that cuts the surface
orthogonally; and Rp, is the w-rotation around any one of the straight lines contained

in the surface, see Figure 3.4. Moreover, T' = (0, 7ut’, 0), where t° = Sin" —.
sin® o—sin“ 8

Finally, it will be usetul to see X, as a branched 2-covering of C through the map (2, w)
z. Thus ¥, can be seen as two copies Cy,Cy of C glued along two common cuts 7, 72,
which can be taken along the imaginary axis: v; from D to D’ and 7, from D” to D".
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3.5.1 M,z as a graph over {z3 =0}/T

The KMR examples M, , 3 converge as (o, a, ) — (0,0,0) to a vertical catenoid, since
Y., converges to two pinched spheres, g(z) — z and dh — idz—z as (o,a,3) — (0,0,0). In
fact, we can obtain two catenoids in the limit, depending on the choice of branch for w
(for each copy of C in ¥,, we obtain one catenoid in the limit). One of our aims along
this paper consists of gluing KMR examples M, . or M,z near this catenoidal limit,
to a convenient compact piece of a deformed CHM surface M (c/2). In this subsection
we express part of M, , 3 as a vertical graph over the {z3 = 0}-plane when o, a, 3 are
small. In particular we consider M, , 3 near the catenoidal limit, i.e. o, «, 3 close to zero.
Without lost of generality, we can assume dh ~ % in C,. We are studying the surface in
an annulus about one of its ends, say a zero of 1ts Gauss map.

Lemma 3.5.2. Consider a + [+ o < ¢ small. Up to translations, M, .5 can be
parametrized in the annulus {(z,w) € &, | z € Cy, 2| < |2| <v} (for v > |2] small) as:

Xl +2X2 — —71 (Z+ %) (1-‘1-1 —|—O( -1 _|_€2 —3)
X3 =1In|z| + O(e2272),

Proof. Recall we have assumed dh ~ % in the annulus we are working on. More

precisely, we have

dh = Ld &z
V(22422)(224+2-2) T VI 2 2+A 272421 2z
Since £ (1+cos(o‘)7)rj<:(sin2 3= 14+ 0O(c"), and A = cot $ = O(e), we get
dz 2.2, 2. -2 4
dh = Z(l—l—@( N+ 0222 + 2272+ &%)).

Since |z| < v < 1, then

dh = dz(1 +O(e2272)).

a’p

Fix any point 2y € Cq, 29 & { E} (which correspond to two ends of the KMR example),

az+b

and recall that g = pE

. Straightforward computations give us, for |[b/a| < |z| < 1,

. f@:_glnz—% 25+ C + 0(e2279),

20 g a3z?2

. f;gdh:—%lnz— 24 Cy+ O(e2271),
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where C;,C, € C verify C; — Cy = % (zo + %) + O(e). Taking into account that a =
(14+17) + O(e), we obtain

Xi+iXy =5 (2%~ [2gan)

=& =+ 1) + 2l - g+ (2 + 1) + O

=2 (z+1) - (14;)5 +1 (zo + %) + O(ez7t +e2273).
Similarly, f;o dh =Inz —1In zy + O(e%272%), hence
X3 = 3?/ dh =In|z| — In|z| + O(%27?),
20

which completes the proof of lemma 3.5.2. O]
By suitably translating M, , g, we can assume its coordinate functions are as in Lemma 3.5.2.

Lemma 3.5.3. Let (r,0) denote the polar coordinates in the {x3 = 0} plane. If a+f+0 <
¢ small, then a piece of M, . 3 can be written as a vertical graph of the function

U(r,0) = —In(2r) + r(k1cosf — kysind) + O(e),

for (r,0) € (
by MO’ o ﬁ(
by a vector

= f) [0,27), where k1 = R(b) + I(b) and ky = R(b) — J(b). We denote
the KMR example M, o s dilated by 14y, for v < 0 small, and translated
(€1,62,&3). Then, My o 5(7,&) can be written as a vertical graph of

T ng

~ 2 1
Uye(r,0) = —(14+7v)In 1 :’y +7 (k1 cost — Ky Siﬂ@)—#({l cos0+E&ysinf)+&5+O(¢e).

Remark 3.5.4. Recall that b = sin "T_ﬂ + 2 sin O‘T”Lﬁ In particular:

o When =0, we have k; = 2sin§ and ko =0, so

~ 2 1
Uye(r,0) = —(14+7)In 1 TV + 1Ky cosf — %(fl cosf + &sinf) + &3+ O(e).

o When a =0, k1 =0 and ko —QSlng, S0

~ 2 1
Uye(r,0) = —(14+7)In 1 :7 — Ky sind — %(& cosf + &sinf) + &3+ O(e).
o When a=0 (resp. §=0), we will consider & =0 (resp. £ = 0) in Section 3.7.
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Proof. Suppose |2| < |z| < v, v > |%| small. From Lemma 3.5.2, we know the coordinate
functions (X7, X3, X3) of the perturbed KMR example M, , (7, &) are given by

Xi+iXy =42 (z+ 1) + A2)
(3.24)
Xs= 1+ In|z| + &+ O(e2272),

where

14+v)(1+1)b
4z*
_ 0+ V)i; ) | (6 i) + O(ex + 29

If we denote z = [z]e™ and X; + X, = re®, then z 4 £ = <|Z| + é) e and

A(z) = —( + (& + &) + O(ez™t + 2277)

1 1
reos — ——1 (|z\ + ﬂ) cos + A,
2

1 1
rsinf = 117 (|z| + ‘—|) siney + As,
2

where A; = R(A) and Ay = S(A). Therefore,

1+ )2 1)’ 4
= ST (k) (- e (e + Assine)

(3.25)
42|

MO e (RS

(42 +43).

When % < |z| < 44/€, the functions A; are bounded, and we get

=2 (s L) aroway - S v owe), (3.26)

In particular, r = O(1/4/€). Moreover, we get W =14 O(y/¢), from where
(=

X1 +1Xy

2 (12 + )

= ¢“(1+ O(V2)).

On the other hand,

= —e"¥ + = —e" + O(Ve),
Ly <|z|+i> (1+7)(1+[2)

2 ||
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thus e = —e?(1 4+ O(y/2)). From (3.25) and (3.26) we can deduce

2 2\2
(1+ 7)4|(j|2+ 2" _ 2 <1 + % (Ajcost) + Aysiny) + 0(8)) :

from where we obtain

L :( 2r )2<1+%(A1008¢+A2sin¢)+0(5)) (1+0(e))

2| 1+~
(3.27)
2
_ (-2 1—1—2(14 cosp + Ay sinyp) + O(e)
C\1+7 r! ? ’
and then 5 |
r .
—In 2] :ln1+’y +;(A1 cos ) + Agsine)) + O(e). (3.28)

Finally, it is not very difficult to prove that

A = —ZTTZ (k1 cos(2)) — ke sin(20)) + & + O(Ve)
and Ay = —14|+7‘Z (K1 8in(29) + kg cos(2¢))) + & + O(Ve).

Therefore,

1
Ajcostp + Aysiny = — 4;3 (k1 cost — kosina) + & costp + & sineh + O(Ve)

2

G20 _ : :_ > (k1cosf — kasin®) (1 + O(Ve)) + & cosb + & sinf + O(VVe)
2
= —1:_ (K1 cos® — kosinf) + & cos + & sinf + O(V/z).
Y
From here, (3.28) and (3.24), Lemma 3.5.3 follows. O

3.5.2 Parametrization of the KMR example on the cylinder

In this subsection we want to parametrize the KMR example )M, , 3 on a cylinder. Recall
its conformal compactification X, only depends on o. The parameter o € (0,75) will
remains fixed along this subsection, and we will omit the dependence on o of the func-
tions we are introducing. Also recall that ¥, can be seen as a branched 2-covering of C,

by gluing C,, C, along two common cuts vy; and 7, along the imaginary axis joining the
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branch points D, D" and D", D" respectively (see (3.23)).

We introduce the sphero-conal coordinates (x,y) on the annulus S — (v, U~,) (see [18]):
for any (z,y) € S' x (0,7) = [0,27) x (0,7), we define
F(z,9) = (cos siny,sinzmiy), 1(z) cosy) € S — (1 Uy),

where

m(y) = /1 —cos2ocos?y and I(z)= V1 —sin? o sin? z.

To understand the geometrical meaning of these variables it is sufficient to remark that
the lines {x = constant} and {y = constant}, are two closed curves on S%. These two
curves are the cross sections of the sphere and two elliptic cones (one with horizontal axis,
the other one with vertical axis) having vertex at the center of the sphere.

If we compose F(x,y) with the stereographical projection and enlarge the domain of
definition of the function, we obtain the differentiable map z(x,y) : S' x S' = [0, 27) x
[0,27) — C given by

cosx siny + i sinxm(y)

z(x,y) = , (3.29)

1 —1I(x) cosy
which is a branch 2-covering of C with branch values in the four points whose sphero-
conal coordinates are (z,y) € {£3} x {0,7}, which also correspond to D, D', D", D"

Moreover, z(z, y) maps S' x (0,7) on C — (71 U~,). Hence we can parametrize the KMR
example by z, by means of its Weierstrass data

9(z) =

az +b dz
2ED  gh=p ,
i(a— bz) V(Z2 4+ A2) (22 + A 2)

We denote by Mma’g the lifting of M, , 5 to R?/T by forgetting its non horizontal period
(i.e. its period in homology, T) We can then parametrize Mma’g on S! x R by extending z
to [0, 27m) x R. But such a parametrization is not conformal, since the sphero-conal coordi-
nates (z,y) — F(z,y) of the sphere are not conformal. As the stereographic projection is
a conformal map, it suffices to find new conformal coordinates (u, v) of the sphere defined
on the cylinder. In particular, we look for a change of variables (z,y) — (u,v) for which
|F,| = |F,| and (F,, F,) = 0, where F(u,v) = F(x(u,v),y(u,v)). We observe that

VE,y) V)

I(z) m(y)

with k(z,y) = sin? o cos?z + cos? o sin?y. Then it is natural to consider the change of

variables (z,y) € [0,27) X R — (u,v) € [0,U,] x R defined by

u(x) = /01 ﬁdt and v(y) = Ey %

|| = and |F,|= ,

2

dt, (3.30)
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where )
_ _ [2r dt
U, =u(2m) = |, —— (3.31)
Note that U, is a function on o that goes to 27 as o approaches to zero, and that the
above change of variables is well defined because o € (0, 7). In these variables (u,v), z is
periodic with respect the v variable with period
s
Vo- = U(27T) — /U(O) = fO ﬁ. (332)
The period V, goes to +oc as o goes to zero (see lemma 3.5.5), which was clear taking
into account the limit of M, , s as o tends to zero.

From all this, we can deduce that ]T/[/(,’a,g (respectively M, , ) is conformally parametrized
on (u,v) € I, x R ((u,v) € I, x J,), with I, = [0,U,] and J, = [v(0),v(27)].

In section 3.6 devoted to the study of the mapping properties of the Jacobi operator about
M, . 3 we will make exclusive use of the (u,v) variables. In the proof of lemma 3.5.3 we
have written as a vertical graph an appropriate piece of Mg7a7ﬂ corresponding to the
annulus % < |z| < 44/e. The boundary curve along which we will glue the piece of ]T/[/J,a,g

with the CHM surface corresponds to |z| = /c.

Lemma 3.5.5. If % < |z| < 4v/e and 0 = O(e) then

1 1
—§1n5+01<v<—§1n5+02,

where ¢; and co are constant. Under the same assumption on o, V, = —4Ine + O(1).

Proof. The proof is articulated in two steps. Firstly, using equation (3.29), we will give
the values of the y variable for which % < |z(z,y)| < 44/ with 0 = O(e). Secondly we
will determine the values of the v variable corresponding to these values of y. It is possible
to show that, if |z| varies in the interval specified above, then 7 —a; <y < ™ — ag, with
a; = d;j\/e, where dy > dy > 0 are constants. Being v an increasing function of y, then
v(r—a1) < v(y) < v(m—az). Now we will obtain the values of v(y) fory = 7 —a;, i = 1,2.
To this aim we observe that

) / Y ds

v(y) = )
Y x V1 = cos?ocos? s
It holds that

/y ds /y ds
0 V1—cos?2ocos?s 0 \/l—cos20+cos208in23
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1
/ = Sj(ya ma)a
sin o \/ 1 4 costogin? g  sino

SlIl g

where m, = — @820 and Fy,m is the incomplete elliptic integral of the

sin” o f() V1= msm28

first kind. F(y,m) is an odd function with respect to y and if k € Z,
Fy + km,m) = F(y, m) + 2kK(m),

where X(m) = F(5,m) is the complete elliptic integral of first kind. If y = d\/e and
o = O(e), then

1
F(y,ms) = —5 e+ O(1),

sin o
where the function O(e) also depends on d. It is known that if m is sufficiently big then

K (m) = ﬁ <ln4 + %ln(—m)) (1 e (%)) |

K(my) = —Ine + O(1).

It follows that

sin o
Then, for ¢ =1, 2,
1
- W) = Flm — iy o -X o)) —
o~ a0) = = (Fx — ai,my) — K(m,))
1
— (F(—a;, my) + 2K(my) — K(my,)) =
sin o
1 1
—F(d, -1 ’
e (=F(div/e, my) + K(m,)) 5 ne -+
The result concerning V, = v(27) — v(0) follows at once after having observed that
v(2r) = Blme) gng 4(0) = —Kime) O

From the lemma just proved it follows that the value of the v corresponding to |z| = /e,
is v, = —% Ine + ¢, where c is a constant.

3.6 The Jacobi operator about Mm,g

The Jacobi operator for M, 5 is given by J = Ay + |A|?, where |A|? is the squared
norm of the second fundamental form on M, , 3 and A is the Laplace-Beltrami operator
with respect to the metric ds? induced on the surface by the immersion X = (X, X5, X3)
defined in section 3.5.1. That is

ds* =~ (lgl + lg1™)* |dn .

»-Jklk—‘
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We consider the metric on the torus ¥, obtained as pull-back of standard metric ds? of
the sphere S? by the Gauss map N: dN*(ds?) = —K ds?, where K = —1| A|? denotes the
Gauss curvature of M, o . Hence Ay = —K Ay, and so

J = —K (Dgg +2).

From [18] and taking into account the parametrization of M, , s on the cylinder given in
subsection 3.5.2, we can deduce that, in the (x,y)-variables,

%%:“@m@[@<W@@)+@CﬂQ@H_

k(z,y) m(y) I(x)
In the (u,v)-variables defined by (3.30), we have J = sz(v))ﬁg, where
L, =02, + 02, +2sin* o cos®(z(u)) + 2 cos® o sin®(y(v)) (3.33)

is the Lamé operator (see [18]).

Remark 3.6.1. In proposition 3.6.5, we will take limits as o0 — 0. For such a limit,
the Riemann surface ¥, degenerates into a Riemann surface with nodes consisting of two
spheres jointed by two common points, and the corresponding Jacobi operator equals the
Legendre operator on S \ {po,p1}, given by Loy = 02, + sinyd, (sinyd,) + 2sin’y in
the (x,y)-variables. Note that in this case the change of variables (x,y) — (u,v) is not
defined.

3.6.1 The mapping properties of the Jacobi operator

From now on, we consider the conformal parametrization of Mma’g on the cylinder S' xR =
I, xR described in subsection 3.5.2. Our aim along this subsection is to study the mapping
properties of the operator 7. It is clear that it is sufficient to study the simpler operator
L, defined by (3.33). So we will solve the problem

Low = f, in I, X [vg, +00[
w=¢ on I, x {wvp},

with vy € R, considering convenient normed functional spaces for w, f and ¢, so that the
norm of w is bounded by the one of f.

We will work in two different functional spaces to solve the above Dirichlet problem. To
explain the reason, it is convenient to recall that the isommetry group of M, , 3 depends

on the values of the three parameters o, a, 5. When a = 0 (resp. 5 = 0), M, is in-
variant by the reflection symmetry about the {z; = 0} plane (resp. {z2 = 0} plane). We

are interested in showing the existence of families of minimal surfaces close to M, s and
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M, o0, keeping the same properties of symmetry. Thus the surfaces in the family about
Mo—’Qﬁ (resp. Mamo) will be defined as normal graphs of functions defined in I, x R which
are even (resp. odd) in the first variable. We will solve the above Dirichlet problem in
the first case. The second one follows similarly.

Definition 3.6.2. Given o € (0,7/2), £ € N, o € (0,1), u € R and an interval I, we
define C* (1, x I) to be the space of functions w = w(u,v) in Co(I, x I) which are even
and U, periodic in the variable u and for which the following norm is finite:

[wllgge := sup e fwllece ooy
v

We observe that the Jacobi operator £, becomes a Fredholm operator when restricted
to the functional space just defined. Moreover L, has separated variables. Then we can
consider the operator

Ly = 02, + 2sin® o cos®(z(u)).

We let L, act on the U,-periodic and even functions. This operator is uniformly elliptic
and self-adjoint. In particular, L, has discrete spectrum (\,;);>0, that we assume arranged
so that \,; < A\, ;41 for every 7. Each eigenvalue A, ; is simple because we only consider
even functions. We denote by e,; the even eigenfunction associated to A, ;, normalized
so that

/O e du = 1.

Lemma 3.6.3. For every i > 0, the eigenvalue \,; of the operator L, and its associated
eigenfunctions e,; satisfy

—2sin?0 < Aoi — 2 <0, lesi — €en.ilez < ¢ sin? o, (3.34)

where eq;(u) := cos(ix(u)) for every u € I,, and the constant ¢; > 0 depends only on i (it
does not depend on o).

Proof. The bound for \,; —i* comes from the variational characterization of the eigen-
values,

Uo'
Aoi = Sup inf / ((Oue)? — 2sin® o cos®(z(u)) €%) du,
0

codim E=1 e€l
[lellp2 =1

where F is a subset of the space of U,-periodic even functions in L?(I,), since it always
holds 0 < 2sin® o cos?(z(u)) < 2sin®o. The bound for the eigenfunctions follows from
standard perturbation theory [24]. O
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The Hilbert basis {e,; }icn of the space of U,-periodic and even functions in L?(I,,) induces
the following Fourier decomposition of L? functions g = g(u,v) which are U,-periodic and
even in the u-variable,

g(u,0) =Y gi(v) eoilu).

i>0

From this, we deduce that the operator £,, can be decomposed as L, = Z@() L, ;, being
Lo; = 02,4+ 2cos? osin’(y(v)) — N\,i, for every i > 0.
Since 0 < 2cos? o sin®(y(v)) < 2cos? 0 = 2 — 2sin® o, the lemma 3.6.3 give us
P,; = 2cos” o sin?(y(v)) — Agy < 2 —i°. (3.35)

This fact allows us to prove the following lemma, which assures that £, is injective when
restricted to the set of functions that are, in the variable u, even and L2-orthogonal to
es0 and ey ;.

Lemma 3.6.4. Given vy < vy, let w be a solution of L,w =0 on I, X [vg,v1] such that
(1) w(-,v9) =w(-,v1) =0.
(i1) fOU" w(u,v)eyi(u) du =0, for every v € [vg,v1] and i =0, 1.

Then w = 0.

Proof. By (ii), w = Y 5, wi(v) e, ;(u). Since the potential F,; of the operator L,; is
negative for every i > 2 (see (3.35)) and the operator L, is elliptic, the maximum prin-
ciple holds. We can then conclude the lemma 3.6.4 from (3). O

To study the mapping properties of the Jacobi operator £, we need to give a description
of the Jacobi fields of the surfaces M, .o and M, 3. They are defined to be the solutions
of L,v=0.

We recall that the surfaces M, , g are invariant by the mirror symmetry about the plane
{z1 = 0} if @ = 0, and about the plane {z5 = 0} if 3 = 0. This implies that there are
only four independent Jacobi fields for each one of these surfaces.

Two Jacobi fields can be obtained by considering the one parameter families of minimal
surfaces which is induced by the translations in the zs-direction and by the translations
in the x,-direction if o = 0, the translations in the x;-direction if 5 = 0. These Jacobi
fields are clearly periodic and hence bounded. A third Jacobi field can be obtained by
considering the one parameter family of minimal surfaces which is induced by dilatation
from the origin. The so-obtained Jacobi field is not bounded and in fact it grows linearly.
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The last Jacobi field can be obtained by considering the one parameter family of minimal
surfaces which is induced by changing the parameter 0. Again, this Jacobi field is not
periodic and grows linearly. The Jacobi fields induced by the translation along the z3-axis
and the dilatation are the solutions of £,u = 0 that collinear to the eigenfunction e, .
Instead the Jacobi fields induced by the horizontal translation and by the variation of the
parameter o are collinear to e, ;.

The following proposition states that if the parameter p is appropriately chosen, there
exists a right inverse for £, whose norm is uniformly bounded.

Proposition 3.6.5. Given i € (—2,—1), there ezists a oo € (0,7/2) such that, for every
o € (0,00) and vy € R, there exists an operator

Gow, : Cy¥(I5 X [vg, +00)) — Co%(I5 X [vo, +00))
such that for all f € C)*(I5 X [vg, +00)), the function w := Gq ., (f) solves

{ Low=f onl, X [vy,+00)

w € Span{e, g, €,1} on Iy, x {vo}. (3-36)

Moreover HwHCi’“ < CHchﬁ,a, for some constant ¢ > 0 which does not depend on o €
(0,00) and vy € R.

Proof. Every f € C))*(I, x [vg, +00)) can be decomposed as

f=toeso+ freas + 1,
where f(-,v) is L%-orthogonal to e, and e, for each v € [vg, +0).

Step 1. Firstly, let’s prove the proposition 3.6.5 for the functions f € Cg’a(lg X [vg, +00))
that are L?-orthogonal to {€s0,€0s1}. As a consequence of the lemma 3.6.4, £, is injective
when it acts on this set of functions. Hence, the Fredholm alternative assures that there
exists, for each v; > vy + 1, an unique w € CZ’O‘, with @(-,v) L*-orthogonal to e, 0, €,1
satisfying:

(3.37)
Assertion 3.6.6. There exists a constant ¢ and og € (0,7/2) such that for every o €

(0,00), vo € R, v1 > vg+ 1, f € CI*(I, X [vo,v1]) and @ € C2*(I, X [vy,v1]) which are
L?-orthogonal to {ey0,e,1} and satisfy the equation (3.37) and

sup e M|w| <ec sup e M|f|. (3.38)

I5 X [vo,v1] I5 X [vo,v1]
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Suppose by contradiction that the assertion 3.6.6 is false. Then, for every n € N, there
exists o, € (0,1/n), v1, > v, + 1 and f,, w, satisfying (3.37) (for o, v¢,, v1, instead
of o,v9,v1) such that

Sup e—#”‘f_n| - ]-7

I, X ['U(),ny'Ul,n]

A, = sup e M|w,| — +o0 as n— oo.
IonX[UO,n7U1,n]

Since I,,, X [vg.n, V1,,] is @ compact set, A, is achieved at a point (uy, v,) € Iy, X [Von, V1)

The sequence of sets I, = [vg,, — Un, V1, — U] converges (up to some subsequence) to a
set that we denote by I,,. We will show that [, is non empty. Elliptic estimates imply
that

sup e M IV, | < ¢ sup e MY | ful 4 sup e M wy,|) < e(14+A4,).

Ia,nx[’UO,nﬂ)O,n'i‘%] Io',nX[UO,nﬂ]O,nJFH Ia,n><[”0,n,”0,n+1]

From this estimate for the gradient of w, near v = vy, it follows that the supremum
A,, cannot be achieved at a point which is too close to vy, that is the points where w,
vanishes. In other terms the sequence vy, — v, remains bounded away from 0. Using
similar arguments it is possible to show that Vi, is bounded near v, ,, and consequently
also vy, — v, remains bounded away from 0. Then we can conclude that / is not empty.
We set I, = [0y, v1] where 7y € [—00,0) and v; € (0, 00].

We define
. e Ko
Wy (U, v) 1= i Wy (U, v + V),
for all (u,v) € I,, x I,. It follows that
sup e M |w,|=1. (3.39)

1o, XIn
Furthermore we observe that

e*“(“+””)|u’)n(u, v+ v,)|

Ay

Wy, (u, )| < e? < cet’.

and thanks to the estimate of Vw, we obtain

14+ A,

~ Ho no
n .
|Vw,| < c et < 2ce

n

Since the sequences (w,), and (V,), are uniformly bounded, Ascoli-Arzeld theorem
assures that a subsequence of (,,), converges for n — oo (and o,, — 0) on compact sets
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of Iy x I, to a function w.., which is L?-orthogonal to {eg, o1} for each v € I, and
vanishes on Iy x I, when Ol # (). The function ., inherits the properties of w,,. In
particular it holds

sup e " | = 1. (3.40)

IOXIOO

Now our aim is obtain a contradiction showing that ., cannot satisfies (3.40). That will
prove the assertion 3.6.6.

If n — oo we have 0, — 0, then we can conclude that, up to subsequence, the function
Weo satisfies Lote = 0 and w = 0 on [y x I if 01, # (). If I, is bounded thanks to the
maximum principle we can conclude that W, = 0 on Iy x I, which contradicts (3.40).
So in the following we can suppose I, to be an unbounded interval.

Since we know the expression of L, in terms of the (z,y) variables, it is convenient to
work with these variables. Then the equation Lyw., = 0 takes the form

02 Moo + siny 0, (siny Oihs, ) + 28in” Y ey = 0.
Now we consider the eigenfunctions decomposition of W,

Woo(x,y) = Z a;(y) cos(jx).

Jj=z2

Each coefficient a;, with j > 2, must satisfy the associated Legendre differential equation
(see appendix 3.11), that is

siny 9, (siny d,a;) — j*a; + 2sin®ya; = 0.

We obtain that a;(y), with j > 2 equals the associated Legendre functions of second kind,
that is a;(y) = Q(cosy), j = 2. We need to express ., in terms of the (u,v) variables.
We observe that if o — 0 then from (3.30) we get

1
u— r and vﬂﬁln‘tan%‘.

From the last expression we get

2

y(v) = 2arctan(e*”) and €% = )tan%‘ :

Using well kwown trigonometric formulae also we find

1— e4v
COS y(v) = m (341)
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Then replacing the expressions of a; in the eigenfunctions decomposition of ., we get

Do (1, v) = Y Q(cos y(v)) cos(ju).

j=2

If v — 400 (respectively —oo) then cos(y(v)) tends to —1 (respectively +1). It is possi-
ble to show that |a;| tend to +oo as the function ¢*/*l. Since I, is unbounded, we can
conclude that w,, does not satisfy the (3.40) with ;€ (—2,—1), a contradiction.

This proves the assertion 3.6.6, that is, for every v; > vy + 1, there exists a function w
satisfying (3.38). Let’s take the limit as v; — oco. Clearly,

e o] < [[@llgge < el fllege

Schiuder estimates imply
eV < g < e (1 Fllege + 1@l ) < ell fllge

Hence Ascoli-Arzela theorem assures that a subsequence of {w,, }y,>v,+1 COnverges to a
function w defined on 1, X [vy,00), which satisfies

sup e “Ulw|<ec  sup e MUIf].
Iy X [vg,+00) I5x[vg,400)

Using again elliptic estimates we can conclude that w satisfies the statement (i) of propo-
sition 3.6.5. The uniqueness of the solution follows from lemma 3.6.4.

Step 2 Let’s now consider f € C0*(I, X [vg, +00)) in Span{eq o, €51}, i-e.

fu,0) = fo(v) eoo(u) + f1(v) €0 (u).

We extend the functions fy(v), fi(v) for v < vy to be equal, respectively, to fo(vo), fi(vo).
Given v; > vg + 1, consider

Lojw; = fj, v € (—00,v1]
{ wj(vy) = Oyw;(v1) =0 (3.42)

Peano theorem assures the existence and the uniqueness of the solution w;. Our aim
consists in proving the following

Assertion 3.6.7. sup_,, e " |w;| < csup
does not depend on v;.

o] € M1 Sj] for some constant ¢ which
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Suppose by contradiction that, for every n € N, there exists o,, € (0,1/n), v1, > vo, + 1
and f;,,w;, satisfying (3.42) such that

sup e M |f]n| =1,
(—00,v1,n]

A, = sup e "|wj,| — +oo as n— oo.

(7007U1,n]
The solution w;, of the previous equation is a linear combination of the two solutions
of the homogeneous problem L,, ;w = 0. They grow at most linearly at oco. In fact it is
known that the Jacobi fields have this rate of growth. Hence the supremum A,, is achieved
in a point which we denote by v, € (—o0,v;,]. We define on I, := (—o0, vy, — v,] the
function w;, by

Wjn(v) = — e " w;, (v, + v).

An

As in Step 1, one shows that the sequence (v, —v,,), remains bounded away from 0, that
is v1,, > v, for each n. So, without loss of generality, we can assume that the sequence
(v1,, — V), converges to v; € (0, +00]. We set I, = (—o0, v1].

We can also assume that the sequence of functions (@;,,), converges on compact subsets
of I, to a nontrivial function @w; such that w;(v;) = d,w;(v1) = 0 if v; < 400, and

sup e M |w;| = 1. (3.43)

’Ueloo

The function w; is the solution of a second order ordinary differential equation, given, in
terms of the (z,y), by

siny 8, (siny 9,w;) — 5% w; + 2sin” yw; = 0. (3.44)

If o1 < 400 then w; = 0 and this is a contradiction with (3.43). In the case v; = 400
we will try to reach a contradiction determining the solution (3.44). This is again the
associated Legendre differential equation (see appendix 3.11). The solutions of the equa-
tion (3.44) are a linear combination of the associated Legendre functions of first kind,
P/(cosy), and second kind, Q/(cosy), with j = 0,1. Tt holds that P(cosy) = cosy and
Pl(cosy) = —siny.

Now we change of coordinates to express w; in terms of the (u,v) variables. It is possible
to show that as v — +oo then |Q1(cosy(v))| and |QY(cosy(v))| tend to co respectively as
el and |v|. We can conclude that functions @, and 1, do not satisfy the equation (3.43)
with u € (=2, —1), a contradiction.

135



So we have proved that

sup e " w;| <c sup e M|f;l.
(700’1)1} (70077)1]
Now we pass to the limit as v; tends to 400 in a sequence of solutions which are defined
on I,. This proves the existence of a solution of

Lojwj = fj
which is defined in [vgy, +00). In addition, we know that

sup e " w;| <c sup e M|fjl.
[vo,+00) [vo,+00)
Elliptic estimates allows us to obtain the estimates for the derivatives. To prove the
uniqueness of the solution it is sufficient to observe that not any solution of L,v = 0,
that is collinear to e, and e,; decays exponentially at oo. This fact follows from the
behaviour of the Jacobi fields. So the proof of the result is complete. l

3.7 A family of minimal surfaces close to MJ,O,B and
Ma,a,()

The aim of this section is to find a family of minimal surfaces near to a translated and
dilated copy of M, 3 and M, .o with given Dirichlet data on the boundary. We start
recalling that in subsection 3.5.1 we observed that a translated and dilated copies of
M, 0 and M, 3 can be expressed as the graphs over the x5 = 0 plane respectively of the
functions

1
—(1+v)In(2r) + rry cos O + t 751 cosf + d + O(e) (3.45)
. I+~ .
—(1+7)In(2r) — rkysin + &sinf +d+ O(e) (3.46)
r
where d = & + (1 + v)In(1 + ), K1, kK2,&1,82,&3,7 € R small enough, k1 = by + by,
ko = by — by, by = sin O‘T_ﬁ, by = sin #, and r belongs to a neighbourhood of r. = 2—\15

We denote by Z the immersion of the surface ]\707&75. The following proposition, whose
proof is contained in section 3.10, states that the linearized of the mean curvature operator
is the Lamé operator introduced in section 3.5.2.

Proposition 3.7.1. The surface parameterized by Z; := Z + f N is minimal if and only
if the function f is a solution of

Eof = Qo(f)
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where L, 1= 0%, + 0%, + 2sin® o cos?(x(u)) + 2 cos? o sin*(y(v)) is the Lamé operator and
Q, is a nonlinear operator which satisfies

||Qa(f2) - QU(fl)HCOvO‘(IUX[v,v-i-l}) <c SUI)2 Hfz'HCM(IUx[v,UH]) ||f2 - f1||c2,a(lax[v,u+1]) (3-47)

=1,

for all fy, fo such that ||fi||C2’D‘(IU><[v,v+1D < 1. Here the constant ¢ > 0 does not depend on
veR, noronoe(0,7).

As a consequence of the dilation of factor 1+ of the surface the minimal surface equation

becomes )

= mQa (1 +7)w). (3.48)

L,w

We now truncate the surfaces Ma,a,() and ]f\z,,oﬂ at the graph of the curve r = ﬁ of the
function (3.45) and (3.46) with, respectively, 5 = 0 and a« = 0 and we consider only the
upper half of these surfaces which we call M; and M.

We are interested in minimal normal graphs over these surfaces which are asymptotic to
them. The normal graph of the function w over M;, M5 is minimal, if and only if w is a
solution of (3.48).

In subsection 3.5.1 we have proved lemma 3.5.3, which allows us to parametrize the sur-
faces My, M, in a neighbourhood of r. as the graph of the functions given above. The
surfaces M; and M, are parametrized on I, X [v., V,] where v. denote value of the vari-
able v corresponding to the value r. of the variable r. In section 3.5 we showed that
ve = —3Ine + O(1).

It is important to remark that the boundary of these surfaces does not correspond to
the curve v = v.. We therefore modify the above parametrization so that for v €
[ve — In2,v. + In 2] the image of the functions (3.45) and (3.46) corresponds to the hori-
zontal curve v = v.. Furthermore we would like that the normal vector field relative to
My, Ms is vertical near the boundary of this surface. This can be achieved by modifying
the normal vector field into a transverse vector field N which agrees with the normal
vector field N for all v > v. + In4 and with the vector e3 for all v € [v., v, + In2].

Now, we consider a graph over this surface for some function u, using the modified vector
field N. This graph will be minimal if and only if the function v is a solution of a nonlinear
elliptic equation related to (3.48). To get the new equation, we take into account the effects
of the change of parameterization and the change in the vector field N into N. The new
minimal surface equation is

Low=L.w+ Q. (w). (3.49)
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Here QJ enjoys the same properties as (), since it is obtained by a slight perturbation
from it. The operator L. is a linear second order operator whose coefficients are supported
in [v.,v. +1In4] x S* and are bounded by a constant multiplied for £'/2, in C*> topology,
where partial derivatives are computed with respect to the vector fields 9, and 9,.

As a fact, if we take into account the effect of the change of the normal vector field,
we would obtain, applying the result of Appendix B of [11], a similar formula where the
coefficients of the corresponding operator L. are bounded by a constant multiplied for
since

N.-N.=1+0(e)

for t € [t.,t.+1n2]. Instead, if we take into account the effect of the change in the param-
eterization, we would obtain a similar formula where the coefficients of the corresponding
operator L. are bounded by a constant multiplied for £'/2. The estimate of the coefficients
of L. follows from these considerations.

In the following of this section we will give the detailed proof of the existence of a family
of a minimal graph about M; and asymptotic to it. The proof relative to the case where
the surface M is replaced by Ms can be obtained easily from the previous one. We recall
that the surfaces M; and M, are respectively invariant with respect to two different mirror
symmetries. A normal graph of the function w = w(u,v) about M; (respectively about
M) inherits the same property of symmetry if w is an even (respectively odd) function
with respect to the variable u. Then once the proof of the result concerning M; will be
completed, to obtain the result about M, it will be sufficient to replace even functions
with odd functions and to repeat the same arguments.

Now, assume that we are given a function ¢ € C*%(I,) which is even with respect to u,
L*-orthogonal to e, g, e, and such that

plleze < ke (3.50)

We define

we () = Moo o),
where v. = —3Ine + O(1) and ‘H is introduced in proposition 3.9.5.
In order to solve the equation (3.49), we choose u € (—2,—1) and look for u of the form
w = w, + g where g € C2*(I, X [v., +00)) and w = ¢ on I, x {v.}. Using proposition
3.6.5, we can rephrase this problem as a fixed point problem

9==5(¢:9) (3.51)

where the nonlinear mapping S which depends on ¢ and ¢ is defined by
S(p,9) = Gep. (ie(% +9) = Low, + Qc (w, + g)) -
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where the operator G.,, is defined in Proposition 3.6.5. To prove the existence of a fixed
point for (3.51) we need the following

Lemma 3.7.2. Let u € (—2,—1). There exist some constants ¢, > 0 and € > 0, such
that
1S (e, O)‘|Cﬁ’a(lax[vs,+m)) < Ck53/2+u/2 (3.52)

and, for all € € (0,¢)
1
150, 92) = S(@, g1)ll ez (1, . 100)) < 3 192 = 91lleze (1, x (o 00

1
15(¢2,9) = S(@15 9)llezo (1, xo. 100y < ce7 2 ||y — 1|2 (3.53)

for all g, 91,9, € C*(I5 X [ve, +00)) such that ||gil|Ci’a(Ly><[v5,+oo)) < 26,3712 for all
boundary data o, @1, ps € C>*(S) satisfying (3.50).

Proof. We know from proposition 3.6.5 that ”Gs,vs(f)Hcﬁva < C||f”cg,a7 then

15 (e, O)|’Ci’a(la><[v57+oo)) < CHEs(ww) — Low, + Qs (we) HCS’O‘(IGX[US,-FOO)) <

Sc (Hif(wW)HCB’O‘(IGX[UE,OO)) + [1£o w%"HCS’a([JX[vs,oo)) + Qs (wy) HCS’O‘(IGX[US,OO))) ’

So we need to find the estimates for the three terms above.
We recall that |plo, < ke. For all p € (—2,—1), thanks to proposition 3.9.5 we know
that

|Wol2.0i0.041) < €727 |0l50 (3.54)
We know that
wa’ cre = [sup )6_“v|ww|27a;[v7v+1] < S[UP )G_Mv€_2(v_vg)|90 2.0 S
VE Ve, +00 VE |ve,00

— 1 2
< €M p)g0 < cret T2

From this inequality and from the estimates of the coefficients of L., it follows that
7 1/2 3/241/2
||Ls(w<p)||c27“ < ceV ||w¢]|02,a < P2,

As for £,, being w, an harmonic function we obtain following equality

Low, =2kw,,

139



where k(u,v) = sin® o cos?(x(u))+cos? o sin?(y(v)) < ce, because we have set a+3+0 < ¢

(see lemma 3.5.3) and y. < y(v) < 7, with y. = 7 — a., where a. = O(y/¢). Therefore, we
conclude that

Lo welleoo (1, w00y < 2CEl[Wpllco 1, x (v 00)) < cret 2,

The last term is estimated by

Qs (wy) ||C2,Q(IGX[U€’OO)) < ck52+u/2.

Putting together these estimates we get the first result. As for the second estimate, we
recall that

S(¢,9) 1= Gep (Lelwy +9) = Lowy + Qo (w, +9))
Then
||S(907g2) - S(Spagl)||cﬁva([gx[%’+oo)) <

< [[Le(g2 — gl)”cg’a(lgx[vg,—i-oo) + Qo (wy + 92) — Qo (wy + 1) Hcg""(lax[ys,+oo))'
We observe that from the considerations above it follows that
7 1/2
| L:(g2 — gl)||c2’a([a><[1)5,+oo)) < e/ g2 — 91||cﬁ’a(zax[v5,+oo))

and that (3.47) implies
||Qo (U)«p + 92) - QU (wso + gl) ||C2’Q(Iax[1)5,+oo)) <

< cllg2 = glleo (1, o, 400 1Wellcoo o x e, +00)) <
< Ckg”gg - gl||Ci’a(L,><[v5,+oo))'
We can conclude that
15(¢, 92) = S(0, 91)ll ez (1, x o +00)) < cxe'?|] g2 — gulleze (1, xoe 400))-

To show the last estimate it is sufficient to observe that

15 (2, 9) — S(‘P179)||c27a(jax[va,+oo) < [[Lo(we, — w¢1)||c2’°‘(1(,><[v57+oo))+

©

| Le(wy, — ww1)||c2’a(1(,x[ys7+oo)) +[|Qo (Wy, + g) — Qo (wy, + ) ||c2*‘*(1(,><[vg,+oo)) <

1/2+u/2|

902—<P1”c27a-
O

< C(€1+u/2+51/2+“/2)HQOQ_SOlHCQ""+CH9HC2’Q(IU><[UE7+OO))"902_901"02’(1 S ce

Theorem 3.7.3. Let be B := {g € C;*(I, x [v-, +00)) ; [|g]|cze < 2c,e%/2+1#/2} . Then the
nonlinear mapping S defined above has a unique fixed point g in B.
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Proof. The previous lemma shows that, if € is chosen small enough, the nonlinear map-
ping S is a contraction mapping' from the ball B of radius 2c,*>™#/% in C2(1, x [ve, V)
into itself. This value comes from the estimate of the norm of S(p, 0). Consequently thanks
to the Schauder theorem, S has a unique fixed point v in this ball. O

This argument provides a minimal surface which is close to M; (respectively M,) and has
one boundary. This surface, denoted by S;. ¢, 4,(¢), is, close to its boundary, a vertical
graph over the annulus Bs,.. — B,_ whose parametrization is given, for 5 = 0 by

1+
r

751 cos 0 +d; + Ho,. o,(In2r — v, 0) + Vi(r, ).
(3.55)

Upi(r,0) = —(1+v) In(2r) +rr, cos 0 +

and, for a = 0, by

_ 1 _
Uia(r,0) = —(14+ ) In(2r) — rkesinf + i 752 sin@ + dy + H,_ ,(In2r — v, 0) + Vi(r, 0).

where v, = —3 Ine + O(1). The boundary of the surface corresponds to r. = 3=. The
function V; depends non linearly on ¢, ¢. It satisfies ||Vi(e, ¢:) (e, -)l|c2a(p,—p,) < ce and

IVile, @)(rer, ) = Vile, ) (e, ez, -y < e 26— @z (3.57)

This estimate follows from
||‘7t(57 ¢)(T€'7 ) - ‘7;5(67 ¢/)(T€'7 ) HCZ’O‘(BQ*BI) < et ||S(¢7 ‘715) - S(¢/7 ‘E)HCﬁ’o‘(ng[vg,Jroo))

and the estimate (3.53).

3.8 The matching of Cauchy data

In this section we shall complete the proof of theorems 3.1.1, 3.1.2 and 3.1.3.

3.8.1 The proof of theorem 3.1.2

The proof of theorem 3.1.2 is articulated in two distinct parts: the proof of the existence
of the family K; and of the existence of the family /Cs.

We start proving the existence of the family /Cy. The proof is based on an analytical gluing
procedure. The surfaces in family Ko are symmetric with respect to the vertical plane

Lafter the correct choise of the constant k that appears in the estimate of the norm of ¢.
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x9 = 0. So all of the surfaces involved in the following proof must enjoy the same mirror
symmetry property. We will show how to glue a compact piece of a Costa-Hoffman-Meeks
type surface with bent catenoidal end to two halves of the KMR example M, ¢ along the
upper and lower boundaries and to a horizontal periodic flat annulus with a removed disk
along the middle boundary. All of the surfaces just mentioned have the desired property
of symmetry as well as the surfaces obtained by them by a slight perturbation. We will
recall below the necessary results we proved in previous sections.

Using the result of section 3.7, we can obtain a minimal surface that is a perturba-
tion of half the KMR example M, , o and is asymptotic to it. This surface, denoted
by Sia..d,(¢1), can be parameterized over the annular neighbourhood By, — B,_, of its
boundary as the vertical graph of (see (3.55))

(14 N\)
r
This surface will be glued to the Costa-Hoffman-Meeks example along its upper boundary.
The surface that will be glued along the lower boundary, denoted by S, », ¢,.4,(¥s), can be

parameterized in the annulus By, — B,_, as the vertical graph of

- (1 + >\b)

U(r,0) = —(14+ ;) In(2r) + 7k cos 6 —

& cosO+di+Hy, o (In2r —v., 0) + Oc2e ().

Up(r,0) = (14 Xp) In(2r) + 7K cos 0 — & cosO0+dy+H,. ,,(In2r —v., 0) + Oc2e ().

We remark that the functions ¢y, p, € C**(S!) are even and orthogonal in the L2-sense
to the constant function and to 6§ — cos¥6.

Using the result of section 3.2, we can construct a minimal graph S,,(¢,,) close to a
horizontal periodic flat annulus. It can be parameterized, in the neighbourhood By,  — B,
of its boundary, as the vertical graph of

Um(T, 0) = Hre,gom<r7 9) + chvo‘ (8)a

where H,_ . is the harmonic extension of ¢,, € C*>*(S') which is an even function or-
thogonal in the L2-sense to the constant function.

Thanks to the result of section 3.4, we can construct a minimal surface M, re(e/2,0), with
U = (¢4, ¥y, ¥ ), which is close to a truncated genus k Costa-Hoffman-Meeks surface and
has three boundaries. The functions vy, 1y, ¥, € C**(S') are even. Moreover v, 1, are
L?-orthogonal to the constant function and to # — cos® and 1), is orthogonal to the
constant function.

The surface ]\7[,? .(/2,) is, close to its upper and lower boundary, a vertical graph over
the annulus B,, — B, /2, whose parametrization is, respectively, given by

U(r,0) = oy — In(2r) — %r cost + Hy,(sc —In2r,0) + (905,& (e),
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Up(r,0) = —op + In(2r) — %7" cost + Hy, (s —In2r.6) + ch,a(s),

where s, = —% Ine. Nearby the middle boundary the surface is a vertical graph whose

parametrization is
- 1
Um(’f‘, 9) = Hﬂeﬂ/)m (;, 9) + ch,a (6)

The functions (’)Cbz,a(a) replace the functions Vi, Vi, Vin, Vi, Vi, Vi, that appear at the end
of sections 3.2, 3.4 and 3.7. They depend nonlinearly on the different parameters and
boundary data functions but they are bounded by a constant times ¢ in C’E * topology,
where partial derivatives are taken with respect to the vector fields 70, and 9. We assume
that the parameters and the boundary functions are chosen so that

IAe| 4| A+ | = A In (5‘1/2) +1:|+ |\ In (5‘1/2) + 1|+ Y2 /2| R+ /2| +e7 V2 /2| Ky +¢/2|+
(3.58)
2" 2(|(1 + A& + (1 + X)&) + el czaisy) + losllczaisy + [[omllczesy+

el czesty + [Usllczecsty + [ Vmllczesty < ke,

where 7, = d; — oy, 9, = dp+ 0p,. where the constant k£ > 0 is fixed large enough. It remains
to show that, for all € small enough, it is possible to choose the parameters and boundary
functions in such a way that the surface

St,ktﬁfudt((pt) U Sb,Abémdb(QDb) U Sm((pm) U ME(E/Q, \Ij)

is a O surface across the boundaries of the different summands. Regularity theory will
then ensure that this surface is in fact smooth and by construction it has the desired prop-
erties. This will therefore complete the proof of the existence of the family of examples
denoted by K;.

It is necessary to fulfill the following system of equations

( Ut(raa ) = 7t<7n€7 )
Ub(riv ) = qb(rﬁv )
Un(re, ) = Up(re,-)
arUb(ra ) = arUb(rsa )
arUt(raa ) = aTUt(Tév )
L arUm(raa ) - arUm(rav )

on S'. The first three equations lead to the system

—AeIn(2r.) +my — ((1 + )\t)f—z> cos O +r.(ky + 5) cos O 4 oy — Uy = ch,a(s)
Ao In (2r.) + 1y — ((1 + /\b)f—z> cos O +r.(ky + 5) cos O + pp — Yy = chg,a (e) (3.59)
Om — Ym = ch,a (e).
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The last three equations give the system

=\ + ((1 + /\t)%) cos )+ 1(ri¢ + 5) cos 0 — D1 + 1hr) = Opra(e)
Ao + ((1 + Ab)%) cos 0+ 1y + 5) cos 6 — Byl + 1) = Opra(€) (3.60)
Oo(Pm + ) = Ogra(e).

To obtain this system we applied the results of lemma 3.9.6 and 3.9.7. Here, the functions
Ocua(€) in the above expansions depend nonlinearly on the different parameters and
boundary data functions but they are bounded by a constant times € in C*“ topology. The
projection of the first two equations of each system over the L*-orthogonal complement
of Span{1, cos#} and the remaining two equations gives the system

([ o~ = Opzale
SOb—de:Oc,

2.(€)
2.0 ()
Om — Ym = ch»“ (5)
Ot + Oty = €)
gy + Opthyy = €)

L a@@m + a€¢m = OC;’O‘ (5)

3.61
Oc;’a( (3.61)
ch,a<

Lemma 3.8.1. The operator h defined by

C2,a(51) N Cl,a(sl)
o — O

acting on functions that are orthogonal to the constant function in the L*-sense and are
even, 1s tnvertible.

Proof ([6]). We observe that if we decompose p =} .-, ¢; cos(j), then

he) = — S jigs cos(j6),

Jj=z2

that is clearly invertible from H!'(S!) into L?(S'). Now elliptic regularity theory implies
that this is also the case when this operator is defined between Holder spaces. O

Using this result, the system (3.61) can be rewritten as

(¢t7¢b7¢ma¢tawba¢m) = 00270‘(5)' (362)

Recall that the right hand side depends nonlinearly on ¢y, @y, Ym, Vs, Vs, ¥, and also on
the parameters A\, Ay, 7, My, &, &b,y K, Kp- We look at this equation as a fixed point problem
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and fix k large enough. Thanks to estimates (3.57), (3.2),(3.3), (3.20) and (3.21), we can
use a fixed point theorem for contracting mappings in the ball of radius ke in (C%(S!))"
to obtain, for all € small enough, a solution (¢, Yy, Ym, Vt, Y, Ym) of (3.62). This solution
being obtained a fixed point for contraction mapping and the right hand side of (3.62) be-
ing continuous with respect to all data, we see that this fixed point (¢, ¥, ©m, Vi, o, V)
depends continuously (and in fact smoothly) on the parameters A, Ay, 9e, M, &, b, Kt Ko
Inserting the founded solution into (3.59) and (3.60), we see that it remains to solve a
system of the form

( —AeIn(2r.) +nm + (—(1 + )\t)f—z + (ke + %)) cosf = O(e),
Mo In(2r.) +my + (—(1 + Ab)f—: + ro(kp + %)) cosf = O(e),
-t + <(1 + /\f)v% + (ke + %)) cost = O(e),

Ao + <(1 - )‘b)v% + 7 (kp + %)) cos = O(e).

(3.63)

\

where this time, the right hand sides only depend nonlinearly on A\;, Ay, 9, 76, &, &b, Kty K-
There are eight equations that are obtained by projecting this system over the constant
function and the function 6§ — cos 6. If we set

(e, ) = (=AeIn(2re) + 1, Ay In(2r2) + 1),
(gt; Eb) = T;l((l + )\t)£t7 (1 + )‘b)gb)v (Rtﬂ Rb) = rs(’itv "ib)v

the previous system can be rewritten as

(AtvAb7gtagb7ﬁt7ﬁb7/%ta’%b) = O<5) (364)

This time, provided k has been fixed large enough, we can use Leray-Schiuder fixed point
theorem in the ball of radius ke in R® to solve (3.64), for all € small enough. This pro-
vides a set of parameters and a set of boundary data such that (3.59) and (3.60) hold.
Equivalently we have proven the existence of a solution of systems (3.59) and (3.60). So
the proof of the first part of theorem 3.1.2 is complete.

The proof of the second part of theorem 3.1.2 uses the same arguments seen above. So we
will omit most of the details. Our aim is showing the existence of the family of surfaces
denoted by IC;. The surfaces in the family X; are symmetric with respect to the vertical
plane x; = 0. It is important to observe that in the proof, the KMR example which we
deal with, is obtained by slight perturbation of M, 3. The symmetry properties of this
surface differ by the ones of the surface close to M(,,mo involved in the gluing procedure

described above. In particular ]/\2;-7075 is symmetric with respect to the vertical plane
x1 = 0. We recall that the Costa-Hoffman-Meeks type surface involved in the first gluing
procedure enjoys a mirror symmetry with respect to the vertical plane x5 = 0. Then it is
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not appropriate for the gluing with a KMR example of the type described above. To obtain
the Costa-Hoffman-Meeks type surface we need, it is sufficient to rotate counterclockwise
by 7/2 with respect the vertical axis x5 the Costa-Hoffman-Meeks surface with bent
catenoidal ends described in section 3.4. The surface obtained in this way enjoys the
mirror symmetry with respect to the vertical plane z; = 0. In the parametrizations of the
top and bottom ends the cosinus function is replaced by the sinus function, that is:

U(r,0) = oy — In(2r) — %7" sin€ + Hy, (s. —In(2r),0) + ch,a(s),

Uy(r,0) = —op + In(2r) — %r sin@ + Hy, (s: —In(2r),0) + Ocze (),

where s. = —3 Ine and (r,0) € B,_ — B,_js. As for the planar middle end, the form of its
parametrization remains unchanged. We refer to the first part of the proof for its expres-
sion. Another important remark to do, concerns the properties of the Dirichlet boundary
data ¥y, Uy, ¥,,. If before it was requested that they were even functions and orthogonal
(only )¢, 1) to the constant function and to # — cosf to preserve the mirror symmetry
property with respect to the vertical plane x;y = 0, now as consequence of the above
observations they must be odd functions and ), 1, must be orthogonal to the constant
function and to 8 — sin 6. It is clear that all the results showed in section 3.4 continue to
hold.

Now we give the expressions of the parametrizations of the surface S, ), ¢, 4, (¢¢), the min-
imal surface obtained by perturbation from the KMR example Ma,o,ﬂ and asymptotic to
it. This surface can be parameterized in the neighbourhood Bs,. — B,_, as the vertical
graph of

(T+X)

Uy =—(14 X)) In(2r) + 75, sin 0 — & sinf + di + Hy, o, (In2r — v, 0) + chz,a(s).

The parametrization of the surface that we will glue to the Costa-Hoffman-Meeks type
surface along its lower boundary is given by

_ 1+ X _
Uy(r,0) = (14 \y) In(2r) — fb# sin@ + dy + Hy, p,(In 21 — v, 0) + (905,&(5),
where (r,0) € Bsy,. — B,_.

To prove the theorem it is necessary to show the existence of a solution of the following
system of equations

( Ut(rsv ) = qt<r€7 )
Ub(rﬂ ) = qb(ré:? )
Un(re, ) = Un(re, )
arUb(raa ) = arQb(Taa )
ar t(raa ):aTQt(Taa )
| 0 Un (1, ) = 0, U (e, )




on S', under the assumption (3.58) for the parameters and the boundary functions. It
is clear that the proof of the existence of a solution of this system is based on the same
arguments seen before. We remark that the role played before by the functions 6 —
cos(i6), now is played by the functions § — sin(if). That completes the proof of theorem
3.1.2.

3.8.2 The proof of theorem 3.1.1

To proof the theorem 3.1.1 we will glue a compact piece of the surface M (€), with
¢ = 0, described in section 3.4 to two halves of a Scherk type surface along the upper
and lower boundary and to a horizontal periodic flat annulus along the middle boundary.
The construction of these surfaces is showed in section 3.2. In particular we showed
the existence of a minimal graph close to half a Scherk type example whose ends have
asymptotic directions given by cos 61e; + sin #e3 and — cos fze; + sin fpe3. These surfaces
in the neighbourhood By, — B,_ of the boundary, admit the following parametrization

U, = dy —In(2r) + H,_,,(r,0) + (’)Cf,a(s),

Ub =dy + 1H<2T) + I:L"E#Pb (T, 9) + OC?’O‘ <€>7

where the Dirichlet boundary data ; € C%%(S1), for i = t, b, are requested to be even and
orthogonal to the constant function, w,, denotes their harmonic extensions. The other
surfaces involved in the gluing procedure have been described in the previous subsection.

The proof is similar to the one given for theorem 3.1.2, so we will give only the essential
details. Actually to prove the theorem it is necessary to show the existence of a solution
of the following system of equations

( Ut(rm ) - qt(raa )

Ub(rsa ) = Qb(rsa )

Un(re, ) = Un(re, )
aTUb(r& ) = 3rq ( )
O U(re,-) = &J{( ‘)
arUm(raa ) - a U (Tav )

on S! under a assumption similar to (3.58). We refer to subsection 3.8.1 for the expres-
sions of U, Uy, U,,, U,,. It is necessary to point out that in this subsection we consider the
more symmetric example (£ = 0) in the family (M (€))¢. So it is necessary to replace
£/2 by 0 in the expressions of the functions U; and U, of the top and bottom ends.

We want to remark the boundary data for the surfaces we are going to glue together do not
satisfy the same hypotheses of orthogonality. All of these functions are orthogonal to the
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constant function, but only ), 1, are orthogonal to § — cos# too. The functions denoted
by (’)Cg,a(s) that appear in the expressions of U; and U;, with ¢ = ¢, b, m, have a Fourier
series decomposition containing a term collinear to cos # only if the corresponding bound-
ary data is assumed to be orthogonal only to the constant function. Furthermore the fact
that £ = 0 (the catenoidal ends are not bent) implies that functions which parametrize
the top and bottom end of M (0) are orthogonal to cosf. In other terms, in difference
with the Scherk type surfaces, we are not able to prescribe the coefficients in front of
the eigenfunction cos 6 for the catenoidal ends of M (0), because in this more symmetric
setting are obliged to vanish.

The first three equations lead to the system

Ne+ o1 — e = (5)
Mo+ b — Yp = (5) (3.65)
—Ym =0 ga(€)

where 1, = d; — oy, ny = dp + 03. The last three equations give the system

9o(pr + Y1) = Oprale)
0o (0p + Up) = (€)
30(80771 + 77Dm) = C; O‘(g)

1
b
1

(3.66)

Now to complete the proof it is sufficient to use the same arguments of subsection 3.8.1.

3.8.3 The proof of theorem 3.1.3

To prove this theorem it is necessary to treat separately the case k =0 and k£ > 1.

The case k=0. We will glue half a Scherk example with half a KMR example with
a = [ = 0. We observe that this surface is symmetric with respect to the z; = 0 and
ro = 0 planes. The Scherk example is symmetric with respect to the zo = 0. To preserve
this property of symmetry in the surface obtained by the gluing procedure, we will consider
the perturbation of ]\;[(,7070 which enjoys the same mirror symmetry. That is the surface
denoted by Sy, ¢,.4,(¢) with Ay = & = 0 and d; = d. It can be parametrized in the annulus
Bs,.. — B, as the vertical graph of

U(r,0) = —In(2r) + d + H,. ,(In2r — v, 0) + Oc2o ().
The Scherk example is parametrized as the vertical graph of

U(r,0) = —In(2r) +d + H,_,(r,0) + ch,a<€).
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As for the Dirichlet boundary data, we assume ¢ to be an even function orthogonal to
the constant function and to § — cos#, and ¥ to be an even function orthogonal to the
constant function.

To prove the theorem in the case k = 0, it is necessary to show the existence of a solution
of the following system of equations

U(T87 ) = U(Tév )
0 U(re,) =0.U(re,-)

on S!, under appropriate assumptions on the norms of the Dirichlet boundary data and
the parameters &, d, d. These equations lead to the system

{ N+ =9 =0Ogal(e)

Ol + 1) = Ogia(e). (3.67)

where 7 = d — d. Now to complete the proof it is sufficient to use the same arguments of
subsection 3.8.1. The details are omitted.

The case k > 1. The proof of the theorem in this case is similar the proof of theorem
3.1.1. In fact three of the surfaces we are going to glue are a compact piece of the Costa-
Hoffman-Meeks example M}, half a Scherk type example and a horizontal periodic flat
annulus as in the proof of theorem 3.1.1. The fourth surface is half a KMR example, of
the same type of the proof of theorem for £ = 0. The surfaces are parametrized as vertical
graph over By, — B,_ of the following functions:

Uy (r,0) = n(2r) + dy + Hy 4, (1,0) + Oz (e),

for the Scherk type example,

Un(r,0) = iy, (r,0) + O e),
for the horizontal periodic flat annulus,
Uy(r,0) = —In(2r) + di + Ho, o (In 21 — vz, 0) + Op2a(e),
for the KMR example,
Ui(r,0) = o, — In(2r) + Hy, (s. — In(2r),0) + Oc2e (),
Up(r,0) = —op + In(2r) + Hy, (s. —In(2r),0) + Ocs,a(a),

~ 1
Um(r’ 0) = Hﬂavsﬂm(;u ‘9) + OCE’“ (6)
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for the compact piece of the Costa-Hoffmam-Meeks example. The Dirichlet boundary
data are requested to be even functions. Functions ¢, ¢, are orthogonal to the constant
function and to # — cos 6. Functions v,,, @y, s, @, are orthogonal only to the constant
function. In this case the system of equations to solve is:

Tt + ©r — (E)
o+ @ — Cb a(g)
wm - OCI? a(€)
89(9075 + 1) = Ogtale) (3.68)
Doy + Vb)) = ch a(e)
| 0P + ¥m) = Ogpale),

where 1, = d; — oy, n, = dp + 0p. The details are left to the reader.

3.9 Appendix A

Definition 3.9.1. Given { € N, a € (0,1) and v € R, the space C2%(B,,(0)) is defined
to be the space of functions in Cloc( 20 (0)) for which the following norm is finite

lp™" wlleea (s, (o)
Now we can state the following result.

Proposition 3.9.2. There exists an operator
H:C*(SY) — C2*(S' x [p, +00)),

such that for each even function ¢(0) € C*2(SY), which is L*-orthogonal to the constant
function, then w, = H;, solves

Awy,=0 on S'x|[p,+o0)
w,=¢ on S'x{p}

Moreover, 3
H el 2o (51 x (400 S €ll@llczo(sny, (3.69)

for some constant ¢ > 0.

Remark 3.9.3. Following the arquments of the proof below, it is possible to state a similar
proposition but with the hypothesis ¢ odd.
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Proof. We consider the decomposition of the function ¢ with respect to the basis
{cos(if)}, that is

p= Z ©; cos(if).
i=1

Then the solution w, is given by

wy(p,0) = i (g)i p; cos(i6).

=1

Since £ < 1, then g) < (%) , we can conclude that |w(r,0)| < c¢p~tp(0)| and then

lw|lg2.e < cllpl| 2o 0
Now we give the statement of an useful result whose proof is contained in [6].

RSN

Proposition 3.9.4. There exists an operator
H : C**(SY) — C*5([0, +00) x S1),

such that for all ¢ € C*>*(SY), even function and orthogonal to 1 and cos @, in the L*-sense,
the function w = H, solves

(P+0)w = 0 m [0,400) x S!
w = ¢ on {0} x5!

Moreover
|Hollezs < cllellcee,

for some constant ¢ > 0.

Proposition 3.9.5. There exists an operator
Hay 2 C2(8Y) — C2(S" x [uo, +00)),

p € (=2,—1), such that for every function o(v) € C**(S"), which is L*-orthogonal to
epi(u) with i = 0,1 and even, the function w, = H,,(p) solves

2wy + 02w, =0 on St x [vy,+00)
Wy, =@ on ST x {v}.

Moreover, B
|[Hu ()] |c§’a(sl K[vorrod]) S € |ello2a(sr), (3.70)

for some constant ¢ > 0.
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Proof. We consider the decomposition of the function ¢ with respect to the basis

{eo,i(u)}, that is
¥ = Z pieoi(u)
=2

Then the solution w,, is given by

o0

we(u,v) = Z e pie0,4(u).

=2

We recall that u € (—2,—1) so we have —i < p from which it follows |we|2 aifp,v+1] <
(v=v0)| |, , and

ngoch = sup e M |w|2a wotl] S SUD e Hen(v=ro) |90|2 < 6_W0|90|2,a-
vE[vg,00] vE[vg,00]

Lemma 3.9.6. Let u(r,0) be the harmonic extension defined on [ry, +00) x St of the even
funcion ¢ € C>*(S') and such that u(ry,0) = ¢©(0). Then

Oou(r, 0 — 7/2)jp=pry, = —100,u(7, 0) p—p,-

Proof. If ¢(0) = >, ¢i cos(if), then the function u is given by

u(r,0) = <TO) cos(if).

120
Then :
r\"icos(if)
Oru(r,0) = i | —
=30 () ==
and
Opu(r,0) ngz (—) isin(if).
120 "
Consequently
Ogu(r,0 — m/2) = Z i < ) i cos(if)
120
from which lemma follows easily. OJ

Lemma 3.9.7. Let u(r,0) be the harmonic extension defined on [0,10) x S* of the even
funcion ¢ € C>*(S') and such that u(ro,0) = ¢(0). Then

80”&(7’, 0 — 7T/2)|'r:'r0 = Toarlb('f’, 6)\r:r0-
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Proof. If ¢(0) = >, ¢i cos(if), then the function u is given by

Z(p,< ) cos(if).

120
Then
ro\? i cos(if)
T
= r r
and
Opu(r,0) = Z(pz< > isin(if).
120
Consequently
Ogu(r, 0 —m/2) = ngl ( > i cos(if)
=0
from which lemma follows easily. l

3.10 Appendix B

Proof of proposition 3.7.1. Let Z be the immersion of the surface Mg7a7ﬁ and N its
normal vector. We want to find the differential equation to which a function f must
satisfy such that the surface parametrized by Z; = Z 4 fN is minimal. In section
3.5.2 we parametrized the surface Ma,a,ﬁ on the cylinder S' x R. We introduced the map
z(7,y) : S' x [0, 7[— C where z,y denote the sphero-conal coordinates. We start working
with the conformal variables p, ¢ defined to be as the real and the imaginary part of z. It

holds that
’ZPP = ’Zq‘Q = A, ’N;Dl2 = ’Nq’2 = —KA,
<NpaN> = <Nq7N> =0, <Zpazq> =0, <Np=Nq> =0,
<quZq> = _<Np’ Zp>7 <Nqazp> = <Np’Zq>7
SO
(Np, Zy) = |Nyl|Zy| cosm = V=R A cos i,
(Ny, Zg) = [Ny ||Z,] cos7o = V= A cosya.

Here K denotes the Gauss curvature, Z,, Z, and N,, N, denote the partial derivatives
of the vectors Z and N, v; is the angle between the vectors N, and Z,, -, is the angle
between the vectors NV, and Z,.

The proof of proposition 3.7.1 is articulated in some lemmas. We denote by Ly, Iy, Gy

the coefficiens of the second fundamental form for the surface parametrized by Z;. The
following lemma gives the expression of the area energy functional.
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Lemma 3.10.1.

A(f) ZZ/\/Efo—F,?dpdq,

E;Gy—F; = N+ A(f2+ f2)+2KN >+ 2f(f7 — [))V—KAcosm
—Af fofoV—KAcosyo — KAf(f2 + f2) + f1KA%

with

Proof. The coefficients of the second fundamental form are:
Er =10,Zs1> = | Zp* + 17 + [PINo|> + 21 (Np, Zp),
Gf = ‘anf|2 = |Zq‘2 + f<12 + f2‘Nq‘2 + 2f<Nq> Zq>a

Fy = |8pi ) anf‘ = folfq+ f<<Zp7Nq> + <Zq>Np>)-

Then
EGy = ZP1Zg* + [N 2] + F]12,)2 + [P(ING*| Zo* + NP1 Zg|*)+

P NG+ £GING )+ FHING P ING P44 ((Np Zp) ((Ng Zg)) + 2 (£, (Ngs Zg) + 14 (No, Z))+
Fofa + 2f ANy, Z)I 2" + (Np, Zp) 1 Z4*) + 217 ((Ng, Zo) | Z|* + (Np, Z,)1 Z4]).

Since (N, Z,) + (N,, Z,) = 0 and |Z,|* = |Z,|* we can conclude that the last two terms
of the previous expression are zero. Since (N, Z,) = (N, Z,) we have

Fr= fofg +2f(Ny, Z,).

Then
F]? - fz?fqz + 4f2(<N:07 ZQ>)2 + 4 fofo{ Np, Zyg)-

So the expression of Gy — F7 is:
|ZoP| Z? + £ 2417 + 127 4 PPN Zp)? + NP1 Z4 )+
FAURING P FFIN )+ FHN P [N | 442 ((Nyy Zp) ((Ngs Zg)) +2f (f (Ny, Za) + f{Np, Zp))

_4f2(<Np> ZQ>)2 - 4ffpr<NP> ZQ>

Ordering the terms we get:
|Zol*1Zal* + 1 2o + S 217 + FPANGP 2" + NP Z") — A2 (N, Z,))°

+4f2((Np, Zp))((Ng, Zg)) + 2f (f2(Ng, Zg) + f3(Np, Zp)) — 4f o fo Np, Zg)+
+L2(F2NG? + FZING ) + FHNG NG|
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The expression of E¢Gy — F7 becomes:

A? + A(f; + qu) —2KA?f? + 42 KA\? (0052 1 + cos? 72) +

+2f(f7 = F)V=KAcosy — 4f o fV/=KAcosya — KAF2(f + f7) + fEA%

Using the relations (Ny, Z,) = (N,,Z,) and (Ny, Z,) = —(N,, Z,), it is possible to
understand that the relative positions of these vectors are such that ~

= g + Y1- So
cos® 1o = cos®(§ £ 1) = sin® 71 and cos® y1 + cos® 7, = 1. Then we can write:
A2+ A(f2 4 12) + 2KA2 2 + 2 (£ = f)V=EAcos,
A1 fo VTR A cosa = KAS(f} + [7) + A%

O
The next lemma completes the proof of the proposition 3.7.1.

Lemma 3.10.2. The surface whose immersion is given by Z + fN, is minimal if and
only if [ satisfies

»Caf + Qa(f) = 07
where L, is the Lamé operator and ), is a second order differential operator which satisfies

Qo (f2) — Qo (f)llcow(r, x sy < € SUP || filleza(, <ot [1fo — filleza, xw.wr1)-

1=1,2

Proof. The surface parameterized by Z; = Z + fN is minimal if and only the first
variation of A(f) is 0. That is

1
2DA;(9) =/ TR Dy(E¢Gy — FF) (9) dpdg.
TS
Thanks to the previous lemma it holds that
1 1
Dy(EsGy — Ff)(9) = + (2A(fogp + fogq) +4AKA* fo+
(E;Gy — F?) A
R TS

+2V—KAcosy [2f fogq + 917 — 2f fogp — 97 ] +
— AN —KAcosva [ffogp + [9uf0 + 9fpfo] +

—2KA [fafy + fogpf? + fafs + fogaf?] +AKZN* fg) .
Reordering the summands, we have:

1

(E G FQ) Df(Efo o F]g)(g) = 2<fpgp+fng +2KAfg+
™ 1r=0
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+V =K cos [2f(fogq — Fogp) + 9(f; — F)] +
—2vV —K cos s [f(fqu + gqu) + gfpfq] +
—-K [fg(f,? + fq2) + f2(fpgp + fng)} + 2K2Af3g) :

In the next computation we can skip the factor 2 in front of the last expression.

Jo9p + fe94 + 2K AN fg + Ql(fa Ips fq)g - Q2(f7 fpqu)gp - Q3(f7 fpqu)gq =
where

Qi(fs foi o) = = (f5 = fV =K cosmi = 2f, foV/ =K cos 2 — K f(fy + fg) + 2K°A f°,

Q2(f7fpafq):2ffp\’_ C0571+2ffq\/ COS’Y2+Kf fpa
Q3<f7fpafq) foq\/ COSVl"’fopv C0872+Kf fq

An integration by parts and a change of sign give us the equation:

(fpp + qu - 2KAf - Ql(fv fp?fq>+
+P2(f, fpa fqa fmh quv qu) + P3(fa fp> ftp fppa fpm qu)) g

where

Po(f, fos fas Tows Foar aa) = 0pQ2(F, fps fo)
and

P3(f7 fpa fqa fppaqua qu) = 8qQ3(fa fpa fq)
That is

PQ(fa Jos o> fovs Joas qu) = (f2 + ffpp) V—Kcosy + 2(fpfq + fqu) V—K cos o+
(2ff2+f2fpp>+2f<fp<\’ K cosm)p + fo(V—K cosya), )+f2prp

and

B(f, fos fas fops Foas Faa) = (f + fla) V=K cosyi + 2(fpfy + [ fpg) V—K cos o+
+K(2ffq2+f2qu)+2f( fq(\’ COS%) +fp(V COSW) )+f2qu

Now we change the variables, passing from the (p,q) variables to the (u,v) variables.

Then we want to understand how above differential equation changes. We recall that p
and ¢ are the real and imaginary part of the variable z of which we know the expression
in terms of the spheroconal coordinates z,y (see (3.29)). It is known that the metric g
induced on a surface whose immersion Z is given by the Weierstrass representation on a
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domain of the complex z-plane, can be expressed in terms of the metric ds? = dp? + dg?,
by g = A(dp? + dg*), where A = |Z,|> = |Z,|*. The Laplace-Beltrami operators written
with respect to the metrics ds? and g are related by:

1
A
That is they differ by the conformal factor 1/A. In section 3.7.1 we observed that the
conformal factor related to the change of coordinates (z,y) — (u,v) is —K/k. So the con-

formal factor due to the change of coordinates (p, ¢) — (u,v) is obtained by multiplication
of the conformal factors described above. Summarizing it holds that

Ad§2 - Ag

fpp+qu (fuu+fvv)
So we can write
KA
where
RA(f. fur£) =~ [ (2 PR cosy — 2 fur/ K cosa — KJ(f2 + £2)] -2K°Af°
= RN (2 VIR conmn + 2fufud K cosya + KF(f2 + 2) — 26k =
A
RS £
—KA
RQ(fafuafvyfuuafuv;fvv) = l]: P2<f7fu7fvyfuu;fuv;fvv)

and K

R3(f7 fu; fvafuuafuva fvv) -

We can write, simplifying the notation:

—KA
ko

P3(f fua f’L)vfMU7fuv; fvv)

[fuw + fou + 2k(u,0) f + Pu(f) + Pa(f) + Ps(f)] = 0.
We can recognize the Lamé operator,

Lof = fuu+ foo + 2(sin? o cos® z(u) + cos® osin® y(v)) f,
then, if we set Q, = Pi(f) + Pa(f) + P3(f), the equation can be written
Lof+Qo(f)=0
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To show the estimate about @), is sufficient to show that all its coefficients are bounded.
In particular we will show that the Gauss curvature K and its derivatives K, K, are
bounded. We start observing that OO is bounded. It is well known that the Gauss
curvature has the following expression in terms of the Weierstrass data g, dh:

1\ 4
K =-16 (|g| + —)
9]

We recall that dh = 7 2+/\l;;l(z et Since |22+)?||224+X "% and k(z,y) = sin® o cos® x(u)+

cos? o sin? y(v) have the same zeroes, that is the points D, D', D" D" given by (3.23),
then —K/k is bounded as well as its derivatives.

d 2
@9 |dh|_2
g

We can give an estimate of the derivatives of K and +/—K. We can write v—K =
\/E\ / % From the observations made above it follows that it is sufficient to study the

derivatives of vk to show that the derivatives of v/—K are bounded.

We recall that

l(z) = V1 —sin2osinz m(y) = /1 — cos? o cos?y.

From the expression of k, using (3.30) it is easy to get:
2 o sin 2x(u)

Wk

0  cos? o sin2y(v)
5 Vk = Wi m(y(v)).

0 sin
o=~ o),

Then
g\/E‘ _ sin? o| sin 2z (u)|l(x(u)) < sin.2 o sin 2x(u)| < sino,
du 2/sin? o cos? z(u) + cos? osin’ y(v)  2sinofcosz(u)|
g\/%’ _ cos® o] sin 2y(v)|m(y(v)) < cos? o] SiI'l 2y(v)| < cos0.
v 2v/sin? o cos? z(u) 4 cos? osin? y(v)  2coso|siny(v)]

That is the derivatives of v/k (and consequently the ones of v/—K) are bounded. That
completes the proof.
O
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3.11 Appendix C
The differential equation
siny 9, (siny 9, f) — jf + 2sin*y f =0 (3.71)

is a particular case (I = 1) of the associated Legendre differential equation, that is given

by
siny 9, (siny d,f) — 72f +1(l+ 1)sin®y f =0,

where [, j € N. The family of the solutions of equation (3.71) (see [1]) is
c1 P (cosy) + e,Q (cos y),

for | = 1, where P/(t) and QJ(t) are respectively the associated Legendre functions of first
and second kind. If [ = 1 these functions are defined as follows:

| t it j=0
Pity={ —v1i—£ if j=1
0, if j>2

Q1) = (—1Y /(1 = &) %;J@ and QV(1) = %m (ﬂ) 1
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